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Vve study a certain quotient of the Iwahori-Hecke algebra of the symmetric group Sd, called

the super Temperley-Lieb algebra STLd. The Alexander polynomial of a braid can be computed

via a certain specialization of the Markov trace which descends to STLd. Combining this point

of view with Ocneanu's formula for the Markov trace and Young's seminormal form, we deduce a

new state-sum formula for the Alexander polynomial. We also give a direct combinatorial proof of

this result.
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CHAPTER I

INTRODUCTION

1.1. Historical Background

The Alexander polynomial has a history dating back to the early days of algebraic topology.

The original definition ([1]) came from analyzing the group of deck transformations on the infinite

cyclic cover of the complement of a knot. In the same paper, Alexander reduced the calculation of

the invariant to a combinatorial procedure using knot diagrams. Decades later, Conway introduced

a special normalization of the invariant ([9]) extended to links, denoted \7(L), that was recursively

computable using a skein relation on the diagrams (see Figure 1.1).

x x ) (
Lo

Figure 1.1: The Conway skein relation:

Following the discovery by Jones of a new invariant ([23] and also [10, Chapter 9] for

an interesting account of the discovery), there was an explosion of interest in the industry of

producing link invariants using skein theories. \Vithin a year, a two-variable polynomial invariant

was simultaneously introduced by several independent groups of authors, all of whose names are

celebrated in the acronym: HOMFLYPT ([14] and [34]). Using the skein theoretic approach, we

first pass to a diagram of the link, which involves the choice of a generic projection onto a plane.

The verification that a function on these diagrams is well-defined as a function of the original link

reduces to the formal task of checking invariance under the Reidemeister moves. Much of the

geometry of three dimensional space is lost in the passage to a diagram, but the trade-off is that

many of the tools of representation theory which have no obvious connection to the original link
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can be brought to bear. The menagerie of quantum invariants that exists today comes about in

this manner.

In the seminal work of Reshetikhin and Turaev ([36]), they construct quantum link in­

variants as tensor functors from the tensor category of colored tangles to the category of modules

over the quantum group Uv(g), for 9 a simple complex Lie algebra, using the quasi-triangular Hopf

algebra structure on Uv(g) and choosing representations to label components. Specifically, a (d, d')­

tangle connecting d' points on the bottom to d points on the top produces a Uv(g)-homomorphism

VVP1 ® ... ® W"d' --'I vV)\] ® ... ®W'\d' where the modules Wllj and W,\., are determined by the colors

on the strands. In this context, links appear as (O,O)-tangles, as they have no endpoints, and so

link invariants are Uv (g)-module endomorphisms of the ground field C(v). A family of polynomial

invariants Pn (n :.:-: 2) arises from the choice of 9 = E[(n) and the coloring of each component of the

link by the standard n-dimensional representation. Each of the invariants Pn are specializations

of the HOMFLYPT polynomial at x = vn (see 11.1), and they satisfy the skein relation:

(1.1)

At n = 1 the specialization is trivial, but the n = 0 case is evidently the Alexander polynomial

(z = v - V-I in Conway's normalization \l(L)). However, to construct the Alexander polynomial

as a quantum invariant, a suitable substitute for the meaningless £1[(0) is required.

One approach is to use the restricted UdE[(2)), where ( = p, labeling each component

with the entire family of 2-dimensional modules W,\, A E C, and recovering the invariant in terms

of A. Another approach is to use the superalgebra Uv (g [(111)) with a generic v, taking W to

be its (111 )-dimensional standard module. In either case, the quantized deformation admits a

quasi-triangular Hopf (super-)algebra structure and hence a link invariant (see [40], [28], or [37]).

However, there are some subtleties to these two alternative constructions, the main problem being

that the quantum invariant evaluates to zero on any link. This is reflection of the fact that the

quantum dimension vanishes on W for either algebra. The solution is to cut open the link to form

a (1, I)-tangle, so that the Reshetikhin-Turaev functor produces an endomorphism of W, which

by Schur's Lemma is a scalar.



3

w

1
w

(1.2)

Figure 1.2: A (1, I)-tangle and its associated endomorphism of W.

1.2. Summary of Thesis

In this dissertation, we consider a third alternative, indirectly related to the g[(111)­

approach, but we work only with braids, which is Jones' approach via Markov traces ([24]). There

is essentially no loss of generality, as any link has a diagram presenting it as the closure of a braid.

In Chapter II, we recall some of the basics regarding links, braids, and invariants. The

HOMFLYPT polynomial is constructed from representations of the braid group, factoring through

the Iwahori-Hecke algebra Hd (as in [24], although our notations are substantially different). Also,

a converse is presented: an invariant of links defined on braids that satisfies a skein relation

necessarily factors through the Hecke algebra. This latter perspective, namely that skein relations

determine certain algebras, is a motivation for the results in Chapter III. The remainder of the

chapter is devoted to a particular example: the Jones polynomial. We introduce the Temperley­

Lieb algebra T Ld, both as an explicit quotient of the Hecke algebra and as a diagrammatic algebra

carrying a particularly elegant trace. There are no new results here beyond the considerable task

of gathering this wealth of constructions and formulae into one consistent notational framework.

The groundwork is laid for the following chapters where certain analogous results are derived for

the Alexander polynomial.

In Chapter III, we look at special cases of Schur-Weyl duality between H d and Uv(g[(mln))

on tensor space. In particular, the representations of the Heeke algebra from Chapter II are

explicitly connected to the Reshetikhin-Turaev intertwiners. The Temperley-Lieb algebra appears

here as the centralizer algebra ofUv(g) in End(VI8J·· 'I8JV) for g[(210) = g[(2), or equivalently .5[(2).

Hence, using results of Jimbo ([21] and [22]), building on the classical work of Schur ([38]) and

Weyl ([41, Chapter III]), TLd is presented as a product of matrix algebras indexed by partitions

of at most two rows. As the Wedderburn components for Young diagrams of more than two rows

form a cellular ideal in Hd' the quotient T Ld inherits the cellular structure from Hd. In fact, T Ld

has a natural diagram basis that is easy to express in terms of the standard basis for Hd; hence,
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the Markov trace on nd that produces the Jones polynomial can be calculated diagrammatically.

The Kauffman state-sum for the Jones polynomial comes directly from this formalism for TLd .

One of the goals of this work, only partially realized, is to find an analogous formalism for the

Alexander polynomial.

Alas, the story for the Alexander polynomial is not so simple. The Super Temperley-Lieb

algebra STLd is defined as the intertwiner algebra for the quantum group associated to g[(111).

Hence, the Markov trace on nd giving the Alexander polynomial on braids factors through STLd.

This algebra has Wedderburn components indexed by hook partitions. However, the ideal that

consists of components that are not hooks is not cellular in the dominance order on partitions, and

so STLd does not inherit the cellular structure from nd and the map nd --» STLd is quite subtle.

\Ve can obtain a basis for STLd' but it has no clear connection to the standard basis for nd, and so

it is not obvious how to calculate the Markov trace directly. In fact, because the transition matrix

from the standard basis for nd to our basis for STLd is only defined upon extending scalars to iQl(v),

it is no longer clear that the Alexander invariant is a Laurent polynomial in Z[v, V-I]. The main

result in this section is a presentation of the relations for STLd using some of the combinatorics

of the symmetric group adapted to nd.

This is why in Chapter IV we start again using Young's seminormal form for nd. To

begin, STL d is presented as a diagram algebra in the basis of matrix units of its Wedderburn

components. As a result, a lot of complicated information is packaged in the idempotents in nd

that project onto STLd. Using character formulas of Geck and Jacon ([16], [17]) for the irreducible

representations of nd and building upon the work of Jones ([24]), a combinatorial procedure is

deduced for calculating the trace, and hence the Alexander polynomial, from a braid diagram

directly. This state-sum has the appeal of being computable in terms of certain labeled diagrams

(the basis for STLd) that come from resolving crossings in the original braid. The trade-off for

changing basis so drastically is the aforementioned difficulty that the formula gives the Alexander

polynomial as a sum of rational functions involving quantum integers, obscuring the fact that the

invariant is actually a Laurent polynomial.

In Chapter V, we reprove the main theorem combinatorially. By analyzing possible states

in the expansion of a braid diagram, we are able to check invariance under the Markov moves

directly. Moreover, agreement with the Alexander polynomial is verified. This "naive" proof has

an unexpected advantage: it may be possible to extend the state-sum formula to the multivariable



5

Alexander polynomial using colored braids, as in the work of Murakami ([33]), using the combi­

natorics directly. In a different direction, we hope to recover the Alexander invariant for virtual

links ([27]) as a state-sum in an analogous fashion.
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CHAPTER II

BRAIDS, LINKS, AND THE JONES POLYNOMIAL

ILL Links and Braids

II.l.l. Links

We recall some standard notions and establish some conventions (see [25, chapter 2] or [10,

chapter 1] for details). A link is a smooth embedding SI u· .. U SI ----> S3. Whenever it is convenient

and does not cause confusion, we also refer to the image of the embedding as the link. All links

are oriented. A link with one component is called a knot. An isotopy of links is a smooth path in

the space of embeddings, or equivalently a smooth embedding (SI U ... U SI) x I ----> S3. Isotopy

forms an equivalence relation whose equivalence classes are called link types. For our purposes, a

link invariant is a function on link types taking values in a ring.

A link diagram is a four-valent graph embedded in S2 along with the choice of over- and

under-crossing strands at each vertex. An isotopy of link diagrams is an isotopy of the underlying

graphs that preserves the crossing data. By compactness, we may assume that the diagram embeds

into a disk in lR?2 (which is how links are usually drawn), but we allow for isotopies of link diagrams

that utilize the connectivity of the sphere S2. A link diagram specifies a link type in a natural way:

compose the planar embedding of the link diagram with the standard embedding lR?2 '----> lR?3 and

locally perturb the two strands at each crossing in opposite directions normal to the plane. Thus,

we have a well-defined surjective map called realization V ----> 12, where V is the set of link diagrams

up to planar isotopy and £ is the set of link types. Using standard transversality arguments, there

exist generic projections JR3 ----> II, where II is a plane, under which the image of a link is a link

diagram (there are only finitely many transverse double points). Thus, we have sections £ ---->V of

the realization map. The fibers of the realization map are described by Reidemeister's theorem.

Theorem 11.1.1. Two link diagrams realize isotopic links if and only if they are related by a
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sequence of planar isotopies and the following three local moves:

(R I) P " "110

(R II)

(R III)

II. 1. 2. Braids

There are many equivalent ways to define braids (see, e.g. [7] or [25, chapter 1]). A

geometric braid with d strands is a smooth embedding of of d disjoint arcs in ]R2 x [0, 1] such

that the endpoints of each strand have coordinates (i, 0, 0) and (7l"(i), 0,1) for some permutation

7l" E Sd and the height function (projecting onto the third coordinate) has no critical points. Bya

geometric braid isotopy, we mean an isotopy of the ambient Euclidean space keeping the endpoints

of the strands fixed. When we speak of a braid, we mean an isotopy class of geometric braids. Let

Bd denote collection of braids on d strands.

By analogy with link diagrams, we consider geometric braid diagrams consisting of im-

mersed arcs in the strip ]R x [0, 1] connecting points (i, 0) to (7l" (i), 1) for i = 1, ... , d satisfying

the conditions that projection onto the second coordinate has no critical points and that self-

intersections are transverse. Each transverse double point in a geometric braid diagram is called a

cTOssing and carries with it the data of which strand passes over and which strand passes under.

There is an appropriate notion of isotopy of geometric braid diagrams that allows one to speak

simply of braid diagrams, meaning isotopy classes.

Braids naturally carry the structure of a group whose operation is given by placing dia-

grams on top of one another. We now define the braid group abstractly, following Artin [3]. Fix

d :::: 1. Let I:d = {erl, ... , erd-l} be the set of braid generators, and let I:;; denote the set of words

in the symbols I:d U I:dl. Then, Bd is the braid group on d strands, that is, the quotient of the
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free group on ~d by the relations

O"jO"i when Ii - jl > 1.

For each d, there is a canonical map ~d ---» Bd . The map e : Bd ---> Z, O"i f-+ 1 induces an

isomorphism of groups Bd/[Bd, Bd] ---> Z. The image of 0 under Bd ---> Z is called the exponent sum

of o. Also there is a map Bd ---> .c, 0 f-+ 0, defined by closing a braid into a link by connecting the

top of strand i to the bottom of strand i for each i (see Figure II.1.2).

Figure 11.1: A diagram of the braid 0 = 0"2 10"i and its closure o.

Alexander showed in [2] that this map is surjective by giving an algorithm that transforms a

link diagram, using the Reidemeister moves, into an equivalent diagram that is evidently the closure

of a braid. We call two braids (not necessarily on the same number of strands) link equivalent if

they form isotopic links after closure. In [31], Markov made the following characterization of this

equivalence relation on Ud21 Bd' although the first published proof was due to Birman ([6]).

Theorem 11.1.2. Link of equivalence of braids is generated by the following two local moves.

(M I)

(M II)

(30,

where i : Bd '---+ Bd+l is the natural inclusion defined on generators by O"i f-+ O"i.
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(3

<-------->ITL

Figure II.2: The cyclic Markov move.

J J1 1
...

l~Cl' <--------> Cl'

T "If 1'-,

Figure IL3: The stabilization Markov move.

II.2. Representations of the Braid Group and the Iwahori-Hecke Algebra

In this section, we introduce the Iwahori-Hecke algebras of type A, and discuss their

central importance in knot theory. Initally, we will take the perspective that a link invariant

satisfying a skein relation akin to Ll is given, and use it to produce a particular quotient of the

braid group algebra that the invariant factors through. Afterwards, we take the Hecke algebra as

a starting point, and following Jones ([24]), show how to recover those link invariants (satisfying

skein relations) from the characters of its representations.

II. 2. 1. From Link Invariants to Algebras

Fix a commutative ring IF and consider a link invariant Q taking values in IF. By composing

with the closure map, for each d we get a linear function Qd : lFEd ----7 IF, defined on braids by

where lFEd is the group algebra of the braid group. Such a map Qd is actually a trace on account

of the first :Markov move, so the linear subspace
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is a two-sided ideal, maximal among two-sided ideals on which the trace vanishes. Let Ad(Q) =

IFB,d ker Qd, and, by abuse of notation, let a denote the image of a under the canonical projection

IFBd -» Ad(Q). Note that Qd descends to the trace Q d : Ad(Q) ---+ IF that agrees with the original

link invariant in the sense that Qd(a) = Q(a) for any braid a E Bd. Furthermore, Ad(Q) is the

smallest quotient of IFBd through which the trace factors.

Now, suppose that IF = Z[x±1, v±1 , (v - V-I) -1] and that the link invariant Q satisfies the

following skein relation

(11.1 )

where the links L+, L_, Lo are identical outside of a small disk and look like the tangles pictured

in 1.1 within the disk. This relation together with the normalization Q(unknot) = 1 defines a

two-variable invariant equivalent to the HOMFLYPT polynomial ([14] and [34]). We investigate

the consequence of this skein relation on the maps Qd'

For any choice of a, {3 E Bd and for any i = 1, ... ,d - 1, we have

(11.2)

Therefore, xai - x-lail - (v - V-I) E kerQd, which is equivalent to the relation

(II.3)

The HOMFLYPT invariant factors through this finite dimensional quotient Ad(Q) of IFBd by the

quadratic relation (II.3).

Lemma 11.2.1. Any a E Ad(Q) is equal to an IF-linear combination of words, each containing

exactly one instance of either ad-l or ad~l'

Proof. The relation ail = x2ai - x(v - V-I) shows that it suffices to consider positive braids:

words in the generators ai but not their inverses. It is a standard result that a is equal to an IF­

linear combination of words, that contain ad-l at most once. Any term in the resulting expression

that does not contain ad-l can then be replaced by (v - V-l)-l(xai - x-lail) to establish the

lemma.

Now we can prove the following result, connecting the algebras Ad(Q) together.

o
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Proposition 11.2.2. The inclusion ~ Ed '---c> Ed+l descends to a well-defined injective algebra

Proof. Fix a E lFEd. Suppose that Qd(ab) = 0 for all b E lFEd and let c E lFEd+1 . By Lemma II.2.1,

we may write

for c;, cj E lFEd. (II.4)

Then, by using the second Markov move,

Qd+l(~(a)c) = LQd+l(~(act)O'd) + LQd+l(~(acj)O'dl)
j

= L Qd(act) + L Qd(acj)
j

= O.

This shows that I is well-defined. To prove that I is injective, suppose that Qd(~(a)c) = 0 for all

c E lFEd+l and let b E lFEd. We have

[J

II. 2.2. From the Iwahori-Hecke Algebra to Link Invariants

Definition 11.2.3. Let 'Hd denote the Iwahori-Hecke algebra of type Ad- 1 associated to the

symmetric group 3d. This is the algebra over <C(v) generated by H1, ... ,Hd-l' subject to the

braid relations

(II.5 )

(II.6 )

and also the quadratic relations

(II.7)

We recognize immediately that 'Hd --4> <C(v) 01F Ad(Q), Hi f---+ 1 0 XO'i, where <C(v) is

considered as a (<C(v), IF) bimodule with x E IF acting on the right by 1. Let i denote the natural
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Lemma II.2.4 (Ocneanu, [14]). For every y E <C(v), there is a linear map T : Ud~1 7-{d ----7 <C(v)

uniquely defined by

(i) T(ab) = T(ba),

(ii) T(i(a)Hd ) = YT(a) for a E 7-{d, and

(iii) T(l) = 1.

Such a linear function is often called a Markov trace because of the first condition. Al-

though T does not give a link invariant directly (unless Y = 1), it is a useful notion for the following

two reasons. First of all, it behaves in a controlled manner with respect to the second Markov

move, and so it defines an invariant of framed links and can, moreover, be rescaled to make an

invariant of ordinary links. The second reason is that there are natural constructions of Markov

traces that arise by studying representations of the braid group and their characters for which Y

is a non-trivial quantity.

Here we how to construct a link invariant from a Markov trace. Following Jones, we

choose an invertible x so that T(X- IHi) = T((X- IHi)-l) for each 'i = 1, ... , n - 1. Noting that

the quadratic relation in 7-{d gives H;I = Hi - (v - V-I), we have x-Iy = x(y - (v - V-I)), and

finally

Therefore, we have

_ (V-V-
I

)
Y - X X _ X-I . (11.8)

(11.9)

Now, let cp : Ed ----7 7-{~ be the group homomorphism ai l--> Hi' Recall that e : Ed ----7 Z is

the exponent sum of a braid (often called the writhe).

Theorem II.2.5. The functions Pd : Ed ----7 IF given by

(ILl 0)

define a link invariant P v'ia the formula P(a) = Pd(a).

PTOof. Regarding the first Markov move, invariance of P follows from invariance of T and the fact

that the exponent sums match: e( 0.13) = e(f3o). It suffices to check invariance under the second
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Markov move. Let 0: E Bd and calculate

The equality Pd+do:a-i 1
) = Pd(o:) follows from a similar calculation, noting that

o

The invariants {Pd }d2:1 are normalized so that P1 (1) = 1, where 1 is the trivial braid on

one strand, and they satisfy the following skein relation for any 0: E Bk and any i = 1, ... , d - 1,

(ILl 1)

Therefore, the link invariant P satisfies the relation II.l and we have the isomorphism

(II.12)

Making the substitutions I = -Ax and m = A(v-v- 1 ) we recover the original normalization

of the HOMFLYPT polynomial pi: £ ----7 Z[l±,m±] ([14]) satisfying pl(unknot) = 1 and

(ILl3)

II. 2. 3. Specializing to the Jones Polynomial

In the sequel, we will be concerned with two different specializations of Q, which will be

shown to be equivalent to the Jones polynomial and the Alexander polynomial, respectively. For

novv, we consider the Jones polynomial.
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Definition 11.2.6. The Jones polynomial is the function J : £ --> Z[v,v- 1J, defined by setting

x = v2 in P(L).

Thus, J is the unique isotopy invariant of links normalized so that J(unknot) = 1 and

satisfying the skein relation

(IU4)

Extending the Jones polynomial to braids, we have Jd : Ed --> Z[v, V-I] for each d ;::::: 1.

Since h is a specialization of the HOlvIFLYPT polynomial, it factors through the Hecke algebra.

In fact, it factors through a smaller quotient, Ad ( J) which we now describe.

11.3. The Temperley-Lieb Algebra

Definition 11.3.1. The Temperley-Lieb algebra T Ld( a) is the unital, associative algebra over C(v)

generated by U1 , ... ,Ud-l subject to the relations

UiU j = UjUi when Ii - jl > 1, and

ul = aUi

(IU5)

(IU6)

(IU7)

The quantity aE C(v)X is called the loop value (the name will be explained in 11.4). Let

Cd = d~1 (2;) denote the dth Catalan number, which is the solution to the recurrence

Co = 1

d

Cd+1 = L CjCd- j ,
j=O

d;::::: o.

(IU8)

(lUg)

Lemma 11.3.2 ([25, Lemma 5.26]). The Temperley-Lieb algebra is spanned by the set of words of

the form

where 0 ::; m < d,

(u U -1'" U )(U U -1'" U ) ... (U U -1'" U )1,1 'I.) .11 1,2 1,2 )2 2m 2m Jm ,

0< i 1 < ... < i m < d, 0 < jl < ... < jm < d,

(11.20)
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and

.,. ,

There are Cd such words; hence, dimTLd(O") ::; Cd.

A word in the generators UI , ... , Ud-I corresponding to the indices (i I, ... , i m , j I, ... ,jm)

as in the Lemma will be referred to as a normal form. For our purposes, we choose 0" = [2] =

(v + v-I) E C(v) and let TLd = TLd([2]). We now describe TLd as a quotient of 'lid.

Theorem 11.3.3 (Compare [25, Thm. 5.29]). The map'ljJ : 'lid ----. TLd' defined on generators by

(II.21 )

is a surjective C(v)-algebra homomorphism.

PTOOf. Since Ui = ·ljJ(v - Hi) and UI, ... , Ud-I generate TLd' 'ljJ is surjective. We verify directly

that the map is well-defined. For relation II.5, suppose that Ii - jl = 1 and calculate in TLd:

'l/J(HiHjHi ) = (v - Ui)(v - Uj)(v - Ui )

= v 3
- 2V2 Ui - v2 Uj + vUiUj + vUjUi + vUl- UiUjUi

= v3
- V2 Ui - v2Uj + vUiUj + vUjUi .

This last expression is symmetric in i and j, and so 'lj)(HiHjHi ) = ·ljJ(HjHiHj ). The verification

that 'l/J(HiHj ) = ·ljJ(HjHi for Ii - jl > 1 is similar and easier. Finally, for the quadratic relations

II.7, we check:

[]

For n = 2, dim'li2 = 2 = dim T L2 , so 'ljJ is an isomorphism. For d 2: 3, we can describe

ker'l/J explicitly, as follows.

Theorem 11.3.4. The kernel of·ljJ is the two-sided 'ideal of 'lid generated by

(v - HI) (v - H2 )(v - HI) - (v - HI)

= v3
- v 2 HI - v 2 H2 + vHIH2 + vH2 H I - H IH2 H I (II.22)
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PTOOf. Clearly, ker 1/1 is the two sided ideal generated by v 3 _v2 H i -V
2 Hj+vHiHj+vHjHi-HiHJHi

for all i,j such that Ii - jl = 1. Using the braid relation (II.5), it suffices to consider the case

j = i + 1, so the ideal is generated by

In 'Hd, conjugation by the invertible element (H1 ... Hd_d i - 1 defines an automorphism sending

H 1 to Hi' Therefore, the kernel is generated by

[J

I I I

Although it's not obvious now, we will see in Chapter III that lid is a semisimple algebra

over C(v), and a suitable multiple of 1/J is a projection onto certain Wedderburn matrix factors.

II.4. Diagram Algebras

II.4.1. Temperley-Lieb ATe Diagrams

Definition II.4.10 A (d, d')-arc diagram D is a topological embedding of the disjoint union of

(d+d')/2 intervals in the strip JRx [0,1] such that the boundary of the embedded I-manifold consists

of the points {(I, 0), ... , (d', On u{ (1, 1), ... , (d, 1n. A (d, d)-diagram is called a Temperley-Lieb

diagram on d strands. Let [D] denote the isotopy class of an arc diagram D, keeping its endpoints

fixed.

See Figure 11.4.1 for an illustration of Temperley-Lieb diagrams on three stands.

'--..) '--..)

(\ (\

Figure II.4: The five Temperley-Lieb diagrams on 3 strands.

There is a natural concatenation operation given by placing one arc diagram above another,

identifying boundary points, and scaling down the result to fit in the strip. However, this process

may produce extra disjoint components, each homeomorphic to a circle. For diagrams D 1 and D 2 ,

let D 1 0 D 2 denote the arc diagram obtained by placing D 1 on top of D 2 followed by removal of

the resulting circles, and let c(D1 , D 2 ) E Z~o denote the number of such circles. We now make an

algebra out of the linear span of isotopy classes of Temperley-Lieb diagrams.
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Definition 11.4.2. Let T L~ (0) consist of the q v)-vector space on the set of isotopy classes of

Temperley-Lieb diagrams [D] on d strands, endowed with a multiplication defined by

(II.23)

The quantity 0 is called the loop value, which we assume is non-zero.

Lemma 11.4.3. Up to isotopy, there are Cd distinct arc diagrams on d strands. Hence,

dimTL~(r5) = Cd (II.24)

PTOOf. There is a bijection between isotopy classes of Temperley-Lieb diagrams on d strands and

isotopy classes of (0,2d)-arc diagrams, as illustrated in (Figure II.5). It is well known that the

latter set has size Cd

Cc.:J
n~ .n ....~

o

Figure 11.5: The correspondence between (d, d)-diagrams and (0,2d)-diagrams.

Let Id denote the TL diagram in which each strand is a vertical segment. It's clear that

[Id] is the unit for T L~(r5). For each i = 1, ... , d - 1, let UI be the TL diagram with a single

cap-cup pair occurring at positions (i, i + 1) and vertical line segments elsewhere (see Figure II.6).

I I I I I I I I
Figure II.6: The generating diagrams 14 and Uf, U&, U~ in TL~(r5).

Lemma 11.4.4. Every TL diagram D on d strands is isotopic to the composition UI! o· .. 0 UI, for

some sequence (i l , ... , ie) of integers with 0< i j < d. Therefore, [D] = lUI!]··' fUr,] E TL~(o).

Proof. The proof is by induction on d and sub-induction on the location of the leftmost cap on

the bottom of the diagram D (see [25, Theorem 5.34]). o



Theorem 11.4.5. The map e TLd(o) ----> TL~(o) defined on generators by e(Ui )

isomorphism of C(v) -algebras.
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[Un is an

Proof. Showing that eis well-defined amounts to finding planar isotopies between the two diagrams

corresponding to the relations (11.15)-(11.17). The most interesting relation is illustrated below.

Note that these pictures are meant to represent TL diagrams on d strands, where the remaining

vertical strands are supressed.

(II.25)

By Lemma 11.4.4, every diagram D is isotopic to [UI
I

] ••• [UI,] = e(Uil ... UiJ for some sequence

(i l , ... , if) of indices. Therefore, eis surjective. Since dim T Ld(O) :s: Cd = dim T L~(o), we conclude

that e is an isomorphism.

Corollary 11.4.6. The set of words in Lemma II. 3.2 forms a basis for TLd(O). Hence,

From now on, we use the isomorphism e to identify T Ld and T L~.

[J

(II.26)

II.4.2. Eval'Uation of Jones via Temperley-Lieb

Here we set 0 = [2] = 'U + V-I. Let [D] denote the clos'Ure of an element of TL~ by

connecting the ith vertex at the top of the diagram D to the ith vertex at the bottom of D by a

simple curve for each i = 1, ... ,d. The result is a disjoint union of circles, each of which can be

replaced by [2] = v + V-I E C(v), as in the definition of multiplication in TL~. See Figure II.7.

o

Figure 11.7: An example of the closure operation on arc diagrams.
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Let T : 3 d ----> C(v) denote the composition

(11.27)

Theorem 11.4.7. The function J d : 3 d ----> C(v) defined by

(11.28)

Before proving the theorem, we introduce the following diagrammatic way to calculate ]d.

Resolve each crossing of a braid diagram in a manner representing the map a I-t v-2e (a) 'ljJ 0 ip(a).

This is suggested by the pictures below, where the remaining vertical strands are suppressed.

x
x

-2-v (11.29)

(11.30)

Now, close the corresponding arc diagrams to form a collection of circles, each of which evaluates

to the scalar v + V-I. As an immediate consequence, the trivial braid on d strands representing

1 E 3 d, closes to form d unlinked, unknotted circles, and takes the value ]d(l) = (v + v- 1)d.

Froof of Theorem. \Ve check invariance under the second Markov move. Let a E 3d and let D be

an arc diagram representing a term in the expansion 'ljJ 0 ip(a) E TL~. Calculate the resolution of

the last crossing in the braid acrd E 3 d+1.

t,

, 'I"'"

L.

J- v- 2 D (11.31 )

T" ........

(""'\

Upon closing the strands for both of the diagrams on the right, the first diagram has an extra

disjoint circle. Therefore, we obtain:

(11.32)
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The calcuation that J d+l (ewd
l

) = Jd(a) is completely analogous, replacing v by V-I. It remains to

check that J d = (v+V-I)Jd(a). Working in !C(v)Bd, where we may take !C(v)-linear combinations

of braids, 2X
V ""

-2 X-v
/

(II.33)

Upon closing the resulting arc diagrams, we recover the skein relation for the Jones polynomial

(11.34)

This shows that Jd is a scalar multiple of let, and so we compare the value of each function on the

unknot to complete the proof: Jd(l) = v + V-I = (v + v-I )Jd(l). D

Perhaps the most important consequence of Theorem II.4.7 is that the Jones polynomial

can be calculated as a state-sum. This observation, as well as the diagrammatic expansion of

crossings (as in formulas II.29 and 11.30) are due to Kauffman ([26]). By opening parentheses, a

braid diagram with 'IT! crossings yields 2m terms in T Ld. Starting from these states, Khovanov was

able to construct a link homology theory, categorifying the Jones polynomial ([30]).

Fix a braid 0, and an explicit diagram for it with exponent sum e. A state is a diagram

of unlinked circles that results from smoothing each crossing in the closure of the braid. For each

state s, let c = c(s) be the number of circles in the state, and let r = r(s) be the number of

crossings that are smoothed horizontally to form a cap-cup pair in the diagram s. Then,

Theorem 11.4.8 (Kauffman).

(II.35)
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CHAPTER III

SCHUR-WEYL DUALITY AND QUOTIENTS OF THE HECKE ALGEBRA

IlL I. Schur-Weyl Duality

We review the classical notion of Schur-Weyl duality between the general linear groups

and the symmetric group. Then, we generalize this in two directions, giving a duality theorem

between the quantum group associated to the Lie superalgebra g[(mln) and the Iwahori-Hecke

algebra rid.

II!. 1. 1. Classical Schur- vVeyl Duality

Fix the ground field C Let Par(d) denote the set of all integer partitions of d. To the

partition A = (AI, A2,"') with Al 2" A2 2" ... 2" 0, associate its Young diagram, that is, the left­

justified diagram with Al boxes on the first row, A2 boxes on the second row, etc. Let S(A) denote

the irreducible CSd-module, called the Specht module associated to A E Par( d).

Let A+ (n, d) denote the set of all A E PaT (d) whose Young diagram has d boxes in at most

n rows. The irreducible (polynomial) highest weight GL(n)-module of highest weight A will be

denoted V(A), where we fix the standard choice of maximal torus and Borel subalgebra consisting

of diagonal matrices and upper triangular matrices, respectively.

Let ([" = V(l, 0, ... ,0) denote the natural n-dimensional vector representation of the

group GL(n), and consider the tensor space

Cn 0 ... 0Cn

with d tensor factors. This is a left GL(n)-module via the diagonal action:

(IILl )

(III.2)
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Also, the symmetric group acts on the right by permuting factors:

(III.3)

Theorem 111.1.1. Consider the representations of GL(n) and Sd on tensor space:

(IIIA )

1. The actions of GL(n) and Sd on cn 0···0 cn commute.

2. As a (G L(n), Sd) -bimodule, tensor space decomposes into simples

Cn 0 ... 0 Cn ~ EB V(A) 0 S(A).
).,EA+ (n,d)

(IlL5)

3. The image of each group in End(Cn 0 ... 0 cn) generates the full centralizer algebra of the

other group.

For d ::::: n, the homomorphism trd : CSd ----t End(Cn 0 ... 0 C n ) is injective. In the

sequel, we will be concerned with the other extreme, where trd is far from injective, so 7rd(CSd)

is a proper quotient of the group algebra. But, first we must generalize Schur-Weyl duality is

several ways. In ([5]), Berele and Regev use the Lie superalgebra g[(mln) and its standard (mln)­

dimensional module to establish an analogous duality theorem for (U(g[(mln)), CSd ), where the

symmetric group acts by signed permutations. The indexing set for the decomposition generalizing

(III.5) is the set A+(mln,d) consisting of all Young diagrams that are (mln)-hooks: Ai::::: n for all

i > ·ITt. This is further generalized by Mitsuhashi ([32]) to a duality statement about the quantum

deformation Uv(g[(mln)) ofU(g[(mln)) and the Iwahori-Hecke algebra 7-{d. However, we shall only

consider the cases (min) = (210) in connection to the Jones polynomial and (Ill) in connection to

the Alexander polynomial.

111.2. Representations of the Iwahori-Hecke Algebra

We summarize some important facts about the Iwahori-Hecke algebra 7-{d and its represen-

tations, most of which are modified versions of well know facts about the symmetric group Sd and

its representations (see, e.g. [12]). Recall the standard generators HI, ... , H d-l for 7-{d, analogous
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to the generators S1,.'" Sd-1 of Sd, where Si is the elementary transposition (i i + 1).

1. The standard basis for Hd consists of the elements H w , where w E Sd. In terms of the

standard generators,

(IlL6)

where w = Si , ... Sin> is any reduced expression in Sd. The non-negative integer m is called

the length of wand denoted €(w).

2. Multiplication in this basis is

(III.7)

3. There is an irreducible module S(A) of Hd corresponding to each integer partition A. These

are pairwise non-isomorphic, and any finite-dimensional representation decomposes as a di-

rect sum of thse simple modules. An explicit construction of these modules using Young's

semi-normal form is given in Chapter IV.

4. Hd is semi-simple. Hence, we have the isomorphisms of algebras

Hd ~ IIEnd S(A) ~ II Md)o,'
A A

(III.8)

where Md)o, is the full matrix algebra of degree dA = dim S(A). In fact, generically, we have

the isomorphism Hd ~ C(V)Sd'

5. The branching rules for Hd are same as for Sd. Specifically, restriction of a simple Hd module

S(A) to Hd-1 decomposes into a multiplicity-free sum of simple modules S(p.), where p. is

obtained from A by removing a corner box.

Corresponding to each indecomposable block in the Wedderburn decomposition (IlL8),

there is a primitive, central idempotent e(A) E Hd, which can be constructed explicitly, as follows.

This is analogous to the Young symmetrizer in Sd and is originally due to Gyoja ([18]).

Corresponding to the partition A = (A1, ... ,Ar ), let SA ~ SAl X '" X SA r be the row

stabilizer of the Young diagram. Let AT denote the transpose partition. Define the elements
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Q>., b>. E 'lid (the symmetrizeI' and the skew-symmetrizer, respectively) by

a>. = L v€(w) H w

loES>.

and b>. = L (_v)-€(w) H w

WES>,T

(Ill,9)

Define the permutation w>. as follows, Fill the boxes of the Young diagram for ,\ with

the numbers 1, ... , d across rows from left to right and top to bottom. Now, form the sequence

('11)(1), ... ,w(d)) by reading the numbers down the columns from left to right. This sequence is

the one-line notation for w>..

Theorem III.2.1 (Compare [13]). The element c>. E'lid defined by

(III.10)

satisfies c>.c>. = h>.c>. for some h>. E CC(v)x. Moreover, for any two partitions A 1= il, c>,c/1 = O.

Hence, the collection of e(A) = h-;lC>. for all partitions of d are mutually orthogonal,

primitive, central idempotents that sum to one, which explicitly realize the decomposition in

(III.8) .

III.3. The Quantum Group Uv (s((2))

III. 3.1. Definitions and Conventions

Let U be the quantum group Uv (s((2)) (see [21] or [20]). This is the unital, associative

CC(v)-algehra generated by E, F, K, subject to the relations

KF = v-2FK,

K -K- 1

EF-FE= 1 .v -v-

The representation theory of U is analogous to that of s((2). Specifically, certain finite­

dimensional simple modules for U are highest weight modules (the ones so-called type 1), in the

following multiplicative sense. In aU-module VV, a vector w has weight A if K.w = v>'w. For each

A E Z>o, there is a unique finite-dimensional simple U-module L(A) of highest weight A.
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It is a standard fact that U is a Hopf algebra with comultiplication 6, counit c, and

antipode S given by

6(E) = E 129 K- 1 + 1 129 E,

6 (F) = F 129 1 + K 129 F,

c(K) = 1, c(E) = c(F) = O.

S(K) =K- 1
,

S(E) = -EK, S(F) = _K- 1F.

Let W denote the natural module for U, represented in the basis {WI, W2} by the matrices

(III.ll )

Let P : U ----> End(W) be the corresponding representation. Using the comultiplication in

the Hopf algebra, it extends to a representation Pd : U ----> End(W®d). Set 6(l) = 6 and for i > 1,

6 (i) = (6129 Id®i-l) 06(i-I). Then, Pd = p®d 06 (d-l), producing the formulae:

d

Pd(E) = L Id®i-l Q9p(E) 129 p(K- 1)®d-i
i=1

d

Pd(F) = L p(K)®'-1 129 p(F) 129 Id®d-,.
i=l

vVe make W®d into a right 7-{d-rnodule by defining a homomorphism 7fd : 7-{d ----> End(W®d)OP,

as follows. First, define the right operator H on W 129 W by:

ifi=j,

(III.12)

Wj 129 Wi if i > j.
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Now, set

(III.13)

III. 3. 2. Schur- Weyl Duality for Uv (5[(2)) and {-{d

The following theorem is well-known.

Theorem III.3.1. Consider the maps

Pd ( ) ITdU -----+ End W ® ... ® W ~ {-{d.

1. The actions of U and {-{d on W ® ... ® W commute.

2. As a (U, (-{d) -bimodule, tensor space decomposes into simples

W ® .. , ® W ~ EB L(>.) ® S(>.).
AEA + (Z,k)

(IlLl4)

(IlLl5)

3. The map trd factors through the Temperley Lieb algebra T Ld' via 'l/J which was defined in

(II. 21).

(IlLl6)

Proof. Statements 1 and 2 follow from Mitsuhashi, [32] [Theorem 5.1]. Part 3 is a consequence of

IVIitsuhashi's result, combined with Lemma IlL2.1. We will explain a similar result in detail later

on, so we omit a full explanation here (See Remark IlL5.5 below).

III.3.S. Jones Polynomial as a Q'uantum Invariant

The tensor square of the standard U-module W = L(l) decomposes as

o

(IlLl?)

where SZW ~ L(2) is the v-symmetrized submodule on which (-{z acts diagonally as the scalar v

and AZW ~ L(O) ~ C(v) is the v-skew-symmetrized submodule on which {-{z acts as _v-I. This

is the k = 2 example of Theorem IlL29, which we now interpret with arc diagrams.
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We interpret the (0, 2)-tangle (a cap, reading up the page) as the linear map b : W@W ->

C(v), given by the formulas

C(v) 0 v-I -1 0

.~ ...
r 1 1 1 1 (III.18)

W@W WI @WI WI @W2 W2 @WI W2 @W2

Dually, we interpret the (2,0)-tangle (a cup) as the map c: C(v) -> W @ W, given by the

formula c(1) = WI @ W2 - VW2 @ WI.

...~ ... W@W

I
C(v)

(III.19)

The (2,2)-tangle (cup over cap) gives the composition cob: W@W -> W@W, which is a

non-zero multiple of the canonical map W @ W ---» A2W '---' W @ W, and is given by the formulas

~ ... W@W 0 V-IWI @ W2 - W2 @ WI -WI @ W2 + VW2 @ WI 0

I 1 1 1 1
~ ... W@W WI @ WI WI @W2 W2 @WI W2 @W2

(IIl.20)

The map IdG•i- 1 @(c 0 b) @ Id@d-i.-l : W®d -~ W®d is precisely the image of the standard

generator Ui of T Ld in the representation 'Trd. Hence, we recover a matrix representation for the

generator Hi of 'Hd, using the relations 'Trd(Hi ) = 1fd(V - Ui ) and 'Trd(Hi-
l

) = 1fd(V-1 - Ui ), we

recover the action (III.12) of Hd.

X
W@W v (v - v-I )WI @ 'W2 + W2 @ WI WI @W2 V

I 1 1 1 1 (III.21 )

............~ ... ~l@W WI @WI WI @W2 'W2 @WI W2 @W2

X
W@W v-I W2 @WI WI @ W2 - (v - v-I )W2 @ WI v-I

I 1 1 1 1 (III.22)

/ W@W WI @WI WI @W2 W2 @WI W2 @W2
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111.4. The Quantum Supergroup Uv(gl(111))

We introduce the general linear Lie 8uperalgebra 9 ~ g[(111), as well as its universal

enveloping algebra U(g) and its quantization Uv(g). (See [40]) and [4]).

IIJ.4,l. Lie Superalgebra g[(111)

'We work over the base ring ceo A vector superspace of superdimension (min) is a Z2­

graded vector space W = Wo E8 WI whose even part Wo is of dimension m and whose odd part

il'l is of dimension n, For homogeneous elements w E vV:i , write Iwl = i E Z2. Let cem1n denote

the superspace cem E8 cen . The endomorphisms of cem1m form the Lie superalgebra 9 = g[(mln),

consisting of block matrices of the form

where A is an m x m matrix, B an m x n matrix, C an n x m matrix, and D an n x n matrix.

There is a Z2-grading: 9 = go E8 gl, where go consists of block diagonal matrices (~ g) and gl

consists of matrices of the form (g ~). The Lie superbracket is defined on homogeneous elements

to be the supercommutator

[X, Y] = XY ~ (-l)i j yX, where IXI = i, fYl = j. (III.23)

and extended bilinearly. This multiplication satisfies the axioms of a superbracket, namely for

homogeneous elements X, Y, Z with IXI = i, fYl = j, IZI = k,

[X, Y] + (-l)i j [y, X] = 0

(_l)ki[X, [Y, Z]] + (-l)i j [Y, [Z, X]] + (-l)jk[Z, [X, Y]] = 0

(super-skew commutativity)

(super-Jacobi),

(III.24)

III.4,2, The Quantum Supergroup Uv(gl(111))

In the sequel, we shall only be interested in the quantum supergroup associated to the

Lie superalgebra 9 = gl(111). Following [4], let U be the quantum supergroup Uv(fj[(111)). This is

the unital, associative CC(v)-algebra generated by E, P, K a and K;;l (a E {I, 2}) subject to the
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relations

K1F=v-1FK1, K 2F=vFK2

K _K-1

EF+FE= l'v - V-

where K = K1K;;1. Note that K 1 and K 2 are even while E and F are odd.

The weight of a vector 1)) in a U-module refers to A E Z such that K.1)) = V
A1)). Let L(A)

denote the indecomposable weight module of highest weight A. Because E and F are nilpotent in U,

any indecomposable cyclic module has dimension at most four. Note that there are indecomposable

modules that are not simple, such as the the adjoint module. However, see Theorem III.4.1 below.

It is a standard fact that U is a Hopf superalgebra with comultiplication t>, counit E, and

antipode 8 given by

t>(Ka ) = K a 0 K a ,

t>(E) = E 0 K- 1+ 1 0 E,

t>(F) = F 01 + K 0 F,

E(K:;l) = 1, c(E) = c(F) = O.

8(Ka ) = K;;l,

8(E) = -EK, 8(F) = _K- 1F.

Let Hi denote the natural module for U, represented in the basis {1))1, 1))2} (let 1))1 be even)

by the matrices

(
V 0)

K 1 f----l 0 0 ' (III.25)

Let p : U ~} End(W) be the representation. Using the comultiplication in the Hopf
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algebra, it extends to a representation of Pd : U ----. End(W0d ). Set 6(1) = 6 and for i > 1,

6(i) = (6 (>9IdQ)i~l) o6(i-l). Then, Pd = p0d 0 6(d-l).

Theorem III.4.1 ([4]' Prop. 3.1). The representations Pd are completely reducible.

Make l-tr0d into a right 'Hd-module by defining the homomorphism 11'd : 'Hd ----. End(W0d)OP,

as follows. First, define the right operator H on W (>9 W by:

if i = j and IWil = 0,

(III.26)

Wj (>9 Wi if i > j .

Now, set

and extend by linearity.

IIq.8. SchuT- Weyl Duality for Uv(gl(111)) and 'Hd

Recall that A+(111, d) is the set of Young diagrams of hook shape with d boxes.

Theorem III.4.2 ([32], Theorem 5.1). Consider the maps

Pd ( ) 7T dU ------0- End W (>9 ... (>9 W ~ 'Hd.

1. The actions of U and 'Hd on W (>9 ... (>9 W commute.

2. As a (U, 'Hd)-bimodule, tensor space decomposes into simples

W (>9 ... (>9 W ~ EB L(>") (>9 S(>..).
AEi\+(111.d)

(III.27)

(III.28)

(III.29)
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III.5. The Super Temperley-Lieb Algebra

III. 5.1 Defin·ition of ST Ld.

Definition III.5.1. The super Temperley-Lieb algebra STLd is the centralizer algebra

(HI.3D)

By Theorem III.4.2, this is 7rd(Hd)'

Proposition III.5.2.

d-l ( ) 2
dimSTLd = L d ~ 1

j=O J
(

2d - 2)
d-1

(III.31 )

Proof As abstract CC(v)-algebras, STLd~ Ih EndS(A), where the product is over A whose Young

diagrams are hooks. Let AU) = (d - j, 11) be the hook partition of leg length j for 0 :s: j < d.

The irreducible representation S(A (1)) is of degree d - 1, and for each j = 0, ... ,d - 1, S(A(J)) ~

lVS(A(l)), hence has degree (djl).

The second equality follows from looking at the coefficient of t d - 1 in the expansion of

o

liVe have the presentation STLd = Hd/Id, where Id is the two sided ideal generated by

the idempotents e(A), where A is not a hook partition. For 1 :s: d :s: 3, Id is trivial, hence the

representation trd is injective. Now, define J to be the two-sided ideal of H4 generated by

(III.32)

Lemma 111.5.3.

(III.33)

Proof The only partition of 4 that is not a hook is A = (22 ). The symmetrizer is

(IlI.34)

which is a nonzero scalar multiple of the idempotent e(A). Clearly, this generates the same two-

sided ideal as J. o
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For d 2: 4, define the embedding & : H4 '--7 Hd by &(Hi ) = Hi, and let ':!d be the two-sided

(deal generated by &( J).

Theorem 111.5.4.

I d = Jd JOT all d 2: 4.

Pmof. The following diagram commutes

(III.35)

(III.36)

where the bottom map sends ¢f-I c/J0Id@d-4. Since J E ker7f4, &(J) E ker7fd, and so Jd <;:;; Id.

Conversely, suppose that Jd # Id. So, there exists A that is not a hook shape with

e(A)Jd = O. Since S(A) embeds into Hde(A), Jd acts as 0 on S(A). Since A is not a hook, its

diagram contains the diagram (2 2
), so S(2 2 ) '--7 Res~= S(A). Thus, Jd acts as 0 on S(2 2

), a

contradiction. o

Remark IlLS.S. The technique in Theorem IIL5.4 of reducing to the smallest A that is excluded

from the indexing set works generally. In particular, the kernel of the map 1/J : Hd -» T L d is

generated by the symllletrizer c)., for A = (13), which is the smallest diagram not in A+ (2, d).

III. 5.2. Robinson-Schenstedt-Knuth Correspondence

Recall that the Robinson-Schenstedt-Knuth (RSK) correspondence establishes a bijection

between permutations w E Sd and pairs of standard Young tableaux (P, Q) each of the same shape

A E Par(d) (see, e.g. [15]). The tableaux P is called the insertion tableaZlx and is defined by the

following algorithm.

Begin with the permutation written in one-line notation: (w(l), ... ,w(d)). Build the

sequence of tableaux 0 = Po, ... , Pd = P, forming Pi from Pi- 1 by inserting the number w(i)

as follows. Place w( i) as far to the left on the first row as possible. If it is placed on the end of

the row, then we are done. Otherwise, w( i) "bumps" a number out of its box, and that number

is placed on the next row, again as far to the left as possible. This algorithm terminates when a

number is placed on the end of a row (which may be a new row at the bottom of the diagram).
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Two permutations w, Wi are in the same two-sided Kazhdan-Lusztig cell in Hd if they

produce tableaux of the same shape under the RSK correspondence. Let Cw denote the canonical

basis element (see [29] or [39]). Unlike the case TLd' which has a basis consisting of monomials

in the canonical elements - Ui = Hi - v, we do not know of such an elementary basis for STLd.

However,

Theorem 111.5.6. {Cw I shape of P(w) is a hook} is a basis fOT STLd.

PTOOf. For any .\ E Par(d) and for any T E Std(.\), the collection of Cw such that P(w) = T

is a basis for a submodule of the regular module Hd that is isomorphic to S(.\). Moreover, the

collection of all Cw such that the shape of P(w) is .\ forms the Wedderburn component in Hd

isomorphic to End S(.\). By the definition of STLd and Theorem III.4.2, we obtain a basis for the

algebra by concatenating the bases of each Wedderburn component corresponding to .\ of hook

shape. D
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CHAPTER IV

A STATE-SUM FORMULA FOR THE ALEXANDER POLYNOMIAL

IV.I. Semi-normal Representations of the Heeke Algebra

Much of the following is standard (see e.g. [11] or [25, chapters 4 and 5]). We collect some

of the definitions here and fix some notation. In what follows, [r] E Z[v, V-I] denotes the quantum

integer

(IV.1)

for any T E Z.

IV.i.i. Serninormal RepTesentations

This exposition follows [35, section 3], although the results were originally worked out in

[19]. For a new point of view and substantial generalization, see [8, section 5].

Let Tab(A) denote the set of A-tableaux. These are fillings of the boxes in the Young

diagram A by the numbers 1, ... , d. Let Std(A) denote the set of standard A-tableaux, namely

those that increase across rows and down columns. The symmetric group Sel acts on Tab(A) via

its natural action on the entries, although Std(A) is not stable under this action. For a tableau

T E Tab(A), its residue seq'uence (il, ... , iel) E Zel is defined by setting iT' = b - a where the box

labeled T in T appears in row a and column b.

T = ffiillJ T - [I[]JiJ
82 -~

Figure IV.!: The partition A = (3,1) E Par(4) and standard tableaux T and 52T. Here, T has
residue sequence (0,1, -1, 2).

Fix a partition A E Par(n) and let S(A) be the C(v)-vector space on basis {XI IT E Std(A)}.
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Let (i j , ... ,id) be the residue sequence ofT and define ar(T),br(T) E C(v) to be

(IV,2)

Define actions of the generators H j ,.", H d- j of Hd on S(A) by

Hrxr = ar(T)xr + br(T)xs,r,

where we interpret xs,.r = 0 if SrT is not a standard tableau,

(IV.3)

Theorem IV.lol (Semi-normal representations). This action extends to make S(A) into a well-

defined Hd-module. Furthermore, the modules {S(A) I A E Par(d)} constitute a complete set of

pairwise non-isomorphic irreducible modules for Hd.

IV 1.2. Sign Sequences and Hook Partitions

For 0 :::; g:::; d -1, let A£ be the hook partition (d - g, If). We refer to g as leg length,

Lemma IV.lo2. Standard tableaux of shape A£ are in bijeci'ion with sign sequences C = (cl' .. , ,Cd) E

{±}d such that C j = + and g entries equal -.

Proof. Beginning with a standard Af-tableau, define C = (Cj" .. ,ceL) by

if r appears on the first row

otherwise
(IVA)

Notice that the box labeled 1 has to be in the corner of the hook, so Cj = +. Also, g numbers are

on the leg of the hook, so there are g entries equal to -,

For the inverse, starting with a sign sequence C = (cj,' .. , cd) with Cj = + and g other

entries equal to -, construct a standard tableau recursively, as follows. Place 1 in the corner of

the diagram. Now, for each l' > 1, suppose that the numbers 1, ' . , ,r - 1 have been placed. Either

add r to the end of the first row or at the bottom of the first column, according to whether Cr is

+ or -, respectively. o

Using this bijection, we can adapt the semi-normal representation to the combinatorics of

sign sequences,
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Theorem IV.1.3. The irreducible module S(Ae) has basis {x,,,}, where C 'rUns over sign sequences

ha'uing C1 = + and £ other entTies equal to -. The generators H1, ... , Hk-1 of Hd act by

(IV.5)

where SrC denotes the sign sequence obtained from C by permuting Cr and cr+ 1, Xc is interpreted

as zero if C1 = -, and

if (croCr+1) = (+,+)

if (cr,cr+d = (~,-)

'i!(Cro Cr+1) = (-,+)

if (cr,cr+d = (+,-),

'if (cr,cr+d = (-,+)

if (cr,cr+d = (+,-)

otherwise.

The inverse generators H j 1 , ... , Hd~ 1 act by

where ar (c) is obtained from ar (c) by replacing v by v- 1 .

(IV.6)

(IV.7)

(IV.S)

Proof. This is just a translation of Theorem IV.I.1 using the bijection from Lemma IV.I.2. Given a

sign sequence C E {±}k having C1 = + and £ other entries equal to -, construct the corresponding

standard tableau, and let (i 1 , ... , i d ) be its residue sequence. We have i 1 = 0, and for 1 S; r < d,

ir + 1 if (cr,cr+1) = (+,+)

ir -1 if (cr,Cr+1) = (-,-)
(IV.9)ir+1 =

i r +r if (C.r,cr+1) = (-,+)

i r - r if (cr, cr+d = (+, -).

Given this, the formulae (IV.6)-(IV.7) are easily deduced from (IV.2). Finally the formula (IV.S)

is easily deduced from (IV..S) since H;l = Hr - (v - v- 1 ). o
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IV.2. Construction of the State-sum

Begin with a word a E I;d in the braid generators 0"1, ... ,0"d-I and their inverses, which

we picture as a diagram drawn up the page as the word is read from right to left.

O"r = I ... I X I .. · I
r r+1

0",-:-1 = I ... I X I .. · I
r r+1

Construct permutation diagrams from the braid diagram by replacing each crossing by one

of two resolutions:

x
x

I I

I I

or

or

x
x

Definition IV.2.1. A permutation diagram x is admissible if

(PI) the first (leftmost) strand goes straight through without crossing any other strands, and

(P2) the underlying permutation is the identity.

A state is a pair (X,E), where x is an admissible permutation diagram and E is an assignment of a

sign ± to each strand such that

(SI) the first (leftmost) sign is +, and

(S2) no two strands of the same sign cross.

Let Sea) denote the set of states for a. To a state (x, E) E Sea), we associate a weight

M(a, x. E) E C(v) defined by multiplying together certain scalars, one for each resolved crossing.

The scalar associated to a positive crossing of strands in positions rand r + 1 is given in (IV.I0).

For a negative crossing, replace v by V-I in each expression.
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+ +

x
r r+1

[1'] I I
+

I I
+

(IV.IO)

Define A(a) E C(v) by

[1'+1] X
[1']

+

[1'-1] X
-[1']-

+

1
A(a) = [d] L (c)M(a, x, c)

(x,E)ES(a)

where (c) E {± I} is the product of the signs CI, ... ,Cd attached to the strands.

(IV.H)

Theorem IV.2.2. Let L be an oriented link, and let a E Ed represent a braid in Ed such that

0: = L. Then, A(a) is a polynomial in v - V-I, and

A(a) = \1(L),

where \7(L) is the Conway-normalized Alexander polynomial with z = v - V-I.

Proof. To avoid confusion when switching between the generators H r and Tr = vHr of H d , let us

write'P : Ed -» H: for the group homomorphism given by 'P(o-r) = Hr and ¢ : Ed -» H~ for the

one with ¢(o-r) = Tr . Formula (7.2) in [24] gives the Alexander polynomial for a link L as

(IV.I2)

where:(£ = tr OPe is the character of Hd arising from the irreducible representation Pe : Hd -'I

End(S(Ae)) indexed by the hook partition (d - e, Ie), and e is the exponent sum of a. Put q = v2
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and Tr = uH" for each r, so that ¢ira) = ve(Cllip(a). Reindex the sum over £ = d - 1 - j to get

\7(L)

d-I

[~] 2:)-I)£X£(ip(a)).
£=0

(IV.13)

Now we compute x£ by using the semi-normal form for S(>,£). The action of the generators

Hr. H,-:I on Xc from Theorem IV.1.3 are pictured in (IV.14).

r r+1

Cr Cr+l C,'+I Cr

a,,(c) I + br(c) X
Cr cr+l Cr cr+l

(IV.14)
Cr c,'+1 cr+1 C"

ar(c) I + br(c) X
Cr C,'+I Cr Cr+l

Moreover, if r = 1, the second term on the right hand side should be omitted. Only diagonal

entries of the matrix p£(ip(a)) contribute to the trace. Hence, for each £ we need only consider

those permutation diagrams that represent the identity permutation and whose first strand goes

straight through. The theorem follows 011 comparing formulas (IV.6) and (IV.7) with (IV.I0). 0
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IV.3. An Example

Let's use the braid presentation a = (J2
1
(Jl(J2

1
(J1 for the figure-eight knot, pictured below

with its six possible states.

x M(a, x, E)

+++ -1 -1 1v . v· v . v

++- _v 2 _v2 v 6

l2f ,v'l2f'v [2]2

l~ +-+ v- 2
( -1) v-

2
( -1) v- 6

~
l2T' -v . l2T' -v W

+-- (-v)· (-v-I). (-v)· (-V-I) 1

~
++- ffi .(_V-I) . ill .v ::Bl

[2]2

+-+ ill· v· ffi· (-v-I) ::Bl
[2]2

Now, we calculate the sum, minding the signs associated to each state and the global

rescaling.

(

6 6 [ ])1 v + v- 2 3 2 -2 -1 2
A(a) = f:3T 2 - [2]2 + [2]2 = -v + 3 - v = 1 - (v - v )
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CHAPTER V

COMBINATORIAL PROOF

In this chapter we prove Theorem IV.2.2 directly from formulas (IV.lO) and (IV.ll). Since

the function A is defined on the set of words in the braid generators, we must show that A is well-

defined on the braid group.

V.l. Braid Group Invariance

For a permutation diagram x, let 7r(x) E Sd denote the underlying permutation. Let

pT,(a) = {x permutation diagram satisfying (PI) /7r(x) = 7r}. Notice that P1(a) = P(a), the

admissible diagrams. 'vVe have immediately:

P(afJ) IT {xy I x E P,,(a) and y E P,,-l (fJ)}
"ESd

IT P,,(a) x P,,-1(fJ)
"ESd

(V.l)

\iVith signs attached to the strands in the diagrams, we have the analogous definition of S,,(a) and

the decomposition:

S(afJ) ~ IT S,,(a) x S,,-1 (fJ)·
"ESd

(V.2)

\iVe prove a Lemma now that shows that the function A is invariant under concatenation

for certain pairs of braid words. For 7r E Sd, define

A,,(a) = I.: (c:)M(a,x,c:)
(x,c)ES,,(ex)

(V.3)

Lemma V.l.l. Suppose that fJ, fJl E ~j satisfy A,,(fJ) = A,,(fJ') faT' all 7r E Sd. Then, A(afJ) =

A(afJ') and A(fJa) = A(fJ'o:) for any 0: E ~j.
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P7'Oof. Let Srr(a,f3) = S7T(a) x SCI ({3).

L (cv)M(a{3, xy, EV)
S, (ex,(3)

1
A(a(3) = 1dJ L

7TE S d

1
= 1dJ L L (E)M(a, x, E) L (v)M({3, y, v)

7TES" (x.E)ES,,(a) (Y,l/)ES,,-I ((3)

1
= [d] L L (E)l\1(a, x, E) A 7T-I ({3)

7TES" (x,E)ES,,(a)

(VA)

(V.5)

(V.6)

This last expression is equal to A(a{3'), using the fact that A7T ((3)

A({3a) = A({3'a) is completely analogous and is omitted.

A 7T ({3'). The proof that

o

Proposition V.1.2. If a, (3 E I:d represent the same group element in 3 d , then A(a) = A({3).

Proof. Identity. A(1a) = A(a) = A(a1).

This is clear since A is defined by resolving crossings in the braid diagram. For the remainder of

the proof, we use Lemma V.l.1, checking cases according to permutations 7f.

Inverse. A((J;!=I(J~I) = A(0).

Let (x,c) E S7T((J,.(J,~I), where 7r = 7r(x). We must show that A7T ((Jr(J;I) = 1 when 7r = 1 and 0

otherwise.

(Case 7r = 1). If the signs on strands rand r + 1 match, then the only available diagrams

have the crossings (Jr(J;1 resolved straight through. If (cr,Er+d = (+,+), then M((Jr(J;I,X,c) =

v· V-I = 1. And with (-, -), M((Jr(J,~l,x,E) = (_V-I). (-V) = 1. If Er i- Er+l, then there are

two possible resolutions that form states, as illustrated.

I \
+ -

or Q
+ -

With (cr, cr+d = (+, -), we calculate the contribution of the two states is

_v- r -v r [r+1] [r-1]
--.-+--.--

IT] [r] [r] [r]'

which equals 1, using Lemma V.2.3. With (cr' Er+d = (-, +), a similar calculation establishes

equality.
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then there are two possible resolutions that form states, as illustrated.

~
+ -

or ><+ -

'With (cTlcr+Jl = (+, -), we calculate the contribution from the two states is

[1'-1] -v r v r [1'-1]
--·-+-·--=0.

[1'] [1'] [1'] [1']

The calculation with (cr,cr+Jl = (+, -) is analogous and is omitted.

Braid relations. A((Jr(Js) = A((Js(Jr) when IT - sl > 1. This is a simple calculation only

using the commutativity of the ring C(v).

A((Jr(Jr+)tJr) = A((Jr+l(Jr(Jr+l). Let x (resp., y) denote a permutation diagram for

(Jr(Jr+l(Jr (resp., (Jr+l(Jr(Jr+l)' Again, we organize by cases -rr = -rr(x) = -rr(y). In Figure V.2,

the possible permutation diagrams are shown with labels suggesting the possible signs on those

strands. For example, the label (a, b, b) indicates that possible signs are (+, +, -), (+, -, +),

(-, +, -), or (-, -, +). Permutations are named by how they act on strands 1', l' + 1, and l' + 2.

Notice that for -rr = (3 2 1), there are no ways to assign signs, as each pair of strands crosses.

,Ve illustrate one calculation (of twenty): -rr = 1 and (cr' Cr+l, Cr+2) = (-, -, +). These

signs match each of the patterns except (a, a, c), so it suffices to verify that the following equation

holds:

This is equivalent to showing that vr~l[T + 1] = ~_v2r+l + Vr[T + 2], which follows from Lemma

V.2.3. 0

V.2. Markov Moves

Now that we have established that A !3 --'> q v) is well-defined, we check that A is

invariant under the Markov moves.

Lemma V.2.1. The state-sum fOTm'ula in (IV.ii) descends to a well-defined link invaTiant:

A(a) = A(,6) if a and,6 aTe Telated by the MaTkov moves.

PTOOf. In order to show invariance under the cyclic move (II.2), note that there is a bijection



44

n=l

abc a a C abc a b b

n=(12)

aaC aa C a a C

~ ~ (2 3) ~
a b b a b b a b b

n = (1 23)

a a a a a a

n = (1 32)

a a a a a a

n=(32l)

Figure V.l: Possible states x and y, organized according to n.

between states for a{3 and {3a, defined as follows.

Any admissible permutation diagram of a{3looks like the concatenation xy, where x (resp.,

y) is a permutation diagram for a (resp., (3). The diagrams x and y may not be admissible, but

n(x)n(y) = n(xy) = 1. So, yx is admissible, as well, since left- and right-inverses agree in a

group. For any state (xy,e) E S(a{3) , (yx,n(y).e) is a state for (3a, where n(y).e denotes the

signs permuted by n(y).

Beginning with a state for (3a, and repeating the procedure, only this time, twisting

the signs by n(x), we construct an inverse. Now, since M(a{3,xy,e) = M({3a,yx,n(y).e) and



; ...~ ...

+ + -

~ ...~. : ~ .

+ - +
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Figure V.2: A state (xy,E) for 0:{3 and the corresponding state ({3o:,7l"(y).E) for (30:.

(E) = (7l"(y).E) for each state of 0:{3, we obtain the equality A(o:{3) = A({3o:).

To prove invariance under the stabilization move (II.3), observe that the crossing ad must

be resolved straight through in order to form an admissible permutation diagram. Assume that

Ed-l = + (the other case is similar). Then, for each state (X,E) for 0:, either sign on strand d forms

a state for o:ad. Call them (y,E±), respectively.

Calculate the contribution to the state-sum for each such pair of states:

(E+)M(o:ad, y, E+) + (E-) M(o:ad , y, E-)

(v __~~n) (E)M(o:,X,E)

[d+ 1J
[dj(E)M(o:, x, c)

Now, A(o:ad) = A(o:) follows once the global normalizations are included.

(V.7)

o

.I.... :.:..:.. ..I ..~..:
0: :

·I···············I··~;.. . "

;.1..:.:.:..1 .. 1.

: x :
:'T"~::'r'I";

+ +

i··I··:·:·~···.l.J1
or

;. 'I'~':':"" '1' '1":
+ -

Figure V.3: The states (y,E+) and (y,E_) for o:an associated to the state (X,E) for 0:.

Theorem V.2.2. For any link L and any choice of braid word w whose closure is L,

A(w) = t::.(L).

Proof. By Lemma V.2.1, the function A is a link invariant, so it suffices to show that it agrees

with the Alexander-Conway polynomial. There are two things to show: the skein relation and the

Conway normalization.
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Figure V.4: The Conway skein relation on links: ~(L+) - ~(L_) = (v - v-1)~(Lo)

For the skein relation, it suffices to show that

(V.8)

Let x be any permutation diagram for a, and let y + and y _ be permutation diagrams for aO'r and

aO';1, respectively. Now, consider the permutation 7r = 7r(x). If 7r = 1, so x is admissible, then

Y± must be resolved straight through to form states. For any such state with sign sequences with

(Cr' Cr+1) equal to (+, +) or (-, -), we verify that

When the signs on strands rand r + 1 are different, we calculate

(v
r. v-r)

M(aO'nY+,c) - M(aO';l,y_,c) = [r] - [;:r M(a,x,c)

= (v - v- 1 )M(a,x, c).

(V.g)

(V.lO)

Finally, consider the case where 7r = (r r + 1), so x is not admissible. There are no states

for a with such a permutation diagram. Any state for aO'; 1 must have y ± with a crossing of

strands rand r + 1. The contribution to the sum when (cr, cr+d = (+, -) is

-1 ([r+1] [r+1])M(aO'r,Y+,c) - M(aO'r ,y_,c) = ~ -~ M(a,x,c) = O.

The case (cn cr+ 1) = (-, +) gives 0 as well.

The Conway normalization for the Alexander polynomial has \l(unknot) = 1. A braid

representative is the trivial braid on one strand. There is only one state available, carrying the

sign +. The weight involves the empty product, hence gives value 1. D
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Lemma V.2.3. The following identities hold for quantum integers:

min(r,s)

[r][sJ = L [r + s + 1 - 2k]
k=l

[r + s][r - sJ [rJ2 - [sf

[r + s]

r, s 2: 0 (V.l1)

(V.12)

(V.13)

Proof The proofs are elementary and follow from the definition of quantum integers. 0
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