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CHAPTER I

INTRODUCTION

The majority of coastal invertebrates have complex life cycles that include planktonic

larval stages that return to the benthos for settlement. Transport by coastal currents has

been shown to affect larval supply, recruitment, and the population dynamics of sessile

adults (Gaines et al., 1985; Shanks, 1986a; Shanks and Wright, 1987; Roughgarden et aI.,

1988, Jacobsen et aI., 1990; Farrell et aI., 1991; Pineda, 1991; Roughgarden et al., 1991;

Miller, 1992; Alexander and Roughgarden, 1996). Nearshore circulation patterns affected by

shoreline irregularities, such as headlands and embayments, can modify current patterns to

create eddies and fronts (Okubo, 1973; Pingree and Maddock, 1979; Wolanski and Hamner,

1988; Black et. aI., 1990; Geyer and Signell, 1990; Signell and Geyer, 1991; Laval, 1995; Van

der Baaren et aI., 1995) that may impact larval recruitment. Several studies have investigated

circulation within larger bays and behind headlands (Grundlingh and Largier, 1991;

Rosenfeld et aI., 1994; Graham and Largier, 1997), but few have focused on small-scale

circulation of several 100 m to a few km from shore (Archambault, et al., 1998; Archambault

and Bourget, 1999). This study investigates nearshore, small-scale circulation patterns and

their effects on larval dispersal and settlement.

One of the physical featriies likely to be found in coastal waters that may affect larval

availability is a front. A front is a boundary between two different water masses and is

typically characterized by a surface convergence that frequently produces a large horizontal

gradient in temperature, salinity, or density (Owen, 1981). A foam line often delineates the

surface convergence and may be indicative of a front. There are several types of small-scale
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circulation patterns that occur adjacent to shore (Bakun, 1986; Wolanski and Hamner, 1988)

that may produce fronts. 1) Circulation due to buoyancy input can be driven by freshwater

input and surface heating. For example, a front is often found at the mouth of estuaries

where the less saline estuarine water meets the more saline ocean water (Dyer, 1997; Largier,

1993). Also, a front may form where there is local surface heating of waters retained in bays

(Boden, 1952), which can commonly occur in bays in upwelling systems (Graham and

Largier, 1997; Largier et aI., 1997; Monteiro and Largier, 1999; Wolanski and Hamner, 1988).

2) Another type of small-scale circulation that may form nearshore is due to boundary

mixing. In shallow waters, strong currents coupled with rough bottom topography can lead

to vertical mixing. A surface front can form where the warm offshore surface layer meets

the cooler mixed nearshore waters (Wolanski and Hamner, 1988). 3) Waves breaking against

a shore drive water shoreward. Rip currents and associated surf-zone recirculation form as a

release of the buildup of waters (Talbot and Bate, 1987). A front is often found at the

seaward edge of strong offshore rip currents (Smith and Largier, 1995). 4) During upwelling

favorable winds, surface waters are pushed alongshore and offshore where cold dense waters

are upwelled. An upwelling front can form between the cold upwelled waters and the

warmer waters pushed offshore (Wolanski and Hamner, 1988). 5) Lastly, alongshore flow

can generate nearshore fronts. Alongshore flow separates from the shore at abrupt changes

in the orientation of the coast, suth as at headlands and the upstream edges of bays. In the

lee of a headland or within a bay, an eddy will develop if the water is deep enough and the

bay long enough. Along the separation line (between mean flow and the eddy), a front may

be observed. These have been studied in the case of islands (Wolanski, 1988), but also in

larger bays (Graham and Largier, 1997; Wolanski and Hamner, 1988).
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Many studies have shown that topographically generated fronts can affect the

distribution of buoyant eggs, larvae, and plankton (Alldredge and Hamner, 1980; Wolanski

and Hamner, 1988; Kingsford et al., 1991; Signell and Geyer, 1991; Wolanski, 1993). High

concentrations of plankton, including meroplankton, are often associated with eddy

generated surface convergences (Alldredge and Hamner, 1980; Hamner and Hauri, 1981;

Willis and Oliver, 1990; Wolanski et al., 1989; Wolanski and Hamner, 1988). These studies

have focused on tidally generated fronts. The front and associated concentrations of

plankton are dispersed by each change in the tides. If, however, a persistent flow field

generates the front, then the front may exist for long enough to have an important ecological

effect.

Along rocky coastlines, foam lines that are oriented parallel to shore (hereafter shore­

parallel foam lines) have been observed at the mouths of small bays and coves at a number

of locations including Chile, New Zealand, Australia, California, and Oregon (Shanks,

personal communication). An accumulation of foam suggests that the foam lines delineate a

convergence or front. At Sunset Bay, Oregon, a shore-parallel foam line was observed only

during the summer months. During this time, winds are predominantly from the Northwest,

producing upwelling conditions; occasionally winds from the Southwest, produce relaxation

events (Huyer, 1983). Because alongshore wind driven currents can persist for up to several

weeks, the secondary circulation-pattems generated where this alongshore flow separates

from the shoreline may persist for weeks.

A difference in watercolor across the foam line at Sunset Bay suggests that the front

may inhibit the exchange of water, and create a barrier to cross-front movement of

planktonic larvae. Larvae may exploit these flow regimes to limit their dispersal. This front
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may also act as a barrier preventing larvae that have gone through their development in

offshore waters from migrating to coastal settlement sites.

Past studies have provided evidence that nearshore larval transport processes can

impact recruitment to benthic and subtidal populations (Ebert and Russell, 1988; Gaines and

Roughgarden, 1985; Shanks, 1995). To better understand the effects of nearshore

circulation on the dispersal and settlement of larvae, I focused on the larval distribution and

settlement of two important organisms of the rocky intertidal community: barnacles (Balanus

glandula) and mussels (Mytilus sp.). B. glandula is found in the high and mid intertidal zone

from Baja California to Alaska (Morris et a!., 1980). Larvae are released beginning in the

early spring and continuing throughout the summer (Barnes and Barnes, 1958; Connell,

1970; Hines, 1978). Lab studies have found barnacle larvae to develop from 12 days (Emlet,

personal observation) to four weeks (Brown and Roughgarden, 1985) as nauplii (six stages)

followed by a non-feeding cyprid stage in which settlement occurs. Adult Mytilus sp. are

found in the mid-intertidal zone from southern Baja California to the Aleutian Islands.

Spawning occurs throughout the year (Suchanek, 1981), with peaks in July through

November (Edwards, 1984). The larvae are in the plankton approximately 17 to 24 days.

Mussel eggs and sperm are released into the plankton. They start as trochophore larvae,

develop into veliger larvae, and then settle as pediveligers.

The goal of this study wa"S to evaluate the persistence and importance of nearshore

topographically generated currents on the dispersal and settlement of larvae. I addressed

several questions: 1) How long do conditions maintain a shore-parallel foam line? 2) Is

there a front associated with the foam line? 3) What are the physical characteristics of the

waters across the foam line or front location? 4) Is there a difference in the distribution of



meroplankton associated with the foam line? 5) Is there a difference in settlement of

barnacles and mussels across the front? 6) Is this difference in settlement correlated with

larval distributions?

5
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CHAPTER II

METHODS

Description of the Sunset Bay Study Site

TIlls study was carried out within Sunset Bay, Oregon, USA (430 20' 100 N; 1240 22'

750 W) (Fig. 1). Sunset Bay is located 4 km north of Cape Arago and 3 km south of the

Coos Estuary. The surrounding area (Miller's Cove & Gregory Point) is a complex of bays,

small islands, and intertidal reef rocks. Gregory Point is a series of small islands 0.5 km

north of Sunset Bay that extends 1 km from shore. Gregory Point is the first significant

headland along the southern coast of Oregon. Miller's Cove is located just south of Gregory

Point and just north of Sunset Bay and separated from Sunset Bay by Squaw Island and

intertidal rock reefs. Sunset Bay consists of a small inner bay connected to an outer larger

bay. For this study the Sunset Bay region and adjacent shelf was divided into three zones: 1)

inner bay, 2) mid bay, and 3) seaward of the front (Fig. 2). The seaward edge of Sunset Bay

was defined as the outer edge of the rock reefs north and south of the study area (Fig. 2).

Tides along the Oregon coast are mixed and semidiumal with a mean annual range

of 1.7 m (Oregon Dept. of Transportation, 1983). During the winter (October - March),

southwest winds produce downwelling conditions and frequent large swells. Starting in

April or May, winds are predominandy from the northwest producing upwelling conditions

with unpredictable and short relaxation events due to reversals in the wind direction or

weakening of the winds for one to several days (Halpern, 1976). Swells tend to be smaller

during the summer months.



Figure 1. Location of the study site, Sunset Bay, Oregon, and surrounding area,
including Miller's Cove and Gregory point (430 20' 100 N; 1240 22' 750 W).
The grey shaded area is the intertidal zone and land is to the East. The
time-series of settlement and abundance of barnacles and mussels were
measured inshore and offshore of Sunset Bay. Temperature, salinity, density,
and cWorophyll were also measured inshore and offshore of Sunset Bay. Wind
speed and direction were measured by the NOAA Cape Arago Weather Station
(CAR03), located at Gregory point.
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Figure 2. The study site, Sunset Bay, Oregon, was divided into three zones
(Inner bay, Mid bay, and Seaward of the front). The grey shaded area
represents the land and the area just offshore of land represents the intertidal
zone. The front was located at the seaward edge of Sunset Bay, or the outer
edge of the rock reefs. Moorings (*) were established approximately 3 m
apart at 0.23 km (Inner bay), 0.85 km (Mid bay), and 1.5 km (Seaward of
front) from shore.
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Persistence of the Sunset Bay Topographic Front

A foam line parallel to shore consistently occurs at the mouth of Sunset Bay during

summer upwelling conditions. To measure the persistence of the front, observations were

made approximately every other day from mid January through August 2000. An overlook

on the Cape Arago highway located on the south side of Sunset Bay provided a clear view of

the mouth of the bay. The presence or absence of the front, wave height, wind direction

and speed were noted during each observation. The presence of the front was indicated and

scored by an unbroken foam line extending across the mouth of the bay and, often, by an

associated watercolor change.

Physical Characteristics of the Nearshore Water Column

To identify the front and describe the physical characteristics of the waters in Sunset

Bay and the adjacent shelf, measurements of water temperature, salinity, density and

chlorophyll a concentrations were recorded with a Seabird 19 Conductivity-Temperature-

Depth (CTD) meter with an attached Wetstar Wetlabs fluorometer. One vertical cast

(surface to bottom) was conducted on each sampling day along a nearshore transect with

eight CTD sample stations located 0.2, 0.3, 0.5, 0.9, 1.0, 1.1, 1.2, 1.5 km offshore. The

Noesys Transform program was used to generate contour plots of the water column

conditions.

The time-series of physical oceanographic transects was coupled with coastal wind

datasets (NOAA Cape Arago Weather Station CAR03; located 0.5 km north of Sunset Bay),

and the upwelling index measured by the NOAA Yaquina Bay Buoy Oocated 160 km north
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of Sunset Bay). Cross-shelf and along-shelf wind stress were calculated from the wind speed

and direction data (pedlosky 1987) from the CAR03 Weather Station and reported as daily

averages.

Larval Settlement Time Series

Three vertical plankton tows (one in each zone at the mooring site) were taken with

a 53 !J.tll mesh net with a mouth diameter of 0.25 m on each of the sampling days. The

plankton net was lowered to the end of a 6.1 m line to a maximum depth of 6.1 m three

times for a combined total tow length of 18.3 m for an individual sample. A total of 0.9144

m3 of water was sampled at each plankton tow station (one in each zone). In the laboratory,

the three samples were preserved in 10% CaC03 buffered Formalin. The samples were

rinsed with water and transferred to a 250 ml beaker. Water was added to the sample until

the electronic balance measured 200g (200ml). Three sub-samples were removed with a

Stempel pipette (Omori and Ikeda, 1984; Peterson et al., 1979) after vigorous random

stirring. The sub-sample size (10 ml) was determined by counting at least 100 individuals of

the most common organisms. The sample standard deviation was approximately 10% for

the most abundant organisms and between 10 and 20% for the less common species

(Venrick, 1978). The sub-sampling method was tested for statistical differences by Shanks

(in press) and was found to provide an accurate estimate of the concentration of animals in

the entire sample. Organisms were identified and enumerated using a dissecting microscope

equipped with polarizing filters (Shanks, in press). The polarizing filters allowed organisms

containing CaC03 to be easily viewed.
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The pattern of larval settlement was measured by providing artificial substratum

attached to a set of moorings that were distributed across the front at Sunset Bay. Each

mooring contained four plexiglass settlement plates (10 cm~ coated with Safety-Walk tape

(3M, Minneapolis, Minnesota, USA) and four artificial turf substrata units (fuffyTM scrub

pads; 770 cm3
). Settlement plates and the artificial turf substrata units (hereafter ATSU)

were affixed to moorings 0.5 m below the surface. Replicate moorings (n=3) were

established approximately 3 m apart at 0.23 km (Inner bay), 0.85 km (Mid bay) and 1.5 km

(Seaward of front) from the shoreline located in the Inner bay (Fig. 2).

From 3 July thru 15 September 2000, samples were collected from the moorings

roughly every other day (n = 30 sample periods). Five sampling periods were longer due to

high seas. For example, the sampling period was extended from two days to three days on

Julian day 215 and four days on Julian day 194,208, and 246. Moorings with attached

settlement plates and artificial turf substrata units (ATSU) were exchanged in the field with

new moorings. In the lab, settlement plates and ATSUs were removed, placed in separate

bags, and frozen until processing (ATSUs) or analysis (plates).

The settlement plates were viewed with a dissecting microscope and cyprids and

juvenile barnacles were counted and identified to species (Shanks, in press). The entire plate

was typically counted; however, if the number of barnacles was greater than two hundred,

then ten random squares (2 cm~ were counted. The total number of barnacles on each plate

was calculated from the mean/cm2 of the random squares times the area of the plate. The

ATSUs were rinsed with freshwater for one to two minutes into a 93 f.Wl sieve to remove

larvae. The ATSU samples were preserved in 10% CaC03 buffered Formalin. Organisms

from the ATSU samples were identified and enumerated with a dissecting microscope with a
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polarizing filter. Organisms that were small or difficult to identify were identified with a

compound microscope. All larvae were identified with standard identification guides

(Shanks, in press; Martel et al., 2000).

Data Analysis

Along- and cross-shore wind stress was computed from the wind data using standard

equations (pedlosky, 1987). Data were averaged over each day. The maximum daily tidal

range was defined as the maximum change in tidal elevation between a high and adjacent low

tide during a 24 h period.

Time series analyses were used to investigate the relationships between the physical

variables: alongshore wind stress, cross-shore wind stress, upwelling index, and maximum

daily tidal range. To test the data for artificial inflation of the r values (Thorrold et aI., 1994),

the time-series was tested for significant auto-correlations (p<0.05). No significant

autocorrelations were found. Cross-correlations were run between physical variables.

Significant cross-correlations with positive and negative lags greater than 4 days were

disregarded (Thorrold et al., 1994).

To test for differences in temperature, salinity, density, and chlorophyll a across the

front location during upwelling and downwelling favorable winds, a two-way Analysis of

Variance (ANOVA) was perforn:red with condition (upwelling and downwelling favorable

winds) and zone as the fixed factors. Input data included the average of the maximum and

minimum values for all the vertical casts in each zone. For example, the maximum and

minimum values from the CTD cast at 1.5, 1.2, and 1.1 km on Julian day 186 were averaged

and used for the outer zone value for that day. The data were log transformed (logtoX+1)
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(fhorrold et aI., 1994). The assumption of homogeneity of variances was tested by the

Cochran's test (Underwood, 1981). All data met the assumptions of normality, and

homogeneity of variances (Underwood, 1981). When significant (p<O.OS) zone effects were

found, then a post hoc pairwise comparison test (fukey, p<O.OS) was completed to

determine the differences between zones.

Physical CTD data including temperature, salinity, density, and chlorophyll a were

cross-correlated with alongshore wind stress. Input data for this analysis included all

measurements collected at a depth of 1 m below the surface at each of the CTD stations.

Because sampling occurred in the morning approximately every two days, alongshore wind

stress was averaged for the days between sampling cruises. To test the data for artificial

inflation of the r values (fhorrold et al., 1994), the time-series was tested for significant auto­

correlations (p<O.OS). No significant autocorrelations were found. Cross-correlations were

run between alongshore wind stress and the physical CTD variables. Significant cross­

correlations with all positive lags and negative lags greater than four days were disregarded

(fhorrold et al., 1994). Significant positive lags were disregarded under the assumption that

the CTD variables would not have an effect on the alongshore wind stress.

To determine if there was a significant (p<O.OS) zone effect in concentrations

(#/ m3
) of Balanusglandula cyprids and mussel larvae across the location of the front, a two­

way ANOVA was completed wit:lt~conditionand zone as fixed factors. Concentrations of

larvae were log transformed (logtO x+1)(fhorrold et al., 1994). The assumption of

homogeneity of variances was tested by the Cochran's test (Underwood, 1981). All data met

the assumptions of normality, and homogeneity of variances (Underwood, 1981). When

significant (p<O.OS) zone effects were found, then a post hoc pairwise comparison test
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(fukey, p<O.OS) was completed to determine the differences between zones.

To investigate the relationship between barnacle cyprid setdement and wind stress, a

cross-correlation was performed. Daily cyprid setdement was log-transformed and

detrended. To test the data for artificial inflation of the r values (Iborrold et aI., 1994), the

time-series was tested for significant auto-correlations (p<O.OS). No significant

autocorrelations were found. Cross-correlations were run between alongshore and cross­

shore wind stress and cyprid setdement. An additional cross-correlation was run between

the maximum daily tidal range and cyprid setdement. Significant cross-correlations with all

positive lags and negative lags greater than four days were disregarded (Iborrold et al.,

1994). Significant positive lags were disregarded under the assumption that the biological

variable would not have an effect on the physical variables.

To determine if there was a significant (p<O.OS) zone effect in mussel setdement

across the location of the front, a one-way ANOVA was completed using zone as a fixed

factor and ignoring condition. Concentrations of larvae were log transformed (lOgIO X+1)

(Iborrold et al., 1994). When significant (p<O.OS) zone effects were found, then a post hoc

pairwise comparison test (fukey, p<O.OS) was completed to determine the differences

between zones.
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CHAPTER III

RESULTS

Persistence of the Sunset Bay Topographic Foam Line

From January through September 2000, observations were made of the presence or

absence of the front and an associated foam line parallel to shore at the mouth of Sunset

Bay. During periods of htrge swells, foam lines were present, but oriented perpendicuillr to

shore. They appeared to be associated with rip currents that extended out of the bay.

During winds from the South (downwelling favorable), the foam line was either absent or

extended only part way across the mouth of the bay. The foam line parallel to shore and, by

inference, the associated front at the mouth of Sunset Bay was only present when there were

upwelling favorable winds and a small swell. No foam line parallel to shore was observed on

any day with htrge swells (>2m) (Table 1). When the winds were from the South (58

observations), or offshore (Northeast winds, 8 observations), a foam line parallel to shore

was observed only once (Table 1). However, when the winds were upwelling favorable,

from the Northwest (52 observations), foam lines parallel to shore and extending completely

across the mouth of Sunset Bay were always present. Often, a water color change was

associated with the front (Table 1).

Oceanographic Characteristics

During the study, the winds were typical of those observed during a summer on the

Oregon coast with strong winds from the northwest and weaker winds from the southeast



Table 1. Wind direction, wave height, and observations of the presence or

absence of the foam line parrallel to shore at the mouth of Sunset Bay, OR

from mid-January through August 2000. Wind direction is that from which

the wind was blowing. ND = no data.

Wave
Size

Large,

>2m

Small,
<2m

Foam line parallel
to shore is present

Yes

No

Yes

No

NE
Winds

ND

ND

o
8

SE
Winds

o
2

o
18

SW
Winds

o
13

1
24

NW
Winds

o
6

46

o

16
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(Fig. 3). The peak in northwest winds (upwelling favorable winds) occurred on Julian day

240 with an alongshore and cross-shore wind stress of -1.05 dynes/cm2 and -0.13

dynes/cm2
, respectively. The maximum alongshore and cross-shore wind stress due to

southeast winds (downwelling favorable winds) was 1.12 dynes/cm2 and 0.22 dynes/cm2
,

respectively, and occurred on Julian day 246. There were five periods of downwelling

favorable winds, about 21% of the study.

Significant cross-correlations were found between along and cross-shore wind stress,

upwelling indices, and maximum daily tidal range. The alongshore wind stress was

significandy positively cross-correlated with cross-shore wind stress at 0 and -1 d lag (Table

2). Therefore, when Northwest winds moved surface waters south, then surface waters

moved offshore. A similar pattern to the wind stress was found with the upwelling index

data from the Yaquina Bay NOAA Buoy (Fig. 3). The minimum and maximum upwelling

indices were -31 and 346 and occurred on Julian days 245 and 213, respectively. The along­

and cross-shore wind stress were both negatively and significandy cross-correlated with the

upwelling indices at a 0 d lag (Table 2). Therefore, the upwelling index and wind stress data

represented similar trends in upwelling and downwelling events. The maximum daily tidal

range for spring and neap tides were 3.4 to 0.6 m, respectively (Fig. 3). Alongshore wind

stress was significandy negatively cross-correlated with the maximum daily tidal range at lags

of -2 and -3 days (Table 2). Cross'::"shore wind stress was significandy negatively cross­

correlated with maximum daily tidal range at -2, -3, and -4 d lag (Table 2).

Downwelling/relaxation events tended to occur two to three days after a neap tide. These

correlations between the winds and tides are undoubtedly fortuitous.
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Figure 3. Physical parameters during the period of the study from Julian day 182 through
248 (1 July through 5 September 2000)..Alongshore and cross-shore wind stress data were
collected from the NOAA Cape Arago Weather Station (CAR03), located 0.5 km north of
Sunset Bay. Positive and negative values of alongshore wind stress represents winds to the
north and south, respectively. Positive and negative values of cross-shore wind stress
represent winds to the east and west, respectively. The shaded gray boxes highlight periods
when, given the wind direction, downwelling/relaxation events probably occurred.
upwelling index data was collected from the NOAA Yaquina Bay Weather Buoy. More
positive upwelling index values represent peaks in upwelling. Maximum daily tide data were
collected from Harbor Master Tidal Software.
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Table 2. Results of cross-correlations between alongshore wind stress,

cross-shore wind stress, upwelling indices, and maximum tidal range.

Wind stress and upwelling indices are average for each day. Values
are listed with cross-correlation coefficients, standard errors, and

days lag. Only significant correlations are shown (p<0.05,
n = 76 days of observations).
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Alongshore Wind Stress

Cross-shore wind stress

Upwelling indices

Maximum tidal range

Cross-shore Wind Stress

Upwelling indices

Maximum tidal range

r S.E. Days lag

0.79 -0.11 0
0.32 -0.12 -1

-0.58 -0.11 0
-0.73 -0.12 1

-0.41 -0.12 2

-0.29 -0.12 -2

-0.27 -0.12 -3

-0.45 -0.11 0

-0.55 -0.12 1

-0.27 -0.12 2

-0.28 -0.12 -2

-0.29 -0.12 -3
-0.27 -0.12 -4
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Physical Characteristics of the Nearshore Water Column

From July to mid September, transects ofcm stations were made across the shore-

parallel front at Sunset Bay to investigate whether the bay waters were isolated from the

coastal waters offshore. During upwelling favorable winds, the front (boundary zone

between two water masses that differs in temperature, salinity, density, or chlorophyll a

concentrations) was always found at the mouth of the bay approximately 1 km from shore

(Figs. 2 & 4). The waters seaward of the front were colder (Fig. 4), denser, and more saline

than the bay waters. Temperatures seaward of the front were 0.1 to 2.4° colder and salinity

was usually higher (0.1 - 1.5 PSU) than in the bay. When the winds shifted to downwelling

favorable winds, the shore-parallel foam line disappeared. During downwelling/relaxation

events, warm, less dense, less saline offshore ocean waters were found in the bay, creating a

mixed water column. There was almost no change in temperature (Fig. 5) and little change

in salinity along the position where the foam line would otherwise occur. There were two

strong downwelling events represented by a three-dimensional graph of water temperature

throughout the entire sampling period (Fig. 6). Warm waters tended to occur onshore and

offshore of the front location during downwelling events.

Differences in temperature, salinity, density, and chlorophyll were evaluated during

upwelling and downwelling favorable winds with two-way ANOVA's. Input data included
,~

the average maximum and minimum value for all the vertical casts in each zone. For

example, the maximum and minimum temperature values from the cm cast at 1.5, 1.2, and

1.1 km on Julian day 186 were averaged and used for the outer zone value for that day.

Significant zone effects were found. Temperature, salinity, and density, but not chlorophyll
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Figure 6. Three-dimensional view of water temperature at Sunset Bay, OR over the sampling period.
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varied significantly with zone during upwelling favorable winds (Table 3, Fig. 7). A post hoc

pairwise comparison test (Tukey, p<O.05) was completed on significant zone effects to

determine the differences between zones (Table 4). Significant temperature differences

were found between waters seaward of the front and the bay waters (mid and inner zones).

However, salinity and density comparisons revealed no significant differences between

waters seaward of the front and the mid bay waters. Significant salinity and density

differences were found between waters seaward of the front and inner bay waters, and

between mid bay and inner bay waters (Table 4). During downwelling favorable winds, no

significant differences were found across zones (Fig. 8). These results indicate that during

upwelling favorable winds the temperature, salinity, and density of the waters seaward of the

location of the front are different than bay waters.

Temperature, salinity, density and chlorophyll from CTD stations were cross­

correlated with alongshore wind stress. Input data for this analysis included all

measurements collected at a depth of 1 m below the surface at each of the CTD stations.

Because sampling occurred in the morning approximately every two days, alongshore wind

stress was averaged for the days between sampling cruises. For example, if CTD sampling

occurred on Julian day 184 and 186, then alongshore wind stress for days 184 and 185 were

averaged for analysis for Julian day 186. At all CTD stations, I found a significant and

positive cross-correlation between ~mperatureand alongshore wind stress at a lag of 0 days

(Table 5). Temperature at 1 m depth tended to be lower during periods of upwelling

favorable winds and warmer during downwelling favorable winds (Fig. 9). Salinity was

significantly and negatively cross-correlated with alongshore wind stress at a 0 d lag at half of

the stations (Table 5). During upwelling favorable winds, salinity tended to be higher, and



Table 3. Results of a two-way analysis of variance testing the effect of zone
and condition (upwelling or downwelling) on temperature, salinity, density,
and chlorophyll. The input data was the average of maximum and
mitll.tnum values for all the vertical CTn casts in a zone.

Temperature df MS F Significance

Condition 1 4.87 9.84 P < 0.01**

Zone 2 5.39 10.35 P < 0.01**

Interaction 2 0.31 11.48 0.53 (NS)

Error 66 0.47

Salinity

Condition 1 0.32 0.42 0.52 (NS)

Zone 2 0.28 3.63 P < 0.05*

Interaction 2 0.01 0.16 0.85 (NS)

Error 66 0.08

Density

Condition 1 0.36 4.72 P < 0.05*

Zone 2 0.64 8.43 P < 0.01**

Interaction 2 0.02 0.16 0.86 (NS)

Error 66 0.76

Chlorophyll
-,~

Condition 1 0.28 0.12 0.91 (NS)

Zone 2 1.58 0.69 0.51 (NS)

Interaction 2 2.68 1.17 0.32 (NS)

Error 66 2.29
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Figure 7. Average temperature, ~,alinity, chlorophyll, and density during upwelling
favorable winds from CTD casts across the front at the mouth of Sunset Bay,
Oregon. Values are the average (+/- 95% CL) of the minimum and maximum
values of CTD casts in each zone (n=24). Seaward zone represents the area
seaward of the front and mid and inner bay represents the area inshore of the front.
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Table 4. Results of post-hoc pairwise comparisons (Tukey, p<0.05)

testing the effect between zones of temperature, salinity, density,
and chlorophyll during upwelling favorable winds. Values were

determined by averaging the maximum and minimum values
for each CTD cast from each zone. (Degrees of freedom = 69)

Temperature Significance

Seaward vs. Mid Bay p < 0.05*

Seaward vs. Inner Bay p < 0.01**

Mid vs. Inner Bay 0.20 (NS)

Salinity

Seaward vs. Mid Bay 0.88 (NS)

Seaward vs. Inner Bay p < 0.01**

Mid vs. Inner Bay p < 0.05*

Density

Seaward vs. Mid Bay 0.63 (NS)

Seaward vs. Inner Bay p < 0.01**

Mid vs. Inner Bay p < 0.05*

28
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Figure 8. Average temperature:'salinity, chlorophyll, and density during downwelling
favorable winds from CTD casts across the front at the mouth of Sunset Bay,
Oregon. Values are the average (+/- 95% CL) of the minimum and maximum
values of CTD casts in each zone (n=24). Seaward zone represents the area seaward
of the front and mid and inner bay represents the area inshore of the front.



Table 5. Results of cross-correlations between alongshore wind stress and

parameters, such as temperature, salinity, and density. Alongshore wind stress

CTD was averaged over two days prior to the sampling day. Values are listed

with distances offshore from Inner bay shoreline, cross-correlation coefficients
and days lag. The standard error for all coefficients is 0.2041. Chlorophyll

is not shown because no correlations were significant. Only significant

correlations are shown (p<0.05, n = 24).
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r Days lag

0.55 0

0.53 0

0.50 0

0.49 0

0.50 0

0.53 0

0.49 0
0.41 0

Alongshore Wind Stress

Temperature

1.5km

1.2 km

1.1 km

1.0km

0.85 km

0.52 km

0.33 km

0.23 km

Salinity
1.5 km

1.2km

1.1 km

1.0km

0.85 km

0.52km

0.33 km

0.23 km

Density

1.5 km

1.2km

1.1 km

1.0 km

0.85 km

0.52km

0.33 km

0.23km

NS

-0.41

-0.45

-0.56

NS

-0.48

NS

NS

-0.48

-0.49

-0.49

-0.58

-0.44

-0.56

-0.43

-0.40

o
o
o

o

o
o
o
o
o
o
o
o
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during downwelling/relaxation events, the waters seaward of the front and in the mid bay

were less saline (Fig. 10). At all stations, density and alongshore wind stress were

significandy and negatively cross-correlated at 0 d lag (Table 5). During

downwelling/relaxation events, less dense waters tended to be found in all zones (Fig. 11).

Chlorophyll, however, was not significandy cross-correlated with alongshore wind stress at

any of the CTD stations (Fig. 12). In summary, warmer, less saline, and less dense offshore

waters were found onshore across the location of the front during downwelling/relaxation

events.

Distribution of Zooplankton Across the Nearshore Zones

Approximately every other day, plankton tows were made at mooring stations in

each zone to determine the concentration of larvae seaward and landward of the front.

Concentrations of Balanusglandula cyprids ranged from 0 to 140 (#/ m~ seaward of the front,

oto 328 (#/m~ in the mid bay, and 0 to 396 (#/m3
) in the inner bay. While the highest

average daily concentrations tended to be landward of the front in the mid and inner zones

(Fig. 13), the concentration of B. glandula cyprids was not significandy different across the

front (2-way ANOVA, p>0.05, Table 6).

On the other hand, concentrations of mussels varied across the front.

Concentrations ranged from 0 to 81'1 (#/m3
) in the outer zone, 0 to 190 (#/m~ in the mid

zone, and 0 to 15 (#/m~ in the inner zone. The average concentration of mussels was

highest seaward of the front with extremely low numbers landward of the front (Fig. 13).

Mussel concentration varied significandy with zone (2-way ANOVA, p<0.05, Table 6). A

significant difference was found with a post-hoc pairwise comparison test (Tukey, p<0.05)
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Figure 13. Distributions of B. glandula cyprids and mussels in plankton tow collected
across the front at the mouth of Sunset Bay, Oregon. Values are the average
(+ / - 95% CL) larval concentrations of each zone from the sampling days over the
study (n = 26 for Seaward and n = 28 for Mid and Inner). Concentrations are the
number of organisms per m3

. Seaward zone represents the area seaward of the front
and mid and inner bay represents the area inshore of the front.
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Table 6. Results of a two-way analysis of variance showing the effect
zone and condition on the concentration (organisms/m3

) of B. glandula
eyprids and of mussels from plankton tows. Concentration of larvae
were log transformed. Number of plankton tows were 26 for the
Seaward zone and 28 for the Mid and Inner zones.

df MS F Significance

B.glandula
Condition 1 0.96 1.80 0.18 (NS)

Zone 2 0.16 0.30 0.74 (NS)

Interaction 2 0.03 0.05 0.95 (NS)

Error 75 0.53

Mussels
Condition 1 1.62 4.27 P < 0.05*

Zone 2 2.87 7.54 P < 0.01**

Interaction 2 0.37 0.99 0.38 (NS)

Error 75 0.38
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between mussels seaward of the front and inner bay (p < 0.001, 81 d£), as well as between

mussels in the mid bay and inner bay (p=0.026, 81 d£). No significant difference was found

between the zone seaward of the front and the mid bay (p>0.05, 81 d£).

Larval Settlement on Plates

Barnacle settlement was low (0-2 cyprids/plate) for the first two weeks of the study,

but subsequently ranged over 3 orders of magnitude. Over the study, almost 54,000

barnacle cyprids settled on plates of which 99.8 % were Balanusglandula. Therefore, the

following analysis will focus on B. glandula. Settlement ranged from 0 to 2690 B. glandula

cyprids per plate per day, and was highly variable between sampling days. Much of the total

settlement occurred during a few large peaks (Fig. 14). Settlement plates on each mooring

were summed and the three moorings within each zone were averaged. Daily settlement was

estimated by dividing the zone average by the number of days sampled. A total of 3905

individuals settled in the zone offshore of the front, 27,501 inshore of the front in the mid

bay, and 22,392 in the inner bay (Fig. 14).

The similarity between the peaks in barnacle settlement and alongshore wind stress

suggests that settlement was correlated with winds (Fig. 14). To investigate the correlation

of the peak in barnacle settlement and wind stress, daily settlement was log-transformed and

detrended. Cross-correlations were ron between alongshore and cross-shore wind stress and

Balanusglandula settlement. An additional cross-correlation was run between the maximum

daily tidal range and B. glandula settlement. A significant negative correlation was found at 0

d lag between along- and cross-shore wind stress and barnacle settlement in the outer zone

suggesting that settlement occurred during upwelling conditions (Table 7). Significant
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Figure 14. Average daily settlement (± SE) of B. glandula cyprids on setdement plates in
each of the three zones at Sunset Bay, Oregon plotted with the average daily alongshore
wind stress. Seaward zone represents the area seaward of the front and mid and inner bay
represents the area inshore of the front. Positive and negative values for alongshore wind
stress indicate downwelling and upwelling, respectively. The grey boxes represent
downwelling events. Sampling began on Julian day 184 (July 3rd

, 2000) till Julian day 248
(September 5th

, 2000).
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Table 7. Results of cross-correlations between wind stress and
barnacle setdement. Significant cross-correlation coefficients
(p<0.05) are listed with the corresponding lag in days. Correlations
were run from Julian day 184 (July 3rd) to Julian day 247
(September 4th) (n=64 days).

Alongshore Wind Stress r lag

Outer zone -0.32 0

Mid zone 0.34 0

Inner zone 0.33 0

Cross-shore Wind Stress

Outer zone -0.41 0

Mid zone NS

Inner zone NS

Maximum Tidal Range

Outer zone -0.36 -1

-0.35 -2

-0.29 -3

Mid zone NS

Inner zone v NS
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negative correlations were found at -1, -2, and -3 days lag between maximum daily tidal range

and settlement seaward of the front (Table 7). At the mid and inner zones, there were

significant positive correlations at 0 days lag between alongshore wind stress and barnacle

settlement suggesting that peaks in barnacle settlement occurred during downwelling

favorable winds (Table 7). No significant cross correlations were found between cross~shore

wind stress or maximum daily tidal range and barnacle settlement in the mid and inner zones

(Table 7). Offshore of the front, cyprids tended to setde highest during upwelling

conditions and several days after neap tides; however, inshore of the front, peaks in

settlement tended to occur during downwelling winds.

Larval Settlement on Artificial Turf Substrata

A variety of larvae were recovered from the artificial substrata including mussels and

other bivalves, eyprids, nudibranchs, gastropods, and copepods. The following analysis will

focus on mussel larvae.

Over the study, mussels generally settled in relatively low numbers with higher

settlement during several peaks near the end of the study (Fig. 15). Mussel settlement ranged

from 0 to 60 per artificial turf substrata unit (ATSU) per day with a total of 839 mussels that

setded over the study. Settlement on the ATSUs was summed on each mooring and the

three moorings were averaged for each zone. Daily settlement was determined by dividing

the zone average by the number of days in a sampling period. Mussel settlement was low (0

to 5 mussels/ATSU) until Julian day 232 (Fig. 15). Two peaks in mussel settlement occurred

on Julian day 232 and 238 (August 20th
, and August 28th

, respectively; Fig. 15). Sixty-eight %

of the mussels were caught seaward of the front, 26% in the mid bay, and only 6% in the
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Figure 15. Average daily settlement (± SE) of mussels on artificial turf substrata units
(ATSU) in each of the three zones at Sunset Bay, Oregon plotted with the average
daily alongshore wind stress. Seaward zone represents the area seaward of the front
and mid and inner bay represents the area inshore of the front. Positive and negative
values for alongshore wind stress indicate downwelling and upwelling, respectively.
The grey boxes represent downwelling events. Sampling began on Julian day 184
(July 3rd

, 2000) till Julian day 248 (September 5th
, 2000).
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inner bay. Mussel settlement varied significantly with zone (l-way ANOVA, p<O.05,

Fig.16, Table 8). A significant difference was found with a post-hoc pairwise comparison

test (Tukey, p<O.05) between mussels that settled seaward of the front and mussels that

settled in the inner bay (p<O.Ol, 81 df, Table 8). No significant difference was found

between mussels that settled seaward of the front and mid bay or with mussels that settled in

the mid bay and the inner bay (Table 8). Only 17 of the 63 sample periods had high mussel

settlement (> 2 per sampling period). Therefore, there was no significant cross-correlation

found between alongshore and cross-shore wind stress.
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Figure 16. Average setdement of mussels from sampling period across the front at
the mouth of Sunset Bay, Oregon. Values are the average (+ / - 95% CL) setdement
of larvae on artificial turf substrata units (ATSU) for each zone over the study
(n = 29 for all zones). The seaward zone represents the area seaward of the front
and the mid and inner bay represents the area inshore of the front.
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Table 8. Results of a one-way analysis of variance and post-hoc pairwise
comparison (Tukey, p<0.05, df = 81) showing the effect of zone on the
settlement of mussels on artificial turf substrata units. Averages of larvae
were log transformed. Number of sampling periods was 29 for all zones
across the front.

df SS MS F Significance

Mussels
Between zones 2 1.79 0.89 5.41 P < 0.01**

Within
zones 84 13.85 0.17

Total 86 15.64

Post-hoc pairwise comparison

Seaward vs. Mid Bay

Seaward vs. Inner Bay

Mid Bay vs. Inner Bay

0.54 (NS)

p < 0.01**

0.08 (NS)
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CHAPTER IV

DISCUSSION

Frontal systems have been known to have a major influence on the biology of

organisms with planktonic larvae. Several studies suggested that larvae could be

concentrated and transported by moving fronts (Kingsford, 1990; Kingsford et aI., 1991;

Roughgarden et al., 1988, 1991; Farrell et al., 1991; Pineda, 1991, 1994a,b, 1999; Shanks,

1983, 1986a,b, 1987, 1988, 1998; Shanks and Wright, 1987; Shanks et aI., 2000; Wing et aI.,

1995a,b; Wolanski and Hamner, 1988). In coastal waters, the flow past topography can

generate secondary circulation patterns that can trap and concentrate plankton. Bakun

(1986) and Wolanski and Hamner (1988) reviewed types of small-scale circulation found

nearshore that can potentially affect the distribution of larvae. In areas where the

topography changes abrupdy, such as headlands and bays, alongshore flow can separate

from shore. In the lee of a headland or within the bay, an eddy can develop. High

concentrations of plankton have been observed in association with eddy-generated

convergences behind islands and reefs (Alldredge and Hamner, 1980; Hamner and Hauri,

1981; Willis and Oliver, 1990; Wolanski, et aI., 1989; Wolanski and Hamner, 1988). These

studies have focused on eddies generated by tidal currents. While these flow fields clearly

altered the distribution of plankton~~theymay not be important to the dispersal of larvae

because the circulation patterns are short-lived. If flow patterns persisted for extended

periods, then they could be important to the biology of intertidal organisms. For example,

some types of larvae have short planktonic stages and go through their entire development

close to shore. Therefore, the front may act as a barrier to offshore dispersal of larvae with



49

short planktonic stages or early stage larvae. On the other hand, the front may act as a

barrier to the shoreward migration of settling larvae. Several studies suggested that fronts

act as barriers to the offshore (Boden, 1952; Pedrotti and Fenaux, 1992) and shoreward

(Graham et a!., 1992) dispersal of larvae. The behavior and swimming ability of larvae at

depth can determine the effect a front will have on the dispersal (Okubo, 1978; Olson and

Backus, 1985; Franks, 1992). Our study focuses on a persistent type of circulation in the

nearshore waters.

Gregory point (Fig. 1) is the first headland along the southern Oregon coast.

Because of the extensive beaches north of Gregory Point, alongshore currents are less

affected by shoreline topography. Previous studies have shown that headlands and

embayments, like Gregory Point and Sunset Bay, can create topographically generated

circulations (Bakun, 1986; Wolanski and Hamner, 1988).

At Sunset Bay, three types of foam lines were observed from January through

September. During periods of large swells, perpendicular foam lines were observed

apparendy associated with rip currents. When the swells were small, but the winds were

from the South, West, or East, foam lines were parallel to shore but extended only partially

across the mouth of Sunset Bay. During upwelling favorable winds (Northwest winds) and

small swells «2 m), however, a foam line was always present and it extended completely

across the mouth of the bay. ,~

During the summer of 2000, winds were typical for the season and the Oregon coast.

The dominant winds were upwelling favorable and from the Northwest with occasional

periods of Southwest winds producing downwelling/relaxation events. During the summer

sampling period Guly through September), small waves and Northwest winds were observed
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on 63 days (about 84% of the time). The average duration of these conditions was eight

days (range 2 to 20 days) and there were four periods that lasted a week or longer. The

shore-parallel foam line was present at Sunset Bay at least 84% of the summer. The foam

line was consistendy found at the mouth of the bay throughout the tidal cycle and the

position of the foam line did not obviously change over the tidal cycle (personal

observation). If the foam line is an indicator of a frontal convergence, and if the front acts

as a barrier to the shoreward migration of larvae that developed over the shelf, then for

much of the summer, larvae may be prevented from setding in the intertidal zone in Sunset

Bay.

Previous work (Shanks, unpublished data) indicates that the foam line is associated

with a front that separates the coastal ocean waters from the bay waters. In this study, the

foam line and front were present only during upwelling favorable winds, when winds pushed

surface waters southward along the coast. During upwelling favorable winds, the

temperature and salinity of the waters seaward of the front tended to be significandy colder

and more saline than bay waters. The data suggest that the waters in the bay were isolated

from offshore waters. I investigated the possibility that fresh water flow could be the

potential cause of this difference in densities inside the bay from offshore. Appendix 2

demonstrates that there was no significant fresh water input into Sunset Bay from the Big

Creek Basin during the sampling pefi'od. In fact, it was an unusually dry year.

During downwelling favorable winds, no significant differences were found between

the physical characteristics of the waters seaward of the front location (~1 km from shore in

Sunset Bay) and bay waters. During downwelling favorable winds, the waters seaward of the

front location as well as in the bay tended to be warmer, less dense, less saline and the water
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column was mixed. These results suggest that during downwelling/relaxation events, the

upwelling front and the wann low density surface waters seaward of the upwelling front

moved onshore, the front at the mouth of Sunset Bay was not present during these periods,

and the offshore waters were able to penetrate the bay. The observations combined with the

ern data suggest that the foam line represented a front and when the front was present, the

offshore waters were separated from the bay waters.

The data suggest that the settlement of Balanusglandula cyprids and Mytilus sp. larvae

were affected by the shore-parallel front at the mouth of Sunset Bay. Cyprid settlement was

significantly lower seaward of the front than landward of the front. The small peaks in

cyprid settlement observed seaward of the front tended to occur during upwelling events or

a few days after neap tides. The results suggest that cyprid settlement seaward of the front

could have been related to variations in wind driven or tidally driven shoreward transport.

In the bay, however, large peaks in cyprid settlement were correlated with

downwelling/relaxation events, periods when the front at the mouth of the bay broke down.

The front apparently acted as a barrier to the shoreward movement of cyprids. When the

front was present, settlement in the bay was about as low as was observed seaward of the

front. When the front was absent, settlement was much higher (approximately 7x's) than

was observed seaward of the front.

The cyprid data presents us\vith several puzzling questions: Why was there more

cyprid settlement inside the bay than offshore? Why were the peaks in cyprid settlement

offshore of the front correlated with upwelling, while settlement inside the bay was

correlated with downwelling? How are the larvae being transported onshore? Ultimately,
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why was the pattern of eyprid settlement offshore so different from that observed in the bay,

only a couple hundred meters apart?

There are several types of mechanisms that can transport larvae onshore: internal

waves, internal tidal bores, upwelling fronts, winds, density driven currents, and the deep

onshore £low during upwelling, and downwelling surface £lows. In our study, the peak in

cyprid settlement offshore of the front occurred during upwelling conditions and several

days after the neap tide. Settlement patterns correlated with upwelling winds suggest

onshore wind driven transport or transport shoreward by the upwelled waters. Settlement

that varies with the spring-neap tidal cycle is typically generated by internal waves or internal

tidal bores (Little, 1977; Shanks, 1986a; Doherty and Williams, 1988; van Montfrans et al.,

1990; Boylan and Wenner, 1993; Olmi, 1995; Shanks, 1998). Tidally generated internal

waves with associated convergences have been described by several studies (Zeldis and

Jellett, 1982; Shanks, 1983; Kingsford and Choat, 1986; Shanks and Wright, 1987; Shanks,

1988). Inside the bay, peaks in eyprid settlement occurred during downwelling-relaxation

events. Settlement that occurs immediately following upwelling events, during relaxation

events, has been attributed to the upwelling front (Wing et al., 1995 a,b; Miller and Emlet,

1997). If cyprid settlement in all zones of Sunset Bay occurred during downwelling­

relaxation events, then one would propose that transport was due to the upwelling front

traveling back onshore. This was 1l6t the case. Therefore, we hypothesize a different

transport mechanism for eyprid settlement inside the bay.

During upwelling conditions, when the front was present, eyprids may become

concentrated in the convergence zone at the mouth of the bay. Several studies have

demonstrated that eyprids can become concentrated in convergence zones (LeFevre, 1986;
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Shanks and Wright, 1987). During downwelling/relaxation events, the front with aggregated

cyprids may move onshore, transporting the cyprids concentrated in the convergence zone

to settlement areas within the bay. Similar differences in blue crab settlement patterns in the

bay versus along the open coast were found offshore of Duck, NC (Shanks et al., 2000).

Roughgarden et al. (1991, 1994) and Farrell et aL (1991) hypothesized that the upwelling

front along the central California coast can act as a convergence zone where barnacle larvae

accumulate and were transported onshore during downwelling/relaxation events. Our data

suggests that the transport mechanism was possibly a nearshore phenomenon.

Mussel larvae were affected differently by the front. Mussel settlement was

significantly higher seaward of the front than inside the bay. The settlement of mussels

closely followed the pattern of larval distribution, suggesting that the front acted as a barrier

to the shoreward dispersal of mussel larvae. One possible explanation is that mussels were

located in the surface waters where they were pushed by winds to settlement sites. This

pattern of larval distribution is similar to other studies. This pattern is similar to that found

by Gaines et al. (1985) for barnacle cyprids. Barnacle settlement differed by one to two

orders of magnitude over a few tens of meters. The cyprid distribution was parallel to the

cyprid settlement (Gaines et aI., 1985).

In our study, the distribution of mussels was similar to their pattern of settlement,

but the cyprid distribution was nof'C:orrelated with settlement except for the inner zone.

Since the barnacle cyprids are settling during downwelling/relaxation events and possibly

aggregated in the front, it would be difficult to find correlations in the distribution of cyprids

and settlement.
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Many studies have looked at the effect of large-scale oceanographic patterns on the

community structure of the rocky intertidal zone, but few studies have realized the

importance of small-scale circulation patterns. Several studies suggest that the larvae of

intertidal barnacles and other meroplankton accumulate in the upwelling front offshore of

California (Roughgarden et al., 1988, 1994; Wing et al., 1995b; Grantham, 1998), and during

relaxation events possibly move onshore (Roughgarden et al., 1988, 1991; Farrell et al., 1991;

Wing et al., 1995b). Shanks et al. (2000) demonstrated the onshore transport oflarvae in an

upwelling front off the North Carolina coast. Roughgarden et al. (1988) predicted there was

lower recruitment in central California than in the Pacific Northwest, because the upwelling

season was longer, and relaxation events were less frequent (parrish et al., 1981; Huyer,

1983). Consequendy, the adult populations would be less abundant, freeing more space,

which could explain weaker benthic interactions. It has been proposed that benthic

interactions, rather than larval supply, structures the rocky intertidal populations in the

Pacific Northwest (Roughgarden et al., 1988; Connolly and Roughgarden, 1998). Our

observations suggest that patterns of larval supply affected by nearshore topography could,

in fact, have a significant role in the community structure of the intertidal zone.

Menge et al. (1997a,b) hypothesized that large-scale variation in nearshore primary

productivity affected the intertidal community dynamics at two sites along the central

Oregon coast (Strawberry Hill and Bt>iler Bay). Later, research revealed differences in

phytoplankton concentrations at adjacent sites, suggesting small-scale differences (10s to

100s of km). Sanford and Menge (2001) proposed later that differences in community

dynamics between the two sites were due to zooplankton and water temperature differences.

Strawberry Hill is a rocky bench located along a relatively straight stretch of coasdine, while



55

Boiler Bay is a protected bay. Personal observations and aerial photographs (NOS

Mapfinder Coastal Aerial Photography) indicate that a shore parallel foam line is often

present at Boilers Bay, but not at Strawberry Hill. Greater concentrations of plankton were

found at Strawberry Hill than Boilers Bay. Similar differences in plankton distributions have

been observed at Cape Arago (rocky bench less than 1 km north of Sunset Bay) and Sunset

Bay (Shanks, pers. observation). It is possible that studies that have attributed differences in

community dynamics as being due to large-scale differences in coastal oceanography are, in

fact, due to differences in the very small scale topographically generated flow field. This is

an alternate hypothesis that has not been investigated by any study.

Previous studies have demonstrated larval transport mechanisms that vary on spatial

and temporal scales. In this study we demonstrated that persistent nearshore topographic

fronts influenced the settlement and dispersal of some planktonic larvae. The physics that

generated the front at Sunset Bay is not unique to this site or coastline. The front was

formed at the mouth of an embayment and embayments are common features along most

coastal regions. The front was only present when the local winds were upwelling favorable

and all coasts experience upwelling favorable winds. We predict that under oceanographic

conditions similar to that observed at Sunset Bay that topographically generated secondary

circulation have important affects on larval dispersal and settlement.

v'



APPENDIX

WATER GUAGE DATA

Appendix 1. Water guage data (cubic ft./s) for the sampling period from
the Big Creek Basin that flows into the Inner zone of Sunset Bay, OR.
Data is from the Coos County Water Resources Department. "E" means
the data was estimated.

Day JUL AUG SEP Day JUL AUG SEP

1 1.3 0.37 0.67 16 0.63 .30E .50E
2 1.2 .30E 0.82 17 0.68 .30E .50E
3 1.1 .30E 1.3 18 0.69 .30E .50E
4 1.3 .30E 1.5 19 0.64 0.41 0.55
5 1.5 .30E 1.3 20 0.64 .50E 0.66

6 1.2 .30E 1.1 E 21 0.9 .50E 0.74
7 1.1 .20E .80E 22 0.76 0.66 0.72
8 0.95 .20E .60E 23 .60E 0.68 0.54
9 0.91 .30E .70E 24 .50E .70E 0.48

10 0.8 0.37 .60E 25 0.44 .70E .40E

11 0.73 .40E .60E 26 .40E .70E .40E
12 0.71 .30E 0.7 27 AOE .60E .30E
13 0.66 .30E 0.6 28 .40E .60E .30E
14 0.66 .30E 0.61 29 .30E .60E .20E
15 0.66 .30E 0.52 30 .30E .50E .20E

31 .40E .60E
v'

JUL AUG SEP
TOTAL 23.46 13.19 19.41
MEAN 0.76 0.43 0.65
MAX 1.5 0.7 1.5
MIN 0.3 0.2 0.2
AC-FT 47 26 38

56
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