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Abstract

We review the recent work on interest rate setting, which empha-

sizes the desirability of designing policy to ensure stability under pri-

vate agent learning. Appropriately designed expectations based rules

can yield optimal rational expectations equilibria that are both deter-

minate and stable under learning. Some simple instrument rules and

approximate targeting rules also have these desirable properties. We

take up various complications in implementing optimal policy, includ-

ing the observability of key variables and the required knowledge of

structural parameters. An additional issue that we take up concerns

the implications of expectation shocks not arising from transitional

learning effects.
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1 Introduction

The conduct of monetary policy in terms of interest rate or other rules has
been extensively studied in recent research, for surveys see e.g. (Clarida, Gali,
and Gertler 1999), (Woodford 1999b) and (McCallum 1999). This literature
gives a central role for forecasts of future inflation and output. Empirical ev-
idence on Germany, Japan and the US since 1979 provided by (Clarida, Gali,
and Gertler 1998) suggests that central banks are forward looking in prac-
tice. Bank of England Inflation Reports, see (Bank of England 2002), discuss
private sector forecasts while the June and December Issues of the Monthly
Bulletin of the European Central Bank, see (European Central Bank 2002),
present both internal macroeconomic projections and forecasts by other in-
stitutions. However, the precise role of these forecasts in the decision making
of these central banks is not revealed.

The question of whether monetary policy should be forward looking has
been subject to discussion and debate.1 Some formulations of optimal mon-
etary policy specify the interest rate reaction function solely in terms of
fundamentals. Instrument rules such as variants of the Taylor rule are also
widely considered, and discussions focus in part on whether or not the short-
term nominal interest rate should react to forecasts of inflation and/or the
output gap. Theoretical studies have shown that, because the private econ-
omy is in any case forward looking, there are two potential difficulties that
monetary policy design must confront.

First, the proposed interest rate rules may not perform well when the ex-
pectations of the agents are out of equilibrium, e.g. as a result of structural
shifts. The consequences of temporary errors in forecasting, and the resulting
correction mechanisms, have been studied in recent research using the adap-
tive learning approach.2 For monetary policy (Evans and Honkapohja 2002a)
and (Evans and Honkapohja 2002b) show that certain standard forms of op-
timal interest rate setting by the Central Bank can lead to instability as

1General discussions sometimes pose the question of whether central banks should focus
attention on economic fundamentals or “follow the markets”, which “sometimes stray far
from fundamentals”, see e.g. pp. 60-61 of (Blinder 1998). (Hall 1984), p.146, suggested
some time ago that the “Fed’s internal procedure” should place some weight on “reliable
outside forecasts.”

2(Evans and Honkapohja 2001) is an extensive treatise on the analysis of adaptive learn-
ing and its implications in macroeconomics. (Evans and Honkapohja 1999), (Evans and
Honkapohja 1995), (Marimon 1997), (Sargent 1993) and (Sargent 1999) provide surveys
of the field.
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economic agents unsuccessfully try to correct their forecast functions over
time, with the result that the economy may not converge to the desired ra-
tional expectations equilibrium (REE). They also propose a new method of
implementing optimal policy that always leads to stability under learning.
(Bullard and Mitra 2002) consider the stability of equilibria when monetary
policy is conducted using variants of the Taylor interest rate rule. Bullard
and Mitra argue that monetary policy making should take into account the
learnability constraints, which imply constraints on the parameters of policy
behavior.3

Second, monetary policy rules, including some formulations for optimal
setting of the instrument and some Taylor rules based on forecasts of inflation
and/or output gap, can lead to indeterminacy of equilibria, as discussed
further below. Under indeterminacy there are multiple, even continua of
REE and the economy need not settle in the desired REE. The possible rest
points can be studied using stability under learning as a selection criterion,
see e.g. (Honkapohja and Mitra 2001a) and (Carlstrom and Fuerst 2001).
We note that indeterminacy is not a critical problem if the fundamental REE
is the only stable equilibrium under learning. Moreover, indeterminacy need
not arise if the forward-looking interest rate rule is carefully designed, see
(Bullard and Mitra 2002), (Evans and Honkapohja 2002a) and (Evans and
Honkapohja 2002b).

In this paper we review recent results on the performance of interest
rate rules using stability under learning as the key criterion (though we also
provide some discussion of determinacy of equilibria). We consider both
target rules that are optimal either under commitment or discretion and
also instrument rules that do not explicitly aim for optimality. The latter
include extensions or variants of the rule proposed by (Taylor 1993) as well
as approximate targeting rules suggested recently by (McCallum and Nelson
2000).

After reviewing the theoretical results we take up a number of practical
concerns that can arise when forecast based rules for interest rate setting
are employed. The first issue is observability of relevant variables. Issues
of non-observability can arise in connection with private forecasts that are

3Other papers on monetary policy using the learning approach include (Bullard and
Mitra 2001), (Mitra 2001), (Honkapohja and Mitra 2001a), (Honkapohja and Mitra 2002),
(Carlstrom and Fuerst 2001), (Orphanides and Williams 2002), (Ferrero 2002), (Preston
2002) and (Evans and Ramey 2001). An important predecessor to this work is (Howitt
1992), though he did not use the New Keynesian framework.
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needed for the desired implementation of optimal policy suggested by (Evans
and Honkapohja 2002a) and (Evans and Honkapohja 2002b), as well as with
current data as noted in (Bullard and Mitra 2002) and (McCallum and
Nelson 2000). Second, we introduce expectation shocks and study whether
they affect the conclusions derived when these shocks are absent. The third
concern is knowledge of the structure of the economy that is required for
implementation of optimal interest rate policies. We extend the analysis of
optimal commitment policy under private agent learning to a situation in
which the central bank estimates the structural parameters of the economy
and uses these estimates in their rule for setting interest rates.

2 The Model

We use a linearized model that is standard in the literature, see (Clarida,
Gali, and Gertler 1999) for the particular formulation used here. The origi-
nal nonlinear framework is based on a representative consumer, and a contin-
uum of firms producing differentiated goods under monopolistic competition.
Firms are subject to constraints on the frequency of price changes, as origi-
nally suggested by (Calvo 1983).4

The behavior of the private sector is summarized by the two equations

xt = −ϕ(it − E∗
t
πt+1) + E∗

t
xt+1 + gt, (1)

which is the “IS” curve derived from the Euler equation for consumer opti-
mization, and

πt = λxt + βE∗
t
πt+1 + ut, (2)

which is the price setting rule for the monopolistically competitive firms.
Here xt and πt denote the output gap and inflation rate for period t,

respectively. it is the nominal interest rate, expressed as the deviation from
the steady state real interest rate. The determination of it will be discussed
below. E∗

t
xt+1 and E∗

t
πt+1 denote private sector expectations of the output

gap and inflation next period. Since our focus is on learning behavior, these
expectations need not be rational (Et without ∗ denotes rational expecta-
tions). The parameters ϕ and λ are positive and β is the discount factor
with 0 < β < 1.

4See e.g. (Woodford 1996) for the nonlinear model and its linearization.
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For brevity we do not discuss details of the derivation of equations (1)
and (2). It should be pointed out that the derivation is based on individual
Euler equations under (identical) subjective expectations, together with ag-
gregation and definitions of the variables, see (Evans and Honkapohja 2002b)
for a further discussion. The Euler equations for the current period give the
decisions as functions of the expected state next period. Rules for forecasting
the next period’s values of the state variables are the other ingredient in the
description of individual behavior. Given forecasts, agents make decisions
according to the Euler equations.5

The shocks gt and ut are assumed to be observable and follow(
gt

ut

)
= F

(
gt−1

ut−1

)
+

(
g̃t

ũt

)
, (3)

where

F =

(
µ 0
0 ρ

)
,

0 < |µ| < 1, 0 < |ρ| < 1 and g̃t ∼ iid(0, σ2g), ũt ∼ iid(0, σ2u) are independent
white noise. gt represents shocks to government purchases and/or potential
output. ut represents any cost push shocks to marginal costs other than those
entering through xt. For simplicity, we assume throughout the paper that µ
and ρ are known (if not, they could be estimated).

The recent literature on monetary policy has focused on interest rate
setting by the Central Bank.6 One approach examines “instrument rules”
that specify it in terms of key macroeconomic variables without explicit con-
sideration of policy optimization. A prominent example of this type is the
standard (Taylor 1993) rule, i.e.,

it = πt + 0.5(πt − π̄) + 0.5xt,

5This kind of behavior is boundedly rational but in our view reasonable since agents
attempt to meet the margin of optimality between the current and the next period. Other
models of bounded rationality are possible. Recently, (Preston 2002) has proposed a
formulation in which long horizons matter in individual behavior. For further discussion
see (Honkapohja, Mitra, and Evans 2002).

6We follow the common practice of leaving hidden the government budget constraint
and the equation for the evolution of government debt. This is acceptable provided fiscal
policy appropriately accommodates the consequences of monetary policy for the govern-
ment budget constraint. The interaction of monetary and fiscal policy can be impor-
tant for the stability of equilibria under learning, see (Evans and Honkapohja 2002c) and
(McCallum 2002).
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where π̄ is the target levels of inflation and the target level of the output gap
is zero. (Recall that it is specified net of the real interest rate, which in the
standard Taylor rule is usually set at 2%). More generally Taylor-type rules
are of the form it = χ0 + χππt + χxxt. For convenience (and without loss of
generality) we will take the inflation target to be π̄ = 0 so that this class of
rules takes the form

it = χππt + χxxt where χπ, χx > 0. (4)

Variations of the Taylor rule replace πt and xt by lagged values or by forecasts
of current or future values, e.g. in the former case by

it = χππt−1 + χxxt−1 where χπ, χx > 0. (5)

Alternatively, interest rate policy can be derived explicitly to maximize
a policy objective function. This is frequently taken to be of the quadratic
loss form, i.e.

Et

∞∑
s=0

βs
[
(πt+s − π̄)2 + αx2t+s

]
, (6)

where π̄ is the inflation gap. This type of optimal policy is often called
“flexible inflation targeting” in the current literature, see e.g. (Svensson
1999) and (Svensson 2001). α is the relative weight on the output target
and strict inflation targeting would be the case α = 0. The policy maker is
assumed to have the same discount factor β as the private sector.

The literature on optimal policy distinguishes between optimal discre-
tionary policy, in which the policy maker is unable to commit to policies
for future periods, and optimal policy in which such commitment is pos-
sible. Without commitment policy is reoptimized each period and reduces
to a sequence of static problems in which the Central Bank aims to mini-
mize (πt − π̄)2 + αx2t subject to (2). This leads to the first-order condition
λ(πt − π̄) + αxt = 0. Again, for convenience and without loss of generality
we set π̄ = 0 so that the optimality condition is

λπt + αxt = 0. (7)

Under commitment the policy maker can do better because of the effect
on private expectations. Solving the problem of minimizing (6) subject to
(2) holding in every period, and assuming RE, leads to a series of first order
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conditions for the optimal dynamic policy. This policy exhibits time incon-
sistency, in the sense that policy makers would have an incentive to deviate
from the policy in the future, but performs better than discretionary policy.
Assuming that the policy has been initiated at some point in the past, and
again setting π̄ = 0, the first-order condition specifies

λπt + α(xt − xt−1) = 0 (8)

in every period.7

Neither condition (7) for optimal discretionary policy nor condition (8)
for optimal policy with commitment is a complete specification of monetary
policy, since one must still look for an it rule (also called a “reaction func-
tion”) that implements the policy. It turns out that a number of interest
rate rules are consistent with the model (1)-(2), the optimality condition (7)
or (8), and rational expectations. However, and this point is fundamental,
some of the ways of implementing “optimal” monetary policy lead the econ-
omy vulnerable to either indeterminacy or instability under learning or both,
while other implementations are robust to these difficulties.

The implementations of optimal policy that we will consider can be di-
vided into “fundamentals based” and “expectations based” rules. The fun-
damentals based rule depends only on the observable exogenous shocks gt
and ut in the case of discretionary policy, i.e.

it = ψggt + ψuut. (9)

Under policy with commitment the fundamentals based rule must also de-
pend on xt−1 so that

it = ψxxt−1 + ψggt + ψuut, (10)

where the optimal coefficients are determined by the structural parameters
and the policy objective function. The coefficients ψi are chosen so that the
effects of aggregate demand shocks gt are neutralized and so that for inflation
shocks ut the optimal balance is struck between output and inflation effects.
In (10) the dependence of it on xt−1 is optimally chosen to take advantage
of the effects on expectations of commitment to a rule. Calculation of the
coefficients ψi requires first calculating the optimal REE and then inserting

7Treating the policy as having been initiated in the past correspond to the “timeless
perspective” described by (Woodford 1999a) and (Woodford 1999b).
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the solution into the IS curve (1) to obtain the it rule of the desired form.
These steps are summarized in Appendix 1.

Expectations based optimal rules are advocated in (Evans and Honkapohja
2002a) and (Evans and Honkapohja 2002b). They argue that fundamentals
based optimal rules will often be unstable under learning, as discussed below.
However, if private expectations are observable then they can be incorporated
into the interest rate policy rule. If this is done appropriately the REE will
be stable under learning and thus optimal policy can be successfully imple-
mented. Optimal expectations based rules take the form

it = δπE
∗

t πt+1 + δxE
∗

t xt+1 + δggt + δuut, (11)

under discretion or

it = δLxt−1 + δπE
∗

t πt+1 + δxE
∗

t xt+1 + δggt + δuut (12)

under commitment. The specific coefficients will be derived below. The
essence of these rules is that they do not assume rational expectations on the
part of private agents, but are designed to feed back on private expectations
in such a way that they generate convergence to the optimal REE under
learning. (If expectations are rational, these rules deliver the optimal REE.)

Finally, we will also examine the types of rule introduced by (McCallum
and Nelson 2000), which aim to approximate optimal policy using an in-
terest rate rule based on xt and πt. (McCallum and Nelson 2000) consider
instrument rules of the form

it = πt + θ[πt + (α/λ)(xt − xt−1)], (13)

where θ > 0. From now on we will call this rule simply the approximate

targeting rule. For reasons discussed below, they also examine a forward
looking version of this rule.

Given an interest rate rule we can obtain the reduced from of the model
and study its properties under rational expectations. The particular prop-
erties in which we are interested are determinacy (uniqueness) of the RE
solution and the stability under learning of the REE of interest. We now
turn to these issues.
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3 Determinacy and Stability under Learning

Consider the system given by (1), (2), (3) and one of the it policy rules (4),
(5), (9), (10), (11), (12) or (13). Defining

yt =

(
xt
πt

)
and vt =

(
gt
ut

)

the reduced form can be written as

yt = ME∗t yt+1 +Nyt−1 + Pvt (14)

for appropriate matrices M , N and P . In the case of rules (4), (9), and (11)
we have N = 0 and thus the simpler system

yt = ME∗t yt+1 + Pvt. (15)

The first issue of concern is whether under rational expectations the sys-
tem possesses a unique stationary REE, in which case the model is said to
be “determinate.” If instead the model is “indeterminate,” so that multiple
stationary solutions exist, these will include undesirable “sunspot solutions”,
i.e. REE depending on extraneous random variables that influence the econ-
omy solely through the expectations of the agents. The possibility of inter-
est rate rules leading to indeterminacy was demonstrated in (Bernanke and
Woodford 1997), (Woodford 1999b) and (Svensson and Woodford 1999) and
this issue was further investigated in (Bullard and Mitra 2002), (Evans and
Honkapohja 2002a) and (Evans and Honkapohja 2002b).

The second issue concerns stability under adaptive learning. If private
agents follow an adaptive learning rule, such as least squares, will the RE
solution of interest be stable, i.e. reached asymptotically by the learning
process? If not, the REE is unlikely to be reached because the specified
policy is potentially destabilizing. This is the focus of the papers by (Bullard
and Mitra 2002), (Bullard and Mitra 2001), (Evans and Honkapohja 2002a),
(Evans and Honkapohja 2002b) and others.

3.1 General Methodology

Consider first the reduced form (15) under RE. It is well known that the
condition for determinacy is that both eigenvalues of the 2 × 2 matrix M
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lie outside the unit circle. In the determinate case the unique stationary
solution will be of the “minimal state variable” (or MSV) form

yt = c̄vt,

where c̄ is a 2 × 2 matrix that is easily computed. If instead one or both
roots lie inside the unit circle then the model is indeterminate. There will
still be a solution of the MSV form, but there will also be other stationary
solutions.

Next consider the system under learning. Suppose that agents believe
that the solution is of the form

yt = a + cvt, (16)

but that the 2×1 vector a and the 2×2matrix c are not known but instead are
estimated by the private agents. (16) is called the “Perceived Law of Motion”
or PLM of the agents. Note that we now include an intercept vector because,
although for theoretical simplicity we have translated all variables to have
zero means, in practice agents will need to estimate intercept as well as slope
parameters.

With this PLM and parameter estimates (a, c) agents would form expec-
tations as

E∗t yt+1 = a+ cFvt,

where either F is known or is also estimated. Inserting these expectations
into (15) and solving for yt we get the implied “Actual Law of Motion” or
ALM, i.e. the law that yt would follow for a fixed PLM (a, c). This is given
by

yt = Ma+ (P +McF )vt.

We have thus obtained an associated mapping from PLM to ALM given by

T (a, c) = (Ma,P +McF ),

and (0, c̄) is a fixed point of this map.
Under real time learning private agents have estimates (at, ct) at time

t, which they use to form expectations E∗t yt+1 = at + ctFvt (assuming for
convenience that F is known), and yt is generated according to (15). Then at
the beginning of t+1 agents use the last data point to update their parameter
estimates to (at+1, ct+1), e.g. using least squares, and the process continues.
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(Section 6 gives details on the form of the least squares algorithms.) The
question is whether over time (at, ct) → (0, c̄).

It turns out that the answer to this question is given by the E-stability
principle, which advises us to look at the differential equation

d

dτ
(a, c) = T (a, c)− (a, c),

where τ denotes notional time. If the REE (0, c̄) is locally asymptotically
stable under this differential equation then the REE is stable under real
time learning. Conditions for local stability of this differential equation are
known as expectational stability or “E-stability” conditions. We will also re-
fer to these stability conditions as the “conditions for stability under adaptive
learning” or just the “conditions for stability under learning”.8

For the reduced form (15) it can be shown that the E-stability conditions
are that (i) the eigenvalues of M have real parts less than one and (ii) all
products of eigenvalues of M times eigenvalues of F have real parts less than
one. It follows that for this reduced form the conditions for stability under
adaptive learning are implied by determinacy but not vice versa. This is not,
however, a general result. For some reduced forms E-stability is a stricter
requirement than determinacy and in other reduced forms neither condition
implies the other.9

Consider next the reduced form (14). Standard techniques are available
to determine whether the model is determinate. The procedure is to rewrite
the model in first-order form and compare the number of non-predetermined
variables with the number of roots of the forward looking matrix that lie
inside the unit circle. In the determinate case the unique stationary solution
takes the MSV form

yt = a+ byt−1 + cvt, (17)

for appropriate values (a, b, c) = (0, b̄, c̄). (In the indeterminate case there
are multiple solutions of this form, as well as non-MSV REE).

8(Evans and Honkapohja 2001) describes the concepts and methods for the study of
adaptive learning. The eductive approach to learning, in which agents use mental reason-
ing, is also sometimes used, see (Guesnerie 2002) for a review. The connections between
stability under adaptive and eductive learning are discussed in (Evans 2001).

9If the model is indeterminate, so that sunspot solutions exist, then one can also ask
whether the sunspot solutions are stable under learning. For a general discussion see
(Evans and Honkapohja 2001) and for an analysis of the model at hand see (Honkapohja
and Mitra 2001a) and (Carlstrom and Fuerst 2001).
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To examine stability under learning we treat (17) as the PLM of the
agents. Under real time learning agents estimate the coefficients a, b, c of
(17). This is a vector autoregression (VAR) with exogenous variables vt.
The estimates (at, bt, ct) are updated at each point in time by recursive least
squares. Once again it can be shown that the E-stability principle gives the
conditions for local convergence of real time learning.

For E-stability we compute the mapping from the PLM to the ALM as
follows. The expectations corresponding to (17) are given by

E∗t yt+1 = a + b(a + byt−1 + cvt) + cFvt, (18)

where we are treating the information set available to the agents, when form-
ing expectations, as including vt and yt−1 but not yt. (Alternative informa-
tion assumptions are straightforward to consider). This leads to the mapping
from PLM to ALM given by

T (a, b, c) =
(
M(I + b)a,Mb2 +N,M(bc+ cF ) + P

)
, (19)

E-stability is again determined by the differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c), (20)

and the E-stability conditions govern stability under least squares learning.
For further details see Chapter 10 of (Evans and Honkapohja 2001) and
(Bullard and Mitra 2002), (Bullard and Mitra 2001), (Evans and Honkapohja
2002a) and (Evans and Honkapohja 2002b).

3.2 Results for Monetary Policy

We now describe the determinacy and stability results for the interest rate
rules described in Section 2. (Bullard and Mitra 2002) consider Taylor type
rules and find that the results are sensitive to whether the it rule condi-
tions on current, lagged or expected future output and inflation. In addition
to assuming that χπ, χx ≥ 0, they assume that the serial correlation para-
meters in F are nonnegative. For the rule (4) the results are particularly
straightforward and natural. (Bullard and Mitra 2002) show that the model
is determinate and stable under learning if and only if10 (using our notation)

λ(χπ − 1) + (1− β)χx > 0.

10Throughout we will assume that we are not exactly on the border of the regions of
determinacy or stability.
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In particular, if policy obeys the “Taylor principle” that χπ > 1, so that
nominal interest rates respond at least one for one with inflation, then de-
terminacy and stability are guaranteed.

If lagged or forward looking Taylor rules are used the situation is more
complicated. Full analytical results are not available, but (Bullard and Mitra
2002) investigate the issues numerically using a calibrated version of the
model. Under (5) they find that for χπ > 1 and χx > 0 sufficiently small the
policy leads to an REE that is determinate and stable under learning. For
χπ > 1 but χx too large the system is explosive. For χπ < 1 the possibilities
include regions of χπ, χx space that are determinate but unstable.

(Bullard and Mitra 2002) also look at forward looking versions of the
Taylor rule, taking the form

it = χπE
∗

t πt+1 + χxE
∗

t xt+1 where χπ, χx > 0, (21)

where we can interpret E∗t πt+1 and E∗t xt+1 as identical one step ahead fore-
casts, based on least squares updating, used by both private agents and policy
makers. Again we find that for χπ > 1 and χx > 0 sufficiently small the pol-
icy leads to an REE that is determinate and stable under learning. Now for
χπ > 1 and χx large the system is indeterminate, yet the MSV solution is
stable under learning (while for χπ < 1 there are regions in which the system
is indeterminate but the MSV solution is not stable).11

The (Bullard and Mitra 2002) results emphasize the importance of the
Taylor principle in obtaining stable and determinate interest rate rules. At
the same time their results show that stability under learning must not be
taken for granted, even when the system is determinate so that a unique
stationary solution exists. The parameters of the policy rule χπ, χx must be
appropriately selected by the policy maker when an instrument rule describes
policy. Stability under learning provides a constraint for this choice.

As outlined above, in (Evans and Honkapohja 2002a) and (Evans and
Honkapohja 2002b) we focus on optimal monetary policy and obtain striking
negative results for fundamentals based policy rules (9), (10). Under optimal
discretionary policy, with it rule (9), the system is invariably unstable under
private agent learning (the system is also invariably indeterminate in this
case). The basic intuition for this result is that, say, upward mistakes in

11For interest rate rule (21) there exist E-stable sunspot equilibria if λ(χ
π
− 1) + (1−

β)χ
x
> 0 and λ(χ

π
− 1) + (1− β)χ

x
> 2ϕ−1(1 + β), see (Honkapohja and Mitra 2001a).

Thus policy under (21) should not be “too aggressive”.
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E∗

t
πt+1 lead to higher πt, both directly and indirectly through lower ex ante

real interest rates, which under learning sets off a cumulative movement away
from REE. One might hope that the feedback from xt−1 under (10), the
fundamentals based it rule with commitment, would stabilize the economy.
However, we show that with this policy rule, as well, the economy is invariably
unstable under learning. This is the case even though with this rule there
are regions in which the optimal REE is determinate.12

The instability of the fundamentals based rules, designed after all to ob-
tain optimal policy, is deeply worrying and serves as a strong warning to
policy makers not to automatically assume that rational expectations will be
attained. It is necessary to examine explicitly the robustness of contemplated
policy rules to private agent learning. In (Evans and Honkapohja 2002a) and
(Evans and Honkapohja 2002b) we show how the problems of instability and
indeterminacy can be overcome if private agents’ expectations are observable,
so that interest rate rules can be in part conditioned on these expectations.
We now look for appropriate rules of the form (11), (12). We focus here on
the case in which policy makers can operate under commitment.

The desired rule is obtained by combining the IS curve (1), the price
setting equation (2) and the first-order optimality condition (8), treating the
private expectations as given. Eliminating xt and πt from these equations,
but not imposing the rational expectations assumption, leads to an interest
rate equation of the form (12) with coefficients

δL =
−α

ϕ(α + λ2)
,

δπ = 1 +
λβ

ϕ(α + λ2)
, δx = ϕ−1,

δg = ϕ−1, δu =
λ

ϕ(α+ λ2)
.

Under optimal discretionary policy (7) is used instead and the coefficients
are identical except that δL = 0.

Under this expectations based optimal rule we obtain equally striking
positive results. For all possible structural parameter values the system is

12In the case of policy with commitment the learning stability results are sensitive to the
detailed information assumptions. With PLM (17) if agents can make forecasts conditional
also on yt then under the fundamentals based rule there are both regions of stability and
instability, depending on the structural parameters.
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determinate and the optimal REE is stable under private agent learning.
The key to the stability results is the feedback from expectations to interest
rates, so that deviations from rational expectations are offset by policy and
in such a way that under learning private agents are guided over time to form
expectations consistent with the optimal REE. Note that our expectations
based rule obeys a form of the Taylor principle since δπ > 1. Note also
that our optimal policy rule conditions on both private expectations and
observable exogenous shocks, as well as lagged output.13

Finally, we consider the approximate targeting rules of (McCallum and
Nelson 2000). In (Evans and Honkapohja 2002b) we numerically investigate
the rule (13) and find that it is also invariably determinate and stable under
learning. Since it can be shown that for large θ > 0 the resulting REE will
be close to the optimal REE, this also provides an attractive policy rule. As
(McCallum and Nelson 2000) point out, a potential difficulty with this rule
is that it requires contemporaneous observations of aggregate output and
inflation when setting the interest rate. They therefore consider alternative
versions of their approximate targeting rule and in particular recommend a
forward looking version, which is discussed below.

4 Operationality

Many of the it rules discussed above have the potential difficulty that they
may not be operational, as discussed in (McCallum 1999) . For example,
(McCallum and Nelson 2000) note that it may be unrealistic to assume that
policy makers can condition policy on current xt and πt. Similarly, one could
question whether accurate observations on private expectations are available.
We consider these points in the reverse order.

4.1 Observability of Private Expectations

Our recommended expectations based rule requires observations of current
private expectations of future variables. Survey data on private forecasts of
future inflation and various measures of future output do exist but there are

13In the context of optimal discretionary policy (Ferrero 2002) takes up the additional
issue of the speed of convergence under least squares learning. There is a continuum of
expectations based rules of the form (11) that are consistent with the optimal discretionary
REE but these can have different speeds of convergence.
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concerns about the accuracy of this data. If observations of expectations are
subject to a white noise measurement error then our stability and determi-
nacy results are unaffected. Furthermore, if measurement errors are small
then the policy will be close to optimal. However, if measurement errors are
large then this will lead to a substantial deterioration in performance. In this
case one might consider substituting a proxy for such observations. Since we
are assuming that agents forecast by running VARs, the most natural proxy
is for the Central Bank to estimate corresponding VARs and use these in
(12). Clearly, if this precisely describes agents forecasts then it is equivalent
to observing these expectations. However, we can consider less extreme cases
in which agents and the Central Bank begin with different initial estimates
and/or use data sets with different initial dates.

For the case of optimal discretionary policy and forward based instrument
rules this issue was analyzed in (Honkapohja and Mitra 2002). We here show
that using VAR proxies can also achieve convergence to the optimal REE
with commitment. Before proceeding with this analysis we note that in the
case in which private expectations are observed and incorporated into our
expectations based rule (12), the reduced form is given by (14) with

M =

(
0 − λβ

α+λ2

0 αβ

α+λ2

)
, N =

( α

α+λ2
0

αλ

α+λ2
0

)
and P =

(
0 − λ

α+λ2

0 α

α+λ2

)
, (22)

and that (Evans and Honkapohja 2002b) show that this reduced form leads
to stability and determinacy.

When the private agents and the Central Bank are separately estimating
and forecasting using VARs, we must distinguish between their expectations.
An extended E-stability analysis can give the conditions for convergence of
learning, as shown in (Honkapohja and Mitra 2001b). In the current context
this is done as follows. The equations (1)-(2) depend on private forecasts

EP
t πt+1 and EP

t xt+1 while the interest rate rule (12) depends on Central

Bank forecasts ECB
t πt+1 and ECB

t xt+1. Combining these equations leads to
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the reduced form(
xt
πt

)
=

(
1 ϕ
λ β + λϕ

)(
EP
t xt+1

EP
t πt+1

)
+(

−1 −ϕ− λβ

α+λ2

−λ −λ(ϕ+ λβ

α+λ2
)

)(
ECB
t xt+1

ECB
t πt+1

)
+ (23)

( α

α+λ2
0

αλ

α+λ2
0

)(
xt−1
πt−1

)
+

(
0 − λ

α+λ2

0 1− λ2

α+λ2

)(
gt
ut

)
,

or in matrix form

yt = MPE
P
t yt+1 +MCBE

CB
t yt+1 +Nyt−1 + Pvt,

where y′t = (xt, πt) and v′t = (gt, ut). The PLMs and forecasts of private
agents and the Central Bank take the form

yt = aj + bjyt−1 + cjvt, and

Ej
t yt+1 = (I + bj)aj + b2jyt−1 + (bjcj + cjF )vt where j = P,CB.

It is easily verified that the implied ALM is of the form

yt = a∗ + b∗yt−1 + c∗vt,

with the associated map from the PLMs to the ALM

aP
aCB

}
−→ a∗ ≡ MP (I + bP )aP +MCB(I + bCB)aCB

bP
bCB

}
−→ b∗ ≡ MP b

2

P +MCBb
2

CB +N

cP
cCB

}
−→ c∗ ≡ MP (bP cP + cPF ) +MCB(bCBcCB + cCBF ) + P.

Because the P and CB parameters are mapped into the same ALM para-
meters, it can be shown that the E-stability conditions are identical to those
that obtain if forecasts are identical in the model, i.e. in which the coeffi-
cient matrix on the expectations E∗

t yt+1 is MP +MCB. This is identical to
the earlier reduced form under the interest rate rule (12). Hence we have
stability here as well.14

14The corresponding real-time learning stability result is somewhat sensitive to the de-

tailed assumptions, e.g. additional restrictions are required for stability if private agents

estimate parameters using stochastic gradient techniques while the Central Bank uses least

squares.
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4.2 Non-Observability of Current Data

As pointed out by (McCallum and Nelson 2000), a difficulty with the ap-
proximate targeting rule (13) is that it presupposes that the policy maker
can observe current output gap and inflation when setting the interest rate.
(McCallum and Nelson 2000) recommend use of forward looking versions of
approximate targeting rules. In this case the policy maker adjusts the current
interest rate in response to the discrepancy from the optimality condition (8)
anticipated for the next period, i.e.

it = ECB
t πt+1 + θ[ECB

t πt+1 + (α/λ)(ECB
t xt+1 − ECB

t xt)]. (24)

This requires specification of ECB
t (.) and we consider the case where both

the Central Bank and private agents use forecasts based on identical esti-
mated VARs, i.e. ECB

t (.) = EP
t (.) = E∗

t (.). The reduced form is then(
xt
πt

)
=

(
−αϕθλ−1 −ϕθ
−αϕθ β − ϕθλ

)(
E∗

t xt+1
E∗

t πt+1

)
+ (25)(

αϕθλ−1 0
αϕθ 0

)(
E∗

t xt
E∗

t πt

)
+

(
1 0
λ 1

)(
gt
ut

)
.

It turns out that determinacy and stability under learning are no longer
guaranteed if the rule (24) is employed. Numerical results indicate that
sufficiently large values of the policy parameter θ induce both instability
under learning and indeterminacy. We focus here on the upper bound on θ
required to avoid instability and compare the performance of (24) in terms
of welfare loss against the welfare loss under optimal policy.

We consider the performance of the rule (24) for different numerical cal-
ibrations of the model,

Calibration W: β = 0.99, ϕ = (0.157)−1 and λ = 0.024;
Calibration CGG: β = 0.99, ϕ = 1 and λ = 0.3;
Calibration MN: β = 0.99, ϕ = 0.164 and λ = 0.3;

due to (Woodford 1999b), (Clarida, Gali, and Gertler 2000) and (McCallum
and Nelson 1999), respectively. We also set α = 0.3, ρ = 0.4, µ = 0.4,
σg = 1 and σu = 0.5. Here xt and πt are expressed in percentage units. The
values for σg and µ are broadly consistent with those obtained in (McCallum
and Nelson 1999). The value for σu is close to that used by (McCallum and
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Nelson 2000). The latter paper uses a wide range of values for ρ and our
choice is in the middle of this range. Seriously calibrating these parameters
to the data would require their values to be contingent on both ϕ and λ
as well the policy rule. Because we want to compare the performance of
different policy rules for given structural parameters, we must in any case
fix the underlying structure of the model and therefore we simply adopt the
above values as a benchmark for numerical computations.

For the different calibrations the value of the welfare loss from the rule
(24), with θ set optimally under the E-stability constraint15, and for the
optimal REE are as follows:

Calibration WAT WEB

W 7.190 0.755
CGG 0.331 0.296
MN 0.332 0.296

where “AT” and “EB” refer to approximate targeting and optimal expecta-
tions based rules, respectively. (Technical details for computing the welfare
loss are given in Appendix 2.) These results show that there are sometimes
substantial welfare losses from using the E-stable forward looking AT rule
that can be avoided if the EB rule is feasible.

5 Expectation Shocks

In this section we introduce another type of observability problem in pri-
vate expectations. It is assumed that, though private agents are learning
as before, their actual expectations are affected by additional shocks of op-
timism or pessimism. We initially assume that the policy maker does not
see these shocks and bases its interest rate policy only on the component of
expectations that comes from learning behavior. For example, the Central
Bank could be running its own version of least squares learning to generate

15For the AT rule the “optimal” choice of θ is on the edge of the E-stability constraint.

However, we remark that this choice is somewhat risky since a small error in the model

parameter values could lead to instability. Moreover, this choice of θ could lead to slow

convergence of real time learning.
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the required forecasts. We consider both the expectations based rule (12)
and the forward looking approximate targeting rule (24). We then contrast
these results with those from the EB rule when private expectations are fully
observable.

We must derive the modifications to the reduced form. PLMs of private
agents and the Central Bank take the familiar form

yt = a + byt−1 + cvt

leading to Ẽtyt+1 = (I + b)a+ b2yt−1+(bc+ cF )vt and Ẽtyt = a+ byt−1+ cvt.
However, the actual forecasts of private agents are now assumed to be

E∗

t yt+1 = Ẽtyt+1 + εt,

where ε′t = (εx,t, επ,t) is a shock to private expectations that is for simplicity
assumed to be iid. The forecasts of the Central Bank are

ECB
t yt+1 = Ẽtyt+1 + κεt,

where κ = 0 or 1, depending on whether the Central Bank is able to obtain
precise information on the expectation shocks.

For the case of the expectations based rule (12) the modified reduced
form is(

xt
πt

)
=

(
0 − λβ

α+λ2

0 αβ

α+λ2

)(
Ẽtxt+1
Ẽtπt+1

)
+

( α

α+λ2
0

αλ

α+λ2
0

)(
xt−1
πt−1

)
+

(
0 − λ

α+λ2

0 α

α+λ2

)(
gt
ut

)
(26)

+

(
1− κ ϕ(1− κ)− κλβ

α+λ2

λ(1− κ) β + λϕ(1− κ)− κλ2β

α+λ2

)(
εx,t
επ,t

)
.

For the approximate targeting rule (24) the reduced form (25) changes to(
xt
πt

)
=

(
−αϕθλ−1 −ϕθ
−αϕθ β − ϕθλ

)(
Ẽtxt+1
Ẽtπt+1

)
+(

αϕθλ−1 0
αϕθ 0

)(
Ẽtxt
Ẽtπt

)
+

(
1 0
λ 1

)(
gt
ut

)
(27)

+

(
1 ϕ
λ β + λϕ

)(
εx,t
επ,t

)
.
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We note that E-stability and determinacy properties of the models are not
affected by the expectation shocks.

From the reduced forms (26) and (27) we next calculate welfare losses due
to unobserved expectations shocks. We assume that the standard deviation
of the expectation shocks in output gap and inflation are 0.1 and 0.05, re-
spectively. The welfare losses for (12) and (24) with the different calibrations
are

Calibration WAT WEB

W 7.231 1.524
CGG 0.335 0.310
MN 0.337 0.308

Comparing these results to the preceding section it is seen that expectation
shocks result in an increase in the losses under either rule. The computed
losses suggest that the expectations based optimal rule seems to perform
better than the forward looking approximate targeting rule.

However, the comparison could go the other way if there are big shocks to
inflation expectations. We now increase the standard deviation for inflation
expectation shocks first to 0.1 and then to 0.2. In these cases the welfare
losses are

Calibration WAT WEB

W 7.292 3.628
CGG 0.339 0.331
MN 0.339 0.321

when the standard deviation for the inflation shock is 0.1, and

Calibration WAT WEB

W 7.537 12.044
CGG 0.353 0.413
MN 0.351 0.374
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when the standard deviation for the inflation shock is 0.2. It is seen that
(24) delivers a smaller loss than (12) if the shocks to inflation expectations
are sufficiently high.

Finally, we note that if the Central Bank has accurate information on
the expectation shocks the welfare loss from the expectations based rule (12)
is dramatically improved. We illustrate this for the last case in which the
standard deviation of the output expectation shock is 0.1 and the standard
deviation of the inflation expectation shock is 0.2. Formally, setting κ = 1
we obtain

Calibration W ∗

EB

W 0.793
CGG 0.319
MN 0.319

These welfare losses remain somewhat higher than the minimum losses with-
out the expectation shocks, which were, respectively, 0.755, 0.296 and 0.296
for the three calibrations. Though the rule with κ = 1 can neutralize fully
the shocks to output gap expectations (see (26)), this is not the case for
the shocks to inflation expectations. These results nonetheless illustrate the
value of policy being able to condition on accurate observations of private
expectations.

6 Estimation of Structural Parameters

Implementation of our expectations based optimal rule, as well as the approx-
imate targeting rule, requires knowledge of structural parameters. A question
of considerable interest is whether policy makers can obtain consistent esti-
mates of λ and ϕ if private agents are learning. We take up this issue in the
context of the expectations based rule. In (Evans and Honkapohja 2002a) we
showed that consistent estimation of the structural parameters was possible
in the case of optimal discretionary policy. Here we show how to carry out
this procedure in the context of policy with commitment and we do so in a
setting that requires instrumental variable estimation.
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First, we extend the model to allow for unobserved shocks. The IS and
Phillips curves now take the form

xt = −ϕ(it − E∗

t πt+1) + E∗

t xt+1 + gt + ex,t (28)

πt = λxt + βE∗

t πt+1 + ut + eπ,t, (29)

where now xt, πt, ex,t and eπ,t are not observable at time t. gt, ut are observ-
able at t and xt, πt are observed with a lag. It is assumed that the unob-
served shocks (ex,t, eπ,t) are bivariate white noise but we will allow for the
possibility that the components are contemporaneously correlated. (gt, ut)
and (ex,t, eπ,t) are exogenous and are assumed to be mutually independent.
Private expectations are assumed to be observable and to be governed by
least squares learning as above. We assume that β and α are known, but the
key structural parameters ϕ and λ must be estimated by the policy maker.
The optimal REE now takes the form

yt = b̄yt−1 + c̄vt + d̄et,

where e′t = (ex,t, eπ,t).
Private agent learning is as before, with agents using least squares to

estimate the parameters a, b and c of the PLM (17). Thus, at time t agents
use the PLM

yt = at + btyt−1 + ctvt + ηt

to forecast yt+1 using the forecast function (18) with (a, b, c) replaced by
(at, bt, ct). To study the system under real time learning we express the
least squares estimation in recursive form as follows. Define the matrix of
parameters ξ′ = (a, b, c) and the vector of state variables z′t = (1, y′t−1, v

′

t).
The recursive least squares algorithm is16

ξt = ξt−1 + t−1R−1

t−1zt−1(yt−1 − ξ′t−1zt−1)
′

Rt = Rt−1 + t−1(zt−1z
′

t−1 −Rt−1).

The Rt equation updates estimates of the matrix of second moments of the
regressors zt. The parameters ξt are updated using this matrix and the

16The recursive formulations for the parameter estimates vary slightly from least squares

since we have introduced an additional lag in the equations for the second moments. This

is analytically convenient. The same results apply if Rt−1 is replaced by Rt in the first
equation, see Chapter 10 of (Evans and Honkapohja 2001).
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regression errors yt−1−ξ′
t−1zt−1. Note that ξt

is estimated using data through
time t− 1, which is the standard assumption in the literature.

To estimate the structural parameters the Central Bank constructs the
variables

wx,t = xt −E∗

t xt+1 − gt

wπ,t = πt − βE∗

t πt+1 − ut

rt = it −E∗

t πt+1.

Under the expectations based rule (12), in the REE it depends on gt, ut,
xt−1, E

∗

t xt+1 and E∗

t πt+1. Since E∗

t xt+1 and E∗

t πt+1 in turn depend on gt,
ut, and xt−1, it follows that rt depends only on gt, ut, and xt−1. From (1) it
also follows that xt depends only on gt, ut, xt−1 and ex,t. If ex,t and eπ,t were
known to be uncorrelated, consistent estimates of ϕ and λ could be obtained
by least squares regressions of wx,t on rt and wπ,t on xt, respectively. Thus
the policy maker would estimate

wx,t = −ϕrt + ex,t and (30)

wπ,t = λxt + eπ,t (31)

using recursive least squares. However, we can allow for the possibility that
the components ex,t and eπ,t are contemporaneously correlated. We thus
proceed as follows.

The first equation (30) can be estimated through least squares, since in
the REE rt and ex,t are uncorrelated.17 Formally, we can write

ϕ̂t = ϕ̂t−1 + t−1R−1

r,t−1rt−1(wx,t−1 − (−ϕ̂t−1)rt−1) (32)

Rr,t = Rr,t−1 + t−1(r2t−1 −Rr,t−1).

The second equation (31) must be estimated by recursive instrumental vari-
ables, since xt and eπ,t are correlated in the REE. The natural instrument
here is xt−1. The recursive algorithm takes the form

λ̂
IV

t = λ̂
IV

t−1 + t−1(RIV
x,t−1)

−1xt−2(wπ,t−1 − λ̂
IV

t−1xt−1) (33)

RIV
x,t = RIV

x,t−1 + t−1(xt−2xt−1 −RIV
x,t−1).

17Note that this holds only if agents do not use contemporaneous values of xt and πt in
forming expectations E∗

t
yt+1. If instead these contemporaneous values are used by private

agents, then ϕ as well as λ would also have to be estimated using instrumental variables.
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The Central Bank is assumed to conduct monetary policy using the op-
timal expectations based rule (12) with estimated values for the structural
parameters, i.e.

it = δL,txt−1 + δπ,tE
∗

t πt+1 + δx,tE
∗

t xt+1 + δg,tgt + δu,tut (34)

where

δL,t =
−α

ϕ̂t(α+ (λ̂
IV

t )2)
,

δπ,t = 1 +
λ̂
IV

t β

ϕ̂t(α + (λ̂
IV

t )2)
, δx,t = ϕ̂−1

t ,

δg,t = ϕ̂−1

t , δu,t =
λ̂
IV

t

ϕ̂t(α + (λ̂
IV

t )2)
.

The key result is that the economy converges to the optimal REE when
the Central Bank uses the optimal expectations based rule (34) and both
private agents and policy maker learn using the specified algorithms. We
remark that convergence to equilibrium is local in the sense that the initial
parameter estimates can be chosen freely only within a neighborhood of the
RE parameter values. Appendix 3 outlines the proof of this result.

As noted above, this result is robust to the assumption that agents use
contemporaneous values of endogenous variables in the forecasts. In this
case the equation (30) also must be estimated using recursive instrumental
variables. Again xt−1 can be used as the instrument.

7 Conclusions

The design of monetary policy needs to take into account the possibility that
the economy may not always be in a full intertemporal, i.e. rational expec-
tations, equilibrium. If economic agents update their forecasting procedures,
the resulting process of learning may or may not lead the economy towards
an REE. Convergence or non-convergence of the learning process depends
critically on the policy rule followed by the Central Bank. We have reviewed
recent research demonstrating that stability under learning is a serious con-
cern. In particular, some recently proposed policy rules that depend solely
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on fundamentals are not conducive to convergence to equilibrium. We rec-
ommend instead expectations based optimal rules, i.e. interest rate rules
depending appropriately on private expectations as well as fundamentals,
which have been shown to lead to both stability under learning and determi-
nacy of equilibria. We have also noted that, if non-optimal instrument rules
are used instead, stability under learning imposes additional constraints on
monetary policy rules, and policy design should take account of these con-
straints.

Implementation of interest rate rules raises several practical concerns.
First, questions of observability can arise. These problems can relate to
availability of current data and to forecasts of private agents. We have dis-
cussed ways for dealing with these concerns. Second, the economy may in
practice be subject to expectation shocks, in addition to transitory shocks
associated with learning. These will not usually alter the conditions for sta-
bility under learning, but if the shocks are sufficiently large the ranking of
different policy rules can be affected. However, if private expectations are
fully observable, this provides an additional motivation for following our rec-
ommended expectations based optimal rule.

Finally, implementation of expectations based or approximate targeting
policy rules requires knowledge of key structural parameters. If the Central
Bank does not have this knowledge, the problem can be overcome by appro-
priately estimating these parameters and using the estimated parameters in
the interest rate rule. In particular, we have shown that this procedure is
viable for the expectations based rule, which is locally stable under simulta-
neous learning by private agents and policy makers.

We hope that these rules provide useful guidelines for the design of mone-
tary policy. However, we recognize that much further research on these issues
remains to be done.
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Appendix

Appendix 1: Derivation of Optimal REE and the Fundamentals

Based it rule

Consider the model under rational expectations. It can be shown that
the aggregate supply curve (2), the equation for ut given by (3), and the
optimality condition (7) or (8) specify a unique nonexplosive solution. Con-
sider the system under commitment, i.e. (8). The unique stationary solution
takes the form

xt = bxxt−1 + cxut, (35)

πt = bπxt−1 + cπut, (36)

where bx is the solution |bx| < 1 to βb2x − (1 + β + λ2

α
)bx + 1 = 0 and where

bπ, cx, cπ depend on the structural parameters. To obtain the fundamentals
based it rule, the corresponding rational expectations Etxt+1 and Etπt+1 are
computed as linear functions of xt−1 and ut. Using the RE assumption, these
expectation functions and the above expression for xt are substituted into the
aggregate demand equation (1) and solved for it. This gives the fundamentals
based rule (10), where

ψx = bx[ϕ
−1(bx − 1) + bπ], ψg = ϕ−1, and

ψu = [bπ + ϕ−1(bx + ρ− 1)]cx + cπρ.

Details are given in (Evans and Honkapohja 2002b). In the case of discretion
similar steps lead to these coefficients with ψx = bx = bπ = 0. Details are
given in (Evans and Honkapohja 2002a).

Appendix 2: Welfare Calculation

We calculate the expected welfare loss of the stationary REE, which is
1/(1− β) times

E(αx2t + π2t ).

The REE solution yt = b̄yt−1 + c̄vt can be written as(
yt

vt

)
=

(
b̄ c̄F
0 F

)(
yt−1

vt−1

)
+

(
c̄
I

)
ṽt,
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where ṽt = (g̃t, ũt)
′ and b̄ and c̄ are the REE values under the specified

interest rate rule, or
ζ
t
= Gζ

t−1
+Hṽt ,

where ζ ′
t
= (yt, vt). Letting Σ = V ar(ṽt) denote the covariance matrix of the

shocks ṽt, the stationary covariance matrix for ξ
t
satisfies

V ar(ζ
t
) = GV ar(ζ

t
)G′ +HΣH ′

or in vectorized form

vec(V ar(ζ
t
)) = [I −G⊗G]−1vec(HΣH ′). (37)

The variance of output gap and inflation can be read off from (37).

Appendix 3: Convergence under Structural Estimation

To demonstrate stability under the expectations based rule (34) when the
private agents and the policy makers are simultaneously learning we apply
the stochastic approximation tools described in Chapters 6 and 7 of (Evans
and Honkapohja 2001). The key results in stochastic approximation state
that conditions for local convergence of the recursive stochastic algorithms
are given by the local asymptotic stability conditions for a system of asso-
ciated differential equations. The steps required for deriving the associated
differential equations for the stochastic recursive system are given in (Evans
and Honkapohja 2001).

It can be shown that for the parameters of the private agents the associ-
ated differential equations are

dξ

dτ
= R−1

z Mz(ϑ)G(ξ, ϕ̂, λ̂
IV
;ϕ, λ),

dRz

dτ
= Mz(ϑ)−Rz.

Here ϑt denotes the vector of all parameters at, bt, ct, ϕ̂t, λ̂
IV

t and the second
moment estimates. The function G(.) has the property

G(ξ, ϕ, λ;ϕ, λ) = T (ξ)− ξ, (38)
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i.e. G(.) reduces to T (ξ)−ξ when the estimates ϕ̂, λ̂
IV

take their true values.
Here T (ξ) = T (a, b, c) is the mapping from the PLM to the ALM given by
(19) with matrix coefficients (22).

The associated differential equations for the algorithms (32) and (33) are

dϕ̂

dτ
= R−1

r Ert−1(ϑ)
2(ϕ− ϕ̂),

dRr

dτ
= Ert−1(ϑ)

2 −Rr,

since Ert−1(ϑ)ex,t−1 = 0, and

dλ̂
IV

dτ
= (RIV

x )−1E[xt−2(ϑ)xt−1(ϑ)](λ− λ̂
IV
),

dRIV
x

dτ
= E[xt−2(ϑ)xt−1(ϑ)]−RIV

x ,

since Ext−2(ϑ)eπ,t−1 = 0. It should be noted that all the parameter estimates

ξ, ϕ̂, λ̂
IV
, Rz, Rr andRIV

x in the differential equations are functions of τ , which
is a virtual time concept.

To study convergence under real time learning, one considers local as-
ymptotic stability of the entire differential equation system at the REE ϑ∗.
To analyze stability of the system we first note that differential equations
for all of the second moments are stable. It then follows that ϕ̂ → ϕ and

λ̂
IV

→ λ. Using (38) it follows that stability of the system reduces to the
earlier E-stability differential equation (20) for the model with commitment.
Thus we have the local stability results that the policy maker learns the
structural parameters, private agents learn RE and the economy converges
the optimal REE.18

18Details of the stochastic approximation convergence argument are given for the dis-
cretionary policy case in (Evans and Honkapohja 2002a).
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