
Cooperative Policy Control for Peer-to-Peer Data
Distribution

Eric Anderson
University of Colorado

eric.anderson@cs.colorado.edu

Jun Li
University of Oregon

lijun@cs.uoregon.edu

ABSTRACT
Many network applications (such as swarming downloads,
peer-to-peer video streaming and file sharing) are made pos-
sible by using large groups of peers to distribute and process
data. Securing data in such a system requires not just data
originators, but also those “distributors,” to enforce access
control, verify integrity, or make other content-specific secu-
rity decisions for the replicated or adapted data.

In this paper, we introduce the concepts of cooperative pol-
icy enforcement and request type checking, and propose an
implementation framework Q which uses these approaches
to secure data in peer-to-peer systems.

The Q framework associates every data object with relocat-
able policy descriptors which distributors can use to deter-
mine whether a request for that object should be granted
and whether a data transfer meets a request. With minimal
changes to the application or the framework, Q can define
and enforce arbitrarily sophisticated policies across a wide
range of applications. Policies can be written to work across
applications, or to include application-specific criteria and
behavior.

We will also discuss integrating Q with several peer-to-peer
applications, including Gnutella, distributed hash tables such
as CAN and Chord, peer-to-peer video streaming, HTTP
swarming and application-level routing.

Authors’ Note
This paper was written for the Symposium on Access Control
Models and Technologies, 2005. Neither of the authors have
had the time to update or re-submit it, so we are releasing
the manuscript as is.

1. INTRODUCTION
Peer-to-peer systems for data distribution and adaptation
offer significant performance, scalability and reliability ad-

University of Oregon Technical Report March 2010

vantages over point-to-point transfers from a single server to
all clients. However, in order to extend these benefits to the
distribution of sensitive or commercially valuable data, it is
necessary to provide support for access control, integrity ver-
ification, and other security assurances. Peer-to-peer distri-
bution systems impose different requirements on the design
of a security mechanism than centralized systems. These
systems often rely on nodes, which we call “distributors” or
“server peers,” to replicate, sometimes adapt, and forward
data. Any object may be handled by many distributors,
and any distributor may handle objects from many sources.
Access control is made more difficult because distributors
may have no prior knowledge about the objects they hold,
and thus have little basis for deciding which recipients are
eligible. Because data can be adapted between the origina-
tor and recipient, it becomes hard for a recipient to verify
that the content received is what the originator intended.
End-to-end integrity checks do not allow for legitimate data
adaptation by nodes in the middle, and per-hop checks do
not detect illegitimate changes by those nodes.

In a peer-to-peer network, every data object may have dif-
ferent security requirements. Nodes serving or adapting a
data object may have no knowledge of those requirements,
unless they are explicitly represented and distributed with
the data. Recipients may not trust the nodes from which
they request objects, and may not know how to verify data
authenticity when both benign and malicious adaptation are
possible.

The Q security framework allows creators to assign objects
access control and integrity policies that distributors can
use to determine whether a request should be permitted
and recipients can use to determine whether it was properly
carried out. Access control policies can also require data
confidentiality by specifying that only transfers using suit-
able encryption are permissible. Note that there are aspects
of peer-to-peer network security that Q does not address
(such as authenticating nodes, managing peer reputations
or preventing protocol-level attacks), and Q is compatible
with proposed solutions to the other problems. Though op-
timized for peer-to-peer networks, Q could also be applied
to any scenario in which entities are responsible for man-
aging large sets of discrete objects with differing security
requirements.

This paper makes two primary contributions: a novel model
of cooperative policy enforcement through relocatable per-



object permission descriptors, and a new highly-expressive
approach to proof-carrying authorization, request type-checking.
We present these approaches and a framework for using
them to making access control and integrity decisions, and
discuss ways of securing existing applications using this frame-
work.

2. COOPERATIVE DISTRIBUTED POLICY
ENFORCEMENT

2.1 Overview
The goal of our system is to provide for the consistent en-
forcement of policies, chosen by an object’s originator, for all
copies of the object which occur in a peer-to-peer network.

This may be regarded as an adaptation of an Originator
Control (ORCON) meta-policy[17, 21] for use in an open,
potentially untrusted environment.

We address two specific aspects of data security policy: Ac-
cess control and integrity verification. Our approach to ac-
cess control is as follows: Every object has an associated ac-
cess control policy, which is encoded in a machine-readable
metalanguage, discussed in section 3. Whenever a peer
which has an object receives a request for the object, it
consults the associated policy to determine whether the re-
quest should be granted. Whenever an object is transferred
within the system, its policy must be transfered with it, to
enable the receiving peer to make access control decisions.
Similarly, every object has an integrity policy specifies ac-
ceptance criteria for the recipient to use.

After a server peer answers a request, the requester checks
what is has received against the integrity policy. The re-
quirement that the requester know the integrity policy in
advance is not as stringent as it might at first seem: The
policy may be obtained from the content originator or a
trusted third party, or from an untrusted party (such as
the server peer) as long as the client can check its authen-
ticity. Verifying the integrity of the integrity policy is not
a chicken-and-egg problem: Unlike data objects, which may
potentially be legitimately altered in transit, policies are im-
mutable, which makes a fixed verification strategy such as
hash value or digital signature checking appropriate. The
client must still obtain the policy’s hash value or the cre-
ators public key from a trusted source.

2.2 System Model / Assumptions
1. An object’s policies are determined by its creator prior

to its insertion into the system, and do not change for
the life of the object.

2. Any peer which is authorized by an object’s creator to
receive an object is also trusted to apply that object’s
access control policy correctly.

3. Any peer which holds an object may grant requests
for that object, if the request is in accordance with
the object’s access control policy.

4. For any given object, there is an access control pol-
icy which specifies the criteria for determining which
requests for the object should be granted.

5. For any given object, there is an integrity policy which
specifies the criteria for determining whether a request
has been properly carried out.

Assumption 2 weakens the traditional model of originator
control[21, 17] (ORCON), in which authorized recipients of
an object must be prevented from disclosing it to unautho-
rized parties. The relaxation is appropriate for three rea-
sons:

1. Without a general usage control[24] (UCON) system,
even the best mandatory access control within the dis-
tribution system cannot prevent information leakage
through other channels. The design of such a system
is orthogonal to our work.

2. At present, the best approaches to enforcing ORCON
in a distributed system require all parties to use mutually-
trusted tamper-resistant hardware or software[24, 23,
3], which a general purpose system for use on hetero-
geneous hosts cannot assume.

3. Any individual security policy may limit distribution
to only those hosts using such a system. Thus, this
requirement may be omitted from the design of our
model without loss of generality.

3. REQUEST TYPE-CHECKING
Request type-checking is a mechanism for checking a re-
quest against a given policy. Requests are represented as
statements in an application-defined formal language, and
policies are represented as type systems. A request is ac-
cepted if it is a correct statement and it is possible to derive
a desired type for the statement under the type system given
in the policy. Note that while we present this in the context
of access control, the process for integrity checking works
equivalently, by trying to verify the distributor’s claim to
have done something correctly.

We briefly introduce logic- and language-based access con-
trol in general, discuss its limitations in this context, and
then present request type-checking in greater detail. In sec-
tion 4 we outline a design for a security framework based on
this approach.

3.1 Background
Logics and logic programming languages have a number of
properties which make them good candidates for use in pol-
icy descriptors. By compactly presenting decision-making
rules, they can encode more complex policies than can be
represented by access control lists [1] or fixed permission
structures, and can scale to systems in which the set of
principles is very large or unknowable. They also provide
a clear separation of policy and mechanism, which simpli-
fies reasoning about both.

There are several properties of peer-to-peer networks which
make existing policy logics and access control systems based
on them unsuitable. Most notably, such networks can ac-
tively transform data as well as replicating it, so an access
control logic must be able to prove or disprove statements of
the form “Process W may perform operation X on data Y



for requester Z,” where operation X may be an arbitrarily
complex request such as “encrypt a high-resolution, desat-
urated version of image Y with public key K and send it”
rather than one of a finite set of operations such as {read,
write, delete}.

Existing logics and languages such as D1LP[18] and Binder[12]
can support multiple operations with distinct requirements,
but every operation must be specifically enumerated, so
there can only be a finite set. The set of operations may
be encoded in the choice of predicates or of literal terms.

may-read(User, Object) :-

foo.

may-write(User, Object) :-

bar.

Figure 1: One predicate per operation

may(User,Object,read) :-

foo.

may(User,Object,write) :-

bar.

Figure 2: One literal per operation

In either case, every supported operation must be explicitly
included. These are give in pseudo-Prolog syntax, so a single
predicate with a disjunction is represented as two statements
in figure 2. A request can be indirectly described by a set of
assertions which are automatically added to the compliance-
checker’s environment. Such assertions can be either logic
statements or simple key-value bindings, as in KeyNote’s ac-
tion environment. [27, 18]. For n such constructs appearing
in the policy, at most 2n distinct combinations are possible.
There is no natural means for specifying a policy when the
set of operations is potentially infinite.

Also, the range of checks and operations a policy writer
might like an application to make available is large and grow-
ing. A person concerned about media files being leaked to
the public might want a policy which says “Transfers to re-
questers who are only moderately trusted must include the
addition of a watermark with the requester’s identity” so
that the lineage of the leaked copy could be traced. Existing
security logics define a specific mapping between certain ob-
servable facts and statements in the logic (e.g. a signed cer-
tificate could map to Bob says IsStudent(Alice) in Dele-
gation Logic), but there is no way to add mappings for new
types of facts or operations.

3.2 Access Control through Type-checking
We propose to frame the problem of verifying an access re-
quest as deriving a type of permitted for the statement of
the request, rather than proving the proposition that the
request is permissible.

If the request is atomic, the two formulations are clearly
equivalent. That is, the proof that permitted(R) using a
given logic l from the set of proposition P which represent
a policy P ⊢l permitted(R) is isomorphic to the derivation

of R : permitted using a type system t from the set of typ-
ing judgments p which represent the same policy P ⊢t R :
permitted. We propose the following refinements:

First, policies can be represented as type systems in a meta-
language [25] rather than judgments in a fixed system. A
policy can be written to contain the rules of an existing
logic [28, 8, 7, 18] with properties the author desires, and
propositions in that logic can be rewritten as axioms of the
type system. That is, with a slight abuse of notation P ⊢l

permitted(R) can be represented as P ∪ l ⊢ R : permitted.
This effectively gives the policy writer a choice of existing
or future policy logics, within the limits of what is repre-
sentable in the meta-language.

Second, requests need not be atomic, nor have a fixed struc-
ture. Earlier, we raised the problem of complex requests.
Consider an application which supports requests such as
“encrypt a high-resolution, desaturated version of image Y
with public key K and send it” instead of a fixed set of op-
erations. If requests are given atomic representation in the
access control process, all possible requests might need to
be enumerated in an object’s policies, which could be inef-
ficient or impossible. We propose that requests be specified
as statements in a formal language, with application-specific
interpretation. This permits a type system to be written
which uses syntax-directed reasoning to evaluate a request,
and allows arbitrarily many distinguishable requests with
even a small number of constructs appearing in a policy. A
minimal example request, shown as an abstract syntax tree,
is given in figure 3.

Figure 3: Request AST

An example policy fragment is given in figure 4. The no-
tation is described in appendix A. This specifies that an
any quality action may be granted for trusted addresses,
that a low quality action may be granted for any address,
and that a list of operations containing a downsample op-
eration is low quality. Thus, it will be possible to derive
a type of permitted for the request whose abstract syntax
tree is shown in figure 3 if 127.0.0.1 is typed as an ipaddr or
trusted ipaddr.

3.3 Credentials
Thus far, we have not considered the interpretation of the re-
quest, only its typing. All that is strictly required is that the



Low video image allowed to any IP
Γ ⊢ recipient : ipaddr Γ ⊢ action : low quality

Γ ⊢ (request recipient action) : permitted

Any quality image allowed to trusted IP

Γ ⊢ recipient : trusted ipaddr Γ ⊢ action : any quality

Γ ⊢ (request recipient action) : permitted

Joining two any quality operations gives another

Γ ⊢ head : any quality Γ ⊢ tail : any quality

Γ ⊢ (cons head tail) : any quality

Joining a low q. and any q. gives low q

Γ ⊢ head : low quality Γ ⊢ tail : any quality

Γ ⊢ (cons head tail) : low quality

Likewise the opposite order
Γ ⊢ head : any quality Γ ⊢ tail : low quality

Γ ⊢ (cons head tail) : low quality

Γ ⊢ (rotate) : any quality

Γ ⊢ (compress) : any quality

Γ ⊢ (downsample) : any quality

Γ ⊢ (downsample) : low quality

Figure 4: Example partial policy

request means something to the application, and that poli-
cies are written with this same interpretation. That said,
there are two main kinds of statements which an applica-
tion needs to support to enable interesting security policies:
Descriptions of the service requested, and assertions of the
requester’s credentials. As an example of the latter, consider
a cryptographically signed certificate vouching for some fact
about the requester. Such a credential might be represented
as in figure 5. In that request, the “downsample” operation
has been replaced with a compression, and a certificate is
provided to establish the trustworthiness of the destination.

For a credential to be meaningful, it must be relevant to
assigning a type to the request, and must also be true. The
former is purely a formal property of the syntax tree and the
policy’s typing rules, and is thus not specific to credentials.
However, credentials tend to be claims of something, which
motivates the use of parametric types to describe them. The
LF framework [26] allows a signature (policy) to specify not
only specific types, but also rules for rules for new types:

∀ introduction
X /∈ ∆∆ ∪ {X} ⊢ t : type

∆ ⊢ ∀X(t) : type

Figure 5: Credential AST

∀ elimination
∆ ⊢ ∀X(t) : type∆ ⊢ t′ : type

∆ ⊢ {t′/X}t : type

(parametric) claim types

∆ ⊢ t : type

∆ ⊢ t valid claim : type

Using these polymorphic types, one can define generalized
typing rules for the role of certificates: Essentially “a cer-
tificate signed by a trusted key promotes any type ‘foo’ to
’valid claim of foo”’ and “the ‘certifies’ construct applies a
certificate to a specific type.”

Γ ⊢∆ raw : byte arrayΓ ⊢∆ key : trusted key

Γ ⊢∆ (x.509cert raw key) : ∀X(X → X valid claim)

Γ ⊢∆ cert : t → t valid claimΓ ⊢∆ claim : t

Γ ⊢∆ (certifies cert claim) : t valid claim

Such a claim type can be used in rules such as “given a
trusted certificate to the effect that a specific address is
trusted, a transfer to that address is a transfer to a trusted
destination.”

Γ ⊢∆ cert : X good addr valid claimΓ ⊢∆ ip addr : X

Γ ⊢∆ (trusted dst cert ip addr) : trusted ipaddr

Determining the truth of a credential requires assigning an
interpretation to the request and checking this interpreta-
tion against actual fact. That is, in figure 5, the byte array
under raw key must actually be an x.509 certificate signed
by the given public key, and the data signed must correspond
to the claim given.

3.4 Request Generation and Verification



As a request defines not just the requester’s desired con-
clusion (“this operation is permitted”) but also the justi-
fication, it cannot be generated without knowledge of the
policy which is to be satisfied. The generation of a satis-
fying request is essentially a standard proof-search process,
but there are a several significant restrictions:

1. The resulting AST must be semantically meaningful.

2. The meaning must correspond to the requester’s de-
sired operation.

3. The meaning must be factually correct.

Restrictions 1 and 2 can be additional formal constraints for
the theorem prover, but restriction 3 requires application-
specific extension. The application needs to know what cre-
dentials it can supply, which can include context-specific
facts such as “my IP address is X.” The process of gen-
erating such a request can be arbitrarily time consuming,
and even undecidable, depending on the choice of logic, but
empirical studies suggest that it can be relatively efficient.[7]

The process of generating a request and type derivation
can be separated from the process of verification, so that
the requesting client performs the computationally intensive
tasks. If the client sends the server peer its request and the
associated type derivation, the server peer need only ver-
ify the derivation and check the factual statements in the
request.

3.5 Integrity Checking
Integrity statements (the analog of requests) can be gener-
ated and verified in the same way. The semantic content
of the credentials involved is more likely to pertain to the
data itself than the identity of the server peer, but an in-
tegrity policy based on the trustworthiness of the distributor
is plausible as well.

4. THE Q SECURITY FRAMEWORK
The goal of the Q security framework is to (1) enable an
object creator to express her or his security requirements
for that object as a set of policies and (2) enable all nodes
that move, copy or adapt the object within a network to
enforce that policy. An object creator can be as selective as
she may desire in which nodes are allowed to have an object,
but it is beyond the scope of this work to compel nodes to
faithfully enforce policies.

Q defines a standardized but extensible language to describe
requested or performed actions on a data object, and policies
are expressed in the form of type systems for that language.
Any authorization or integrity checking can be modeled as
an attempt to derive the intended type for policy statements.
This allows for reasoning about an infinite set of potential
requests using a finite set of judgments and induction on the
structure of the language.

In this section, we first describe how a general protocol can
be defined to enforce policies, and then discuss the request
language and processing mechanism. We address perfor-
mance and scalability issues at the end of this section.

4.1 Protocol
A protocol that should be compatible with a wide range of
applications is shown in Figure 6. Before a data object starts
to travel from node to node, its creator will attach a “policy
descriptor” with the object, which specifies the policies to
be enforced on this object. Every node, upon the receipt of
a data object, will receive the object’s policy descriptor in
addition to the data itself.

In the following we focus on the interchange between the
peer requesting an object (referred to as a client peer) and
the one providing it (referred to as a server peer). The
security framework is protocol-neutral with regard to how
peers are selected, the nature of the request and data, and
over what mechanism requests are transmitted.

Primergy

Primergy

Primergy

Primergy

ObjectID, Policies, Data

Secured Exchange
Client Peer

Server Peer

ObjectID
Integ. Policy

Intermediate Node(s)
Creator

Figure 6: General Context

Before the interchange begins, it is assumed that the server
peer has the object and knows the object’s access policy and
integrity policy, and that the client peer knows the object
ID and integrity policy. Both peers must have stored or be
able to generate any credentials or facts required to create
and validate claims.

Client peers are responsible for generating a proof that their
request complies with an object’s access control policy. The
proof generation process is computationally intensive and
the execution time is unbounded and policy-dependent. Be-
cause client peers are likely to be more numerous than server
peers, have more discretion over opening connections, and
have greater incentives and trust in the object’s originator,
it is advantageous to assign the bulk of proof-generation to
those systems.

Typing

C
lie

nt
 P

ee
r

Se
rv

er
 P

ee
rAccess Pol., Capability Pol.

Request Claim, Typing

Object ID

Response, Integrity Claim,

Figure 7: Request Protocol



As shown in figure 7, the client peer first requests the access
policy from the server peer, and then searches for a claim ex-
pression which uses only known true facts, describes the de-
sired transfer and satisfies both peers’ capability policies and
the access policy. This claim, along with its typing deriva-
tions, is sent to the server peer. The server verifies that
the claim is factually correct, and then checks the typing
derivations. If both are OK, the transfer is authorized. Fol-
lowing a symmetrical process, the server generates a claim
that it properly fulfilled the request, and sends that claim
along with a typing derivation to the client for verification.
As the acceptance policy for any given object is fixed, and
a small number of objects tend to account for the bulk of
requests in many systems [9] it is likely that the server peer
can cache proofs for common requests.

4.2 Claim Language
4.2.1 Core Language
The language of access requests and integrity assertions has
been described as application-specific. Within any given ap-
plication, requests and facts must have well-defined shared
meanings to be of any value, so the claim language has fixed
semantics. The elements of the claim language constrain
what information a policy can reason about, but not what
sort of reasoning process is used.

Further, there are a number of constructs which seem likely
to be useful in a wide range of applications, such as those
identifying hosts, communication channels, times, data trans-
formations and cryptographic operations. Defining a core
language which provides these makes it possible to write
cross-application policies and increases the potential for code
reuse.

4.2.2 Extensibility
Any application may freely extend the given core language
with its own domain-specific primitives without having to
modify the security framework or introducing incompatibil-
ity. Claim generation is a purely formal process: it can use
any application-supplied construct allowed by the relevant
policies without needing to know anything about its inter-
pretation.

To extend the claim language with a given construct, an ap-
plication must add types for it to the language definition,
and must be able to assign truth or falsity to it when fact-
checking claims. For the extension to be useful, that truth
assignment should have some consistent meaning across those
applications which implement the extension and any poli-
cies which refer to it. The image manipulation operations
mentioned earlier are examples of application-specific con-
structs, as is video layer selection in section 5.3.

It is worth noting that security-related functions which are
not explicitly a part of Q, such as data encryption, content
watermarking, or steganography can be supported by ex-
tensions (if needed), and their use can be a required by Q
policies.

A construct can only appear in a (valid) claim if both the
generating and receiving peer include it in their language
definitions, so it will not be used unless all parties support
it.

4.2.3 Contraction
In addition to extending the language, an application or in-
dividual peer can contract it. If there is any function which
a peer is unable or unwilling to support, the peer can pre-
vent its use by removing the associated construct from its
language definition. This will cause the request generation
process not to consider requests using that construct.

4.3 Policy Processing
Policies in Q are systems that assign types to claims. This
offers two key advantages over representing them as logic
programs as previous systems have done: First, the policy
represents the logic itself in addition to a set of propositions
in the logic. This gives the policy writer the flexibility to
define a system that is equivalent to any of the existing
security logics, or any future logic, so long as the language
to encode policies is sufficiently expressive. Second, this
allows syntax-directed reasoning about structured requests,
rather than regarding requests as atomic.

Q represents policies as signatures in the dependently-typed
lambda calculus λΠ, which is the type system underlying
the LF logical framework[16]. LF is one of the most general
systems with well-understood characteristics, and is suffi-
ciently expressive that all of the security logics discussed can
tractably be represented in it. LF, specifically the Twelf [26]
implementation, is used for representing logics in Bauer’s
proof-carrying authorization [7] and Appel’s and Necula’s
proof-carrying code [5, 20]. Several other security languages
were either designed, as in the case of Delegation Logic [18]
or subsequently discovered, as in the case of KeyNote and
SPKI/SDSI[19] to be reducible to simple logics which are
representable. A Q policy can thus be written to reason in
at least the manners given in those systems.

There are extensions to LF’s type system such as Linear
LF, which [10] allows for use of linear contexts, and λP≤

which provides for fuller subtyping. [10, 6] An especially
nice property of linear contexts is that they provide a flexible
way of implementing credential thresholds. Linear LF would
be a more flexible meta-language for policies than LF, but
there has been less work on automated reasoning systems
for it.

4.4 Performance and Scalability
This security framework does not impact the asymptotic
complexity of any peer-to-peer system to which it is added.
A constant amount of state is required per object per node to
hold the applicable policies. Communication is only required
when an object is requested, and only between the hosts
involved in that request. The protocol given in section 4.1
requires two round-trip times, plus some computation time.
At least one round-trip can always be combined with the
actual data transfer, so only one is added. The message sizes
are increased by the sizes of the policies, claims and typing
derivations. Those sizes depend primarily upon the policy,
which is a user-controlled variable. Higher-order logics are
potentially undecidable, so the computation time, claim size
and type derivation size are theoretically unbounded, but an
application can try to avoid excessive time or message size.



5. SECURING PEER-TO-PEER NETWORKS
WITH Q

5.1 Unstructured Overlays
In networks such as Gnutella [15] any object could be, but
need not be, located at any node. This is the simplest sce-
nario for applying Q: Any node which has an object just
responds to searches for it. Once a transfer is requested,
authorization and integrity are verified as given in section
4.1.

As an optional enhancement, the nodes having an object
could attempt to evaluate whether the searcher could be au-
thorized to receive the file, and only respond if so. A server
peer can use automated theorem proving techniques to de-
termine whether the known data (such as the requester’s IP
address) preclude a compliant request. If not, there is some
possible request from the host which would satisfy the pol-
icy. Having server peers do so increases their computational
workload but reduces network traffic by suppressing useless
query replies. This also reduces the likelihood that clients
will issue requests which will be refused. As a further en-
hancement, query responses could include the policy for the
requested object. This would increase the query response
message sizes, but entirely prevent the waste of clients issu-
ing requests which will be refused.

5.2 Distributed Hash Tables
DHTs rely on fixing the location(s) within the overlay where
given objects are stored. If those nodes are not permitted to
hold the objects in question, then the scheme is broken. This
is not a limitation of Q specifically, but rather an inherent
negative interaction between access control and structured
overlays.

This problem can be largely alleviated if the DHT is used to
store pointers to objects rather than the objects themselves,
and if the pointers are presumed to have no access control
restrictions.

5.3 Peer-to-Peer video streaming
It is fairly easy to imagine that a layered video might have
different security requirements for different layers, so as to
provide for different levels of service to paying and non-
paying viewers Especially if there are many levels of dis-
tinction, building a single distribution mesh with a single
(differentiated) policy is more efficient than building sepa-
rate meshes for every possible level.

Similarly, it is possible that a provider might want to allow
any receiver to request excerpts of up to a certain length,
or allow on-the-fly conversions between some formats but
not others (to retain copy or use restriction features, for
example).

Neither video layering nor format conversion are likely to
appear in a generic claim language; to allow for security
policies concerning these, a domain-specific language exten-
sion is required.

5.4 HTTP Swarming
Swarming [30] has been proposed as a mechanism for allow-
ing hosts with modest bandwidth to serve large audiences.

New peers first contact the centralized host and then dis-
cover other peers with the desired content. Since clients
are already contacting the host, a simple policy might be to
require tokens from the server before authorizing a transfer.

5.5 Application-level routing
Overlay networks can be used to route data through inter-
mediate hosts rather than directly from the source to the
destination at the IP layer. This is used to enhance reliabil-
ity and performance in systems such as RON[4], for security
as in proxy firewalls, or to mask the identity of either par-
ticipant.

For such applications, a security policy might wish to re-
strict the set of hosts through which data may be routed,
require end-to-end encryption for transfers through semi-
trusted hosts, or otherwise place limits not only on the end-
points of a transfer but also on the path.

Such policies are made possible by defining the claim lan-
guage to allow a single request to include multiple sub-
requests such as a sequence of transfers.

6. RELATED WORK
A number of policy languages and access control mecha-
nisms have been defined for client-server data transfer [8,
27, 28, 2]. These systems represent policies as sets of state-
ments in some specified proof system, and access is permit-
ted if the conclusion that a request should be granted can
be proven using those statements as premises. Early sys-
tems such as KeyNote [27] and SPKI/SDSI [28] were not
explicitly framed as logics, but are equivalent[19]. Many of
these logics incorporate the ideas of trust management or
distributed authentication. Such systems assume a central-
ized authorizer for any given request, but that authorizer
incorporates claims by other parties (represented by cryp-
tographically signed assertions) into its own set of premises,
subject to its level of trust in those parties. This approach
has been formalized and extended by Delegation Logic [18]
and AF Logic [7], both of which provide generalized logics
for reasoning about security relationships.

Proof-Carrying Authorization (PCA) optimizes this notion
by placing the onus of proving that a request is permissible
on the client, and give the server the computationally easier
and less error-prone task of proof verification.

Distributed authentication [7, 13] avoids the need for either
a client or server to be in possession of all the relevant infor-
mation and credentials when a request is made, by providing
for automatic fact-gathering. In Bauer’s system, there are
“fact servers” which recognized as authoritative sources for
specific propositions, and are available to interact with the
client. This approach adds requirement that fact servers be
knowable and reachable, which may not be the case in a
peer-to-peer context.

Usage Control (UCON), of which “Digital Rights Manage-
ment” [14] (DRM) is a subset, is related to our work in that
both involve the representation and application of per-object
policies, but the focus of research is different: We are trying
to answer the questions how should policies be represented?
and how should the acceptability of a proposed action be de-



termined? while UCON and DRM are more concerned with
how should unacceptable actions be prevented? [22].

Sadhu and Park classify UCON architectures in terms of
where the reference monitor, which provides a point of con-
trol, is located[29]. None of the architectures given are suf-
ficiently general to wholly support a system such as we de-
scribe: Server-only control (SRM) precludes releasing clear-
text to clients at any time, which limits its utility to ap-
plications in which a central server is constantly available.
Client-side control (CRM) requires tamper-resistant hard-
ware for meaningful security, which limits the range of users
and devices for which it will be acceptable.

7. CONCLUSIONS
Existing authorization systems, including distributed au-
thentication, have relied on common administrative control
to support objects being distributed from a single host or
a fixed set of mirrors, but do not support open set of in-
dependent systems. Existing distribution mechanisms, such
as swarming , Gnutella and Freenet allow a dynamic associ-
ation between hosts and objects, but provide no per-object
policy control. [15, 30, 11]

In this paper, we have presented two complementary secu-
rity paradigms, cooperative policy enforcement and request
type-checking, and outlined a design for a system which im-
plements them. Cooperative policy enforcement provides for
per-object access control and content-appropriate integrity
checking, even when the group of hosts distributing an ob-
ject is large and dynamic. A host can acquire objects dy-
namically and begin distributing them under the correct
policies without administrative intervention.

Request type-checking allows security policies to reason about
arbitrarily complex requests and allows applications to de-
fine arbitrary policy criteria. Not only the identity and cre-
dentials of the requester, but also the nature of the operation
requested can be a factor in whether a request is permitted.

Our approach also enables application-specific criteria for
access control and integrity, rather than limiting policies to
the set of criteria considered by a logic’s designer. By al-
lowing applications to determine the factual correctness of
a request, and policies to define their own logics, anything
performable by an application can be considered by a secu-
rity policy, ranging from network topology measurement to
watermark checking, acoustical signature verification, and
natural language processing for format-independent docu-
ment integrity checking.

8. ACKNOWLEDGEMENTS
The authors would like to thank Daniel Zappala, Reza Re-
jaie and Zena Ariola for their insightful comments on pre-
vious drafts of this paper. I am additionally indebted to
several anonymous reviewers whose suggestions have been
invaluable.

9. REFERENCES
[1] M. Abadi. Logic in access control. In Proceedings

IEEE Symposium on Logic in Computer Science,
pages 228–233, June 2003.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.
A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and
Systems, 15(4):706–734, September 1993.

[3] M. D. Abrams and P. B. Schneck. Controlling primary
and secondary access to digital information. In
Proceedings of the 23rd National Information Systems
Security Conference NISSC, 2000.

[4] D. G. Andersen, H. Balakrishnan, M. F. aashoek, and
R. Morris. The case for resilient overlay networks. In
HotOS-VIII, May 2001.

[5] A. W. Appel. Foundational proof-carrying code. In
Logic in Computer Science, 2001.

[6] D. Aspinall and A. Compagnoni. Subtyping dependent
types. Theoretical Computer Science,
266(1-2):273–309, Septeber 2001.

[7] L. Bauer, M. A. Schneider, and E. W. Felten. A
general and flexible access-control system for the web.
In Proceedings USENIX Security Symposiumm, pages
93–108, August 2002.

[8] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173,
May 1996.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
evidence and implications. In Proceedings of
INFOCOM, 1999.

[10] I. Cervesato and F. Pfenning. A Linear Logical
Framework. Information & Computation,
179(1):19–75, November 2002.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. Lecture Notes in Computer
Science, 2009:46+, 2001.

[12] J. DeTreville. Binder, a logic-based security language.
Technical Report MS-TR-2002-21, Microsoft, 2002.

[13] J.-E. Elien. Certificate discovery using SPKI/SDSI 2.0
certificates. Master’s thesis, Massachusetts Institute of
Technology, 1998.

[14] J. S. Erickson. Fair use, drm, and trusted computing.
Communications of the ACM, 46(4):34–39, 2003.

[15] Gnutella. http://gnutella.wego.com/.

[16] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. In Proceedings 2nd Annual IEEE
Symp. on Logic in Computer Science, LICS’87,
Ithaca, NY, USA, 22–25 June 1987, pages 194–204.
IEEE Computer Society Press, New York, 1987.

[17] C. E. Landwehr. Formal models for computer security.
ACM Computing Surveys, 13(3):247–278, September
1981.



[18] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed
authorization. ACM Transactions on Information and
Systems Security, 6(1):128–171, February 2003.

[19] N. Li and J. C. Mitchell. Understanding SPKI/SDSI
using first-order logic. In Proceedings of IEEE
Computer Security Foundations Workshop, June 2003.

[20] G. C. Necula. Proof-carrying code. In Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, Jan. 1997.

[21] D. of Central Intelligence. Control of dissemination of
intelligence information. Directive No. 1/7, May 1981.

[22] J. Park and R. Sadhu. Towards usage control models:
Beyond traditional access control. In Proceedings of
the 7th ACM Symposium on Access Control Models
and Technologies SACMAT, June 2002.

[23] J. Park and R. Sandhu. Security architectures for
controlled digital information dissemination. In
Proceedings of ACSAC 2000, 2000.

[24] J. Park and R. Sandhu. Originator control in usage
control. In Proceedings of POLICY 2002, 2002.

[25] F. Pfenning. The practice of logical frameworks. In
H. Kirchner, editor, Proceedings of the Colloquium on
Trees in Algebra and Programming, pages 119–134,
Linköping, Sweden, 1996. Springer-Verlag LNCS 1059.

[26] F. Pfenning and C. Schürmann. System description:
Twelf — A meta-logical framework for deductive
systems. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy,
1999. Springer-Verlag LNAI 1632.

[27] The keynote trust management system version 2.
IETF RFC 2704, September 1999.
http://www.ietf.org/rfc/rfc2704.txt.

[28] R. L. Rivest and B. Lampson. SDSI – A simple
distributed security infrastructure. Presented at
CRYPTO’96 Rumpsession, 1996.

[29] R. Sadhu and J. Park. Usage control: A vision for
next generation access control. In V. Gorodetsky,
L. Popyack, and V. Skormin, editors, Computer
Network Security: Second International Workshop on
Mathematical Methods, Models, and Architectures for
Computer Network Security, MMM-ACNS, pages
17–31, St. Petersburg, Russia, September 2003.

[30] D. Stutzbach, D. Zappala, and R. Rejaie. Swarming:
Scalable content delivery for the masses. Technical
Report UO-CIS-TR-2004-1, University of Oregon,
January 2004.

APPENDIX
A. NOTATION
We use the following notation for logic and types in this
paper. Inferences rules are represented as:

PremisePremise

Conclusion

Conclusions derivable from no premises (axioms) are pre-
sented as:

Conclusion

The symbol Γ refers to a mapping from variable names to
types, and statements of the form “Γ ⊢ x : t” mean that
the given mapping establishes that expression x has type
t. Similarly, ∆ refers to a set of type variables, and “∆ ⊢
t : type” means that ∆ establishes that t is a valid type.
“Γ ⊢∆ x : t” is a statement that under Γ and ∆ x is an
expression of type t. Type substitution is denoted as follows:
{t′/X}t means “t with all occurrences of (free variable) X
replaced with t′.

Language literals are given in monospace font, and meta-
syntactic variables are italicized.

Thus,

Γ ⊢∆ cert : t → t valid claimΓ ⊢∆ claim : t

Γ ⊢∆ (certifies cert claim) : t valid claim

should be read as “A certifies node with two children has
type t validclaim in a given context if in the same context
the first child has type t → t valid claim and the second
has type t.” Implicitly, t must be valid type in that context.


