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The existence of “self-fulfilling” solutions, driven by extraneous stochastic
processes known as “sunspots,” was initially demonstrated by (Shell 1977),
(Azariadis 1981), (Cass and Shell 1983), (Azariadis and Guesnerie 1986) and
(Guesnerie 1986) in simple stylized models, such as the Overlapping Gen-
erations model of money. More recently the existence of such solutions in
linearized versions of Real Business Cycle models with distortions has empha-
sized the possibility that sunspot equilibria may provide a way of accounting
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for macroeconomic fluctuations. For the recent literature see (Guesnerie and
Woodford 1992), (Farmer 1999) and (Benhabib and Farmer 1999).

A question that has arisen in this literature concerns the attainabil-
ity of sunspot equilibria. That sunspot solutions could be stable under
adaptive learning was demonstrated for the basic Overlapping Generations
model by (Woodford 1990), and conditions for local stability under adaptive
learning were provided in (Evans and Honkapohja 1994b) and (Evans and
Honkapohja 2002) for one-step forward looking univariate nonlinear mod-
els.! The solutions considered in these papers take the form of a finite state
Markov process, a type of solution that is prominent in the theoretical lit-
erature and described at length, for example, in (Chiappori, Geoffard, and
Guesnerie 1992)

For linear models with predetermined variables, (Evans and Honkapohja
1994a) considered the stability under learning of sunspot solutions taking an
autoregressive-moving average form, but their analysis did not take up the
stability of finite state Markov solutions. Indeed, until the work of (Davila
1997), it was not generally recognized that finite state Markov sunspot so-
lutions could exist in models with predetermined variables.? (Ddvila 1997)
and (D4vila and Guesnerie 2001) give conditions for existence of finite state
Markov solutions in both linear and nonlinear nonstochastic models with
memory. It is not at all obvious whether analogous solutions exist in stochas-
tic models with memory, and these solutions have not been analyzed for sta-
bility under adaptive leaning. By restricting attention to linear models we
here are able to examine both of these issues.

In the current paper we show how to extend Dévila’s existence result to
stochastic models with a predetermined variable, and we analyze the sta-
bility under learning of noisy sunspot equilibria driven by k-state Markov
processes. In the process of obtaining our results we uncover another class of
solutions that has not previously been noted. These solutions, like the finite
state Markov solutions, depend on an extraneous exogenous k-state Markov
process, but do not, even in the absence of intrinsic noise, take on a finite
number of values. We characterize these solutions and also analyze their
stability under adaptive learning.

! (Desgranges and Negroni 2001) have obtained conditions for eductive stability of two-
state Markov stationary sunspot equilibria in an overlapping generations model.

2 An exception is (Howitt and McAfee 1992). However this model relied on a nonlinear
model that produced multiple steady states. (Evans, Honkapohja, and Romer 1998) also
relied on finite state Markov sunspot equilibria near distinct steady states.



We begin by defining the notion of a noisy k-state Markov stationary
sunspot equilibrium (noisy k-SSE); this is the natural generalization of a
k-state Markov sunspot to a model with intrinsic noise. It is then straight-
forward to show that such equilibria exist provided k-state sunspot equilibria
exist in the associated non-stochastic model, and to show that this existence
result obtains for parameters in a strict subset of the region in parameter
space corresponding to indeterminacy in the model.

To analyze stability under learning of these sunspot equilibria, we begin
by showing that each of these rational expectations equilibria (REE) can
be obtained as a solution to a member of a certain class of linear difference
equations; we call these equations representations of the equilibria. Repre-
sentations are most easily characterized as fixed points of a map 7', which
takes agents’ perceived law of motion to the corresponding actual law of mo-
tion. This T-map, and hence the corresponding fixed points, will depend on
the transition probabilities 7 of the associated Markov process.

It turns out that even for parameter regions in which noisy k-SSEs exist,
the corresponding transition probabilities 7 must satisfy certain constraints.
On the other hand, whether or not 7 satisfies these conditions, a T-map is
still defined, and to every non-trivial fixed point of this T-map corresponds
at least one associated REE that depends explicitly on the Markov process.
These observations lead us to the following definition. We call any solution to
our representations noisy k-state dependant sunspot equilibria (noisy k-SDSs)
and label by noisy k-*SDS those solutions which are not noisy k-SSEs.

To obtain specific results about the existence of noisy k-*SDSs and to
analyze the stability under learning of noisy k-*SDSs and noisy k-SSEs, we
consider in detail the case k = 2. We find that, provided the model is
indeterminate, noisy 2-*SDSs exist. If agents use the functional form of these
representations as their perceived law of motion (i.e. their regression model)
then provided the parameters are appropriately restricted to be in certain
proper subsets of the region of existence, agents can learn the true form of
the representation, thus implying that the associated sunspot equilibria, be
they noisy 2-SSEs or noisy 2-*SDSs as determined by the model’s parameter
values and the transition array, are stable under learning.

We illustrate these results for a modified version of Cagan’s model and
for Sargent’s extension of the Lucas-Prescott model of investment under un-
certainty to incorporate tax distortions and externalities.



2 The Model

We consider the following model:

Y = BEwWep1 + 0y 1 + vy, (1)

where v; is a white noise exogenous process and F;y;,; denotes the math-
ematical expectation of y;,; conditional on information available at t. We
assume throughout that 3 # 0, 6 # 0 and 3 4+ 6 # 0. Our focus will be on
stochastic versions of the model in which v; is nontrivial, but we will also at
times need to refer to the nonstochastic (homogeneous) model

Yt = BEW1 + 0y, (2)

which appears frequently in the literature. For simplicity of presentation
we have omitted a constant intercept from the model. If instead, say, y; =
i+ BFEwyii1 + 0y: 1 + vy, then the model can be rewritten in the form (1)
where y; is reinterpreted as its deviation from g = pu/(1 — 5 — 6).

(Déavila 1997) showed that finite state Markov solutions to the nonstochas-
tic model (2) could exist provided the Markov process is second-order. We
begin by describing these solutions. For n < k, let S,, be the n'*-coordinate
vector of unit length in R¥, and let AS; be the set of all convex combina-
tions of the vectors S,. Notice that AS} is the k — 1 unit simplex and thus
elements of AS}, represent probability distributions over the “states” S,. A
second order k-state Markov process (with states S,) is a sequence of ran-
dom variables s; and matrix of probabilities m € II;;AS, such that for all
i jon e {1, k},

prob{siy1 = Sylsi1 = S, 8, = S;} = mi5(n).

We identify a k-state Markov process with its transition array m. A k-state
Markov stationary sunspot equilibrium (k-SSE) is a pair (7,7), where 7 is a
k-state second order Markov process and § € R* with 7, # y; for @ # j, is
such that

Y =1 =25 (3)

satisfies (2). We will also sometimes refer to y; as a k-state Markov sunspot,
since 1 itself follows a second-order k-state Markov process.



By explicitly considering the restrictions imposed by the model, we can
obtain a set of linear equations, any solution to which yields a k-state Markov
sunspot of the nonstochastic model. For each m and n write m,,, € AS as
a column vector. If y; satisfies (3) then

By =7, 5 < s 1 =Sy, and s; = S,,.
We conclude that the pair (7,7) is a k-SSE if and only if

Up — OU = By Vn,me {1,--- k}. (4)

(4) represents a homogeneous system of k? linear equations. Thus 7, = 0 for
all 7 is always a solution; this trivial sunspot coincides with the solution y, = 0
to the homogeneous model. Existence of non-trivial solutions requires the
system of equations to be dependant; this requirement imposes restrictions
on the possible values of the parameters. Further restrictions are imposed by
the requirements that the 7, be distinct (so that the k-state sunspot is not
degenerate) and that the transition array represents legitimate probability
distributions. (Dévila 1997) and (Dévila and Guesnerie 2001) demonstrated
existence for a subset of the parameter space specified in the next section.

It is not obvious that when k-SSEs exist there can also exist analogous
solutions to the stochastic model (1). Because of the dependence of y; on
Y;—1 it seems that the white noise disturbance, which will make any value
of y;_1 possible, might disturb the careful balance required for k-SSEs. Our
first task is to show that this intuition is not correct. Analogues of k-SSEs
do exist in the stochastic model and they exist whenever k-SSEs exist in the
nonstochastic model.

3 Existence of Noisy K-state Markov Sunspots

A rational expectations equilibrium (REE) of the stochastic model is any
process y; which solves (1). We restrict attention to doubly infinite, covari-
ance stationary solutions. For a complete characterization of such solutions
see (Evans and McGough 2002); there it is also shown that the norm of a
doubly infinite, covariance stationary solution will be uniformly bounded in
both conditional and unconditional expectation.

Let z; be a stationary solution to the stochastic model (1) that does not
depend on extrinsic noise; in this paper we will refer to z; as a “fundamentals



solution”. It is well known that there exist such solutions to the noisy model
(1) if and only if the associated quadratic 3a®—a+3§ has at least one root with
norm less than one. (In the next section we will give an explicit expression
for z;). Let ¢, be a solution to the homogeneous model (2) and let y; = z;+,.
Since Fyi1 = Bz + By and g1 = 21 + (44, it is immediate that
y¢ is a solution to (1). If {, is a k-SSE we call y; a noisy k-state Markov
stationary sunspot equilibrium (noisy k-SSE).

Finally, Woodford’s conjecture, that the model must be indeterminate
for stationary sunspot equilibria to exist, holds in both the stochastic and
nonstochastic model, and indeterminacy in either model obtains when both
roots of the above quadratic lie inside the unit circle; see e.g. (Evans and
McGough 2002) for details. Thus if the model’s parameters are such that
k-SSEs exist in the homogeneous model then a stationary fundamentals solu-
tion of the noisy model exists. Combining this observation with the definition
of a noisy k-state Markov sunspot and the restrictions on the model’s pa-
rameters obtained by Dévila, we have the following:

Proposition 1 A noisy k-SSE of (1) ezists if and only if

1L -1<3 <1

+6

[y

For given parameter values satisfying these conditions, the system (4) can
be used to construct a k-SSE; in Section 6 we construct k-SSEs for the case
k = 2. Note further that since the system (4) is homogeneous, the existence
of one non-trivial solution implies the existence of a continuum of non-trivial
solutions.?

Finally, we remark that the region specified in Proposition 1 is a proper
subset of the indeterminacy region. The latter is given by the union of the
two regions (i) f+ 6 > 1 with || < |5| and (ii) 5+ 6 < —1 with |§] < |0

4 Representations

We now distinguish between a rational expectations equilibrium (REE) and
a rational expectations equilibrium representation (REER). As mentioned

3The system (4) can be obtained from Dé4vila’s paper by noting that the solution set
to the ij'"-equation in (4) is equivalent to his manifold V;;.
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above, an REE of the noisy model is any stochastic process 3; which satisfies
the associated expectational difference equation (1). An REER of the noisy
model is a linear difference equation, any solution to which is an REE. The
importance of this distinction stems from the fact that the analysis of stability
under econometric learning requires the specification of an REER; in fact,
most accurately, it is the representation, not the REE that is or is not stable
under learning. Furthermore, the stability of a particular REE may depend
on the associated representation induced by the perceived law of motion;
for a detailed analysis of these topics, see (Evans and McGough 2002). In
this section, we develop representations of noisy k-SSEs that can be used to
analyze their stability under learning.

Representations can be obtained as fixed points of a T-map, and thus we
begin with its construction, which will be greatly facilitated by the following
lemma:

Lemma 2 Let A be a k x k matriz. Then there exists matriz B = B(A),
depending on m, such that

/ /
EtStASH_l = StleSt-

We include the proof here, in the body of the paper, because it is constructive

in nature and we will require the construction again in Section 6. We employ

the following notation: if A is an ny X m; matrix and B is ny X ms then their
direct sum is an (ny 4+ ng) X (my + ms) matrix given by

A 0

A®B= { 0 B } .

Proof of Lemma 2. Let 7(i) be the matrix (m,,,(7)) and observe that if
Ais a k x 1 vector whose entries are each one, then

Et3t+1 = (@isg,lﬂ(i)st) . (5)
Then

EisiAsiyn = SiA (@8, m(i)se) A
N (®is_ym(i)sy) A's,
= s, [m(1)sg, -, m(k)s] A'sy. (6)



Now let C™ be the k x k matrix whose m"-column is the n*"-column of 7(m)
and B be the matrix whose n'*-column is the n*-column of C"A’. Then for
all possible s; and s; 1 we have that the right hand side of (6) is equal to
s, |Bs;.'m

To construct the T-map, we begin by specifying a perceived law of motion
(PLM), that is, a functional form of the representation in terms of parameters
(coefficients) and observables; the input of the T-map is the collection of
coefficients. Agents are assumed to form their expectations using this PLM.
We now interpret the model (1) as holding outside of an REE, so that

Y = BE Y1 + 6yp—1 + v, (17)

where E;y,.1 denotes the forecast corresponding to the PLM. Inserting these

expectations into the reduced form model (1°) yields the actual coefficients

on the observables; the associated difference equation is called the actual law

of motion (ALM), and its set of coefficients is the output of the T-map.
Using the above lemma as a guide, we take our PLM to be

Y = ays—1 + Sy, As; + buy. (7)

For any real number z, denote by I;(z) the k x k matrix with z in each
diagonal entry and zeros elsewhere. Now notice that

E'yn = a’ye 1 +abys, (As+ s, (B(A)s; + abu
= a’yi1 +5,_y (I(a)A+ B(A)) s; + abu.

Inserting this into the reduced form equation (1) yields the actual law of
motion (ALM) and thus determines the output of the T-map.® Set

oo
~—

Tl(a) = ﬁCLQ + )
Ty(a, A) = Ii(B) (Ix(a)A+ B(A))
Tg(a, b) = ﬁab + 1. (

=~
[e=JNNe)
~— ~—

4For an explicit expression for B(A) see the proof of Proposition 3.

SImplicitly we are assuming that when expectations are formed the information set
includes s;,8; 1,v; and y;—1 but not y,. See (Evans and McGough 2002) for further
details and a discussion of the case in which y; is also included in the information set.



Then the ALM can be written
g = Ti(a)ye—1 + sp_1To(a, A)se + Tx(a, b)vy.

Notice that a fixed point of the T-map determines a representation of an
REE. We denote by Q (7) C R x R*¥** x R the collection of fixed points of
T; the index 7 reflects the fact that the T-map, and hence the set of fixed
points, depends on the matrix of transition probabilities .

The form of the PLM (7) restricts the set of representable noisy k-SSEs in
the following way. Recall that a noisy k-SSE v, has the form 2, + ¢, where z;
is a fundamentals solution to the stochastic model. If 3; has a representation
of the form (7) then we can take z to have a representation of the form

2 = azi—1 + buy. (11)

Assuming the model is indeterminate and that the roots of the associated
quadratic are real, it can be shown that there are precisely two stationary
solutions of the form (11). These are given by

5= (1—aL) ' (1— Ba;) vy = (1— Ba) 'Y alvy, (12)
=0

for i = 1,2, where the a; are roots of 3a® — a + §; see (Evans and McGough
2002) for details®. Here L denotes the lag operator defined by Ly, = y;_1 and
we note that the indicated sum can be shown to converge in mean square.
Because of their parsimonious representation, these REE are often called
minimum state variable (MSV) solutions. We have the following result.

Proposition 3 Assume the parameters of the model are such that noisy k-
SSFEs exist and the a; are real. Let vy, be a stationary rational expectations
equilibrium. Ify, = zi+(, is a noisy k-SSE with associated transition array T,
then there exists a point (a, A,b) € Q () such that y; = ayi—1 + s, Asy+buy.

Proof. See Appendix.

Note that (a;,0, (1 — Ba;)™!) € Q(w) so that Q(7) is not empty. We say
that Q (7) is non-trivial if it contains points other than (a;,0, (1 — Ba;)™?1).

6The quadratic has real roots if and only if 36 < %. If the roots are nonreal there still
exists a solution, driven by vy, taking the form 2, = (1 — 'L + g7'6L%)~1(1 — BL)v,.
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The above result verifies that there are non-trivial fixed points to the T-map.
Furthermore, it shows that any noisy k-SSE whose particular solution is an
MSYV solution can be represented as a fixed point of the T-map.

In the following sections we will use the T-map to analyze stability under
learning of noisy k-SSEs, using the E-stability principle. This will enable
us to provide additional model parameter restrictions required for learning
stability. However, the above proposition also raises an interesting question:
Are there REE having representations of the form (7) that are not themselves
noisy k-SSEs? To address this question more formally we make the following
definition: A noisy k-state dependant sunspot equilibrium (noisy k-SDS) is
any process ¥y satisfying (7) for some transition array 7 and associated fixed
point (a, A,b). Obviously, a noisy k-SSE is a noisy k-SDS; thus, to provide
a distinction, we label with “noisy k-*SDS” the noisy k-SDSs that are not
themselves noisy k-SSEs. The following natural questions arise.

1. Do k-*SDSs exist?
2. If so,

(a) are they stable under learning?

(b) if the transition array m corresponds to a noisy k-SSE, then do
noisy k-*SDSs exist with respect to this 77

The relevance of question 2, b, is the following: if no such k-*SDSs exist,
then, when we show stability under learning, we can be confident that our
agents are learning a noisy k-SSE, and not a noisy k-*SDS. These questions
appear difficult to address in the general case. For the case k = 2 we will
find the answers to be “yes”, “sometimes”, and “no”, respectively.

5 E-stability

Write 6 = (a, A,b) and T(0) = (T1(a), T2(a, A), T5(a,b)). Note that T" maps
R x R*** x R into itself. Let 6 be a fixed point of the T-map. We say #* (and
the associated REER) is E-stable (or “expectationally stable”) provided the
differential equation

o

— =T -0 (13)

10



is locally asymptotically stable at 6. The E-stability Principle says that if
the REER is E-stable then it is learnable by a reasonable adaptive algorithm.
This principle is known to be valid for least squares and closely related sta-
tistical learning rules in a wide variety of models. For a thorough discussion
see (Evans and Honkapohja 2001).”

The definition of expectational stability just given is inadequate when
there is a non-trivial connected set of rest points of the differential equation
(13), as is the case for our model; if €2 () is locally connected then no point in
Q is locally asymptotically stable. In this context we restate the notion of E-
stability as follows: we say that a set of fixed points, (), is E-stable provided
there is a neighborhood U of () so that for any 6y € U the trajectory of
0 determined by the differential system (13) converges to a point in Q). A
necessary condition for E-stability of @) is that for all ¢ € (), the non-zero
eigenvalues of the derivative T'(#) — 0 evaluated at ¢ have negative real part.
Sufficient conditions are more difficult to obtain because of the presence of
zero eigenvalues.®

Assume the parameters of the model are such that sunspots exist and the
roots of the associated quadratic are real. To analyze the stability of ()
in this case, begin by noticing that these real roots are the fixed points of T}
and are given by

1—1I-43 1+I—45%
aqg=————— and aqg= —————.

203 26
It follows that 2 (7) = y (7) U Qg (7) where
Qi (71') = {(ai,A, bz) S Q (71') |bz = (1 - ﬁai)*l}.

Since 77 is decoupled from T, and T3, we can analyze its stability indepen-
dently. We have that DTi(a) = 28a, which immediately implies that the
subsystem in 7T} is locally asymptotically stable if and only if a = a;. Thus
we have the following proposition:

Proposition 4 The set Qs () is not E-stable.

"The connection between statistical learning and E-stability is established using con-
vergence results from the stochastic approximation literature. This technique is described
in (Marcet and Sargent 1989), (Woodford 1990) and Chapters 6 and 7 of (Evans and
Honkapohja 2001).

8For more details and a related conjecture, see p. 245 of (Evans and Honkapohja 2001).
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Note that DT7(a1) < 1, which gives us hope that €, (7) may be E-stable.
Furthermore, DT5(aq,b1) < 1 so that to show € (7) satisfies the necessary
condition for E-stability, it suffices to show that (a;, A,by) € Q () implies
that the eigenvalues of DT5(ay, A) have real part less than one. In general this
appears to be difficult to demonstrate. In the following Section we analyze
the case k = 2.

6 2-State Sunspots

To obtain explicit results concerning the existence and representations of
noisy k-*SDSs, as well as to derive specific stability results for both noisy
k-*SDSs and noisy k-SSEs, we now use the theory set out above to consider
in detail the case k = 2. In the process we obtain a simple method by which
both 2-SSE’s and 2-*SDSs can be constructed. Some of the details presented
below are contained in (D4avila and Guesnerie 2001); we include them here
for completeness.

6.1 Existence of 2-SSEs
The pair (7,7) is a 2-SSE for the model (2) if and only if

(m(1) + 87167, + 71 (27, = 677,
mo2(1)Y; + (m22(2 )+5 )y = B,
(D7 + (121(2) + 6716)7, = 877,
(m12(1) + 71607, + m2(2)72 = 677

The following restrictions are thus implied:

(1) +79(2) = 14+871(1-9), (14)

mr(1) +m2(2) = 1+ 671(1496), (15)
a1y + m11(2)y, = O, (16)
(L4 0ma1(1) = m12(2))yy = (m21(1) — (1 + 6712(2)))7s- (17)

For the sunspot to be non-trivial, it must be that 7, # ¥,, which, by restric-
tions (16) and (17), implies

maa(1) _ m11(2)
1+67T21(1)—7T12(2) 1+67T12(2)—7T21(1)'

(18)

12



Restrictions (14),(15), and (18) can be combined to determine the transition
array up to one degree of freedom. Equation (16) or (17) can then be used
to determine the ratio of the states.

According to the preceding arguments, 2-SSEs exist provided transition
arrays satisfying (14),(15), and (18) exist. The restrictions on the transition
probabilities can be rewritten as

1-6 N
T = ——— + Moo,
11 3 22
Ty = 0 +m (19)
12 ﬁ 22,
o
To1 = — + Tao.
21 3 22
where, for notational simplicity, we write m;; = m;;(1). Set
6—1 6 1
L(B,6) = max{——,—=,—=},
1-6 ) 1
UB,6) = min{l - —21+21- =1,

Imposing 7;; € (0,1) yields the following: A 2-SSE exists if and only if
(0,1) N (L(B,6),U(B,6)) # 0,

where we say (L,U) =0 if U < L. A straightforward argument then shows
that this set is non-empty if and only if 8 and 6 satisfy the restrictions in
Proposition 1.

FIGURES 1 AND 2 ABOUT HERE

In Figures 1 and 2, the regions of parameters corresponding to existence
of 2-SSEs and, simultaneously, real roots of the quadratic, are denoted by A;
and B;. Regions A; and Bs denote those parts of the indeterminacy regions
in which there are real roots but 2-SSEs do not exist.

13



6.2 Representations

The T-map can be explicitly computed as
Ti(a) = Ba*+6
TQ(a'v A) =
T3(a,b) = pPab+ 1.
The fixed points of T are @ = 1EV1L-405 V;gw‘s, and the fixed point of T3 is (1—(3a) .
The fixed points of T, are determined by the following four equations:
(1/8—a)An = mdAn+ (1 —m11)An
(1/8—a)An = mipAs + (1 —m2)As
(1/8—a)An = 7oA+ (1 —7a)As
(1/8 —a)Az = mapAs + (1 — ma2)Agy

where we employ the convention m;; = m;;(1). This linear homogeneous
system has non-trivial solutions only if linear dependence is exhibited.
To investigate this, notice that we can write A;; = K;;A;» where

1 —mn
Ky = ——— 1
1 1/ﬁ—CL—7T117
mo K1 +1 —my
Kou —
Ky = moa Koy

1/5—@— (1 —7T22)'
We conclude that a non-trivial solution exists if and only if the following
equation holds:

]_/ﬁ —a = 7T12K21 + (]_ — 7T12)K22. (20)

Recall it was shown that 2-state sunspots exist if and only if the transition
array satisfies (19). Algebra (Mathematica) shows that imposing these re-
strictions on 7 implies that equation (20) holds. Notice that, in this case,
there exists a one-dimensional continuum of representations; the choice of
Ao is free, but once made, the remaining A;; are pinned down. Further, to
construct a noisy 2-SSE, simply choose 7o € (L(3,06),U(3,6)) and pick Ajs
arbitrarily. The above equations can then be used to determine the remaining
parameter values.

14
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6.3 Existence of Noisy 2-*SDSs

In Section 4 we wondered, in question 2, b, for = satisfying (19), whether
fixed points determining representations of k-SDSs existed.

Proposition 5 Suppose 3 and 6 are such that 2-SSEs exist and the roots of
the associated quadratic are real. Suppose a denotes a root of this quadratic
and b = (1—Ba)™". Let 7 satisfy the existence restrictions (19). If Ty(a, A) =
A and

Y= ay; 1+ 8, 1 Ast + vy,
then y; is a noisy 2-SSE.
The proof of this Proposition uses the following Lemma.

Lemma 6 Let 7 satisfy the existence restrictions (19). If Th(a, A) = A then

a = A adi

Y 1l-a 1-a
Proof. Let Aj» = 1. Since A is a fixed point, we have that A;; = K;;Ai».
Thus it suffices to show K;; = % — 4Ri This can be shown using Maple.

|
Proof of Proposition 5: For each realization of the process s; there is a
map 7 : Z — {1,2} such that s; = S; < 7(t) = i. Thus we can write (7) as

(1 —aLl)y: = Ar—1)r@) + bor. (21)
Now let A = vec(A) and for reasons to be clear later, index A starting with
0, that is, A = (Ay, A1, A2, A3)'. Let 0 : Z — {0, 1,2,3} be defined by
ot)=7t—-1)+7t—17@)+7(t)+7(— 1)1 —7(t)),
where 7 = 7 — 1. Then Ag(t) = Ar)rt—1). This allows us to write equation
(21) as

(1 — CLL)yt = Ao'(t) + b'Ut. (22)

The Lemma implies
. 1

Apty = Argt—1yr(t) = m(l —aLl)Ar e
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Combining this with (22) yields

b
1—al

1
Y = ——Aryrp) +

1—a 7( Ut

which is a 2-SSE. m

Proposition 5 implies that if 7 satisfies (19), and if Q (7) is E-stable,
then agents will necessarily be learning a noisy 2-SSE, and not possibly a
noisy 2-*SDS.

Next we have the following result concerning the existence of 2-*SDSs.

Proposition 7 If (3,6) is in the indeterminate region and the roots of the
usual quadratic are real then there exists transition arrays m such that Q(m)
is non-trivial. Furthermore, ™ can be chosen to violate (19).

Proof. We provide the proof here because it is constructive in nature and
we will require construction of 2-*SDSs when we consider stability analysis.
Label the real roots as a; and notice that 1/8 —a;, = a; = a for i,j = 1,2
with ¢ # j. Thus we can write the conditions for a fixed point of the T-map
as

aAy = mAn 4+ (1—m)Ar
aAis = mipAxn + (1 —m)Axn
afy = maAn+( )Ai9

( )

aAoy = maAs + (1 —ma)As

1—71'21

where |a| < 1 by indeterminacy. We proceed as follows: fix a and show
that we can choose A;; and 7;; so that the above conditions are satisfied.
The key observations are that, for each equation, the left hand side is a
convex combination of the A;; on the right hand side, and that the ;; are
independent across equations.

Case 1: a > 0. Choose A;; so that

AQQ < A12 <0< Agl < An. (27)
Case 2: a < 0. Choose A;; so that

—A12 < A21 < OéAlg < An <0< AQQ < —A21 < Alg. (28)
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Case 1 implies

aAn € (A, An)
aAyp € (A, Axn)
afy € (A, An)
afoy € (A, An),

and Case 2 implies similar set membership except that the endpoints of each
of the intervals are reversed. Equations (23) - (26) follow immediately from
the implied choice of 7. It remains to show that if (3,6) € A; then there
exist 7 not satisfying (19) such that Q;(7) is not trivial. Given the choices
of A;;, the associated transition array can be constructed as follows:

™ = (A — A12)_1(04A11 — Aj2)
T2 = (Aa — Ap) H(aAir — As)
w1 = (A — A12)_1(04A21 — Aj2)
mo = (Ao — A22)71(04A22 — Ag)

Begin by noticing that, according to (19), the set of 7 to which correspond
2-SSEs is one dimensional, being pinned down by the choice of m5,. Now
notice the choice of As; and Ass determines mo5. On the other hand, in both
case 1 (case 2), for given choice of Ay and Ay there are multiple A5 and
A1 which satisfy the restriction (27) ((28)). In particular, the choice of Ay
and Ass does not pin down the values of 711, w12 and m9;. This shows the set
of m to which correspond non-trivial 2, (7) has dimension greater than one,
thus completing the proof. m

The result implies that provided the model is indeterminate, there exist 2-
*SDSs. Thus, in Figures 1 and 2, 2-*SDSs exist throughout regions Ay, As, By
and Bs.

We conjecture that the above results hold for £ > 2. Also notice that
while the transition array m need not satisfy (19) for noisy 2-SDSs to exist,
and, in fact, cannot satisfy (19) for noisy 2-*SDSs to exist, there may still
be restrictions on its values. In fact we have the following result on the
dimensionality of noisy 2-*SDSs.

Proposition 8 Let I be the unit cube in R*. Let R = {n € I such that
(19) holds} and R = {m € I such that Q(r) is nontrivial}. Then (i) R is
homeomorphic to R and (ii) there is a subset ofﬁi that is homeomorphic to
R3, but R has Lesbesgue measure zero as a subset of I.
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Proof. See Appendix.

Notice that R C R, and for 7 € R there exist noisy 2-SSEs while if
TeR \ R there exist noisy 2-*SDSs. Thus this proposition shows that the
set of transition arrays for which noisy 2-*SDSs exist is much bigger than the
set for which noisy 2-SSEs exist. However, R is still very restrictive since it
has measure zero as a subset of .

We can also characterize the range of 2-*SDSs. Here it is of interest to
focus on solutions to the nonstochastic model (2) taking the form

Yy = ayp 1+ 8,1 Asy.

(Equivalently we are considering the component of a noisy 2-*SDS that solves
the homogeneous equation). We have

Proposition 9 Given a and A, assume that y; s a 2-*SDS. The range of
possible values for vy, is infinite. Furthermore, with positive probability the
stochastic process y; takes on infinitely many values.

Proof. See Appendix.

Thus 2-*SDSs are qualitatively very different from 2-SSEs. Both types of
solution are driven by second-order 2-state Markov processes, but 2-*SDSs
can take infinite many values, while 2-SSEs take only two values. The dis-
tinction between 2-SSEs and 2-*SDSs does not appear in the purely forward
looking model and arises specifically because of the dependence of y; on its
previous value.

6.4 E-stability

We can now use the explicit form of the T-map to analyze E-stability. As
observed in Section 5, to show that §2;(7) satisfies the necessary condition
for E-stability, it suffices to analyze the subsystem 715 for a = a;. We have
that

Blar +m1) B(l—m) 0O 0
ovec(Ty) 0 Bay Bia B(L —m12) (29)
dvec(A) Ba1 Bl —ma1) Bay 0 .
0 0 Bras Blar + 1 — ma)

E-stability requires that the real parts of the eigenvalues of this derivative
must be less than one when evaluated at points in 2;. Unfortunately, the
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complex nature of the eigenvalues algebraic representation makes formal anal-
ysis difficult; thus we proceed numerically. We analyze the stability of noisy
2-SSEs and noisy 2-*SDSs separately.

6.4.1 E-stability of Noisy 2-SSEs

First, notice that the above derivative is invariant over the set € (7). Also,
provided the transition array 7 satisfies the restrictions (19), it can be verified
algebraically that the eigenvalues are independent of the chosen transition
array. Thus, numerical analysis of the eigenvalues of D7) requires only vary-
ing 0 and 6. We further restrict the parameter space to guarantee existence
of representable 2-SSEs. Specifically, we assume that parameters satisfy the
conditions in Proposition 1, and further that 36 < 1/4 so that the associated
roots are real. Finally, we consider negative and positive values of  sepa-
rately, labeling the relevant regions “Area A;” and “Area B;” respectively:
see Figures 1 and 2.

Matlab was used to plot level curves of the function yielding the maximum
value of the real part of the eigenvalues not equal to one. As indicated by Fig-
ures 1 and 2, ; (7) appears to satisfy the necessary conditions for E-stability
throughout Area A;, and to fail to satisfy these conditions throughout Area
By. In particular we have:

Proposition 10 There exist parameter values in Area Ay such that provided
7 satisfies (19), the set Q1 () satisfies the necessary condition for E-stability.

Conjecture 11 1. The set )y is E-stable for parameters in Area Aj.

2. The set §2 is unstable for parameters in Area Bj.

Using simulations we verify below that in Area A; there exist noisy k-
SSEs that are stable under learning.

6.4.2 E-stability of Noisy 2-*SDSs

To assess the E-stability of noisy k-*SDSs, we again analyze the eigenvalues
of (29). However, the transition arrays necessarily do not satisfy (19), and, in
fact, these eigenvalues may depend on the values of the probabilities 7. This
has the unfortunate consequence of increasing the dimension of the parameter
space. Specifically, we must now consider stability of 2-*SDSs for different
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(3,6, and m. As we intend only to establish existence of stable 2-*SDSs, we
proceed as follows: for values of ((3,6) in each of the four regions A;, B;,
(i = 1,2), we use the method described in Section 6.3 to choose a value of
7 to which corresponds a 2-*SDS, and then we analyze the stability of the
associated set of fixed points £ (7) by numerically computing the eigenvalues
of (29). We obtain the following result.

Proposition 12 For i = 1,2, there exist ((3,0) € A; and transition array ™
violating (19) so that Q1 () is non-trivial and satisfies the necessary condition
for E-stability.

This result implies that there exist stable 2-*SDSs for values (3, §) such
that 2-SSEs do not even exist.

Our numerical analysis was more promising than is perhaps indicated
by the above Proposition. The stability of ;(7) obtained for all values of
(8,0) € A; and for all transition arrays m we tested. Based on this we make
the following conjecture.

Conjecture 13 If (§,0) € A = Ay U Ay and if 7 is such that Qq(7) is
non-trivial then Qq(m) satisfies the necessary condition for E-stability.

Strong instability results are more difficult to obtain. Using the same
method described above we obtain the following somewhat unsatisfying re-
sult.

Proposition 14 Fori = 1,2, there exist (3,0) € B; and transition array ©
violating (19) so that Q(m) is not E-stable.

Again, for all values of (3,6) € B; and 7 tested, we found instability
obtained, which leads us to the following conjecture.

Conjecture 15 If (5,6) € B = By U By and if 7 is such that (7)) # {0}
then Qq(m) is not E-stable.

6.5 Simulations

Thus far we have only be able to show that the key necessary conditions for
expectational stability hold for parameters in a subset of Area A. We con-
jecture that these conditions are in fact sufficient. In this section we provide
simulations that support this conjecture, and which furthermore suggest that
the E-stability principle holds.
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6.5.1 E-stability

Recall that the representations determined by the set of fixed points Q4 ()
are E-stable provided that solutions to the differential equation

do
= T) -6

originating near ;(m) converge to points in (7). We are unaware of con-
ditions on T'(f#) — 6 sufficient to guarantee such convergence, due to the
presence of zero eigenvalues, and so we proceed as follows. Begin with sta-
bility analysis of 2-SSEs. For various values of § and ¢ in Area A;, and
initial conditions 6, selected randomly within a small neighborhood of the
set 4(m), the differential equation df/dr = T'(0) — 6 was solved using an
ODE solver in Matlab. The corresponding trajectories were plotted for 400
time periods and the time-series representing the distance between 6 (7) and
the set Q;(7) was computed.” We found that convergence appears to obtain
for the selected values of § and ¢, that is, the paths appear to converge to
the set Q; (7). Stability analysis of 2-*SDSs was done in a similar fashion
and analogous results obtained.

FIGURES 3 AND 4 ABOUT HERE

See Figures 3 and 4 for the time paths obtained when 3 = —3 and § = 1.
Graphs obtained using other values of § and ¢ were qualitatively similar.

6.5.2 Real-Time Learning

The E-stability principle says that if an REER is E-stable then it is learnable
by a reasonable learning algorithm. However, the E-stability principle is
only known to formally apply to REER, which are isolated rest points of
the differential equation (13). To support our focus on E-stability we now
simulate least squares learning of the REER.

9We take the distance between a point and a set to be the infimum of the set of distances
between the point and points in the set.

10The Figures suggest that convergence to the set (2 (7) obtains, whereas our definition
of E-stability requires convergence to a point in the set. Graphs (not displayed) of the
evolution of the point in the set Q;(7) nearest to the current value of 6(7) suggest con-
vergence to a point in fact obtains. Analogous statements hold in our real time learning
analysis presented below.

Subsequent Figures also use this choice of 3 and § to illustrate our results.
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Agents are assumed to have the PLM (7), reproduced here for conve-
nience,

Y = ayr 1 + Sy_1 Ast + buy,

and are assumed to use OLS (ordinary least squares) to estimate the param-
eters of the model. Set

Xo = Y1, 5-1(1)56(1), 80-1(1)84(2), 80-1(2) 84(1), 80-1(2)5:(2), ve]

where s.(i), for i = 1,2, denotes the components of s;, and write § =
[a, vec(A)',b]’, where vec(A) is the operator that stacks in order the columns
of A into a column vector. (Earlier we defined 6 = (a, A4, b) but it is now
convenient to rewrite 6 as a column vector). This allows us to write the
stochastic process for the estimators recursively!'? as

1
0, = 0,1+ ER;lXt(yt — 0,1 X1)
1 ,
Rt — Rtfl —|— ;(XtXt - Rtfl)
where

v = Ti(ar 1)y 1+ sp_1To(Ar 1) st + b1z

The term ¢~! in the recursive algorithm is called the “gain sequence.” This
or closely related gain sequences appear in least squares and other statistical
estimators and have the role of making possible the convergence of parameter
estimates. The behavior of this algorithm was analyzed via simulations.
The algorithm was initialized by choosing points at random within a given
neighborhood of the set ().

Analytic results implying convergence with probability one typically re-
quire amending the algorithm with a projection facility. Alternatively, one
can adjust the gain of the algorithm to obtain convergence with probability
approaching one. For the simulations produced here we scale the gain of the
RLS algorithm by 1/25, thus increasing the probability of convergence.

Our results on E-stability indicate that convergence to a noisy 2-SSE
obtains only if the model’s parameter values are chosen to lie in Area A;.

12Gee, for example, (Marcet and Sargent 1989) or pp. 32-3 of (Evans and Honkapohja
2001).
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We chose several different parameter pairs in this area and for each pair
ran several simulations. For each pair of values we found that with positive
probability, that is for a positive proportion of the simulations, convergence
to 2 (m) appears to obtain. (For all simulations in which convergence did not
appear to obtain, the norms of the estimates appear to diverge to infinity.)

FIGURES 5 AND 6 ABOUT HERE

See Figure 5 for a representative simulation showing convergence. Note that
while the qualitative shape of the path giving the distance to €2;(7) is similar
to that for the E-stability simulation shown in Figure 3, the path is now
irregular and the time scale of convergence is longer. These characteristics
reflect the stochastic dynamics and the decreasing gain feature of the model
under real time econometric learning. In contrast, for parameter values in B,
all simulations failed to converge to (7). Figure 6 shows a representative
simulation showing convergence to a 2-*SDS.

FIGURES 7 AND 8 ABOUT HERE

Figures 7 and 8 show portions of the time series for y; for a simulation
in which there is convergence to a 2-SSE or noisy 2-SSE. Here REE denotes
the path under fully rational expectations, while RTL denotes the path (for
the same sequence of random shocks) under real time learning.'® Note that
while the path of the non-noisy SSE, Figure 7, is implausibly regular, with
strong negative serial correlation, the noisy 2-SSE shows the kind of irregular
fluctuations typical in macroeconomic data.

Similar results obtain when 2-*SDSs were analyzed and are illustrated in
Figures 9, 10 and 11.

FIGURES 9, 10 AND 11 ABOUT HERE

Figures 9 and 11 give the paths time series for y; of convergence to a 2-*SDS
for two different choices of 7. Figure 10 shows convergence to a noisy 2-*SDS.
The time series of the stable non-noisy 2-*SDSs in Figures 9 and 11 are par-
ticularly intriguing because they show complicated dynamics even though

13The REE path illustrated in the Figures is obtained using the parameter vector 6 €
Q; () that is closest, in the Euclidean metric, to the terminal simulation value for 6; under
RTL.
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there is no intrinsic noise and the process is driven entirely by an exoge-
nous two state Markov process. This shows the clear potential of stationary
sunspot equilibria, driven by finite state Markov processes, for explaining
complex economic fluctuations. When intrinsic random noise is added to the
model, as in Figure 10, the paths appear even more realistic.

7 Examples

In this section we consider two examples that illustrate the application of the
theory developed above. We first consider a modified Cagan model, which
can be indeterminate, yet in which neither noisy k-SSEs nor stable noisy
k-*SDSs exist. We then consider the (Sargent 1987) extension of the (Lucas
and Prescott 1971) model of investment under uncertainty to allow for taxes
and externalities. For this model there are parameter values that yield both
stable k-SSEs and stable k-*SDSs.

7.1 Cagan’s Model

The discrete form of the Cagan model can be given as
pr = BEpi + amy, (30)
where  lies in the unit interval. Assume a money supply rule of the form
my =M+ &p1 + u, (31)

where u; is white noise. Combining the money rule with equation (30) yields
the following reduced form:

pe = am+ BEpiy1 + afp1 + auy. (32)

Let 6 = a&. Since 8 > 0, this model is indeterminate provided 6 > 1 — 3 and
0 < (. With the value of ¢ unrestricted, it follows that for % < pf < 1and
appropriate ¢, the model is indeterminate. However, with 0 < § < 1 only
the B, region of indeterminacy is feasible. Thus in this model noisy k-SSEs
do not exist. Noisy 2-*SDSs do exist, but will not be stable under learning.*

This example shows clearly that the requirement that sunspot equilibria
be stable under learning can be a demanding test.

141f the Cagan model is interpreted as obtained from a linearized overlapping generations
model of money then 8 < 0 is possible. We do not pursue these cases here.
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7.2 Investment under Uncertainty

Our second example is based on Sargent’s extension of the (Lucas and Prescott
1971) model of investment under uncertainty to allow for dynamic market
distortions due to taxes and externalities; see Ch. XIV of (Sargent 1987).1

Consider a competitive industry with N identical firms. Output z; of the
representative firm at ¢ is given by

xy = xo0 + fokt + LK + fo K,

where k; is the capital stock of the individual firm and K; = Nk; denotes
the aggregate capital stock. The presence of the two terms in K; reflect
contemporaneous and lagged external effects. These may be positive or neg-
ative, so we do not restrict the signs of f; or fy, but we assume f; > 0
and xg > 0. Taxes are levied on firms on capital in place. The rate itself
is assumed to depend on current and lagged aggregate capita stock, so that
Tt = go + 1 K + g2 K;_1. Total output is given by X; = Nuz;, and market
demand is

pt:D—AXt—i-ut,

where u; is white noise. We require p; > 0.
The firm chooses k; to maximize

> C
Ey Z Bt{pt(ﬂfo + foki + fLKy + foK 1) — wky — Tk — E(kt - kt—1)2}7
=0

where k_; is given and w, the rental on capital goods, is for convenience
assumed to be constant. C' > 0 reflects adjustment costs for changing k;.
The Euler equation for this problem can be written

ptf()— (w—FTt)—{—BCEt*kH_l —O(1+B)kt+0kt_1 =0 (33)

for t > 0. For an optimum solution for the firm we also require that k; >
0,z; > 0, and that the transversality condition is met.

For further details of the temporary equilibrium set-up see (Evans and McGough
2002). Stability under learning of the MSV solutions was examined in Section 8.6.2 of
(Evans and Honkapohja 2001).
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In order to define the temporary equilibrium and study learning, we need
to be careful about the information structure. We assume that firms use
observations of lagged capital stock, the current intrinsic exogenous shocks
u; and the current extrinsic exogenous variable s; to make forecasts E} k.
Given these forecasts, firms choose their demands for capital k;, conditional
on p; and 74, to satisfy (33). The temporary equilibrium is then given by the
market clearing values of p;, 7; and k;. Using the identical agent assumption,
and combining equations, we obtain the reduced form

ki = p+ BE kg + 0k 1 + yuy,

where f = BCQ ™Y, 6§ = —(foAfaN?+ goN —C)Q 1, Q = foAN(fo+ fiN) +
G N+ C(1+ B)and vy = Q%

This form differs from our stochastic model only by the presence of a
constant term. Incorporating the constant term into the above theory is
straightforward and the details are left to the reader. The only issue concerns
E-stability: the PLM must be modified to include a constant thus creating an
addition component of the T-map. This component is not coupled with the
system T» and analysis of its derivative is elementary. It can be shown that if
the model without the constant exhibits stable k-SSEs, then the model with
the intercept does as well.

With no externalities or taxes there is a unique stationary REE. How-
ever, in general the parameters § and ¢ are unrestricted. In particular, for
some parameter regions the associated quadratic has both real roots inside
the unit circle, and there are multiple stationary solutions, including stable
noisy k-state Markov sunspots. This model is easy to study numerically. As
already noted, when externality or tax distortions are present the indeter-
minacy case is possible. Furthermore, both k-SSEs and k-*SDSs that are
stable under learning arise in some regions of the parameter space. For ex-
ample, normalizing with N = 1, the parameter values A =1, B = 0.95,C =
046,91 = —1,90 =03, fo = 1,f1 = —1, fo = 0.3 leads to § = —4.24 and
6 = 1.36, which is in region A;.

8 Conclusion

Finite state Markov stationary sunspot equilibria, in forward-looking models,
played a central role in the early literature on expectations driven fluctua-
tions. More recently they have received renewed interest because of their
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stability under learning in a substantial region of the parameter space. In
this paper we have laid forth a theory which allows for the analysis of such
equilibria in stochastic linear models with a predetermined variable. We
obtained existence for parameters in a proper subset of the region of in-
determinacy. We have also shown existence of a related but distinct class
of sunspot equilibria, namely those that are driven by finite-state Markov
processes, but which take on infinitely many values (even in nonstochastic
models).

To analyze stability under learning we developed representations compat-
ible with both classes of sunspot solutions, which allowed us to establish the
existence of stable sunspot equilibria for parameter values in a proper sub-
set of the regions of existence. These theoretical results were supported by
simulations which suggest that the E-stability principle holds for this model
when agents learn using least squares estimators. The results of this paper
indicate that noisy finite state Markov sunspot equilibria, and noisy finite
state dependent sunspot equilibria, can arise quite generally. Extension of
these results to higher order and to multivariate models would be of consid-
erable importance to applied macroeconomic models that incorporate both
expectations and predetermined variables.
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Appendix

Proof of Proposition 3: It suffices to prove that if , = {; & s; = S;
is a solution to the homogeneous model then

(o =aC;, |+ s;_1As; (34)

for some fixed point A of T, where a is a fixed point of 77. Set A;; = Zj —ad;.
Explicit computation shows ¢, = (; < s, = S; satisfies (34), so it remains
to show A;; is a fixed point of T5. This requires an explicit formula for the
T-map. The verbal description of the matrix B(A) given in Lemma 2 yields
the following form for the i7" component of Th(A):

Ty(A)ij = Bladi + Y mij(m) Ajm). (35)

Thus A is a fixed point if and only if

——a)A Z mi;(m (36)

This set of k? linear homogeneous equations always has zero as a solutions;
nonzero solutions exist only in case of linear dependency, which will not
hold in general. However, because ¢, is a sunspot equilibrium, we have that
equations (4) hold, that is

k
(=86 =B>_ mij(m)Cp. (37)

m=1

We proceed to show that if A;; = ; — a(; then (37) implies (36). We have
(37)

) = (—CLZ-JrﬁaZWm_

)——ﬁag —l—ﬁazmj
ﬁaZm] —aC)

5Aij — ﬁazmj m)A

(a—a’B)A ﬁaZmJ Ajm,

28

— ag;
Z

ﬂiﬂiﬂiﬂiﬂi



and this last line holds if and only if (36) holds.

Proof of Proposition 8. Clearly R, the set of 7 satisfying (19), is a line
segment and is therefore homeomorphic to R. Let Q (7) be the set of fixed
points of the T-map. If (a, A,b) € Q (7r) and A # 0, then the process

Yy = ayi—1 + 3:5_1A3t + buy

is a 2-SDS, and if the associated m ¢ R then this process is a 2-*SDS. Let
R be the set of all 7 € I so that € () is non-trivial, that is, so that Q ()
contains points other than (a,0,b). Every 2-SSE is a 2-SDS, thus R C R.
Let a be a fixed point of Ty, @ = 1/3 — a, and define a map M : [ — R4

o — 11 0 7T11—1 0
- —T921 (e} 71'21—1 0
M(ﬂ-) 0 —T12 « 71'12—1 ’
0 —T99 0 Oé+7l'22—1

and set I': I — R by I' = det oM. Note that A is a fixed point of 75 if and
only if M - vec(A) = 0. This may be seen using equations (23)-(26) in the
paper. Thus

R={rel:T'(n)=0}.

Now notice that I' is a polynomial in 7;;. The gradient of this polynomial can
be explicitly computed and shown not to vanish on R. The implicit function
theorem then applies to show that about any point at which the gradient
does not vanish there is a neighborhood homeomorphic to R®. That R has
measure zero in I follows from the fact that it is the zero-set of a non-zero
polynomial. m

Proof of Proposition 9. Assume 7 € R \ R. It is straightforward to show
that all non-trivial fixed points of the T-map have the property that there
are at least two distinct values among the A;;, and we write

o0

Yt = Z anAa(tfn)-

n=0

We would like to know about the possible values obtained by ;; denote this
set by Y. We proceed as follows: fix ¢ and consider realizations of the process
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s; up to time t. Note that each realization identifies a sequence {A,}.____,
and any such sequence is possible. It is immediate that Y contains infinitely
many points. For example, set

R = Z CLnAl + CLkAQ,
n#k
where we are assuming fll =+ flg. Then z, € YV, and i # j = 2, # z;. It is
somewhat more difficult to show that y; takes on infinity many values with
positive probability. We now turn to this problem.

Let I be the unit interval in R and express all elements of I in base 4.
Specifically, for v € I, write

k=1

where v, € {0,1,2,3}. Define f : I — R by

e, o]

fy) = Z anilAwn'

n=1

Note that Y = f(I).
Lemma 16 The function f is continuous.

Proof: Let ¢ > 0 and ¢’ = (1/4)". Let A* = max;{|A;|}. Notice that if
|y — 4| < & then 7, =~} for k <n. Thus

f) = f( <2 ) oA

m=n+1

Note that rearrangement of the sums is legitimate because the series are
absolutely convergent. The right hand side goes to zero as n — oo and so
can be made smaller than ¢. m

We know that continuous functions send connected sets to connected sets,
and that connected subsets of R are intervals. Noting that f(i/4) # f(j/4)
if A; # flj shows that Y contains an interval. It follows that there are
uncountably many possible values of ;.
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The next step is to note that the Markov process s; induces a probability
measure j on the interval 1. Specifically, each realization s of the process
{s:} induces a function o(8§) which may, in turn be thought of as a realization
of a four state first order Markov process.'® To each o is identified a real
number v € I whose base four expansion has o (t — k+1) as the k' coefficient
- Now let E be any Borel set in I. Then p(E) = prob(c(s) € E), or, in
words, the measure of the set E is the probability that the realization o(3$)
is identified with some element of E. Notice that, by construction, if £ C Y
then prob(y, € E) = u(f~'(E)) where

f7U(E) ={z € lf(z) € E}
denotes the pre-image of E under f.
Lemma 17 IfU C I is open then u(U) > 0.
Proof: Let U be open. Then U contain an interval (o, (3). Within this

interval it is straightforward to construct an interval J = (&, ﬁ) so that there
exists n with &,,, = 0 and Bm = 0 for m > n, where &,, is the m'h component
of the base four expansion of a. We claim that u(.JJ) > 0. To see this, begin
with the simple case that m = 1 and J = (1/4,3/4). Then u(J) is the
unconditional probability that o(¢t) € {1,2,3}. Since all transition arrays
have full support, this probability is non-zero. Now consider the general

case. Set
P = {61, ,60)|6i € {&,---, B} )
Now notice that p(J) is the unconditional probability that
(o(t), -+ ,0(t—mn)) € P.

This probability is non-zero because the transition arrays have full support.
|

We now prove that with positive probability y; takes infinitely many val-
ues. Suppose not. Then there exists ¥ C Y such that F' is finite and
w(f~'(F)) = 1. Recall there is an interval Iy in Y. Since F is closed,
O = (R\ F)N Iy is open and non-empty. Let U = f~'(O) c I. By
Lemma 1, U is open and by Lemma 2, u(U) > 0. But U C f~'(R\ F) and
p(f 1R\ F)) = 0. Thus we reach the required contradiction. m

16Note that all relevant transition arrays have full support. Thus, given any state, each
state is reachable with positive probability.
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Time-Series of 2-SSE without Noise
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Time-series of 2-SSE with Noise
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Time-series of 2-*SDS without Noise
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Time-series of 2-*SDS with Noise
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Time-series of 2-*SDS without Noise
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