TOD at Gresham Crossings

Integrating Ecology and Mixed-Use Transit-Oriented Development

Rena Schlachter, Landscape Architecture

Brook Muller, Associate Professor Architecture
Acknowledgements

This report was made possible through Portland Metro’s “Nature in Neighborhoods” and “Transit-Oriented Development” programs.

Invaluable support was provided by the City of Gresham, Oregon.
About SCI

Sustainable Cities Initiative (SCI) is a cross-disciplinary organization at the University of Oregon that seeks to promote education, service, public outreach and research on the development and design of sustainable cities.

Our work addresses sustainability issues across multiple scales, from the region down to the building, and emerges from the conviction that creating the sustainable city cannot happen within any single discipline. SCI is grounded in cross-discipline engagement as the key strategy for solving community sustainability issues. We serve as a catalyst for expanded research and teaching; market this expertise to scholars, policymakers, community leaders, and project partners; and work to create and sponsor academic courses and certificates. Our work connects student passion, faculty experience, and community need to produce innovative, tangible solutions for the creation of a sustainable society.

About SCY

The Sustainable Cities Year Initiative is a ‘partnership’ with one city in Oregon per year where a number of courses from across the University focus on assisting that city with their sustainability goals and projects. The Sustainable Cities Year faculty and students work with that city through a variety of studio projects and service learning programs to: 1) provide students with a real world project to investigate; 2) apply their training; and 3) provide real service and movement to a local city ready to transition to a more sustainable and accessible future.

About Gresham

With just over 100,000 people, Gresham is the fourth largest city in Oregon. It is bordered to the east by Portland, the largest city in the state. Gresham is home to the Mount Hood Jazz Festival and is known as “The City of Music”. It is close in proximity to the Columbia Gorge National Scenic Area and Mount Hood, the highest point in Oregon. Gresham has a wide variety of neighborhoods including the Civic Center, known for its active transportation network, rapid transit connections and residential, commercial and retail mix.

SCI Co-Directors

Nico Larco, Assistant Professor of Architecture
Marc Schlossberg, Associate Professor of Community & Regional Planning
Robert Young, Assistant Professor of Community & Regional Planning

Nick Fleury, SCI Program Manager
Price Armstrong, SCI Research Assistant
Course Participants

“Crossings Site” - Integrating Ecology and Mixed-Use TOD Studio
Brook Muller, Associate Professor, Department of Architecture
Ali Clark, Architecture Undergraduate
Daniele Cohen, Architecture
Brad Cooley, Architecture Undergraduate
Andrew Cusack, Architecture Graduate
Dan Edleson-Stein, Architecture Graduate
Jocelynn Gebhart, Architecture Undergraduate
Erik Hegre, Architecture Graduate
Lisa Koch, Landscape Architecture Undergraduate
Ali McQueen, Architecture Undergraduate
Alison Moore, Architecture Graduate
Tobin Newburgh, Architecture Graduate
James Robinson, Architecture Undergraduate
Shawn Sanes, Landscape Architecture Undergraduate
Rena Schlachter, Landscape Architecture Graduate
Matthew Sillaman, Landscape Architecture Undergraduate
Amy Ueno, Japanese Undergraduate
Thomas Veed, Architecture Graduate
Tara Velarde, Architecture Graduate
Aaron Weiss, Architecture Graduate
Samuel Yerke, Architecture Undergraduate
Table of Contents

I. Executive Summary 7
II. Introduction 9
III. Review of Existing Conditions 13
IV. Design Scenarios 17
V. TOD Crossings Design Principles 46
VI. Conclusion 47
Bibliography 48
This interdisciplinary design studio focused on scenarios for multi-story, multi-unit transit oriented development for the 4.4 acre “GCN SW” site, located across from Gresham Crossing in Gresham, OR. The studio program consisted largely of compact residential apartments (“microunits”) and shared outdoor spaces that provide value for people and nonhuman inhabitants. Many of the scenarios also propose a path system that would link the development with the adjacent, soon to be constructed, light rail transit stop (and points beyond).

To further explore potential synergies between transit-oriented development (TOD) and habitat sensitive and habitat integrated design the studio worked with members of Portland Metro’s “Nature in Neighborhoods” and “Transit-Oriented Development” programs and with Josh Cerra, a Portland-based ecologist and environmental designer.

Through these partnerships, this studio ultimately demonstrated that vibrant, dense development in an urban setting can provide green amenities and sustainable building features and infrastructure that benefit people and wildlife. The scenarios showcase these applications of low impact, nature-friendly, development practices for built structures, stormwater management and natural spaces.
II. Introduction

Too often when people hear the word density, they think of concrete jungles and tall skyscrapers. Metro’s Transit Oriented Development program, the Nature in Neighborhoods program, Josh Cerra, and this studio collaborated together to demonstrate that vibrant, dense development can provide green amenities and sustainable building features and infrastructure that benefit people and wildlife. ‘Green’ density is possible. Collectively, this studio’s work showcases applications of low impact, or nature-friendly, development practices in a highly urban setting for built structures, stormwater management and natural spaces.

Studio Objectives

- To create a rich, collaborative and interdisciplinary studio culture
- To incorporate habitat and ecological issues in and throughout the design process in a way that inspires our thinking as to what transit oriented development can be
- To articulate a clear position (to be able to describe one’s intentions) as far a thoughtful relationship of the mixed use project to the City of Gresham, the light rail stop and station, and the regional urban and ecological systems to which it is connected
- To consider how an integrated approach to architectural and landscape architectural design can contribute to a broad, participatory dialogue about the future of urban development
- To continue to develop and improve explicit and effective working methods and design processes
- To develop rich graphic representations in close association with a clear statement of design intentions
- To express enthusiasm about what you are doing and demonstrate the tenacity to forward and develop your scheme
- To help Portland Metro explore and articulate meaningful, synergistic relationships between its “Nature and Neighborhoods” and Transit-Oriented Development” policies and initiatives (see program)
Metro’s Transit Oriented Development Program

Metro’s Transit Oriented Development (TOD) Program purchased this parcel, and three other parcels in the vicinity, in order to create a vibrant, transit-oriented urban village as envisioned by the City of Gresham in the Gresham Civic Neighborhood Plan, adopted in 1995. Transit oriented development plays a key role in implementing the region’s long range plan, the 2040 Growth Concept, which calls for a significant amount of the region’s growth to be concentrated in higher density mixed use, walkable urban centers and corridors linked by high quality transit service. The benefits of transit-oriented development include: increased transit, bike and walk trips; improved air quality; reduced auto traffic congestion; greater cost-effectiveness of overall public investments in transit systems; increased variety in housing choices, particularly in suburban areas; increased economic development near light rail stations; enhanced livability through convenient and inexpensive access to jobs and services; and improved affordability of combined housing and transportation costs.

Given the complexity and cost of compact mixed-use development, planning and zoning alone cannot stimulate the private investments need to build dynamic communities near transit. To help overcome market barriers, Metro offers incentives through the TOD Program that foster the public-private partnerships needed to catalyze transit oriented development. Metro’s innovative program helps offset the private sector costs of high quality dense and vertical mixed use development by purchasing TOD development easements from developers and, in some cases, by acquiring and selling land near transit at a reduced cost. These easements and land sales carry with them conditional requirements such as minimum densities, floor area ratios and/or building heights, mixed land uses, pedestrian friendly design and amenities, and reduced parking ratios.

TOD is often characterized by a trinity of key land use components – density, diversity and design. The first “D” of TOD is density: there is a large and growing body of academic research evidence that indicates that density is the primary determinant of transit ridership. For example, 23-33% of Portland area residents of transit-oriented developments use transit as their principle commute mode, and there are 50% fewer car trips from housing developments located near transit than conventional housing. The second “D” of TOD after density is diversity, or a mix of land uses. By providing retail, services and employment opportunities, a diverse TOD enhances the viability of a transit lifestyle. The third land use-related “D” of TOD is design, the urban form and character of a station area. Pedestrian friendly design is what separates TOD from transit adjacent development (TAD). That is, a dense mix of uses may be near a transit station, but if they are not functionally linked to the station via pleasant and comfortable pedestrian connections, they are not likely to fulfill their full ridership potential. Minimum building heights and maximum setbacks, for instance, can be employed together to foster a sense of safety and enclosure for pedestrians, thereby creating an “outdoor room” effect. To add visual interest and to provide more visibility or “eyes on the street”, design standards may include requirements for “transparency” and/or active ground floor uses.

Metro’s Nature in Neighborhoods Program

The Portland metropolitan region is set in an exceptional natural landscape. It is surrounded by hills and mountains and laced with rivers and streams. It is a region of national distinction for clean water, clean air, outdoor recreation, and an abundance of green; a place where nature is always nearby. This tremendous natural inheritance sustains residents’ health, fosters the region’s economy, provides healthy activities for all and is central to the region’s identity. Metro is the directly elected regional government that serves 1.4 million people who live in the 25 cities and three counties of the Portland metropolitan area. Metro programs and planning tools help protect the region’s air, water, parks, natural areas, fish and wildlife habitat.
One such example is the Nature in Neighborhoods initiative. Nature in Neighborhoods is a region-wide fish and wildlife habitat protection initiative that:

- Brings people and government together to ensure a healthy urban ecosystem by using inter-agency collaboration and financial and technical resources to advance and inspire habitat conservation and restoration.

- Includes a suite of regulatory and non-regulatory, incentive-based strategies, such as flexible design and development standards, innovative partnerships, education, restoration and nature-friendly development practices to encourage and empower conservation groups, developers, businesses, homeowners and other regional stakeholders to protect and improve water quality, watersheds and wildlife habitat in developments and backyards alike.

- Was developed with the premise that it is vital to not only protect large tracts of natural areas, but to maintain nature in our urban areas as well.

These programs challenge traditional development processes by weighing the needs of wildlife, humans and the environment on the same scale and using innovative, collaborative projects and partnerships to protect and improve our regional quality of life for this generation and those to come. Because of this innovative, unconventional approach, Nature in Neighborhoods has become a successful region-wide movement that places habitat protection and restoration within our region’s most important development goals and creates healthier homes for people, fish and wildlife. Metro’s Nature in Neighborhoods program offers innovative, flexible, incentive-based approaches and site design options that encourage nature-friendly development practices. Of primary focus are the zones designated as habitat conservation areas (HCAs). HCAs are categorized under three levels: high, moderate and low quality. These designations are based on quality of vegetation, proximity to sensitive areas, and the economic value of the property. Site designs should avoid development in HCAs. If development cannot be avoided, site designs should minimize the development disturbance to the HCA. Where conservation of a portion of an HCA is not possible, mitigation, requiring the creation of like habitat elsewhere on site, is viewed as a ‘last resort’ option” (Metro, 2007). While there are no Habitat Conservation Areas (HCA’s) on this site, it is useful to understand the conservation elements proposed within the Title 13 Metro Nature in Neighborhoods “Habitat Conservation Area Regulations and Incentives,” as many of these principles can still be applied to sites without existing HCA’s. Title 13 Habitat-based code requirements:

- Protect urban stream and wetland water resources and improve function and quality of aquatic habitat via bank stabilization, riparian vegetation for future large wood recruitment, and stream shade.

- Encourage development of large patches of terrestrial habitat such as interior and core forest and woodland habitat.

- Provide connectivity corridors to water and other habitat areas. Title 13 Development-based code requirements:

 - Allow and encourage nature-friendly development, while minimizing the impact on fish and wildlife habitat functions.

 - Provide incentives for protection and restoration of local and regional ecosystems during development.

 - Provide acceptable designs within jurisdiction evaluation standards for nature-friendly development practices during the land-use development review process.
Habitat analysis for project site (in red) and surrounding area. Project sit is in close proximity to two substantial habitat corridors. Source: City of Gresham website.
III. Review of Existing Conditions

The 4.4 acre “GCN SW” site is owned by METRO and located across from Gresham Crossing in Gresham, OR. It is mostly flat and the western half, bordering a property with multi-family housing, is thickly forested with riparian and Douglas-fir mixed woodland. Some of the Douglas-fir on site are estimated to be close to 80 years old. The eastern edge, along Civic Dr., is 8 feet below grade. The site’s neighbors include the Center for Advanced Learning, another site owned by Metro, Gresham Station, and a site owned by Seattle-based American Properties.

Looking east from northwestern corner of the project site

Urban development potential of and around site. Project site outlined in orange.
Overview of site context.

Regional context. Note: from former, project need to site.
Building Program

Residential Minimum 200 units
- 70 Studio “micro-unit” apartments @ 450 SF/Unit = 31,500 SF
- 70 1-Bedroom apartments @ 650 SF/Unit = 45,500 SF
- 60 1-Bed+ or 2-bedroom units @ 850 SF/Unit = 51,000 SF
- Net Total Residential = 128,000 SF

Bike & Recreational Equipment Storage
- 100 Private storage units for those without garages @ 50 SF/space = 5,000 SF

Commercial / Commercial Shared Space
- Office/studio / work-live = 7,500 SF
- Meeting room/banquet/community space = 2,000 SF
- Restaurant/cafe = 1,500 SF
- Net Total Commercial = 11,000 SF

Net Total Building Program = 144,000 SF (note figure does not include circulation).

Maximum building height is 85’; at least two stories are required along Civic Drive.

Exterior Space Program

Vehicular Parking and Circulation
- Car parking = 38,850 SF
- Assumes 1 space for every 2 residential units (100) plus roughly 1 space per every 1000 SF of commercial/shared (11) so approximately 111 total spaces; also assume 350 SF/space including all aisles and access roads

Outdoor Recreational Space and Path System
- Outdoor recreational space for inhabitants/community = 20,000 SF (This is can overlap with the ecological program, to the extent this is viable.)
- A system of bicycle and pedestrian paths is also required to: (1) promote site scale circulation dynamics, (2) link the development with the light rail station and surrounding neighborhood and (3) improve connectivity between the light rail station and surrounding neighborhood.
IV. Design Scenarios

Scenario 1: Glimpses of Green 18
Scenario 2: Cascading Transitions 22
Scenario 3: Activation / Percolation 26
Scenario 4: A Civic Watershed 30
Scenario 5: An Urban Housing Forest 34
Scenario 6: Serpentine meets Cellular 38
Scenario 7: In [habit] at Gresham 42
Scenario 1: Glimpses of Green
Ali McQueen, James Robinson, Amy Ueno
Three main goals: Strengthen Connectivity, Facilitate Cohabitation, Stormwater Management

Strengthen Connectivity - The northeast corner of the site is addressed in this scenario as having the most potential for public interaction, while the southeast corner of the site acts as a thru-way. This scenario purposes to enhance interaction at the NE corner of the site where the MAX line and Civic Drive intersect.
Facilitate Cohabitation - Glimpses of the habitat core on the western portion of the site are created to spark curiosity and encourage social interaction within and around the space. A lower streetscape offers additional views from The Gresham Crossings.

Glimpses of green within interiors

This scenario focuses on reserving as much of the existing vegetation as possible, while offering opportunities for inhabitants of the multiuse units to coexist with the native habitat.

Birds view - looking northwest
Rainwater Catchment

Total Catchment Capacity: 2000 cubic ft.
Translates to: 149,000 gallons
Total Built Surface Area: 37,500 sq. ft.
Potential Rainwater Catchment: 1,050,000 gallons/year
Gresham
total average rainfall: 44.85 inches/year
highest monthly average: 6.6 inches/month (Dec.)

Seasonal water features utilize stormwater

Scenario 1 - Glimpses of Green
Scenario 2: Cascading Transitions
Lisa Koch, Tara Velarde, Samuel Yerke
Three main goals: Stormwater Management, Preserve and Enhance Habitat, and Strengthen Connectivity

Stormwater Management - greenroofs and a retention pond collect and store stormwater.

Looking southeast - rainwater is collected on rooftops and feeds into an on site retention pond.
Preserve and Enhance Habitat

Scenario 2 - Cascading Transitions

A green roof creates habitat patches within the built environment.

Focusing on native vegetation strengthens habitat integrity and connectivity.
Strengthen Connectivity

Looking southwest

Looking west

Scenario 2 - Cascading Transitions
Scenario 3: Activation / Percolation
Alison Moore, Thomas Veed
Three main goals: Strengthen Connectivity, Preserve and Enhance Habitat, and Maximize Solar Access

Strengthen Connectivity - civic space is created on northeastern edge of the site enhancing interaction where the MAX line and Civic Drive intersect.
Preserve and Enhance Habitat - focus is on maximizing open space by keeping all parking underground and on the street. Existing native vegetation is preserved and additional plantings are native.

Site textures reflect native vegetation and elements of surrounding context.

Vegetation preserved and additional plantings are all native species attracting native wildlife.
Maximize Solar Access - buildings are arranged smallest to largest south to north maximizing solar access. Residential units are designed to allow natural light into main rooms.

Looking west

Windows on north and west building faces allow for optimize natural light.

Tuck under parking protects vehicles and allows for pervious surfaces on site.

Three-story units allow easy access to parking and surrounding open space.
Scenario 4: A Civic Watershed
Andrew Cusack, Shawn Sanes, Aaron Weiss
Three main goals: Facilitate Cohabitation, Strengthen Connectivity, and Maximize Solar Access

Facilitate Cohabitation - emphasis on bringing native vegetation into housing area with green screens hanging from balconies.

Strengthen Connectivity

Maximize Solar Access

Looking west through alleyway
Strengthen Connectivity - civic space is created on northeastern edge of site in respond to the proposed max station and to heighten street and on site activity.

Looking northwest

Looking southwest - civic space engages pedestrians and encourages “eyes on the street” creating a safer space.

Looking northeast

Scenario 4 - A Civic Watershed
Maximize Solar Access - building orientation and unit design maximize access to natural light. Large windows and high ceilings in units create well lit spacious spaces.

Looking east through alleyway

Residential unit interior - large floor to ceiling windows maximize natural light.
Scenario 5: An Urban Housing Forest
Dan Edleson-Stein, Tobin Newburgh, Matthew Sillaman
Three main goals: Facilitate Cohabitation, Strengthen Connectivity, and Maximize Solar Access

Facilitate Cohabitation - existing native vegetation is preserved and enhanced with an oak woodland and a wetland area. Terraced gardens line the natural site and move into the built arena creating spaces to cohabitat and engage.
Strengthen Connectivity - A civic space is created on the northeast corner to welcome commuters arriving by the MAX line. A sky bridge connects the buildings on site connecting commercial space to residential space.
Maximize Solar Access

East / south section showing how buildings maximize solar access

Looking west toward proposed residential units
Scenario 6: Serpentine meets Cellular
Ali Clark, Brad Cooley, Rena Schlachter
Three main goals: Facilitate Cohabitation, Stormwater Management, and Strengthen Connectivity

Facilitate Cohabitation - “green alleyways” between proposed buildings bring nature into the built environment. The alleyways are filled with native plantings with planters that are linked to stormwater catchment system that feeds into the on site constructed wetland.
Stormwater Management - a constructed wetland on the southeastern portion of the site collects storm water from the proposed building and from the streets.

West/ north section of constructed wetlands

BOARDWALK
Elevated boardwalk runs from base of oak savanna area through wetland and connects to neighboring residential.

CONSTRUCTED WETLAND
Wetland is composed of multiple pools of various depths to accommodate many different native plants and animals.

BIRD-WATCHING SHELTER
Along the boardwalk are bird watching shelters. A place for people to stop, sit and enjoy the wildlife in the wetland.

On street bioswales collect stormwater
Strengthen Connectivity - a large civic space on the northern portion of the site welcomes transit riders into the sites built and natural spaces.

South / north section of showing civic space on the northern portion of the site

Street trees help activate the streets.

Green alleyways engage street life and wildlife
Scenario 7: In [habit] at Gresham
Daniele Cohen, Jocelynn Gebhart, Erik Hegre
Three main goals: Strengthen Sense of Community, Facilitate Cohabitation, Stormwater Management

Facilitate Cohabitation

Strengthen Sense of Community

Stormwater Management

Strengthen Sense of Community

Looking southwest

Looking southwest

Looking east - on outside patio of restaurant
Facilitate Cohabitation

Looking north

Looking west

Scenario 7 - In [habit] at Gresham
Stormwater Management

Water Filtration Diagram

Section Looking East

Looking north
V. TOD Crossings Design Principles

Key design principles for the TOD at Gresham Crossings studio:

Increase Connectivity
- Increase social, economic, and ecological connections.

Facilitate Cohabitation
- Equally address the demands of high-density development and wildlife habitat in an urban setting.
- Create a place where human inhabitants can appreciate and benefit from urban ecosystem services.

Strengthen Sense of Community
- Welcome community interaction and activities.
- Celebrate the vibrant economic, social, and cultural life of Gresham’s community.

Stormwater Management
- Facilitate collection, treatment, and reuse of on-site stormwater.
- Limit impervious surfaces to reduce stormwater pollutant loads.
- Maintain groundwater recharge and quality.

Maximize Solar Access
- Design buildings and infrastructure to take advantage of solar access.

Preserve and Enhance Habitat
- Preserve and enhance existing habitats.
- Define and preserve sensitive species and legacy trees.
VI. Conclusion

This joint architecture and landscape architecture studio worked with members of Portland Metro’s Transit-Oriented Development (TOD) and Nature in Neighborhoods programs to innovatively address many of the challenges that are faced when trying to achieve transit-oriented development while integrating habitat sensitive design. The partnership between TOD and Nature in Neighborhoods inspired students to find fresh and tangible solutions in designing and defining a relationship between the proposed Gresham Crossing transit-oriented mixed-use program, the planned Gresham Crossings light rail stop and station, and the regional urban and ecological systems to which it is connected.

This studio ultimately demonstrated that through thoughtful interdisciplinary collaboration and the application of sustainable design principles, vibrant development in an urban setting can simultaneously benefit people and wildlife. We hope that this studio’s work inspires TOD and Nature in Neighborhoods to continue a working relationship that encourages future projects to integrate transit-oriented and habitat sensitive design.
Bibliography

Habitat and Landscape Ecological References:

Metro Resources for Urban Wildlife Habitat Memorandum, September 22, 2009

Oregon Conservation Strategy, http://www.dfw.state.or.us/conservationstrategy/ (see “Willamette Valley” PDF under “Ecoregions”)

Title 13 Metro Nature in Neighborhoods Habitat Conservation Area Regulations and Incentives

Stormwater Design and Management References:

