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The gumboot chiton Cryptochiton stelleri is the largest intertidal invertebrate

herbivore on rocky shores in the Pacific Northwest. This study documented the larval

development, metamorphosis, distribution and life history ofthis species. Growth

rings in valves of Cryptochiton stelleri and Katharina tunicata were used to

determine age and showed life spans of at least 40 years for C. stelleri and 17 years

for K. tunicata. Field surveys in southern Oregon showed that C. stelleri populations

are densest in small coves as a result of mortality, food availability, or larval

retention. Growth curves based on length, weight and volume were created for

several intertidal invertebrates. When incorporated into energy allocation models,
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length-based curves can underestimate growth and exaggerate an energetic shift from

growth to reproduction. Estimates of food intake and reproductive output showed

that continuous growth leads to higher food intake and increased fecundity in several

organisms with indeterminate growth.
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CHAPTER I

GENERAL INTRODUCTION

The gumboot chiton or giant Pacific chiton, Cryptochiton stelleri, is the largest

species of chiton in the world and is a common inhabitant of the rocky shores of

northwestern North America and northern Japan, yet much about its biology remains a

mystery. A relative dearth of studies exist on this mollusk, and those studies that have

been done often contradict one another on topics from spawning to development to

growth rate (Heath, 1897; Okuda, 1947; Tucker and Giese, 1962; MacGinitie and

MacGinitie, 1968; Palmer and Frank, 1974). Therefore, this study seeks to define or

clarify several of the debated aspects of the life history and behavior of Cryptochiton

stelleri.

I find Cryptochiton stelleri to be one of the oddest looking creatures in the

intertidal, and I have heard it described as anything from a blob to a meatloaf. It appears

this way because not only is it large (up to 36 cm long, pers. obs.) and brick red, but it is

the only species of chiton that does not have exposed dorsal plates. C. stelleri is found

from the mid-intertidal zone down to 60 meters subtidally and ranges from San Nicolas

Island in California to Alaska along the western coast ofNorth America and over to

northern Japan (Tucker and Giese, 1962; MacGinitie and MacGinitie, 1968; Yates,

1
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1989). It feeds on a variety of macroa1gae, most notably the red algae Mazzaella,

Odonthalia, and Cryptopleura and the green alga Ulva (MacGinitie and MacGinitie,

1968; Yates, 1989). While some studies have suggested that the gumboot chiton fasts

during the winter months, other studies have not found this to be the case; seasonal

feeding patterns could vary with site (Tucker and Giese, 1962; MacGinitie and

MacGinitie, 1968; Palmer and Frank, 1974). This species is reportedly the longest-lived

chiton in the world and has been estimated to live over twenty years (MacGinitie and

MacGinitie, 1968).

I became interested in C. stelleri after spotting it commonly in the intertidal zone

at Cape Arago and Sunset Bay, Oregon, and realizing how little was known about the

habits of this large and common herbivore. Since it remains one of my favorite intertidal

animals, I could not believe how little definitive information was known about the

growth, habitat preference and larval development of this species. I found the fact that

very few people had discovered small « 15 cm long) C. stelleri of particular interest.

Serendipitously, I was conducting a survey ofthe biodiversity in purple sea urchin

burrows at Sunset Bay State Park during July 2008, and I found three young (about 5 cm)

gumboots in the urchin burrows. After this discovery, I began closely searching the

urchin beds for young C. stelleri and had significant success. In the next couple months,

I discovered over fifty gumboots smaller than fifteen centimeters, all found in urchin

burrows. Why would they do this? What induces them to settle and metamorphose?

Could these urchin pits serve as C. stelleri nurseries? How quickly do they grow? All of
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these questions led me to formulate this thesis. My goal was to generate an accurate

description of the distribution, larval development, growth, and behavior of C. stelleri.

I first wanted to determine where C. stelleri individuals were found and what their

population structure was. Chapter II of this thesis focuses on the distribution and

recruitment patterns of C. stelleri at several sites on the southern Oregon coast. Chapter

III describes the larval development and metamorphosis cues of this species of chiton.

Chapter IV uses growth bands in the shell plates of C. stelleri and the leather chiton

Katharina tunicata to estimate ages and growth rates of these species. The unusual

growth patterns of these species of chitons led me to assess the way growth and size are

measured in Chapter V, which examines the effect that different measures of size can

have in models of life history and energy allocation in several intertidal invertebrates

with indeterminate growth. This thesis fills in many of the gaps in what is known about

the life history of C. stelleri and challenges some of the ways in which size and growth

rate are used in energetic models.



4

CHAPTER II

PATCHY SMALL SCALE DISTRIBUTION AND RECRUITMENT PATTERNS OF

THE GUMBOOT CHITON CRYPTOCHITON STELLERI

Introduction

Intertidal herbivores can have significant ecological impacts on the algal

composition and overall species assemblages on rocky shores around the world

(Lubchenco, 1978; Moreno and Jaramillo, 19.83; Dethier and Duggins, 1985; Jenkins and

Hartnoll, 2001). Chitons such as Katharina tunicata have widespread direct and indirect

effects on the population dynamics of the rocky shore by altering macroalga1 density

(Dethier and Duggins, 1985). K tunicata and urchins like Strongylocentrotus purpuratus

and S. droebachiensis can completely change the surrounding community by causing

shifts in habitat type (Leighton et al., 1966; Moreno and Jaramillo, 1983; Himmelman,

1984; Dethier and Duggins, 1985; Chapman and Johnson, 1990). Where dominant

herbivores such as these species exist in high densities they control the habitat, sculpting

the regions in which they reside. The mechanisms by which S. purpuratus and K

tunicata shape the intertidal community are well studied and well understood. This is a

sharp contrast to the lack of information on the ecological importance of the gumboot

chiton, Cryptochiton stelleri, the largest herbivore in the intertidal zone of the Pacific

Northwest.
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Cryptochiton stelleri is the only member of its genus and is a fairly common

inhabitant of rocky intertidal shores from south of Monterey, CA, all the way north along

the northeast Pacific coast and around to northern Japan. It is a generalist herbivore,

feeding on the blades of algal genera Mazzaella, Cryptopleura, Nereocystis, Saccharina

and VIva, among others (Heath, 1905b; Yates, 1989). As such, C. stelleri is less likely to

control the abundance of a specific species of algae and more likely to have an impact on

the overall abundance of macroalgae in its intertidal and shallow subtidal habitat.

Therefore, C. stelleri is more likely to affect competing generalist herbivores and

organisms that benefit from open space. Because space is an important factor influencing

intertidal community assemblages (Dayton, 1971), C. stelleri could potentially create

space for limpets or other grazers by removing shading macroalgae, as the leather chiton

K. tunicata does (Dethier and Duggins, 1985).

The feeding ecology of C. stelleri along the central Oregon coast was studied in

depth by Yates (1989). His study confirmed the generalist nature of feeding in this

species and found that adults feed preferentially on red algae such as Mazzaella and

Cryptopleura, even though other algal species are consumed as well. A critical factor in

determining the ecological impact of C. stelleri is population density because high

densities of this large herbivore could alter the macroalgal abundance on the rocky

intertidal shore. However, little is known about the distribution and population density of

this species.

The distribution of Cryptochiton stelleri within its geographic range is not well

known (Petersen and Johansen, 1973; Palmer and Frank, 1974; Yates, 1989). On a
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smaller scale, Yates (1989) suggested that the absence of C. stelleri at some sites could

be due to high amounts of wave action. However, it is unclear whether this is a result of

physical limitation or is tied to diet, because several leafy algae that C. stelleri feeds on

are only present in areas that are relatively protected from intense wave activity.

Small-scale (local) distribution and abundance can be vital to the success of a

population, especially in terms of reproduction at both an individual and population level.

Many species must sustain a minimum density in order to be reproductively successful,

including barnacles (Kent et ai., 2003; Munroe and Noda, 2009), mussels (Downing et

ai., 1993), urchins (Levitan et ai., 1992), and some plants (Kunin, 1997). For example,

the sea palm Postelsia palmaeformis is unlikely to persist at low population densities due

to limited gamete dispersal (Dayton, 1973; Paine, 1988). Density can be especially

important for free spawning species such as Cryptochiton because a critical concentration

of sperm is needed for successful fertilization of eggs (Levitan et aI., 1992, Young et aI.,

1992). Decreased fertilization success of non-aggregated populations has led to

behavioral adaptations such as seasonal aggregations of spawning individuals (Young et

ai., 1992). This may be the case with C. stelleri populations, because there have been

accounts of intertidal aggregations of spawning C. stelleri during the spring (Okuda,

1947). However, because these aggregations have not been widely reported it is possible

that this behavior is not commonly displayed by C. stelleri or is due to differences in

seasonal temperature regimes between northern Japan (where Okuda's study was based)

and North America.
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Despite the effect that density can have on the reproductive output and ecological

importance of a population, there have been no studies on the within-site distribution of

Cryptochiton stelleri. While the range of this species is relatively extensive, there is no

available information regarding C. stelleri abundance within this range. The local

distribution (areas of high and low population densities within a site) should indicate

what types of habitats C. stelleri prefers. Distribution patterns could also offer clues

about what drives the distribution of this species and why C. stelleri is more or less

cornmon in different parts of its range. Knowledge of the distribution ofjuvenile C.

stelleri individuals could also provide information about cues for larval metamorphosis,

since juveniles will be most commonly found in areas of high recruitment success.

Juveniles « 3 ern) and small « 15 ern) C. stelleri have been reported as very rare

in the intertidal and subtidal in California and the Pacific Northwest (Tucker and Giese,

1962; MacGinitie and MacGinitie, 1968; Palmer and Frank, 1974; Yates, 1989). During

a feeding study on C. stelleri between 1982 and 1986, Yates (1989) only found 12

individuals less than 15 centimeters in length, and only three juveniles, despite working

in areas with very high densities of C. stelleri. Yates suggested that the lack ofjuveniles

could be due to sporadic recruitment. Given the reports above that describe the rarity of

individuals in these size classes, recruitment must either be very sporadic or consistently

low enough that these younger life stages remain rare. It is also possible that small

individuals are very cryptic or have different habitat preferences than the adults, making

them more difficult to find. Knowledge of the distribution, size, and abundance of all life
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stages of Cryptochiton stelleri could highlight differences in population structure and

recruitment success between sites or tidal levels.

The distribution of all benthic life stages of C. stelleri could also be influenced by

seasonal changes in food availability, wave action, temperature or other seasonal factors.

Vertical migration in the intertidal and subtidal zones has been tied to seasonal

differences in food availability for the green crab Carcinus maenas (Hunter and Naylor,

1993) and several species of limpets (Branch, 1975). Seasonal migration can also occur

for other reasons, such as in the limpet Lottia digitalis, which migrates to lower in the

intertidal during the summer in order to avoid desiccation stress caused by higher

temperatures and decreased wave action (Frank, 1965a). This migration to different

levels of the intertidal or subtidal can also occur over a lifetime in some species, such as

intertidal snails Chlorostoma funebralis (Paine, 1969) and Monodonta labio (Takada,

1996). The prevalence of either seasonal or lifetime vertical migration patterns in other

mollusks indicates the possibility that these changes in distribution occur with C. stelleri.

However, no studies have focused on this topic or discussed the implications of this

possibility, even though Snow (1951) suggested this for C. stelleri. If Cryptochiton does

migrate vertically over its lifetime, then the resulting variation in size with tidal level

could result in ecological importance that varies vertically in the intertidal and subtidal

zones. Seasonal vertical migration could cause the ecological impact of C. stelleri to

vary with changes in season.

Because of the lack of information concerning the distribution of C. stelleri, it is

unclear what drives the distribution of this species. Even at sites with dense populations
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of this species, there is no shortage of preferred macroalgae such as Mazzaella,

Cryptopleura, Ulva, and Nereocystis (pers. obs.), suggesting that C. stelleri may not be

food limited. While the sunflower star Pycnopodia helianthoides has been observed

feeding on C. stelleri, it has never been reported to prefer C. stelleri over more common

prey items such as purple urchins, S. purpuratus (Duggins, 1983). There have also been

reports of predation by the sea star Pisaster ochraceus, the fish Scorpaenichthys

marmoratus, and sea otters. However, none of these predators feed primarily on C.

stelleri, indicating that population numbers are not likely limited by predation (Yates,

1989). Therefore, the factors limiting the population size and distribution of C. stelleri

are unclear.

This study focused on the distribution ofjuvenile, small, and adult C. stelleri

along the southern Oregon coast in order to better understand the population structure of

this species. The size and abundance of C. stelleri individuals was measured in this study

in order to and compare how population size structure differs among sites. Exact

locations of individual C. stelleri were monitored to determine whether this species

displayed any sort of seasonal or ontogenetic vertical migration pattern.

Materials and Methods

I. Distribution

In order to determine the local distribution, size frequency, and population sizes

of Cryptochiton stelleri along the southern Oregon coast, surveys were conducted at six

sites (Fig. 2.1). The southernmost of the sites surveyed was Cape Blanco, OR



10

Figure 2.1. Locations of all six sites on the southern Oregon coast: (A) Cape Blanco; (B)
Middle Cove; (C) South Cove; (D) Sunset Bay; (E) Qochyax Island; (F) Lighthouse
Island.
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(42°50.900N, 124°33.410W), a basaltic rocky shore with intertidal areas facing to the

northeast, west, and south (Fig. 2.1A). All other sites were located just south of

Charleston, Oregon (43°18.191 'N, 124°23.198'W). Middle Cove of Cape Arago (Fig.

2.1B) is mostly composed of sandstone boulders and is a relatively protected intertidal

area that faces west and has very little foot traffic. South Cove of Cape Arago (Fig. 2.1 C)

is a similar intertidal to Middle Cove, though it faces south and has more foot traffic.

Sunset Bay (Fig. 2.1 D) is another protected site with high foot traffic and is a small,

west-facing bay with a long flat sandstone intertidal bench interspersed with deep tidal

channels. Qochyax Island (Fig. 2.1E) is a small uninhabited island that is a couple

hundred meters offshore and is accessible only on a negative low tide. It has an extensive

rocky intertidal area with a variety of habitat types and aspects, including both exposed

and protected areas and very little foot traffic. Lighthouse Island (Fig. 2.1 F) is a long

island with sandstone cliffs and is surrounded by rocky intertidal. It is fairly exposed on

the south-facing side and moderately protected on the north-facing intertidal and also has

low foot traffic.

The intertidal zone at these sites was sampled at low tides. Sampling was done

year-round from July 2009 to August 2010, on every tide below -0.3 m, MLLW weather­

permitting. Cryptochiton stelleri were found via haphazard search because they exist at

densities too low to be accurately represented by transect sampling or other traditional

sampling methods. Searches were extensive (2-3 days per site) and were conducted by

zigzagging up and down through the intertidal within 2 meters of every intertidal

location. One hundred meter transects were used initially but could not accurately
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document the patchy distribution of C. stelleri. Because the goal of this study was to

determine distribution over entire sites and not to determine total population size,

haphazard search was the most effective method. The exact location of each individual

was recorded by triangulating its position using a compass accurate to 0.1 degrees and

two known landmarks at each site. This produced coordinates with a maximum error of

1.5 m for the location of each individual. Error was calculated by determining the

difference in location resulting from a change of 0.1 degrees (compass accuracy) in angle

from the furthest known landmark.

Individual Cryptochiton stelleri specimens were tagged at South Cove, Middle

Cove, Cape Blanco, and Lighthouse Island in order to detect growth and seasonal

movement patterns of individuals. Animals were tagged by inserting zip ties through the

edge of the girdle and attaching numbered monel fish tags (National Band and Tag Co.).

Zip ties were short (10 cm) and excess tie length cut off after attachment. This method of

tagging is similar to that used by Palmer and Frank (1974), who used monofiliment line

through the girdle and marked with beads. It is also similar to Yates (1989), who used

spaghetti tags, also through the girdle. After marking, C. stelleri usually rolled up into a

ball but resumed normal movement minutes after being placed back in their original

location. Individuals were observed until they reattached to the substratum.

Distribution data obtained via triangulation methods were entered using Google

Earth® with overlaid infrared aerial photos of the intertidal zone taken by the Oregon

Department ofFish and Wildlife (1 :7200 scale). These data were then transferred into

ArcMap© software and converted into GIS layers. To determine the amount of clumping
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at different sites, data were analyzed in ArcMap® using the spatial analysis tool 'nearest

neighbor.' This tool calculated the expected mean distances between individuals if their

distribution was random and compared this to the observed mean distances between

individuals. Getis-Ord General G, another spatial analysis tool, was used to determine if

individuals were clustered by size at each intertidal site. This GIS software was also used

to analyze variation in distributions at all sites between each sampling date in order to

compare tidal and seasonal differences in the distribution of individuals.

To determine whether or not several intertidal predators could consume C.

stelleri, sea stars Evasterias troschelii, Pisaster ochraceus, and Pycnopodia helianthoides

and crabs Pugettia producta and Cancer productus were kept together in a 1m x 2m

flowing seawater tank for two months with just C. stelleri individuals ranging from 10 to

30 em in length as potential prey items.

II. Age-frequency

The size of each individual surveyed was measured by using displacement

volume in seawater. Volume was determined to be the most reliable of all size

measurements, as it had the least variability « 1%) when repeatedly measuring the same

individual. In addition, volume was significantly correlated with more common

measures such as weight and length, so it was a good indicator of C. stelleri size but with

less variability and uncertainty than other methods. Length was used by Yates (1989),

but individuals can vary their length significantly. Air weight has also been used to

measure C. stelleri size (Palmer and Frank 1974), but water content can also vary greatly
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depending on if the chiton was submerged in water or exposed to air when collected.

Volume in the present study was measured to the nearest 5 mL using water displacement

in a 4-liter graduated plastic container.

Volume was converted to age based on data derived from growth lines in the shell

plates of C. stelleri (Lord, Chapter 4). A growth function relating age to volume was

calculated using IDBS XLfit 5® and was used to estimate age for all surveyed gumboots.

Age-frequency histograms were then created for each site and each season and peaks

(possible cohorts) in these histograms were compared between sites and sampling dates.

Each peak (cohort) in these data were identified using Peakfit® software and major peaks

were defined as those at least two times the average number of individuals of each age for

each site. Major peaks were then compared between sites in order to determine how

uniform recruitment and survival were in C. stelleri.

Results

1. Distribution

Field surveys showed a patchy distribution of C. stelleri at all six surveyed sites

(Fig. 2.2). Average nearest neighbor distance showed significant (p < 0.05) clumping at

Cape Blanco, South Cove, Middle Cove, Sunset Bay, and Lighthouse Island. Slightly

less clumping was found at Qochyax Island (Fig. 2.2D), but this was likely a result of the

small area in which C. stelleri was found. Nearest neighbor statistics only included areas

where C. stelleri was present, so did not take into account large areas where no

individuals were found. Qochyax Island had a limited area in which C. stelleri was
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present, but within this area there was not a significant amount of clumping (p = 0.1).

There were no individuals of this species present in areas of very high wave action at any

sites, as none were found in the outer areas of Lighthouse Island (Fig. 2.2A), Cape

Blanco (Fig. 2.2B), Cape Arago (Fig. 2.2C), Qochyax Island (Fig. 2.2D) or Sunset Bay

(Fig 2.2E). Gumboot chitons were found almost exclusively in small coves within sites

(Fig 2.2C,E) or in northeast-facing habitats (Fig. 2.2A,B,D).

Populations were also clumped based on size at several of the sites (Fig. 2.2).

Getis-Ord G High/Low clustering analysis showed significant (p < 0.05) clustering of

large individuals (by volume) at Qochyax Island, Lighthouse Island, South Cove and

Cape Blanco. Clustering based on size was not significant at Middle Cove and Sunset

Bay. Few individuals of C. stelleri were found in areas of high sand scour, evidenced by

the lack of individuals near beaches in the interior of Lighthouse Island, South Cove,

Sunset Bay and Cape Blanco.

Eighty five of92 specimens shorter than 15 em in length were found in (mostly)

abandoned pits of urchins (Strongylocentrotus purpuratus) at all six sites. The seven not

found in pits were juveniles less than 2 em in length. Three of these were in small holes

made by boring clams and near the leafy red alga Cryptopleura. The remaining 4

juveniles were on flat surfaces within a bed of Cryptopleura, which is their preferred

food source (Lord, Chapter 3). All juveniles were found below -0.3 m MLLW. Of the

over 300 Cryptochiton stelleri specimens that were tagged, only 41 were found six

months later due to the propensity of the tags to fall out of the girdle. Many specimens

were found with marks where a tag had been previously, though they were soon
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Figure 2.2. Size and distribution of C. stelleri at all sites surveyed in May 2010. Size
and lightness of circles are relative to the size of the specimens; small dark circles
represent small gumboot chitons and large white circles represent the largest gumboot
chitons. Light gray fill represents the ocean, white is intertidal, and dark gray is
terrestrial. Scale bar = 50 m. (A) Lighthouse Island; (B) Cape Blanco; (C) Middle Cove
(on left) and South Cove (on right) of Cape Arago; (D) Qochyax Island; (E) Sunset Bay.
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indiscernible because of the rapid healing process of C. stelleri. There was not a

significant difference between sites in the distance moved between November 2009

tagging and May 2010 recovery, although the range was higher at South and Middle

Cove than Sunset Bay. South Cove (n=19) and Middle Cove (n=12) chitons had ranges

of approximately 3 to 22 meters traveled, while Sunset Bay (n=9) chitons were between 3

and 12 meters from their initial location.

Distributions did not change noticeably at Middle or South Cove of Cape Arago

(Fig. 2.3) or at Sunset Bay (Fig. 2.4) between November 2009 and May 2010. These

three sites are shown because they were the only three surveyed during November due to

high wave activity. The 'directional distribution' tool in ArcMap® created standard

deviation ellipses for each population during each season and these maps indicated that

there was no consistent pattern of population movement with season at these site.

In the predation experiment, no C. stelleri were eaten by any of the predators over

a two month period. All C. stelleri remained attached to the bottom and sides of the tank,

never falling off or lying upside-down like they do occasionally in the intertidal zone at

low tide. This is relevant because in the intertidal C. stelleri often uses aerial respiration

at low tide, during which they expose their gills and often fall off rocks, thus exposing

their muscular foot to potential predators.

II. Age-frequency

All surveyed Cryptochiton stelleri specimens were estimated to be between one

and 40 years old. These estimates were based on growth curve data (Lord, Chapter 4) for
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Figure 2.3. Distribution of C. stelleri at Middle and South Cove of Cape Arago in (A)
November 2009 and (B) May 2010. Distribution did not change noticeably with season.
Scale bar = 50 m. Light gray fill represents the ocean, white is intertidal, and dark gray is
terrestrial.
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Figure 2.4. Distribution of C. stelleri at Sunset Bay in (A) November 2009 and (B) May
2010. Like at Cape Arago, distribution did not change noticeably between seasons.
Scale bar = 50 m. Light gray fill represents the ocean, white is intertidal, and dark gray is
terrestrial.
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C. stelleri that show a good regression between age and size. Age-frequency histograms

at all sites showed the highest number of individuals at intermediate ages. While close to

100 young « 15 cm) C. stelleri individuals were discovered in all seasons, the cryptic

nature of these age classes and their urchin pit habitat makes it very likely that specimens

less than 10 years of age are underestimated in these age-frequency histograms. This did

not adversely affect peak fitting because relative peaks still appeared at young ages.

Major peaks « 2x average number) were compared between sites and there was no major

peak that was present at a specific age at all sites, although a few peaks were shared by

multiple sites (Fig. 2.5). Peaks at 22 and 24 years old were present to some extent at all

sites except Cape Blanco. Sunset Bay, Qochyax Island and Lighthouse Island shared a

major peak at 16 and 20 years (Fig. 2.5A,D,F). Cape Blanco, Middle Cove, and Sunset

Bay shared peaks at 30 years (Fig. 2.5B,C,F) but few other peaks were shared between

more than two sites. Distance was measured as a straight line between sites and

similarity was calculated as the number of shared peaks over the number of total peaks

for each pair of sites.

There was a significant correlation between the number of shared peaks and the

10glO of distance between sites (Pearson's correlation coefficient, r2 = 0.46, t = -3.34, df=

13, P < 0.01) (Fig. 2.6). The distances were 10glO transformed because all of the sites

were relatively close together with the exception of Cape Blanco, which would make a

test of correlation impossible. The two sites with the highest percentage (66%) of peaks

in common were Sunset Bay and Qochyax Island, which were the closest sites to each

other, at 0.37 km (Table 2.1). The second most similar sites (60%) were South Cove and
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Table 2.1. Distances and similarities in age-frequency peaks between six different sites
on the southern Oregon coast. There is a significant negative correlation between the
distance and similarity between sites. Sites are arranged north to south in both columns
and rows, with Lighthouse Island the northernmost site and Cape Blanco the
southernmost.

Sites Lighthouse Qochyax Sunset Middle South Cape
Island Island Bay Cove Cove Blanco

Lighthouse 0.58 0.89 4.67 4.83 57.9 Distance (km)
Island X 0.44 0.22 0.44 0.22 0.00 ............§Jll!i?q!:!Q!(~2 ......
Qochyax 0.37 4.19 4.25 57.3 Distance (km)
Island X 0.66 0.22 0.22 0.22 ..§Jll!!!q!:!Q!(~)
Sunset 4.00 4.07 57.06 Distance (km)

~~X X 0.40 0.40 0.20 /i!ll!!?q.~!Q! ..(~) ......
Middle 0.38 53.2 Distance (km)
Cove X 0.60 0.20 §!ll!ilq!:!ty(~)......

South 53.1 Distance (km)
Cove X 0.40 Similarity (%)
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Middle Cove of Cape Arago, which were 0.38 kIn apart. The northern-most site,

Lighthouse Island, did not share any peaks with the southern-most site, Cape Blanco.

Cape Blanco only shared an average of 21 % of its age-frequency peaks with other sites,

all of which were at least 50 kIn north of Cape Blanco. The closest site to the north of

Cape Blanco was South Cove, which was the most similar site to Cape Blanco in terms of

age-frequency peaks, at 40% (Fig. 2.6, Table 2.1).

No correlation (p > 0.4) was found between upwelling start date or strength and

age-frequency histogram peaks or gaps. There was also no correlation (p > 0.4) between

EI Nino years and the peaks or gaps in age-frequency histograms at any of the sites.

Discussion

The patchy distribution of Cryptochiton stelleri at each of six sites (Fig. 2.2)

raises several questions about the life history and ecological impact of this species. It is

not surprising that C. stelleri specimens were not found in areas of high wave action or

high sand scour because these types of habitat generally do not have the types ofthin

bladed seaweeds upon which C. stelleri feeds. In addition, C. stelleri does not clamp to

the substratum with the same force and tenacity that Katharina tunicata or other wave­

tolerant chitons do, and is often found unattached to the substrate at low tide (pers. obs.).

Therefore, it is likely that both physical and dietary limitations result in the absence of C.

stelleri in areas of high wave action or sand scour.

However, the clumped distribution of C. stelleri found by this study was present

at sites where this species is abundant (Fig. 2.2), so the clumped distribution is not likely
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due to sand scour or extreme wave action. Sand scour generally occurred at the edges of

the surveyed sites and wave action is similar within the protected sites, so these factors

are not likely to influence distribution within these sites. A clumped distribution is not

unusual for chitons (Grayson and Chapman 2004, Connelly and Turner 2009). During

spring, summer and fall, leafy red algae such as Cryptopleura and Mazzaella splendens

and greens such as VIva Iactuca are abundant throughout all sites surveyed. Therefore,

the clumped distribution of C. stelleri is not due to food distribution. Distribution

patterns are also unlikely to be driven directly by predation, since C. stelleri was not

eaten by any predator. Sea stars Evasterias troschelii, Pisaster ochraceus, and

Pycnopodia helianthoides and crabs Pugettia producta and Cancer productus did not

feed on C. stelleri in this study, though field observations have been made of sea stars

consuming C. stelleri. It is likely that sea stars and crabs can consume C. stelleri if it

becomes detached from the rocks, exposing the muscular foot.

H seems more likely that C. stelleri is limited to protected areas even within sites

in order to avoid being dislodged from the rocks. Dislodgement could result in mortality

from wave action or increased predation risk. At all sites, C. stelleri was most common

in small coves within each site. This was especially evident at Lighthouse Island (Fig.

2.2A), Middle Cove (Fig. 2.2E), and Sunset Bay (Fig. 2.2C). These areas could be acting

as larval traps where slower, swirling water may allow larvae to settle out ofthe water

column. Settlement and recruitment in small coves may also lower mortality rates of new

recruits and juveniles which are undoubtedly susceptible to wave bashing.
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Because C. stelleri under 15 em in length were found almost exclusively in

abandoned sea urchin pits, it is also possible that the distribution of small C. stelleri is

driven by the presence of these pits. With smaller individuals limited to these cryptic

habitats and large individuals able to move at least 20 meters, this could explain the

clumping of large individuals in areas where small specimens are not present. Encrusting

coralline algae is also common in urchin beds because of macroalgal consumption by the

urchins. The cue for settlement and metamorphosis by C. stelleri is encrusting coralline

algae (Lord, Chapter 3), which is ubiquitous throughout all of the sites. Therefore, this is

not a limiting factor in the settlement or recruitment of C. stelleri, but urchin pits covered

in encrusting coralline algae could serve as a good spot for C. stelleri to settle and

survive. If urchin pits act as a nursery for young individuals, this would explain the

pattern of large C. stelleri being clumped, since areas without urchin pits are only going

to be occupied by large individuals that have moved there later in life. Given that smaller

herbivores such as Katharina tunicata (Dethier and Duggins, 1985) and

Strongylocentrotus purpuratus (Leighton, 1966; Estes and Duggins, 1995) can have great

ecological impact, high densities of C. stelleri could have a large effect on seaweed

abundance. Because C. stelleri food intake scales linearly with body weight and volume

(Lord, Chapter 5), grazing impacts in areas with high densities of large individuals could

be especially significant.

While C. stelleri will move out of the urchin pits over the course of their lives,

they do not display seasonal variation in distribution (Figs. 2.3, 2.4) and do not move up

or down in the intertidal with age. Snow (1951) mentioned that C. stelleri move down in
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the intertidal during the winter and then up during the spring. This has been described in

a variety of other species, including crabs (Hunter and Naylor, 1993) and several species

oflimpets (Branch, 1975). However, year-round surveys in the present study did not

reflect this pattern at any of these southern Oregon sites. There were also no vertical

patterns in size or age of C. stelleri like those shown in Chlorostomafunebralis (Paine,

1969) and Monodonta labia (Takada, 1996). The lack of vertical migration with season

by C. stelleri may be due to its ability to go months without eating (Yates, 1989) or to the

fact that it already inhabits fairly protected habitats. By living in protected areas, there

may be no need for C. stelleri to move up or down in the intertidal zone to avoid the

intense wave action from winter storms in Oregon.

More about larval settlement patterns can be ascertained from age-frequency data

(Fig. 2.5) for each site and similarity in cohort peaks within age-frequency distributions

between sites (Table 2.1). Peaks in the age-frequency histograms represent large cohorts.

The success of these large cohorts could be due to high recruitment or to low mortality at

some life stage. It is unlikely that predation on adults would vary greatly between

cohorts, so the most likely causes of the variation between cohort sizes are differences in

settlement or juvenile survival. While predation experiments have not been done with

juvenile C. stelleri, it is likely that crabs and sea stars or even fish could easily detach and

consume these small individuals with tiny plates. Therefore, a good recruitment year for

any of these predators could cause high juvenile mortality for C. stelleri. However,

population levels of C. stelleri are not very high at any site compared to other species of

chitons, limpets, and other mollusks. It is unlikely that any life stage of C. stelleri would
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be a primary food source for a predator, especially given the small protective holes or pits

that small individuals often inhabit.

Therefore, the most likely cause of variations in cohort size is larval supply and

settlement success. This species of chiton spawns annually (Tucker and Giese, 1962;

Lord, Chapter 3) and has lecithotrophic larvae. Differences in number of planktonic

predators could have an impact, since larvae can remain competent for up to two months

even though they can settle and metamorphose in as few as five days after spawning

(Lord, Chapter 3). Oceanographic conditions such as the directions of currents could

affect settlement as well, as could wave action or other small-scale near-shore

oceanography conditions. For example, populations may have successful self­

recruitment when local barriers form and limit the movement of planktonic larvae out of

a cove or bay. At several sites along the southern Oregon coast, upwelling can cause

these barriers to form at the mouths of coves such as Sunset Bay, potentially trapping

larvae inside and enhancing local recruitment (Shanks and McCullogh, 2003).

Shared peaks in cohort size between sites could be a result of either large-scale

dispersal of larvae to multiple sites in the same period or local oceanographic conditions

that enable successful settlement at multiple sites. No peaks were shared between all

sites and very few peaks were shared by more than three of the six sites, suggesting that

successful cohorts were not driven by large-scale oceanography because if that were the

case then all sites would likely share peaks in the age-frequency histograms. There was

also no correlation between upwelling strength or start date and the age-frequency

histogram peaks or gaps. This suggests that local conditions are more likely to affect the



28

success of a recruitment class or cohort. The significant negative correlation between the

number of shared cohort peaks and distance between sites further supports this

conclusion (Fig. 2.6.). The high similarity in peaks between the closest sites (Middle

Cove + South Cove, Sunset Bay + Qochyax Island) indicates that these sites either share

larvae or have similar near-shore local oceanographic patterns (Table 2.1). There appears

to be low population connectivity between sites, given the potentially short larval period

of this species and the lack of shared peaks in age-frequency histograms, although genetic

work is necessary to confirm this.

Limited larval supply, settlement, or high post-settlement mortality could also

partially explain the relative scarcity of small C. stelleri reported by multiple studies

(Tucker and Giese, 1962; MacGinitie and MacGinitie, 1968; Palmer and Frank, 1974;

Yates, 1989). However, these studies report a lack of individuals < 15 cm in length, or

< 13 years old (Lord, Chapter 4). A peak in the age-frequency distribution indicating a

successful cohort occurs on average every 5 or 6 years at all my sites studied. It is highly

unlikely that none of the sites in these studies had a successful cohort in the previous 13

years, so sporadic recruitment may only playa small role in the lack of these size or age

classes. The present study found over 90 individuals in this 'rare' size range, with

several at every site, and almost all of them were in sea urchin pits or other holes in the

rocks. In areas without sea urchin pits, young C. stelleri presumably occupy crevices or

live under rocks in the low intertidal zone. It is very likely that the use of these cryptic

habitats by young individuals is the reason why they are not found often. Juvenile C.

stelleri are yellow unlike the dark red adults, which may also cause confusion.
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The surveys in this study show that the different life stages of C. stelleri prefer

different microhabitats, with young « 13 years) individuals occurring in cryptic habitats.

They may choose these habitats to avoid predation or to avoid wave action, but their

preference for these habitats coupled with the relatively low mobility of adults may

enhance the clumped distribution ofthis species. Spatial and temporal differences in

abundance and distribution are most likely a result of differential settlement and juvenile

survival that are controlled by near-shore oceanography or other local factors. The

resulting patchy distribution of C. stelleri may result in locally high algal consumption in

areas of high density of this species within sites.
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Bridge

Chapter II determined the distribution and population structure of Cryptochiton

stelleri at six sites along the southern Oregon coast. In this chapter I attempted to explain

the causes for some of the observed recruitment patterns seen at the different sites,

however, to fully understand the settlement and recruitment patterns reflected in the

distribution of C. stelleri the larval development process and metamorphosis cues had to

be determined. The only previous study on C. stelleri larval development (Okuda, 1947)

described unusual development for a chiton, so chapter III focused on accurately

describing the larval development ofthis species. In addition, in this study I tried to

determine the settlement and metamorphosis cues and juvenile growth rate of C. stelleri.
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CHAPTER III

LARVAL DEVELOPMENT, METAMORPHOSIS, AND EARLY GROWTH OF THE

GUMBOOT CHITON CRYPTOCHITON STELLERI

Introduction

Cryptochiton stelleri is the largest invertebrate herbivore along the western coast

of North America, and, at up to 36 cm long, it is the largest chiton species in the world.

Its range stretches from central California to Alaska and westward to northern Japan.

Their habitat is from the mid-intertidal zone down to a depth of 60 m. Despite the

abundance of this species, small individuals (smaller than 15 cm long) are rarely found

(Palmer and Frank, 1974; Yates, 1989) and juveniles (Heath, 1897) and larvae (Okuda,

1947) have been described in only one publication. Even though larval development and

metamorphosis have been described for several species of chitons (Cowden, 1961;

Thorpe, 1962; Barnes and Gonor, 1973; Watanabe and Cox, 1975; Kniprath, 1980;

Rumrill and Cameron, 1983; Voronozhskaya, 2002), the life cycle of C. stelleri is largely

unknown.

The timing of spawning in Cryptochiton stelleri has been described in several

papers, but spawning times differ between publications, even at the same location (Heath,

1905a; Okuda, 1947; Tucker and Giese, 1962; Lawrence and Lawrence, 1965; Palmer

and Frank, 1974; Yates, 1989). During spawning, release of eggs by females triggers the
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release of sperm by males (Tucker and Giese, 1962). Eggs are green and are released in a

loosely connected gelatinous mass (Yates, 1989). Sperm are released freely and are

activated (become mobile) when they contact seawater.

While the development of chiton species such as Tonicella lineata and Mopalia

muscosa and others have been well documented (Barnes and Gonor, 1973; Watanabe and

Cox, 1975), the only description of Cryptochiton stelleri development is by Okuda

(1947). However, based on major differences between his paper and other literature with

regard to egg color and spawning behavior in C. stelleri, Okuda may have been working

with a different species. No photographs have been published documenting the

development of C. stelleri, and the only illustrations are by Okuda and contain several

inconsistencies. The present study seeks to accurately describe the spawning, larval

development and metamorphosis of C. stelleri.

Materials and Methods

Adult specimens of Cryptochiton stelleri were collected from the rocky intertidal

zone at South Cove, Cape Arago, Oregon (43 a 18.191 'N, 1240 23 .198'W) on April 11,

2009. The low tide on that day was -0.21 m (actual) relative to MLLW, the sky was

overcast, air temperature was 8°C and sea surface temperature was 10.1 °C. While

conducting intertidal surveys, four chitons were observed with released eggs near the

paired gonopores in the pallial groove. These individuals were collected because they

were the only females that appeared to have just-released eggs. Adults were brought to



33

the laboratory and eggs were isolated in culture dishes filled with 45 fim filtered seawater

(not autoclaved). After the eggs were photographed under a compound light microscope,

they were fertilized with sperm from a male that had released sperm in a running­

seawater table that morning. Cultures were changed via reverse filtration with 45 fim

Nytex mesh and then refilled with 0.45 fim filtered seawater every day for the first week

and then every other day thereafter.

Cultures of C. stelleri were maintained at 11°C (± 1°C), roughly the ambient

Oregon seawater temperature and kept in natural light, so were exposed to the same light

timing as they would have been in the field. Photographs of development were taken

regularly with a Sony 3CCD ExwaveHAD© microscope camera on a DIC compound

microscope and observations were made throughout development.

Many species of chitons have lecithotrophic larvae that metamorphose and

develop plates approximately one week after fertilization (Watanabe and Cox, 1975).

The C. stelleri larvae in the present study did not change in size, shape, or behavior

significantly after week one post-fertilization. It was highly likely that the larvae were

competent, based on both morphology and timing. Chiton species including Mopalia

lignosa, Mopalia muscosa, Mopalia ciliata, Katharina tunicata, and Tonicella lineata all

are competent by eight days after fertilization, and the C. stelleri larvae from the present

study were at 13 days post-fertilization (Thorpe, 1962; Barnes and Gonor, 1973;

Watanabe and Cox, 1975; Rumrill and Cameron, 1983). In addition, M lignosa, M

muscosa and T. lineata were competent after eyes and the dorsal plate field had formed,

both which had already occurred in the C. stelleri larvae (Barnes and Gonor, 1973;
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Watanabe and Cox, 1975). These observations suggest that a metamorphosis cue might

be needed before they would complete development.

In an attempt to induce settlement and metamorphosis, beginning two weeks after

fertilization several potential metamorphic cues were introduced into the culture dishes.

One centimeter square pieces of the green alga Viva and red alga Mazzaella, the food of

adult C. stelleri, were placed in culture dishes with the larvae. Since the chemical

gamma-amino butyric acid (GABA) from coralline algae has been shown to induce

settlement in the chitons Katharina tunicata (Rumrill and Cameron, 1983) and Tonicella

lineata (Barnes and Gonor, 1973), both shavings of and rocks covered with the

encrusting coralline algae (likely multiple genera) were added. The phytoplankton

species that are commonly used to feed larvae, Rhodomonas lens (Division Cryptophyta),

Dunaliella tertiolecta (Division Chlorophyta), and Isochrysis galbana (Division

Haptophyta), were also added from lab cultures to larval culture dishes as potential

metamorphosis cues. This was done in case different kinds of phytoplankton were a

settlement cue.

Presence of adults is another cue that has been shown to induce settlement and

metamorphosis in some species (Bayne, 1969; Burke, 1984; Coon et aI., 1985). Adult

specimens of C. stelleri were kept in 3 L filtered seawater for an hour, after which five

mL of this water was added to larval culture dishes as another potential cue. Elevated

temperature has been shown to induce metamorphosis in some species of mollusks

(Boettcher, 2005); the temperature of the cultures was raised to 25° C. These cues were

added sequentially to five 11.4 cm wide glass culture dishes, with each dish containing
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approximately 15 larvae. After two days, the water was changed and another potential

cue was tested in the order listed in Table 3.1. This wide variety of cues, including some

that have not been shown to induce metamorphosis or settlement, were tested because

settlement cues are known for very few species of chiton and are not known for C.

stelleri (Barnes and Gonor, 1973).

Table 3.1. List of potential metamorphosis cues tested. Treatments were done
consecutively on the same 5 culture dishes (approx. 15 larvae in each dish) and are listed
in the order in which they were tested.

Treatment (potential cue) Duration Replication Sources
(hours) (# dishes)

1 cmL pieces of alga Mazzaella svlendens 48 5 Adult food (Yates, 1989)
1 cmL pieces of alga Ulva lactuca 48 5 Adult food (Yates, 1989)
Rocks covered in encrusting corallines 48 5 Barnes and Gonor, 1973
Lithothamnion and Clathromorvhum
Shavings of encrusting coraBines 48 5 Barnes and Gonor, 1973
Lithothamnion and Clathromorphum
Increased phytoplankton concentrations 48 5
(Rhodomonas, Dunaliella, Isochrysis sp.)
Water from tank with adult C. stelleri 48 5 Burke, 1984
Temperature increased to 25 DC 48 5 Boettcher, 2005

Cryptochiton stelleri collected at the South Cove of Cape Arago were kept in

flowing seawater tanks at the Oregon Institute of Marine Biology and spawned again the

following year on May 6,2010. The eggs were fertilized with sperm from males that also

spawned in the lab. Larvae were again raised in 11.4 cm culture dishes in flowing

seawater at approximately 12°C and were kept in 45 f-lm filtered seawater. After the

larvae hatched out ofthe hulls, four treatments were set up, with 4 culture dishes of 50

larvae each for each treatment. One was a control, with nothing added to the filtered

seawater. Treatment two had a small rock covered with encrusting coralline algae in
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each dish. Treatment three had encrusting coralline algae extract added; this was

extracted by scraping the coralline algae off rocks, grinding it down with a mortar and

pestle, adding filtered seawater, and then centrifuging the mixture in 15 mL vials to

extract the supernatant. Treatment four had Cryptopleura extract, a delicate leafy red

alga that juvenile C. stelleri eat, prepared with the same procedure as coralline algae

extract.

On April 12, 2009, a horizontal plankton tow was made near the mouth of Coos

Bay, Oregon, in order to search forC stelleri eggs and larvae. The tow was

approximately 100 m in length and the net mesh was 200 flm. Searches in the intertidal

zone for juveniles were performed along the Oregon coast at Sunset Bay, Cape Arago,

and Cape Blanco throughout the spring and summer. Juveniles collected at Cape Blanco

on July 22,2009, were raised in a 20 cm x 20 cm container (15 cm high, mesh sides) in a

flowing seawater table at the Oregon Institute of Marine Biology. The length and weight

of the juveniles were measured once a week through March 2010 and time-lapse photos

were taken every 5 minutes of the juveniles during August 2009 in order to determine

movement patterns in presence of other juveniles.

Results

The four female C. stelleri from which eggs were collected in April 2009 were

not spawning at the time of capture, so egg release was not observed. The green eggs

were stuck in the mucous covering the gills, towards the posterior end of the pallial
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groove. A male was observed releasing sperm in a flowing seawater table on the same

morning that the eggs were discovered. Both the eggs and sperm sank in seawater. The

male released sperm from the raised posterior end of his body all day, stopped during the

night, and then released again the following day; this individual released sperm for about

30 hours. Seven males in May 2010 released sperm in the same manner. Some females

raised their posterior ends while spawning in May 2010, while others lay entirely upside

down to release or showed no visible difference in behavior while spawning.

The April 12,2009, near-surface plankton tow near the mouth of Coos Bay,

Oregon, yielded four unfertilized chiton eggs that were the same color and diameter as

those of C. stelleri. They could be identified because no other chiton with an egg near

300 !-lm has a hull with a diameter of 600 !-lm. Due to high wind and waves, no plankton

tows were conducted in the ocean to search for more eggs and larvae. There are no

known intertidal populations of C. stelleri within two miles of the site of the plankton

tow, though subtidal populations may exist.

Unfertilized ova of Cryptochiton stelleri averaged 301 !-lm in diameter (SD=3.16,

n=15) with a hull diameter of approximately 600 !-lm (SD=18.1, n=15). The eggs were

extremely yolky, and the hull further obstructed a clear view ofthe embryos. Fertilization

was observed shortly after gametes were mixed together in culture (Fig. 3.1 A). The first

holoblastic (total division) cleavage occurred 4 h, 40 min post-fertilization, and

subsequent divisions occurred approximately every 40 min (Table 3.2).
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Figure 3.1. Cryptochiton stelleri early development: (A) fertilized egg with surrounding
hull. (B) 16 cell stage with spiral cleavage evident. Scale bar = 100 /lm.

Table 3.2. Developmental timetable for Cryptochiton stelleri, with times given for all
notable stages of early development. Eggs were collected from the South Cove of
Cape Arago and gametes were mixed on April 11,2009.

TIME POST
FERTILIZATION STAGE

0 Gametes mixed

< 1 minute Fertilization envelope forms

4 hours, 40 minutes First cleavage: 2 cell stage

5 hours, 20 minutes Second cleavage: 4 cell stage

5 hours, 55 minutes Third cleavage: 8 cell stage

6 hours, 40 minutes Fourth cleavage: 16 cell stage

11 hours, 10 minutes Fifth cleavage: 32 cell stage

17 hours, 10 minutes Blastula

26 hours, 55 minutes Cilial cells form, 4 patches of cilia

46 hours (:::::2 days) Hatching from hull, become pelagic

70 hours (:::::3 days) Prototroch formed from ciliary patches

90 hours (:::::4 days) Elongation of post-trochal region, eyes form

118 hours (:::::5 days) Settle to bottom, bumps on dorsal side appear (plate precursors)
Metamorphosis; loss of prototroch and apical tuft, beginning of

5 days plate calcification
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By 27 h post-fertilization, four distinct patches of cells developed cilia. The eggs

remained on the bottom of the dishes until hatching. At 46 h, the early trochophore

hatched and was characterized by an apical tuft and prototroch, which propelled the

bright green larvae rapidly around the culture dish (Fig. 3.2). A large amount of yolk

remained and there was no indication of plate formation or any bumps that could be

precursors of plate formation (Fig. 3.2).

Over the next two days the post-trochal region elongated, a pair of red larval eyes

appeared behind the prototroch, and dorso-ventral flattening occurred as the foot

developed (Fig. 3.3A). At about five days after fertilization, the larvae developed seven

dorsal bumps and settled to the bottom of the culture dishes where the larvae began

creeping (Fig. 3.3B). Over the next five weeks, these bumps became more defined and

dark dorsal spicules formed around the edge ofthe girdle; however, loss of the prototroch

and plate formation did not occur, suggesting that the larvae were awaiting some cue to

undergo metamorphosis. The addition of different kinds of seaweeds, high phytoplankton

concentrations, water containing the scent of conspecific adults, and warm water

temperatures all failed to induce metamorphosis. The larvae died in culture

approximately 8 weeks after hatching, having failed to metamorphose.

The embryos in May 2010 developed on a similar timeline, beginning to hatch

around two days after fertilization. The trochophores that were in the coralline algae

extract and coralline algae-covered rock treatments began metamorphosing three days

after hatching (~5 days post-fertilization). Larvae were competent to metamorphose after

the post-trochal region had elongated, seven dorsal bumps had formed, and the larvae
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Figure 3.2. Two-day old trochophore larvae, just after hatching. Note the lack of dorsal
plates or bumps that are the precursors to plate formation. There is no elongation of the
post-trochal region, and the eyes and foot have yet to develop. Scale bar = 100 flm.
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Figure 3.3. Photographs of late trochophores of Cryptochiton stelleri. Dorsal side is
facing the upper right comer of the photo. (A) Elongation ofpost-trochal region is
visible as well as some dorso-ventral flattening. Foot and seven plate precursors are
evident underneath the body surface, and yolk is still visible. (B) The seven bumps that
are plate precursors are visible on the outer surface of the larval body as well. As in (A),
the eyes and prototroch are present. Scale bar = 100 /lm.

spent most of their time on the bottom of the dishes (Fig. 3.4). In the control and

Cryptopleura-extract treatments, larvae stayed in this stage for over two months, until

they were induced to metamorphose with encrusting coralline algae extract.

Metamorphosis consisted of a loss of the prototroch and apical tuft and the beginning of

the formation of seven shell plates. The shell plates begin as thin lines (Fig. 3.5A) and

slowly expanded until they covered the body of the juvenile. Post-metamorphosis, the

larvae were observed feeding on diatoms and cyanobacteria that were present on the

bottom of the culture dishes. Fecal pellets were discovered, some composed entirely of

cyanobacteria and others containing largely diatoms with silica skeletons that were not



42

broken down by the addition of bleach. Grazing trails were formed on the bottoms of the

dishes but did not show any pattern and crossed repeatedly over other trails.

Four juvenile C. stelleri were discovered on the red alga Cryptopleura at Cape

Blanco, Oregon, on July 22, 2009. They measured between 7.6 and 12.6 mm long and,

unlike the adults, their dorsal plates were still exposed (Fig. 3.6). Juveniles were yellow

with tufts of red spicules partially covering the girdle, giving them an orange appearance.

The mouth, foot, and all other anatomical features appeared to be fully developed and the

juveniles fed on Cryptopleura. Feeding was captured on time-lapse video and the red

alga was visible in the gut through the juvenile foot.

Via time-lapse photography, movement patterns were observed. Juvenile C.

stelleri tend to move more at night (3.60 mmlh) than during the day (1.9 mmlh) but this

difference was not significant (ANOVA, df = 4, F = 2.42, P = 0.13) due to the small

sample size and high variance. In January 2010, six months after the juveniles were

captured and presumably nine months after they metamorphosed, the juvenile C. stelleri

began to feed on Ulva lactuca as well as the Cryptopleura sp., which they had been

feeding on since capture. By one year, juveniles could feed on Mazzaella splendens, a

common adult food source. After July 2009, juveniles grew an average of 1.96 mm or

0.14 g per month in captivity and were approximately 30 mm long by March 2010 (Fig.

3.7). This growth rate appears to be similar to that in the field; three additional juveniles

collected in the field were in the same size range as those kept in the lab: one was found

on Nov. 11,2009, at Middle Cove of Cape Arago (13 mm), another on Dec. 5,2009, at

Cape Blanco (15 mm), and the third on Feb. 3,2010, at Cape Blanco (19 mm).
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Figure 3.4. Contrasting descriptions of C. stelleri development: (A) Different stages of
C. stelleri development (modified from Okuda, 1947). Scale bar = 100 /lm. (1) Just after
hatching; (2) Larvae ready to settle; (3) Recently settled. (B) Observed stages of C.
stelleri development in this study. Scale bar = 100 /lm. (1) Just after hatching-no plate
formation or post-trochal elongation; (2) Settled. Dorsal bumps are plate precursors as no
calcification has occurred.
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Figure 3.5. Photographs of newly metamorphosed juveniles of Cryptochiton stelleri. (A)
Dorsal view of one day post-metamorphosis juvenile with valves beginning to form. (B)
Ventral view of one day post-metamorphosis juvenile with two red eyes and the foot
visible. (C) Dorsal view ofjuvenile five days after metamorphosis; valves have
developed further. (D) Dorsal view ofjuvenile 14 days after metamorphosis with valves
completely covering the mantle and foot. Scale bar = 100 /lm.
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Figure 3.6. Juvenile Cryptochiton stelleri discovered at Cape Blanco, Oregon. Eight
exposed plates are visible as they have not yet been overgrown by the mantle. Red
spicules can be seen starting to cover the surface of the mantle. Scale bar = 1 mm.
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Discussion

The major developmental stages of Cryptochiton stelleri were compared with

those described by Okuda (1947), the only other study on the development of this

species. Okuda's study has several differences relative to the current study: he described

C. stelleri eggs as red or cinnamon-colored instead of green and he described hatching

occurring after four days instead of two (Strathmann, 1985). Okuda's study has been

used as the primary source for the description of the development of C. stelleri and one

figure in particular (Fig. 3.4A) has been disseminated in at least two texts (Giese and

Pearse, 1979; Shanks, 2001). Okuda stated that plate formation and post-trochal

elongation occurred before or soon after hatching (Fig. 3.4A); in contrast, these

characteristics did not appear soon after hatching in the present study (Fig. 3.2); post­

trochal elongation commenced two days after hatching and plate precursors appeared

three days post-hatching (Fig. 3.3). Plates did not begin to calcify until metamorphosis,

which could occur as soon as three days post-hatching. Like the anomalous egg color,

this difference could result from Okuda having studied a different undescribed species.

This speciation could be a possibility given the distance between Japan and the

Pacific Northwest of the United States. The short larval period of C. stelleri, physical

differences in body and egg color, and the fact that multiple species of chitons have been

split into different species on the two coasts the Pacific are reasons that Japanese

Cryptochiton could be a different species. (D. Eemisse, UC Fullerton, pers. comm.).

However, no non-brooding chitons have been shown to begin plate formation as early in

the developmental process as the pre-hatching shell formation described by Okuda



48

(1947). Therefore, the current study provides a new description of embryonic and larval

development of C. stelleri.

The short larval period, the developmental timetable, and non-feeding larvae

described in this study are similar to most other described species of chitons (Giese and

Pearse, 1979; Rumrill and Cameron, 1983; Shanks, 2001). Eggs of C. stelleri at 300 ~m

diameter (600 ~m with the hull) are the largest of any NE Pacific chiton, slightly larger

than the brooder Lepidochitona fernaldi, which has an egg diameter of 270 ~m but a hull

diameter of only 280 ~m. The trochophore larva of C. stelleri looks similar to that of

other chitons, but is slightly larger, 300 ~m at hatching (Fig. 3.2). The appearance of

only seven plates is consistent with other chiton species as well, since many chitons do

not develop the eighth plate until well after metamorphosis (Voronozhskaya et aI., 2002).

While calcareous plates did not form from the plate precursor bumps before

metamorphosis, the head, foot, girdle, and spicules all developed, indicating that these

aspects of development may be more closely tied to development time than a

metamorphic cue.

The potential metamorphic cues tested (warmer temperatures, high phytoplankton

concentrations, presence of Cryptopleura Guvenile food source) and water in which

adults had been maintained) failed to induce metamorphosis. Metamorphosis was

triggered solely by the addition of coralline algae extract, which has been shown to

induce species such as Tonicella lineata (Barnes and Gonor, 1973), Katharina tunicata

(Rumrill and Cameron, 1983), Haliotis diversicolor (Bryan and Qian, 1998) and other

species of mollusks to metamorphose (Morse et aI., 1979). This consistency between a
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diverse group of mollusks could be a result of a highly conserved ancestral trait, or could

have evolved convergently in several different mollusk species. The reason for C. stelleri

to use this specific cue is unclear, because encrusting coralline algae is present in many

locations with high wave action in which C. stelleri would be unable to survive and

because no stages of the C. stelleri life cycle feed on coralline algae. This may indicate a

high amount of localized recruitment for this species, because C. stelleri is more

abundant in small coves (Lord, Chapter 2) and a ubiquitous cue for metamorphosis may

be most useful if larvae generally remain in these protected habitats. It is also possible

that coralline algae is used as a mechanism for ensuring that metamorphosis occurs at a

relatively low tidal level, where encrusting coralline algae is found.

The documentation of larval development, metamorphosis and observed growth

rate of juveniles helps define the early life history of Cryptochiton stelleri (Fig. 3.6). The

only published description of these juveniles in the literature are by Heath (1897) and

brief mentions by Eernisse (2004) and Vendrasco et al. (2008). Juveniles are seldom

found and little is known about their growth, feeding or behavior, though ongoing study

will hopefully fill this void. The description of C. stelleri larval development,

metamorphosis cue, plate formation and juvenile growth fills in major gaps in the

knowledge of the life history of this species.
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Bridge

Chapter III described the development, metamorphosis, and early growth rate of

C. stelleri. The metamorphosis cue is encrusting coralline algae, a common cue to induce

settlement and metamorphosis in mollusks. Encrusting coralline algae are abundant in

many types of intertidal environments in southern Oregon, so this is not likely the factor

driving the distribution of C. stelleri documented in chapter II. Since C. stelleri has been

reported to be very long-lived (MacGinitie and MacGinitie, 1968), juveniles could not be

raised to adults in order to figure out the growth curve for this species. In addition, the

flexibility and lack of hard external structures in this species eliminated the possibility of

mark-recapture techniques that are often used to determine growth rate. Chapter IV uses

annual growth bands in the valves of C. stelleri to estimate age and growth rate for this

species. Another large chiton, Katharina tunicata, is also used in this chapter in order to

compare growth rates and growth ring formation in these two species.
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CHAPTER IV

LONGEVITY AND GROWTH RATE OF THE GUMBOOT CHITON

CRYPTOCHITON STELLERI AND THE BLACK LEATHER CHITON KATHARINA

TUNICATA

Introduction

Growth rate is one of the most fundamental life history parameters and is critical

in developing models of the overall health, structure, and reproductive output of a

population. Comprehensive knowledge of population structure is vital to the

understanding of population dynamics for any species, especially those that are long­

lived, because size and longevity have an immense impact on the lifetime reproductive

output of an individual or population (O'Farrell and Botsford, 2005). Growth rate

information is available for many marine organisms, especially those with commercial

value such as fish and bivalves (Gang et aI., 2008; Abele et aI., 2009). Despite the

relative abundance of growth rate data in general, the establishment of growth curves for

some marine animals has been fraught with difficulty. This is particularly true for the

chitons, Class Polyplacophora.

The gumboot chiton, Cryptochiton stelleri Middendorff, 1847 is the largest

invertebrate herbivore in the intertidal zone throughout much of its range (central

California to Alaska, Japan), but the population dynamics of this species remains
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unknown. It is the largest species of chiton in the world, at up to 36 cm long and up to

2000 g (pers. obs.) and is relatively abundant on rocky intertidal shores. This species

feeds on a variety of seaweeds, including Cryptopleura, Mazzaella, Viva, Nereocystis,

etc. (Yates, 1989). Growth rates and factors influencing growth or distribution are not

well known, leaving the life history of C. stelleri largely undescribed. Unlike most

chiton species, C. stelleri has valves fully covered by the girdle (making marking

difficult) and small valves relative to their body size. This species is also very flexible,

which makes measurements of length highly variable. Previous studies have attempted to

use growth lines on the outside of the valves to age this species, but the researchers

decided that the lines were too obscure to use (MacGinitie and MacGinitie, 1968; Palmer

and Frank, 1974). The covered valves, flexible morphology, and unclear growth lines of

this species have confounded previous attempts to elucidate the growth rate of C. stelleri.

Several sources have suggested that C. stelleri is quite long-lived, but actual age

measurements are not available (MacGinitie and MacGinitie, 1968; Palmer and Frank,

1974; Yates, 1989). Heath (1905b) estimated C. stelleri longevity at approximately four

years, but this was based on limited data. The MacGinities (1968) estimated that the

largest C. stelleri individuals were at least 20 years old, but this estimate was based on

limited observations of growth rings on the shell plates. Palmer and Frank (1974)

expressed doubts about the growth ring method of the MacGinities (1968), but were

unable to obtain any useful growth rate information from weight measurements of C.

stelleri. We know little about the growth rate, longevity, or age structure of Cryptochiton

stelleri populations anywhere in its range.
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The fact that C. stelleri is believed to be a long-lived species is not only a reason

why understanding its growth rate is important, but also complicates establishing a

growth curve. In addition, the early life history stages of this species remain a mystery,

with only a few studies even mentioning the discovery ofjuvenile or young individuals

(Heath, 1897; MacGinitie and MacGinitie, 1968; Yates, 1989). This scarcity of

individuals from the early part of the life history of this fairly common organism poses

problems for establishing a growth curve, especially via methods such as following the

growth of age classes. Heath estimated the age of a 27 mm juvenile at a few months, but

this was not supported by any data, and not enough of these juveniles have been found to

make a proper estimate (Yates, 1989). Even individuals less than l5cm in length are

fairly uncommon in parts of Oregon, as a four-year study by Yates (1989) found fewer

than a dozen individuals this size along the central Oregon coast.

The black leather chiton Katharina tunicata is the second largest chiton in the

northeastern Pacific, at up to 12 cm in length (Himmelman, 1978). It is common

intertidally from Kamchatka (Russia), through the Aleutian Islands, and down the Pacific

coast to Catalina Island in southern California (Himmelman, 1978). Like C. stelleri, K

tunicata feeds largely on macroalgae, in this case the kelp Saccharina sessilis and

occasionally erect coralline algae (Dethier and Duggins, 1984). The only published study

on the age or growth of K tunicata was done by Heath (1905a), who estimated that this

species can live for three years in central California. However, this estimate was not

supported by data. Like C. stelleri, little about the life history ofK tunicata is known.



54

The debatable and often imprecise nature of aging chitons was illustrated clearly

in a review of molluskan lifespans by Comfort (1957). Using a variety of sources, he

listed the best-known estimates oflifespan for many mollusks, including several chitons.

The difference between these estimates and present growth information is indicated by a

multitude of examples. The maximum age of Chiton tuberculatus was listed as twelve

years by Crozier (1918), but was later estimated at approximately two years (Glynn,

1970). Heath (1905a) gives a lifespan of three years for Katharina tunicata in central

California, but the present study estimates a considerably longer lifespan. The molluskan

lifespan paper by Comfort also cites Heath (1905b) in estimating maximum Cryptochiton

stelleri age at approximately four years. Since then, multiple studies have estimated C.

stelleri to live at least twenty years, although this has never been confirmed by any

growth data (MacGinitie and MacGinitie, 1968; Palmer and Frank, 1974). These

inconsistencies in chiton age estimates underscore the difficulties in ascertaining age of

chitons.

Some of the problems with determining growth rate stem from variability in what

body measurement is used as an indicator of size. A study on the chiton Plaxiphorella

aurata used the width of the 4th shell plate to estimate growth (Gappa and Tablado,

1997). They found that P. aurata live 6-7 years and display an asymptotic growth pattern

best estimated by the von Bertalanffy Growth Function (von Bertalanffy, 1938). A

growth curve for Acanthopleura gemmata has also been established using the 4th shell

plate as a proxy for individual size (Soliman et aI., 1996). In contrast, Glynn (1970) used

body length to measure growth in Acanthopleura granulata and Chiton tuberculatus.
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Still other research on chiton growth has focused on growth rings or annuli in the shell

plates in order to determine lifespan and growth rate (Crozier, 1918; Baxter and Jones,

1978; Jones and Crisp, 1985). The use of growth lines has become commonplace in

research on molluskan aging, especially in the case of commercially important bivalves

(Ropes, 1987; Black et aI., 2008, 2009; Black, 2009).

Growth in the chiton Acanthopleura granulata slows when out of the water at low

tide and this produces daily growth rings (Jones and Crisp, 1985). This ring formation

pattern results in an extremely high number of rings present on the valves of these

chitons, with rings clumped in groups of28, associated with the days of the tidal cycle.

However, not all rings are created equal, as much heavier and more well-defined growth

rings are laid down annually in many species of chiton (Crozier, 1918; Baxter and Jones,

1978). Each ring represents a time of very slow growth, while the larger gaps in between

indicate faster growth. Growth rings are produced annually in many organisms because

of seasonal fluctuations in food availability, climate, and seasonal spawning (Merrill et

aI., 1961; Feder and Paul, 1974; Baxter and Jones, 1978; Bennett et aI., 1982; Black,

2009).

The present study closely examined the ontogeny of C. stelleri and used the

growth rates of juveniles and young individuals to support age estimates based on growth

rings. Growth rings visible in the shell plates or valves of these chitons were used to

establish growth and longevity estimates for C. stelleri and K. tunicata. Difficulties in

measuring C. stelleri and K. tunicata size and age were minimized by using an array of

different measurements of size, including weight, volume, length, circumference, valve
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weights, valve lengths, and valve widths. This wide range of morphological

measurements allowed for extensive allometric comparisons, which both exposed

limitations of growth curves based on linear measures of size and revealed a considerable

amount of information about the growth rates of Cryptochiton stelleri and Katharina

tunicata.

Materials and Methods

This study was conducted primarily along the central Oregon coast. Cryptochiton

stelleri individuals that were sacrificed in order to measure the growth rings in their

valves were taken from Cape Blanco near Port Orford, Oregon (42°50.900'N,

l24°33.4l0'W), and Lighthouse Island, Sunset Bay, and Cape Arago, all near Charleston,

Oregon (43°18.191 'N, 124°23.198'W). Only five individuals were taken from each site

in January 2010, in order to minimize the impact on this species that is not superabundant

along the Oregon coast. The majority of the valves that were used to analyze growth

lines were from individuals that washed up dead on the beach, so were not killed for the

purpose of this study. Forty dead chitons were collected from a beach near Fort Ebey

State Park, Washington in February 2009, and 14 individuals were collected from the

south end of Ansilomar Beach near Monterey, California in December 2009. Katharina

tunicata specimens that were measured and sacrificed were taken from South Cove, Cape

Arago, Oregon, ten kilometers south of Charleston, Oregon.

Cryptochiton stelleri that were washed up on the beach in Washington and

California were too deteriorated to obtain any body size information, so all external body
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measurements were done solely on live individuals from the sites in Oregon. External

measurements included body length and circumference when curled up in a ball.

Circumference was determined by first picking up and holding specimens until they were

tightly curled and then measuring the circumference longitudinally. The reliability of this

method was tested by making repeated measurements of 15 specimens, which were given

time to uncurl between each measurement (each measured five times). The maximum

and minimum measurement for each specimen differed by an average of 1.8%, indicating

that circumference was a consistent measure. Other external measurements for C. stelleri

and K tunicata included volume (water displacement) and weight in air. All

measurements were made after specimens had been kept in a flowing seawater table for a

week so that weight and volume measures would not be biased by differential water or air

content.

Specimens were relaxed, then killed with a 7.5% magnesium chloride solution the

same day external measurements were taken and one week after field collection. Once

the valves were removed, valves were weighed on a digital scale and then photographed

and measured digitally using ImageJ (available at http://rsb.info.nih.gov/ij). The valve

measurements, length (at the shortest point) and width (at the widest point), were done on

all intact valves from all California, Oregon, and Washington Cryptochiton stelleri, for a

total of over 300 valves measured and weighed from 70 individuals. The same

measurement process was done for Katharina tunicata, using the third, fourth, and fifth

valves, which were the largest in this species.
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1. Growth ring counts

In order to observe growth rings on the valves, the valves were cross-sectioned

using a Dremel® rotary tool with a diamond-coated cutting blade. For each specimen of

C. stelleri, as many as all eight valves were used, with cross sections taken along the long

and short axis of each valve. Consequently, each C. stelleri individual had up to 16 cross

sections used to estimate age, with an average of six for each specimen. Several of the

dead, washed up specimens had broken valves which were unusable. Katharina tunicata

valves (valves 3,4,5) were also cross-sectioned along the long and short axis, producing

approximately six valve cross sections per specimen. Valves of both species were then

polished with increasingly fine silicone carbide grinding paper, with a final grit of 1200.

Clear dark growth rings were visible on K tunicata valves with the naked eye

after cross-sectioning and polishing. Only major growth rings were visible and were

counted under a dissecting microscope. The acetate peel technique was necessary to

view C. stelleri growth rings; the etching process and acetate peels were done according

to the method described by Black et al. (2009). Acetate peels were taped to microscope

slides and examined for growth rings on a compound light microscope. The distances

between valve rings were measured using an eyepiece micrometer and photos were taken

of acetate peels using an Optixcam Summit 5.0 series® digital microscope camera.

Photographs of valves were analyzed for the density of valve lines using the plot profile

function in ImageJ in order to compare the growth of C. stelleri individuals from

California, Oregon, and Washington. This was done by making transects down the

middle of each valve and analyzing the gray values along this transect. The plot profile
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function plots gray values on a scale from zero (black) to 255 (white), with peaks in gray

value indicative of a major growth ring.

Growth lines faded out towards the center of the valves on older C. stelleri

specimens, so an additive process was used to estimate the number of rings for these

individuals. Since smaller specimens had all of their growth rings intact and visible to

the center, the distance between each ring and the next was measured and a dataset was

compiled that included the number of rings present at each distance from the center ofthe

valve. In those older individuals with growth rings that faded out towards the center of

the valve, the rings/distance dataset was used to estimate the number of faded missing

rings. For example, if smaller specimens averaged 4 growth rings in the first 8

millimeters from the center of the valve and an older specimen had 10 visible growth

rings but then the rings faded out around 8 mm from the center, it could be estimated that

the older specimen likely had 10 + 4 = 14 rings. Because growth rate could differ with

location, this additive process was done separately for Washington, Oregon, and

California specimens.

In order to complete the early stages of the growth curve for C. stelleri, additional

growth rate information was obtained by raising juvenile and young C. stelleri in flowing

seawater tanks at the Oregon Institute of Marine Biology, Charleston, Oregon. Four

juveniles were collected on the north side of Cape Blanco, Oregon on Jul 22, 2009, on a ­

0.67 meter low tide (MLLW). Laboratory growth rates were verified by the finding of

three more juveniles in the field four months later that were in the same size range as

those kept in the lab for those four months. One was found on Nov. 11, 2009, at Middle
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Cove of Cape Arago, another on Dec. 5,2009, at Cape Blanco, and the third on Feb. 3,

2010, at Cape Blanco. Juveniles were fed red algae of the genus Cryptopleura and older

individuals (>5 em) were fed a constant supply of the algae Mazzaella splendens, Ulva

lactuca, and Nereocystis luetkeana. The length, width, and weight of the juveniles were

measured once a week from August 2009 to February 2010.

II. Size-at-age curves

Juvenile measurements of size at age were combined with ring count information

to create size-at-age curves showing the changes in several different morphological

characteristics with age. This created multiple size-age datasets for the juveniles that

could be added to the adult C. stelleri datasets that plotted circumference, weight, and

volume against age estimated from major growth lines on the valves.

Without using acetate peels, growth rings in K. tunicata were quite clear, making

growth ring counting much simpler. After sectioning and polishing the valves, rings

appeared as darker colored bands. These growth rings were apparent to the center of the

valves, so the additive method used to estimate the number of rings for C. stelleri was

unnecessary. Juvenile K. tunicata were not found at the time of collection, so were not

included in the size-at-age curves for this species.

Growth data were fitted using XLFit® software (by IDBS) and the best fitting

curves (highest r2 value) were chosen. This software fits the data to over 700 different

curves and presents the best fits. In order to create a complete size-at-age curve, C.

stelleri specimens from Oregon sites (5 specimens from 3 sites) were combined using
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individuals from more than one site gives the models more generality to geographically

disparate populations. In contrast to the rarer C. stelleri, Katharina tunicata is very

abundant at many sites (Himmelman, 1978), so abundance was not a concern and all

specimens were taken from the South and Middle Coves of Cape Arago, Oregon. The

size-at-age data for K. tunicata were fit with growth functions in the same manner as the

data for C. stelleri.

Results

1. Growth ring counts

Upon inspection under a compound light microscope, the C. stelleri acetate peels

showed clear major growth lines as bright rings separated by dark increments of faster

growth (Fig. 4.1). This allowed rings to be easily counted and the space between the

major rings to be measured. Black and white photographs were taken ofthe acetate peels

and, along a transect of the photograph of the peel, the brightness of the growth lines

showed up well in a plot profile of gray values in ImageJ (Fig. 4.1). Spikes or peaks in

the gray value coincided with major growth lines (Fig. 4.1). In order to set a protocol for

counting growth lines, a major growth ring was established as one that was at least twice

the standard error above the average gray value along the transect. For K. tunicata, only

major rings were visible under the dissecting microscope, so discerning between major

and minor rings was not an issue. The additive method for counting rings (previously
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Figure 4.1. Photographs of acetate peels of sectioned C. stelleri valves from Washington,
California, and Oregon. Graph shows associated plots of gray values from ImageJ, with
peaks in gray value associated with each growth line because of the brightness of the line
compared to the dark region of growth in between lines. (A) Acetate peel ofvalve cross­
section from Washington. Growth lines are clearly defined, with very few smaller
growth rings between major rings. (B) Acetate peel of valve cross-section from
California. Growth lines are more obscure, with many pronounced smaller lines in
between each growth band. (C) Acetate peel of valve cross section from Oregon. Growth
lines are more clearly defined than California, but less clear than in individuals from
Washington.
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described) was fairly precise, as the curves estimating the numbers of growth rings to the

center had a 95% confidence interval of approximately +/- 2 rings (Fig. 4.2).

Cryptochiton stelleri valves from Fort Ebey, Washington (Fig. 4.1A) showed very

distinct growth rings, with very few smaller growth lines between the major potentially

annual bands. The major growth rings on the valves from Ansilomar, California (Fig.

4.1B) were much less pronounced and were obscured by a large number smaller growth

rings clumped around each major ring. This distinction between Washington and

California is clear on both the acetate peels and the gray value graphs. Valves from

Oregon showed distinct growth lines similar to those from Washington, but slightly less

defined. Valves and graphs in Fig. 4.1 were chosen as representative examples of the

differences in banding in the valves of Washington, Oregon (Fig. 4.1C) and California

specimens.

There were no significant differences in spacing between major growth rings in

valves from the three different states. The spacing between the bands is indicative of the

time between ring deposition, or the growth rate of the valves, which did not vary

significantly between states. However, there were differences (one way ANOVA, df=

110, F = 15.39, P < 0.0001) in the dispersion of smaller growth rings around each major

growth band. Both Washington (Tukey's HSD, p < 0.01) and Oregon (Tukey's HSD,

p < 0.01) had growth lines that were significantly more tightly clustered (width of peak in

gray value) than in the California valves (Fig. 4.3). These tightly clustered minor growth

lines made major growth bands in Washington and Oregon valves very distinct. Valves

from Oregon C. stelleri specimens were not significantly different from Washington
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valves with regard to the clustering (of small growth marks around maj or growth rings (t­

test, p > 0.1).

Juvenile C. stelleri appeared to grow at approximately the same rate in the lab as

in the field; individuals growth in the laboratory from August through the fall were

similar in size to individuals from the field found in the fall. The average weight of the

lab-reared juveniles (raised since August 2009) in December 2009 was 0.190 grams, and

the average weight of the juveniles discovered in the field November 2009-January 2010

was 0.195 grams (Fig. 4.4). This similarity in size suggests that the lab-reared

individuals grew at approximately the same rate that they would have in the field.

II. Size-at-age curves

Counts of the major presumably annual growth rings were used to create size-at­

age curves for C. stelleri and K. tunicata. The most common measurement of size used

in growth curves is body length. However, length is an extremely inaccurate measure of

adult C. stelleri size due to their ability to contract and extend themselves. In order to

avoid this problem, circumference when curled up was used as a measure of size. Using

ages determined from the growth rings, body circumference was plotted against age and

fitted with a growth equation using XLfit® software. Juvenile growth rates observed in

the lab were included to make the early ages of this model more accurate by including the

circumference-age data from the juveniles with the circumference-age data estimated

from adult growth rings (Fig. 4.5). The best fit (r2
= 0.96) model used to fit these data

was a growth function used to model the indeterminate growth of Strongylocentrotus
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franciscanus (Rogers-Bennett et aI., 2003) (Table 4.1):

C(t) = A(l - e-CKt» + Bt

In this model, C(t) is the change in the circumference with time, A and Bare

parameters, K is a growth rate constant and t is time or age. A Chapman function (Table

4.2) was used to fit K. tunicata (r2
= 0.85) size and age data, with body length used instead

of circumference because the stiffer morphology of K. tunicata made length a reliable

measurement.

Body volume was also plotted against estimated age, producing a different shaped

curve for both species than the curves based on length and circumference (Fig. 4.5). In

both species, growth as measured by volume increases with age and does not level off or

slow down. Using volume measurements of size, C. stelleri growth rate that increases

with age was best fit (r2 = 0.87) by a growth function from Rogers-Bennett et aI. (2003)

(Fig. 4.5A) (Table 4.1). Volume-age and weight-age data for K. tunicata were best fit by

the same function and show the same pattern of increasing growth rate with age (Fig. 4.5)

(Table 4.2).

Body measurements were not available for Washington and California C. stelleri

specimens because of their badly deteriorated condition. However, since the weight of

the eighth valve was strongly correlated with body weight and volume (Fig. 4.6A), a size­

at-age curve could be established by using the valve eight weight as a proxy for size and

plotting it against age (number of presumptive annual rings). This was done for

Washington and Oregon (from 15 sacrificed specimens) but there were not enough

specimens of different sizes from California to compile an accurate size-at-age
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Table 4.1. All equations shown are the curves that best fit the measure of Cryptochiton stelleri
growth that is given in the first column. Best fit curves were chosen based on the functions with
the highest r value in XLFit®. The change (increase or decrease) in growth rate with age is in the
last column and is based on the upward or downward slope of each of the curves.

Modified power 1.95
function . Wet) = 0.0206t

y

Valve 8
Weight

OR body
circumference

OR body
volume

OR body
weight

WA valve 8
weight

OR valve 8
weight

OR valve 8
width

WA+OR+CA
valve 8 weight

WA+OR+CA
valve 8 length

x

Body
Volume

Number
of major
growth
rings
(age)

Best Fit Curve

Line

Rogers-Bennett
et al. (2003)

Rogers-Bennett
et al. (2003)

Chapman
Function

Modified power
function

Modified power
function

Modified power
function

Morgan­
Mercer-Flodin

Equation

W(v) = 0.0153v

CCt) = (31.97*(1.01 _(e,O.0851)))
+ 0.17t

Vet) = (-274.0*(0.49 _(e'00601)))
+ 34.25t

Wet) = (2873.3*((I-et\

(((-I)*0.0277)*x))AI.7855))

1.4016
W(t)=0.112It

0.5465
Wet) = 7.688t

1.538
Wet) = 0.0753t

L(t) = [(-19.95*5.77) +
(l10.9(t035))] / (5.77+(t035

))

0.82

0.96

0.87

0.91

0.69

0.96

0.96

0.80

0.71

Change in
Growth Rate

N/A

( - ) Decrease
with age

( + ) Increase
with age

( + ) Increase
with age

( + ) Increase
with age

( + ) Increase
with age

( - ) Decrease
with age

( + ) Increase
with age

( - ) Decrease
with age

Table 4.2. All equations shown are the curves that best fit the measure of Katharina tunicata
growth that is given in the first colum. Best fit curves were chosen based on the functions with
the highest correlation coefficient in XLFit®. The change (increase or decrease) in growth rate
with age is in the last column and is based on the upward or downward slope of each of the
curves.

y X Best Fit Curve Equation R Z Change in
Growth Rate

Valve 4 Body Line W(v) = 0.0388v 0.88 N/A
Weight Volume
Body Chapman L(t) = 109.35*(1- 0.85 ( - ) Decrease
length function exp((_.298)x))1436 with age
Body Two power fits Vet) = (1.61 *(t Il4

)) + (2.4*(t ILJ
)) 0.85 ( + ) Increase

volume Number with age
Body of major Rogers-Bennett Wet) = (-8.4(1.02 _(e'LU41)))_ 0.84 ( + ) Increase

weight growth et al. (2003) 9.33t with age
Valve 4 rings Rogers-Bennett Wet) = (-0.59(.956 _(e'2.Ubl») + 0.84 ( + ) Increase
weight (age) et al. (2003) 0.324t with age
Valve 4 Rogers-Bennett Wet) = (88.65(1.03 _(e'U.UI It»)_ 0.93 ( - ) Decrease
width et al. (2003) 1.99t with age
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71

curve (Table 4.1). These data were best fit with a modified power model of the form:

Wet) = A*B t

Wet) is the change in valve eight weight with time or age and A and B are growth

parameters (Table 4.1). For K tunicata, valve four weights were the most strongly

correlated with volume (Fig. 4.6B). Valve four weight and width were both plotted

against age (presumptive annual growth rings) (Fig. 4.7B) and the equations used to fit

these curves are shown in Table 4.2.

In order to get a general estimate of the relationship between valve 8 weight (as a size

proxy) and age for C. stelleri, data from all three locations (Washington, Oregon,

California) were combined and a modified power function was fit to these data (Fig. 4.8).

This combined growth curve had the equation:

1.538
Wet) = 0.0753t

The data fit well into one curve (r2
= 0.80), indicating the lack of drastic

differences in size-at-age between the three locations. The width of valve 8 was also

plotted against age for the combined dataset from all three states, and these data were best

fit (r2
= 0.709) by the Morgan-Mercer-Flodin (MMF) equation shown in Table 1.

Discussion

1. Growth ring counts

Age estimates have not been previously published for Katharina tunicata.

Previous attempts to estimate age for Cryptochiton stelleri have been unsuccessful.

MacGinitie and MacGinitie (1968) attempted to use growth lines as an estimate of
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C. stelleri age, but were unable to make the necessary counts because the bands faded

towards the center of the shell plate. This ring counting method was further called into

question by Palmer and Frank (1974), who were doubtful of their ability to clearly

elucidate growth lines from the shells. There are vague lines apparent on the external

surface of the valves, so it is possible that these superficial lines were the ones referenced

by previous studies. The lines used in the present study were only visible on the polished

cross sections of the valves.

In the current study, the cross sectioning of valves and use of the acetate peel

technique allowed for the successful detection of unambiguous growth lines (Fig. 4.1).

By both examining acetate peels under a compound light microscope and analyzing the

gray value plot profile of these peels, growth rings were clearly elucidated. The additive

method was used to estimate the total number of rings on each C. stelleri valve

successfully solved the problem of estimating age when growth lines faded towards the

center of the valve. Accuracy was further enhanced by using estimated ring counts from

at least three valves for every individual, with the average counts used to provide the

overall age estimate for that individual. Since growth differs by valve and by location,

the curves used to estimate the numbers of rings to the center were made separately for

all eight valves from Washington, Oregon, and California specimens (Fig. 4.2).

Katharina tunicata growth lines were clear and did not fade towards the center of the

valves, so the additive method was not necessary to attain accurate estimates of the

number of growth rings.
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One of the difficulties with growth ring counts, or marginal increment analysis

(MIA), is discerning between multiple growth rings. This process can be subjective

because of the small distances separating often indiscrete growth lines (Campana, 200 I).

In the current study, the subjective nature of MIA was minimized by the use of image

analysis software to create gray value profiles of each valve coupled with an objective

protocol for determining what was a major growth line based on the gray value. Further,

randomizing the order of valves processed and taking multiple counts of the same

specimen using more than one shell plate further safeguarded against experimenter bias.

Despite all of these measures, the biggest safeguard against counting errors may have

been the clarity of the growth lines (Fig 4.1); the growth increments in the large valves of

this organism could even be distinguished under a low power dissecting scope. While

image analysis was not used for K. tunicata, the large valves and clarity of the growth

lines ensured accuracy.

In order to create size-at-age curves from ring count data, I needed to establish

that the major growth rings were annual. Annual growth rings are commonly formed

during winter, when a slowdown in growth can result from gonad production, colder

temperatures, increased storms, and lower food availability (Crozier, 1918; Baxter and

Jones, 1978; Brousseau, 1979; MacDonald and Thomas, 1980; Picken, 1980; Thompson

et aI., 1980). The production of annual growth rings is especially common among

organisms with annual food supplies such as phytoplankton or macroalgae. Annual rings

have been shown to form in chitons, limpets, bivalves, fish, and corals, among other

organisms (Merrill et aI., 1961; Parry, 1978; Brousseau, 1979; Bayne and Worrall, 1980;
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MacDonald and Thomas, 1980; Picken, 1980; Thompson et aI., 1980; Jones, 1981;

Schone, 2003). Cryptochiton stelleri and Katharina tunicata spawn once per year in the

spring (Tucker and Giese, 1962; Himmelman, 1978; Yates, 1989) and feed

predominantly on seasonally abundant macroalgae (Dethier and Duggins, 1984; Yates,

1989), so it is likely that the major growth rings are annual.

II. Size-at-age curves

Since the weight ofthe eighth valve was strongly and positively correlated with

C. stelleri volume (Fig. 4.6), valve eight weight was used to construct size-at-age curves

using all of the available data including the samples from Oregon (OR), as well as the

Washington (WA) and California (CA) specimens that were too decomposed to measure

any soft tissue morphology. By using the weight of the eighth valve, size-at-age curves

could be created for all sites (WA, OR, CA) combined (Fig. 4.8), establishing a general

estimate of C. stelleri growth. This combined size-at-age curve (Fig. 4.8) displayed

roughly the same trend as did curves for the individual states (Table 4.1). Many

organisms display differing growth rates with latitude (Dehnel, 1955; Conover and

Present, 1990; Conover et aI., 1997; Linse et aI., 2006; Royo et aI., 2006; Howes and

Lougheed, 2007), but since the specimens from Washington and California each came

from just one site, no definite conclusions can be made about latitudinal variation in

growth rate for this species. However, the specimens examined did not appear to differ

in growth rate with latitude.
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Valves of C stelleri from Washington, Oregon, and California displayed very

different distribution of smaller lines around the major presumptive annual growth lines

(Fig. 4.1). The narrow, intense growth rings present in the Oregon (Fig. 4.1 C) and

Washington (Fig. 4.1A) valves are much clearer and more well-defined than in the valves

from California specimens, which had a large number of smaller growth rings clustered

around the annual rings (Fig. 4.1B). There were no significant differences in major

growth line spacing (growth rate) between Washington, Oregon, and California, but the

major growth lines on California valves were significantly less distinct than at the other

sample sites (Fig. 4.3). This difference could be a result of less seasonality in the warmer

and calmer climate of Monterey, California, which could allow C stelleri to be more

active during winter. Differences in climate also result in a more constant supply of

macroalgae in California (including Mazzaella splendens) which could reduce the impact

of season on C stelleri growth (Dyck and DeWreede, 2006). Any of these factors could

allow individuals of this species to have a growth rate less dependent on season, resulting

in less defined growth lines.

Circumference (C stelleri) and length (K. tunicata) are the first external

morphological measures for which size-at-age curves were constructed. Linear

measurements of growth such as these are by far the most prevalent measures

incorporated into modeling of growth rates and creation of growth curves for chitons,

gastropods, bivalves, fish, and many other organisms (Rao, 1976; Fournier and Breen,

1983; Basson et aI., 1988; Bosman and Hockey, 1988; Fouda and Miller, 1981; Ebert and

Russell, 1992; Katsanevakis, 2006; Johnson and Black, 2008; Navarte et aI., 2008; Kilada
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et aI., 2009). These circumference-age (C stelleri) and length-age (K tunicata) curves

appear similar to typical growth curves, with growth rate slowing with age: these data

are fit well with a slowing but indeterminate growth function developed by Rogers­

Bennett et al. (2003). Shell width also showed a decrease in growth rate with age (Fig

4.7), indicating that linear shell growth slows with age as well. These curves showing

asymptotic or decreasing growth rate with age are typical for linear measurements such

as length, width, or diameter.

Volume and weight are measures of absolute size and show a much different

growth pattern than the curves based on linear measurements (Fig. 4.5). When size was

measured with body volume or body weight, growth rate increased slightly at all ages

(Fig. 4.5). This same relationship also existed between valve weight and age for both C

stelleri and K tunicata (Fig. 4.7), as valve growth rate based on weight increased with

age. This demonstrates that the amount of material added to the shell plates each year

increases with age.

The similarity in size-at-age curves for body volume and valve eight weight

indicates that a growth function with growth rate slowly increasing over time is the best

descriptor of the growth of C stelleri and K tunicata. These growth functions are not

asymptotic, unlike the growth curves based on length or circumference, so they can be

better used to estimate age. Based on multiple size-at-age curves, the oldest C stelleri

specimen in this study was estimated at around 40 years, making C stelleri the oldest

species of chiton in the world. The oldest K tunicata specimen in this study was
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approximately 17 years old, making it the second-oldest chiton species in the northeast

Pacific.

This study provides detailed empirical data on growth and longevity of

Cryptochiton stelleri and Katharina tunicata. It also highlights the differences between

growth curves based on linear measures of size and absolute measures of size such as

volume. Growth curves based on length, circumference, and valve width all showed

decreases in growth rate with age, typical of a growth curve for an indeterminately

growing species (Sebens, 1987). In contrast, absolute measures such as body volume,

body weight, and shell weight showed an increasing growth rate when plotted against

age. The creation of growth curves based on various measures of size for C. stelleri and

K. tunicata allowed a comparison of different aspects of growth and highlighted the

intriguing life histories of these chitons.
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Bridge

Chapter IV described the growth rates, developed techniques to measure the age

of Cryptochiton stelleri and Katharina tunicata and highlighted the different patterns of

growth when one looks at length vs. volume as a measure of the size of the chiton. Both

of these species add more shell material later in life than they do when they are young,

which is unexpected since the general paradigm is that growth rate slows down with age.

Models of life history and energy allocation for most invertebrates and intertidal

organisms show a tradeoff from growth to reproduction as the organism gets older,

eventually reaching a point where growth is minimal and virtually all energy is allocated

to reproduction. The unusual growth patterns of the chiton species examined in Chapter

IV led me to investigate growth and energy allocation in a variety of intertidal species in

Chapter V. Chapter V focuses on the impact that using different measures of size can

have on models of life history and energy allocation.
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CHAPTER V

IMPACT OF DIFFERENT MEASURES OF SIZE ON ENERGY

ALLOCAnON MODELS

Introduction

The size of an organism is of great importance to its ecology and reproductive

output. Regardless of how size is defined, it has an undeniable effect on feeding, growth

rate, and other ecological factors in a wide variety of species (Peters, 1983; Sebens, 1987;

Chase, 1999a; Woodward et aI., 2005). In a multitude of organisms from plants to

terrestrial vertebrates to intertidal invertebrates, body size strongly influences

reproductive output and the amount of energy allocated to reproduction (Thompson,

1979; Gibbons and McCarthy, 1986; Lively, 1986; Shields, 1991; Clauss and Aarssen,

1994; Cattaneo-Vietti et aI., 1997; Crespi and Teo, 2002). Ecological interactions such as

predation and competition are strongly affected by size as well, even resulting in shifts in

growth rates and life history strategies to cope with the ecological importance of size

(Dayton, 1971; Paine, 1976; Tegner and Dayton, 1981; Osenberg and Mittelbach, 1989;

Chase, 1999a; Arendt and Reznick, 2005). Body size can be important on the individual

and population level as well as on both the immediate and evolutionary time scale,

because organisms may evolve life history patterns to optimize size. However, the way
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that size is measured can impact the outcomes of life history and growth or energy

allocation models.

Body size is an integral part of life history theory, which concerns lifetime energy

allocation with the maximization of lifetime reproductive output (1<0) as the adaptive

'goal' of an organism (Rinke et aI., 2008). In order to establish an energetic balance that

will allow the optimization of 1<0, organisms must account for energetic costs for somatic

growth, maintenance, and reproduction (Jokela, 1997). A multitude of studies have

presented models that attempt to account for a wide array of factors that influence the

energetic budget of organisms. These models focus largely on the well-reported

energetic shift between growth and reproduction that occurs in most organisms as they

grow older and larger (Heino and Kaitala, 1996, 1999; Kozlowski, 1996a,b; Jokela, 1997;

Chase, 1999b; Kozlowski and Gawelczyk, 2002; Kozlowski et aI., 2004). This shift

occurs at different ages and life history stages for different organisms, and there are a

variety of potential reasons for alterations in the timing and rate of this shift in energy

allocation from growth to reproduction.

According to several of these life history models, the shift in energy allocation is

a balancing act aimed at maximizing lifetime reproductive output by optimizing the size

of the organism (Reiss, 1989; Kozlowski, 1996a; Heino and Kaitala, 1999; Kozlowski

and Gawelczyk, 2002; Sebens, 2002). In many organisms, individuals with larger body

sizes produce more gametes, so ideally, in these species, size would be maximized

(Thompson, 1979; Gibbons and McCarthy, 1986; Lively, 1986; Shields, 1991; Clauss

and Aarssen, 1994; Cattaneo-Vietti et aI., 1997; Crespi and Teo, 2002). However,
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growth and energy allocation vary greatly based on the life history strategy of the

organism involved.

There are two main life history strategies with regard to when and how much

energy to put into growth and reproduction: determinate and indeterminate growth.

Organisms with determinate growth reach a size plateau, at which point they cease to

grow larger and put all excess energy into reproduction (Sebens, 1987). This group

includes most terrestrial vertebrates (Forseth et aI., 1994), as well as pinnipeds (Winship

et aI., 2001), dolphins (Miyazaki, 1977), and some crustaceans and fish (Sebens, 1987).

Organisms with indeterminate growth may slow down their growth rate with age, but

even the largest show some growth (Sebens, 1987; Kozlowski et aI., 2004). This was

recognized in one of the first publications on size relationships and allometry, in which

Julian Huxley wrote, "rate of growth may, and doubtless does, slow down with increasing

size and age" (1932). A wide array of organisms display indeterminate growth; this

includes plants, many fish, amphibians, and most soft-bodied invertebrates (Sebens,

1987; Kozlowski, 1996b; Rinke et aI., 2008).

Indeterminate growth has been described using multiple growth functions, and

Kozlowski (1996b, 2004) explains that indeterminate growth could be estimated best

with the von Bertalanffy growth function (von Bertalanffy, 1938), which is a common

model of asymptotic growth. The von Bertalanffy has been used to express growth

curves for a variety offish (Ricker, 1975; Chen et aI., 1992; Hood and Schlieder, 1992;

Essington et aI., 2001; Lester et aI., 2004), mussels (Steffani and Branch, 2003), whelks

(Ebert and Lees, 1996), and sea urchins (Ebert and Russell, 1992; Rogers-Bennett et aI.,
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2003), as well as a variety of other organisms. In all of these instances, this curve was

used for organisms with indeterminate growth in order to model the way that the length

or diameter of the organism changed with age. Both Kozlowski (1996b) and Rogers­

Bennett et al. (2003) describe several other growth functions as well, and all of these

equations show size in indeterminately growing organisms approaching an asymptote

with age. The one exception is the Tanaka function (Tanaka, 1982). Only the Tanaka

function expresses truly infinite increase with no built-in asymptote, even though

indeterminate growth is being described.

A reason why asymptotic functions are most commonly used in models of life

history and energy allocation is that size is often expressed in linear terms. Length,

width, and diameter are commonly used measures of size, especially in mollusks, and

several growth and size-at-age curves have been developed using these linear measures of

size (Frank, 1965b,c; Kenny, 1969; Suchanek, 1981; Brown and Quinn, 1988; Ebert and

Russell, 1992; Ebert and Lees, 1996; Steffani and Branch, 2003; Grupe, 2006).

Essentially, when size is measured as length, width, or diameter, only one dimension of

size and growth is being accounted for. This is not a problem in itself, as growth curves

based on both length and weight can provide insights into the growth of an organism.

However, the asymptotic growth patterns shown by length-based growth curves are

clearly incorporated into energy allocation models, which may be problematic.

The aforementioned shift from growth to reproduction is well reported (Heino and

Kaitala, 1996; Kozlowski, 1996a,b; Jokela, 1997; Chase, 1999b; Heino and Kaitala,

1999; Kozlowski and Gawelczyk, 2002), but appears to be based partially on the apparent
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decrease in growth that appears in length-based growth curves of many organisms.

Because volume and weight presumably go up as the approximate cube of length, growth

and size-at-age curves based on weight and volume may not approach an asymptote. As

such, growth could not be described by asymptotic models such as the von Bertalanffy

growth function, impacting models of life history and energy allocation. Measures of

reproduction such as gonad mass, gonad index, or gonadosomatic index are most often

based on mass, and if they are compared to one-dimensional measures of growth, then the

resulting patterns could be partially an artifact of the allometric relationship between

length (or diameter) and weight (or volume), complicating the idea of 'optimal size.'

The present study investigates the potential impact of using weight and volume

(absolute measures) instead oflength or diameter (linear measures) in growth curves,

with the purpose of determining how these relationships could impact models of energy

allocation and life history patterns. The present study compiled linear and absolute size

data with previously published size-at-age curves in order to compare the two different

curves for the black turban snail Chlorostomafunebralis, mussels Mytilus californianus

and Mytilus galloprovincialis, chitons Katharina tunicata and Cryptochiton stelleri, and

limpets Lottia pelta, Lottia persona, and Lottia digitalis (Frank, 1965b,c; Suchanek,

1981; Ebert and Lees, 1992; Steffani and Branch, 2003). The present study also

compares how shell measurements and fecundity change with size and age in several

gastropods and chitons. By determining the relationships between growth, reproduction,

and various measures of size, the accuracy of life history and energy allocation models

can be assessed for organisms with indeterminate growth.
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Materials and Methods

1. Growth curves

Organisms used for this study were from rocky intertidal areas along the south

central Oregon coast, just south of Charleston, Oregon (43°18.191 'N, 124°23.198'W).

All species used were measured during February or March 201 0, and all conspecific

specimens were always measured on the same day to avoid between individual

variability. In order to create growth curves from absolute measures of size such as

weight and volume, ten Oregon intertidal species with published growth curves were

measured during March 2010. All growth curves created in this study were fitted with

growth functions using XLFit® 5 (IDBS software) in order to determine the best-fitting

curves.

Sea urchins Strongylocentrotus purpuratus and Strongylocentrotus franciscanus,

black turban snail Chlorostomafunebralis, mussels Mytilus californianus and Mytilus

galloprovincialis, chitons Cryptochiton stelleri and Mopalia muscosa, and limpets Lottia

pelta, Lottia persona, and Lottia digitalis were collected at the sites listed in Table 5.1.

Sample sizes and measurements made on each species are listed as well (Table 5.1).

These data were combined with published growth curves for each species; all published

curves had a linear measurement of size plotted against age (Table 5.1). Both linear

(length, diameter) and absolute measures (weight or volume) were measured for each

species and were used to create linear and absolute growth curves. All measurements of

size were made in the laboratory immediately after specimens were collected. Weight

was measured with a digital balance, except for S. franciscanus, which was weighed with
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a spring scale. Volume was measured using water displacement in 10 to 2000 mL

graduated plastic containers, depending on the size of the organism. The precision of the

weight and volume measurements for each organism are listed in Table 5.1. Linear

measurements of test diameter, body length, and shell width were measured to the nearest

0.1 mm using vernier calipers.

Table 5.1. Collection sites and measures of size used for all species for which absolute
growth curves were created. The previous studies from which linear growth curves were
taken are also listed.

Species Field Present + Previous Present Study Present N
Collection Previous Study Study Absolute Study
Location Linear Measure Measure of Size Accuracy

Strongylocentrotus Gregory Point Test diameter Grupe, 2006 Body Volume <5mL 19
purpuratus

Strongylocentrotus Gregory Point Test diameter Ebert and Body Weight < 10 g 13
franciscanus Russell, 1992

Chlorostoma Gregory Point Shell width Frank, 1965c Body Volume <1 mL 22
funebralis

Mytilus Gregory Point Shell length Suchanek, Body Volume <5mL 22
californianus 1981

Mytilus Charleston, Shell length Steffani and Body Weight < 0.01 g 18
galloprovincialis OR, Docks Branch, 2003

Cryptochiton South Cove of Circumference Lord, unpub!. Body Volume < 10mL 25
stelleri Cape Arago data

Katharina South Cove of Body Length Lord, unpub!. Body Volume < 1 mL 19
tunicata Cape Arago data
Lottia pelta South Cove of Body Length Frank, 1965b Body Weight < 0.01 g 11

Cape Arago
Lottia persona South Cove of Body Length Kenny, 1969 Body Weight < 0.01 g 16

Cape Arago
Lottia digitalis South Cove of Body Length Frank, 1965b Body Weight < om g 14

Cape Arago
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For Tonicella lineata, Mopalia muscosa, Katharina tunicata, Cryptochiton

stelleri, and Lottia scutum, valves or shells were removed, cleaned, and dried before

measurements were taken. Valve or shell weight was measured on a digital balance to

the nearest 0.01 gram. Valve width was measured to the nearest 0.1 mm at the widest

point of the valve with vernier calipers. Shell length was measured at the longest point of

the shell for the limpets 1. scutum and Acmaea mitra (collected at Gregory Point). Shells

of the predatory snails Nucella lamellosa and Callianax biplicata were collected at

Yoakim Point, three kilometers south of Charleston, Oregon, and were weighed and

measured in the same way as the limpets.

The length (mm) and volume (mL) for all chiton and limpet species used were

plotted against each other to observe how length varied with volume. These plots were

fit with curves using XLFit® 5 (lDBS software) and were compared with 3-D models of a

chiton and a limpet. This was done in order to determine if the body shape of these

organisms was changing as they grew, affecting growth patterns. The 3-D models were

created in Google Sketchup® (Fig. 5.1) and were enlarged proportionally in one

millimeter length increments. Using length and volume tools in that program, these

models were used to estimate volumes at given sizes with no change in shape. A length­

volume plot for the model was produced, showing how volume would vary with length

with no change in body proportions as the animal grew. These length-volume plots were

fit with curves and compared to the length-volume graphs created from the different

species of chitons and limpets.
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A Chiton Model

B Limpet Model

Figure 5.1. 3-D models oflimpet and chiton body shape created in Google Sketchup@
and used to measure how volume changed with length ifbody shape remained the same.
(A) Chiton model drawn in the general shape of a chiton; (B) Limpet model drawn in
general shape of a limpet
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II. Size and reproductive output

To determine the relationship between size and reproductive output, the following

chiton and limpet species were collected from Gregory Point, five kilometers south of

Charleston, Oregon during February 2010: Tonicella lineata, Mopalia muscosa,

Katharina tunicata, Cryptochiton stelleri, and Lottia scutum. The following

measurements were made on all 30 specimens of each of the five species: length (mm) or

circumference (mm, C. stelleri), volume (mL), weight (g), valve 4 or shell weight (mm),

and valve 4 or shell width (mm). Length was measured with vernier calipers to the

nearest tenth of a millimeter, volume was measured to the nearest mL with water

displacement in graduated containers, and wet weight was measured on a digital scale to

the nearest tenth of a gram.

For each of these species, all gonad material was dissected out and diluted in 20,

120, or 500 mL plastic bottles (depending on the size of the species) filled with 45 flm

filtered seawater so that subsamples could be accurately counted. The containers were

stirred and shaken until all eggs were free from the gonad material. Ten 200 flL

subsamples were taken from the suspended egg dilution with a micropipetter and placed

in small rows on a dish under a dissecting microscope. Eggs in each 200 flL subsample

were counted, the ten subsample values were averaged, and then these averages were

multiplied by the diluted volume in order to estimate the total fecundity for that

individual.

For all of the egg counts, the bottles used were randomly numbered so that there

was no bias in the counting process. Numbers and counts were later matched up to plot
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the counts against different measures of size for all specimens of each species. The rate

at which egg counts varied with body length were compared to curves created with

volume, weight, and shell sizes.

III. Feeding experiments

Feeding experiments were performed with the gumboot chiton Cryptochiton

stelleri, and the black turban snail Chlorostomafunebralis in order to determine how

feeding scales with size. These experiments were conducted in flowing seawater tables at

the Oregon Institute of Marine Biology, with individual C. stelleri kept in 10 gallon

aquaria and C. funebralis in 50 mL plastic containers covered with 1.0 mm mesh. The C.

stelleri aquaria were supplied with flowing seawater via a single plastic tube going to

each tank, all from the same flowing seawater source. The C. funebralis containers all

floated freely in a single flowing seawater table. The red alga Mazzaella splendens is a

common food item for C. stelleri, so this alga was collected from Gregory Point,S km

south of Charleston, Oregon. Bull kelp Nereocystis luetkeana is a preferred food of C.

funebralis (Steinberg, 1985) and was used for this experiment. Both C. stelleri and C.

funebralis were provided with a constant supply of algae during April and May 201O.

For C. stelleri, specimen length, circumference, volume, and wet weight were

measured before the experiment began. Shell diameter (at the widest point) and total wet

weight were used to measure C. funebralis size. Feeding was determined by measuring

seaweed weight consumed by each organism. For both species, seaweed was patted dry

with paper towels and then weighed on a digital scale to the nearest 0.01 gram. It was
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placed in each tank or container, then two days later was patted dry again, weighed, and

new seaweed was added. Amount consumed was determined by subtracting the

experimental seaweed weight (after two days) from the original weight. Seaweed

controls were done to account for unrelated changes in seaweed weight and consisted of

empty tanks or containers containing seaweed patted dry and weighed by the same

process as the treatments.

Results

1. Growth curves

The formulas for all growth functions for linear and absolute measures of size

plotted against age are described in detail in Table 2. This includes the growth function

used to fit the curve using XLFit® (IDBS software), the correlation coefficient for each of

the curves, and all parameters for each function. Data used to create length-age curves

were taken from previous studies on each organism. Therefore, the age used in the

growth functions was an estimate based on published growth curves and the length of the

organism. In all instances, the linear measurements (length, test diameter, shell width)

result in curves that go up steeply at first and then quickly slow, nearing an asymptote as

linear growth slows down dramatically with size.

Using volume and weight resulted in differently shaped curves. Instead of size

approaching an asymptote, these models of size continued a steady increase regardless of

age. In Cfunebralis (Fig. 5.2C) and M galloprovincialis (Fig. 5.2E), volume and weight

accretion slow with age, but never approach an asymptote. For the urchins S. purpuratus
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Table 5.2. Functions describing relationships between age both linear (length, diameter)
and absolute (weight, volume) measures of size. For each species, the x and y variables
are listed, as well as the function that was fit to the data. Best fits were selected and
correlation coefficients were calculated using XLFit® 5 software. The function named
'Rogers-Bennett' is an indeterminate growth function published in Rogers-Bennett et al.
(2003).

Species y x Function Equation R2

Strongylocentrotus Test Diameter (mm) Shifted Power y""(38.5*((x - 0.965)0.213)) 1.00

purpuratus Volume (mL) Rogers-Bennett y=(75.9*(0.87-(e,OI62x)))+3.18x 1.00

Strongylocentrotus Test Diameter (mm) Rogers-Bennett y=(82.3*(l.0 1-(e,0310X)))+1.36x 1.00

franciscanus Weight (g) Rogers-Bennett y=(l98.6*(0.75-(e'031x)))+19.6x 1.00

Chlorostoma Shell Width (mm) Rogers-Bennett y""(21.1 *(0.943_(e'0403X)))+0.34x 1.00

funebralis Volume (mL) Rogers-Bennett y=( 14.2*(0.96-(e,o.040X)))_0.030x 1.00

Mytilus Shell Length (mm) Rogers-Bennett y=(65.7*(0.993-(e,L02 X)))+ 13.2x 1.00

californianus Volume (mL) Power Fit y""(-2.l6 + (l8.l5*(x L48))) 1.00

Mytilus Shell Length (mm) Rogers-Bennett y""(78.7*(0.98-(e,O.20x)))+0.246x 1.00

galloprovincialis Weight (g) Chapman y""(36.9*(( 1-exp((-0.24)*X)i27)) 1.00

Katharina Body Length (mm)
Age

Chapman y""( 109.4*(( 1-exp((_0.30)*X))L44)) 0.85

tunicata Volume (mL) Two Power Fits y""(1.61 *(x L24)) + (2.4*(x123
)) 0.85

Cryptochiton Circumference (cm) Rogers-Bennett y""(31.97*(l.0 1-(e,0085X)))+0.17x 0.96
stelleri Volume (mL) Rogers-Bennett Y""(-156.1 *(1.l-(e,0396X)))+40.2x 0.88

LoWa Shell Length (mm) Rogers-Bennett y""(16.4*(l.29-(e'088x)))+3.23x 1.00
pelta Weight (g) Rogers-Bennett y=(-14.4 *(0.15-(e'3.18x)))+2.22x 1.00

Lottia Shell Length (mm) Rogers-Bennett y=o(28.4*(0.99-(e,0446x)))+1.13x 0.98

persona Weight (g) Rogers-Bennett y""(-0.95 *(0.966-(e,83* IOE23)))+X 1.00

LoWa Shell Length (mm) Rogers-Bennett y""(l2.8*( 1.0 1_(e,L46X)))+1.78x 0.93

digitalis Weight (g) Rogers-Bennett y""(-0.236*( 1.37-(e,0007X)))+0.34x 0.99
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(Fig. 5.2A) and S. franciscanus (Fig. 5.2B), the rate at which volume or weight is added

goes up steeply at first and then slows to an apparently linear rate of increase at about 15

years of age. After the I5-year mark, S. purpuratus added approximately 16 mL of

volume per year (Fig. 5.2A), while S. franciscanus adds approximately 20g of weight per

year (Fig. 5.2B). Mytilus californianus (Fig. 5.2D), the chitons C. stelleri (Fig. 5.2G) and

K. tunicata (Fig. 5.2F), and the limpets Lottia pelta (Fig. 2H), L. persona (Fig. 5.21), and

L. digitalis (Fig. 5.21) increased their rate of absolute growth (volume) as they got older,

evidenced by upward trending volume-age curves.

Linear (width) and absolute (weight) measures of shell size varied in the same

manner as did the linear and absolute measurements of body size (Fig. 5.3). Shell width

and shell weight for K. tunicata (Fig. 5.3A) and C. stelleri (Fig. 5.3B) were plotted

against age, with best fitting equations shown on the graphs. Rate of increasing shell

width slows with age in both species while the rate of accumulating shell weight is linear

for K. tunicata (Fig. 5.3A) and gradually increasing for C. stelleri (Fig. 5.3B).

The length-volume plots created for all chiton and limpet species were best fit by

an indeterminate growth function presented by Rogers-Bennett et al. (2003) (Table 5.3).

All chiton (Fig. 5.4) and limpet (Fig. 5.5) species showed a very similar curve to the

length-volume relationship created in the 3-D models of chiton and limpet growth, in

which the shape ofthe 'organism' did not change as the model organism "grew" (Figs.

5.4,5.5).
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Table 5.3. Functions describing the body volume-body length relationship for four
species of chiton and the limpet Laffia scutum. Also included are volume-length data
from multidimensional models of a limpet and a chiton, created in Google Sketchup®.
Best fits were selected and correlation coefficients were calculated using XLFit®
software. The function named 'Rogers-Bennett' is an indeterminate growth function
published in Rogers-Bennett et al. (2003).

Species Y X Function Eauation R2

Chiton model Power Fit y=(-2.17+(26.36*(x°TI'T))) 1.0
C. stelleri Rogers-Bennett y=(210.8*(1.l7-(e,0006X))) + O.l20x 0.99
T lineata Body Rogers-Bennett y=(l3.3*(1.62_(e'L57x))) + 5.21x 0.89
K. tunicata Body Volume Rogers-Bennett y=(205.4*(1.l9_(e'OOIlX))) - O.17x 0.97
M muscosa Length (mL) Rogers-Bermett y=(94.09*(1.l 76-(e'o067x))) - 0.99x 0.95
Limpet Model (mm) Power Fit y=(0.118+(24.0 I*(X0335))) 1.0
L. scutum Rogers-Bermett y=(64.8*(1.04-(e·046X))) - 1.75x 0.88
L. pelta Body Rogers-Bermett y=(l3.1 *(1.63_(e'L55x))) - 8.28x 0.99
L. persona Weight Rogers-Bermett y=(l3.5*(1.71-(e,098X))) - 1.70x 0.99
L. difdtalis (g) Rogers-Bermett y=(l 0.7*(0.987-(e,162X))) -9.0x 0.96
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II. Size and reproductive output

Egg counts were related differently to linear and absolute measures of size. In all

species examined, fecundity increased exponentially relative to body length (Figs. 5.6

A,C,E,G,I). However, these fecundity estimates varied linearly with body volume in all

these species (Figs. 5.6 B,D,F,H,J). After comparison of hundreds of curve fits in

XLFit®, the best fit curves for fecundity-length were all two parameter exponential

growth functions and the best fits for fecundity-volume were all linear functions. All

equations and correlation coefficients are presented in Table 5.4.

As a result of the linear relationship between egg count and body volume, size at

first reproduction in females could be estimated using the x-axis intercept. Because

growth rates are known for K. tunicata and C. stelleri, age estimates for first reproduction

could be made as well (Lord, Chapter 4): first reproduction in K. tunicata occurs at two

years and in C. stelleri at 14 years old.

Table 5.4. Relationships between egg counts of different measures of body size. Most
relationships with body length are described by power functions, while most relationships
with body volume are best fit with a line. The x and y variables are given for each
function, as is the function type, formula, and correlation coefficient.

Species x y Function Type Formula R2

Tonicella Body Length Exponential y = 16.7 * e O.25x 0.90
lineata Body Volume Linear y=13022x-5.6*103 0.84
Mopalia Body Length Exponential y = (5.60*102

) * e O.072x 0.91
muscosa Body Volume Linear y=3413.4x-9.8*103 0.98
Katharina Body Length Egg Exponential y = (1.27*104

) * e 0035x 0.94
tunicata Body Volume Count Linear y=8000.0x-4.2*104 0.95
Cryptochiton Body Length Exponential y = (4.40* 103

) * e O.023x 0.95
stelleri Body Volume Linear y = 9914.2x - 4*106 0.75
Lottia Body Length Exponential y = (4.10*102

) * e 0.22x 0.93
scutum Body Volume Linear y = 74295x - 48010 0.87
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III. Feeding experiments

The weight of seaweed consumed per day by both Cryptochiton stelleri and

Chlorostomafunebralis was related exponentially to the length of the organism (Fig. 5.7)

(Table 5.5). Seaweed consumption plotted against length for C. stelleri was best fit by a

general exponential growth model (r2
= 0.96). The best-fit function for C. funebralis

shell width-feeding was a rational model (r2 = 0.92). The amount of seaweed consumed

plotted against body weight was best-fit by a linear function (r2 = 0.96) for C. stelleri and

by an indeterminate growth function published by Rogers-Bennett et al. (1992) (r2 =

0.89) for C. funebralis (Table 5.5).

Table 5.5. Relationships between body length or total width and the amount of algae
consumed per day for Cryptochiton stelleri (n = 30) and Chlorostomafunebralis (n = 26).
The best fit functions are given for each relationship, as well as the formula and
correlation coefficient. All data were best fit by curves in XLFit® 5.

Species x y Function Type Formula R2

Cryptochiton Body Linear y = 0.0061x + 0.23 0.96
stelleri Length

Total General y = 0.14 * e V.14X 0.96
Weight Algae exponential

consumed growth model
Chlorostoma Shell per day (g) Rogers-Bennett y = (0.89 * (0.31-(e -X))) 0.89
funebralis Width et al. +0.034x

Total Rational Model y = (-14 + (19x)) / 0.92
Weight ((1.0 + 76x) + (-2.0x2

))



0
9

8
~

CD
'-'" 1
>,
ro
o 6
.....
Q)

a.. 5
"'0
Q)

E 4
::J
if)
C
o 3U·
Q)

ro 2
CD

«

300

A. Cryptochiton stelJeri

6

Total Weight (g)

600 900

12 18
Body Length (em)

1200

o •

(> Tota! Weight
• Body Length

24 30

104

1

........
CD-
~ 0.8
o
'-
(J.)
0.

-g 0.6

E
:J;
(f)
c
8 0.4

CD
co
CD« 0.2

B. ChJorostoma funebralis o •

o Total Weight
• Shell Width

o 6 12 18 24 30

Shell Width (mm) or Body Weight (g)
Figure 5.7. Algae consumed per day plotted against both body length and total weight
(shell+soft tissue). Data for Cryptochiton stelleri (A) and Chlorostomafunebralis (B) are
best fit by the curves on these graphs, with equations shown in Table 4.



105

Discussion

Models of energy allocation and life history strategies are based on the

assumption that an important adaptive goal is to optimize lifetime reproductive output

("Ro) (Rinke et al., 2008). While maintenance, growth, and reproduction are major factors

in the energy budget of an organism, the balance between growth and reproduction is the

most commonly modeled aspect of energy allocation models (Heino and Kaitala, 1996,

1999; Kozlowski, 1996a,b; Jokela, 1997; Chase, 1999b; Heino and Kaitala, 1999;

Kozlowski and Gawelczyk, 2002). Organisms with indeterminate growth are more

difficult to model because they do not undergo a complete shift from growth to

reproduction as do organisms with determinate growth. While models of indeterminate

growth vary, they are primarily based on linear measures of growth and show a decrease

in growth rate as an increasing amount of energy is put towards reproduction, until the

model organism is hardly growing at all (Heino and Kaitala, 1996, 1999; Kozlowski,

1996a,b; Jokela, 1997; Chase, 1999b; Kozlowski and Gawelczyk, 2002).

However, this pattern of slowing growth with age is not apparent when weight or

volume is used instead of length or diameter to measure the size of the organism. All

organisms included in this study display indeterminate growth, as do many invertebrates

(Sebens, 1987; Kozlowski, 1996b; Rinke et aI., 2008), and all displayed a continuous

increase in size with age (Fig. 5.2). However, length-age curves (Fig. 5.2, Table 5.2)

appear as typical asymptotic growth curves and are the predominant type of growth

curves in the literature (Frank, 1965b,c; Kenny, 1969; Suchanek, 1981; Brown and

Quinn, 1988; Ebert and Russell, 1992; Ebert and Lees, 1996; Steffani and Branch, 2003;
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Grupe, 2006). The growth curves in Figure 2 plotting length against age show a clear

decrease in growth rate with age, similar to that expressed by energy allocation models of

indeterminate growth. Just like body length, linear shell growth slows dramatically with

age for the chitons K tunicata and C. stelleri (Fig. 5.3). This pattern has led to the idea

of an ontogenetic shift in the allocation of energy from growth to reproduction (Heino

and Kaitala, 1996; Kozlowski, 1996a,b; Jokela, 1997; Chase, 1999b; Heino and Kaitala,

1999; Kozlowski and Gawe1czyk, 2002; Kozlowski et ai., 2004).

However, this ontogenetic decrease in growth with age is not evident when

volume or weight are used as an index of size and are plotted against age (Fig. 5.2).

Volumetric or absolute growth did slow with age to some extent in Chlorostoma

funebralis (Fig. 5.2C) and Mytilus galloprovincialis (Fig. 5.2E), but not abruptly and not

to an asymptote. In sea urchins (Figs. 5.2A, 5.2B) volume and weight go up linearly with

age after about 15 years, when the length-age curve would be flattening out. This linear

growth rate later in life is especially relevant for red urchins, which can live over 100

years (Ebert and Southon, 2003). The California mussel Mytilus californianus (Fig.

5.2D), chitons Katharina tunicata (Fig. 5.2F) and Cryptochiton stelleri (Fig. 5.2G), and

limpets LOffia pelta (Fig. 5.2H), L. persona (Fig. 5.21), and L. digitalis (Fig. 5.2J) actually

had a volumetric growth rate that increased with age: they add more shell (Fig. 5.3) and

tissue (Fig. 5.2) each year when they are older than earlier in life. Similar patterns are

evident for shell deposition rate, as the shell weight of chitons K tunicata and C. stelleri

showed an increase in growth rate with age.
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Growth curves utilizing absolute measures such as volume and weight cannot be

fit with the asymptotic growth functions that are often used to fit length-based growth

curves (Ricker, 1975; Chen et ai., 1992; Ebert and Russell, 1992; Hood and Schlieder,

1992; Ebert and Lees, 1996; Essington et ai., 2001; Rogers-Bennett et ai., 2003; Steffani

and Branch, 2003; Lester et ai., 2004). The most common and best (Kozlowski et ai.,

2004) growth function used to model indeterminate growth in fish, mussels, urchins, and

other mollusks is the von Bertalanffy growth function, which has a built-in asymptote

(von Bertalanffy, 1938). The maximum length of the organism is used as the asymptote

for this growth function, so it cannot be used to plot continuous growth. As such, this

function cannot be used to plot the growth of indeterminately growing organisms when

absolute measures of size and growth are used.

The idea that some indeterminately growing organisms are not growing slower as

they get older is unexpected because the paradigm for indeterminate growth is that at

older ages, the vast majority of energy is shifted to reproduction (Heino and Kaitala,

1996; Kozlowski, 1996a,b; Jokela, 1997; Chase, 1999b; Heino and Kaitala, 1999;

Kozlowski and Gawelczyk, 2002; Kozlowski et aI., 2004). An extension of this is that

organisms with indeterminate growth have minimal growth later in life because they are

approaching an 'optimal size' (Sebens, 2002). However, if size is measured as weight or

volume, then the organisms in this study do not approach any optimal size because their

absolute size is continuously increasing instead of slowing to an asymptote. In addition,

changing body shape is not the reason for increasing volume and weight with age, as

evidenced by the length-volume relationships shown by chiton and limpet 3-D models
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(Fig. 5.1) that did not change proportions as they expanded (Figs. 5, 6). The growth

curves from the models were extremely similar to the curves for the live organisms in this

study and in the literature (Boolootian, 1964; Frank, 1965b; Kenny, 1969; Glynn, 1970),

indicating that changes in shape are not the reason why volume and weight continue to

increase at old ages while linear growth slows down.

Steady or increasing growth rate with age makes sense from an energetic

standpoint, because energy uptake is greater for larger organisms (Peters, 1983; Sebens,

1987; Chase, 1999a; Woodward, 2005), but this continuous growth is not apparent in

length-based curves, which are asymptotic even for indeterminately growing organisms.

In both C. stelleri and C. funebralis, food intake scaled linearly with weight (above 2g

body weight for C. funebralis), and went up exponentially with body length (Fig. 5.7).

Because both of these organisms grow approximately the same amount each year (Fig.

5.2) and their food intake is increasing, they are able to put more energy towards

reproduction. Cryptochiton stelleri does display linearly increasing fecundity with

volume (Fig. 5.6), and Chlorostomafunebralis gonad mass increases linearly with age as

well (Cooper, 2010).

The evolutionary implications of indeterminate growth are largely unaffected by a

change in the way size is measured, because the best strategy is still to maximize the

lifetime reproductive output (Re) of the individual (Kozlowski, 1996a; Kozlowski and

Gawelczyk, 2002; Rinke et aI., 2008). However, the weight and volume based growth

curves presented in this study indicate that reproductive output does not increase at the

expense of growth but rather as a result of a corresponding increase in energy intake.
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Organisms with indeterminate growth are able to increase annual reproductive output

because of growth rather than despite of it, since larger individuals can produce and

contain more gametes (Hines, 1982). By continuing to grow steadily throughout their

lives, the organisms in this study are able to keep increasing both food intake and

reproductive output. This theoretically allows a higher percent of the energy budget to go

to reproduction each year, but only because the budget itself increases each year and all

excess can go to reproduction, not because growth rate decreases with time.

In models of energy allocation and life history strategies, length-based growth

curves are used in combination with some measure of reproductive output to try to

estimate and predict the amount of energy allocated to growth and reproduction

throughout the life of the organism. Most studies of reproductive output measure

reproduction in terms of fecundity (Lively, 1986; Liang et aI., 2008; Jigyasu and Singh,

2010), gonad mass (Gilbert et aI., 2006; Doall et aI., 2008; Cooper, 2010), gonad index

(Joaquim et aI., 2008; Barbosa et aI., 2009), or gonadosomatic index (Jessop, 1987; Tafur

and Rabi, 1997; Cattaneo-Vietti et aI., 1997; Perez et aI., 2007). All of these measures of

reproduction account for the size of the whole gonad, not just one dimension of its size.

By using these measures of reproduction along with linear measures of body size, models

of life history strategies and energy allocation can produce results that are artifacts of the

allometric relationship between linear and absolute measures of size. This can result in a

disproportionate amount of energy appearing to go towards reproduction, as growth

appears to approach the 'asymptotic size' (Kozlowski et aI., 2004) or 'optimal size'

(Sebens, 2002).
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When growth studies are just concerned with the size or growth of an organism,

there is no problem with using linear measures of size. They are often less variable and

have been used effectively for several growth rate studies (Frank, 1965b,c; Kenny, 1969;

Suchanek, 1981; Brown and Quinn, 1988; Ebert and Russell, 1992; Ebert and Lees, 1996;

Steffani and Branch, 2003; Grupe, 2006). However, when growth functions are

incorporated into energetic or life history models, the means of measuring size becomes

vital because the goal of the model is to account for all of the growth and reproduction

for the organism involved. Using growth curves based on length or diameter only takes

into account one dimension of the size and growth of the studied organism. By using

these one-dimensional measures of size in conjunction with three-dimensional or absolute

measures of reproduction, models can inherently underestimate both growth and the

amount of energy allocated to growth. Only by taking into account absolute measures of

size can energetic and life history models accurately assess the life history strategy and

energy allocation of the study organism.
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CHAPTER VI

CONCLUDING SUMMARY

The goal of this thesis was to fill in gaps of what was known about the life history

of the gumboot chiton Cryptochiton stelleri. This species is charismatic (in my opinion)

and relatively abundant in the intertidal zone for thousands of miles along the west coast

ofNorth America but not much was known about its growth or larval development.

Because this species is the largest intertidal invertebrate herbivore throughout its range, it

could have a large ecological impact like other large chitons do. As such, it was

important to document the distribution of this species and determine how long they can

live and how much they can eat. The life history of an organism in any habitat is vital to

the ecology, reproduction, and evolution of that species, so I was drawn to investigate the

life history and energy allocation of several intertidal species in southern Oregon.

Chapter II documented the distribution of C. stelleri at several sites along the

southern Oregon coast, revealing that this species has a clumped distribution and prefers

to inhabit small coves within rocky intertidal sites. The distribution of C. stelleri could

be driven by recruitment patterns, though large-scale oceanographic conditions are not a

likely cause of successful cohorts because the sites studied did not share peaks in cohort

size. Chapter III described the larval development, metamorphosis, and juvenile behavior

of C. stelleri and contradicted a previous study on the larval development of this species.
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The metamorphosis cue for this species was found to be encrusting coralline

algae, which is ubiquitous on the southern Oregon coast and therefore is not likely

driving the distribution of C. stelleri. Chapter IV focused on the adult growth rates of C.

stelleri and the leather chiton Katharina tunicata, using growth rings in the valves of

these species to estimate age. These were found to be the oldest two known species of

chiton in the world. Chapter V examined unusual growth patterns in these chitons and

several other kinds of intertidal invertebrates with indeterminate growth and showed how

growth and energetic models differ depending on the measure of size that is used.

Each chapter answered several questions about C. stelleri or other intertidal

organisms but also raised several more questions that tied into the other chapters. The

life history of C. stelleri that is described in Chapters III and IV has a strong influence on

the distribution of this species described in Chapter II. Sporadic recruitment that is

strongly influence by local conditions is the most likely cause of the patchy distribution

of C. stelleri. The life history of this fascinating species brought up several intriguing

questions and served as a useful model organism for examining models of indeterminate

growth.
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APPENDIX A

SIZE AND REPRODUCTIVE OUTPUT DATA FOR CRYPTOCHITON STELLERL

TONICELLA LINEATA, KATHARINA TUNICATA, MOPALIA MUSCOSA, AND

LOTTIASCUTUM

Presented below are additional tables showing the raw data comparing different measures

of body size with the reproductive output of four species of chiton and a limpet found on

the southern Oregon coast.
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Table 1. Body and fecundity measurements of Tonicella lineata collected from Gregory
Point,S kIn south of Charleston, Oregon in February 2010.

Specimen Sex Body Body Body Valve 4 Valve 4 Number of
Number Length Weight Volume Width Weight Gametes

(mm) (g) (mL) (mm) (g)

1 F 17.9 0.4 0.4 8 0.03 540

2 F 22 0.7 0.79 11.5 0.06 3100
3 F 27.3 1.3 1.2 10.5 0.08 1680
4 F 17 0.3 0.39 7.1 0.02 980
5 F 26 1 1.1 11.3 0.05 10080
6 F 15.6 0.2 0.5 7 0.01 840

7 F 26 1.1 1.2 11.2 0.1 10240

8 F 26 1.2 1.2 12 0.08 1340
9 F 26.2 1.1 1.23 10.8 0.09 2540
10 F 21.5 0.5 0.6 8.5 0.04 1480
11 F 24.5 1 1.1 10.4 0.07 11380
12 F 22.1 0.9 1.15 11 0.07 200
13 F 25 1 1.18 10.6 0.08 1030
14 F 25.7 1 1.1 10.5 0.06 2240
15 F 27 1.2 1.4 11.2 0.08 940
16 F 21.5 0.5 0.7 8.5 0.03 3740
17 F 22.5 0.7 0.9 10.5 0.05 4800
18 F 21.6 0.6 0.8 10.3 0.05 4480
19 F 25.5 0.9 1.1 11.3 0.07 520
20 F 18 0.4 0.5 7.9 0.02 1880
21 F 27.8 1.1 1.35 11.4 0.08 660
22 F 22 0.7 0.9 10.3 0.04 5720
23 F 21 0.7 0.8 9.5 0.06 1420
24 M 22.5 0.9 0.75 10.9 0.05 8.16E+08
25 M 21.1 0.6 0.65 9.5 0.04 8.4E+08
26 M 21.9 0.6 0.59 8.1 0.04 1. 17E+09
27 M 25 1 0.8 10.3 0.07 1.97E+09
28 M 19.1 0.5 0.61 9 0.03 8.4E+08
29 M 22 0.8 0.73 11 0.07 9.04E+08
30 M 28 1.9 1.7 12.4 0.12 2.02E+09
31 M 27.4 1.4 1.45 11.9 0.1 1.86E+09
32 M 27.5 1.2 1.3 10.9 0.08 2.46E+09
33 M 19.7 0.5 0.53 8.8 0.03 2.4E+08
34 M 19 0.4 0.65 8 0.02 7.04E+08
35 M 24 0.9 1.1 9.9 0.07 3.36E+08
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Table 1 (continued-page 2)
Specimen Sex Body Body Body Valve 4 Valve 4 Number of
Number Length Weight Volume Width Weight Gametes

(mm) (g) (mL) (mm) (g)
36 M 13.1 0.1 0.3 5.3 0.01 2.24E+08
37 M 23.1 0.8 0.98 10 0.05 1.6E+09
38 M 24 1 1.15 10.7 0.08 1.52E+09
39 M 28.7 1.5 1.5 14 0.12 4.8E+08
41 M 22 0.8 0.9 10 0.05 3.84E+08
42 M 20.9 0.5 0.73 9 0.04 1.58E+09
43 M 31 1.9 1.75 14.1 0.12 8.64E+08
44 M 19.5 0.5 0.8 9.8 0.04 1.14E+09
45 M 23 0.7 0.8 10 0.05 1.19E+09
46 M 20.7 0.5 0.7 9.2 0.03 1.28E+08
47 M 30.5 1.7 1.55 12.8 2.03E+09
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Table 2. Body and fecundity measurements of Mopalia muscosa collected from Gregory
Point, 5 kIn south of Charleston, Oregon in February 2010.

Body Valve Body Body
Specimen Length Width Weight Volume Number of
Number Sex (mm) (mm) (g) (mL) Gametes

1 F 61 25 21.1 15 49000
2 F 60 23.5 20.3 14.5 14800
3 F 68 28.5 35.7 30 91600
4 F 53 22 15.1 12 29200
5 F 69 26 28.3 23 64600
6 F 58 22 17.3 12 17520
7 F 63 23.5 22.5 16 11480
8 F 37 14 4 3.5 3040
9 F 68 29.5 38.3 30 58400
10 F 38 19 6.6 5 1880
11 F 69 27.5 33.6 24 15280
12 F 56 23.5 15.6 10.5 32920
13 F 34 16 4.7 4 1240
14 M 40 15 5.3 3.5 2.02E+09
15 M 51.5 24 15.1 10 6.02E+09
16 M 36 14.5 6.6 4.8 5.63E+09
17 M 61.5 23 19.1 13 4.19E+09
18 M 68.5 25.5 25.7 18 5.79E+09
19 M 34 16 6.7 5.5 5.44E+08
20 M 58.5 24 21.9 16 8.35E+09
21 M 60 25 23.4 17 5.63E+09
22 M 42 17 8.4 7 5.63E+09
23 M 65 28 28.6 20 6.27E+09
24 M 63 26 23.5 15 1.5E+09
25 M 55 19.5 14.6 10 2.46E+09
26 M 51 18 12.1 8 5.28E+09
27 M 66 24 24.1 21 2.46E+09
28 M 60 24 18.4 12.5 3.46E+09
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Table 3. Body and fecundity measurements of Katharina tunicata collected from
Gregory Point, 5 km south of Charleston, Oregon in February 2010.

Specimen Sex Age Body Valve 4 Valve 4 Body Body Number
Number Length Width Weight Weight Volume of

(mm) (mm) (g) (g) (mL) Gametes

1 F 5 85 20.5 0.97 46.4 35 312240

2 F 3 56 15 0.37 12.4 9 24400

3 F 6 74 20 1 32.7 27 49680

4 F 4 54 15.5 0.44 11.7 9 1120

5 F 10 107 29 3.38 91.5 75 486000

6 F 6 78 20.5 0.92 42.2 30 233040

7 F 5 67 17.5 0.63 25.6 22 110880
8 F 9 94 27 3.05 69.9 50 98640

9 F 8 86 28 2.52 66.8 50 139440

10 F 3 52 15.5 0.42 13.8 11.5 320

11 F 6 88 23 1.47 59.9 45 390000
12 M 8 94 25 1.87 66.4 60 2E+ll
13 M 9 97 27.1 1.87 79.5 65 2E+ll

14 M 12 101 29 2.53 84.5 75 2E+ll
15 M 12 103 31 3.59 104.8 85 2E+ll
16 M 12 101 30 2.98 103.3 95 4E+ll
17 M 10 105 28 2.31 84.7 70 3E+ll
18 M 5 63 16 0.52 16.3 14 4E+09
19 M 16 103 30.5 3.14 108 85 3E+ll
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Table 4. Body and fecundity measurements of Cryptochiton stelleri collected from
Gregory Point,S kIn south of Charleston, Oregon in February 2010.

Specimen Sex Age Body Body Body Body Valve 8 Valve 8 Number of
Number Length Circ. Weight Volume Width Weight Gametes

(em) (em) (g) (mL) (mm) (g)

1 F 28 7.1 55 13.6 14 0
2 F 23 12.6 180 169 150 0
3 F 32 23.5 347 1020 858 4.7 15.18 5577000
4 F 29 19.8 317 740 643.5 4.3 9.44 1659000
5 F 23 25 372 1140 990 5.1 17.4 6300000
6 F 27 22.5 333 940 808.5 4.6 13.4 2775000
7 F 29 20.5 330 830 726 4.4 9.55 3645000

8 F 18 23.2 323 870 759 4.3 9.92 3455000

9 F 28 24.5 335 830 709.5 5.1 15 2562000
10 F 23 18 300 600 528 3.8 6 2685000
11 F 23 27 340 920 775.5 4.7 12.83 3021000
12 F 22 25 334 780 643.5 4.5 13.52 1032000

13 F 28 21.3 279 520 412.5 4.4 9.04 42000
14 F 23 20.7 324 750 660 4.4 9.52 2937000
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Table 5. Body and fecundity measurements of Lattia scutum collected from Gregory
Point, 5 k:m south of Charleston, Oregon in February 2010.

Specimen Sex Body Length Shell Body Body Volume Number of
Number (mm) Weight (g) Weight (g) (mL) gametes

1 F 14.3 0.13 0.3 0.8 2900
2 F 14.6 0.1 0.3 0.75 2680
4 F 14.5 0.12 0.3 0.7 1980
7 F 20.2 0.44 1.1 1.15 49080
12 F 20 0.4 1 1.1 20420
13 F 17.8 0.28 0.8 1 45100
14 F 15.5 0.15 0.4 0.8 8860
15 F 24 0.6 1.7 1.8 81800
22 F 19.1 0.3 0.8 1.1 34200
23 F 16.5 0.2 0.6 0.68 6920
3 M 12.1 0.07 0.16 0.65 2E+08
5 M 19.5 0.35 0.8 1.1 3E+09
6 M 14.5 0.13 0.3 0.7 lE+09
8 M 20 0.28 0.8 1.15 2E+09
9 M 17 0.29 0.6 1 lE+09
10 M 11.2 0.04 0.1 0.6 7E+08
11 M 17.2 0.24 0.6 1 2E+09
16 M 14.3 0.3 0.7 9E+08
17 M 18.5 0.31 0.75 1 3E+09
18 M 11.9 0.06 0.1 0.5 2E+08
19 M 19.1 0.33 0.8 1.2 2E+09
20 M 14.8 0.17 0.4 0.6 lE+09
21 M 18 0.6 0.8 2E+09
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APPENDIXB

DIFFERENT MEASURES OF SIZE FOR SEVERAL INTERTIDAL

INVERTEBRATES

These data show the sizes of different intertidal organisms when size is measured in

linear terms such as length or diameter and absolute terms such as weight or volume.

The relationships between linear and absolute measures of size were combined with

previously published linear growth rate data to create growth curves based on absolute

size in Chapter V. For all organisms included, when they are small, a little increase in

length is accompanied by a little increase in weight or volume. When the organism is

large, a little increase in length is accompanied by a large increase in weight or volume.



Table 1. Shell length and shell weight of
Acmaea mitra collected from Gregory
Point, Oregon.
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Table 2. Shell length and shell weight of
Callianax biplicata shells collected at
Yoakim Point, Oregon.

Shell Length
(mm)

14
15
18
24
25
26
27
27
28
32
32
33

33.5
37

39.5

Shell
Weight (g)

0.38
0.44
0.71
1.54
1.7

2.22
2.88
3.25
3.18
5.86
7.89
3.19
5.78
8.49
9.52

Shell Length
(mm)

0.79
0.86
1.69
1.78
1.95

2

2
2

2.07
2.07
2.1

2.13
2.15
2.28
2.34
2.4
2.4
2.5
2.6

2.75

Shell
Weight (g)

0.05
0.07
0.54
0.66
0.9

0.84
0.89
1.03
1.31
1.08
1.13
1.26
1.2
1.4

1.61
1.61
1.38
1.57
2.07
2.73



Table 3. Shell length and shell weight of
Nucella lamellosa collected from
Yoakim Point, Oregon.
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Table 4. Shell width and body volume
of Chlorostomafunebralis collected
from Gregory Point, Oregon.

Shell Length (mm)

16
16.3
17

22.3
23
24

28
32.2
34
34

37
37.4
39.2
40.5
41.9
45

46.5
47

47.5

49
50.9

Shell WeightJEL

0.92
0.8
0.59

1.55

1.63
2.09

2.2
4.6
5.43

5.26
5.22

5.2

6.23
5.59

7.26
9.62
10.98
8.88

10.53
11.03

13.13

Shell Width (g)

12.5
13.1
14.7

15
15.4
15.7
17

19.3
20
20

20.7

22
22.5
23.5
25.5
27.6
28.7
29

29.3
29.5
30

30.2

Body Volume (mL)

0.4
0.5
0.7
0.8

0.9
0.9
1.25

2
2.3
2.1
2.4

3.2
3.5
4.4

6.5
5.2

7.2
9

8.6
9

9.3
8.5
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Table 5. Test diameter and total volume
of Strongylocentrotus purpuratus at
Gregory Point, Oregon.
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Table 6. Test diameter and total volume
ofStrongylocentrotus franciscanus at
Gregory Point, Oregon.

Test diameter (mm)
22.1
32.5
38
42
46
47

49.5
49.5
59.5
63

67.5
68
70

70.5
72

72.5
74
76
77

Volume (mL)
4
12
20
27
33
35
43
40
90
85
98
101
115
107
135
130
130
150
145

Test diameter (mm)

105
136
137
125
117
102
143
124

131
137
120

118
44

Body Weight (g)

360
780
805
700
680
400
1030
700
800
1000
640
600
37



Table 7. Shell length and total volume
of Mytilus californianus at Gregory
Point, Oregon.
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Table 8. Shell length and total weight of
Mytilus galloprovincialis on the floating
docks in Charleston, Oregon.

Shell Length (mm)

16
18
28
29

32.5
37
39

41.5
42
46
50
52

62.5
66.5
70.5
87
84
91

98.5
105
130
123

Total Volume (mL)

0.5
1

2.5
2.5
3.5
5
6

7.5
8
10

11.5
14
19
26
33
58
57
65
70
100
155
137

Shell Length (mm)

60
54
60
60
47
48

53
43
42
40
43

33.5
30
28
24
22

23
22

Total Weight (g)

18
18.4
26.8
20.9
13.4
11.1

13.6
10
8.2
7.5
8.5
4

3.5
2.7
2

1.2
1.4
1.4



Table 9. Shell length and total weight of
Loffia pelta at South Cove, Cape Arago,
Oregon.
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Table 10. Shell length and total weight
of Loffia persona at South Cove, Cape
Arago, Oregon.

Shell Length (mm)
22.5
21.2
17.6
25.5
25
30
18

22.9
39
17
21

Total Weight (g)
1.33
1.19
0.64
2.46
2.45
4.78
0.61
1.56
10.1
0.64
1.1

Shell Length (mm)
26.8
13.5
20.9
30.4
24.9
24.6
18
35
36
22

21.6
25
27
41

43.4
31.4

Total Weight (g)
2.36
.29
1.06
5.0

2.05
2.43
.84

6.24
7.26
1.54
1.29
2.13
2.49
10.53
12.24
5.58



Table 11. Shell length and total weight
of Lottia digitalis at South Cove, Cape
Arago, Oregon.
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Shell Length (mm)
19.2
7.7
6.3
14

16.3
16.9
15.7
16.8
14.7
12

15.4
16.2
17.7
18.3

Total Weight (g)

0.86
0.07
0.05
0.53
0.52
0.81
0.61
0.73
0.40
0.2

0.54
0.65
0.79
0.73



127

APPENDIXC

JUVENILE CRYPTOCHITON STELLERI GROWTH DATA

The following tables detail the growth ofjuvenile Cryptochiton stelleri that were raised

in flowing seawater tables at the Oregon Institute of Marine Biology. Multiple measures

of size are shown, including length, width, and body weight. The smallest individuals

were approximately 8 mm in length when monitoring began. Specimens were raised

until they were approximately one year old in April 2010. Additional information about

C. stelleri adult growth and life history is described in Chapter IV.
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Table 1. Individual juvenile Cryptochiton stelleri growth data in terms of body length,
body width and body weight. Individuals were kept in a mesh container in a flowing
seawater table at the Oregon Institute of Marine Biology from their collection date until
the end of March 2010. Juveniles were fed the red leafy alga Cryptopleura.

Specimen
Number

1

2
3
4
5
1
2
3
4

5
1
2
3
4

5
1
3
4
5
1
3
4
5
1
3
4
5
1
3
4
5
1
3
4

Date
8/1/09
8/1/09
8/1/09
8/1/09
8/1/09

8/14/09
8/14/09
8/14/09
8/14/09
8/14/09
8120/09
8120/09
8120/09
8120/09
8120/09

9/6/09
9/6/09
9/6/09
9/6/09

9/17/09
9/17/09
9/17/09
9/17/09
9123/09
9/23/09
9123/09
9123/09
10/7/09
10/7/09
10/7/09
10/7/09

10126/09
10/26/09
10/26/09

Length (mm)

8.8
7.68
11.2

12.64
48

10.08
9.28

12.16
16.16

53
10.24
9.472

12
14.72

55
10.56
12.48
16.48

56
10.72
12.96

16.8
55.5

12
12.48
17.12

58
11.2
13.6

17.76
63

11.4
12.4

18

Width (mm)
3.76
3.52
4.48
5.92

34
4.8

4.64
5.92
7.04

38
4.96
4.64

4.8
6.64

32
6.56

5.6
4.16

40
5.28

5.2
7.68
38.1
5.76
5.44
8.32

38
5.12
5.44

8
39

6.3
7

9.2

Weight (g)
0.02666
0.01716
0.05815
0.08599
6.43734
0.04136
0.03165
0.07587
0.19034
8.86938
0.04352
0.03382
0.07269
0.14074
9.99823
0.04807
0.08252

0.2028
10.5982
0.05047
0.09323
0.21582
10.2952
0.07269
0.08252

0.2294
11.872

0.05815
0.1 0896
0.25831
15.5123
0.06158
0.08082
0.26977
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Table 1 (continued-page 2)
Specimen

Number Date Length (mm) Width (mm) Weight (g)

5 10/26/09 63 47 15.5123
1 11/2/09 12.9 5.8 0.09184
3 11/2/09 13.4 7.4 0.10386
4 11/2/09 18.5 10.2 0.29477
6 11/2/09 14.8 7.5 0.14323
1 11/11/09 13 7.2 0.09417
3 11/11/09 13.4 8.2 0.1 0386
4 11/11/09 19.1 11.1 0.32682
5 11/11/09 63 48 15.5123
6 11/11/09 15.3 8.4 0.15948
1 11/18/09 13.5 6.7 0.10639
3 11/18/09 13.2 8.4 0.09893
4 11/18/09 20 11.6 0.37931
5 11/18/09 59 45 12.5468
6 11/18/09 16.6 8.4 0.20762
1 12/2/09 14.4 7.5 0.13109
3 12/2/09 15.2 8.5 0.15614
4 12/2/09 22 13.3 0.51626
6 12/2/09 17.9 8.7 0.26495
7 12/5/09 12.8 7 0.08956
1 12/9/09 13.9 8.4 0.11693
3 12/9/09 17.6 9.8 0.25086
4 12/9/09 23.2 14 0.61301
6 12/9/09 18.6 10.2 0.29995
7 12/9/09 14.7 8 0.14013
1 12/16/09 14.6 8.4 0.13707
3 12/16/09 15.4 9.7 0.16288
4 12/16/09 22.7 13.4 0.5713
6 12/16/09 16.6 11.7 0.20762
7 12/16/09 13.2 9.1 0.09893
1 12/30/09 16.2 8.4 0.19187
3 12/30/09 16.5 8.2 0.2036
4 12/30/09 23.8 15.1 0.66578
6 12/30/09 18.2 12.6 0.27959
7 12/30/09 15 8.6 0.14959
1 1/6/1 0 17 9 0.22424
3 1/6/10 15.4 10.2 0.16288
4 1/6/10 23.8 16 0.66578
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Table 1 (continued-page 3)
Specimen

Number Date Length (mm) Width (mm) Weight (g)

6 1/6/10 21 12 0.44414
7 1/6/1 0 15.6 8.5 0.16982
1 1/13/10 17.4 9.7 0.24176
3 1/13/10 18.3 10.5 0.28459
4 1/13/10 25 17 0.78059
6 1/13/10 22 13 0.51626
7 1/13/10 16.9 9.3 0.22
1 1/20/10 17.5 9.5 0.24628
3 1/20/10 17.7 10.7 0.2555
4 1/20/10 24.5 17.6 0.73122
6 1/20/10 22 14.7 0.51626
7 1/20/10 16.5 10.5 0.2036
1 1/27/10 19 9.8 0.32132
3 1/27/10 17.6 12.4 0.25086
4 1/27/10 25.5 17.9 0.83223
6 1/27/10 22.9 13.2 0.58774
7 1/27/10 17.6 10 0.25086
1 2/3/10 18.1 12.1 0.27465
3 2/3/10 17.3 12.3 0.23729
4 2/3/10 27.3 18.2 1.03764
6 2/3/10 24 15 0.68405
7 2/3/10 18.2 11.2 0.27959
8 2/3/10 19.3 11.7 0.33802
1 2/10/10 21 11.5 0.44414
3 2/1 0/1 0 19.9 12.8 0.37321
4 2/1 0/10 27 21.4 1.00122
6 2/10/10 25 15.9 0.78059
7 2/1 0/10 19 12.3 0.32132
8 2/10/10 20.3 12.4 0.39802
1 2/17/10 18.9 13.4 0.31588
3 2/17/10 20 13.4 0.37931
4 2/17/10 29 20.3 1.26154
6 2/17/10 25 17.1 0.78059
7 2/17/10 19 13.5 0.32132
8 2/17/10 19.7 13.5 0.36121
1 2/24/1 0 19.8 13.1 0.36717
3 2/24/10 20.7 14.6 0.42395
4 2/24/10 29 20.8 1.26154
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Table 1 (continued-page 4)
Specimen

Number Date Length (mm) Width (mm) Weight (g)
6 2/24110 26.8 17.6 0.97743
7 2/24110 19.8 14 0.36717
8 2/24110 22 13.3 0.51626
1 3/3110 20 14.8 0.37931
3 3/3/10 20.5 15.2 0.41084
4 3/3110 29.3 22.5 1.30424
6 3/3110 29 18.2 1.26154
7 3/3/10 21.6 14.6 0.48651
8 3/3110 22.5 15 0.55518
1 3110110 21.3 14.8 0.46499
3 3/10110 23.3 12.7 0.62159
4 3110110 30.5 24 1.48504
6 3110110 28.5 19 1.19254
7 3110110 22.4 14.2 0.54724
8 3110110 23 15.3 0.59608
1 3/24110 25 15.3 0.78059
3 3/24110 23 14.7 0.59608
4 3/24110 32 24 1.7345
6 3/24110 33 20.2 1.91601
7 3/24/10 23.5 15 0.63902
8 3/24110 25 15.5 0.78059
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APPENDIXD

ADDITIONAL AGE-FREQUENCY DATA FOR CRYPTOCHITON STELLERI

POPULATIONS ON THE SOUTHERN OREGON COAST

These figures show age-frequency data similar to that shown in Chapter II, but from

different seasons. Surveys were done in July and August 2009, November and December

2009, and May and June 2010. The histograms shown in Chapter II are just from May

and June 2010. Included in this section are data from the other two seasons. Size­

frequency histograms do not change much within a site between dates because of the

slow growth of Cryptochiton stelleri, but there is some variation due to different

individuals being found during each survey. For all seasons, there is little overlap in peak

cohorts between sites that are far away from each other, suggesting that recruitment and

survival varies on a local scale.
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Figure 1. Age-frequency histograms for five sites along the southern Oregon coast
during July and August 2009. Data shown were collected during intertidal surveys of
these sites on tides below -0.3 m MLLW. (A) South Cove of Cape Arago; (B) Sunset
Bay State park; (C) Middle Cove of Cape Arago; (D) Cape Blanco State Park; (E)
Lighthouse Island.
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Figure 2. Age-frequency histograms for three sites along the southern Oregon coast
during November and December 2009. Data shown were collected during intertidal
surveys ofthese sites on tides below -0.3 m MLLW. (A) South Cove of Cape Arago; (B)
Sunset Bay State park; (C) Middle Cove of Cape Arago.
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