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CHAPTER I

GENERAL INTRODUCTION

Sea anemones generally are considered marine, stenohaline osmoconforming

organisms and currently are not regarded as euryhaline. However, a few species

(Diadumene leucolena, Haliplanella lineata, Nematostella spp. and Edwardsia spp.)

exhibit wide salinity tolerances and regularly inhabit brackish water (Shick, 1991).

Recently, the actinarian species Metridium senile was observed at mesohaline and

marine-dominated sites within the low intertidal regions of the South Slough Estuary,

Coos Bay, Oregon. Within this environment, M senile is subject to frequent and

sometimes large decreases in salinity levels (Rumrill, 2006). This species is not estuarine,

but rather marine, and does not experience drastically fluctuating salinities in its typical

habitats (Deaton and Hoffmann, 1988; Shick, 1991). Metridium senile is exposed to

hypo-osmotic stress, due to the presence of a widely variant osmotic gradient within the

South Slough Estuary.

Sea anemones possess a variety of unique morphological and ionic strategies to

combat hypo-osmotic stress (Shick, 1991). Morphological strategies range from

equilibration with ambient seawater by means of coelenteron ventilation to creation of a

mucus layer at the ectodermal surface that serves as a barrier to water and solute
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movements (Bursey and Harmer, 1979; Benson-Rodenbough and Ellington, 1982; Shick,

1991). Ionic strategies vary from intracellular maintenance of the free amino acid pool

(FAA) to sequestration of calcium ions in sea anemone mucus (Goreau, 1959; Deaton

and Hoffmann, 1988). For example, Metridium senile exhibits volume regulation due to

regulation of the intracellular FAA pool under dilute saline conditions which increases in

concentration with increasing salinity (Deaton and Hoffmann, 1988; Shick, 1991).

However, the role of intracellular ions in osmotic regulation within sea anemones

remains largely enigmatic and requires more comprehensive studies concerning the

function of these ions in osmotic regulation within specific species. Furthermore,

Metridium senile has been observed tolerating brackish conditions within the San

Francisco Bay, Mersey River Estuary and South Slough Estuary, yet no relationship has

been documented between the physiological tolerance limits of M senile and the

abundance and distribution of this species within an estuarine habitat (Rawlinson, 1934;

Deaton and Hoffmann, 1988; Rumrill, 2006)

This study was undertaken to gain a more complete physiological perspective on a

particular actinarian, Metridium senile, by studying its physiological tolerance limits in

laboratory and field settings. Chapter II of this thesis describes the abundance and

distribution of M senile within the South Slough Estuary and relates it to mortality trends

at three field sites. Chapter III describes the effect of hypo-osmotic stress on volume

regulation, osmolality regulation, magnesium ion concentrations and mortality of M.

senile in both the laboratory and within three different salinity regimes of the South
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Slough Estuary. In essence, this thesis explores the physiological tolerance limits ofM

senile under dilute saline conditions in order to gain a better physiological perspective on

how M senile endures hypo-osmotic conditions along an estuarine gradient. Ultimately,

this information may lead to a greater understanding ofphysiological tolerance patterns

and elucidate the ecological distribution of this organism within estuaries.
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CHAPTER II

ABUNDANCE AND DISTRIBUTION OF METRJDIUM SENILE IN THE LOW

INTERTIDAL AND SUBTIDAL ZONE OF THE SOUTH SLOUGH ESTUARY, COOS

BAY, OREGON

Introduction

The sea anemone Metridium senile (Linnaeus 1767) is primarily circumboreal,

found along the coasts of Europe, Japan, and the east and west coasts of North America

(Shick, 1991; Acuna and Griffiths, 2004,); however individuals have also been

documented off the coasts of Argentina and South Africa (Acuna and Griffiths, 2004).

The column of M senile occurs in several different color morphs, which include white,

cream, tan, brown and light orange. Hundreds of short thin tentacles cover the oral disk,

giving rise to its common name, the "Plumose Anemone" (Fox and Pantin, 1941; Fox et

al., 1967; Carlton, 2007). Typically, M senile occur in dense clones of small individuals

that are attached to protected pilings, rock jetties, floats and other hard substrata within

the low intertidal and subtidal waters of bays and harbors (Carlton, 2007).

Clones are produced by a year-round asexual reproductive process called "pedal

laceration," where little tissue fragments break off from the edge of the pedal disc as the

individual either remains in one spot or moves along the substratum. These isolated tissue
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fragments develop into tiny new anemones, which feed and grow to eventually produce

aggregations of genetically identical individuals (clones) that encircle or trail the original

individual (Kaplan, 1983; Carlton, 2007). Clones can range from a few to many

hundreds of small (2-3 cm high) genetically identical individuals that are isolated from

each other by anemone-free spaces (Francis, 1973; Anthony, 1997). Metridium senile

also reproduces sexually during the summer season, from June to September (Kaplan,

1983; Anthony, 1997). Sexual reproduction commonly produces larger solitary

individuals (20-30 cm high) that are found primarily in the deeper subtidal regions of

bays and harbors (Hoffmann, 1976; Shick et aI., 1979; Anthony, 1997).

As a consequence of inhabiting the intertidal and subtidal zone of bays and

harbors, Metridium senile can be exposed to estuarine conditions resulting in frequent

and sometimes large fluctuations in salinity levels that result in hypo-osmotic stress

(Deaton and Hoffmann, 1988; Rumrill, 2006). Metridium senile has been observed

tolerating brackish conditions in a number of bays and harbors throughout the world. In

the Mersey River estuary ofNorthwest England, M senile was found in areas with

salinities between 21-28 (Rawlinson, 1934). Additionally, M senile has been noted in the

Oosterschelde estuary and the Rhine-Meuse-Scheldt delta of the Netherlands (Braber and

Borghouts, 1977; de Kluijver and Leewis, 1994). Metridium senile has been observed

tolerating brackish conditions as low as 68% seawater within areas of the San Francisco

Bay (Carlton, 2007). Laboratory experiments by Deaton and Hoffman (1988) confirm

these trends. Deaton and Hoffmann (1988) determined that M senile can survive 55%
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seawater for at least two weeks without mortality, however animals exposed to 40%

seawater died within three days. The ability to withstand fluctuating salinity and

subsequent effects of hypo-osmotic stress may explain why M senile has been

documented within temperate estuaries throughout the world.

Recently, Metridium senile has been documented along a salinity gradient within

the South Slough estuary in Coos Bay, Oregon. The South Slough estuary is a small and

relatively shallow (mean depth of~1 meter below Mean Lower Low Water) drowned­

river estuary located in the larger Coos estuary along the southern Oregon coast.

Significant freshwater inputs into the South Slough come primarily from the Joe Ney,

Winchester and Sengstaken sub-systems. This estuary is influenced considerably by

mixed semidiurnal tidal cycles, experiencing two high and two low tides per day. In

addition, tidal currents are strong, producing average flows over 1 meter per second.

Because of the shallow depth, freshwater inputs, and substantial tidal influence in the

South Slough, the salinity gradient fluctuates directly with tidal phase throughout the

length of the South Slough. Consequently, during one tidal cycle the upper reaches of the

estuary can experience nearly fresh to full-strength seawater. Additionally, salinity

patterns are highly dependent on the distinct wet and dry seasons along the Oregon coast

resulting in a characteristic seasonal cycle. During the wet season (December-February),

marked freshwater input results in an overall decrease in salinity. During the months of

March through May, a decrease in freshwater input results in a steady increase in salinity.

The dry season (June-August) is marked by high, stable salinities until they decrease in
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the fall (September-November), becoming more variable (Rumrill, 2006). Thus, a strong

salinity gradient exists from the lower marine-dominated region located directly inside

the mouth of the estuary to the upper riverine-dominated region located along

Winchester, Elliott, Talbot and John B. Creeks (Rumrill, 2006).

The South Slough estuary is therefore divided into three hydrogeomorphic zones:

marine, mesohaline and riverine-dominated zones. The marine-dominated zone extends

from the mouth of the South Slough southward to Long Island Point and the intersection

of Winchester and Sengstacken arms consisting of high, stable salinities and cooler water

temperatures. However, the area surrounding Valino Island changes its salinity profile

seasonally. During the wet season, Valino Island is mesohaline (average salinity ca. 10­

27); during the dry season Valino Island is polyhaline (average salinity ca. 25-33),

placing its yearly salinity average ca. 18-19 (S. Rumrill, pers. comm., South Slough

National Estuarine Research Reserve). Thus for the purposes of this study, Valina Island

is considered a mesohaline-dominated location (Figure 2.1).

Because of increased freshwater input during the wet season, the mesohaline­

dominated zone slightly overlaps the marine-dominated zone extending from just north of

Valino Island southward to Talbot Creek and Danger Point, and is composed oflow,

variable salinities with warmer water temperatures. The third zone is riverine-dominated

which extends along the length of Winchester Creek and its associated tributaries on the

western side and along Talbot Creek and John B. Creek on the eastern side. This region is



_ Euhaline (>30)

Pol:yhaline (18-30)

Transition Zone

o Ivlesohaline (5-18)

Charleston ---~:

Long Island Point ---------;

Winchester Ann __-r-r

Winchester Creek~---...~

N

A

----Valino Island

8

o 0,5 1 1 3 4
_ _ Kilometers

Figure 2.1. Location of field sites and key landmarks within the South Slough National
Estuarine Research Reserve (SSNERR), Coos Bay, Oregon. Stars (*) indicate field
transplant sites. The salinity profile is derived from Davidson (2008), Arneson (1975),
ODFW and SSNERR CDMO.
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composed of lower more variable salinities and even warmer water temperatures

(Rumrill, 2006). These zones are not distinctly separated however, and can either move

up or downstream depending on the tide or the season (Alexander et al., 1932; Rumrill,

2006).

Individual Metridium senile were observed along this salinity gradient within

marine and mesohaline-dominated zones. Metridium senile were seen primarily attached

to floats, pilings and rock in the low intertidal within the marine-dominated zones of the

Charleston Boat Basin and the Point Adams Jetty. In addition, M. senile was observed in

the mud and sand in the low intertidal at the interface of the marine and mesohaline­

dominated zones of Long Island Point, approximately 5.2 km up the South Slough

estuary (Rumrill, 2006). Metridium senile individuals have also been observed fouling

oyster shells and logs within mesohaline and marine-dominated zones of the South

Slough estuary (Hewitt, 1993; Rumrill, 2006).

Within the intertidal estuarine habitat of the South Slough, organisms like

Metridium senile are inherently susceptible to frequent and sometimes large fluctuations

in salinity from a diel to seasonal basis. Additionally, the South Slough's

hydrogeomorphic profile, the rate of change in salinity on a diel to seasonal basis, can be

drastic (Rumrill, 2006). Therefore, the natural abundance and distribution patterns of M

senile may be partly determined by both the salinity gradient and the rate and magnitude

of salinity change within these three hydrogeomorphic regions of the South Slough

estuary (Sanders et aI., 1965; Rumrill, 2006).



10

Laboratory studies of salinity tolerance on the actinian Bunodosoma cavernata

correlated tolerance trends to its ecological distribution in a fluctuating salinity

environment along the Atlantic and Gulf coasts (Benson-Rodenbough and Ellington,

1982; Shick, 1991). Additionally, studies of ecological physiology on Haliplanella

luciae, a colonizing actinian, have attempted to correlate physiological adaptations to

distributional patterns (Shick, 1976; Benson-Rodenbough and Ellington, 1982; Shick,

1991).

I studied Metridium senile within the South Slough estuary, Coos Bay, Oregon

with two goals in mind: 1) to determine the abundance and distribution patterns ofM

senile in the South Slough estuary during the wet season and dry season; and 2) to

measure and compare monthly mortality during the wet season and dry season at marine,

mesohaline and riverine-dominated sites.

Materials and Methods

Study location and field sites

One field site was selected within each of the three hydrogeomorphic zones within

the South Slough estuary. Field sites were chosen based upon location within the South

Slough, accessibility, and immediate proximity to the South Slough National Estuarine

Research Reserve's (SSNERR) System-Wide Monitoring Program (SWMP) stations,

where real time abiotic data, including salinity, temperature and dissolved oxygen were

collected (Figure 2.1).
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At each field site, I deployed one floating frame for anemone containment adjacent

to SSNERR's SWNIP monitoring station. Each floating frame was a sealed 1 m x 1 m PVC

pipe square with two mooring buoys attached to opposite comers. Floating frames were

anchored in the subtidal sediment with two screw anchors placed approximately 2.5 m on

either side, using twisted polypropylene rope. For mortality measurements, Metridium

senile individuals were placed within a large 30.5 cm3 plastic mesh flow-through container

with a 14 mm mesh opening that was attached to the frame with cable ties (Figure 2.2A-C).

Because Metridium senile is commonly found in the low intertidal and subtidal

waters of bays and harbors, the marine-dominated field site ("Charleston") served as the

control site (Carlton, 2007; Figure 2.1). This site lies adjacent to the Charleston bridge

(43°20'15.72 N, 124°19'13.92 W) and consists of well-mixed tidal waters with a maximum

tidal amplitude of 2.6 m and monthly mean salinity range from 20 during the wet season to

31 during the dry season. Substrata around this site include cement pilings, wooden pilings,

jutting bedrock, cobble, sand and mud. The mesohaline-dominated field site ("VaHno")

rests slightly to the north of VaIino Island within the South Slough (43°19'1.98 N,

124°19'17.88 W) and consists of well-mixed tidal waters with a maximum tidal amplitude

of 2.7 m and salinity ranging from 15-28 (Figure 2.1). Substrata associated with this site

include eroding sand cliffs, mud, wooden pilings and some woody debris from previous

logging operations. The riverine-dominated field site ("Winchester") is located within

Winchester Arm across from Danger Point on the east side of the channel (43°16'56.70 N,

124°19'13.14 W) and consists of a maximum tidal amplitude of 2.0 m (Figure 2.1).



Figure 2.2. Images of (A) the floating frame with two mooring buoys, (B) large plastic
mesh flow-through container attached to the floating frame with cable ties for anemone
containment, and (C) anemones attached to the plastic mesh of the flow-through
container. Scale bars in A and B are 30.5-cm and the scale bar in C is lA-em.

12
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During the dry season, tidal waters are characteristically well-mixed, with salinity ranging

from 5-30; during the wet season however, tidal waters are partially stratified, with salinity

ranging from 0-21. Available substrata consist of mud, vertical wooden pilings and

associated woody debris from previous logging operations within the South Slough estuary

(Rumrill, 2006).

Seasonal field surveys

Surveys of abundance and distribution were conducted from the mouth to terminal

ends of the South Slough estuary in January 2009 during the middle of the wet season, and

July 2009 during the middle of the dry season over two consecutive tidal cycles to

determine natural abundance and distribution patterns of Metridium senile along an

estuarine gradient within the South Slough, Coos Bay, Oregon (Rumrill, 2006). Sites were

selected based on presence of available substrata and accessibility (by boat or foot). High

tide surveys were executed primarily by use of boat. Low tide surveys were conducted

primarily by boat or by foot for sites that were extremely shallow or difficult to access. A

snorkel and mask was used to survey the subtidal regions (0-2 m below water level) of sites

with available substrata. The geographical location of each site was documented using a

handheld global positioning system (Garmin Geko 201 GPS unit, accuracy ± 10 meters).

Available substrata at each site were then examined for approximately ten to twenty

minutes. Numbers of M senile individuals present on the available substrata were recorded.

Each site was subsequently placed into categories ofM senile abundance: abundant
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(>501), common (16-500), rare (1-15), or absent (0). Salinity at each site was classified as

euhaline (>30), polyhaline (18-30), or mesohaline (5-18).

Salinity characteristics for each survey site were gathered from a number of

sources. Davidson (2008) used salinity data from field measurements as well as field

studies conducted by Arneson (1975), the Oregon Department of Fish and Wildlife and the

South Slough National Estuarine Research Reserve to divide the South Slough estuary into

three salinity classes: euhaline (>30), polyhaline (18-30), and mesohaline (5-18) (NERR

CDMO, htlp://cdmo.baruch.sc.edu; Figure 2.1). Data catalogued from seasonal abundance

and distribution surveys at each site were input into ArcMap GIS software and layered over

an aerial photograph of the South Slough estuary obtained from Oregon Imagery Explorer

(http://oregonexplorer.info/imagery/).

Seasonal abundance and distribution layers were projected using the North

American datum 1983 projection in the Geographic Coordinate System. Polygons were

then traced around each of the three salinity regions within the South Slough estuary based

upon the salinity characteristics compiled from Davidson (2008), Arneson (1975) and the

South Slough National Estuarine Research Reserve (NERR CDMO,

http://cdmo.baruch.sc.edu).

Metridium senile transplants

Monthly transplant experiments were undertaken over a one-year period from July

2008 to August 2009 to determine whether observed abundance and distribution patterns
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are a result of diminished survival in the upper mesohaline and riverine zones of the

estuary.

At the beginning of each month, 60 individuals of approximately similar size (2.5­

3.5 cm high and 1.5-3.0 cm diameter pedal discs) were manually detached from substrata

adjacent to the marine-dominated site of the Charleston Bridge by scraping. Each

individual was randomly selected from distinct clones determined by the presence of

anemone-free spaces (Francis, 1973). Individuals were transported back to the lab where

they were immediately immersed in running seawater (33 salinity) where each was allowed

to naturally reattach over a 24-h period to a separate circular nylon mesh net measuring 8

cm in diameter. Once each individual was reattached, it was placed directly into a container

filled with 33 salinity seawater. Twenty individuals were then transported to the field and

placed within the floating frame's flow-through container at each field site (marine,

mesohaline and riverine) for weekly monitoring where they remained attached to their

respective mesh net.

Each individual was observed in situ on a weekly basis to assess condition and

was given a mechanical stimulus. The criterion used to determine mortality was the

inability of Metridium senile to respond to the mechanical stimulus at the time of

observation (Benson-Rodenbough and Ellington, 1982). Cumulative weekly mortality

and cumulative mortality averages at each site were determined for each month and year,

respectively. Metridium senile individuals that were still alive at the end of each month
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were gently detached from the nylon mesh net and transported back to the collection site

where they were allowed to reattach to natural substrata.

Results

Seasonal field surveys

During January 2009, Metridium senile individuals were present in the lower

estuary. Individuals were found in euhaline and polyhaline waters between the estuary

mouth and Valino Island, approximately 4.5 km upriver. Metridium senile individuals

were attached to cement pilings, wooden pilings and jutting bedrock in the euhaline

region and wood pilings and woody debris in the polyhaline region. Individuals were

absent from sites in the mid to upper estuary which consisted of polyhaline and

mesohaline waters. However, presence of individuals primarily increased from around

,

Valino Island northward to the mouth of the estuary. Sites near Valino Island and the

Valino field site were categorized as "rare", whereas sites around the estuary mouth and

the Charleston field site were predominantly categorized as either "common" or

"abundant" (Table 2.1; Figure 2.3).

During July 2009, Metridium senile individuals were present in the lower to mid

estuary, extending overall occurrence approximately 1 km upriver. Individuals were

found in euhaline and polyhaline waters from the estuary mouth to just south of Long

Island Point within Sengstacken and Winchester Arms, approximately 5.4 km upriver.

Metridium senile individuals were attached to cement pilings, wooden pilings and jutting



Table 2.1. Details of sites surveyed for Metridium senile in the South Slough estuary, Coos Bay, OR during January 2009 and
July 2009. Sites are shown in Figure 2.3, GPS coordinates and distances were collected during the seasonal surveys, salinity and
abundance categories were derived from Figure 2.1. A distance upriver of"O" indicates sites that lie along the estuary mouth.

January 2009 July 2009

0 Euhaline 5 Rare 62 Common

0 Euhaline 2 Rare 75 Common

0 Euhaline 0 Absent 8 Rare

0.61 Euhaline 1518 Abundant 1931 Abundant

0.96 Euhaline 893 Abundant 1467 Abundant

1.31 Euhaline 75 Common 253 Common

1.33 Euhaline 33 Common 148 Common

No. of M Abundance No. ofM Abundance
senile Category senile Category

Individuals Individuals

GPS
Coordinates

N 43 0 20' 56.01"
W 124 0 19' 11.92"
N 43 0 20' 58.56"

W 124 0 19' 47.93"
N 43 0 20' 59.76"

W 124 0 19' 49.50"
N 43 0 20' 53.69"

W 124 0 19' 45.18"
N 43 0 20' 43.80"
W 124 0 19' 19.15"
N 43 0 20' 46.22"

W 124 0 19' 36.67"
N 43 0 20' 18.85"

W 124 0 19' 11.54"
N 43 0 20' 17.70"

W 124 0 19' 12.24"

Distance Upriver
(kIn)

o

Salinity

Euhaline 224 Common 219 Common

-.....l



Table 2.1. (continued).

January 2009 July 2009
GPS Distance Upriver Salinity No.ofM Abundance No.ofM Abundance

Coordinates (km) senile Category senile Category
Individuals Individuals

N 43°20'21.41" 1.34 Euhaline 92 Common 146 Common
W 124° 19' 23.48"
N 43°20' 21.41" 1.34 Euhaline 15 Rare 94 Common

W 124° 19' 23.48"
N 43° 20' 15.87" 1.41 Polyhaline 3 Rare 8 Rare

W 124° 19' 11.58"
N 43° 20' 11.41" 1.46 Polyhaline 47 Common 189 Common

W 124° 19' 14.33"
N 4Y 20' 11.26" 1.50 Polyhaline 2 Rare 28 Common

W 124° 19' 10.94"
N43°20'9.17" 1.54 Polyhaline 31 Common 175 Common

W 124° 19' 13.30"
N 43 ° 20' 6.48" 1.63 Polyhaline 15 Rare 53 Common

W 124° 19' 12.55"
N 43° 19' 52.98" 2.03 Polyhaline 7 Rare 34 Common

W 124° 19' 11.15"
N 43°19' 6.73" 3.53 Polyhaline 3 Rare 21 Common

W 124° 19' 14.72"

00



Table 2.1. (continued).

January 2009 July 2009
GPS Distance Upriver Salinity No.ofM Abundance No.ofM Abundance

Coordinates (lan) senile Category senile Category
Individuals Individuals

N 43 0 18' 42.66" 4.19 Po1yha1ine 2 Rare 8 Rare
W 1240 19' 20.69"
N 43 0 18' 25.22" 4.81 Polyhaline 0 Absent 4 Rare

W 124 0 19' 19.29"
N 43 0 18' 23.60" 5.04 Polyhaline 0 Absent 5 Rare
W 1240 19' 6.89"
N 43 0 18' 24.22" 5.07 Polyhaline 0 Absent 3 Rare
W 1240 19' 5.07"
N 43 0 18' 16.20" 5.14 Polyhaline 0 Absent 2 Rare

W 1240 19' 25.35"
N 43 0 18' 30.60" 5.30 Polyhaline 0 Absent 3 Rare

W 1240 18' 51.30"
N 43 0 18' 20.43" 5.41 Polyhaline 0 Absent 2 Rare

W 1240 18' 50.96"
N 43 0 18' 7.85" 5.47 Mesohaline 0 Absent 0 Absent

W 1240 19' 9.27"

\0



Table 2.1. (continued).

January 2009 July 2009
GPS Distance Upriver Salinity No.ofM Abundance No.ofM Abundance

Coordinates (km) senile Category senile Category
Individuals Individuals

N 4Y 18' 8.64" 5.83 Mesohaline 0 Absent 0 Absent
W 124° 18' 46.81"
N 43° 17' 50.72" 6.03 Mesohaline 0 Absent 0 Absent

W 124° 19' 19.78"
N 43°17' 43.25" 6.22 Mesohaline 0 Absent 0 Absent

W 124° 19' 10.05"
N 43° 17' 52.09" 6.45 Mesohaline 0 Absent 0 Absent

W 124° 18' 50.38"
N 43° 17' 23.51" 6.94 Mesohaline 0 Absent 0 Absent

W 124° 19' 23.29"
N 43 ° 17' 30.46" 7.23 Mesohaline 0 Absent 0 Absent

W 124° 18' 33.97"
N 43° 17' 2.52" 7.53 Mesohaline 0 Absent 0 Absent

W 124° 19' 25.09"
N 43° 17' 20.55" 7.54 Mesohaline 0 Absent 0 Absent

W 124° 18' 29.96"

N
o



Table 2.1. (continued).

January 2009 July 2009
GPS

Coordinates

N 43 0 16' 56.53"
W 124 0 19' 11.94"

N 43 0 17' 7.59"
W 124 0 18' 29.59"

Distance Upriver
(km)

7.88

7.94

Salinity

Mesohaline

Mesohaline

No. ofM Abundance
senile Category

Individuals
o Absent

o Absent

No. ofM Abundance
senile Category

Individuals
o Absent

o Absent

IV
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_ Ellhaline (>:'0)

Polyhaline (18-30)

Transition Zone

CJ I\,fe~ohaline(5-18)

A. January 2009 B. July 2009

N

A
1 <\.-1::11_-=:1__-=======-__ Kilometers

o 0,,' 1

Figure 2.3. Abundance and distribution surveys of naturally occurring Metridium senile
on various substrata in (A) January 2009 and (B) July 2009 within the South Slough.

Circles represent the different levels of categorical abundance. Large circles (.)
represent "Abundant" (>501) sites, medium circles (.) represent "Common" (16-500)
sites, and small circles (~) represent "Rare" (1-15) sites. Triangles (A) represent sites
with no individuals. Stars (*) indicate location of field transplant sites. Coordinates for
sites shown here can be found in Table 2.1. The salinity profile is derived from Davidson
(2008), Arneson (1975), ODFW and SSNERR COMO.
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bedrock in the euhaline region and wood pilings and and woody debris in the polyhaline

region. Individuals were absent from sites in the mesohaline region of the upper estuary.

However, presence of individuals increased from around Long Island Point northward to

the mouth of the estuary. Sites around Long Island Point and within Sengstacken and

Winchester Arms were categorized as "rare", sites near Valino Island and the Valino field

site were categorized as "common", whereas sites around the estuary mouth and the

Charleston field site were predominantly categorized as either "common" or

"abundant"(Table 2.1; Figure 2.3).

Seasonal differences in categorical abundance were observed at various sites

within the South Slough estuary. Sites around Long Island Point and within Sengstacken

and Winchester Arms lacked individuals during January 2009, yet during July 2009 a few

individuals were observed as categorical abundance increased to "rare". Sites located

adjacent to Valino Island and the Valino field site were categorized as "rare" during

January 2009, however during July 2009 survey numbers of individuals increased, raising

the categorical abundance of these sites to "common". Additionally, one site just south of

the Charleston field site and the estuary mouth increased in categorical abundance from

"rare" in January 2009 to "common" in July 2009 and a new site containing individuals

was present near the Charleston field site during July 2009. Overall, an increase in

categorical abundance was also seen in the estuary mouth around the Charleston boat

basin, bridge and field site (Table 2.1 and Figure 2.3).
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Metridium senile transplants

Overall, monthly mortality increased with distance from the estuary mouth during

the 13-month measurement period from July 2008 to August 2009. Monthly mortality

was lowest at the marine-dominated site, followed by the mesohaline and riverine­

dominated sites, respectively. Seasonal differences in monthly mortality were also

observed. At the marine and mesohaline-dominated site, mortality was highest in March

2009 and lowest in July 2009 showing peak survival during the dry season and lowest

survival during the wet season. The riverine-dominated site exhibited highest mortality in

January 2009 and lowest mortality in July 2009 showing peak survival during the dry

season and lowest survival earlier during the wet season (Figure 2.4).

For the most part, cumulative weekly mortality confirmed these trends. Seasonal

differences in cumulative weekly mortality were also observed at each field site. Peak

survival occurred in July 2009 during the dry season for all three field sites, whereas

lowest survival occurred in March 2009 for the marine-dominated site and January 2009

for the mesohaline and riverine-dominated sites (Figures 2.5,2.6 and 2.7). In March

2009, mortality at the marine-dominated site occurred during each week, reaching a

maximum of 35% mortality by the fourth week, whereas July 2009 experienced only 3%

mortality by the fourth week (Figures 2.5 and 2.6). In contrast to monthly mortality

trends, the mesohaline-dominated site exhibited highest weekly mortality in January 2009

exhibiting mortality each week with a maximum mortality of 100% by the fourth week

(Figure 2.7). Lowest weekly mortality occurred in July 2009 with mortality occurring
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Figure 2.4. Cumulative monthly mortality of adult transplants at marine, mesohaline and
riverine sites over four-week measurement periods from July 2008 to August 2009. Bars
represent means with standard error (n=5, except for December (n=3) and February
(n=4)). Line overlays represent changes in average salinity for each month at respective
field sites.
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Figure 2.5. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during July 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 2.6. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during March 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 2.7. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during January 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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over the last two weeks and only 25% mortality by the fourth week (Figure 2.5). The

riverine-dominated site experienced highest mortality during January 2009 with 100%

mortality by the first week, whereas in July 2009 mortality was observed for the last two

weeks with only 50% mortality by the fourth week (Figures 2.5 and 2.7). For additional

monthly graphs of cumulative mortality refer to the Appendix Figures 28-36.

Discussion

Metridium senile exhibited discrete seasonal abundance and distribution patterns

in the South Slough estuary. Individuals occupied the lower euhaline and polyhaline

regions of the estuary during the winter and the lower to mid euhaline and polyhaline

regions of the estuary during the summer. During the winter, the number of M senile

individuals present at each site was lower than in the summer, and their distributional

range was smaller (Figure 2.3). This seasonal trend was also observed in the monthly

transplant experiment, where individuals transplanted to the mesohaline and riverine­

dominated zones showed decreased survival in the winter months of March and January

respectively, and peak survival in the summer during July (Figure 2.4). Additionally, the

abundance and distribution gradient observed in field surveys within winter and summer

months were also supported by mortality trends observed at each of the three field sites

where mortality was lowest at the marine-dominated site, followed by the mesohaline and

riverine-dominated sites, respectively (Figures 2.3 and 2.4).
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However, it is not appropriate to consider salinity as the sole indicator of estuarine

abundance and distribution of Metridium senile. In addition to salinity, various other

factors such as available substrata, temperature, dissolved oxygen, pH, dispersal

constrictions, predation and food supply may affect the distribution and abundance ofM

senile within the South Slough estuary. However, field surveys and experiments do

suggest that the estuarine distribution of M senile may be regulated by the salinity

gradient present in the South Slough estuary. All of the individuals observed within the

estuary were located in euhaline and polyhaline areas where there was less salinity

fluctuation (mean annual salinity range: ~18 to ~33) O~ERR CDMO,

http://cdmo.barch.sc.edu).This trend was also supported by the lack of M senile

individuals in the mesohaline region of the estuary south of Long Island Point where

salinity was more varied (mean annual salinity range: ~4 to ~21) because of increased

domination by freshwater (NERR CDMO, http://cdmo.barch.sc.edu; Figure 2.3).

Available substrata did not seem to be a contributing factor to the abundance and

distribution of M senile within the South Slough estuary as available substrata decreased

slightly with distance upriver. Overall, docks, cement pilings, wooden pilings and rocky

outcroppings, which were ubiquitous within the marine-dominated region, gave way to

only slightly less available substrata, which included vertical wooden pilings and woody

debris lining sections of the polyhaline and riverine regions of Winchester and

Sengstacken Arms (Rumrill, 2006). A number of these pilings were encrusted with
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barnacles as well. However, even with the presence of available substrata, M senile has

not been documented within the mesohaline regions of the estuary.

The other factors that may affect the abundance and distribution ofMetridium

senile within the South Slough estuary do not sufficiently explain the absence of

individuals within the mesohaline zones of the upper estuary. In addition to salinity and

available substrata, water temperature may playa role. However, it is unclear whether

temperature plays a significant role in determining the abundance and distribution limit of

this species in the upper region of the estuary since M senile has been documented in

Table Bay off of the coast of South Africa, Argentina and southern California in waters

that are similar to peak temperatures in the South Slough estuary (Gates et al., 1992;

Acuna and Griffiths, 2004; Rumrill, 2006). Additionally, studies performed by North

(1957) on the reaction time (the period between initial exposure and observed response)

of M senile over a temperature range of 1TC found no significant changes in average

reaction time and concluded that reaction time variability was not caused by changes in

physiological state. However, short-term salinity tolerance is influenced by temperature

in other anemone species such as Haliplanella luciae in which individuals had a narrower

salinity tolerance range at higher temperatures (Benson-Rodenbough and Ellington, 1982;

Shick, 1976). Limitations caused by variations in dissolved oxygen and pH are unlikely

since these form weaker gradients within the South Slough estuary and M senile has

been documented recolonizing areas that were previously depopulated by anoxic and
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hypoxic waters (Wahl, 1985b; Rumrill, 2006).Individuals have also shown considerable

resilience to severe hypoxia (Wahl, 1985b; Diaz and Rosenberg, 1995).

Dispersal could also influence the abundance and distribution patterns observed

within the South Slough estuary. Large-scale dispersal has been documented in the

planktonic larval stage and adult Metridium senile have been transported 0.10 to 10 km

from their native substrata by water currents (Shick et al., 1979, Wahl; 1985a).

Additionally, rafting of M senile attached to flotsam such as woody debris or litter have

possibly been the means by which populations of M senile were introduced into new

locales such as the Flensburg Fjord in the Western Baltic (Wahl, 1985a). Therefore, M

senile could be transported considerable distances upriver during a flood tide by

incoming water currents or on random woody material that has been observed along

stretches of the South Slough estuary (Rumrill, 2006). Predation impacts on M senile

abundance and distribution are negligible since there is no documentation of its key

predators Aeolidia papillosa and Dermasterias imbricata upriver from the Charleston

Bridge within the South Slough Estuary (Francis and Kramer, 2004; Rumrill, 2006). The

South Slough estuary contains a diverse supply of zooplankton that can be transported

long distances by tidal advection (Rumrill, 2006). For example, I have observed crab

zoea 7.7 km upriver around the Winchester field site during the summer. Therefore, it is

unlikely that food supply restricts the abundance and distribution patterns of M senile

within the South Slough estuary. This species primarily feeds on small zooplankton

(Shick,1991).
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While the observed trends in seasonal abundance and mortality could possibly be

due to a variety and combination of factors that typically limit marine organisms, none

explains these trends sufficiently. Seasonal field surveys and mortality trends are

probably influenced by the salinity associated with the hydrogeomorphic region of the

estuary where naturally occurring individuals were observed and in which transplants

were placed. Decreased abundance and distribution ofMetridium senile and increased

mortality with distance from the estuary mouth as well as increased mortality during the

wet season at all three field sites could be attributed to the diel and seasonal salinity flux

within the South Slough estuary (Figures 2.3 and 2.4). Since diel fluctuations of salinity

increase with distance from the estuary mouth, Metridium senile individuals are exposed

to a combination of decreased ambient salinity and increased salinity variation with

distance upriver (Rumrill, 2006). Seasonal precipitation during the wet season results in a

substantial influx of freshwater which greatly reduces the salinity regime in each of the

hydrogeomorphic regions of the estuary (Rumrill, 2006). Thus, during the wet season, M

senile individuals are exposed to increased salinity fluctuations.

Therefore, the abundance and distribution pattern of Metridium senile observed

during January 2009 may be attributed to seasonal freshwater influx and increased

salinity variation, which explains the absence of individuals in the mid to upper estuary

(Figure 2.3). Transplant mortality in the mid to upper estuary was highest during the wet

season and increased with distance from the estuary mouth (Figure 2.4). This trend

mirrors the salinity profile of the South Slough Estuary during the wet season. During the
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dry season however, the salinity profile changes as decreased precipitation results in a

higher average salinity regime. The abundance observed during July 2009 reflects this

change in the salinity profile since distribution range of M senile was extended a

kilometer upriver and included the lower and mid estuary regions (Figure 2.3). This

extension was likely due to decreased freshwater input resulting in higher salinity within

the mid estuary. Additionally, trends of transplant mortality confirm this since transplants

at each of the field sites survived much better in the dry season compared to the wet

season, showing lowest mortality in July 2009 and highest mortality in January and

March of2009 (Figure 2.4). Adult transplants also showed lower survival with distance

from the estuary mouth during the July 2008-August 2009 measurement period, which

could be attributed to the presence ofa strong estuarine salinity gradient (Figure 2.4).

Consequently, since the South Slough estuary inherently has a strong salinity gradient, it

is likely that trends observed in seasonal field surveys and adult transplant experiments

are largely governed by a salinity gradient rather than weaker gradients such as water

temperature, dissolved oxygen and pH (Rumrill, 2006).
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Bridge

Chapter II examined the abundance and distribution of the actinarian Metridium

senile in a temperate estuary located along the southern Oregon coast. Abundance and

distribution patterns were directly mirrored by observed trends in transplant mortality

within the South Slough estuary. Trends followed a seasonal pattern and were likely

regulated by the estuary's salinity profile within each of the three hydrogeomorphic

regions, resulting in increased mortality with distance from the estuary mouth. While the

salinity regime of the South Slough estuary is thought to govern these observed trends

and inherently exposes organisms to hyposaline conditions, no evidence is presented on

the effect of hyposalinity on sea anemone physiology. How do sea anemones respond to

these conditions? Chapter III answers this question by examining the effect of hypo­

osmotic stress on M senile's mortality and regulation of volume, osmolality, and

magnesium ions. The effect of hypo-osmotic stress is examined in both a laboratory and

field setting over weekly and monthly measurement periods. Finally, this chapter

determines the ability ofM senile to regulate under hypo-osmotic stress and discusses

how this ability may contribute to its survival and distribution within the South Slough

Estuary.
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CHAPTER III

MORTALITY AND PARTIAL REGULATION OF VOLUME, OSMOLALITY, AND

MAGNEISIUM ION CONCENTRATIONS IN THE SEA ANEMONE METRIDIUM

SENILE UNDER HYPO-OSMOTIC CONDITIONS

Introduction

Life in an estuary: a fluctuating salinity environment

Marine organisms inhabit a wide range of saline environments, from the brackish

waters of estuaries to the extreme hypersaline conditions of brine pools. These habitats

differ considerably in water and solute chemistry (Evans, 2009). Variations in water and

solute concentrations within these habitats can impose a number of physiological

stressors upon marine organisms (Rankin and Davenport, 1981; Evans, 2009).

Furthermore, changes in water and solute chemistry can be augmented by a variable

salinity regime or dampened by a stable salinity regime (Shumway, 1977; Rankin and

Davenport, 1981). For example, estuarine habitats are inherently characterized by a

variable salinity regime. This exposes organisms to a constantly fluctuating salinity

environment in which they can experience nearly fresh to full-strength seawater on a diel

basis (Rankin and Davenport, 1981; Rumrill, 2006). Thus, the body fluids of organisms

living in this environment are either hypo-osmotic or hyperosmotic to the ambient
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medium, resulting in water and salt regulation issues. However, organisms living in a

stable salinity regime encounter little change in environmental salinity on either a

seasonal or diel basis, resulting in little or no osmotic stress (Rankin and Davenport,

1981). Fluctuating salinity environments therefore induce a number of adaptations that

aid in the maintenance of cellular salt and water balance (Rankin and Davenport, 1981;

Evans, 2009).

Marine animals are divided into two groups based on their mode of physiological

response to salinity stress: osmoconformers and osmoregulators. Osmoconformers are

organisms that maintain an internal osmotic pressure that is equal to the ambient

environment. This process can be active or passive. In contrast, osmoregulators are

organisms that maintain a constant internal osmotic pressure irrespective of changes in

the ambient environment. This process is primarily active since osmoregulators control

salt concentrations by actively pumping salt out of the cell through specific ion channels

in order to maintain cellular volume. One such mechanism is the sodium-potassium pump

(i.e. Na+/K+-ATPase). The pump transports two potassium ions in for every three sodium

ions that are pumped out of the cell and since cellular membranes are less permeable to

sodium ions than potassium ions, sodium tends to remain outside the cell. This results in

a continual net loss of ions out of the cell that ultimately drives water molecules out of

the cell. However, it is unclear whether this mechanism is solely responsible for

osmoregulation in animal cells since Ouabain, a potent metabolic inhibitor, does not

inhibit the volume regulatory process. Therefore, cellular osmoregulation may be driven
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by another type of sodium-potassium pump (Rankin and Davenport, 1981; Evans, 2009).

Many marine species found in estuarine habitats are osmoconformers and will absorb

water and lose salts until their bodies are iso-osmotic with the ambient environment. A

number of these species can tolerate a wide range of salinities and are considered

euryhaline, while other osmoconformers can only tolerate a very narrow salinity range

and are considered stenohaline. In general, stenohaline species occur in stable salinity

environments while euryhaline species can be found in either stable or fluctuating­

salinity environments. Consequently, because of the range of saline environments and

physiological responses to such environs, marine organisms have evolved a variety of

adaptive strategies that are used in the maintenance of cellular and organismal salt and

water balance (Rankin and Davenport, 1981; Evans, 2009).

Adaptive strategies across many marine invertebrate phyla have been employed to

combat hypo-osmotic stress. These include excretory systems (e.g. Arthropoda, and

Annelida), selective transport of ions across cellular membranes (e.g. Arthropoda,

Annelida, Echinodermata, and Mollusca), selective ion secretion and uptake using

antennary glands and gills (e.g. Arthropoda), regulation of the intracellular free amino

acid pool (FAA) (e.g. Annelida, and Mollusca), and behavioral isolation through a shell

or cuticle (e.g. Arthropoda, Annelida, and Mollusca) (Rankin and Davenport, 1981;

Evans, 2009).

In contrast to arthropods, annelids, and molluscs, cnidarians lack excretory or

circulatory systems, and so are without an internal environment that houses a fluid
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capable of circulating and therefore regulating water and salt (Krogh, 1939; Brusca,

1980). There is, however an acellular mesoglea or partly cellular mesenchyme that

separates the ectoderm and endoderm (Brusca, 1980). In comparison to other phyla, there

are few studies on the osmotic conditions and osmoregulatory mechanisms involved in

hypo-osmotic stress for cnidarians, since the fluid is hard to isolate and analyze (Krogh,

1939; Rankin and Davenport, 1981). Despite the difficulties of working with cnidarians,

there have been studies on the physiological mechanisms and adaptive strategies ofthese

organisms in response to hypo-osmotic stress.

Cnidarians lack an internal environment; they contain only one body cavity (the

coelenteron), which has one opening and is in constant contact with the external

environment (Brusca, 1980). These organisms are considered osmoconformers (Brusca,

1980). Hypo-osmotic stress causes equilibration of the body with the surrounding

environment, which is achieved by absorbing water and losing salts until the body is iso­

osmotic with the ambient medium. Since water movement is faster than salt diffusion,

immediate exposure to dilute saline conditions causes these organisms to gain water

rapidly and swell up, thereby increasing in weight (Krogh, 1939; Brusca, 1980; Rankin

and Davenport, 1981). Even though cnidarians have been primarily categorized as

osmoconformers, ion regulation has been documented in freshwater cnidarians such as

hydroids and scyphozoans (Lilly, 1955; Fleming and Hazelwood, 1967). Even with no

obvious way to excrete water, osmoregulation has also been recorded in other freshwater

cnidarian species. The mechanism, however, remains somewhat of a mystery (Prusch et
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al., 1976). In mesohaline (salinity 5-25) populations of the scyphomedusae Chrysaora

qUinquecirrha, potassium ion regulation was noted when individuals were transferred

from a salinity of 20 to a salinity of 8, and other ions such as magnesium and sodium

remained hyperosmotic to the ambient medium after one week (Wright and Purcell,

1997). Ion regulation in mesohaline scyphomedusae of the Chesapeake Bay may be an

adaptive strategy used to combat hypo-osmotic conditions.

Another group of cnidarians, the actinarians, are generally considered marine

stenohaline osmoconformers, yet a number of species are known to inhabit estuaries. The

sea anemone Diadumene leucolena regularly inhabits brackish waters and can survive

salinities ranging from 6 to 33 (Pierce and Minasian, 1974). In addition, Haliplanella

luciae can survive indefinitely at a salinity level of 12 (Shick, 1976). To combat these

hypo-osmotic conditions, both species partially regulate tissue hydration and the cellular

free amino acid pool (FAA) (Pierce and Minasian, 1974; Shick, 1976). A similar trend

was seen in the euryhaline anemone Bunodosoma cavernata which tolerated exposure for

two weeks to a salinity range from 11 to 49. To acclimate to changing salinities, B.

cavernata regulated cellular volume and in turn cellular FAA (Benson-Rodenbough and

Ellington, 1982). Partial volume regulation has also been documented in the sea anemone

Metridium senile, even though this species is primarily marine and does not normally

populate estuaries (Deaton and Hoffmann, 1988; Shick, 1991). Nevertheless, M. senile

shows an astonishing ability to survive low salinities, which may be attributed to a

number of physiological and behavioral factors: retraction of tentacles, contraction of the
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body wall, secretion of mucus, cellular volume regulation, or regulation of the

intracellular free amino acid pool (FAA) (Shumway, 1978; Deaton and Hoffmann, 1988;

Shick, 1991). Consequently, sea anemones have evolved many different behavioral,

morphological, cellular and ionic adaptations to resist hypo-osmotic stress.

Retracting tentacles, contracting the body wall and secreting mucus is

synonymous to changing shell gape and adducting shell valves in bivalves, and

withdrawing into shells in gastropods (Shumway, 1978). These actions aid in minimizing

surface area in contact with the ambient medium. Additionally, once sea anemones

contract the body wall, ventilation and subsequent equilibration with the ambient medium

ceases, resulting in decreased osmotic influx of water and efflux of ions and organic

solutes (Shoup, 1932; Miyawaki, 1951; Shumway, 1978; Benson-Rodenbough and

Ellington, 1982; Shick, 1991). Secretion ofa mucus film around the anemone acts as a

barrier to water and solute movements as it creates an unstirred layer to develop on the

ectodermal surface (Shoup, 1932; Shick, 1976; Shumway, 1978; Shick, 1991). However,

the diffusional permeability of this mucus layer has not been studied (Shick, 1991).

Additional studies suggest that sea anemone mucus sequesters ions, specifically calcium

ions (Ca2+). Therefore, mucus secretion may provide a means to conserve calcium ions

available to bind to the external membranes when ambient salinity is low, thereby

reducing the efflux of free amino acids (Goreau, 1959; Pierce and Greenberg, 1973).

Consequently, this mechanism may allow anemones to retain important organic

osmolytes during short-term salinity fluxes (Pierce and Greenberg, 1973; Shick, 1991).
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Since sea anemones characteristically exhibit re-expansion under all but extreme

hypo-osmotic conditions, individual cells must regulate their volume to avoid excess

cellular swelling (Shick, 1976; Kasschau et aI., 1984a; Deaton and Hoffmann, 1988). The

process of cell volume regulation is mediated by cellular and ionic mechanisms in

response to hypo-osmotic stress. Typically, osmoconforming sea anemones exhibit small

variations in tissue hydration under hypo-osmotic stress which indicates that cellular

volume regulation is indeed occurring (Benson-Rodenbough and Ellington, 1982; Shick,

1991). Diadumene leucolena, Haliplanella lineata, and Metridium senile all show

increased volume regulatory ability under dilute saline conditions which may be due to a

decrease in the anemones' "water permeability", (Deaton and Hoffmann, 1988; Shick,

1991). However, further studies suggest that cell volume regulation is mediated by

altering concentrations of the intracellular free amino acid pool (FAA), which decreases

in concentration with salinity (Lange, 1972; Gilles, 1979; Benson-Rodenbough and

Ellington, 1982; Deaton and Hoffmann, 1988; Shick, 1991). Compensatory adjustments

of intracellular FAA concentrations seem to be an active regulatory process since the

change in intracellular FAA concentrations of B. cavernata, D. leucolena, H lineata, and

M senile was five to eight times less than the change in FAA concentrations of the

ambient environment. Both M senile and D. leucolena have a greater ability to reduce

their FAA concentrations compared to B. cavernata, which may contribute to their

augmented volume regulatory ability at low salinity levels. One mechanism for reducing

intracellular FAA concentrations in M. senile and D. leucolena is selectively increasing
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the permeability of the cell membrane to available FAA, subsequently increasing their

efflux. Survival of D. leucolena in estuarine habitats can be explained by increased

volume regulatory ability. However, the ecological relevance ofM senile's volume

regulatory ability is largely unknown since it does not usually inhabit estuaries (Pierce

and Minasian, 1974; Shick, 1976; Benson-Rodenbough and Ellington, 1982; Kasschau et

al., 1984a; Deaton and Hoffmann, 1988).

Some actinarians can regulate their FAA concentrations, and in turn cellular

volume. Anemones may also be capable of regulating intracellular ions like their

relatives, the scyphomedusae (Wright and Purcell, 1997). Regulation of intracellular ions

may aid in the conservation of key metabolic processes under hypo-osmotic stress. For

example, magnesium ions (Mg2+) are involved in a number of enzymatic reactions as a

co-factor including those involved in the transfer of phosphate groups, the stabilization of

ion channels and cell membranes and most importantly the production of energy in the

form of ATP (Hee Ko et aI., 1999). Additionally, magnesium interacts with substrates or

enzymes and is sometimes required for activity as part of the active site. Consequently,

because of magnesium's metabolic importance, reductions in magnesium concentrations

could lead to decreased metabolic activity and eventually death (Parker et aI., 1990; Lang,

et. aI., 1998; Hee Ko et aI., 1999).

Even though actinarians generally are not considered euryhaline organisms, a few

species were observed to have wide salinity tolerances (Shick, 1991). Many studies have

investigated the salinity tolerances of actinarians such as Diadumene leucolena,
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Haliplanella lineata and Bunodosoma cavernata and found a range of regulatory abilities

for tissue hydration and the intracellular FAA (Pierce and Minasian, 1974; Shick, 1976;

Benson-Rodenbough and Ellington, 1982). However, there have not been any studies that

investigated the effect of hypo-osmotic stress on regulation of tissue hydration,

osmolality, and intracellular ions (like magnesium) within specific actinarian species.

This chapter aims to evaluate the salinity tolerance limits of the actinarian Metridium

senile from a physiological perspective in both laboratory and field settings.

Materials and Methods

The effect of hypo-osmotic stress on mortality and regulation of volume,

osmolality, and magnesium ions in Metridium senile was investigated at the Oregon

Institute of Marine Biology (OIMB), Charleston, Oregon, and in the adjacent South

Slough Estuary from 2008-2009. Laboratory studies were conducted at OIMB while field

transplant studies were conducted within the estuary.

Laboratory study

During the month of February 2008, a laboratory experiment tested the effect of

hypo-osmotic stress on volume regulation and Mg2
+ concentration ofMetridium senile

subjected to 50%, 75%, and 100% seawater. At the beginning of February 2008, ninety

M senile individuals were manually collected from the docks in the Charleston marina by

scraping. Individuals were brought back to the lab, immersed immediately in running
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seawater (33 salinity), and allowed to reattach over 24~h to circular pieces of nylon mesh,

measuring 8 cm in diameter. Three salinity treatments were prepared by filling three large

plastic containers (46 cm x 60 cm) with one of the following: 100% SW (33 salinity),

75% SW (25 salinity) and 50% SW (16.5 salinity). The diluent was reverse osmosis

water and the salinity levels of each seawater treatment were confirmed with a

refractometer. Thirty anemones were placed in 100% SW, 75% SW and 50% SW,

respectively. Three anemones were destructively sampled at random on a weekly basis

from each treatment culminating in initial and weekly measurements of volume

regulation and Mg2
+ concentration over a one-month period.

Field study

The field portion of this study utilized the salinity gradient from the mouth (marine­

dominated zone) to terminal end (riverine-dominated zone) of the South Slough estuary, a

small and fairly shallow drowned-river estuary located in the larger Coos estuary along the

southern Oregon coast. One field site was selected within each of the three

hydrogeomorphic zones within the South Slough. Field sites were chosen based upon

location within the South Slough, accessibility, and immediate proximity to the South

Slough National Estuarine Research Reserve's (SSNERR) System-Wide Monitoring

Program (SWMP) stations, where real time abiotic data, including salinity, temperature and

dissolved oxygen were collected (Figure 2.1).
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At each field site, I deployed one floating frame for anemone containment adjacent

to SSNERR's SWMP monitoring station. Each floating frame was a sealed I m x I m PVC

pipe square with thirty 9-cm3 plastic mesh boxes (14 mm mesh opening), each housing one

anemone. Each plastic mesh box was attached with IS cm ofthin wall PVC pipe using

cable ties. Two mooring buoys were attached to opposite comers of each floating frame.

Floating frames were anchored in the subtidal sediment with two screw anchors placed

approximately 2.5 m on either side using twisted polypropylene rope. For mortality

measurements, additional Metridium senile individuals were placed within a large 30.5 cm3

plastic mesh flow-through container with a 14 mm mesh opening that was attached to the

frame with cable ties (Figure 2.2B; Figure 3.1A-C).

Because Metridium senile is commonly found in the low intertidal and subtidal

waters of bays and harbors, the marine-dominated field site ("Charleston") served as the

control site (Carlton, 2007; Figure 2.1 ).This site lies adjacent to the Charleston bridge

(43°20'15.72 N, 124°19'13.92 W) and consists of well-mixed tidal waters with a maximum

tidal amplitude of 2.6 m and monthly mean salinity of 31 during the dry season and 20

during the wet season. The mesohaline-dominated field site ("Valino") rests slightly to the

north of VaIino Island within the South Slough (43°19'1.98N, 124°19'17.88 W) and

consists of well-mixed tidal waters with a maximum tidal amplitude of2.7 m and salinity

ranging from 15-28 (Figure 2.1). The riverine-dominated field site ("Winchester") is

located within Winchester Arm across from Danger Point on the east side of the channel

(43° 16'56.70 N, 124°19'13.14 W) and consists of a maximum tidal amplitude of 2.0 m
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Figure 3.1. Images of (A) the floating frame with two mooring buoys, (B) plastic mesh
boxes attached to the floating frame with thin wall PVC and cable ties for anemone
containment, and (C) an anemone within a plastic mesh box. Scale bars in A and Bare
30.5-cm and the scale bar in C is I A-em.
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(Figure 2.1). During the dry season, tidal waters are characteristically well-mixed, with

salinity ranging from 5-30; during the wet season however, tidal waters are partially

stratified, with salinity ranging from 0-21 (Rumrill, 2006).

At the beginning of each month, 150 individuals of approximately similar size

(2.5-3.5 cm high and 1.5-3.0 cm diameter pedal discs) were manually detached from

substrata adjacent to the marine-dominated site of the Charleston Bridge by scraping.

Each individual was randomly selected from distinct clones determined by the presence

of anemone-free spaces (Francis, 1973). Individuals were brought back to the lab,

immersed immediately in running seawater (33 salinity), and allowed to reattach over 24­

h to circular pieces of nylon mesh, measuring 8 cm in diameter. Once each individual

was reattached, it was placed directly into a container filled with 33 salinity seawater.

Fifty individuals were then transported and placed at each of the three field sites. Thirty

of the individuals were haphazardly selected and placed within a plastic mesh box

attached to the floating frame described above for weekly sampling. The remaining

twenty individuals were placed within the large flow-through container for weekly

monitoring where they remained attached to their respective mesh net (Figure 2.2B).

From July 2008 to August 2009 six randomly selected anemones were

destructively sampled on a weekly basis over a one-month period from each field site

culminating in initial and weekly measurements of regulation of volume, osmolality and

Mg2
+ concentrations for each month. Cumulative mortality measurements were also

taken on a monthly basis at each field site. Results and subsequent statistical analyses are
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reported on select months representative of the wet and dry seasons as well as the fall and

spring transition periods within the South Slough estuary, which occurred around October

23,2008 and March 29,2009, respectively (www.cbr.washington.edu/data/trans.html; M.

Kosro, pers. comm., Oregon State University).

Measurement of volume regulation

Percent tissue hydration was used as a proxy for volume regulation at each site

along the estuarine gradient (Deaton and Hoffmann, 1988). Each individual's body wall

was slit with a scalpel, allowing the coelenteron fluid to drain, and subsequently blotted

with a paper towel several times for 15 seconds to remove excess fluid. Individuals were

put on a piece of parafilm to see if any droplets of water formed. If water was observed

on the parafilm, then individuals were blotted again (L. Deaton pers. comm., University

of Louisiana). After blotting, wet weights were measured using a Mettler Toledo AT460

weighing balance. To test the accuracy of this technique, the blotting protocol was used

on the same individual five times after the body wall was slit. Each individual was blotted

and weighed, placed back into the water it came out of, and then blotted and weighed

again to see if the same wet weight was attained after each trial (L. Deaton pers. comm.,

University of Louisiana). Anemones were subsequently dried at 60°C for 48 hours and

then reweighed. The percentage of water in the tissues was calculated by dividing the

difference between the wet and dry weights by the wet weight to determine percent tissue

hydration (Oglesby, 1975; Deaton and Hoffmann, 1988).
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Oglesby's (1975) equation was used to quantify volume regulation based on

changes in Metridium senile's tissue hydration after acclimation to marine, mesohaline

and riverine-dominated sites. Oglesby (1975) defined B"as the proportion of the

maximum excess water which is actually retained after a transfer", such that B=I.0

indicates no regulation (maximum excess water retention; organism behaves as a simple

osmometer), and B=O.O indicates complete regulation (no excess water retention; the

water content is the same in all salinities). The index of regulation (B) is calculated by

using the tissue water contents at higher (W1) and lower (W2) salinities:

where

which is the maximum excess water retained after a transfer from higher (C l ) to lower

salinity (C2) (Oglesby, 1975; Deaton and Hoffmann, 1988; Shick, 1991).

Therefore, B-values were calculated using wet weights and ambient osmolality

measurements at higher and lower salinities for each sampled anemone. Weekly and

monthly percent tissue hydration and accompanying Bvalues were determined at the

marine, mesohaline and riverine-dominated field sites for each month and year,

respectively.
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Measurement of magnesium ion CMg2+) concentrations

Approximately 0.5 grams of Metridium senile mesentery tissue (obtained by

cutting longitudinally through mesentery tissue and mesogleal fluid adjacent to the

pharynx) was homogenized in 200 /11 of distilled water using a plastic mortar and pestle.

Magnesium ion concentrations were then measured colorimetrically by deproteinizing the

homogenized tissue sample with 5% trichloracetic acid and allowing the sample

supernatant to react with thiazole yellow and 2N LiOH. The sample absorbance was

measured immediately at 540 nm using a Beckman DU-70 spectrophotometer (Sky-Peck,

1964; Brown and Terwilliger, 1992). The concentration of magnesium for each sample

was determined by comparing each sample's absorbance to a standard curve constructed

of 1M, 0.5M, 0.25M, 0.125M, 0.0625M, 0.0325M, 0.0156M, 0.0078M, 0.0039M,

0.00195M MgCb standards. Seawater samples from each of the three sites were also run

in the Beckman DU-70 spectrophotometer to measure magnesium ion concentration of

the seawater from each site. Weekly and monthly magnesium ion concentrations at each

site were determined for each month and year, respectively.

Measurement of osmolality

Approximately 0.5 grams ofM senile mesentery tissue (obtained by cutting

longitudinally through mesentery tissue and mesogleal fluid adjacent to the pharynx) was

homogenized in 200 /11 of distilled water using a plastic mortar and pestle. Tissue

homogenate samples were spun at 10,500rpm for 15 minutes in an Eppendorf centrifuge
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(Benson-Rodenbough and Ellington, 1982). Ten fll of the resulting supernatant was

placed in a VAPRO vapor pressure osmometer to measure the tissue osmolality of each

anemone. Seawater samples from each field site or laboratory salinity treatment were also

quantified using the vapor pressure osmometer to measure osmolality of the seawater.

Weekly and monthly osmolality at each site was determined for each month and year,

respectively.

Measurement of mortality

Each individual was observed in situ on a weekly basis to assess its condition and

was given a mechanical stimulus. The criterion used to determine mortality was the

inability of Metridium senile to respond to the mechanical stimulus at the time of

observation (Benson-Rodenbough and Ellington, 1982). Individuals that were still alive

at the end of each month were gently detached from the nylon mesh net and transported

back to the collection site where they were allowed to reattach to natural substrata.

Cumulative weekly and monthly mortality at each site was determined for each month

and year, respectively.

Statistical analyses

For the laboratory study, a two-way univariate analysis of variance (ANOVA)

was used to determine differences in percent tissue hydration and magnesium ion

concentrations between each day and treatment, with treatment and day as fixed factors.
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For the field study, two statistical analyses were utilized: a two-way ANOVA and

a two-way multivariate analysis of variance (MANOVA) to determine differences in

percent tissue hydration, magnesium ion concentrations and osmolality among sites and

weeks, with site and week as fixed factors. Two statistical analyses were used because of

minimal variance within levels of certain factors. Factors that contained levels with

minimal variance were removed from the analysis and the remaining level(s) were

analyzed in each factor using a two-way ANOVA with site and week as fixed factors. A

two-way MANOVA was subsequently used when variation was present within all levels

of each factor. To analyze the yearly data set, similar data from adjacent months were

pooled to test for seasonal differences in percent tissue hydration, magnesium ion

concentration, osmolality, and mortality among sites and seasons. A two-way MANOVA

was subsequently used to quantify these differences, with site and season (categorized as

dry (June-August), fall transition (September-November), wet (December-February), or

spring transition (March-May)), as fixed factors.

Normality and homogeneous variance assumptions were analyzed visually using

scatterplots and histograms and statistically using the Levene's and Kolmogorov­

Smirnov tests (Quinn and Keough, 2002; Dytham, 2003). Data were subsequently

transformed using logarithmic, square root, and arcsine transformations, however all

transformations were unsuccessful in normalizing and homogenizing variances within the

data. Thus, all ANOVA and MANOVA tests were run with a more stringent alpha (a =



54

0.01) and the Pillai's Trace statistic was used in the MANOVA analysis (Olson, 1976).

Violation of the equal variance assumption can increase the probability of Type I error.

Therefore, the alpha adjusted to 0.01 helps lower the Type I error probability

(Underwood, 1981). Therefore, all a posteriori comparisons were analyzed using the

conservative Scheffe test when main effects were significant to help account for the

departures from normality and homogeneity of variance.

Results

Overall, mean percent tissue hydration, tissue magnesium ion concentrations and

tissue osmolality of Metridium senile transplants varied significantly among all factors

and interactions in both laboratory and field studies, except for in seasonal comparisons,

which revealed no significant interactions between main effects (Tables 3.1-3.6). The

significant interactions were analyzed first since this can result in an invalid interpretation

of the main effects (Quinn and Keough, 2002). The significant interaction between

salinity treatment and day in the laboratory study reflects the similarity in the initial (day

0) percent tissue hydration and tissue magnesium ion concentration measurements prior

to anemone placement in the three salinity treatments. When initial measurements were

taken out of the ANOVA analysis there was no interaction between main effects. The

interaction between site and week in the field study was also due to presence of a

similarity in the initial (week 0) percent tissue hydration, tissue magnesium ion
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Table 3.1. Results from a two-way ANaVA with treatment and day as fixed factors to
test for differences in (A) percent tissue hydration and (B) magnesium ion concentrations
of Metridium senile subjected to 100%, 75% and 50% salinity over a twenty-eight day
period. Boldface indicates statistical significance.

A. Percent Tissue Hydration ANaVA
Source df MS
Treatment 2 32.26
Day 4 1.68
Treatment X Day 8 2.9
Error 30 .18

B. Magnesium Ion Concentrations ANaVA
Source df MS
Treatment 1 18.21
Day 4 65.59
Treatment X Day 4 18.21
Error 19 .09

F
179.45
9.33
16.15

F
199.80
719.70
16.30

p
.000
.000
.000

p
.000
.000
.000
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Table. 3.2. Results from a two-way ANOVA with site and week as fixed factors to test
for differences in (A) percent tissue hydration, (B) magnesium ion concentrations and (C)
osmolality ofMetridium senile subjected to marine, mesohaline and riverine sites during
October 2008. Boldface indicates statistical significance.

A. Percent Tissue Hydration ANOVA
Source df MS
Site 2 93.94
Week 4 8.55
Site X Week 8 5.31
Error 30 .668

B. Magnesium Ion Concentrations ANOVA
Source df MS
Site 2 166.90
Week 4 14.92
Site X Week 8 8.09
Error 30 .059

F
140.54
12.80
7.95

F
2831
253
137.1

p
.000
.000
.000

p
.000
.000
.000

C. Osmolality ANOVA
Source df
Site 2
Week 4
Site X Week 8
Error 30

MS
2.98E05
2.0E04
1.9E04
6.33

F
3111
3291
4.7E04

p
.000
.000
.000
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Table 3.3. Results from a two-way (A) MANOVA and (B) subsequent ANOVAs with
site and week as fixed factors to test for differences in percent tissue hydration,
magnesium ion concentrations and osmolality of Metridium senile subjected to
marine, mesohaline and riverine sites during January 2009. Boldface indicates statistical
significance.

A. MANOVA
Source Pillai's F Hypothesis df Error df p

Trace
Site 1.21 11.75 6 46 .000
Week 1.36 5 12 72 .000
Site X Week 1.25 3.4 15 72 .000

B. Percent Tissue Hydration, Magnesium Ion Concentrations and Osmolality ANOVAs
Source Dependent df MS F P

Variable
Site % Tissue 2 44.40 26.20 .000

Osmolality 2 2.25E05 22.58 .000
Magnesium 2 39.63 318.86 .000

Week % Tissue 4 13.34 7.87 .000
Osmolality 4 8.6lE04 8.65 .000
Magnesium 4 13.10 105.39 .000

Site X Week % Tissue 5 11.78 6.95 .000
Osmolality 5 7.7lE04 7.76 .000
Magnesium 5 17.18 138.23 .000

Error % Tissue 24 1.70
Osmolality 24 9.96E03
Magnesium 24 .124
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Table 3.4. Results from a two-way ANOYA with site and week as fixed factors to test
for differences in (A) percent tissue hydration, (B) magnesium ion concentrations and (C)
Osmolality of Metridium senile subjected to marine, mesohaline and riverine sites during
March 2009. Boldface indicates statistical significance.

A. Percent Tissue Hydration ANOYA
Source df MS
Site 2 35.40
Week 4 22.82
Site X Week 4 25.69
Error 25 .777

B. Magnesium Ion Concentrations ANOYA
Source df MS
Site 2 44.82
Week 4 18.70
Site X Week 4 16.27
Error 25 .366

F
45.60
29.38
33.08

F
122.33
51.04
44.40

p
.000
.000
.000

p
.000
.000
.000

C. Osmolality ANOYA
Source df
Site 2
Week 4
Site X Week 4
Error 25

MS
1.59E06
1.48E05
1.06E05
21.91

F
72320
6746
4852

p
.000
.000
.000
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Table 3.5. Results from a two-way ANOVA with site and week as fixed factors to test
for differences in (A) percent tissue hydration, (B) magnesium ion concentrations and (C)
osmolality ofMetridium senile subjected to marine, mesohaline and riverine sites during
July 2009. Boldface indicates statistical significance.

A. Percent Tissue Hydration ANOVA
Source df MS F P
Site 2 17.48 79.06 .000
Week 4 .508 2.30 .082
Site X Week 8 1.32 5.95 .000
Error 30 .221

B. Magnesium Ion Concentrations ANOVA
Source df MS F P
Site 2 272.10 9276 .000
Week 4 10.43 355.60 .000
Site X Week 8 1815 618.60 .000
Error 30 .0293

C. Osmolality ANOVA
Source df MS F P
Site 2 254900 1765 .000
Week 4 24990 173.1 0 .000
Site X Week 8 24740 171.40 .000
Error 30 144.40
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Table 3.6. Results from a two-way (A) MANOVA and (B) subsequent ANOVAs with
site and season (categorized as dry, fall transition, wet, or spring transition) as fixed
factors to test for differences in percent tissue hydration, magnesium ion concentrations,
osmolality and mortality ofMetridium senile during July 2008-August 2009. Boldface
indicates statistical significance.

A. MANOVA
Source Pillai's F Hypothesis df Error df p

Trace
Site .688 20.99 8 320 .000
Season .524 8.53 12 483 .000
Site X Season .217 1.55 24 648 .046

B. Percent Tissue Hydration, Magnesium Ion Concentrations, Osmolality and Mortality
ANOVAs

Source Dependent df MS F P
Variable

Site % Tissue 2 144.20 40.68 .000
Osmolality 2 1.01E06 74.06 .000
Magnesium 2 445.49 86.86 .000
Mortality 2 1.61E04 24.73 .000

Season % Tissue 3 64.14 18.09 .000
Osmolality 3 2.64E05 19.32 .000
Magnesium 3 86.56 16.88 .000
Mortality 3 3.07E03 4.72 .003

Site X % Tissue 6 8.61 2.43 .028
Season

Osmolality 6 1.82E04 1.33 .246
Magnesium 6 2.14 .417 .867
Mortality 6 481.16 .738 .619

Error % Tissue 162 3.54
Osmolality 162 1.37E04
Magnesium 162 5.13
Mortality 162 651.59
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concentration and tissue osmolality measurements prior to anemone placement at the

three field sites. When initial measurements were taken out of the ANaYA or MANOVA

analyses there was no interaction between main effects. However, initial measurements

were kept in both laboratory and field study analyses to determine if there were

differences between initial and subsequent days or weeks, respectively. Furthermore, as a

consequence of similar salinity profiles shared between the marine and mesohaline site

during the months of October 2008 and July 2009, measurements of anemones placed at

these sites were also similar resulting in a significant interaction between site and week.

Laboratory study

After exposure to 50%, 75% and 100% seawater for twenty-eight days, Metridium

senile exhibited an increase in percent tissue hydration with decreased salinity. However,

percent tissue hydration decreased slightly from day 14 until the final measurement was

taken on day 28 in both 50% seawater and 75% seawater, whereas percent tissue

hydration remained relatively constant in 100% seawater (Figure 3.2). This indicates that

M senile may exhibit increased partial volume regulation with decreased salinity during

the last two weeks of exposure in 75% and 50% seawater treatments. Percent tissue

hydration differed significantly between salinity treatment and day. Percent tissue

hydration ranged from 76.5% to 83% in 50% seawater and 100% seawater, respectively

(Figure 3.2; Table 3.1A). Furthermore, post-hoc analyses show that tissue hydration in
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Figure 3.2. Percent tissue hydration ofMetridium senile in 100%, 75%, and 50%
seawater for 28 days. Line overlays represent changes in average salinity of each sample
day in respective salinity treatments. Bars represent means with standard error (n=3).
Different letters denote a significant difference (p<O.Ol) between means using Scheffe's
post-hoc tests. No significant difference was found between days in 100% seawater
(p>0.01).
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50% seawater was significantly different between each pair of days, except for day 0 and

day 28 (Figure 3.2). A similar trend was observed in 75% seawater, with day 14

significantly different from 0 and 28 and day 7 and 21; no significance was found

between days in the 100% seawater treatment (Figure 3.2). Additionally, B values ranged

from 0.4 to 0.6 for individuals acclimated to 75% seawater and 0.15 to 0.3 for individuals

acclimated to 50% seawater, suggesting that M senile is capable of partial volume

regulation and increases volume regulation with decreased salinity (Figure 3.3).

Tissue magnesium ion concentrations showed an initial decrease with decreased

salinity after the first 7 days of exposure followed by a marked increase in magnesium

ion concentrations. Additionally, anemones placed in 50% and 75% seawater were highly

hyperionic to the ambient seawater and similar to tissue magnesium ion concentrations of

control individuals in 100% seawater when the final measurement was taken on day 28

(Figure 3.4). Individuals within 100% seawater, however, remained isoionic to the

ambient seawater magnesium ion concentrations over the 28-day exposure. Tissue

magnesium ion concentrations in M senile varied significantly among salinity treatments

and days (Table 3.1B). Post-hoc analyses for 50% and 75% seawater show significant

differences between days, except for days 0 and 28; no significant difference among days

were found in 100% seawater (Figure 3.4). This indicates that M senile may have the

capacity to partially regulate tissue magnesium ions under acute salinity stress and

increase hyperionic regulation as salinity decreases.
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Figure 3.3. Ability of Metridium senile to regulate tissue water content when acclimated
to 75% and 50% seawater over a 28-day period. Each point represents a mean of 3
individuals. Bvalue of I indicates no regulation; Bvalue of 0 indicates complete
regulation. Error bars for each point indicate standard error.
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Figure 3.4. Tissue magnesium ion concentrations of Metridium senile in 100%, 75%, and
50% seawater for 28 days. Line overlays represent changes in average salinity of each
sample day in respective salinity treatments. Bars represent means with standard error
(n=3). Different letters denote a significant difference (p<O.Ol) between means using
Scheffe's post-hoc tests. No significant difference was found between days in 100%
seawater (p>O.Ol).
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Field study

Fall Transition: October 2008

Percent tissue hydration was similar at marine and mesohaline sites during the fall

transition period in October 2008, yielding an average tissue hydration of 77%. The

riverine site, however, showed a marked increase in percent tissue hydration compared to

the other field sites with a maximum tissue hydration of nearly 85% occurring during

week 2 of exposure. Percent tissue hydration subsequently decreased over the following

two weeks, settling at 83% in week 4 (Figure 3.5). Percent tissue hydration varied

significantly between sites and weeks (Figure 3.5; Table 3.2A). Furthermore, post-hoc

comparisons revealed significant differences between weeks at the riverine site but not at

the marine and mesohaline sites due to the presence of similar values between weeks

(Figure 3.5). At the riverine site, week 0 was significantly lower than all other weeks, and

weeks 1 and 3 were significantly lower than weeks 2 and 4 indicating that anemones

were able to decrease tissue hydration during weeks 1 and 3 compared to weeks 2 and 4

possibly by regulating. However, increases in tissue hydration during weeks 2 and 4 were

perhaps attributed to decreased regulatory ability. In comparison, 13 values for October

2008 averaged from 0.25 at the riverine site, 0.52 at the mesohaline site to 0.73 at the

marine site. Because the ability to regulate water content increases with distance from the

estuary mouth, this further suggests that M senile is capable of volume regulation and

increases such regulation as salinity in the South Slough begins to decrease at the onset of

the fall transition (Figure 3.6).
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Figure 3.5. Percent tissue hydration of Metridium senile at marine, mesohaline and
riverine sites during October 2008. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites. Salinity measurements during week I, 2,
and 3 of October (October 8th, 15th, and 22nd) at the marine site were taken with a
refractometer due to SSNERR CDMO datalogger malfunction. Bars represent means
with standard error (n=3). Different letters denote a significant difference (p<O.OI)
between means using Scheffe's post-hoc tests. No significant difference was found
between days at the mesohaline and riverine sites (p>0.0 1).
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Figure 3.6. Ability of Metridium senile to regulate tissue water content when acclimated
to marine, mesohaline and riverine sites in the South Slough estuary over a 13-month
period. Each point represents monthly means. Bvalue of I indicates no regulation; B
value of 0 indicates complete regulation. Error bars for each point indicate standard error.
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Tissue magnesium ion concentrations remained relatively constant for anemones

placed at marine and mesohaline sites, with tissue magnesium ion concentrations within

individual anemones remaining isoionic and hyperionic, respectively, to the marine and

mesohaline ambient medium. However, tissue magnesium ion concentrations in

anemones at the riverine site initially decreased from 51 mM/L to 21 mM/L during the

first week. Anemone magnesium ion concentrations remained hyperionic to the ambient

medium and steadily increased from the first week to the fourth week (40 mM/L; Figure

3.7). Tissue magnesium ion concentrations varied significantly among sites and weeks

(Figure 3.7; Table 3.2B). Furthermore, post-hoc comparisons revealed significant

differences among weeks at the mesohaline and riverine site but not the marine site due

to the presence of similar values between weeks (Figure 3.7). Additionally, the

significant decrease in anemone magnesium ion concentrations during the first week and

subsequent increases at the riverine site indicates that Metridium senile was able to

regulate magnesium ions under hyposaline conditions (Figure 3.7).

Tissue osmolality was constant throughout the month of October 2008 at the

marine and mesohaline sites, with anemone osmolality remaining iso-osmotic and

hyperosmotic, respectively, to the marine and mesohaline ambient medium. However,

anemone osmolality at the riverine site initially decreased from 960 mmol/kg to 620

mmol/kg during the first week where it remained mostly hyperosmotic to the ambient

medium and steadily increased over the remaining three weeks to week 4 (783 mmol/kg;
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Figure 3.7. Tissue magnesium ion concentrations of Metridium senile at marine,
mesohaline and riverine sites during October 2008. Line overlays represent changes in
average salinity of each weekly sample day at respective field sites. Salinity
measurements during week 1, 2, and 3 of October (October 8th, 15th, and 22nd) at the
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standard error (n=3). Different letters denote a significant difference (p<0.01) between
means using Scheffe's post-hoc tests. No significant difference was found between days
at the marine site (p>O.Ol).



71

Figure 3.8). Tissue osmolality varied significantly among sites and weeks (Figure 3.8;

Table 3.2C). Furthermore, post-hoc comparisons revealed significant differences among

weeks at the riverine site but not the marine and mesohaline sites (Figure 3.8). Significant

increases in tissue osmolality from week 1 to week 4 at the riverine site indicate that

Metridium senile may be regulating in order to survive these hyposaline conditions

(Figure 3.8).

Cumulative percent mortality during October 2008 exhibited a marked increase

with distance from the estuary mouth. Peak m0l1alities of 6%,42% and 75% occurred at

marine, mesohaline and riverine-dominated sites, respectively, with 6% and 75%

occurring during week 4 and 42% during week 3 (Figure 3.9).

Wet Season: January 2009

Significant multivariate effects were found among all factors and interactions

were present (Table 3.3A). Percent tissue hydration varied significantly among sites and

weeks and revealed similar trends in January 2009 as in October 2008 (Figures 3.5 and

3.10; Table 3.3B). Metridium senile showed increased percent tissue hydration with

distance from the estuary mouth, with highest percent tissue water content reaching 86%

at the riverine site by the end of the first week after which all remaining anemones died.

Percent tissue hydration at the mesohaline site remained constant until the last week

when percent tissue hydration increased to 79%. Percent tissue hydration in anemones at

the marine site was approximately 77% for the entire month (Figure 3.1 0).
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Figure 3.8. Tissue osmolality of Metridium senile at marine, mesohaline and riverine
sites during October 2008. Line overlays represent changes in average salinity of each
weekly sample day at respective field sites. Bars represent means with standard error
(n=3). Line overlays represent changes in average salinity of each weekly sample day at
respective field sites. Salinity measurements during week 1, 2, and 3 of October (October
8th, 15th, and 22nd) at the marine site were taken with a refractometer due to SSNERR
CDMO datalogger malfunction. Different letters denote a significant difference (p<O.O 1)
between means using Scheffe's post-hoc tests. No significant difference was found
between days at the marine site (p>0.01).
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Figure 3.9. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during October 2008. Line overlays represent changes in average salinity of
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Figure 3.10. Percent tissue hydration of Metridium senile at marine, mesohaline and
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mesohaline and riverine sites (p>O.O I).
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Post-hoc comparisons revealed significant differences among weeks at the riverine site

but not at the marine and mesohaline sites (Figure 3.10). Resulting average Bvalues of

0.70 at the marine site, 0.35 at the mesohaline site, and 0.24 at the riverine site again

indicates that partial volume regulation increases with distance from the estuary mouth.

This suggests that Metridium senile is a stronger volume regulator at lower salinities

(Figure 3.6).

Differences in tissue magnesium ion concentrations were significant among sites

and weeks (Figure 3.11; Table 3.3B). Tissue magnesium ion concentrations remained

stable and were consistently hypoionic and hyperionic to the ambient seawater at marine

and mesohaline sites, respectively. However, anemones from the riverine site showed a

pronounced decrease from 36 mM/L to 8 mM/L during the first week and remained

slightly hyperionic to the ambient medium after which all remaining anemones died

(Figures 3.11). Post-hoc comparisons revealed significant differences among weeks at the

mesohaline and riverine sites but not at the marine site (Figure 3.11). The significant

decrease in anemone magnesium ion concentrations during the first week at the riverine

site indicates that Metridium senile was unable to regulate magnesium ions, resulting in

complete mortality after the first week possibly because of extreme hyposaline conditions

during those weeks. In contrast, significant increases in anemone magnesium ion

concentrations from week 1 to week 4 at the mesohaline site indicate regulation under

hyposaline conditions (Figure 3.11).
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Figure 3.11. Tissue magnesium ion concentrations of Metridium senile at marine,
mesohaline and riverine sites during January 2009. Line overlays represent changes in
average salinity of each weekly sample day at respective field sites. Bars represent means
with standard error (n=3). Different letters denote a significant difference (p<O.Ol)
between means using Scheffe's post-hoc tests. No significant difference was found
between days at the marine site (p>O.Ol).
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Tissue osmolality remained stable and iso-osmotic at the marine site. Tissue

osmolality at the mesohaline site, however, initially decreased from 819 mmol/kg to 692

mmol/kg during the first week of exposure and then remained hypo-osmotic to the

ambient seawater for the remaining weeks. The riverine site showed a greater decrease in

anemone osmolality, declining from 733 mmol/kg to 283 mmol/kg (Figure 3.12). Tissue

osmolality varied significantly among sites and weeks (Figure 3.12; Table 3.3B). Post­

hoc comparisons revealed significant differences among weeks at all field sites (Figure

3.12). Additionally, the significant decrease in anemone osmolality during the first week

at the riverine site indicates that Metridium senile was unable to regulate osmolality,

resulting in complete mortality after the first week, possibly because of extreme

hyposaline conditions during those weeks. In contrast, anemone osmolality significantly

decreased and remained consistently hypo-osmotic from week 2 to week 4 at the

mesohaline site indicating decreased regulation under hyposaline conditions (Figure

3.12). Excess mucus production was also observed on each individual at the mesohaline

site.

Cumulative percent mortality at all field sites during January 2009 increased

markedly compared to previous months. All anemones died during the fourth week of

exposure at the mesohaline site and during the first week of exposure at the riverine site,

culminating in peak mortalities of 30%, 100% and 100% mortality at marine, mesohaline

and riverine-dominated sites, respectively (Figure 2.7). Consequently, the combination
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Figure 3.12. Tissue osmolality of Metridium senile at marine, mesohaline and riverine
sites during January 2009. Line overlays represent changes in average salinity of each
weekly sample day at respective field sites. Bars represent means with standard error
(n=3). Line overlays represent changes in average salinity of each weekly sample day at
respective field sites. Different letters denote a significant difference (p<O.Ol) between
means using Scheffe's post-hoc tests.
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of hypo-osmotic tissue, mucus production, and complete mortality at the mesohaline site

suggests that hypo-osmotic tissue may be an indication of imminent death.

Spring Transition: March 2009

During March 2009, Metridium senile displayed a slight increase in percent tissue

hydration at all three field sites compared to January 2009, with a maximum percent

tissue hydration of 88% occurring at the riverine site. Percent tissue hydration was

relatively constant at marine and mesohaline sites except during week 4 when tissue

hydration decreased slightly at the mesohaline site (Figure 3.13). Average f) values of

0.71,0041 and 0045 were observed at the marine, mesohaline and riverine sites,

respectively, indicating a decrease in volume regulatory ability as compared to January

2009 (Figure 3.6). This suggests that the overall decrease in salinity between the months

of January and March 2009 negatively impacted M senile's volume regulation which

may indicate the presence of a salinity threshold for partial volume regulation (Figures

3.6 and 3.13). Percent tissue hydration varied significantly among sites and weeks

(Figure 3.13; Table 3AA). Post-hoc comparisons revealed significant differences among

weeks at the riverine site but not at the marine and mesohaline sites (Figure 3.13).

Additionally, the significant increase in percent tissue hydration between week 0 and

week 1 at the riverine site indicates decreased volume regulatory ability prior to complete

mortality (Figure 3.13).
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Figure 3.13. Percent tissue hydration of Metridium senile at marine, mesohaline and
riverine sites during March 2009. Line overlays represent changes in average salinity of
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difference (p<0.01) between means using Scheffe's post-hoc tests. No significant
difference was found between days at the marine and mesohaline sites (p>O.Ol).
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Tissue magnesium ion concentrations at the marine site remained relatively

isoionic to the ambient seawater. Mesohaline and riverine sites displayed an initial

decrease from 37.5 mM/L to 31 mM/L and 37 mM/L to 3 mM/L, respectively. However,

individual anemones placed at the mesohaline site gradually increased to 38 mM/L after

the initial decrease and remained slightly hyperionic to the ambient seawater. Anemones

placed at the riverine site all died during the second week (Figure 3.14). Differences in

tissue magnesium ion concentrations varied significantly among sites and weeks (Figure

3.14; Table 3.4B). Post-hoc comparisons revealed significant differences among weeks at

the mesohaline and riverine sites but not at the marine site due to the presence of similar

values between weeks (Figure 3.14). Furthermore, the significant decrease in anemone

magnesium ion concentrations during the first week at the riverine site indicates that

Metridium senile was unable to regulate magnesium ions, resulting in complete mortality

after the first week possibly due to the extreme hyposaline conditions during those weeks.

In contrast, significant increases in anemone magnesium ion concentrations from week I

to week 4 at the mesohaline site indicate regulation under hyposaline conditions (Figure

3.14).

Tissue osmolality remained constant at marine and mesohaline sites with

individual anemone osmolality remaining primarily iso-osmotic or hyperionic to the

ambient medium at respective sites. However, anemone osmolality at the riverine site

initially decreased from 749 mmol/kg to 209 mmol/kg during the first week, after which

all anemones died (Figure 3.15). Tissue osmolality varied significantly among sites and
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Figure 3.14. Tissue magnesium ion concentrations of Metridium senile at marine,
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weeks (Figure 3.15; Table 3AC). Post-hoc comparisons revealed significant differences

among weeks at all field sites (Figure 3.15). Additionally, the significant decrease in

anemone osmolality during the first week at the riverine site indicates that Metridium

senile was unable to regulate tissue osmolality, resulting in complete mortality after the

first week, possibly because of extreme hyposaline conditions during those weeks. In

contrast, significant increases in tissue osmolality from week 1 to week 4 at the

mesohaline site indicate slight regulation under hyposaline conditions (Figure 3.15).

Cumulative percent mortality during March 2009 exhibited a slight increase at

marine and mesohaline sites and a decrease at the riverine site as compared to cumulative

mortality trends during January 2009. However, all anemones died during the second and

fourth week at the riverine and mesohaline sites, respectively, yielding a peak

mortality of 35%, 100% and 100% at marine, mesohaline and riverine-dominated sites,

respectively (Figure 2.6).

Dry Season: July 2009

Metridium senile exhibited a slight increase in percent tissue hydration with

decreased salinity during the dry season. Individuals acclimated to the riverine site

showed a maximum percent tissue hydration of 78% during week 2, whereas percent

tissue hydration remained at a constant 75% and 76% at the marine and mesohaline site,

respectively (Figure 3.16). Average B values for July 2009 ranged from 0.28 at the

riverine site, 0.58 at the mesohaline site to 0.79 at the marine site indicating that M senile
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is capable of partial volume regulation which increases with decreasing salinity (Figure

3.6). Percent tissue hydration varied significantly among sites and weeks (Figure 3.16;

Table 3.5A). Post-hoc comparisons revealed significant differences among weeks at the

riverine site but not at the marine and mesohaline sites (Figure 3.16).

Tissue magnesium ion concentrations remained relatively constant for anemones

placed at marine and mesohaline sites with individual concentrations remaining isoionic

and hyperionic to the respective ambient seawater. However, concentrations of tissue

magnesium ions initially decreased from 49 mM/ L to 22 mM/L during the first week of

exposure at the riverine site followed by a steady hyperionic increase to 39 mM/L during

the fourth week (Figure 3.17). Differences in tissue magnesium ion concentrations varied

significantly among sites and weeks (Figure 3.17; Table 3.5B). Post-hoc comparisons

revealed significant differences among weeks at all field sites (Figure 3.17). Additionally,

significant increases in anemone magnesium ion concentrations from week 1 to week 4 at

the riverine site indicate regulation under hyposaline conditions (Figure 3.17). Presence

of a slight hyperionic increase from week 2 to week 4 at the mesohaline site indicates

partial regulation under hyposaline conditions (Figure 3.17).

Tissue osmolality also remained stable at marine and mesohaline sites with

individual tissue osmolality remaining relatively iso-osmotic to the ambient medium. In

constrast, anemone osmolality at the riverine site initially decreased from 928 mmol/kg to

515 mmollkg during the first week, after which it remained hyperosmotic to the ambient

medium and steadily increased from the first week the fourth week (777 mmollkg; Figure
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3.18). Differences in tissue osmolality varied significantly among sites and weeks (Figure

3.18; Table 3.5C). Post-hoc comparisons revealed significant differences among weeks at

the riverine site but not at the marine and mesohaline sites (Figure 3.18). Additionally,

significant increases in anemone osmolality from week 1 to week 4 at the riverine site

indicate regulation under hyposaline conditions (Figure 3.18).

Cumulative percent mortality exhibited increased mortality with distance from the

estuary mouth but was low compared to the fall transition, spring transition and wet

season. Peak mortalities of 1%, 25% and 50% occurred in concert at the marine,

mesohaline and riverine-dominated sites, respectively (Figure 2.5). For additional

monthly figures of percent tissue hydration, magnesium ion concentrations, osmolality

and cumulative mortality refer to the Appendix Figures 1-36.

Yearly Trends

Significant multivariate effects were found among sites and seasons for all

dependent variables during the yearly measurement period of July 2008 to August 2009

(Table 3.6). Percent tissue hydration varied significantly among sites and seasons (Figure

3.19; Table 3.6B). Overall, tissue hydration increased with distance from the estuary

mouth with an average maximum tissue hydration of 81 % and 83% occurring in

November 2008 and December 2008 at mesohaline and riverine sites, respectively

(Figure 3.19). These peaks were observed after the onset of the fall transition when the

salinity within the South Slough decreases as a result of increased freshwater input.
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Conversely, percent tissue hydration decreased during the months of March through May

following a decrease in freshwater input and a stable salinity increase, and remained

relatively constant during the dry season from June through August (Figure 3.19). Post­

hoc comparisons revealed significant differences between the dry and wet seasons and

the dry and spring transition seasons at the marine site, whereas the dry and spring

transition seasons were significantly different at the riverine site and no significant

differences were found between seasons at the mesohaline site. This indicates that

percent tissue hydration significantly increases with lower salinity during the wet and

spring transition seasons because of an increase in freshwater input at marine and riverine

sites (Figure 3.19).

13 values showed similar trends at mesohaline and riverine sites with increased

regulation occurring during the wet season when salinity is low and variable or decreased

regulation during the dry season when salinity is high and stable. However, a pronounced

decrease in regulation was observed during December 2008 and March 2009 at the

riverine site, which may suggest the existence of a salinity threshold for partial volume

regulation following periodic freshwater pulses. This suggests that Metridium senile is a

stronger regulator at lower salinities, up to a certain threshold salinity (Figures 3.6 and

3.19).

Tissue magnesium ion concentrations varied significantly among sites and

seasons (Figure 3.20; Table 3.6B). A direct relationship was found between anemone

magnesium ion concentrations and salinity as magnesium ion concentrations decreased
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Figure 3.20. Monthly tissue magnesium ion concentrations at marine, mesohaline and
riverine sites over four-week measurement periods from July 2008 to August 2009. Bars
represent means with standard error (n=5, except for December (n=3) and February
(n=4)). Line overlays represent changes in average salinity for each month at respective
field sites. Horizontal lines below months represent Scheffe's post-hoc groupings in
which months covered by these lines are not significantly different from one another
(p>O.Ol). No significant difference was found between months at the riverine site
(p>O.Ol ).
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with distance from the estuary mouth (Figure 3.20). Minimum tissue magnesium ion

concentrations of 33 mM/L and 14 mM/L were found during January and April 2009 at

mesohaline and riverine sites, respectively. Anemones remained relatively isoionic at the

marine site and hyperionic at mesohaline and riverine sites, with greater differences

between anemone and ambient magnesium ion concentrations observed at the riverine

site (Figure 3.20). Furthermore, these differences observed at the riverine site increased

with decreased salinity during the wet season and spring transition and decreased slightly

during the dry season. Post-hoc comparisons revealed significant differences between the

dry and spring transition, fall transition and wet season, and fall transition and spring

transition at the marine site, whereas the mesohaline site showed significant differences

among all of these seasons as well as between the dry and wet season. Due to increased

variance at the riverine site, no significant differences were detected among seasons.

These seasonal differences indicate that the observed changes in anemone magnesium ion

concentrations at the marine and mesohaline sites are directed by seasonal changes in the

ambient salinity, yielding heightened differences between anemone and ambient

magnesium ion concentrations (Figure 3.20). This indicates that Metridium senile may be

capable of partial hyperionic regulation at lower salinities (Figure 3.20).

Tissue osmolality varied significantly between site and season, revealing similar

yearly trends since a direct relationship was found between anemone osmolality and

salinity (Figure 3.21; Table 3.6B). Anemone osmolality decreased with distance from the

estuary mouth, with lowest osmolality of 700 mmollkg and 396 mmollkg occurring in
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Figure 3.21. Monthly tissue osmolality of Metridium senile at marine, mesohaline and
riverine sites over four-week measurement periods from July 2008 to August 2009. Bars
represent means with standard error (n=5, except for December (n=3) and February
(n=4)). Line overlays represent changes in average salinity for each month at respective
field sites. Horizontal lines below months represent Scheffe's post-hoc groupings in
which months covered by these lines are not significantly different from one another
(p>O.O I). No significant difference was found between months at the riverine site
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March 2009 and April 2009 at mesohaline and riverine sites, respectively. Anemones

remained iso-osmotic at the marine site and generally hyperosmotic at mesohaline and

riverine sites, with greater differences between anemone and ambient osmolality

observed at the riverine site. Furthermore, these differences observed at the riverine site

increased with decreased salinity during the wet season and spring transition. Post-hoc

comparisons revealed significant differences between the dry and spring transition, fall

transition and wet season, and fall transition and spring transition at the marine site,

whereas the mesohaline site showed significant differences among all of these seasons as

well as the dry and wet season. Because of increased variance at the riverine site, no

significant differences were detected among seasons. These seasonal differences indicate

that the observed changes in anemone osmolality at the marine and mesohaline sites are

directed by seasonal changes in the ambient salinity, yielding heightened differences

between anemone and ambient osmolality (Figure 3.21). This indicates that Metridium

senile may be capable ofpartial hyperosmotic regulation at lower salinities (Figure 3.21).

Overall, cumulative percent mortality increased with distance from the estuary

mouth during July 2008 to August 2009 and varied significantly among sites and seasons

(Figure 3.22; Table 3.6B). At the marine and mesohaline-dominated site, mortality was

highest in March 2009 and lowest in July 2009, showing peak survival during the dry

season when salinity is high and lowest survival during the spring transition season when

salinity was low. The riverine-dominated site exhibited highest mortality in January 2009

and lowest mortality in July 2009 again showing peak survival during the dry season and
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Figure 3.22. Cumulative monthly mortality of adult transplants at marine, mesohaline
and riverine sites over four-week measurement periods from July 2008 to August 2009.
Bars represent means with standard error (n=5, except for December (n=3) and February
(n=4)). Line overlays represent changes in average salinity for each month at respective
field sites. Horizontal lines below months represent Scheffe's post-hoc groupings in
which months covered by these lines are not significantly different from one another
(p>O.Ol). No significant difference was found between months at the mesohaline and
riverine sites (p>O.O I).
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lowest survival during the wet season (Figure 3.22). However, post-hoc analyses only

revealed significant differences in cumulative mortality between the wet and dry season

at the marine site. No significant differences between seasons were detected between the

mesohaline and riverine sites (Figure 3.22).

Discussion

Metridium senile exhibits a surprising capacity to survive at low salinities.

Anemones tolerated salinities in the field as low as 6 for about a week and survived direct

transfer from 100% to 75% and 50% seawater for twenty-eight days (Figures 3.2-3.4 and

3.22). The laboratory and field experiments further indicate that this remarkable

hyposalinity tolerance may be attributed to the ability of M senile to partially

hyperosmoregulate in response to decreased salinity of 5 or 6, as the increase in percent

tissue hydration is not directly proportional to the decrease in salinity (Figures 3.2, 3.3,

3.6 and 3.19). Acclimation to low salinities is also accompanied by a decreased 13 value,

suggesting that the ability of cell volume regulation increases with decreasing ambient

salinity (Figures 3.3 and 3.6). However, M senile showed an increase in tissue hydration

and its accompanying 13 value under extreme hyposaline conditions of around 5 or 6 in

March 2009 followed by complete mortality by the second week, indicating a threshold

for regulation (Figures 2.6, 3.6, and 3.19). Similar trends were noted in a laboratory study

performed by Deaton and Hoffmann (1988) where acclimation to dilute salinities was

also associated with a decreased 13 value. These observations suggest that M senile does
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not act as a simple osmoconformer and may be a hyperosmoregulator within a specific

range oflow salinities. Consequently, other mechanisms could aid in counteracting

hyposalinity stress.

Behavioral and physiological mechanisms that have been described in other

actinarian species include the regulation of cellular volume by means of the intracellular

free amino acid pool (FAA) (Pierce and Minasian, 1974; Shick, 1976; Benson­

Rodenbough and Ellington, 1982; Kasschau et. a!., 1984a; Deaton and Hoffmann, 1988).

Shumway (1978) discusses the ability of Metridium senile to retract tentacles and

regulate its extension and surface area under hypo-osmotic conditions, while Bursey and

Harmer (1979) noted the secretion of a "mucus sheet" which may serve as a barrier to

water movement on another actinarian, Condylactis gigantea. However, the function of

cellular ions as a mechanism for osmotic regulation has not been studied in actinarians,

only in scyphomedusae, in which Wright and Purcell (1997) noted the regulation of

potassium, sodium and magnesium ions. Therefore, results of the present study suggest

that cellular ions and solutes may playa role in volume regulation since M senile

exhibits an increased capacity to partially regulate tissue osmolality and magnesium ion

concentrations at lower salinities (Figures 3.20 and 3.21).

Anemone field transplants displayed an initial decrease and subsequent

hyperosmotic or hyperionic increase in tissue osmolality and magnesium ion

concentrations with decreased salinity during the fall transition and dry season at

mesohaline and riverine sites (Figures 3.7, 3.8, 3.17, 3.18, 3.20, and 3.21). However,
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during the wet season and spring transition, anemones at the mesohaline site were not as

hyperosmotic or hyperionic and in some cases were hypo-osmotic to ambient salinity,

while at the riverine site all anemones died during the first or second week (Figures 2.6­

2.7, 3.1 0-3.12 and 3.14-3.15). This signifies the existence of a threshold for partial

hyperosmotic and hyperionic regulation where below a certain salinity level anemones

are no longer able to regulate and survive these extreme hypo-osmotic conditions

(Figures 2.6-2.7, 3.10-3.12 and 3.14-3.15). Moreover, mortality occurred earlier with

lower and more variable salinities, indicating that increased hypo-osmotic stress

contributes to the degradation of these regulatory mechanisms (Figures 2.6,2.7 and 3.22).

Similar patterns in magnesium ion concentrations were also observed in the laboratory

where anemone magnesium ion concentrations were hyperionic to the ambient medium

in 50% and 75% seawater (Figure 3.4). This trend has also been documented in other

cnidarians, such as the mesohaline scyphomedusae Chrysaora quinquecirrha which

showed hyper-regulation of tissue sodium and magnesium levels under hypo-osmotic

conditions (Wright and Purcell, 1997).

The hyperosmotic and hyperionic relationship between the anemone and the

ambient salinity during the dry and fall transition seasons suggests that while ions and

other solutes may not be actively regulated, the tissue is at least partially impermeable to

them (Figures 3.7, 3.8, 3.17, and 3.18). This may be caused by the secretion of a "mucus

sheet" observed on a number of individual actinarians in response to osmotic shock. This

mucus sheet could act as a barrier to water and solute movements, although the
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diffusional permeability has not been examined (Shoup, 1932; Shick, 1976; Shumway,

1978; Bursey and Harmer, 1979; Benson-Rodenbough and Ellington, 1982; Kasschau et

al., 1984a). In the field, mucus secretions were present on Metridium senile one week

following transplant to mesohaline and riverine sites; in the laboratory, mucus secretions

were observed during the first week of exposure to 50% and 75% seawater. Kirkpatrick

and Bishop (1973) and Goreau (1959) suggestthat sea anemone mucus a) houses

phosphonic acid groups which may act as ion exchangers, and b) sequesters ions, such as

calcium (Ca2+). Consequently, mucus secretion may be a mechanism to aid in the

conservation not only of dissolved particles important in regulating cell volume, but also

of magnesium ions which are fundamental in the functioning of the sodium-potassium

pump and other metabolic reactions during diel salinity fluxes within the South Slough

(Rankin and Davenport, 1981; Shick, 1991; Hee Ko et al., 1999; Rumrill, 2006; Evans,

2009).

The adaptive significance of conserving magnesium ions and other vital solutes

has a number of important ramifications. Firstly, because the Na+/K+-ATPase pump may

aid in cell volume regulation and utilizes the magnesium salt of ATP as a substrate to

function, regulation of this vital ion could aid in conserving the operation of critical

metabolic reactions necessary for anemone survival (Rankin and Davenport, 1981).

Although there is some speculation as to whether this specific sodium pump is involved

in cell volume regulation, magnesium ions are required for ATP hydrolysis in order to

operate other ATP-controlled sodium pumps ( Rankin and Davenport, 1981; Lang, 1998;
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Hee Ko et aI., 1999). Secondly, regulation of magnesium ions may aid in the stabilization

of ion channels and cell membranes (Rankin and Davenport, 1981; Lang, 1998; Hee Ko

et aI., 1999). Consequently, hyperionic regulation of this ion could be a way for sea

anemones to continue important metabolic reactions needed for survival while under

hypo-osmotic stress. Thirdly, regulation of tissue osmolality may playa similar role by

conserving important cellular solutes that are necessary in the maintenance of metabolic

reactions. For example, regulation of sodium and potassium ions may help sustain the

functioning of sodium pumps necessary for maintaining cellular homeostasis. Other

solutes, like free amino acids, are also important mediators in volume regulation at low

salinities within a number of actinarian species (i.e. Metridium senile, Diadumene

leucolena, Haliplanella lineata and Bunodosoma cavernata) (Pierce and Minasian, 1974;

Shick, 1976; Benson-Rodenbough and Ellington, 1982, Kasschau et aI., 1984a; Deaton

and Hoffmann, 1988). Therefore, the ability to actively regulate these solutes also

contributes to controlling cellular volume (Shick, 1991). Lastly, it is important to note

that the hyper osmolality of anemone to ambient salinity observed in M senile could

possibly be explained by the increased sequestration of ions and solutes within the mucus

film present on individuals exposed to dilute salinities (Figure 3.21).

The hyperosmotic and hyperionic regulation observed during the dry and fall

transition seasons elucidate patterns observed in percent tissue hydration and

accompanying f3 values (Figures 3.6 and 3.19-3.21). Because Metridium senile exhibits a

marked increase in tissue hydration and decrease in f3 values with decreased salinity in
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both the laboratory and field, it suggests that anemones increase cell volume regulation as

salinity declines down to about 5 (Figures 3.6 and 3.19). However, salinity levels lower

than this showed a marked increase in Bvalues as observed during the wet and spring

transition seasons (Figure 3.6). This capacity to regulate cell volume at lower salinities

could be because M senile hyper-regulates magnesium ions and osmolality during the

dry and fall transition seasons (Figures 3.6 and 3.19-3.21). Hyperionic and hyperosmotic

regulation may partially mediate cell volume regulation as important ions and solutes are

conserved to continue metabolic reactions and control cellular volume. However, a

pronounced increase in hyper-regulation is observed during the wet and spring transition

seasons when salinities were extremely low (~5-7) at the riverine site, yet this was

accompanied by a decrease in cell volume regulation and complete mortality within the

first or second week (Figures 2.6,2.7,3.6, and 3.19-3.22). Consequently, this suggests

the presence of a salinity tolerance threshold in which partial hyper-regulation is no

longer a viable physiological strategy for M senile survival.

Mortality trends further corroborate the existence of a critical salinity threshold

since exposure to the extreme hyposaline conditions during the wet and spring transition

seasons culminated in complete mortality at riverine and mesohaline sites as compared to

the dry season where mortality was minimal (Figures 2.5,2.6,2.7, and 3.22).

Furthermore, increased mortality was accompanied by the reduced ability to regulate cell

volume, magnesium ion concentrations, and tissue osmolality (Figures 2.6-2.7, 3.10-3.15,

and 3.19-3.22). Therefore, partial regulation in Metridium senile could be a physiological
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response that is initiated under hypo-osmotic stress conditions allowing individuals to

survive low salinities. However, such a response may only be feasible within a certain

salinity window as evinced by the seasonal and weekly trends in percent tissue hydration,

magnesium ion concentrations, osmolality, and mortality at each field site (Figures 3.19-

3.22).

Metridium senile exhibits a similar physiological response within the laboratory.

Individuals survived salinities ranging from 100% seawater (950 mOsm) to 55%

seawater (520 mOsm) for two weeks, while individuals exposed to 40% seawater (380

mOsm) died within three days (Deaton and Hoffmann, 1988). Additionally, the cell

volume regulation (B) in these individuals increased with decreased salinity and was

partly mediated by intracellular FAA concentrations (Deaton and Hoffmann, 1988).

Other actinarians such as Diadumene leucolena and Haliplanella lineata also show

increased cell volume regulation with compensatory adjustment of FAA concentrations

subsequent to acute salinity change (Pierce and Minasian, 1974; Shick, 1976; Shick,

1991). However, such physiological responses are not limited to actinarians. Regulation

has been documented in other cnidarians such as scyphomedusae and the freshwater

hydromedusae Craspedacusta sowerbyi in which potassium was hyper-regulated possibly

as a means for lessening cellular hydration since it is actively expelled from cells

(Fleming and Hazelwood, 1967; Hazelwood et aI., 1970; Wright and Purcell, 1997).

Furthermore, Chrysaora quinquecirrha has been shown to regulate amino acids as a

strategy for controlling cellular volume (Wright and Purcell, 1997). Consequently, these
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physiological responses appear to be initiated by hypo-osmotic conditions as an

adaptation for survival, since these species display them when experiencing dilute

sal inities.

In other phyla, physiological strategies for tolerating hypo-osmotic stress consist

of hyper-conformation of sodium and potassium ions as found in the sea urchins

Lytechinus variegatus and Echinometra lucunter, which exhibit increased regulation

under hyposaline conditions (Freire and Santos-Gouvea, 2007; Freire et aI., 2007).

Crustaceans selectively secrete ions from the blood using antennary glands and control

ion uptake through the gills. This aids in dampening the rise of internal pressure as water

is absorbed (Robertson, 1953; Charmantier et aI., 2002; Charmantier and Charmantier­

Daures, 2007). In addition, there is some evidence that the shore crab Carcinus maenas

may be able to detect changes in external osmolarity and subsequently regulate its urine

production in the antennaI glands (Norfolk, 1978). In contrast, molluscs regulate their

intracellular FAA to withstand changes in osmotic concentration of the ambient medium.

This is a fundamental process in cell volume regulation of many marine molluscs and has

been documented in the gills and ventricle of the mussel Geukensia demissa (Baginski

and Pierce, 1978; Deaton, 1987; Kube et aI., 2006). Certain species ofpolychaetes use a

similar strategy. Arenicola marina has been shown to manage cellular amino acid

concentrations by regulating their intracellular FAA (Shumway and Davenport, 1977),

while other nereid polychaetes, Nereis limnicola, N. diversicolor, N. succinea, and

Laeonereis culveri, were able to combat acute salinity stress through hyperosmotic
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regulation of intracellular solutes (Oglesby, 1965). However, most other polychaete

species are unable to tolerate low salinities for an extended period of time and respond by

osmoconforming (Evans, 2009).

While sea anemones have generally been described as osmoconformers, and

usually are not considered euryhaline, the results of this study suggest that Metridium

senile is euryhaline and capable of partially regulating its cellular volume, osmolality and

magnesium ion concentrations under hypo-osmotic conditions (Figures 3.2-3.4, 3.6 and

3.19-3.22). Moreover, this species exhibits a wide salinity tolerance, with salinities of 5

or 6 representing the lower limit (Figures 2.6, 2.7, and 3.22). This range is similar to

other actinarians considered euryhaline. For example, Diadumene leucolena and

Bunodosoma cavernata survive salinities ranging from 6 to 33 and 11 to 49 respectively,

while Haliplanella lineata survives indefinitely at 12 (Pierce and Minasian, 1974; Shick,

1976; Benson-Rodenbough and Ellington, 1982). Since M senile does not behave as a

simple osmoconformer and displays partial regulation, its physiological response lies

somewhere on the continuum between a perfect regulator and a perfect osmoconformer.

Consequently, M senile's ability to partially regulate its cell volume, osmolality and

magnesium ion concentration is a physiological strategy for resisting hypo-osmotic stress

induced by dilute saline conditions commonly experienced within the South Slough

Estuary.
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CHAPTER IV

CONCLUDING SUMMARY

The objective of this thesis was to provide a more complete physiological

perspective on the actinarian Metridium senile by analyzing its physiological responses

and tolerance limits in a laboratory and field setting. Since this species is found along an

estuarine gradient within mesohaline and marine-dominated environments, it is impOltant

to understand how M senile is able to tolerate these hypo-osmotic conditions by using

physiological strategies. One possible strategy is partial regulation, which may allow M

senile to retain physiological homeostasis and survive hyposaline conditions.

Understanding these strategies may have ecological implications, as physiological

resistance to hypo-osmotic stress might be a way of establishing "habitat refugia" along a

salinity gradient, elucidating existing abundance and distribution patterns within the

South Slough Estuary (Herbst, 2001).

Chapter II of this thesis offered a descriptive view on the abundance and

distribution patterns of adult Metridium senile and related these to mortality trends

observed at three field sites. Results presented here show that abundance and distribution

patterns and trends in transplant mortality are probably driven by seasonal changes in the

estuary's salinity regime. Chapter III indicates that Metridium senile are able to tolerate

hypo-osmotic conditions by partially regulating cellular volume, tissue osmolality and
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magnesium ion concentrations. The observed regulation is induced under hypo-osmotic

stress conditions, and presumably enables M. senile to survive low salinities.

However, results described in both chapters indicate that this physiological

response has limitations and is only viable within a certain salinity window as evinced by

increased mortality at field sites and mere absence of individuals naturally occurring

upriver during the wet season. The observed abundance and distribution ofMetridium

senile within the South Slough Estuary is likely attributed to physiological limitations.

Consequently, physiological tolerance is a factor driving the distribution ofM senile

along the South Slough's estuarine gradient.
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APPENDIX

ADDITIONAL MONTHLY FIGURES OF PERCENT TISSUE

HYDRATION, MAGNESIUM ION CONCENTRATIONS, OSMOLALITY,

AND MORTALITY

Presented below are additional monthly figures of percent tissue hydration, magnesium

ion concentrations, osmolality, and mortality from July 2008-August 2009.
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Figure 9. Percent tissue hydration of Metridium senile placed at marine, mesohaline and
riverine sites during August 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites. Bars represent means with standard
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Figure 12. Tissue magnesium ion concentrations of Metridium senile placed at marine,
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Figure 13. Tissue magnesium ion concentrations of Metridium senile placed at marine,
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Figure 17. Tissue magnesium ion concentrations of Metridium senile placed at marine,
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Figure 18. Tissue magnesium ion concentrations of Metridium senile placed at marine,
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Figure 25. Tissue osmolality of Metridium senile placed at marine, mesohaline and
riverine sites during May 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites. Bars represent means with standard
error (n=3).



134

Marine

Week4Week 3Week 2Week 1Week 0

35

30

25

20

15

10

5

o-I--'-L..L:..L..'-----"--.-L.L.L.L...<L---'--,---'-""--'-''-'''--J......-,-----'-<...<...L....d..----l---,------'L.L.L....<''------'--t-O

1000

800

600

400

200

Mesohaline

------------.-.---------
35

30

25
(J)

20 III

15 ~
'<

10

5

O-+---'--'-"-"_---'---,----'L.L-L..L.J_-----'---,-...L....:.""--"-J'-------'----,------L..<.-"-"-''-------'----,------'..LL.L-..<'-------'--+-O

200

1200
0>
~ 1000
o
E 800
E
>. 600

:!::::

crj 400
o
E
(J)

o
Week 0 Week 1 Week 2 Week 3 Week 4

Riverine 35

30

25

20

15

10

5

o-t--'-L..L:..L.d._---"--,-----IL.L...::..LL_--'--,---'-LL...L:.Ll-_J......-,--.J::.LL..."-L------l---,------'LLL...L:L-----'--t- 0

600

400

200

1200

1000

800

Week 0 Week 1 Week 2
June 2009

Week 3 Week 4

Figure 26. Tissue osmolality of Metridium senile placed at marine, mesohaline and
riverine sites during June 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites. Bars represent means with standard
error (n=3).
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Figure 27. Tissue osmolality of Metridium senile placed at marine, mesohaline and
riverine field sites during August 2009. Line overlays represent changes in average
salinity of each weekly sample day at respective field sites. Bars represent means with
standard error (n=3).
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Figure 28. Cumulative weekly mortality of adult transplants at marine, mesohalineand
riverine sites during July 2008. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 29. Cumulative weekly mortality of adult transplants at marine, mesohaline and
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of each weekly sample day at respective field sites.
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Figure 31. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during December 2008. Line overlays represent changes in average salinity
of each weekly sample day at respective field sites.
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of each weekly sample day at respective field sites.



141

Marine

---_._--_..----- 35

30

25

20

15

10

-5

O-+--------,---------,----'-"-''-''--''-''--'-----,,-............'-''--''..........-,.---------"'-''-''-''-''--''-.l....---\--O

40

80

20

60

100

Week 0 Week 1 Week 2 Week 3 Week 4

Week 0 Week 1 Week 2 Week 3

Mesohaline

Week 4

Riverine

40

80

20

35

30

25

20

15

10

5

0-+- .,.--------'.L..L.L.L...L.LL_,--....L.LL.L.L:..L.J...--,._..t:...L..<CLL.L....L...----r-----l::...L.L..L.L.....::..J....---I--0

60

100

Week 0 Week 1 Week 2
April 2009

Week 3 Week 4

Figure 33. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during April 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 34. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during May 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 35. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during June 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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Figure 36. Cumulative weekly mortality of adult transplants at marine, mesohaline and
riverine sites during August 2009. Line overlays represent changes in average salinity of
each weekly sample day at respective field sites.
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