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Image processing is a powerful tool for increasing the reliability and

reproducibility of disease diagnostics. In the hands of pathologists, image processing

provides quantitative data from histological images which supplement the

qualitative data currently used by specialists. This thesis presents a novel method

for analyzing digitized images of hematoxylin and eosin (H&E) stained histology

slides to detect and quantify inflammatory polymorphonuclear leukocytes to aid in

the grading of acute inflammation of the placenta as an example of the use of image

processing in aid of diagnostics.

Methods presented in this thesis include segmentation, a novel threshold

selection technique and shape analysis. The most significant contribution is the

automated color threshold selection algorithm for H&E stained histology slides

which is the only unsupervised method published to date.
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CHAPTER I

INTRODUCTION

In an age of mass digitizing of cellular imaging, image processing is clinically

relevant in its application to microscopic tissue images. Patients and medical

professionals alike have great interest in the development of methods which are

reliable and reproducible. Thus, in a field which traditionally has relied on the

trained eye of a specialist to make diagnoses from a qualitative perspective, a

transition is underway: computer-aided diagnosis is now possible with digitized

imaging. To quote Carolyn M. Salafia in [1], "perinatal researchers should, to use a

worn out but appropriate cliche, step outside the box and consider alternative

approaches to both measurement of histology slides that would yield adequate

reliability to allow cross-institutional analysis of the latent construct(s) involved in

intraamniotic infection and ultimately to achieve a fuller understanding of the

infection-preterm birth pathway." By developing algorithmic methods which are

reliable, reproducible and unsupervised, comes the presentation of a powerful tool

which aids in the collection of data, assist researchers to further their understanding

of the condition, and ultimately help with the critical diagnosis of chorioamnionitis.

1.1 Contributions

This thesis makes two major contributions to the fields of computer science

and computer-aided medical diagnostics. First, it introduces a novel method for

unsupervised segmentation of Hematoxylin & Eosin (H&E) stained histology slides.



2

Second, it creates a tool for the quantitative analysis of human inflammatory

response through the fusion of the innovative segmentation technique with

established image analysis processes. Application of the unsupervised segmentation

technique results in the successful analysis of inflammation in histology slides for

which quantitative inferences are not possible through current computer-aided

diagnostic procedures. Although this thesis applies unsupervised segmentation

exclusively to the field of medical diagnostics, this new technique is also a significant

contribution to the field of computer science. The following explains the

contributions to each field.

1.1.1 Computer Science Contribution

Unsupervised image segmentation aids in the analysis of H&E stained

histology slides to determine the severity of tissue inflammation. The technique has

clear significance for medical diagnostics, but because it advances image processing

tools as well, the unsupervised segmentation technique makes significant

contributions to computer science. Automated image segmentation is an open area

of research because current methods rely on user input. The users in this context

are unlikely to be experts in image processing and are instead experts in the field of

medicine. This technique is a ready-to-use tool that doesn't require in-depth

training or time-consuming tuning of parameters for each image. The unsupervised

and computerized segmentation of cell nuclei produces accurate data about the

nuclei which then makes possible accurate and reliable diagnosis of disease.

1.1.2 Medical Diagnostic Contribution

The contributions to medical diagnostics are evident in the need to

supplement the qualitative analysis of experienced experts with reliable and

reproducible computer-aided analysis. The methods described in this thesis are

intended for the identification and quantification of inflammatory

polymorphonuclear leukocytes in placental tissue, which are linked to infant
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mortality and morbidity. The introduction of quantitative analysis to medical

diagnostics makes possible the collection of data that is currently unavailable. These

methods extend beyond placental tissue and in fact apply to a wide variety of tissue

stained with H&E. Contributions to background and blood removal methods are

applicable to research currently being conducted on neuroblastoma [2] and the

identification of squamous epithelium in the case of cervical cancer [3].

Contributions to nuclei segmentation apply to research in any area where pathology

causes changes to nuclei, like in cases of necrosis, where there is a lack of nuclei, or

in cases of neurofibroma, where floret-like giant cells abound [4]. Identification of

inflammatory polymorphonuclear leukocytes is relevant to any condition where

inflammation is one of the key features in making a diagnosis such as auto-immune

and infectious diseases. All of these contributions together yield a tool for

computer-aided diagnosis of chorioamnionitis.

1.2 Organization of Thesis

The remainder of this thesis is organized as follows: chapter two gives

background information in the areas of human and computer vision and provides

information regarding image processing as well as pathology. Chapter three reviews

similar research related to medical image processing. Chapter four presents an

algorithm that isolates and accounts for inflammatory polymorphonuclear

leukocytes in samples of H&E stained tissue, which is crucial to the diagnosis of

acute chorioamnionitis. In conclusion, chapter five summarizes this thesis' findings

and suggests areas of future research.
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CHAPTER II

BACKGROUND

This section provides brief background information from the disciplines

which contribute to this thesis: biomedicine and computer science. First presented

is the difference between human vision and computer vision both in terms of

perception and presentation of image data. Next introduced are topics related to

image processing: image data structures, color space, segmentation, thresholding

and shape analysis. Finally covered is a brief description of pathology methods,

including staining, image acquisition, placental anatomy and characteristics of acute

chorioamnionitis.

2.1 Human Perception vs. Computer Vision

Computer vision and human vision appear to have the same function and

goal. Both systems interpret multidimensional spatial data for the purpose of

information gathering and visual recognition. Due to the complexity of the human

visual system and the lack of total understanding of the neural aspects of human

perception, even the best computer vision system cannot replicate the human eye.

The development of computer vision techniques is focused, then, on improving upon

the human vision model rather than replicating it. This section explains basic

computer vision systems and how they operate in comparison to the human vision

system.
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According to Fu and ~\!lui in [5], "the image segmentation problem is one of

psychophysical perception and therefore is not susceptible to a purely analytical

solution." T'his view is upheld by many visual illusions which trick the brain into

seeing something different than what is actually in the image data, like in the

Adelson checkerboard shadow illusion, figure l(a) [6]. The tile A belongs to the set

of darker squares 'while B belongs to the set of lighter squares. In terms of the

intensity value, both tiles are the same shade of gray but they are perceived as

different shades because the brain compensates for the shadow. The proof in

figure l(b) superimposes two solid gray lines across the image. The lines are again

the same gray value as tile A and tile B. Despite the addition of these two solid

lines, the shadow still appears to altar the shade of grey. The easiest way to see that

the squares are indeed of uniform color is to remove the context. Only with the

removal of the background, in figure 1(c), it becomes clear that both tile A and tile

B as well as the solid gray lines are the same shade of gray.

(a) (b) (c:)

FIGURE 1: Adelson's checker-shadow illusion.

Vision is the ability to focus selectively on objects of interest. The human

eye can discern thousands of color shades and about two-dozen shades of gray.

Human vision is a complex system that senses and acts on visual stimuli in the form

of light. There are nearly 100 million photoreceptors dispersed around the retina [7].

There are two types of photoreceptors: rods, which are used for light and dark

(black and white) vision; and cones, which are used for color vision. There are

approximately 10 million cones, most of which fall within 5 degrees of the fovea, or

the center of gaze [8]. Visual acuity is greatest within 1 degree of the fovea. 'Within
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the entire visual spectrum, rods are more sensitive to light than the cones, but they

are entirely absent from the fovea and become more prominent in the periphery [9].

Three types of cones account for the ability to see color over the entire visual

spectrum: a sense light toward the blue region of the visual spectrum, (3 sense

toward the green region of the spectrum, and ')' sense light toward the red region of

the spectrum. a cones are far fewer in number than (3 and')' cones, but the visual

system still perceives blue through neurological compensation.

Visual perception is logarithmic and depends on brightness adaption [7]. In

dark conditions images are formed on the rods and in brighter conditions images are

formed on the cones. This means that in darker conditions the capacity for

perceiving color diminishes and, because the image is sensed further from the fovea,

visual acuity diminishes as well.

Physicist Ernst Mach discovered a phenomenon which demonstrates how the

human brain compensates for loss of acuity by emphasizing boundaries between

regions of differing intensities. The demonstration, called Mach bands, seen in

figure 2(a), consists of several stripes represented by constant intensity in increasing

or decreasing order. Although each stripe is of a consistent intensity, in the image

they appear to change slightly from light to dark. In other words, there appears a

faint lighter border to one side and a faint darker border to the other side of each of

the internal boundaries. The gradation within each stripe does not exist, but rather

is perceived by the human eye: figure 2(b) shows the actual intensity levels and

figure 2(c) illustrates of the perceived intensity values. The visual perception of

Mach bands at boundaries between intensity levels is thought to assist in the

discernment of boundaries to make up for decreased visual acuity. This phenomenon

is particularly important in the field of medical diagnosis, as a gradient in intensity

may appear in an image where the image data does not support this observation.

Neural signals from sight are transmitted to two areas of the brain for

processing: the associative cortex processes object information and the occipital

cortex processes pattern information. When information is missing from an image

the brain easily repairs the incomplete image with knowledge of similar patterns
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(a)

(b) True intensity in mach
bands.

(c) Perceived intensity in
mach bands.

FIGURE 2: Mach band example.

seen in the past. By concentrating on different components of an image, the brain

to perceives different images, like in the Kanizsa triangle of figure 3. The Kanizsa

triangle can be perceived either as a triangle occluding three circles or three

Pac-Man-like figures facing each other [10]. The Pac-Man images are easily

recognized with computer vision, but the triangle, which does not exist in the image

data and is inferred with the help of the occipital cortex, is not. Structural

information theory suggests that the human brain prefers to perceive the triangle

because the shape is less complex and therefore has a lower information load than

the Pac-Man images [11].

Human vision, which is augmented by a brain that has been specialized to

ensure the survival of humankind, may present different perceptions and images

than computer vision, which depends upon an algorithm designed for the processing

of discrete pixel information contained in image data. The use of experts, or the

human eye, makes for subjective grading criteria where inferences are based on

experience which may include information not actually present in the image data.
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FIGURE 3: Kanizsa triangle.

This may be an advantage or disadvantage depending on the experts and their

domain knowledge. In any case, augmenting subjective information with

quantitative data from the diagnostic imaging provides the expert with objective

information for arriving at a diagnostic conclusion.

2.2 Introduction to Image Processing

Most image processing and computer vision techniques are implemented in

software. In general, image processing is employed either to enhance visual

appearance or to prepare images for quantitative measurement of features for object

recognition [12]. This thesis concentrates on the latter.

2.2.1 Image Data Structures

Computer images are comprised of a set of points or picture elements,

usually referred to as pixels, stored as an array of numbers. Images are spacial data

indexed by two spacial coordinates; typically the variables x and y refer to the

horizontal and vertical axes of an image. Pixel value represents the color or

intensity of each pixel, and the placement of the pixels within the matrix
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(255, , j.35)

FIGURE 4: RGB color image represented by three matrices.

corresponds t.o t.heir placement wit.hin the image. If more than one value is required

to encode pixel information, the image is often represented by a multidimensional

matrix. For example, an RGB encoding of an image would contain 3 matrices: one

each for red, green and blue intensity as shown in figure 4. In other terms, each

pixel represented in the matrix has a value that is encoded as either a scalar (in the

case of gray-scale) or a vector (in the case of color). In figure 4, the RGB value

(255,45,135) produces a pink pixel.

2.2.2 Color Space

Because manipulation of color is possible through additive properties (for

example, red and green produce yellow) a wide range of colors is generated from a

choice of three primary colors. A red, blue and green (RGB) color space is

commonly used in modern displays like televisions, computer monitors and digital

cameras. Each primary color has a range of values dependent on bit resolution.

lVIost digital systems store color channels in 8-bit quantities, allowing a range from 0

to 255 to indicate the intensity of a color. In the cases of white, black and shades of

gray, white is represented by maximum intensity over all three channels, black is

represented by nil intensity over all three channels and shade::; of gray are

represented by equal intensities over all three channels. This is referred to as 24-bit

RGB values or truecolor and allows for 16,777,216 (2563) different colors.
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Green

Green
(0,255,0)

Cyan
(0,255,255)~---------~---------~

Yellow
(255,255,0)

Red
Red

(255,0,0)

Blue

Black
(0, 0, 0'.J*------------1----------~--- .....

Blue
(0, 0, 255~)1iIIl:..... 1t'

Magenta
(255,0,255)

FIGURE 5: RGB color space represented by a cube.

The RGB color space is represented via a three-dimensional cube as seen in

figure 5. The coordinates of each point inside the cube represent the values of each

primary color. There are three laws of colorimetry: first, the creation of any color is

possible with the three primary colors and any given combination of the primary

colors is unique; second, any two colors which are equivalent are again equivalent

after multiplying or dividing all three components by a scalar; and three, the

luminance of a mixture of colors is equal to the sum of the luminance of each color

component [13].

2.2.3 Spacial Resolution

Samples of light from a finite number of sensors are stored in digital form to

create digital images. Since there is a finite set of sensors, a digital copy of an image

is, by definition, degraded. The number of sensors determines the image size (N)

and must be sufficiently large to resolve the spacial detail of an image while also

being sufficiently small to accommodate efficient memory management and
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(a) (b) (e)

FIGURE 6: Spacial resolution example.

processing time. For example, figure 6 shows the different image resolutions

resulting from using diff'erent values of N. Figure 6(a) is a 15 x 15 pixel image

which shows only basic structure. The subjects facial features are indecipherable

and identification of the pink object in the upper right side of the image is

impossible. Figure 6(b), a 30 x 30 pixel image, begins to show more detail, but

identification of the subjects identity or of the type of pink flower in the background

is still difficult. Figure 6(c) is a 60 x 60 pixel image with a much higher level of

detail. While the image still suffers from pixelization, the subject is identifiable and

the type of Hower in the background is recognizable.

Determining the appropriate level of spacial resolution is accomplished

through sampling criterion. For image processing, a sampling of density or of

frequency based upon classical signal theory is appropriate. According to the

Nyquist sampling theorem, the sampling frequency must be at least twice the

highest frequency of the sampled signal to reconstruct a signal from its samples [14].

For image analysis. however, the sampling density should be based upon criteria.

such as desired accura.cy and precision [15].

2.2.4 Segmentation

Image segmentation is a classification problem and therefore is one of the

most important and difficult tasks in image processing. Segmentation is the process

of partitioning an image into mutually exclusive regions based on pixel
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.-
(a) (b) (c)

FIGURE 7: Thresholding example.

characteristics. The goal of image segmentation is to assign each pixel to a group or

class with similar characteristics. Ideally, classes with similar characteristics

correspond to similar objects in an image. In many cases image segmentation

remains an unsolved problem [16, 17, 18].

The simplest form of segmentation is binarization. Binarization is the process

of segmenting an image into 2 classes, such as foreground and background, thus

distinguishing the object(s) of interest from the rest of the image. The binary image

is referred to as a mask when it is used to exclude pixel data from calculations.

Thresholding

Thresholding is an image segmentation technique that classifies portions of

the image according to a range of values. Thresholding is based on homogeneity

among features. Features are accepted or rejected based on whether or not their

values fall within the expected range of values. Figure 7 is an example of grayscale

thresholding where figure 7(a) is the original image. Figure 7(b) is the result of

thresholding based on a higher intensity range which results in the binarization of

the lighter circle from the original image. Similarly, figure 7(c) is the result of

thresholding based on a lower intensity range which results in the binarization of

the darker square from the original image.

Color thresholding is an extension of grayscale thresholding where the

grayscale techniques are extended to each of the color channels based on the desired

effect. For example, the color red in RGB space is represented by a high R value
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with low G and B values. Therefore, a high threshold range to the R channel and

low threshold ranges to the G and B channels effectively thresholds the color red.

Shape Analysis

Shape analysis in image processing is largely dependent on mathematical

geometric features. Any shape description scheme should be invariant to changes in

translation, scale and rotation. Such features are easily grasped by the human eye

and brain but are not easily captured in an algorithm. These features can be

described as bent, elongated, circular, convex, sharp, smooth, symmetrical, etc. The

method of description is dependent on the particular application. Consistent

evaluation criteria do not yet exist for methods of shape description. A common

way to explain to an image processing system the variety of shapes in biological

preparations is presently not available [19].

2.3 Introduction to Pathology and Histology

Pathology is a study of diseases. Pathologists study the cause and

development of disease and determine the difference between healthy tissue and

tissue that is diseased or damaged. Histology, the study of microscopic structures in

tissue, is a major tool employed by pathologists to determine specific diagnoses.

Treatment for many diseases is dependent on a pathologist's ability to make a

definitive diagnosis. Diagnosis is often based on a grading scale measuring either the

degree of abnormality of the cells or presence of immuno-responsive cells. Many of

these grading scales are subject to the expertise of the pathologist and vary by

examiner.

2.3.1 Stains

Pathologists observe the cellular structure of tissue to determine if it is

infected, mutated, necrotic or otherwise damaged. To accomplish this, pathologists

look at biological samples under the microscope. The cellular structure of samples
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obtained from biological sources does not contrast well under normal light. Staining

creates contrast between objects, which is necessary to observe features of interest

such as cell membranes, organelles, nuclei or specific molecules such as nucleic acids,

lipids or carbohydrates. Staining method selection is dependent on what is observed

within the sample and what microscopy equipment is available. Methods include

the utilization of a wide range of stains which are viewed under ultraviolet light,

including florescence labels, and various stains that can be viewed on the bright

field, such as hematoxylin and eosin (H&E). H&E is the most prevalently used

staining methodology in pathology due to its availability and low cost. In the H&E

method, the alkaline hematoxylin colors cell nuclei blue while the acidic eosin colors

cytoplasm, connective tissues and other organelles different shades of pink.

2.3.2 Placenta

During pregnancy the fetus is housed within the placenta. The placenta is

created during the first trimester and becomes fully functional in the second

trimester. The placenta conducts waste management for the fetus and provides

oxygen, nutrition, hormones and antibodies. As shown in figure 8, the placenta is

composed of parts from both the fetus and the mother. The placenta is connected

to the mother via the uterine wall and to the fetus via the umbilical cord, which

inserts into the chorionic plate. The placenta has two fetal membranes. The outer

membrane, the chorion, supports the thin inner layer, the amnion. The amnion is in

direct contact with the amniotic fluid, which envelopes the fetus. The placenta is

the life support system for the fetus during gestation. When the placental tissue is

impacted by defect or disease, then, the health of the fetus is at risk.

2.3.3 Acute Chorioamnionitis

Acute chorioamnionitis is the typical pattern of inflammatory changes in the

chorionic plate, umbilical cord, and membranes in response to microorganisms in

the amniotic fluid [21]. This disorder is the most frequent cause of preterm labor
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FIGURE 8: Anatomy of the placenta as presented in [20].

and is associated with abnormal fetal heart rates, developmental problems in

childhood, and early termination of the pregnancy [21, 22, 23, 24]. Very often acut.e

chorioamnionitis is repeated in successive pregnancies [25].

The clinical criterion for diagnosis of chorioamnionitis is based on the

presentation of a pregnant woman with premature rupture of membranes, fever, and

one or more of the following during labor: maternal tachycardia, fetal tachycardia,

maternal leukocytosis (more than 1l,000/mm white blood cell count) or foul

smelling amniotic fluid. In contrast, the histologic criterion for diagnosis of

chorioamnionitis is based on the presentation of maternal neutrophils beneath the

chorionic plate of the placent.a. Although clinical diagnosis correlates poorly with

histologic diagnosis, it remains the gold standard [21, 26]. In a study by Redline, et

al. [25] of infant::; presenting with very low birth rate and with histologic

chorioamnionitis, 72% (52 out of 72), failed to reach the clinical diagnostic threshold

(see table 1). In other words, in 72% of t.he cases with histologically verified

infection, the patient presented without symptoms and therefore was not clinically

diagnosed. Conversely, 17% (4 out of 24) of cases diagnosed wit.h clinical

chorioamnionitis had no histologic inflammation in the placenta" suggesting that the

symptoms were attributable to something other than chorioamnionit,is. This

indicates that clinical diagnosis, the current" gold standard," is a poor indication of

true infection. The accuracy of chorioamnionitis diagnoses is important due to the
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Histologic Histologic Clinical Clinical Clinical

Inflammatory Chorio- N Diagnosis Diagnosis Histological

Response amnionitis Positive Negative Agreement

none negative 47 4 (9%) 43 (91%) 43 (91%)

maternal
positive 14 1 (7%) 13 (93%) 1 (7%)

only

maternal and
positive 41 6 (15%) 35 (85%) 6 (15%)

mild-moderate fetal

maternal and
positive 17 13 (76%) 4 (24%) 13 (76%)

severe fetal

Total: 119 24 (20%) 95 (80%) 63 (53%)

TABLE 1: Clinical vs. histological diagnosis of chorioamnionitis [25].

risk of repetition in successive pregnancies. When responsible for preterm birth in

one pregnancy, 46% of successive pregnancies also present with acute

chorioamnionitis. If Redline's study is indicative of the very low birth rate deliveries

in the population at large, 72% of the patients with chorioamnionitis fail to be

diagnosed and have a 46% chance of reoccurrence in the next pregnancy. Therefore,

given a pregnancy that ended early due to chorioamnionitis, there is a 32% chance

that the mothers next pregnancy will end early due to chorioamnionitis and that

the mother will not be warned beforehand. For any mother whose pregnancy has

met an untimely end, this is not very reassuring, especially considering that a

treatment of antibiotics is an effective preventative measure if the antibiotics are

introduced sufficiently early.

Chapter four presents an image processing tool intended to increase the

reliability of chorioamnionitis diagnoses. With a reliable tool, the routine

examination of placental tissue after premature termination of pregnancy will be
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critical in the detection of chorioamnionitis. This will provide the mother and her

doctors with the best information to make decisions regarding future pregnancies.

2.4 Conclusion

As digital diagnostic tools are developed to aid in expert analysis it is

important to understand the subtleties of human vision versus computer vision.

Color space, segmentation, and shape analysis are integral to understanding the tool

presented in chapter four. To fully appreciate the impact of its implementation

requires an understanding of the physical structure and nature of the placenta and

chorioamnionitis. For these reasons, the background presented here will aid in the

understanding of the related works presented in chapter three and the contributions

presented in chapter four.
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CHAPTER III

RELATED WORK

Much of the literature related to the automated analysis of biological tissues

is based on supervised techniques that require the user to manually specify

parameters such as thresholds and iteration counts. This is detrimental to the

acceptance of said techniques by pathologists with limited (if any) familiarity with

the meaning of these parameters and their underlying algorithms. Application of

image processing techniques to the detection and quantification of inflammatory

polymorphonuclear leukocytes (PMLs) is an area that is not well explored or

published, however a rich body of literature does exist related to image analysis of

stained tissue for diagnostic purposes. The following sections give an overview of

current image analysis research in the area of medical diagnostics. A summary of

the methods covered in this chapter appear in table III.

3.1 Image Analysis for Diagnostics

Identification of regions of interest (ROls) is the first step toward the

development of computer aided diagnostics (CAD). This is the main focus of Wang,

et al. in [3]. The techniques for processing cervical tissue slides covered in [3]

include developing a scheme to process the entire slide, detecting edges, extracting

features, and classifying tissue as stroma or squamous epithelium. Wang and his

team processed a total of twenty tissue slides with mixed results. Some samples

were classified correctly with around 95% accuracy; other samples suffered from
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Source Nature of the Algorithm Application

Deng, Manjunath class map & general purpose

& Shin, 2001 region growing (JSEG) automated segmentation

Hafiane, Bunyak & fuzzy clustering H&E stained prostate

Palaniappan, 2008 & active contours tissue (cancer)

Kong, Sertel, color clustering H&E stained

Shimada, Boyer, based segmentation neuroblastoma

Saltz & Gurcan, 2009 (EMLDA) (cancer)

Naik, Doyle, Bayesian classifier H&E stained

Feldman, Tomaszewski based on color prostate tissue

& Maldabhushi, 2007 & morphology (cancer)

Otsu, histogram general purpose

1979 thresholding automated thresholding

Sertel, Kong, modified k-nearest & H&E stained

Shimada, Catalyurek, neighbor classifier neuroblastoma

Saltz & Gurcan, 2009 based on texture features (cancer)

Tosun, Kandemir, k-means, H&E stained

Sokmensuer, & region growing colon tissue

Dunduz-Demir, 2009 & merging (cancer)

Wang, Turner, edge detection H&E stained

Crooks, Diamond & & texture based cervical tissue

Hamilton, 2007 region segmentation (cancer)

Zheng, Chang region growing & mammogram

I
& Gur, 1995 shape based segmentation breast tissue

TABLE 2: Summary of related publications.
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misclassifications due to morphologically similar features, like red blood cells

co-occurring with squamous epithelium within the tissue slide. Because they only

classified slide regions as background, stroma and squamous epithelium without a

category for red blood cells, the red blood cells were classified as squamous

epithelium. The image processing technique presented in section 4.2.1 resolves this

dilemma by removing red blood cells from the image data prior to feature extraction

and classification.

Hafiane's research in [27] focuses on cell nuclei counting on H&E stained

slides of prostate tissue using fuzzy clustering and active contours. The goal of their

technique was to count the number of nuclei within a known diagnosis rather than

to infer a diagnosis from spacial distribution of nuclei. Measuring the success of

their algorithm proved difficult because "there was some degree of inconsistency in

the quality of the ground truth across experts in identifying indistinct nuclei, so

that some of the false positives detected by the algorithm may indeed be correct."

The researchers make no mention of how many experts were used and how the

experts compare amongst themselves. Hafiane, et al. state that further interaction

with experts is necessary to accurately quantify the performance of their method.

Gaining consensus among experts who can then verify a reliable and reproducible

method is a common problem within the domain of medical diagnosis and also was

experienced by [28, 29, 30, 31, 32].

In [33], Naik, et al. presents a method for classifying Gleason grades among

prostate cancer cases for 3 classes (benign, Gleason grade three, and Gleason grade

four) with the intention of developing an automated system that reduces inter- and

intra-observer variability. Their methods include segmentation, morphological

feature extraction, and manifold learning. According to [33], variability in

appearance across the grades gives rise to difficulty with automated segmentation of

gland structures. They quote an inter-observer variability up to 48% for Gleason

grades three and four. Naik and his team claim to achieve accuracies of 95% when

distinguishing between grades three and four, but they do not specify how those

results are verified.
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In [34], Tosun, et al. made the observation that when colon tissue deviates

from a homogeneous organization, it is considered cancerous and the grade is

determined by the severity of the deviation. Because there was no considerable

difference in the color distribution between healthy and unhealthy tissue samples

their methods relied heavily on morphological features. The proposed algorithm was

run on sixteen randomly chosen cases and compared to images which were manually

segmented by one specialist. The specialist's segmentation included a region marked

as positive for cancer, negative for cancer and a generous region which could be

classified in either direction. They reported an accuracy rate of almost 95% when

counting all segmentation lines falling in the neutral area as a correct segmentation.

3.2 Semi-Automatic Segmentation Techniques

Researchers have proposed analytical methods that increase automation and

reduce the burden on the user. Semi-automation is achieved either by building a

self-adjusting algorithm (a difficult undertaking) or by changing adjustable values to

fixed values. This automation can be achieved in one of two ways. The ideal way to

automate an method is by building the algorithm to be self adjusting so it uses the

proper values depending on the input image. The easier way to automate a method

is by changing adjustable values to fixed values. Hard coding a parameter is only

appropriate when the input is invariant to that value. For example, at a particular

magnification and resolution all red blood cells should be about the same size. Hard

coding the size of the cell would be appropriate if it can be assumed that all input

images are acquired at the same magnification and using the same resolution. If that

assumption cannot be made, the cell size is more appropriately set as a variable.

Sertel et al. attempted to automate the removal of white background pixels

by using a hardcoded threshold and classified as the white background all pixels

with intensity level greater than two hundred in all three 8-bit RGB color

channels [2]. Although Sertel et al. used H&E stained tissue slides, I was unable to

reproduce their result using this fixed value. Upon implementation of this
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FIGURE 9: Sertel et 0.1. fixed threshold for white background detection.

technique, the threshold of two hundred was too low for some instances of H&E

stained tissue and oversegmentation resulted. Figure 9 illustrates the problem. The

original tissue image in figure 9(0.) does not contain any white background, however

all pixels shown in figure 9(b) are classified as white using Sertel's thresholding

value. This image contains no glass background yet the majority of the pixels are

misclassified as such. This poses a significant problem for researchers identifying the

density of a particular cell within the tissue-misclassifying tissue as background

falsely inflates the density ratio. An alternate approach to background detection is a

fully automated method which responds to image conditions. This approach is

presented in Section 4.2.1.

Classification of tissue types is achieved by l\aik, et 0.1. in [33] with the use of

a color classifier and thresholding to remove background noise. A Gleason grade is a

numerical value used to describe prostate cancer malignancy where a high value

corresponds with a poor prognosis.

The process begins with the detection of tissue types based on their color

properties. A Bayesian classifier is trained to detect if a pixel value is likely lumen,

cytoplasm or nuclei. In any given digital image, each pixel c E C ,where C is a

two-dimensional grid of image pixels, has a value assigned by the function f which
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represents red, green, blue, hue, saturation, and intensity. A training set is selected

for each tissue type and is used to generate the probability density function

p(c, f(c)lwv ), where W v is the pixel class with v E Lumen, Nucleus, Cytoplasm.

Then for each image, the probability that c E W v is

(3.1)

by Bayes theorem. The output for each pixel can be reconstructed into an intensity

image with values between (0,1). Bright intensity corresponds to a high likelihood

that the pixel belongs to the class. A threshold is applied to define the object and

remove background noise and finally the true tissue is determined based on

neighborhood criterion.

Like in [33], the first step to defining the objects in [34] is accomplished by

applying k-means to color intensities to distinguish between the three tissue types.

Purple regions correspond to epithelial and lymphoid cells, pink regions represent

connective tissue, and white regions signify luminal structures and connective tissue

components. Tosun's technique goes on to use uniformity measures for each pixel in

a three-step region growing method:

• Seed Determination: Seeds are formed by connecting pixels using four

connectivity (the pixels directly above, below, to the right and to the left) for

which all twelve uniformity measures are smaller than their corresponding

thresholds. The threshold is the mean plus one standard deviation of the

associated measure computed over all the pixels.

• Seed Growing: The threshold value is recalculated for all pixels that are not

already assigned to the existing seeds. The pixels that fall under the threshold

are added either to the neighboring seed or, if a neighbor does not exist, to a

new seed. Tosun et al report over-segmentation of the image at this point in

the process.

• Region Merge: To adjust for over-segmentation, regions are merged based on

two criteria: (1) the percentage of total area for the same type of objects in



24

the region and (2) the percentage of the combined areas of the different

objects which correspond to the same cluster in the region.

The proposed algorithm was run on sixteen randomly chosen cases and compared to

images which were manually segmented by one specialist (whose results were set as

the gold standard) and images which were segmented by a separate process

proposed by Deng and Manjunath [35]. As previously mentioned, Tosun et al.

claimed an accuracy rate of nearly 95% even though, in many of the cases, the

algorithm included some of the healthy tissue in sections marked as cancerous tissue

and cancerous tissue in sections marked as healthy tissue. The accuracy rate of 95%

was achieved through the introduction of a third category to the gold standard.

Instead of classifying tissue as either healthy or cancerous, the specialist classified

tissue as healthy, cancerous and a third category which could be correctly

segmented as either healthy or cancerous. This is a huge advantage for achieving

such a high accuracy rating since the categorization for much of the image would be

deemed correct regardless of the algorithmic result.

Otsu's method [36] has been modified many times since its publication in

1979 [37, 38, 39, 40] but in its original form it remains a mainstay of the histogram

thresholding techniques. Otsu's method for segmentation does an exhaustive search

of every thresholding level and creates a record of the between-class variance. The

optimal threshold is defined as the value with the maximum variance between two

classes or with the minimum variance within two classes which yields the same

threshold result [36]. Defining the optimal threshold depends on the existence of a

clear foreground and background on opposite sides of the gray-level histogram, also

referred to as the bimodal distribution of gray levels. Minimization of the intra-class

variance can be used for multilevel thresholding as shown in [39, 40]. When

converted to multilevel thresholding, Otsu's binarized, fully automated algorithm

becomes parameterized. The fully automated version of Otsu's method is a poor fit

for H&E stained tissue due to variance among slidesthe presence of blood, the

visibility of the glass background, or the type of tissue being segmented, for example.

Unfortunately, though, multilevel thresholding is flawed for our purpose also, as the
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number of levels necessary to achieve optimal segmentation is unclear. As with the

iterative threshold selection algorithm presented in Section 4.2.2, preprocessing as

presented in Section 4.2.1 and postprocessing as presented in Section 4.2.3 is

required to fully automate Otsu's method for the purpose of H&E segmentation.

We compare Otsu's method to other segmentation methods in Section 4.3.

3.3 Shape Analysis

Kong et al. differentiate between pathological components of H&E stained

tissue [41] using only texture and color. While they recognize nuclear size and shape

as an integral part of the process used by pathologists in their visual grading

process, they contend that morphological features cannot be expressed

quantitatively. Because diagnostics rely heavily on morphological components, this

methodology must be refuted. [34, 33, 42] and Section 4.2.3, all demonstrate the

feasibility of incorporating morphological features into a quantitative system. While

consistent evaluation criteria do not exist for methods of shape description, the

development of such a system continues to be an active area of research rooted in

differential geometry [19].

In the diagnosis of prostate cancer, a gleason grade is assigned according to

the arrangement of nuclei and the shape of the gland structure. Naik et al. employs

two methods of shape analysis to assign Gleason grades: First, a size constraint

removes noise. Then, a Bayesian classifier analyzes morphological features to assign

a grade. Morphological feature extraction is based on eight features calculated

across the exterior lumen boundary and the interior nuclei boundary. The eight

features are as follows:

• Area, a measure of the space enclosed by the boundary B;

• Area overlap ratio, a measure of shape irregularity, is the area enclosed by B

divided by the area of the smallest circle enclosing B;
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• Distance ratio, the ratio of the average distance to the maximum difference of

the distance from the centroid of B to the points lying on B;

• Standard deviation of the Euclidean distance from the centroid of B to the

points lying on B;

• Variance of the Euclidean distance from the centroid of B to the points lying

on B;

• Perimeter ratio, the ratio of the estimated length of B (via linear

interpolation) to the true length of B (the actual number of pixels);

• Compactness, the quotient of the true length of B squared and the area

enclosed by B; and

• Smoothness, the measure of a boundary pixel, C, and the Euclidian distance of

its clock-wise neighbor, CHI, and its counter-clock-wise neighbor, Ci-I, to the

centroid, cg , multiplied by the pixel's Euclidean distance from the centroid,

d(cg , Ci), divided by two and summed over all the boundary pixels.

Smoothness = L jd(Ci, cg ) (d (Ci-I, cg ) + d (CHI, Cg ) ) /21 (3.2)
ciEB

These eight features determine which Gleason grade to assign to the analyzed

tissue. For example, Gleason grade four is made up of smaller but more uniform

lumen areas which lack glandular structure, whereas Gleason grade one is made up

of benign epithelium of larger varied sized glands closely resembling healthy tissue.

As the tissue strays from it's healthy formation, the worse the patient's prognosis.
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Tosun et al. proposed an object-oriented approach which treats sections of

the image representing portions of the same tissue type as a single object as

opposed to looking at individual pixels. Shape analysis based on object size is used

to group various tissue components [34]. Each of the three object types (epithelial

tissue, connective tissue and luminal structures) are processed twice to determine

circular structures within the tissue. The circular structures are then categorized

into two object groups based on size. The homogeneity criterion is based on the

distribution of the objects in size and space and is determined by two metrics:

• Object Size Uniformity: For each object type, the standard deviation of the

area of the object indicates object size uniformity. A completely uniform

collection results in a standard deviation of zero.

• Object Spacial Distribution Uniformity: For each object type, first calculate

the sum of the position vectors of every object with reference to the image

centroid. Next, calculate the magnitude of the resulting vector. The

magnitude indicates spacial distribution uniformity where a perfectly uniform

spacial distribution results in a sum and magnitude of zero.

Due to the uniform nature of healthy tissue, uniformity metrics distinguish between

cancerous and benign colon tissue.

This literature review is a testament to the limitations of current research

and the need for further study. Before image analysis is successfully established as

an invaluable tool in the field of medical diagnostics, the challenges impeding its

integration must be resolved. These challenges include algorithms which require

user input beyond the scope of their primary users, improper preprocessing of

samples, thresholding techniques which implement hard values inappropriately,

results which are difficult to verify, and, generally speaking, processes which are

unnecessarily complex. The tool presented in chapter four addresses these concerns.

It is not dependent on user input, it accounts for context in its preprocessing

techniques, it introduces a novel thresholding solution, it produces results which are

easily verified, and, most importantly, is user-friendly and practical.



28

CHAPTER IV

AUTOMATED DETECTION OF

INFLAMMATORY RESPONSE

Presently, image processing for automated (or even semi-automated) medical

image processing is an open and active area of research. There are no known

publications related to image processing for the purposes of identifying

inflammatory PML nuclei. Medical diagnosis of placental inflammation is also an

open area of research, and attempts at standardized scoring of intra-amniotic

infection is a source of controversy [22, 23]. Salafia et al. argue that the current

qualitative approach needs to be improved upon via a reliable quantitative

automated tool [1]. The technique presented in this thesis answers that call and

creates a universal and uniform system of diagnosis for the presence of inflammation

through the identification and quantification of inflammatory PML nuclei.

4.1 Image Dataset

The image set for developing and verifying this algorithm is made up of

four-hundred and fifty tissue slides: forty-five present variations in H&E stain age

and four-hundred and five present variations in H&E stain brand. Samples from

placental tissue are soaked in paraffin and cut at a thickness of fivepm before being

placed on a glass slide. Stain age is varied on three sequential tissue slices from

fifteen cases which are stained at zero, two, and four days old. Stain brand is varied
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with Myelo IHC and with eight unique combinations of four brands of Hematoxylin

(Harris-R, Gills-R, Harris-P and Gills-P) and two types of Eosin (Eosin and Eosin

Phloxin). This rotation of nine stain combinations is performed three times over

twenty-seven sequential tissue slices from fifteen tissue samples for a total of

four-hundred and five slides.

Varying brand and stain age in this way determines whether variations that

are expected in practical laboratory and hospital environments have a negative

impact on the performance and reliability of the algorithm. It is not practical to

assume that staining conditions can be exactly replicated across a diverse set of lab

environments; therefore, in order to be viable, a robust diagnostic algorithm must

account for these variables.

4.2 Methods

The following sections introduce three components of quantitative

identification of inflammatory PML nuclei: background detection via image

segmentation, cell nuclei detection via a novel iterative threshold selection

algorithm, and isolation of particular nuclei of interest via shape analysis.

4.2.1 Background Detection (Image Segmentation)

The iterative thresholding technique requires that an image consist of only

H&E stained tissue. Removal of extraneous features, like white background and red

blood cells, normalizes the image for input into the iterative thresholding technique.

Extraneous features are removed through a method that utilizes color ratios and is

therefore neutral to the number of bits for color representation. Consider the raw

image in figure 11 (a) in the following discussion.
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FIGURE 10: Hematoxylin & Eosin stain combinations on sequential tissue slices. From left to right the Harris-R

Hematoxylin & Eosin, Harris-R Hematoxylin & Eosin-Phloxin, Gills-R Hematoxylin & Eosin, Gills-R Hematoxylin &

Eosin-Phloxin, Harris-P Hematoxylin & Eosin, Harris-P Hematoxylin & Eosin-Phloxin, Gills-P Hematoxylin & Eosin,

and Gills-P Hematoxylin & Eosin-Phloxin. From top to bottom, the tissues represent no inflammation, moderate

inflammation and severe inflammation.
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(c) Preprocessed image after
removal of red blood cells.

FIGURE 11: Preprocessing for removal of red blood cells.

Red Blood Cell Detection

Removal of red blood cells is accomplished with a simple threshold. 'Within

an image of H&E stained tissue, any pixel with a red to blue ratio greater than 1.25

is too red to be connective tissue or nuclei and therefore is masked out and ignored.

The pixels in figure 11 (a) ident ified as meeting this criteria are masked in black in

figure 11 (b). The result after removal of the red blood cells is shown in 11 (c).

White Background Detection

The iterative thresholding technique requires that all white background be

removed from the image. In slide images, the background is a relative white but is

not necessarily the maximum intensity RGB color value for white. To account for

this discrepancy, the threshold is based OIl a percentage of the maximum value of

each channel. This eliminates the need for manual adjustments when a slide is very

dark or very light, when it is overcast with excess dye, or when the scanner is

incorrectly calibrated to the background. To compute the color channel thresholds

that identify the white background of a given slide, first identify the maximum

intensity in each color channel: rma,r, gmax, and bmax" Then, given these values,

calculate individual thresholds for each channel as follows:
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tred 0.90 . r max

tgreen 0.90 . gmax

tblue 0.90 . bmax

Instead of exclusively identifying pixels that are at maximum value (a rare

occurrence in this context), the multipliers in the above equations detect pixels that

are very bright but are not necessarily at maximum value. This accounts for

variations in the imaging process like lighting and background. These image-specific

thresholds automate the identification of pixels which constitute white background.

isWhite(x) = (Xred > tred) 1\ (Xgreen > tgreen) 1\ (Xblue > tblue) (4.1)

In cases where an image does not contain any white pixels, there exists

enough variability in the color channels to result in image specific thresholds which

are sufficiently high to exclude all pixels in the image. Because every pixel fails to

meet the criteria for thresholding in all three channels, at least one clause in

isWhiteO is found to be false. This renders isWhiteO to be false and thus validates

the method for images which do not contain white background.

Figure 4.2.1 is an illustration of the automated white thresholding method.

All three original images resulted in different RGB values for the isWhite threshold.

The threshold for figure 12(a) was [242 179 188], for figure 12(b) was [238218225],

and for figure 12(c) was [242 234 234]. The resulting white masks are shown as

black pixels in figures 12(d), 12(e), and 12(f).

4.2.2 Cell Nuclei Detection (Iterative Threshold)

Once the red blood cells are removed from the image and the white

background is excluded, the remaining pixels correspond exclusively to tissue or

nuclei; a threshold must be established to differentiate the two. Due to lighting

conditions and to shifts in the mean color intensities related to stain aging and

brand variations, the precise value of this threshold is a function of the image
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FIGURE 12: Results of isvVhiteO mask for images with no white pixels.

contrast and the red channel distribution. The following method, the iterative

technique, eliminates the need for technicians to manually specify the optimal

threshold value by incrementally differentiating tissue from nuclei:

Algorithm 4.2.1. Iterative Threshold Selection.

Input: RGB p'ixel values.

Output: Threshold.

threshold f- mean!ntensity(Pixels )/2

repeat

for all pixels p E Pixels

if Pred < threshold

remove p from Pi.uls

threshold f- mean!ntensity(Pixels) /2

until nothing is removed fTOm. Pixels

return threshold

The resulting threshold value distinguishes pixels belonging to tissue from

those belonging to nuclei based on a comparison of the red channel value. Tissue,



34

(c) Human Cornea(a) rvIouse Kidney

r'j, ~ ,.-------, 1. . \.. ." • ~.\. ,~. \.. ~. .~. () '-
• __• ' Q of\..... ..
.. • .• Jtf~; ",. Qo. • • .-I:)'~

.l.~.~::#'.: ~~'-w (. ...Q-.0'.......... .... t r.! .. t', • .•
.. . '.'\" \ ...4.,!"" ,." ...."'-•

• " . .."J~ '1.• - a I

••• ' _' Ilt. ... ,.. ..~
....;~ .)',. -..... ".1'."
. ., • ••••• Q •••~..•. , ' : "

,. (... • t') , •• "
• •• - -. \tto(.,~ .. :' .....-: °0 "',

~. . c

(d)

(b) Human Prostate

(e)

.. . . ..... " o .

(f)

FIGURE 13: Nuclei detcction in various H&E stained tissuc.

which appears in shades of pink, has a much higher red channel value than nuclei,

which appear purple or bluc in color. The red channel is therefore a reliable

determiner in the identification of tissue and nuclei.

isNuclei(x) = XT(~d < threshold (4.2)

Due to the inconsistent receptivity of some nuclei to dye or to the overlay of

some nuclei with tissue, the final threshold is found to be slightly low (dark) fOl'

segmenting all nuclei after the threshold selection algorithm is applied to the image

set. A ten percent correction (twenty-five for a slide scanner with 8-bit encoding)

brings some of the outlier nuclei into view.

The methods covered up t.o this point (detection of red blood cells, white

background, and nuclei) are designed for use with placental tissue. As figure 13

illustrates, the success of these methods are not. limited to placental tissue and can

be applied to other tissue types as well. The algorithm has a broad application base

due to its self-adjusting nature and does not require user-defined tuning for the

extension of its application to other diagnostic domains.
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4.2.3 Cell Nuclei of Interest Detection (Size and Shape

Filter)

It is now essential to determine which cell nuclei are the nuclei of interest.

That is, which nuclei are inflammatory PML nuclei. Identification of nuclei of

interest is possible through shape analysis due to their morphologically distinct size

and form.

Filtration by Size

PML nuclei consistently take on a characteristic size within an image and

therefore are easily differentiated from other, non-PML nuclei. From a biological

standpoint, every cell type has a normal size range. Filtering out nuclei that are

outside of this range eliminates a large number of non-PML nuclei or other artifacts

that have a similar response to the H&E stain. The pixel count of the candidate

nuclei defines this filter.

Inflammatory PML nuclei differ from chorion and amnion epithelium in size

(see figure 15 (c)). Because size analysis of nuclei and epithelium depends on

resolution and magnification, empirical values for the range of normal pixel group

size for these two features do not apply. The size threshold is easily calculated with

the following formula, however:

pixel group size = resolution (pixels per J1m2
) x cell size (J1m2

) (4.3)

The normal range of cell size is the basis for the threshold range. Following the

computation of the number of pixels of each connected component, the connected

components are eliminated as noise if the number of pixels is below the pixel group

size interval and are eliminated as epithelial cells or larger artifacts if the number of

pixels is above the pixel group size.



36

FIGURE 14: Examples of shapes with eccentricity 0.00, 0.70 and 0.95.

Filtration by Shape

Just as inflammatory PML nuclei are distinguished from non-PML nuclei by

their size, inflammatory PML nuclei are differentiated from other cell features by

shape. PML nuclei have a characteristic circular (or near circular shape) that is

distinct from similarly sized cell features (like connective tissue fibroblasts as seen in

figure 15(b)) which take on a more elliptical and elongated shape. Eccentricity, a

measure of shape, is computed for each feature to perform filtration by shape. A

circle has an eccentricity of zero, and increasingly flattened oval shapes have

eccentricities that approach one. For the purposes of identifying inflammatory PML

nuclei, features with an eccentricity of .95 or above are identified as fibroblasts

(which are more elliptical in shape). Matlab's built in function was used to calculate

eccentricity based on each connected group of pixels. Example shapes with varying

eccentricity are shown in figure 14.

According to Matlab documentation, the eccentricity of a region is calculated

for the ellipse with the same second moments as the region. Eccentricity is a

measure of how much a conic section deviates from circular. Thus, eccentricity is

defined as e, 0 :::; e :::; 1, where e = 0 is a perfect circle and as e approaches one the

shape is increasingly elliptical.

4.3 Analysis

The method presented in chapter four, henceforth referred to as the Thomas

method, is evaluated through comparison with currently available automated
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FIGURE 15: Neutrophil, fibroblast and epithelium segmentation. Case study with

inflammatory PML nuclei shown in 15(a), fibroblasts in 15(b) and epithelium in 15(c).

The mask after thresholding shown in 15(d), 15(e) and 15(f) respectively. Finally

15(g), 15(h) and 15(i) show the results after size and shape filtering.
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segmentation methods, namely the Otsu method and the JSEG method. The three

methods are compared on the basis of processing time, relative error in nuclei

quantification and agreement with pathologist diagnosis. Processing time, measured

in seconds, is the time required for execution of the method. Relative error is the

change in positive pixel counts across sequential tissue slices with a variety of stain

combinations. Pathologist diagnosis is the qualitative analysis resulting in the

identification of inflammation as absent, moderate or severe. These metrics are

assessed across sequential tissue slices processed with a variety of stain

combinations, as shown in figure 10 and outlined in section 4.1. The results of the

segmentation methods are shown in figures 16, 17 and 18, which represent cells

without inflammation, cells with moderate inflammation, and cells with severe

inflammation, respectively.

4.3.1 Processing Time

The Thomas, Otsu, and JSEG methods were all processed on an Intel®

Coren12 Duo T9300 2.5 GHz processor with 4GB RAM and 32-bit operating system

using MatLab R2008b Student Edition. Execution time in table 3 is the average

execution time in seconds for processing 700 x 700 pixel photomicrographs

representing each of the staining combinations over the three grades of inflammation

(none, moderate and severe). On all counts, the Thomas method was slightly faster

than the Otsu method and much faster than the JSEG. The Thomas method

performs size and shape analysis for each detected nuclei, and its execution time,

therefore, is a function of the number of nuclei present. As such, computation time

varies directly with the rate of infection. The Otsu method is not dependent on

nuclei count and, as such, its computation time, while slightly longer, is comparable

to the Thomas method. The JSEG method performed approximately 300-400 times

slower than the Otsu method and the Thomas method: where the Otsu and the

Thomas methods execute in a fraction of a second, the JSEG methods average

execution time is nearly a minute.
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FIGURE 16: From top to bottom, sequential tissue slices without inflammation are segmented by the Thomas, Otsu,

and JSEG methods, The corresponding original images are shown in figures lO(a)-lO(h).
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FIGURE 17: From top to bottom, sequential tissue slices with moderate inflammation are segmented by Thomas,

Otsu and JSEG. The corresponding original images are shown in figures lO(i)-lO(p).
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FIGURE 18: From top to bottom, sequential tissue slices with severe inflammation are segmented by Thomas, Otsu
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Thomas Otsu JSEG

None

Moderate

Severe

0.119 0.141 61.865

0.123 0.141 42.035

0.133 0.151 57.010

TABLE 3: Execution time of Thomas, Otsu and JSEG methods. Execution time

measured in seconds for 700x700 pixel photomicrographs by level of inflammation.

4.3.2 Reliability of Quantification

Although each slice of tissue contains different nuclei (and therefore no two

slices of tissue are exactly alike), each tissue slice represents approximately the same

amount of inflammation because each is sequential to the next. That is, the tissue

slices are only micrometers apart in the original tissue sample. The specific

variability tolerated for relative error is based on the expected biological change in

nuclei counts across sequential tissue slices. Domain specialists must determine the

tolerance of this error in accordance with their expertise. While some natural

variation is expected, ideally the different staining methods do not exert large

influences on relative error. The robustness of the algorithm is analyzed with the

goal of overcoming stain variation and achieving a relative error close to the natural

biological variability.

The JSEG method does not perform well for the task of nuclei segmentation.

The results produced by the JSEG method fail to identify nuclei and the method

does not appear suitable for this application. So while the JSEG method is an

automated segmentation technique and its results appear in figures 16, 17, and 18,

its validation metrics were not calculated.

Output produced by the Thomas method is quantified by positive pixel

groups (which correspond to nuclei) per 100fLffi2 of tissue; output produced by the

Otsu method is quantified by positive pixel count. For the sake of comparison and

normalization, output for the Otsu method is scaled to the amount of tissue in the

image to convert the output metric for the Otsu method to positive pixel count per
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lOO/-Lm2 of tissue. The quantification of the positive output is henceforth referred to

as P.

The change in the quantification metric due to stain variation is as follows:

6 stain = P max - P min ,

where P max and P min are the highest and lowest quantification result across the

stain variations.

(4.4)

Quantification of the Thomas method, 6 stain, is defined as the change in

nuclei count. This metric does not extend to the Otsu Method, however, and

another calculation is necessary to obtain an equivalent metric. Assuming the Otsu

method gives a correct segmentation result, a rough estimate for the change in

nuclei count is calculated as follows:

0 " 6 staintsu LJ.nuclei = l"
nuc e'l S'lze

Thomas .6.nuclei = 6 stain

(4.5)

(4.6)

The percent of classification change due to stain variations can be viewed as the

relative error. Relative area, c, is calculated as follows:

.6.nucleic = ---,---
Ntissue'

(4.7)

where Ntissue is the number of pixels within the image that represent tissue.

Relative error is a measure of precision rather than accuracy. A method is

precise if its results are consistent. It is important to show the method's precision

does not suffer as a result of stain variations. Accuracy, which is measured according

to a methods correlation with expert diagnosis, is addressed in subsection 4.3.3.

Validating the precision of a method is dependant on the tolerance, n, to be

determined by a domain expert as the number of expected change in nuclei count

per lOO/-Lm2 of tissue. Validation, "Y, is determined as follows:
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Inflammation
Method P min P max 6stain dnuclei c p

Level

9 19 10 10
\

.03%none

Thomas moderate 61 71 10 10 .03% .9923

severe 88 105 17 17 .05%

none 273315 462399 189084 378 1.02%

Otsu moderate 269206 401883 132677 265 .85% -.4635

severe 187587 430602 243015 486 1.32%

TABLE 4: Analysis metrics for the Thomas and the Otsu methods.

c<a

otherwise
(4.8)

See table 4 for a comparison of the Thomas and Otsu methods over the

previously described metrics.

4.3.3 Correlation with Expert Diagnosis

A lower relative error, c, is desirable provided that agreement with

pathologist diagnosis does not suffer. A consistent algorithm, no matter how precise,

is not helpful if it is inaccurate. A low relative error in this case reflects the precision

of the algorithm while correlation with expert diagnosis reflects the accuracy.

The output from the Thomas method agrees with clinical diagnosis with a

correlation coefficient, p, of 0.9923. In contrast, output for the Otsu method is

scattered and results in a correlation coefficient of -0.4635. These results are

illustrated in the graphs of algorithm output presented in figure 19 and 20.

The results clearly show that the Otsu method is not suitable for the

quantification of cell nuclei. In contrast, the Thomas method not only is stable

across stain variations but also correlates strongly with expert diagnosis and makes

clear distinctions between the levels of inflammation.
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CHAPTER V

CONCLUSION

The Thomas Method presented herein effectively isolates and identifies nuclei

which match the size and shape constraints of inflammatory PMLs in H&E stained

placental tissue samples that present varying stages of acute chorioamnionitis. The

method utilizes segmentation, adaptive thresholding, and shape analysis techniques.

The analysis shows this method to be not only robust, but also unaffected by

over-staining or by under-staining. A strong correlation exists between the method's

results and expert pathologists diagnoses of inflammation as absent, moderate or

severe; the method is likewise unsupervised and undemanding of user input. As

such, the Thomas method is a reliable diagnostic tool with ready access for users

with little or no image processing knowledge.

The diagnostic and technological gains of the Thomas method extend to

other areas of pathology research, as well. The Thomas methods isolation of cell

nuclei through its innovative iterative thresholding technique makes possible

advances in the diagnosis of cancer, inflammation and necrosis. Other features of the

method are easily adapted to enhance already existing methods for segmentation of

red blood cell regions, shape analysis and classification through eccentricity, and the

replacement of hard valued thresholding systems. Because the method applies to all

biological tissue samples with H&E staining, its applications are limitless.

While this work establishes the Thomas method as stable over stain

variation and on track with expert grading of inflammatory levels, the need for more

evaluation and validation is apparent. Three expert pathologists with Placental
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Analytics, LLC will test the algorithm over a large set of photomicrographs later

this year. Showing correlation between the Thomas method and the experts grading

system over a larger tissue set is another step toward establishing the method as a

reliable and repeatable diagnostic tool.

I would like to thank Placental Analytics, LLC for funding this research.
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APPENDIX

MATLAB IMPLEMENTATION OF

THOMAS METHOD

The following code is an implementation of the algorithm presented in
chapter four. It was written and executed using MATLAB 2008b Student Edition.

function [IDX, threshold] = thomas_IT(I, areaThresh, eccThresh)
%Iterative threshold algorithm for H&E stained tissue.
% IDX = thomas_IT(I) segments an RGB image I by means of iterative
% threshold selection. It is specifically developed for working
% with H&E stained histology slides. Thomas_IT returns a 2D array
% IDX containing the indices of nuclei stained by H&E.
%
% Area and eccentricity filters are optional and are useful for
% filtering out fibroblasts and epithelium.
%
% Notes:
% ------
% (1) Size and eccentricity thresholds are optional. Excluding them
% results in nuclei segmentation for H&E stained tissue.
% (2) Size constraint is dependent on resolution.
% (3) lowering the RIB ratio for blood filtering can be done if the
% tissue is lighter in color or has a blue overcast. This can
% eliminate clotted blood which does not stain as dark as fresh
% blood.
%
% Example:
% -------
% I = imread(R0009.tif)
% [IDX, threshold] = Thomas_IT(I)



% figure, imshow(IDX, [J);

%
% Reference: K.A. Thomas, M.J. Sottile, C.M. Salafia. Unsupervised
% Segmentation for In?ammation Detection in Histopathology Images.
% ICISP 2010, LNCS 6134, pp.541-549, 2010.
%
% Code prepared by Kristine A. Thomas 5-14-2010

%% Method Parameters
if nargin<3

% default: don't segment based on eccentricity
eccThresh = -1;
if nargin<2

%default: don't segment based on size
areaThresh=-1;

end
end

backgroundThresh = 0.9; % percent of max value to consider white
redBlueRatio = 1.25;

%% Identify indices of red blood cells
bloodIDX = (double(I(:,: ,1»./double(I(: ,:,3») >= redBlueRatio;

%% Identify indices of white background
t_red = double(max(max(I(:,: ,1»»* backgroundThresh;
t_green = double(max(max(I(: ,:,2»»* backgroundThresh;
t_blue = double(max(max(I(:, :,3»»* backgroundThresh;
whiteIDX = (double(I(:, :,1»> t_red)

& (double(I(:, :,2»> t_blue) ...
& (double(I(:, :,3»> t_green);

%% Identify indicies of tissue pixels
tissueIDX = (-bloodIDX) & (-whiteIDX);

%% Iterative Threshold Selection
%create grayscale image based on the average intesity
grayI = double(mean(I,3»;
%red channel image
I_red = double(I(:, :,1»;
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% pixel lists used in the iterative threshold selection method
redPixelList = I_red(tissueIDX);
grayPixelList = grayI(tissueIDX);

numPixels = sum(tissueIDX);
numPixels_init = 0;

% initial threshold
threshold = mean(grayPixelList)/2;

% iterates as long as pixels are being removed from the set
while(numPixels_init ~= numPixels)

%record pixel count before iteration
numPixels_init = numPixels;

% identify nuclei based on red channel
nucleiIDX = redPixelList < threshold;

% remove pixels from list that are likely nuclei
grayPixelList = grayPixelList(-nucleiIDX);
redPixelList = redPixelList(~nucleiIDX);

% recalculate threshold based on average intensity
% of remaining pixels
threshold = mean(grayPixelList)/2;

% new pixel count
numPixels = sum(nucleiIDX);

end

% adjustment for outlier data
threshold = threshold + 25;

% memory management
clear grayPixelList;
clear redPixelList;

%% Segment based on threshold
nucleiIDX = uint8(((I(:,: , 1) <threshold) &tissueIDX));
IDX = nucleiIDX;

%% Segment based on area
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end

if (areaThresh > 0)
ImLabel = bwlabel(IDX);
stats = regionprops(ImLabel,'Area');

%segmentation based on area
upperThresh= (areaThresh*15);
areaIDX = find([stats.AreaJ>areaThresh

& [stats.AreaJ< upperThresh);
IDX = uint8(ismember(ImLabel, areaIDX));

end

%% Segment based on eccentricity
if (eccThresh >= 0)

ImLabel = bwlabel(IDX);
stats = regionprops(ImLabel,'Eccentricity');

%segmentation based on eccentricity
eccIDX = find([stats.EccentricityJ<eccThresh);
IDX = uint8(ismember(ImLabel, eccIDX));

end
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