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The purpose of this dissertation was (1) to investigate the effects of dual task

conditions on the development of postural control during gait in typically developing

children while walking and obstacle crossing, and (2) to investigate the attentional

requirements of gait in children with cerebral palsy (CP). Forty younger and older

typically developing (YTD and OTD) children and 10 children with CP performed a gait

task with and without a concurrently auditory Stroop task. Gait and cognitive

performance were measured.

In study 1, dual task interference with gait performance was found in YTD and

OTD children, but not in healthy young adults (HYA). In general, gait performance

decrements under dual task contexts were greater in YTD than OTD children, whereas
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cognitive performance decrements during dual tasking were not different between the two

groups of children. Dual task interference was lowest in HYA and highest in YTD children

when compared among groups. As the difficulty of the gait task was increased, dual task

affects on cognitive performance were now found in YTD and OTD children, but not

HYA.

In study 2, there were significant differences in dual task interference affecting gait

performance in all groups of children. When performing the gait task with a concurrent

auditory Stroop task, OTD children showed greater dual-task costs than children with CP

for accuracy, but children with CP demonstrated greater dual-task costs than OTD and

YTD children for medial Center of Mass-Ankle-joint-center inclination angle. This

increased medio-Iateral inclination angle in dual task situations has also been seen in older

adults with balance deficits and may be associated with an increased risk for falls. YTD

children showed dual-task costs in a slowing of gait velocity and stride time, a safer

strategy than that used by children with CP. The lower cognitive performance during dual

tasking for OTD children suggests that they allocate greater attention to maintain gait

stability, whereas YTD children and children with CP do not. In addition, children with CP

use a behavior that may increase their risk of falls in complex environments.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

One of the important problems occurring in children with cerebral palsy (CP)

related to the delayed acquisition of motor skills is poor balance control (Woollacott &

Shumway-Cook, 2005). Previous research has shown that stance balance control is

reduced and loss of balance increases in children with CP and other balance-impaired

individuals when they simultaneously perform a second cognitive task (Brown,

Shumway-Cook, & Woollacott, 1999; Hyndman, Ashburn, Yardley, & Stack, 2006;

Marchese, Bove, & Abbruzzese, 2003; Reilly, Woollacott, van Donkelaar, & Saavedra,

2008). Since falls very often occur while simultaneously balancing or walking and

performing a second task such as engaging in conversation or carrying an object, this is a

critical new research area (Connell & Wolf, 1997; Verghese et aI., 2002; Verghese et aI.,

2007).

The process of learning to stand and walk involves the mastery of a number of

motor skills, including dynamic balance and gait, and also integrating these tasks with

other attentionally demanding tasks, such as carrying objects, communicating with

others, and navigating in a visually complex environment. Research has shown that there

are high rates of falls in typically developing infants and toddlers as they learn these

motorically and attentionally demanding tasks (Joh & Adolph, 2006); in addition, studies
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have revealed that falls occurring while walking are one cause of unintentional injury in

this young population (Britton, 2005). In children with CP balance and gait are impaired

and thus coordinating these activities with other motor and cognitive tasks may require

additional attentional resources beyond those required of typically developing (TD)

children. Though falls and injury statistics are unavailable for this population, it is likely

that, for these reasons, unintentional injury due to falls is even higher in children with CP

who can walk than in the typically developing population. Research on balance control

has shown that neuromuscular deficits are one factor contributing to falls in balance

impaired populations. However, recent studies have shown that a second factor

contributing to falls is a limitation in attentional resources required for coordinating both

balance and secondary cognitive tasks simultaneously (Woollacott & Shumway-Cook,

2002). Falls often occur when not attending to balance while simultaneously performing

a second cognitive task. It has thus been hypothesized that most falls are not due to

balance deficits in isolation, but to the inability to effectively allocate attention to

complex balance tasks or to balance in multitask conditions. It has also been

hypothesized that interference between balance and secondary task performance may be

apparent in classroom settings, with children with CP showing poor attention to

classroom interactions because attentional resources are partially invested in focus on

their own stability (Reilly, van Donkelaar, Saavedra, & Woollacott, 2008; Reilly,

Woollacott, van Donkelaar, & Saavedra, 2008).

Though there is no research yet available on falls incidence in children with CP,

research indicates that many individuals have moderate to severe balance impairments
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that may require additional attentional resources during stance and mobility tasks. In

children with CP, problems with balance control during gait often lead caregivers to

recommend wheel chairs for ambulation, reducing daily exercise time for the child and

thus reducing health status further (Andersson & Mattsson, 2001; Bennett et aI., 2005;

Bottos, Feliciangeli, Sciuto, Gericke, & Vianello, 2001; Bottos & Gericke, 2003;

Sandstrom, Alinder, & Oberg, 2004).

Postural Control during Stance in Children with Cerebral Palsy

Previous research has explored the contributions of altered biomechanics,

impairments in neural control and impairments in cognitive function to decreased balance

and increased risk of falls in children with CP (Burtner, Qualls, & Woollacott, 1998;

Burtner, Woollacott, Craft, & Roncesvalles, 2007; Burtner, Woollacott, & Qualls, 1999;

Nashner, Shumway-Cook, & Marin, 1983; Reilly, Woollacott, van Donkelaar, &

Saavedra, 2008; Woollacott et aI., 1998). Somatosensory factors contributing to poor

balance and falls include reduced ability to organize sensory information and to resolve

intersensory conflicts (Cherng, Su, Chen, & Kuan, 1999; Nashner, Shumway-Cook, &

Marin, 1983).

In one study examining the ability of children with CP to recover from slow

velocity threats to balance (creating 20 deg/sec sway), children with spastic hemiplegia

and diplegia showed a disruption in the normal distal to proximal muscle response

organization, with proximal muscles typically being activated first. Some ofthe children

with diplegia also showed a loss of directional specificity in the response organization. In
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conditions of increasing velocities and amplitudes of threats to balance, children with

spastic dipleglia showed temporal reversals among the muscles responding to loss of

balance, in addition to high levels of agonist/antagonist muscle co-activation and they

also did not increase response amplitudes and thus time to stabilize balance was larger

than for TD children (Burtner, Woollacott, Craft, & Roncesvalles, 2007; J. Chen &

Woollacott, 2007; Roncesvalles, Woollacott, & Burtner, 2002; Rose et aI., 2002). In an

effort to determine the contributions of musculoskeletal constraints to abnormal muscle

response organization, researchers (Woollacott & Burtner, 1996) asked TD children to

stand in a crouched stance similar to that of the children with spastic diplegia. This

change in alignment made responses ofthe TD children more clearly approximate the

onset latencies and organization of the children with spastic diplegia. This suggests that

both neural and mechanical constraints contribute to abnormal muscle response

organization in these children.

Studies have also shown that children with CP may have attentionallimitations.

For example it has been shown that many children with diplegic CP have limitations in

their attentional processing abilities, as indicated by a reduced ability to inhibit responses

to irrelevant stimuli when performing a task (Christ, White, Brunstrom, & Abrams,

2003). Additionally, children with CP may also have a smaller working memory

capacity than TD peers (Reilly, Woollacott, van Donkelaar, & Saavedra, 2008).

Additional research with the same group of children used a dual task paradigm to

determine the effect of performing an attentionally demanding task on postural

performance levels. The study has shown that children with CP had decreased balance
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control compared to their TD peers when they performed a standing task and a cognitive

task (visual working memory task) synchronously (Reilly, van Donkelaar, Saavedra, &

Woollacott,2008). Thus, the studies suggested that an impairment of cognitive function

contributed to poor balance control in children with CP.

Postural Control during Gait in Children with Cerebral Palsy

The above research has emphasized testing balance during quiet stance and has

concluded that children with CP showed significantly higher levels of sway or center of

pressure (COP) movement than TD peers (Cherng, Su, Chen, & Kuan, 1999; Nashner,

Shumway-Cook, & Marin, 1983; Rose et aI., 2002). Though this research has provided

information on stance balance control in these children, the reality is that most falls occur

under the dynamic balance conditions of gait. Information about balance control during

quiet stance is informative, but balance control requirements are increased during

locomotion. Compared with standing, locomotion is more difficult because

approximately 80% of the gait cycle is spent in single limb support. In addition, the

center ofmass (COM) is already in motion and has momentum that must be maintained

or slowed, depending on the direction of the fall. Additionally, the strength required to

manage the momentum changes caused by a quantity of body motion (momentum)

becomes an even more critical consideration. Moreover, recovery of balance when

locomotion is perturbed, for example by a slip, is significantly more difficult when

compared to recovery from a similar threat during quiet stance.
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The differences in balance and gait task difficulty are exaggerated in children with

CP, due to their neural and musculoskeletal constraints contributing to balance

dyscontrol. For example, biomechanical factors contributing to reduced balance during

gait include reduced ankle, knee and hip range of motion, contributing to a crouched

posture for gait, toe stepping and shorter step length (Norlin & Odenrick, 1986; Skrotzky,

1983; Wren, Rethlefsen, & Kay, 2005). Reduced ability to produce and modulate motor

unit recruitment during walking (paretic component) also contributes to decreased

balance performance (Rose & McGill, 2005).

Gait Maturation

Gait characteristics in TD children have also been investigated by many

researchers (Chester, Tingley, & Biden, 2006; Dusing & Thorpe, 2007). Dusing and

Torpe (2007) found that normalized gait velocity, step and stride length increased

dramatically from children aged 1 year to 4 years. In contrast, cadence slightly decreased

with age (Dusing & Thorpe, 2007). Chester et al (2006) also reported that there was

decreased cadence and increased gait velocity in older children (7 years or older)

compared with younger children (3-4 years) (Chester, Tingley, & Biden, 2006).

According to Farmer (2003) maturation of gait occurs at about 7 years of age. Moreover,

the normalized COM displacement in vertical and lateral direction appered to be

unchanged when children were older than 4 years and in forward direction when they

were beyond 7 years (Dierick, Lefebvre, van den Hecke, & Detrembleur, 2004). In

addition, developmental research for anticipatory postural control during locomotion has
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shown that children aged 7-9 years have demonstrated adult-like proactive control in their

strategies to avoid obstacles (McFadyen, Malouin, & Dumas, 2001).

Perturbed Locomotion

The inclusion of an obstacle course in many conventional clinical assessments has

been demonstrated to be a useful tool in the evaluation of patients with balance and

mobility impairment (Means, 1996; Means, Rodell, & O'Sullivan, 1996; Rubenstein et

aI., 1997). When stepping over an obstacle, the longer swing time required for the swing

limb implies a longer duration of single stance for the supporting limb (Chou &

Draganich, 1997; Patla & Rietdyk, 1993). Imbalance of the whole body during obstacle

crossing may cause inappropriate movement of the lower extremities or striking an

obstacle with the swing foot, and result in a fall. Greater and faster motion of body

segments while negotiating an obstacle will result in greater and faster movement of the

COM and perturb balance maintenance. Therefore, proper control of the COM motion

and its coordination with the COP ofthe stance foot is important for the maintenance of

the dynamic stability of the whole body when stepping over obstacles.

It is reasonable to expect that maintaining dynamic balance of the whole body

during obstacle crossing may be a more challenging task than during unobstructed level

walking. Studies have shown that there are significant differences between normal

subjects and balance impaired patients in the medial-lateral (ML) motion of the COM

during obstacle crossing, with patients with balance impairment showing significantly

greater and faster ML motion of the COM (Chou, Kaufman, Brey, & Draganich, 2001;
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Chou, Kaufman, Hahn, & Brey, 2003). These results indicate that differences in the ML

COM motion between unobstructed level walking and during obstacle crossing may be

used as functional indicators to identify children with immature and mature postural

control during gait.

Attentional Resource Requirements for Postural Control

Though research on constraints on reactive and proactive balance control in

children with CP has contributed to our understanding of one intrinsic factor contributing

to falls, that of stability, recent research suggests that a second very important intrinsic

factor contributing to poor balance during gait is impairment in cognitive processes,

including attentional processing deficits. For example, research suggests that many falls

in patients with balance impairment occur not when they are simply walking, but when

they are walking and simultaneously performing a secondary task (such as talking or

manipulating an object) (Bond & Morris, 2000; Faulkner et aI., 2007). It has thus been

hypothesized that these falls are not due to balance deficits in isolation, but to the

inability to effectively allocate attention to balance in multi-task conditions (Lajoie,

Teasdale, Bard, & Fleury, 1993; Reilly, van Donkelaar, Saavedra, & Woollacott, 2008;

Reilly, Woollacott, van Donkelaar, & Saavedra, 2008; Anne Shumway-Cook &

Woollacott, 2006). A growing body of research on attentional demands and posture

suggests that the requirement for attentional resources varies as a function of three

factors, postural task, age, and balance abilities.



Attentional Demands Vary as a Function ofPostural Task

Though postural control and gait were traditionally considered to be automatic

(i.e., requiring minimal information processing), a growing body of research is showing

that the process of maintaining or regaining stability requires attentional resources

(Abernethy, Hanna, & Plooy, 2002; Cherng, Liang, Hwang, & Chen, 2007; Huang,

Mercer, & Thorpe, 2003; Kerr, Condon, & McDonald, 1985; Lajoie, Teasdale, Bard, &

Fleury, 1993). Attentional resources have been defined as available information­

processing resources, and are assumed to be limited (Kahneman, 1973; Wickens, 1989).

As a result, competition for processing resources may occur during the performance of

more than one attentionally demanding task and lead to task interference (Kahneman,

1973; Wickens, 1989). Research for studying attention and posture control has used dual

task paradigms in which balance control during quiet standing or gait (the primary task)

and a secondary task were performed together (Huang & Mercer, 2001; Woollacott &

Shumway-Cook, 2002). The degree to which performance on either one or both tasks

declined has been used to show the extent of attentional resource sharing. Experiments

using dual task designs have led researchers to propose a hierarchy of postural tasks

based on attentional processing requirements. The least resources are required for non­

demanding postural tasks such as sitting or standing with feet shoulder width apart;

attentional demands increase when standing in tandem Romberg position (Reilly, van

Donkelaar, Saavedra, & Woollacott, 2008), walking (Lajoie, Teasdale, Bard, & Fleury,

1993), during obstacle avoidance while walking (H. C. Chen et aI., 1996), and during

recovery from external perturbations (Brown, Shumway-Cook, & Woollacott, 1999;

9
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Rankin, Woollacott, Shumway-Cook, & Brown, 2000). Attentional demands of walking

were studied by Chen et al who showed that when subjects were asked to simultaneously

perform a secondary visual scanning task while walking and avoiding an obstacle, the

presence of the secondary task degraded the obstacle avoidance success rate (H. C. Chen

et aI., 1996).

Attentional Demands ofPostural and Gait Control Are High in Children

Typically developing children demonstrate a marked reduction in the ability to

perform a postural task and a cognitive task simultaneously compared to adults (Cherng,

Su, Chen, & Kuan, 1999; Reilly, van Donkelaar, Saavedra, & Woollacott, 2008). This

has been demonstrated as either a reduction in the performance of the cognitive task,

specifically an increase in reaction time, and a concomitant decrement in the postural task

(Reilly, van Donkelaar, Saavedra, & Woollacott, 2008), or in a decrement of the postural

task performance alone (Cherng, Su, Chen, & Kuan, 1999), depending on the difficulty of

the tasks. It has also been shown that there are specific neuropsychological predictors of

poor obstacle avoidance performance in dual task paradigms and these include variability

in attention (Persad et aI., 1995).

However, the ability to allocate attention increases with increasing age. TD

children reach adult-like ability to allocate attention at age 7 (Reilly, van Donkelaar,

Saavedra, & Woollacott, 2008). Because sensory integrative function and reweighting

are immature in children aged less than 7 years, postural control interference is seen in
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younger children more than older children and adults (Reilly, van Donkelaar, Saavedra,

& Woollacott, 2008).

Attentional Demands ofPostural Control Vary with Balance Abilities

What is the relationship between attention and postural control in children with

CP? No studies have yet been performed to test the attentional demands of postural

control in children with CP during dynamic tasks such as walking. Studies have been

performed on other patient populations and have reported that performance of a dual task

had a deleterious effect on the ability to recover stability (Catena, van Donkelaar, &

Chou, 2007; H. C. Chen et ai., 1996). One mechanism contributing to this loss was

reduced muscle activity during recovery of balance when performing the secondary task

(Reed, 1982). In addition, increasing postural demands (recovery of stability following

platform perturbations of increasing velocities) reduced the accuracy ofperformance on a

secondary cognitive task (Brauer, Woollacott, & Shumway-Cook, 2001, 2002; Brown,

Shumway-Cook, & Woollacott, 1999; Lindenberger, Marsiske, & Baltes, 2000). We have

hypothesized that an inability to produce an appropriate postural response due to the

competition for attentional resources between the demands of the postural system and the

cognitive task may contribute to falls in children with CP with poor balance. A number

of studies examining postural control under dual task conditions in balance impaired

patient populations suggest support for this hypothesis. Patients with clinical balance

impairments either stop (Lundin-Olsson, Nyberg, & Gustafson, 1997) or take a longer

time to complete a gait task when performed with an additional secondary task (A.

--------_._------
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Shumway-Cook, Brauer, & Woollacott, 2000). Further evidence that competition for

attention may playa role in instability and falls in patients with balance impairment was

reported in a study that found that as sensory conditions became more difficult, patients

with balance impairment who had been able to maintain stability in a single task context,

lost balance and had to be caught to prevent a fall, in a dual task context (A. Shumway­

Cook & Woollacott, 2000).

The Effects of Types of Secondary Cognitive Task on Postural Control

Many types of secondary tasks have been used to study attentional mechanisms

using the dual-task methodology. These include both sensory tasks involving the visual

or auditory systems, the Stroop task (involving executive attention), verbal memory tasks,

and math tasks, such as counting backwards by threes.

To test the interference of visual spatial versus nonvisual pathways on stance

postural control Kerr and colleagues compared the performance of subjects on a verbal

working memory and a spatial working memory task and showed that spatial working

memory tasks interfered with postural control while verbal memory tasks did not (Kerr,

Condon, & McDonald, 1985). More recently, Maylor and Wing compared interference

between stance posture control and secondary tasks that involved different components of

working memory, including visual spatial memory, and phonological systems (Maylor &

Wing, 1996). They showed that within the tasks they used, visual spatial memory was

most affected by the stance postural task. Though these studies are interesting, they may
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be weakened by not differentiating between structural attentional interference and

capacity attentional interference.

According to a model by Kalmeman (Kahneman, 1973), the total available

processing capacity of any individual is limited. Thus, limited processing capacity within

an individual, due to attentional deficits or minimal cognitive impairments, also may

contribute to reduced performance in dual task situations. As soon as the processing

capacity is exceeded during dual-task activities, performance on at least one ofthe tasks

will drop. Kalmeman also noted that two types of attentional interference are possible,

structural interference (use ofthe same input or output system overloading the capacity of

that system) and capacity interference (total central processing is exceeded by the 2 tasks).

He notes that if you want to study capacity interference it is important to choose tasks that

do not introduce structural interference. To exclude the possibility of structural

interference, it is therefore best to use secondary tasks that do not interfere with the visual

or somatosensory control systems for balance or locomotion. Thus in a recent study,

Weerdesteyn et al used an auditory Stroop task (identifying a high or low tone pitch during

conditions in which the tone is presented using the word "high" or "low" either in

consonance with the pitch or in conflict with the pitch) as the secondary task when

examining obstacle avoidance during gait under dual-task conditions (Weerdesteyn,

Schillings, van Galen, & Duysens, 2003). Therefore, the auditory Stroop task will be used

as a secondary cognitive task in this study.
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Study Proposal

The prior summary of the research literature related to postural control during gait

in TD children and children with CP indicates lack of information on mechanical changes

associated with development of balance control in these children, especially the effects of

dual task conditions. There is almost no previous research exploring changes in the

attention requirements of gait postural control during development in TD children or

children with CPo In addition, despite the fact that trips or slips during locomotion are a

primary reason for balance loss, no one has characterized developmental changes in the

ability to maintain and recover stability during perturbed locomotion (for example, obstacle

clearance tasks) in dual task conditions.

The aim of the study is to address these research questions.

1. What developmental changes occur in the ability of TD children to performing

a cognitive task (the auditory Stroop task) and a gait task simultaneously as opposed to

performing the two tasks separately?

2. What are the developmental trends in the attentional requirement of gait

postural control when the gait postural control task increases in difficulty like an obstacle

crossing task?

3. Though previous research has shown that there is interference between

static postural control and performance of a secondary task in children with CP, the

effects of a dual task on gait postural control in these children have not been studied. This

raises the question of what the influences of a cognitive task (the auditory Stroop task) on

gait postural control in children with CP are.
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To answer these questions, the experiments in this study were designed to

examine typical development in children (younger vs. older TD children) of gait postural

control using a dual task paradigm and to compare this development with that of children

with CPo Particularly, three hypotheses were proposed to explore the mechanisms

contributing to the development of gait postural control under dual task conditions: There

would be 1) increased attentional requirements for postural control during gait in younger

compared to older TD children, as well as deterioration in gait during the performance of

a cognitive task, 2) increased attentional resources required when task difficulty was

increased, and 3) increased attentional requirements for postural control during gait in

children with CP compared to TD peers.

Hypothesis one: There would be increased attentional requirements for postural

control during gait in younger compared to older TD children as well as deterioration in

gait during the performance of a cognitive task

To test this hypothesis, gait and cognitive parameters measured from a dual task

situation were compared with those measured from a single task situation. The hypothesis

can be rejected if older TD children show greater interference between gait and cognitive

performances than younger TD children. Alternatively, this hypothesis can be accepted if

older TD children demonstrate less interference between gait and cognitive tasks in dual

task contexts compared with younger children with typical development.

Hypothesis two: Additional attentional resources would be required when the

postural task increased in difficulty.
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To determine whether gait and cognitive performance under dual task conditions

in younger and older TD children would be reduced when performing a more difficult

postural task, performance was compared on level walking (an easier postural task) and

obstacle crossing (a more challenging postural control task)

Hypothesis three: There would be increased attentional requirements for postural

control during gait in children with CP compared to TD peers.

To test this hypothesis, dual task performance of postural and cognitive tasks of

younger and older TD children and children with CP were compared with single task

performance. This hypothesis can be rejected if dual task performance in children with

CP is the same as their age matched peers who are typically developing. Alternatively, this

hypothesis can be accepted if children with CP demonstrate decreased performance in

dual task compared to single task contexts when compared to age-matched TD children.

Bridge

The first two research queries were to investigate the influences of a cognitive

task (the auditory Stroop task) on the development of gait postural control and examine

the developmental trends in the attentional requirement of gait postural control when a

postural task becomes difficult. Regarding these queries, a dual task paradigm was used

in which level walking or obstacle crossing and the auditory Stroop task were performed

simultaneously. The general method for the experiments is described in Chapter II. The

changes in attentional demands associated with the maintenance of gait postural control

under normal and obstacle crossing conditions in TD children are discussed in Chapter III.
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Chapter IV gives evidence for the effects ofperfonning a secondary cognitive task on

postural control during gait among younger and older TD children and children with CP.

Chapter III and IV includes unpublished co-authored materials. Co-authors would be P.

van Donkelaar, L.S. Chou, and M. H. Woollacott for both Chapter III and IV. Finally, the

last chapter (Chapter V) summarizes the conclusions drawn from the major findings of

each experiment, discusses the limitations of the study and offers suggestions for how this

research might be applied to the assessment and treatment of children with CP.
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CHAPTER II

GENERAL METHODOLOGY

Participants

To determine the developmental changes that occur in the ability of typically

developing (TD) children to perform a cognitive task (the auditory Stroop task) and a gait

task simultaneously, 40 children with typical development ranging from 5 to 16 years of

age without known musculoskeletal, neurological and cognitive deficits reported by their

parents or guardians were recruited for this study. Two subgroups of participants who

were matched in gender were separated based on the children's chronological age. These

included 20 younger children with typical development (YTD) aged 5 to 6 years and 20

older children with typical development (OTD) aged 7 to 16 years.

To determine ifthere are any differences in the ability of children with cerebral

palsy (CP) and TD children to performing a cognitive task (the auditory Stroop task) and

a gait task simultaneously, 20 YTD children (5-6 yrs) and 20 OTD children (7-16 yrs)

were used as comparison groups for the children with CP. Ten children with spastic CP

aged 7-18 years were recruited as subjects for this study. They were required to meet the

following inclusion criteria for the study: 1) diagnosed with spastic cerebral palsy, 2)

walking without restrictions or assistive devices (Gross Motor Functional Classification

System (GMFCS) level 1-2), and 3) no speech or auditory disability. The children with
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CP were also given a clinical examination by a pediatrician to confirm the severity and

diagnosis of type of cerebral palsy.

Prior to experimental testing, participants and their parents or guardians were

provided written and verbal instructions of testing procedures. The informed consent

approved by the Human Subjects Compliance Committee of the University of Oregon

was obtained from parents or guardians prior to testing. Parents or guardians completed a

Healthcare Questionnaire to identify possible neuromuscular impairments that could

affect their child's gait performance. They also completed the attention deficit

hyperactivity disorder (ADHD) checklist and the Children's Behavior Checklist (CBCL)

to identify whether their child might have the potential to have cognitive deficits.

In addition, all participants were examined using the Gross Motor Function

Measure (GMFM-88) (Russell, Rosenbaum, Avery, & Lane, 2002) for dimension D

(standing) and dimension E (walking, running & jumping) and were also tested for

balance ability, and cognitive function using the Pediatric Balance Scale (PBS)

(Franjoine, Gunther, & Taylor, 2003), and a child version of the Attentional Network

Test (ANT) (Rueda et aI., 2004), respectively.

Experimental Apparatus

All data were collected in the Motor Control Laboratory of the University of

Oregon. The eight-camera motion analysis system (Motion Analysis Corporation, Santa

Rosa, CA) with sample rate of 60 Hz and a fourth-order Butterworth filter with cutoff

frequency of 8 Hz was used to collected three dimensional marker trajectories in space. A
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set of 29 reflective markers was placed bilaterally on bony landmarks of the body similar

to previous studies published by Chou and colleagues (Hahn & Chou, 2004; Parker,

Osternig, van Donkelaar, & Chou, 2007; Siu, Catena, Chou, van Donkelaar, &

Woollacott, 2008).

For the obstacle crossing task, the obstacle was a wooden dowel (0.9 cm diameter,

91 cm long) placed on top of two adjustable upright stands. The crossbar would easily

come loose and fall to the ground if struck by the child's foot. The height of the crossbar

was adjusted to 10% of each child's body height. A marker was placed at each end of the

crossbar to track its global position.

An auditory Stroop task was used as a secondary cognitive task. Stimuli were

relayed to the participant through two speakers facing the walkway. The stimuli which

were presented to the participant included the word "high or "low" spoken with a high or

low pitch. Congruency between pitch and the word was randomized. The participant was

asked to indicate the pitch ofthe voice as quickly and accurately as possible by saying

"high" or "low" while ignoring the actual word that was presented. One infrared-beam

located 40 cm before the obstacle and 45 cm above the ground was used for triggering the

initiation of the Stroop task program to ensure that participants would hear the stimulus

during swing phase of gait (Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008).
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Experimental Protocol

The experimental testing started and ended with a block of 4 trials of the seated

Stroop task. Each trial was composed of 4 stimuli of the spoken word "high" or "low" in

"high" or "low" pitch. Congruency between the word and pitch were randomized. The

participants were given several practice trials before data collection. Verbal reaction time

and accuracy of the responses were collected during sitting as the baseline (or control) to

determine the extent to which additional balance constraints require attentional resources

and thus reduce performance on the secondary tasks. After marker placement, participants

wore a safety harness attached to a trolley system secured to a concrete ceiling to prevent

injury from an accidental fall and were allowed to walk along an 8-meter walkway for

several trials to make them familiar with the marker set and the harness, resulting in

comfortable walking. Then, participants were asked to walk along the walkway under

different walking conditions and sequences depending on their group. In children with

cerebral palsy, they were asked to perform a block of the level walking task beginning

with 12 trials oflevel walking followed by 12 trials oflevel walking with a secondary

task. Ten YTD children and 10 OTD children who were comparison groups to the

children with CP were asked to perform the same block of level walking task as the

children with CPo After that, they were asked to perform a block of the obstacle crossing

task, beginning with 12 trials of obstacle crossing followed by 12 trials of obstacle

crossing with a secondary task.

To counter balance the effects of fatigue and learning when comparing gait and

cognitive performances between lower and higher developmental age children, the
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remaining 10 YTD children and 10 OTD children were asked to perform a block of the

obstacle crossing task followed by a block of the seated Stroop task, a block of the level

walking task and another block of the seated Stroop task (see Figure 2.1). The auditory

Stroop task for walking tasks was composed of 1 stimulus per trial with randomized word

and pitch. Participants were instructed by the proctor to perform the walking task at their

preferred speed and that in the dual-task condition, they had to respond as quickly and

accurately as possible. Participants were allowed to take a break if they felt tired or

fatigued.

Data Processing and Analysis

The regression equations from Jensen's report (Jensen, 1986) were applied to

define the segment mass of 15-body segments including head, trunk, two upper arms, two

forearms, two hands, pelvis, two thighs, two legs, and two feet. These segmental masses

were used to compute the whole-body center of mass (COM) (Winter, 2009). The

average medial COM-ankle-joint-center inclination angle (Med COM-AJC) throughout

the single stance phase of gait was computed. This angle was formed by the intersection

between a line from the COM location to ankle joint center, and a vertical line through

the ankle joint center in the coronal plane (Silsupadol et aI., 2009). In addition, the COM

range of motion in the sagittal plane (AP ROM) and in the coronal plane (ML ROM) as

well as the peak linear velocities of the COM in the sagittal and coronal planes (AP V and

ML V) during the crossing stride were used to quantify the child's dynamic stability when

walking and stepping over the obstacle.
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Clinical Testing
- The Gross Motor Function Measure
- The Pediatric Balance Scale
- A child version of the Attentional Network Test
- The attention deficit hyperactivity disorder (ADHD) checklist
- Child Behavioral Checklist (CBCL)

Exueriment Testing

~

+ + +
10 Children with CP 10 OTD children 10 OTD children

10 YTD children 10 YTD children

• • •Sitting + Stroop (4 trials) Sitting + Stroop (4 trials) Sitting + Stroop (4 trials)

Level walking (12 trials) Level walking (12 trials) Obstacle crossing (12 trials)

Level walking + Stroop (12 trials) Level walking + Stroop (12 trials) Obstacle crossing + Stroop (12 trials)

Sitting + Stroop (4 trials) Sitting + Stroop (4 trials) Sitting + Stroop (4 trials)

Obstacle crossing (12 trials) Level walking (12 trials)

Obstacle crossing + Stroop (12 trials) Level walking + Stroop (12 trials)

Sitting + Stroop (4 trials) Sitting + Stroop (4 trials)

Figure 2.1. Experiment Protocol (CP = cerebral palsy, OTD = older children with typical
development, YTD = younger children with typical development, + Stroop = plus the
auditory Stroop task)

Temporal-spatial gait parameters including gait velocity, stride length, stride time,

and average step width were calculated during the crossing stride. Stride length and stride

time were determined from the position and the relevant time changes of the heel marker.

Additional obstacle crossing parameters including trailing toe obstacle clearance (TTOC),

trailing toe distance (TTD), leading heel distance (LHD), and leading toe obstacle

clearance (LTOC) during the crossing stride were also computed for obstacle crossing
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trials. TTOC and LTOC were the vertical distance from toe marker of the trailing and

leading limbs to the obstacle bar. TTD and LHD were the horizontal distance from the

toe marker of the trailing limb and the heel marker of the leading limb to the obstacle,

respectively. All temporal-spatial parameters were normalized by the method ofHof

(1996) (Table 2.1) (Hof, 1996; Stansfield et aI., 2003). Data from successful (non-tripping)

trials for each testing condition were used in formulating the results and performing

statistical analysis.

Table 2.1. Normalized formulas for temporal-spatial variables (Hof, 1996).

Dependent Variables

Center of mass (COM)

- Anterior-Posterior range of motion (AP ROM)

- Medial-Lateral range of motion (ML ROM)

- Peak Anterior-Posterior linear velocity (AP V)

- Peak Medial-Lateral linear velocity (ML V)

Temporal-spatial gait variables

- Oait velocity (OV)

- Stride time (ST)

- Stride length (SL)

- Step width (SW)

Normalized formulas

AP ROM / height

ML ROM / ASIS width

AP V / (g* height)l/2

ML V / (g* ASIS width)ll2

OV / (g* height)l/2

ST / (height / g)l/2

SL / height

SW / ASIS width

Obstacle crossing variables

- Trailing toe distance (TTD) TTD / height

- Trailing toe obstacle clearance (TTOC) TTOC / height

- Leading toe obstacle clearance (LTOC) LTOC / height

- Leading heel distance (LHD) LHD / height

ASIS width = distance between right and left anterior superior iliac spine (ASIS), g =

gravitational acceleration (9.81 m/s2).
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For the auditory Stroop task, verbal reaction time (VRT) of the corrected

responses and percentage of the corrected responses were calculated. VRT was the

duration difference between the onset of stimulus and the onset of verbal response.

Accuracy of the responses was reported in the percentage of the total responses.

The amount of dual task interference between gait and cognitive performance was

determined by dual-task costs. Dual task costs represented the percentage of performance

reductions of each individual's single task performance when performing the two tasks

concurrently. Positive values indicate performance decrements in the dual task context,

whereas negative values indicate performance improvements from the single to dual task

context (Schaefer, Krampe, Lindenberger, & Baltes, 2008). Normalized gait measures,

VRT and accuracy were used to calculate dual-task costs in formula (1) for gait velocity,

stride length, AP ROM, AP V, TTD, TTOC, LTOC, LHD, and accuracy, and in formula

(2) for stride time, step width, ML ROM, ML V, Med COM-AlC, and VRT.

((Single -Dual) / Single) x 100 ----------------- (1)

((Dual- Single) / Single) x 100 ----------------- (2)

Statistical analyses were performed with SPSS for Windows v.16. One-way

ANOVA analysis was used to examine the children's balance ability, motor functional

skill, and attention functional ability. A mixed model analysis of variance was used to

examine the main effects and interaction effects of independent factors based upon the

conditions. Gait parameters including gait velocity, stride length, stride time, step width,

TTOC, TTD, LHD, LTOC, AP ROM, ML ROM, AP V and ML V, and the Stroop

parameters including percentage of accuracy and VRT were used as dependent variables.
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Pairwise comparisons were carried out using a Bonferroni correction to identify the

direction of gait and cognitive performance changes. The dual-task costs were examined by

using planned comparisons ANOVA. Significance level was set at p<O.05.

Bridge

The next chapter summarizes research examining the developmental changes that

occur in the ability ofTD children to perform a cognitive task (the auditory Stroop task)

and a gait task simultaneously. This study suggests that TD children require attention to

maintain gait postural control. The dual task interference between gait and cognitive

performance was greater in younger children than in older children. In addition, the

amount of interference between gait and cognitive task performances did not increase

when the difficulty of the gait postural task increased.
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CHAPTER III

DEVELOPMENT OF POSTURAL CONTROL DURING GAIT IN TYPICALLY

DEVELOPING CHILDREN: THE EFFECTS OF DUAL TASK CONDITIONS

Drs. P. Dassonville, P. van Donkelaar, L.S. Chou, and M. H. Woollacott helped

with the creation of the conceptual design for this experiment. The experimental

procedure, including data collection and analysis, described in this chapter was carried

out by me. I was the primary contributor to the writing of the research article.

Gait control has traditionally been thought as an autonomic function like reflexive

control, requiring minimal higher cognitive processing. However, recent research has

provided evidence indicating that gait control requires attentional resources (Cherng,

Liang, Hwang, & Chen, 2007; Ebersbach, Dimitrijevic, & Poewe, 1995; Huang, Mercer,

& Thorpe, 2003; Lajoie, Teasdale, Bard, & Fleury, 1993; Lindenberger, Marsiske, &

Baltes, 2000). Attentional resources have been defined as available information­

processing resources, and are assumed to be limited (Kahneman, 1973; Wickens, 1989).

Competition for limited attentional resources may occur when performing more than one

attentionally demanding task at one time. In the case that the available limited resources

are less than the demands of both tasks, deterioration in performance of one or both tasks

will be expected (Kahneman, 1973; Wickens, 1989).
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Research studying attentional resources required for postural control has typically

used a dual task paradigm, in which young adult participants are asked to perform a

primary postural or gait task and a secondary cognitive task simultaneously (Huang &

Mercer, 2001). In addition, a small number of studies in gait control has explored the

ability of children to perform both gait and a secondary cognitive task simultaneously

(Cherng, Liang, Hwang, & Chen, 2007; Huang, Mercer, & Thorpe, 2003). These studies

have demonstrated that walking while performing a concurrent cognitive task caused a

reduction in gait velocity, cadence and stride length, and an increase in double limb

support time and base of support (Cherng, Liang, Hwang, & Chen, 2007; Huang, Mercer,

& Thorpe, 2003). However, these previous studies have not shown developmental trends

for gait control in children, as only one group of children was included in the studies. In

addition, these studies have not explored mechanisms underlying gait postural control in

dual task situations in children.

Previous research has demonstrated that dual task interference with gait

performance varies depending on the type of secondary cognitive task (Ebersbach,

Dimitrijevic, & Poewe, 1995; Huang, Mercer, & Thorpe, 2003; Kerr, Condon, &

McDonald, 1985; Maylor & Wing, 1996). In order to study if interference due to

information processing capacity limitations are the primary factor contributing to

performance deficits in dual task contexts, it is important to choose tasks that do not

introduce structural interference (for example, using tasks that both require visual

pathways) (Kahneman, 1973). To exclude the possibility of structural interference, it is

therefore best to use secondary cognitive tasks that do not interfere with the visual or
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somatosensory control systems contributing to the control of balance or locomotion. Thus,

recent studies used the auditory Stroop task as a secondary cognitive task when examining

obstacle avoidance during gait under dual task conditions. In this task the participant

identified a high or low tone pitch during conditions in which the tone was presented using

the word "high" or "low" either in consonance with the pitch or in conflict with the pitch

(Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008; Weerdesteyn, Schillings, van

Galen, & Duysens, 2003). In order to exclude the possibility of structural interference

between the two tasks in the present study, the auditory Stroop task was used as a

secondary cognitive task as well.

It has previously been demonstrated that different types of postural tasks require

varying amounts of attentional resources, with more difficult balance tasks requiring

increased attention resources (Ebersbach, Dimitrijevic, & Poewe, 1995; Lajoie, Teasdale,

Bard, & Fleury, 1993; Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008). It is

reasonable to expect that maintaining dynamic balance of the whole body during obstacle

crossing may be a more challenging task than during unobstructed level walking, as the

longer swing time required for the swing limb implies a longer duration of single stance

for the supporting limb when stepping over an obstacle. Greater and faster motion of

body segments while negotiating an obstacle would result in greater and faster movement

of the center of mass (COM) and perturb balance maintenance (Chou & Draganich, 1997;

Patla & Rietdyk, 1993). Recent research in healthy young adults has shown that obstacle

crossing required more attentional resources than sitting or level walking (Siu, Catena,

Chou, van Donkelaar, & Woollacott, 2008).
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Research on children who are typically developing has examined both single and

dual task requirements of anticipatory postural control during locomotion. Studies have

demonstrated that children aged 7-9 years old have reached adult-like proactive control in

their strategies to avoid obstacles (McFadyen, Malouin, & Dumas, 2001). Moreover,

other studies have shown that the ability to allocate attention in quiet stance postural

control children has reached adult-like levels by age 7 (Reilly, van Donkelaar, Saavedra,

& Woollacott, 2008). It has also been shown that sensory integrative function and

reweighting of sensory inputs under different environmental conditions were also

immature in children aged less than 7 years. Thus immaturity of the postural control

systems (possibly associated with increased attentional requirements) may contribute to

the secondary task interference with postural control seen in younger children (4-6 yrs),

as compared to older children and adults (Reilly, van Donkelaar, Saavedra, & Woollacott,

2008).

Previous research has not explored the influences of a concurrent cognitive task

(the auditory Stroop task) on the development of gait postural control in children with

typical development as well as the effects of a gait task difficulty on a dual task gait

postural control in these children. Therefore, the purpose of this study was to investigate

the development of postural control during gait under dual task conditions, comparing

younger children with typical development (YTD) aged 5-6 years, older children with

typical development (OTD) aged 7-16 years and healthy young adults (HYA) aged 19-26

years. We have hypothesized that, when compared with HYA, YTD and OTD children

would show greater interference between gait and cognitive task performance while
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concurrently performing walking and a secondary cognitive task. Dual task interference

between gait and cognitive task performance in YTD children would be greater than in

OTD children. Finally, the study aimed to further investigate the attentional requirements

of a more challenging gait task, obstacle crossing. It has been hypothesized that

increasing the difficulty of the gait task would produce corresponding increases in the

amount of interference between the gait task and a concurrent secondary cognitive task,

especially in YTD children.

Methods

Participants

Forty children with typical development participated in the study. They were

subdivided into 2 groups according to chronological age: 20 younger children with

typical development (YTD) aged 5-6 years (9 females/1I males; age = 6.22 ± 0.63 years)

and 20 older children with typical development (OTD) aged 7-16 years (9 females/II

males; age = 10.92 ± 2.95 years). The children had no known neuromuscular diseases or

attentional deficits according to their parents' and teachers' reports. Prior to children

entering the study, informed consent approved by the Human Subjects Compliance

Committee ofthe University of Oregon, was obtained from the child and their parents or

guardians.

Children were assessed for motor function and balance ability by using the Gross

Motor Function Measure (GMFM-88) (Russell, Rosenbaum, Avery, & Lane, 2002) for

dimension D (standing) and dimension E (walking, running & jumping) and the Pediatric
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Balance Scale (PBS) (Franjoine, Gunther, & Taylor, 2003). In addition, a children's

version of the Attentional Network Test (ANT) (Rueda et aI., 2004) was used to test for

the level of children's attentional abilities.

Finally, children's gait and cognitive performance in the present study was

compared with 12 healthy young adults (5 females17 males; age = 22.83 ± 2.66 years)

who had been studied by Siu et al (2008).

Equipment

An eight-camera motion analysis system (Motion Analysis Corporation, Santa

Rosa, CA) with a sample rate of 60 Hz and a fourth-order Butterworth filter with cutoff

frequency of 8 Hz was used to capture three dimensional marker trajectories in space. A

set of29 reflective markers was placed bilaterally on bony landmarks ofthe children's

body similar to previous studies (Hahn & Chou, 2004; Parker, Ostemig, van Donkelaar,

& Chou, 2007; Siu, Catena, Chou, van Donke1aar, & Woollacott, 2008). Fifteen body

segments, including head, trunk, 2 upper arms, 2 forearms, 2 hands, pelvis, 2 tights, 2

legs, and 2 feet, were used in this study. The regression equations from Jensen's report

(Jensen, 1986) were applied to define the segments' mass and the center of mass (COM).

The walkway was 8-meter long. An obstacle was placed in the middle ofthe

walkway for the obstacle crossing task. The obstacle was a wooden dowel (0.9 cm

diameter, 91 cm long) placed on top of two adjustable upright stands. The height of the

crossbar was adjusted to 10% of each child's body height. One infrared-beam used for

triggering the initiation of the auditory Stroop task program was set to ensure that



33

children would hear the stimulus during single limb support or while crossing the

obstacle (Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008).

Procedures

After marker placement, children in each group were asked to perform the

following tasks: Three blocks of 4- trials of the auditory Stroop task in sitting at the

beginning and at the end of the testing, and also between a block of level walking and a

block of obstacle crossing tasks. Each trial of the seated Stroop task was composed of 4

stimuli of the spoken word "high" or "low" in a "high" or "low" pitch. In a block of level

walking and obstacle crossing tasks, children were asked to perform 12 trials oflevel

walking or obstacle crossing tasks in isolation, and another 12 trials of these tasks with

the auditory Stroop task. There was a single auditory Stroop stimulus for each trial of

level walking and stepping over the obstacle tasks. Congruency between the word and

pitch of the auditory Stroop task were randomized. Each child was instructed to respond to

the pitch ofthe voice as quickly and accurately as possible.

To counterbalance for possible fatigue and learning effects, half ofthe children in

each group were asked to first perform a block of level walking trials and then perform a

block of obstacle crossing trials. The other halfof the children were asked to perform the

obstacle crossing task before the level walking task. Children were instructed to walk at

their preferred speed and they wore a safety harness attached to an overhead trolley

system to prevent injury from an accidental fall while walking. Several practice trials for
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each task were given to the children before collecting data. Children were allowed to take a

rest if they became fatigued.

Data Processing and Analysis

The regression equations from a study by Jensen (Jensen, 1986) were applied to

define the segment mass of IS-body segments including head, trunk, two upper arms, two

forearms, two hands, pelvis, two thighs, two legs, and two feet. These segmental masses

were used to compute the whole-body center of mass (COM) (Winter, 2009). The COM

range of motion in the sagittal plane (AP ROM) and in the coronal plane (ML ROM), as

well as the peak linear velocities of the COM in the sagittal and coronal planes (AP V and

ML V) during the crossing stride were used to quantify the child's dynamic stability when

walking and stepping over the obstacle.

Temporal-spatial gait parameters, including gait velocity, stride length, stride

time, and average step width, were calculated during the crossing stride. Stride length and

stride time were determined from the position and the relevant time changes of the heel

marker. Additional obstacle crossing parameters, including trailing toe obstacle clearance

(TTOC), trailing toe distance (TTD), leading heel distance (LHD), and leading toe

obstacle clearance (LTOC) during the crossing stride, were also computed for obstacle

crossing trials. TTOC and LTOC were the vertical distance from the toe marker of the

trailing and leading limbs to the obstacle bar. TTD and LHD were the horizontal distance

from the toe marker of the trailing limb and the heel marker of the leading limb to the

obstacle, respectively. All gait measures were normalized by using Hofs method (Hof,
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1996) to eliminate the effect of body size (Table 3.1). Data from successful (non-tripping)

trials for each testing condition were used in formulating the results and performing

statistical analysis.

Table 3.1. Normalized formulas for gait measures.

Dependent Variables

Center ofmass (COM)

- Anterior-Posterior range ofmotion (AP ROM)

- Medial-Lateral range ofmotion (ML ROM)

- Peak Anterior-Posterior linear velocity (AP V)

- Peak Medial-Lateral linear velocity (ML V)

Temporal-spatial gait variables

- Gait velocity (GV)

- Stride time (ST)

- Stride length (SL)

- Step width (SW)

Normalized formulas

AP ROM / height

ML ROM / ASIS width

AP V / (g*height)1I2

ML V / (g* ASIS width)1I2

GV / (g* height)1I2

ST / (height / g)1I2

SL / height

SW / ASIS width

Obstacle crossing variables

- Trailing toe distance (TTD) TTD / height

- Trailing toe obstacle clearance (TTOC) TTOC / height

- Leading toe obstacle clearance (LTOC) LTOC / height

- Leading heel distance (LHD) LHD / height

ASIS width = distance between right and left anterior superior iliac spine (ASIS), g =

gravitational acceleration (9.81 m/s2).

For the auditory Stroop task, verbal reaction time (VRT) ofthe correct responses

and percentage of the correct responses were calculated. VRT was the time difference

between the onset of the stimulus and the onset of the verbal response. Accuracy of the

responses was reported as the percentage of total responses.
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Gait and cognitive performance changes from single to dual task conditions were

calculated in proportional dual-task costs. Dual task costs represent the percentage

change in dual-task performance as compared to the individual's single task performance.

Positive values indicate performance decrements whereas negatives values indicate

performance improvements from single to dual task (Schaefer, Krampe, Lindenberger, &

Baltes, 2008). Normalized gait measures, VRT, and accuracy were used to calculate

dual-task costs in formula (1) for gait velocity, stride length, AP ROM, AP V, TTD,

TTOC, LTOC, LHD, and accuracy, and in formula (2) for stride time, step width, ML

ROM, ML V, and VRT.

((Single -Dual) / Single) x 100

((Dual- Single) / Single) x 100

Statistical analyses were performed with SPSS for Windows v.l6 (SPSS inc.,

Chicago, IL). Differences in baseline gross motor function, balance and attentional

abilities obtained from PBS, GMFM, and ANT subsystems scores between YTD and

OTD children were determined by using independent t-tests. The main effects and the

interaction effects of the independent factors on temporal-spatial gait measures, COM

range ofmotion and peak linear velocity were determined by a three-way mixed-model

factorial ANOVA with weighted mean; group (YTD, OTD and HYA) x task (level

walking and obstacle crossing) x condition (single and dual tasks). A two-way mixed­

model factorial ANOVA with weighted mean was applied to examine the main effects and

the interaction effects of independent factors on VRT and accuracy; group (YTD, OTD and

HYA) x condition (single and dual (walking), and dual (obstacle crossing)). Group was a
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between-subject factor and task and condition were within-subject factors. Pairwise

comparisons were carried out using a Bonferroni correction to identify the direction of gait

and cognitive performance changes. The dual-task costs were examined by using planned

comparisons ANOVA. Pearson correlation analysis was used to test the correlation

between ANT subsystems scores and the dual task effects on gait parameters.

Results

Baseline Characteristics

OTD children showed significantly higher performance scores for the GMFM for

dimension E (walking, running and jumping) compared to YTD children (t(38) = 2.430, p

= 0.020). In contrast, balance abilities, as tested by the PBS and gross motor function

skills in standing tested by GMFM dimension D were not significantly different (p> 0.05)

between OTD and YTD children. For the attentional network test, OTD showed

significantly better performance scores than YTD children for attentional orienting (t (38)

= -2.098, p = 0.043) and ignoring conflicting stimuli (t (38) = -2.188, p = 0.035). In

contrast, attentional alerting scores were similar for both groups (p> 0.05). The children's

motor functional ability, balance ability, and cognitive functional ability are showed in

Table 3.2.
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Table 3.2. Means (SE) of gross motor functional ability, balance ability, and cognitive
functional ability in younger children with typical development (YTD) and older children
with typical development (OTD).

Group PBS GMFM ANT
--------------

D E* Orienting* Alerting Conflicts*

OTD 56.00 39.00 72.00 18.70 69.68 56.05

(0.00) (0.00) (0.00) (10.46) (13.20) (9.62)

YTD 55.50 38.70 71.20 56.70 49.68 98.45

(0.11) (0.15) (0.33) (14.79) (15.75) (16.82)
PBS = Pediatric Balance Scale, GMFM = Gross Motor Functional Measure, D = dimension D (standing), E
= dimension E (walking, running and jumping), ANT = Attentional Network Test, *significant difference at
p < 0.05.

Gait Performance

There were significant group main effects for step width (F (2, 49) = 4.80, P =

0.01,112 = 0.16). Pairwise comparison showed that YTD used a wider step width (p =

0.01) than HYA. A significant condition main effect was also found for step width (F (1,

49) = 10.51, P < 0.01, 112 =0.18). Pairwise comparisons demonstrated that participants in

the present study demonstrated a wider step width (p < 0.001), when they performed gait

tasks with a concurrent auditory Stroop task (Figure 3.1).

Significant group x condition interactions were found for gait velocity (F (2, 49)

= 4.82, P = 0.01,112 = 0.16), stride time (F (2, 49) = 4.25, P = 0.02, 112 = 0.15), and stride

length (F (2, 49) = 4.76, P = 0.01, 112 = 0.16). YTD children used a slower gait velocity

with a longer stride time and a shorter stride length (p < 0.001) when they simultaneously

performed gait tasks and an auditory Stroop task. Decreased stride length was also found

in OTD children when they performed in the dual task condition (Figure 3.1).
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Figure 3.1. Normalized gait velocity (A), stride time (B), stride length (C), and step
width (D) for level walking and obstacle crossing tasks under single and dual task
conditions in younger and older children with typical development (YTD and OTD) and
in healthy young adults (HYA).*Significant difference between single and dual task
conditions within group. #Significant difference between groups. **Significant difference
between level walking and obstacle crossing tasks across groups and conditions.
i'Significant difference between single and dual task conditions across groups and tasks.

Significant task main effects were found for gait velocity (F (1, 49) = 60.69, p <

0.001,,,2 = 0.55), stride time (F (1, 49) = 59.53, p =< 0.001,,,2 = 0.55), stride length F (1,

49) = 23.98, p < 0.001,,,2 = 0.33), and step width (F (1, 49) = 9.12, p < 0.01,,,2 = 0.16).

Pairwise comparisons indicated that participants in the present study reduced gait
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velocity with longer stride time and stride length, and a wider step width in the obstacle

crossing task (p < 0.001) as compared to the level walking task (Figure 3.1).

Gait Stability

There were significant group main effects for ML ROM (F (2, 49) = 34.16, p <

0.001, T]2 = 0.58), and ML V (F (2, 49) = 11.37, P < 0.001, T]2 = 0.32). Pairwise

comparison showed that YTD showed greater ML ROM (p < 0.001) than HYA. In

addition, YTD showed greater ML ROM (p < 0.001) and ML V (p < 0.001) than OTD.

Significant group x condition interactions were found for AP ROM (F (2, 49) =

4.53, p = 0.02, T]2 = 0.16), and AP V (F (2, 49) = 4.20, p = 0.02, T]2 =0.15). YTD children

reduced AP ROM and AP V (p < 0.001) when they concurrently performed gait tasks and

an auditory Stroop task. Decreased AP ROM (p = 0.02) was also found in OTD children

when they performed in the dual task context (Figure 3.2). In contrast to children, HYA

did not show any changes in COM displacement or linear velocity in the sagittal or

coronal planes.

A significant task x condition interaction was found for AP V (F (1, 49) = 4.65, p

= 0.04, T]2 = 0.09). Dual tasking also induced a reduction in AP V in the level walking

task (p < 0.001), but not in the obstacle crossing task (Figure 3.2).

Significant task main effects were found for AP ROM (F (1, 49) = 102.36, P <

0.001, T]2 = 0.68), ML ROM (F (1, 49) = 28.27, p < 0001, T]2 = 0.37) and ML V (F (1, 49)

= 39.47, p < 0.001, T]2 = 0.45). Across all groups and conditions, ML ROM, and ML V
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were increased in the obstacle crossing task (p < 0.001) as compared to the level walking

task (Figure 3.2).
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Figure 3.2. Normalized center of mass (COM) range of motion in (A) anterior-posterior
plane (AP ROM) and in (B) medial-lateral plane (ML ROM), and normalized peak linear
velocity of center of mass in (C) anterior-posterior plane (AP V), and in (D) medial­
lateral plane (ML V) for level walking and obstacle crossing tasks under single and dual
task conditions in younger and older children with typical development (YTD and OTD)
and in healthy young adults (HYA). *Significant difference between single and dual task
conditions or level walking and obstacle crossing tasks within group. #Significant
difference between groups. **Significant difference between level walking and obstacle
crossing tasks across groups and conditions. tSignificant difference between single and
dual task conditions in the level walking task across groups.
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A significant group x task interaction for AP ROM (F (2, 49) = 4.39, P < 0.02, 112

=0.15) was found. YTD children, OTD children and HYA increased AP ROM to

negotiate the obstacle (p < 0.01). Pairwise comparisons also showed that there was no

significant different in AP ROM between groups in the level walking task and the

obstacle crossing task (p > 0.05) (Figure 3.2).

Obstacle Clearance Performance

In the obstacle crossing task, significant group main effects were found for

trailing toe distance (F (2, 49) = 4.96, P = 0.01, 112 = 0.17), LTOC (F (2, 49) = 3.94, p =

0.03,112 = 0.14), and LHD (F (2, 49) = 3.75, p = 0.03, 112 = 0.13). Pairwise comparisons

showed that YTD children performed with greater trailing toe distance and leading toe

obstacle clearance and less leading heel distance than HYA (p < 0.05). In addition, YTD

children demonstrated greater trailing toe distance than OTD children (p < 0.05). There

was a significant condition main effect for leading heel distance (F (l, 49) = 4.06, p <

0.05,112 = 0.08). Pairwise comparisons indicated that dual tasking induced a reduction in

leading heel distance (p < 0.05) (Figure 3.3).
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Figure 3.3. Nonnalized obstacle crossing measures in single and dual task situations in
younger and older children with typical development (YTD and OTD) and in healthy
young adults (HYA).TTD = trailing toe distance, TTOC = trailing toe obstacle clearance,
LTOC = leading toe obstacle clearance, LHD = leading heel distance. *Significant
difference between single and dual task conditions. #Significant difference between
groups.

Auditory Stroop Task Performance

There was a group main effect for VRT (F (2, 49) = 29.72, p < 0.001, 112 = 0.55)

and accuracy (F (2, 49) = 14.96, P < 0.001, 112 = 0.38). YTD children perfonned with

slower VRT (Figure 3.4a and 3.5) and less accuracy than older children and HYA (p <

0.001) (Figure 3.4b). Significant condition effects (F (2, 98)= 3.98, P = 0.02, 112 = 0.08)

were also found for accuracy. Pairwise comparisons indicated that accuracy was higher in

the single task condition (sitting) than in dual task conditions (either level walking or

obstacle crossing task) (p < 0.05). There was no significant difference in accuracy

between two dual task conditions (level walking and obstacle crossing tasks) (p> 0.05)

(Figure 3.4).
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respectively) demonstrate the differences in the information processing among groups.
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Dual-Task Costs

For gait stability, planned comparisons showed that, across all groups, dual-task

costs for AP V were less in the obstacle crossing task than in the level walking task (p =

0.03). YTn children showed greater dual-task costs than HYA and OTn children for AP

V (p < 0.05) in the level walking and the obstacle crossing tasks (Figure 3.6). Greater

dual-task costs for AP ROM (p < 0.05) in the obstacle crossing task were also found in

YTn children as compared to HYA and OTn children. Moreover, YTn children had

greater dual-task costs than HYA for AP ROM (p < 0.05) in the level walking task

(Figure 3.6a) and greater ML V (p < 0.05) than OTn children in the obstacle crossing

task (Figure 3.6b). In addition, there was no correlation between the Attention Network

scores and dual-task costs for any gait measures (p> 0.05).

For gait performance, YTn children showed greater dual-task costs than HYA

and OTn children for gait velocity and stride time (p < 0.05) in the level walking and the

obstacle crossing tasks (Figure 3.6). Greater dual-task costs for stride length (p< 0.01) in

the obstacle crossing task were also found in YTn children as compared to HYA and

OTn children. Moreover, YTn children had greater dual-task costs than HYA for stride

length in the level walking task (Figure 3.6a).
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Figure 3.6. Dual-task cost for normalized gait measures (GV = gait velocity, ST = stride
time, SL = stride length, SW = step width, AP ROM = anterior-posterior range of motion,
ML ROM = medial-lateral range of motion, AP V = peak anterior-posterior linear
velocity, ML V = peak medial-lateral linear velocity, TTD = trailing toe distance, TTOC
= trailing toe obstacle clearance, LTOC = leading toe obstacle clearance, LHD = leasing
heel distance), verbal reaction time (VRT) and accuracy in younger and older children
with typical development (YTD and OTD) and in healthy young adults (HYA) during
level walking (A) and obstacle crossing (B). *Significant difference between YTD
children and OTD children. #Significant difference between YTD children and HYA.
$Significant difference between OTD children and HYA.
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There was no significant difference in dual-task costs for VRT between groups

and between tasks. For accuracy, OTD children showed greater dual-task costs than HYA

in the level walking and the obstacle crossing tasks (p < 0.05) where as YTD children

showed greater dual-task costs than HYA only in the obstacle crossing task (p = 0.05).

Dual-task costs were not significantly different among groups for other measures in both

level walking and obstacle crossing tasks (p> 0.05) (Figure 3.6).

Discussion

The present study examined the effect ofdual tasking on gait performance among

YTD children, OTD children and HYA. Our findings revealed that dual task interference

with gait performance was found in YTD and OTD children, but it was not found in

HYA. In general, gait performance decrements under dual task contexts were greater in

YTD than OTD children. Moreover, the results of the present study supported our

hypotheses that dual task interference would be lowest in HYA and highest in YTD

children when compared among YTD children, OTD children and HYA. In addition, dual

task interference with gait performance in YTD children was greater than OTD children,

suggesting that there was a developmental trend in attentional resources required to

control gait in children with typical development.

The results were consistent with previous studies exploring dual task control in

children (Cherng, Liang, Hwang, & Chen, 2007; Huang, Mercer, & Thorpe, 2003), in

showing that gait control in children with typical development requires attentional

resources to maintain stability. Huang et al (2003) examined dual task effects on gait
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perfonnance in children aged 5 to 7.8 years by using a visual identification, an auditory

identification and a memorization task as the secondary cognitive task. The results

showed a decrease in gait velocity for all concurrent cognitive tasks. In particular, the

simultaneous perfonnance of walking and either a visual or an auditory identification task

decreased cadence and step length (Huang, Mercer, & Thorpe, 2003). Additionally,

Cherng et al (2007) reported that decreased gait velocity and stride length, and increased

double support time and base of support were found in children 4-6 years of age when

they were simultaneously walking and perfonning a secondary cognitive task, including

either repeating a series of numbers forwards or backwards (Cherng, Liang, Hwang, &

Chen, 2007).

Interestingly, the present study found that ML ROM and ML V were not affected

by dual tasking. Since balance loss during walking mostly occurs in the ML plane, it is

possible that YTD and OTD children maintained their gait stability by constraint of the

COM displacement and velocity in the coronal plane, while using a strategy of changing

the other gait characteristics in the dual task context. These results are similar to those of

a study by Scheaefer et al (2008) on stance balance perfonnance in dual task situations.

They found that children aged 9 and 10 years reduced their sway when they were

concurrently balancing themselves on an ankle-disc board and perfonning a cognitive

task, including working memory and episodic memory tasks. The authors suggested that

children tried to maintain their stability within narrow margins to protect themselves from

falling in dual task situations (Schaefer, Krampe, Lindenberger, & Baltes, 2008).
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As mentioned above, YTD and OTD children demonstrated gait performance

decrements in other variables during dual task performance. Differences in amount of

dual task interference indicated by dual-task costs between YTD and OTD children were

found for gait performance in both the level walking task and the obstacle crossing task.

As we expected, YTD children showed greater gait performance decrements caused by

dual tasking than did OTD children and HYA.

The younger children in the present study were still developing attentional

network function, as they showed poorer performance on orienting and conflict scores on

the ANT test than OTD, suggesting YTD children have less attentional resources for use

in orienting and executive attention subsystems than OTD children. In addition, norms

for HYA show that they have the greatest attentional resources among the populations in

the present study (Rueda et al., 2004). This suggests that, regarding the assumption of

limited resources (Wickens, 1989), children would have fewer available resources for

processing the information involved in the two tasks than HYA.

In the level walking task, one reason for the poorer gait performance in the

younger children is that they may allow gait instability to be increased, as risk taking in

the motor domain is typically a prerequisite for mastering motor skills. As the YTD

children in the present study performed at lower levels in the GMFM part E, in walking,

running, and jumping, this demonstrates that the YTD group had not reached maturity

with respect to these skills. Research has also shown that there are high rates of falls in

infants and toddlers as they learn these motorically and attentionally demanding tasks
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(Joh & Adolph, 2006). In addition, studies have revealed that falls occurring while

walking are one cause of unintentional injury in this young population (Britton, 2005).

When the gait task was increased in difficulty during obstacle crossing, the risk of

falls would be also increased. Under this condition, dual-task costs for accuracy were

now greater in YTD children than in HYA. In addition, dual-task costs for gait velocity,

stride time, stride length and AP V were consistently greater than OTD children and

HYA, as they were previously found in the level walking task. Moreover, dual-task costs

for trailing toe obstacle clearance were less in YTD children as compared to OTD

children and HYA. The results may imply that YTD children who had the smallest

available attentional capacity may not have been able to allow additional gait instability

to occur as they maintained gait performance at almost the same level as they did in the

level walking task. To maintain gait stability, it cost this group on average 7% in

cognitive performance decrements. The way that YTD children used cognitive resources

for gait postural control was similar to older adults who have deterioration of attentional

resources. Doumas et al (2008) demonstrated that older adults had the flexibility in

attentional resource allocation to allow additional instability when they were in a

relatively stable position. However, when they were in a position that created a higher

risk of fall, and which required more attentional resources, they kept allocating attention

to posture to maintain stability by not releasing attentional resources to the cognitive task.

Thus, the cognitive task performance declined (Doumas, Smolders, & Krampe, 2008).

Moreover, in the difficult gait task, the information processing in YTD children

may be more in series than OTD children and HYA as YTD children possibly performed
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one task at a time (Figure 3.5) to minimize the risk of falls when dual tasking. YTD

children responded to the auditory Stroop stimulus after they stepped over an obstacle

and took a few additional steps, whereas OTD children responded to the stimulus shortly

after they finished crossing the obstacle. In contrast to children, HYA performed

obstacle crossing and responding to the auditory Stroop stimulus at about the same time

suggesting that information processing for the two tasks in HYA is in parallel.

In contrast to YTD children, OTD children do not show the same shifts in

allocation of attention, possibly due to their increased attentional resource pool, and/or

their strategy of focusing primarily on stability in gait. Thus, they paid more attention to

their gait stability than to creating correct responses to the auditory Stroop task, as seen in

their reduced accuracy of cognitive performance in the dual task compared to single task

conditions in both level waking and obstacle crossing tasks. In addition, the lower

accuracy in OTD children may possibly be because they responded earlier than young

children as they performed dual tasks (Figure 3.5). These results suggest that OTD

children have developed a prioritization for gait postural control, as this "posture first"

strategy was also found in healthy young adults and healthy elderly, to avoid hazards and

prevent falls while walking (Bloem, Valkenburg, Slabbekoom, & Willemsen, 2001b;

Regnaux, Roberston, Smail, Daniel, & Bussel, 2006).

In addition, across all groups, dual tasking affected gait and cognitive

performance while walking on a level surface as well as stepping over an obstacle.

However, gait performance was less affected than cognitive performance (observed in

decreased AP V dual-task costs), when the difficulty of the gait task increased. It is
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possible that this was due to all age groups prioritizing gait stability to prevent falling

while stepping over the obstacle. Gage et al (2003) have suggested that in a high risk task

that could lead to balance loss, instability or fear of falling, the allocation of attention was

altered to enhance awareness of the current challenges to stability (Gage, Sleik, Polych,

McKenzie, & Brown, 2003).

In conclusion, the results of this study show that YTD children who have not

reached maturity with relation to gait and cognitive performance demonstrated the

greatest dual task interference with gait postural control as compared with OTD children

and HYA. In addition, greater dual task interference is showed in OTD children when

compared with HYA. Hence, the ability to control gait stability in dual task conditions is

increased with increasing age as attentional resources have increased. In a challenging

gait task, our findings demonstrate that children allocate their attention to gait stability

more than to the creation of accurate responses to the auditory Stroop task. These

findings indicate that children perform what has been called a "postural first" strategy

when dealing with a dual task situation, similarly to healthy young adults and the elderly.

A knowledge of the cost of performing a concurrent cognitive task on walking and

obstacle crossing may help teachers to choose appropriate activities and tools to enhance

age-specific motor and cognitive development, while minimizing a risk of accidental

falls. Clinicians may use this knowledge regarding TD children's gait and cognitive

performance decrements when dual tasking as a norm when evaluating dual task

performance of children with developmental delays or deficits.
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Bridge

To our knowledge, this was the first study 1) to examine the effects of dual

tasking on the development of gait postural control and 2) to determine the extent to

which the difficulty of the gait task, (level walking vs. obstacle crossing), affected

attentional demands. Our findings demonstrated that YTD and OTD children

demonstrated a marked reduction in the ability to perform a gait and a cognitive task

simultaneously compared to HYA. In addition, YTD children showed greater dual

tasking effects than OTD children on gait performance. When the gait task was increased

in difficulty, both YTD and OTD prioritized gait stability over cognitive performance.

Moreover, dual tasking interfered less with gait performance than with cognitive

performance in the more difficult gait conditions, as seen, for example in a reduction in

dual-task costs for AP V in the obstacle crossing as compared to the level walking task.

Chapter IV examines dual task effects on gait and cognitive performance in YTD

and OTD children, as well as children with cerebral palsy (CP). It suggests that children

with CP, unlike OTD children do not use a "posture first" strategy in dealing with dual

task situations.
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CHAPTER IV

THE EFFECTS OF DUAL TASK ON POSTURAL CONTROL DURING GAIT IN

CHILDERJ'J WITH CEREBRAL PALSY

Drs. P. Dassonville, P. van Donkelaar, L.S. Chou, and M. H. Woollacott helped

with the creation of the conceptual design for this experiment. The experimental

procedure, including data collection and analysis, described in this chapter was carried

out by me. I was the primary contributor to the writing of the research article.

The concurrent performance of a motor task and a cognitive task occurs

throughout the activities we perform in our daily lives; for example, when we walk we

often are concurrently talking to another person or remembering directions to our

destination. The process of learning to walk involves the mastery of a number of motor

skills, such as dynamic balance and gait, and the integration between these skills and

other attentionally demanding tasks, such as carrying objects, communicating with

others, and navigating in a visually complex environment. High rates of falls in typically

developing infants and toddlers have been reported as they learn these motorically and

attentionally demanding tasks (Joh & Adolph, 2006). In addition, studies have revealed

that falls occurring while walking are one cause of unintentional injury in this young

population (Britton, 2005).
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Balance and gait impairments, including reduced walking speed, and impaired

muscle response coordination, have been documented in children with CP (Donker,

Ledebt, Roerdink, Savelsbergh, & Beek, 2008; Hanna et aI., 2009; Hsue, Miller, & Su,

2009a, 2009b; Stackhouse et aI., 2007). Based on this literature, showing motor system

constraints in this population, it could be expected that both performing these activities

and coordinating these activities with other motor and cognitive tasks may require

additional attentional resources beyond those required of typically developing children

who do not have motor impairments. Though falls and injury statistics are unavailable for

children with CP, it is likely that, for these reasons, unintentional injury due to falls is

even higher in these children who can walk than in the typically developing population.

Research on balance control has shown that neuromuscular deficits are one factor

contributing to falls in balance impaired populations. However, recent studies have

shown that a second factor contributing to falls is a limitation in attentional resources

required for coordinating both balance and secondary cognitive tasks simultaneously

(Woollacott & Shumway-Cook, 2002). Falls often occur when not attending to balance

while simultaneously performing a second cognitive task. It has thus been hypothesized

that most falls are not due to balance deficits in isolation, but to the inability to

effectively allocate attention to complex balance tasks or to balance in multitask

conditions. It has also been hypothesized that interference between balance and

secondary task performance may be apparent in classroom settings, with children with

CP showing poor attention to classroom interactions because attentional resources are



56

partially invested in focus on their own stability (Reilly, van Donkelaar, Saavedra, &

Woollacott, 2008; Reilly, Woollacott, van Donkelaar, & Saavedra, 2008).

Impairments of cognitive function in children with CP, which have interfered with

postural control have also been reported by Reilly et al (Reilly, Woollacott, van

Donkelaar, & Saavedra, 2008). The authors noted that children with CP (diplegia and

ataxia) showed more sway while standing when simultaneously performing a visual

working memory task as compared to standing alone. Children with CP had greater body

sway than their peers (older children with typical development, OTD) (7-12 years old),

but did not differ from younger children with typical development (YTD) (4-6 years old).

In addition, the results showed that children with CP had less visual working memory

than children with typical development. Thus, the authors suggested that children with

CP had poorer ability to allocate attentional resources to the processing of two

attentionally demanding tasks than children with typical development. Consequently, the

impairment of postural control and executive function in children with CP led to postural

control deficits in a dual task setting.

Even though previous research has shown that there is interference between static

postural control and performance of a secondary task in children with CP, the effects of a

dual task on gait postural control in these children have not been studied. This raises the

question of whether the influences of a concurrent cognitive task (the auditory Stroop

task) on gait postural control in children with CP are greater than in children with typical

development who are the same age. To answer these questions, the present study was

designed to examine gait postural control under dual task conditions in children with CP
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in comparison with their peers, older children with typical development (OTD), and also

with younger children with typical development (YTD) using a dual task paradigm. We

hypothesized that attentional requirements for postural control during gait in children

with CP would be greater than OTD children, but they would be similar to YTD children.

Methods

Participants

Fifty children were recruited to participate in the study. They were separated into

3 groups including 10 children with spastic cerebral palsy (CP) aged 7-18 years (2

females/8 males; age = 12.17 ± 3.34 years), 20 younger children with typical

development (YTD) aged 5-6 years (9 females/11 males; age = 6.22 ± 0.63 years) and 20

older children with typical development (OTD) aged 7-16 years (9 females/11 males; age

= 10.92 ± 2.95 years). All children with CP met the following inclusion criteria: 1)

diagnosed with spastic cerebral palsy, 2) walking without restrictions or assistive devices

(Gross Motor Functional Classification System (GMFCS) level 1-2, and 3) no speech or

auditory disability. Three of the children with CP were diagnosed with hemiplegia and

the others were diagnosed with diplegia.

Prior to participation in the study, the written and the verbal instructions of the

testing procedures were provided to children and their parents or guardians. Informed

consent was obtained from parents or guardians, and informed assent was obtained from

the children before testing. The study was approved by the Human Subjects Compliance

Committee of the University of Oregon. Parents voluntarily completed a Health
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Questionnaire to identify the possible injuries and diseases that could affect their child's

gait performance. Parents and/or child's teachers also completed the ADHD checklist and

Children's Behavioral Checklist to indicate the possibility of cognitive deficits that could

affect children's cognitive performance.

All children were examined to determine the level of their motor functional skill

performance for walking, running and jumping by using the Gross Motor Function

Measure (GMFM-88) (Russell, Rosenbaum, Avery, & Lane, 2002) dimension D

(standing) and E (walking, running & jumping) and were also tested for balance ability,

and cognitive function using the Pediatric Balance Scale (PBS) (Franjoine, Gunther, &

Taylor, 2003), and a child version ofthe Attentional Network Test (ANT) (Rueda et aI.,

2004), respectively.

Experiment Equipment

Gait and cognitive performance were measured in the Motor Control Laboratory

of the University of Oregon. Three dimensional gait performance was collected by using

an eight-camera motion analysis system (Motion Analysis Corporation, Santa Rosa, CA)

at the sample rate of 60 Hz and a fourth-order Butterworth filter with cutoff frequency of

8 Hz. Twenty-nine reflective markers were placed bilaterally on bony landmarks ofthe

child's body. The marker placement has been described in detail elsewhere (Hahn &

Chou, 2004; Parker, Ostemig, van Donkelaar, & Chou, 2007; Siu, Catena, Chou, van

Donkelaar, & Woollacott, 2008). An auditory Stroop task was used as a secondary

cognitive task. Stimuli were relayed to children through two speakers facing the 8-meter
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walkway. The stimuli which were presented to children included the word "high or "low"

spoken with a high or a low pitch. Congruency between pitch and the word were

randomized. One infrared-beam which was 45 cm above the ground was set to trigger the

initiation of the auditory Stroop task program to ensure that children would hear the

stimulus during the swing phase of gait (Siu, Catena, Chou, van Donkelaar, &

Woollacott, 2008).

Procedures

All children were asked to perform 2 blocks of4 trials of the seated auditory Stroop

task before and after performing a block of level walking task trials. Each trial of the

seated Stroop task was composed of4 stimuli of the spoken word "high" or "low" in a

"high" or "low" pitch. The congruence and incongruence between the word and pitch were

randomly presented. In a block of trials of the level walking task, children were asked to

perform walking on a level surface at their preferred speed for 12 trials in isolation

followed by 12 trials with the auditory Stroop task. There was only one stimulus of the

spoken word (auditory Stroop task) with random congruency for each walking trial. For

the auditory Stroop task, children were instructed to indicate the pitch of the voice as

quickly and accurately as possible by saying "high" or "low" while ignoring the actual

word that was presented. To counterbalance for possible fatigue and learning effects, half

of the children in each YTD and OTD group were asked to first perform a block of level

walking trials and then perform a block of obstacle crossing trials. The other half of the

TD children were asked to perform the obstacle crossing task before the level walking
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task. Children were given several practice trials before data collection. In the walking

tasks, children wore a safety harness attached to a trolley system secured to the concrete

ceiling to prevent injury from an accidental fall. When children were tired or fatigued a

pause in the data collection was provided.

Data Processing andAnalysis

TheIS-body segments including head, trunk, 2 upper arms, 2 forearms, 2 hands,

pelvis, 2 tights, 2 legs, and 2 feet were used to compute the segmental center of mass

locations by the regression equations from Jensen's report (Jensen, 1986). These

segmental masses were used to compute the location of the whole-body center of mass

(COM) (Winter, 2009). To quantify the child's dynamic stability when walking, the

average medial COM-ankle-joint-center inclination angle (Med COM-AJC) throughout

the single stance phase of gait was computed. This angle was formed by the intersection

between a line from the COM location to ankle joint center, and a vertical line through

the ankle joint center in the coronal plane (Silsupadol et aI., 2009). In addition, the COM

range of motion and the peak linear velocities in the sagittal plane (AP ROM and AP V)

and in the coronal plane (ML ROM and ML V) during the crossing stride were also

identified.

Temporal-spatial gait parameters, including gait velocity, stride length, stride

time, and average step width, were calculated during the crossing stride. Stride length and

stride time were determined from the position and the relevant time changes of the heel

marker. To eliminate the effect of body size, the distance and velocities parameters were
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normalized by children's height for all measures except ML ROM and ML V, which

were normalized by the distance between right and left anterior superior iliac spine (ASIS

width) (Hof, 1996).

For the auditory Stroop task, verbal reaction time (VRT) of the correct responses

and percentage of the correct responses were calculated. VRT was the time difference

between the onset of the stimulus and the onset of the verbal response. Accuracy of the

responses was reported as the percentage of total responses.

The amount of dual task interference between gait and cognitive performance was

determined by dual-task costs. Dual task costs represented the percentage of performance

reductions of each individual's single task performance when performing the two tasks

concurrently. Positive values indicate performance decrements in the dual task context,

whereas negative values indicate performance improvements from the single to dual task

context (Schaefer, Krampe, Lindenberger, & Baltes, 2008). Normalized gait measures,

VRT and accuracy were used to calculate dual-task costs in formula (1) for gait velocity,

stride length, AP ROM, AP V, and accuracy, and in formula (2) for stride time, step

width, ML ROM, ML V, Med COM-AlC, and VRT.

((Single -Dual) / Single) x 100 ----------------- (1)

((Dual- Single) / Single) x 100 ----------------- (2)

Statistical analyses were performed with SPSS for Windows v.16 (SPSS inc.,

Chicago, IL). Planned comparisons ANOVA was used to compare baselines balance

ability, motor skill and cognitive functional ability between groups ofchildren. Univariate

ANOVA with weight mean was used to determined baseline gait and cognitive
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perfonnance (single task) between groups. To identity the difference of the dual task

interference between groups of children, the dual-task costs were examined by using

planned comparisons ANOVA.

Results

Baseline Characteristics

Planned comparisons showed that children with CP showed significantly lower

perfonnance scores on the PBS and GMFM for dimension D (standing) and E (walking,

running and jumping) than YTD and OTD (p < 0.01). YTD children showed significantly

lower perfonnance scores for the GMFM for dimension E (walking, running and

jumping) compared to OTD children (p = 0.03). For the Attentional Network Test, YTD

perfonned significantly more poorly than OTD for orienting (p = 0.04) and conflict (p =

0.04). In contrast, alerting scores was similar for all groups (p> 0.05). The children's

motor functional ability, balance ability, and cognitive functional ability are showed in

Table 4.1.

Baseline Gait Performance

There were differences between groups of children for gait velocity (F (2, 47) =

4.93, P = 0.01, 112
= 0.17), stride length (F (2, 47) = 9.06, P < 0.001, 112

= 0.28), and step

width (F (2, 47) = 3.39, P = 0.04, 112
= 0.13). Pairwise comparisons demonstrated that

children with CP walked more slowly, with shorter stride length and wider step width

than OTD children (p < 0.05) (Figure 4.1). In contrast, children with CP walked at a
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similar speed to YTD children, but their stride length was shorter than YTD children (p

=0.01) (Figure 4.1).

Table 4.1. Mean (SE) for Pediatric Balance Scales (PBS), Gross Motor Functional
Measures (GMFM) dimension D (standing) and dimension E (walking, running and
jumping), and Attentional Network in younger typically developing children (YTD),
older typically developing children (OTD), and children with cerebral palsy (CP).

Group PBS GMFM ANT

D E Orienting Alerting Conflict

OTD 56.00 39.00 72.00 18.70 69.68 56.05

(0.00) (0.00) (0.00) (10.46) (13.20) (9.62)

YTD 55.50 38.70 71.20# 56.70# 49.68 98.45#

(0.26) (0.15) (0.33) (14.79) (15.75) (16.82)

CP 51.90* 34.50* 62.90* 39.73 72.95 65.75

(0.82) (0.96) (2.41 ) (18.43) (19.30) (16.53)

*Significant difference between children with CP and YTD/OTD children.
#Significant difference between YTD and OTD children.

Baseline Gait Stability

There were differences between groups of children for AP ROM (F (2, 47) = 8.97,

p = 0.001, Y]2 = 0.28), ML ROM (F (2, 47) = 10.71, P < 0.001, Y]2 = 0.31), AP V (F (2, 47)

= 4.58, p = 0.02, Y]2 = 0.16), ML V (F (2,47) = 9.15, p < 0.001, Y]2 = 0.28) and Med

COM-AlC (F (2, 47) = 5.10, P = 0.01, Y]2 = 0.18). Children with CP demonstrated less AP

ROM and slower AP V ,greater ML ROM and faster ML V as well as greater Med

COM-AlC than OTD children (p < 0.05) (Figure 4.2). In addition, children with CP

demonstrated similar AP V, ML ROM and ML V, but less AP ROM (p = 0.01) than YTD

children. Moreover, YTD children performed greater ML ROM and faster ML V than

OTD children (p < O. 05) (Figure 4.2).



1.6 -,----------------r===n

1.4

0.2

0.0.1.---------

1.6-,-----------------r====;]

14

1.2

10 0.8

"] 0.6
</)

04

0.2

0.0 .1.-- ----'-_

B)

D)

c::::::J YTD
=OTD
iIIIIIIIlIIl CP

~
YID= OlD

mllIICP

64

Figure 4.1. Normalized gait velocity (A), stride time (B), stride length (C), and step
width (D) for level walking under single dual task conditions in younger and older
children with typical development (YTD and OTD) and children with cerebral palsy
(CP).*Significant difference between children with CP and OTD children. $Significant
difference between YTD children and children with CP.
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Table 4.2. Nonnalized center of mass (COM) range of motion in (A) coronal plane (AP ROM)
and in (B) sagittall plane (ML ROM), and nonnalized peak linear velocity of center of mass in
(C) coronal plane (AP V), and in (D) sagittal plane (ML V), and (E) medial center of mass-ankle
joint center (COM-AJC) inclination angle for level walking under single task conditions in
younger and older children with typical development (YTD and OTD) and in children with
cerebral palsy (CP). *Significant difference between children with CP and OTD children.
#Significant difference between YTD and OTD children. $Significant difference between YTD
children and children with CPo
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Baseline Cognitive Performance

There were significant differences between groups for verbal reaction time (F (2,

47) = 11.60, p < 0.001, 112
= 0.33) and accuracy (F (2, 47) = 8.40, p < 0.01, 112

= 0.26).

Pairwise comparisons revealed that YTD children performed with slower responses and

less accuracy than OTD children (p < 0.001) and children with CP (p = 0.01) (Figure

4.3). OTD children and children with CP did not show significant differences in VRT and

accuracy (p> 0.05).
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Figure 4.3. Verbal reaction time (A) and accuracy (B) in a single task condition for
younger and older children with typical development (YTD and OTD) and in children
with cerebral palsy (CP). #Significant difference between YTD and OTD children.
$Significant difference between YTD children and children with CP.

Dual-Task Costs

For gait stability, planned comparisons showed that children with CP showed

greater dual-task costs for Med COM-AlC than YTD and OTD children (p < 0.05)

(Figure 4.4). In addition, YTD children showed greater dual-task costs than OTD

children for AP V (p < 0.05). For gait performance, YTD children showed greater dual-
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task costs than OTD children for gait velocity and stride time (p < 0.05). In contrast to

gait performance, OTD children showed greater dual-task costs than children with CP for

accuracy (p < 0.05).
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Figure 4.4. Dual-task cost for normalized gait measures (GV = gait velocity, ST = stride
time, SL = stride length, SW = step width, AP ROM = anterior-posterior range of motion,
ML ROM - medial-lateral range of motion, AP V = peak anterior-posterior linear
velocity, ML V = peak medial-lateral linear velocity), medial center of mass-ankle joint
center inclination angle (Med COM-AlC), verbal reaction time (VRT) and accuracy in
younger and older children with typical development (YTD and OTD), and in children
with cerebral palsy (CP). *Significant difference between children with CP and OTD
children. #Significant difference between YTD and OTD children. $Significant difference
between YTD children and children with CPo

Discussion

The present study aimed to determine if gait control in children with CP who have

balance deficits, required increased attentional resources, as compared to that of their

age-matched typically developing peers (OTD) children, but similar to YTD children,

who have not yet developed mature gait. Our finding revealed that in dual task
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conditions, children with CP allocated their attention to cognitive performance more than

gait stability as was also the case for YTD children. In contrast, OTD children prioritized

attention to gait stability more than to accurate performance of the auditory Stroop task.

As expected, children with CP showed slower walking velocity with shorter stride

length and wider step width than OTD children. Children with CP also showed less AP

ROM and AP V, but greater ML ROM, ML V and medial COM-AlC inclination angle

than OTD children, associated with their functional gait impairments. Previous studies

have shown that children with CP did not move forward as far as their TD peers when

taking a step, and also showed more sway in the medial-lateral direction than their TD

peers while walking (Hsue, Miller, & Su, 2009b). The authors suggested that children

who had poor control at ankle and hip joints (i.e. lack of push off and hip abductor

weakness) could not perform efficient propulsion in walking. Children with CP may use

lateral momentum instead of forward momentum to compensate for the lack of ability to

generate hip abductor/adductor torque to prevent dropping of the pelvis and trunk of the

swing leg side (Hsue, Miller, & Su, 2009b).

Our results revealed that there were significant differences in dual task

interference affecting gait performance in the three groups of children. When asked to

perform the auditory Stroop task and gait task simultaneously, OTD children showed

greater dual-task costs than children with CP for Stroop task accuracy (p = 0.03), but

children with CP demonstrated greater dual-task costs than OTD and YTD children for

medial COM-AlC inclination angle (p = 0.01). This increased medio-Iateral inclination

angle in dual task situations has also been seen in older adults with balance deficits, and



69

may be associated with an increased risk for falls (Silsupadol, et aI, 2009). It is of interest

that the children with CP did not simply slow gait velocity in the dual task context, which

might be considered a strategy to conserve walking safety and reduce the risk for falls,

but conserved their single task velocity; thus, dual task interference caused a reduced

control of medio-Iateral inclination angle during gait or an increased gait instability.

Though there have been no previous published studies on the effect of cognitive

tasks on gait characteristics involving children with CP, studies have been performed on

patients with hemiplegia due to stroke, who have somewhat similar motor impairments to

children with CPo The findings from the studies regarding dual-task paradigms and gait

performance in patients with hemiplegia revealed that patients with hemiplegia walked

significantly slower and also performed poorer in a cognitive task with dual-task

conditions compared to a single-task condition (Canning, Ada, & Paul, 2006; Hyndman,

Ashburn, Yardley, & Stack, 2006; Regnaux et aI., 2005).

Gait and cognitive performance decrements caused by dual tasking could also be

explained by limited available attentional resources (Kahneman, 1973; Wickens, 1989).

Simultaneous performance of a walking task and a cognitive task would result in the

competition for limited processing resources between the two tasks. These additional

demands for attentional resources could exceed the limited attentional capacity of an

individual and result in the deterioration of gait and/or cognitive performance.

For patients with stroke, the increase in attentional demands for walking depended

on the severity ofthe walking disability as well as on the available attentional resource

capacity (Regnaux et aI., 2005). In addition, for children with CP performing a secondary
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task during quiet standing, there was a negative relationship between the children's

executive attentional capacity and the effects of the dual task condition on postural

control across all children, including those with CP and those who were TD (Reilly,

Woollacott, van Donkelaar, & Saavedra, 2008).

Children with CP in the present study were recruited for their ability to perform

the motor tasks of walking, and thus were only mildly impaired in their gross motor

functional ability. However, they showed poorer balance control and slightly poorer gait

performance (lower scores for the PBS and GMFM) than the YTD and OTD children.

Because of their slowed gait velocity, the gait task was substantially easier for them than

if it had been performed at the same velocity as their OTD peers. This slower velocity

may have contributed to the smaller than expected differences between the two groups in

the dual task situation.

In addition, children with CP showed no significant difference in attention

performance, as measured by the attention network test, compared to their peers, the

OTD children, indicating that they had available the same level of attentional resource

performance as their peers. Other dual task research that included children with CP who

had documented attention deficits showed that they had greater dual task interference

than OTD children when they simultaneously performed a quiet standing task and a

visual working memory task (Reilly, Woollacott, van Donkelaar, & Saavedra, 2008).

Hence, the mild gait disability, the slower walking velocity, and the lack of limitations of

attentional resources in children with CP in this study may have contributed to the

significant, but low level of dual task interference as compared to OTD children.
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Besides the mildness of gait disability and the lack of limitation of attentional

resources, an auditory cognitive task in the present study may not be difficult enough to

successfully induce high levels of difference in dual-task costs between OTD children

and children with CP, who have the same level of cognitive function. Therefore,

competition for using limited information processing resources would be less between

this cognitive task and a walking task. Previous research has shown that children with

developmental coordination disorder (DCD) who had no known attentional deficits

performed similarly with regard to dual task interference as their peers when they were

asked to walk with a either an easy or hard concurrent cognitive task (repeating a series

of digits forward or backward) (Cherng, Liang, Chen, & Chen, 2009). However, when

the secondary task was changed to a difficult motor task (carrying a tray with marbles)

which required visual monitoring, greater gait performance decrements were shown in

children with DCD in comparison with their peers. Hence, the type of secondary task

should be considered as an important factor in contributing to high levels of dual task

interference between participants who have equal attentional resources, but unequal

motor ability.

We conclude that dual tasking differently interfered with gait and cognitive

performance among the groups of children tested. In children with CP and YTD children,

dual task interference with gait stability and performance was greater than cognitive

performance, as shown by the greater dual-task costs for medial COM-AlC inclination

angle that were found in children with CP and the greater dual-task costs for gait velocity,

stride time, and AP V that were found in YTD children, as compared to OTD children. In
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contrast, greater cognitive performance decrements were demonstrated in OTD children

(accuracy) as compared to children with CPo Therefore, this suggests that OTD children

allocate a greater portion of their attentional resources to maintaining gait stability

whereas children with CP and YTD children do not. When they were in the dual task

situation OTD children, as has been shown in previous studies for healthy young adults

and participants with balance impairment, prioritized gait stability over the cognitive

tasks, presumably to prevent falls (Bloem, Valkenburg, Slabbekoom, & Willemsen,

200tb; Brauer, Woollacott, & Shumway-Cook, 2002). In contrast, children with CP, who

had balance deficits, may not have been able to appropriately deal with the dual task

situation as they did not prioritize gait stability as OTD children did. This implies that the

risks of falls in children with CP were increased because of their risky behaviors of not

prioritizing gait stability.

YTD children, who had not reached maturity with respect to gait and cognitive

performance (they showed lower levels in the GMFM part E, in walking, running, and

jumping, and poorer attention performance), may have simply had less attentional

resources available to them than OTD children, or they may have allocated less attention

to the gait task than to the cognitive task, since risk taking in the motor domain is

typically a prerequisite for mastering motor skills and typical of younger children. High

rates of falls in infants and toddlers have been reported as they learn these motorically

and attentionally demanding tasks (Joh & Adolph, 2006). In addition, falls occurring

while walking are one cause of unintentional injury in this young population (Britton,

2005). Moreover, YTD children may have flexibly allocated attention between the two
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tasks, seeing that the dual task costs were taken from the gait task in the relative stable

posture (i.e. level walking), which could create additional instability. They dealt with the

more difficult postural task by reducing cognitive performance, possibly because they

were now at their limits of stability in the obstacle crossing task. This type of result was

also found in older adults who had deterioration of attentional resources (Doumas,

Smolders, & Krampe, 2008)

In summary, the results of this study suggest that children with CP, who have high

mild impairments in motor functional ability and normal attentional performance levels,

and YTD children, who have not reached maturity with regard to gait and cognitive

performance, unlike OTD children, do not use a "posture first" strategy in dealing with

dual task situations. Consequently, children with CP and YTD children would have a

high risk of falling when they are in a complex environment. In order to differentiate

children with CP and TD children by using the dual task paradigm, the type of a

secondary task is an important factor for successfully increasing the competition for

attentional resource sharing. Finally, regarding clinical applications of attention and gait

control in children with CP, clinicians and educators should consider the severity of the

pathology as well as the attentional ability of the individual in order to select efficient

tools for examination and rehabilitation of motor function.

Bridge

The effects of dual tasking on gait postural control in children with CP were

investigated. Results support the conclusion that dual tasking interfered with gait and
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cognitive performance in all children with CP and TD children. However, unlike OTD

children, YTD children and children with CP used a different strategy to cope with dual

tasking. They did not prioritize their attention to gait. Hence, the risk of falls could be

increased, especially in children with CP, who increased medio-Iateral inclination angles

during walking in the dual task condition, thus increasing their instability in gait.

Chapter V summarizes the conclusions drawn from the major findings of each

experiment and provides a general discussion of this study. The following chapter further

offers suggestions for how this research might be applied to the assessment and treatment

of children with CP.
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CHAPTER V

DISCUSSION

The prior summary of the research literature related to postural control during gait

has shown that gait control requires attentional resources in children and adult

populations (Cherng, Liang, Hwang, & Chen, 2007; Ebersbach, Dimitrijevic, & Poewe,

1995; Huang, Mercer, & Thorpe, 2003; Lajoie, Teasdale, Bard, & Fleury, 1993;

Lindenberger, Marsiske, & Baltes, 2000). However, research exploring changes in the

attention requirements of gait postural control during development in typically

development (TD) children or children with cerebral palsy (CP) has not been clearly

shown. In addition, a primary reason for balance loss during locomotion is a trip or a slip.

There is no research characterizing developmental changes in the ability to maintain and

recover stability during perturbed locomotion (for example, obstacle clearance tasks) in

dual task conditions. The purpose of the study was to examine 1) the development of

postural control during gait in TD children while performing a cognitive task (the

auditory Stroop task) and a gait task simultaneously, 2) the attentional requirements of

gait postural control when the difficulty of the gait postural control task was increased, as

in an obstacle crossing task, and 3) the influences of a concurrent cognitive task (the

auditory Stroop task) on gait postural control in children with CP.
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The first study investigated typical development of gait postural control in

younger and older children (YTD and OTD) during two gait tasks, including a level

walking task and an obstacle crossing task, using a dual task paradigm, and compared the

results of the children's performance with that of healthy young adults (HYA) from the

study of Siu et al (2008) (Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008). Our

findings revealed that gait control in TD children requires attentional resources to

maintain stability. Moreover, the results also demonstrated that dual task interference

was less in HYA as compared to YTD and OTD children. Gait performance decrements

in the dual task context were greater in YTD children as compared to OTD children,

whereas cognitive performance decrements in YTD and OTD children were similar. In

addition, dual tasking affected cognitive performance more in YTD children when the

difficulty of the gait task was increased. The results suggested that there was a

developmental trend in attentional resources required to control gait in children with

typical development. Gait postural control under dual task conditions was improved when

children were more mature, as their attention resources increased with age.

The results raise the question of why, in level walking with a concurrent auditory

Stroop task, YTD children showed interference with gait more than cognitive

performance whereas OTD children showed interference with cognitive performance

more than gait performance. As YTD children had not reached maturity for either gait or

cognitive performance, one possible explanation was that YTD children, who have less

attentional capacity, may have flexibly allocated attention, seeing that they allowed

additional instability to gait in a relative stable posture (i.e. level walking). However,
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when the difficulty of the gait task was increased, YTD children did not (or possibly

could not) allow instability to be further increased, as they still allocated almost the same

amount of attentional resources to gait stability as they did in the easy gait task.

Consequently, their cognitive performance declined. The way that resources were shared

in YTD children, in easy vs. difficult postural tasks, has also been found in older adults

who had a deterioration of attentional resources (Doumas, Smolders, & Krampe, 2008).

In addition, YTD children may take more risks in the motor domain since it is typically a

prerequisite for mastering motor skills, as high rates of falls in infants and toddlers have

been reported as they learn these motorically and attentionally demanding tasks (Joh &

Adolph, 2006). Another possible explanation was that OTD children may develop the

"posture first" strategy to prevent falls and hazard accidents. This strategy has been found

in healthy young adults and healthy elderly (Bloem, Grimbergen, van Dijk, & Munneke,

2006; Regnaux, Roberston, Smail, Daniel, & Bussel, 2006).

The final study investigated the attentional requirements for postural control

during gait in children with CP compared to YTD and OTD children. Our results

demonstrated that dual task interference in children with CP was similar to that of YTD

children in that both groups showed gait performance decrements. In contrast, OTD

children demonstrated greater cognitive performance decrements than children with CPo

Thus, children with CP like YTD children do not prioritize gait stability in the dual task

situation. This may lead to an increased fall risk in these populations. It is of interest that

the children with CP did not slow gait velocity in the dual task context, as the YTD

children did, but instead showed an increased medio-Iateral inclination angle. This
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increased medio-Iateral inclination angle in dual task situations has also been seen in

older adults with balance deficits, and may be associated with an increased risk for falls

(Silsupadol et aI., 2009).

However, the level of difference in dual task interference between children with

CP and OTD children was low, seeing that only one gait parameter, the medial center of

mass-ankle joint center inclination angle, was different between these two groups. What

could be factors contributing to these results?

Factors contributing to the results could be 1) the low levels of severity of

walking disability in the children with CP and the fact that they walked even in the single

task situation with a reduced velocity compared to the OTD children, thus making the

difficulty of the walking tasks less for the children with CP, 2) the fact that the children

with CP had normal attentional resource capacity for their age, as well as 3) the type of a

secondary task used to study attentional demands for gait control. Though there is no

research on dual task effects on postural control during gait in children with CP, previous

research has reported that dual task interference with quiet stance postural control in

children with CP showed a negative relationship with executive attentional capacity

(Reilly, Woollacott, van Donkelaar, & Saavedra, 2008). In addition, research done in

patients with stroke, who have somewhat similar motor impairments to children with CP,

demonstrated that increased attentional demands for walking depended on the available

attentional resource capacity as well as on the severity of the walking disability of the

individual (Regnaux et aI., 2005).
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Thus, children with CP in this study who had mild gait disability and a lack of

limitations of attentional resources could be expected to show smaller significant

differences from their OTD peers in dual tasking effects than children with more severe

disabilities. Moreover, an auditory cognitive task in the present study may not have been

difficult enough to successfully induce high levels of difference in dual-task costs

between OTD children and children with CP, who have the same level of cognitive

function. Therefore, to be able to discriminate between different groups of children with

CP who have a broad range of levels of impairment, and their TD peers, it would be

useful to incorporate into the dual task paradigm a type of secondary task with varying

degrees of difficulty (for example, the N-back task).

Clinical Implication

Previous studies have revealed that gait and cognitive decrements associated with

dual tasking were found in typically developing children as well as healthy young adults

(Cherng, Liang, Hwang, & Chen, 2007; Huang, Mercer, & Thorpe, 2003). Besides dual

task interference with gait and cognitive performance in children, our findings in chapter

III demonstrated that the dual task interference with gait performance, as determined by

dual-task costs, was greater in YTD children as compared with OTD children. When

YTD children were involved in a more difficult task, they demonstrated an improvement

in their gait stability, but a decline in their cognitive task performance.

In addition, children have shown the development of the "posture first" strategy,

which has also been found in healthy young adults and healthy elderly (Bloem,
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Valkenburg, Slabbekoorn, & Willemsen, 2001a; Regnaux, Roberston, Smail, Daniel, &

Bussel, 2006). This study provides clinicians and teachers an understanding of how age­

related differences in gait and cognitive ability influence a child's gait and cognitive

performance in isolation (gait or cognitive task performed alone) and also how they

differentially affect a child's ability to perform cognitive and motor tasks simultaneously.

Moreover, we found that the mildness of gait disability, the slower walking

velocity in children with CP, and the lack of limitation of attentional resources as well as

types of secondary tasks may be important issues to consider when evaluating postural

control during gait under dual task conditions in participants who have a similarity in

attentional capacity, but difference in motor ability as described in chapter IV. Thus,

clinicians and teachers should not consider only the intrinsic factors such as individuals'

severity of motor disability and attentional ability, but also extrinsic factors like the

difficulty of the primary gait task and secondary task in order to select efficient tools for

examination and rehabilitation of motor function in the clinical and school setting. The

clinical assessments and rehabilitation programs for postural control during gait should

include varying difficulty levels of the secondary task and primary gait task which should

correspond to the individual motor skills or severity levels of the motor disability.

Limitations of the Study

The first limitation of the study was the small sample size of healthy young adults

and children with CP group in this study (n =12 and 10 respectively). We did not collect
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data in healthy young adults ourselves; we used the data from a previous study using the

same protocol, from our laboratory. In children with CP, we wanted to recruit more

participants to obtain a good representation of the population. However, the inclusion

criteria for children with CP in this study were very strict, as they had to walk

independently and have no speech or auditory deficits, in order to perform the auditory

Stroop task. It was very difficult to get a large portion of children with CP who met these

inclusion criteria, who were willing to complete all testing sessions of the experiment and

whose parents were willing to bring them to the laboratory. However, I believe this sample

size was enough to clearly represent the population, as significant differences were found

between TD children and healthy young adults, and between TD children and children with

CPo

A second limitation was the individual differences within the group ofchildren with

CP and the younger TD children. Each child had a different mental and physical fatigue

level. Children may not have fully performed at the highest level of their ability as they felt

bored when they had to do the same task repetitively. We minimized this factor by giving

them a rest, entertaining them and encouraging them with games and prizes. Thus, this

factor may have been minimized to the extent possible through social and behavior support

systems.

A third limitation was the difficulty of the auditory Stroop task. YTD children

demonstrated some difficulty in understanding the task. We had three younger children

who refused to perform the auditory Stroop task because they felt uncomfortable with its
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difficulty level. We solved this problem by giving YTD children more practice with the

task accompanied by their parents' assistance, until they understood and felt comfortable

with the task. Consequently, YTD children competently performed the task throughout the

experiment and showed consistency of performance.

A fourth limitation was that we did not directly measure attentional capacity, but

we measured the attentional performance by using a child's version of the Attentional

Network test. In addition, there is no available evidence showing the Attention Network

test has a correlation with attentional capacity, though, Redick and Randall (2006) showed

that participants with high working memory capacity demonstrated greater performance for

the executive control network than participants with low working memory capacity

whereas they similarly performed in the orienting and alerting networks (Redick &

Randall, 2006). Thus, we could not strongly indicate whether the group differences found

in this study were due to differences in attentional capacity, or the amount of attention

required for the different task components.

Further Research

Additional studies are needed to investigate differences in postural control during

gait in dual task conditions in children with CP and their typically developing peers who

have similar cognitive capacity, by using other types of secondary tasks with a variety of

levels of difficulty, such as the N-back task, which allows the experimenter to test short



term memory for numbers that were presented previously (l back through n-back) in a

sequence. It also might be helpful to use a secondary task involving visual processing,

which is also used in gait control, as postural-cognitive task similarity induces dual task

interference increments. This type of study would be useful in aiding clinicians in the

selection of efficient tools to evaluate and rehabilitate patients with varying motor and

attentional deficits, including those who have motor deficits, but lack of limitation of

attention capacity.

83
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APPENDIX A

UNIVERSITY OF OREGON INFORMED CONSENT:

TYPICALLY DEVELOPING CHILDREN

Motor Control Laboratory

For sessions with typically developing children

You and your child are invited to participate in a research study being conducted by Dr. Marjorie
Woollacott in the Department of Human Physiology at the University of Oregon. As a result of
the study we hope to learn more about the underlying neuromuscular mechanisms of balance
control in children with cerebral palsy. The results from this study may help us develop
appropriate treatments to assist persons with cerebral palsy with their balance. During the course
of the study you may come to the laboratory two or three times, if you agree.

During your 2-3 visits (each lasting 45-90 minutes) to the Motor Control Laboratory, your child
may be asked to do some ofthe following things:

1. Walk along an 8-m walkway, step over an obstacle, and continue walking along the
walkway, all at a comfortable self-selected speed while barefoot. The height of the
obstacle is 10% of your child's height. Your child will wear a safety harness while
walking on the walkway so that they will not fall. In addition an adult will stand behind
your child during the session to provide assistance.

2. Walk along an 8-m walkway, step over an obstacle, and continue walking along the
walkway while doing a second task (for example, telling us if a tone they hear is high or
low). Your child will wear a safety harness while walking on the walkway so that they
will not fall.

3. Do a cognitive task while sitting (for example, telling us if a tone they hear is high or
low, or telling us where a cartoon is on a screen in front of them).

We will also videotape your child's motion in each trial. Several markers will be placed on your
child's joints and some body landmarks to help identify joint movements in later videotape
analysis. Your child will be asked to wear shorts and sleeveless T-shirts so that the markers can
be observed clearly. You will receive a reimbursement of $10 per session. You will be
compensated in full, even ifyou need to terminate participation early.

Potential Risks: There is some risk that your child may begin to fall when his or her balance is
disturbed during obstacle crossing. This risk is minimized by using a small wooden dowel which
easily comes loose and falls to the ground if bumped by your child's foot, using a safety harness
to catch your child if he/she should fall, providing a handrail to grasp, and keeping an attendant
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near you. The risk of getting a skin response to the application of sensors will be minimized by
using hypoallergenic gel and tape. The incidence of a skin response to the gel and tape is actually
low or non-existent. There is another risk that your child may become tired or uncomfortable
during some of the tasks. This risk is minimized by providing rest periods or by stopping the test
at your or your child's request. There is also a risk of losing confidentiality of information. This is
minimized by coding all data with letters and numbers and keeping all participants' names on a
separate sheet available only to the investigators directly involves with this study.

Any information that is obtained in connection with this study and that can be identified with you
or your child will remain confidential and will be disclosed only with your permission. Data will
be kept indefinitely. We may wish to use the video tape recording, or pictures ofyour child's
movements for research and educational purposes in the future. In such cases your child would be
referred to only by code, and your child's identity would not be disclosed. In addition your
child's facial features will be obscured as much as possible on photos or videotapes to maintain
confidentiality. If you would like to give your permission for the use of this tape recording or
pictures for research and educational purposes, please place your initials by "yes." If you do not
wish to give permission, please place your initials by "no."

Yes------
No _

All instrumentation and procedures have been thoroughly checked prior to this test session and
any potential risks have been explained. At any time you may ask questions or terminate your
(your child's) participation.

You will be with your child at all times and you may stop the testing at any time. You may also
ask questions at any time. If you have any questions at any time, you may call the project director
Dr. Marjorie Woollacott at (541) 346-4144. If you have any questions about your (your child's)
rights as a participant in a research project, you can call the Human Subjects Compliance Office,
University of Oregon (541) 346-2510.

Your participation is voluntary and your decision as to whether or not to participate will not affect
your (your child's) relationship with the Child Development and Rehabilitation Center or the
Motor Control Lab at the University of Oregon. Your signature below indicates that you have
read and understand the information provided above and indicates your willingness to participate.
However, it is your right to withdraw at any time without penalty or loss of benefits to which you
or your child are otherwise entitled. By signing this form you are not waiving any legal claims,
rights or remedies. A copy ofthis form will be yours to keep.

Signature (Parent/Legal Guardian)

Child's name

Signature of witness

Date

Child's birth date

Date
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APPENDIXB

UNIVERSITY OF OREGON INFORNIED CONSENT:

CHILDREN WITH CEREBRAL PALSY

Motor Control Laboratory

For sessions with children with cerebral palsy

You and your child are invited to participate in a research study being conducted by Dr. Marjorie
Woollacott in the Department of Human Physiology at the University of Oregon. As a result of
the study we hope to learn more about the underlying neuromuscular mechanisms of balance
control in children with cerebral palsy. The results from this study may help us develop
appropriate treatments to assist persons with cerebral palsy with their balance. During the course
of the study you may come to the laboratory two or three times, ifyou agree. We also may
evaluate your child in another setting (for example, their school or clinic).

If you and your child decide to participate, he/she will receive a neurological and musculoskeletal
exam by Dr. Robert Nickel or another physician of the Child Development and Rehabilitation
Center (CDRC) at the University of Oregon. We expect that the clinical visit will take
approximately 30-45 minutes.

You will not be responsible for the payment related to your examination by the physician under
this study. Any information that is obtained in connection with this clinical visit will remain
confidential and will be disclosed only with your permission as granted in this consent form and
its attachment. In order to do this research, you must also authorize us to access and use the above
health information. An authorization form to allow the physician to release that health
information is attached for you to review and sign as an addendum to this consent form. Another
form also requests authorization to receive information from your child's pediatrician.

During your 2-3 visits (each lasting 45-90 minutes) to the Motor Control Laboratory, your child
may be asked to do some ofthe following things:

1. Walk along an 8-m walkway, all at a comfortable self-selected speed while barefoot. The
height of the obstacle is 10% ofyour child's height. Your child will wear a safety harness
while walking on the walkway so that they will not fall. In addition an adult will stand
behind your child during the session to provide assistance.
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2. Walk along an 8-m walkway while doing a second task (for example, telling us if a tone
they hear is high or low). Your child will wear a safety harness while walking on the
walkway so that they will not fall.

3. Do a cognitive task while sitting (for example, telling us if a tone they hear is high or
low, or telling us where a cartoon is on a screen in front of them).

We will also videotape your child's motion in each trial. Several markers will be placed on your
child's joints and somebody landmarks to help identify joint movements in later videotape
analysis. Your child will be asked to wear shorts and sleeveless T-shirts so that the markers can
be observed clearly. You will receive a reimbursement of $.32 per mile for each trip and $50 for
completion of each laboratory session or $10 for completion of each clinical test session. You
will be compensated in full, even ifyou need to terminate participation early.

Potential Risks: There is some risk that your child may begin to fall when his or her balance is
disturbed during obstacle crossing. This risk is minimized by using a small wooden dowel which
easily comes loose and falls to the ground ifbumped by your child's foot, using a safety harness
to catch your child ifhe/she should fall, and keeping an attendant near him/her. The risk of
getting a skin response to the application of sensors will be minimized by using hypoallergenic
gel and tape. The incidence of a skin response to the gel and tape is actually low or non-existent.
There is another risk that your child may become tired or uncomfortable during some of the tasks.
This risk is minimized by providing rest periods or by stopping the test at your or your child's
request. There is also a risk of losing confidentiality of information. This is minimized by coding
all data with letters and numbers and keeping all participants' names on a separate sheet available
only to the investigators directly involves with this study.

Any information that is obtained in connection with this study and that can be identified with you
or your child will remain confidential and will be disclosed only with your permission. Data will
be kept indefinitely. We may wish to use the video tape recording, or pictures ofyour child's
movements for research and educational purposes in the future. In such cases your child would be
referred to only by code, and your child's identity would not be disclosed.. In addition your
child's facial features will be obscured as much as possible on photos or videotapes to maintain
confidentiality. Ifyou would like to give your permission for the use of this tape recording or
pictures for research and educational purposes, please place your initials by "yes." If you do not
wish to give permission, please place your initials by "no."

Yes------ No-------

All instrumentation and procedures have been thoroughly checked prior to this test session and
any potential risks have been explained. At any time you may ask questions or terminate your
(your child's) participation.

You may be with your child at all times and you may stop the testing at any time. You may also
ask questions at any time. Ifyou have any questions at any time, you may call the project director
Dr. Marjorie Woollacott at (541) 346-4144. Ifyou have any questions about your (your child's)
rights as a participant in a research project, you can call the Human Subjects Compliance Office,
University of Oregon (541) 346-2510.
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Your participation is voluntary and your decision as to whether or not to participate will not affect
your (your child's) relationship with their medical provider or the Motor Control Lab at the
University of Oregon. Your signature below indicates that you have read and understand the
information provided above and indicates your willingness to participate. However, it is your
right to withdraw at any time without penalty or loss of benefits to which you or your child are
otherwise entitled. By signing this form you are not waiving any legal claims, rights or remedies.
A copy of this form will be yours to keep.

Signature (Parent/Legal Guardian)

Child's name

Signature of witness

Date

Child's birth date

Date
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APPENDIXC

UNIVERSITY OF OREGON ASSENT FORM

Constraints on Dynamic Balance Control in Children with Cerebral Palsy

We are doing a study to see ifwe can better understand balance problems in children
with cerebral palsy.

You will come to the clinic and/or lab about 2-3 times for about 45-90 minutes each.
We'll measure how you walk and/or step over obstacle. Sometimes will ask you to do
these when you are doing something else, like listening or watching a screen. We might
also askyou to reach for something while sitting or standing. We will have you will wear
a safety harness while you walk so that you do not fall. We will be putting small
markers on different parts 0/your leg, arms, head and trunk in order see how you
move. You will be able to sit down and rest as often as you need to during your balance
testing.

You don't have to be in this study (fyou don't want to. You can change your mind any
time and not come back to the clinic for balance testing. We'll answer all ofyour
questions any time.

Do you have any questions? Is this OK with you? .ifthis is OK with you, sign below.

Signature ofchild -------'Date _

Signature ofparent/legal guardian Date _

Investigator's signature ------- Date

Copies to: Subject/Parent
Medical Record (when appropriate)
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APPENDIXD

AUTHORIZATION FORM FOR RESEARCH DISCLOSURE OF PERSONAL

HEALTH INFORMATION (#1)

By my signature below, I authorize Robert Nickel, MD or other evaluating
physician from Child Development and Rehabilitation Center (CDRC), to release to
Sujitra Boonyong and Dr. Marjorie Woollacott at the University of Oregon the following
records related to my child's history of cerebral palsy: neurological and musculoskeletal
examination results, documentation of any deficits in sensory motor functions, and
documentation of any behavioral and cognitive functions.

They will use these medical records containing my child's personal health
information to help them determining the contributions of specific impairments to my
child's motor abilities. This authorization will expire at the end of the research study.

I understand that this authorization can be revoked at any time by delivering a
revocation in writing to the Health Care Provider named above and that the revocation
will be effective except to the extent (l) research has already been conducted in reliance
on my previous authorization or (2) if necessary to protect the integrity of the research
(e.g., to account for a person's withdrawal from the research).

I realize that Dr. Marjorie Woollacott and Sujitra Boonyong may not be bound by
the Privacy Rule and therefore may not be required by that Rule to maintain the
confidentiality ofmy child's personal health information. However, they can only use or
disclose my child's health information for purposes approved by the Institutional Review
Board at the University of Oregon or as required by law or regulations and will continue
to protect my child's personally identifiable health information as described in the
attached Informed Consent Form.

I understand what this document says and authorize the release of my child's
personal health information as stated above; I understand I will be given a signed copy of
this Authorization for my records.

For Minor subjects: Name of Minor _

Signature of Legally Authorized Representative Date

Print Name Relationship of representative to subject
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APPENDIXE

AUTHORIZATION FORM FOR RESEARCH DISCLOSURE OF PERSONAL

HEALTH INFORMAnON (#2)

By my signature below, I authorize my child's teacher, _
to release to Dr. Marjorie Woollacott and Sujitra Boonyong at the University of Oregon,
and Robert Nickel, MD or other evaluating physician from Child Development and
Rehabilitation Center (CDRC) the following records related to my child's behavior: D
name, 2) address, 3) academic performance, 4) achievement test score, 10, readiness or
aptitude test scores, and 5) social performance.

They will use these behavioral records containing my child's personal behavior
information to help them determining the contributions of behavior and attention to my
child's motor abilities. This authorization will expire at the end of the research study.

I understand that this authorization can be revoked at any time by delivering a
revocation in writing to the teacher named above and that the revocation will be effective
except to the extent (1) research has already been conducted in reliance on my previous
authorization or (2) if necessary to protect the integrity of the research (e.g., to account
for a person's withdrawal from the research).

I realize that Dr. Marjorie Woollacott and Ms. Sujitra Boonyong may not be
bound by the Privacy Rule and therefore may not be required by that Rule to maintain the
confidentiality of my child's personal behavior information. However, she can only use
or disclose my child's behavior information for purposes approved by the Institutional
Review Board at the University of Oregon or as required by law or regulations and will
continue to protect my child's personally identifiable health information as described in
the attached Informed Consent Form.

I understand what this document says and authorize the release of my child's
personal health information as stated above; I understand I will be given a signed copy of
this Authorization for my records.

For Minor subjects: Name of Minor _

Signature of Legally Authorized Representative Date

Print Name Relationship of representative to subject
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APPENDIXF

lThTIVERSITY OF OREGON HEALTH QUESTI01\TNAlRE

Motor Control Laboratory

You and your child have agreed to participate in the research study conducted by Sujitra
Boonyong, PT and Dr. Marjorie Woollacott. As a result of this study we hope to learn
about the underlying neuromuscular mechanisms involved in balance control and
cognitive ability not only in the developing child, but in children with neurological
impairments. The following birth history and health information is needed to complete
the study. This information will be kept confidential and will be used only for the
purpose of this research.

Subject #: Birth date: (mm/dd/yyyy) _

1. Birth History:
Did you or your child have any problems during the birthing process?
Circle One: Yes No A Little Comments:

2. Developmental History: Please indicate the approximate age at which your child
learned the following skills.

Months
Crawl on hands and knees
Sit independently when placed
Walk independently

Ride a tricycle
Jump with both feet
Ride a bicycle (2 wheeler)

Do you have any concerns about how your child moves or about his or her
coordination?
Circle One: Yes No A Little Comments:
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3. Medical History:
Has your child had any surgeries, hospitalizations or major illnesses?

Circle One: Yes No A Little Comments:

Medications: Does you child take medications for any of the following conditions?
Yes No

Seizure disorder *
Attention Deficit Disorder *
*Comment-----------------------------

4. Behavior:
Do you have any concerns about how your child gets along with others?

Circle One: Yes No' A Little Comments:

5. Learning:
Has your child ever been diagnosed with a cognitive impairment (i.e. Attention
Deficit Hyperactivity Disorder (ADHD), dyslexia, etc)?

Circle One: Yes No A Little Comments:

Do you have any concerns about how your child is learning new skills in preschool
or school?
Circle One: Yes No A Little Comments:
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6. Activities:
Does your child participate in any of the following movement activities on a regular
basis?

Dance
Ball sports (soccer, football, baseball tennis, etc.)
Gymnastics
Martial Arts

Comment:

Parent/Guardian Signature
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