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The behavior of the macroeconomy and monetary policy is heavily influenced

by expectations. Recent research has explored how minor changes in expectation

formation can change the stability properties of a model. One common way to alter

expectation formation involves agents' use of econometrics to form forecasting

equations. Agents update their forecasts based on new information that arises as the

economy progresses through time. In this way agents "learn" about the economy.

Previous learning literature mostly focuses on agents using a fixed data size

or increasing the amount of data they use. My research explores how agents might

endogenously change the amount of data they use to update their forecast equations.

My first chapter explores how an established endogenous learning algorithm,

proposed by Marcet and Nicolini, may influence monetary policy decisions. Under

rational expectations (RE) determinacy serves as the main criterion for favoring a

model or monetary policy rule. A determinant model need not result in stability

under an alternative expectation formation process called learning. Researchers
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appeal to stability under learning as a criterion for monetary policy rule selection.

This chapter provides a cautionary tale for policy makers and reinforces the

importance of the role of expectations. Simulations appear stable for a prolonged

interval of time but may suddenly deviate from the RE solution. This exotic

behavior exhibits significantly higher volatility relative to RE yet over long

simulations remains true to the RE equilibrium.

In the second chapter I address the effectiveness of endogenous gain learning

algorithms in the presence of occasional structural breaks. Marcet and Nicolini's

algorithm relies on agents reacting to forecast errors. I propose an alternative,

which relies on agents using statistical information.

The third chapter uses standard macroeconomic data to find out whether a

model that has non-rational expectations can outperform RE. I answer this question

affirmatively and explore what learning means to the economy. In addition, I

conduct a Monte Carlo exercise to investigate whether a simple learning model does,

empirically, imbed an RE model. While theoretically a very small constant gain

implies RE, empirically learning creates bias in coefficient estimates.
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CHAPTER I

INTRODUCTION

Expectations form a cornerstone of modern macroeconomic research. For

many decades a particular form of expectations) called rational expectations (RE))

has served as the standard assumption. More recently researchers have considered

ways to relax the RE assumption since it relies on agents acquiring more

information than one might think reasonable.

One group of researchers have assumed that agents use econometrics to form

forecasting equations instead of RE. In this framework as the economy generates

new data, agents incorporate the information in their forecasting equations. In this

way agents "learnll about the economy. There are many different assumptions one

can make in a learning model, and this dissertation explores one set of those

assumptions.

Researchers can differentiate learning models by changing the influence of new

information. One particular formulation assumes that agents use all available

information equally. Another assumes agents use only a fixed sample size of the

newest data. In both of these cases the algorithm forces agents either to continually

increase the sample size, or use a fixed sample size. My research explores the effects

of allowing agents to endogenously change the amount of data they use. This

dissertation finds that even small changes in expectation formation can lead to
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significant changes in the dynamics of the economy and estimation of

macroeconomic models.

Marcet and Nicolini (2003) suggest an endogenous learning algorithm that has

agents switching between a fixed sample size and letting the sample size grow. They

argue that this type of algorithm would function well when the economy exhibits

occasional structural breaks. My first chapter explores monetary policy and

endogenous learning of the form of Marcet and Nicolini.

In macroeconomic theory a monetary policy rule closes the standard New

Keynesian model. Under RE certain parameterizations of some policy rules can lead

to indeterminacy. Under other parameterizations policy rules might result in

determinacy, but might not be able to learn the equilibrium. Researchers have used

stability under learning as a criterion for monetary policy rule selection. The

endogenous learning algorithm produces some startling dynamics, and provides a

word of caution in choosing a monetary policy rule.

In the second chapter I evaluate the forecasting ability of endogenous-gain

algorithms. In addition to Marcet and Nicolini's version, I propose my own

endogenous learning algorithm. I find little evidence that Marcet and Nicolini

provides significant improvement to a standard gain, but my proposed algorithm

seems to perform well under the circumstances for which it was designed.

My third chapter estimates a New Keynesian model and compares RE to two

types of learning. I find that the data prefer the endogenous learning model and

explore some implications of the learning behavior. This suggests that either RE

does not accurately describe the expectation formation process in the economy or

that the assumed learning rules capture some higher order dynamics that exist in

the data. I also show that a learning estimation does not nest an RE model in an

empirical sense.
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1. Literature Review

In the wake of the formalization of rational expectations, by Muth (1961),

economists attempted to ascertain whether rational expectations equilibria were

"learnable." Blume et al. (1982) provides an overview of the literature, which

essentially finds that if agents fail to make specification errors, the rational

expectations equilibrium (REE) is "learnable" via econometric learning. Initially

econometric learning assumed that agents have the correct model of the economy,

but are uncertain of the parameter values. Consequently, agents estimate those

coefficients using standard econometric techniques.

Naturally, the same resistance to rational expectations rose against the

learning literature, since agents were still assumed to have a significant amount of

information about the economy that economists themselves could not claim to have.

Bray (1982) ,and Frydman (1982) provided the basis of the current learning

literature by showing for specific cases that agents were capable of learning the REE

even when their model was misspecified. Evans (1985) provided further analytical

tools by developing a concept called expectational stability (E-stability). He defines

a model as E-stable if the model returns to the REE when expectations are

perturbed slightly.

The final component that provides the foundation for the contemporary

learning literature is Evans and Honkapohja (1998), which defines the E-stability

principle. The E-stability principle is a correspondence between the E-stability of an

REE and its stability under adaptive learning. l This principle has guided much of

the learning research in recent years and is the cornerstone of the learning literature.

The learning literature as a whole has remained mostly confined to the

theoretical side of the discipline. One of the main theoretical contributions has been

1Evans and Honkapohja (2001) p41.
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the ability to refine the number of equilibria in a rational expectations model by

only considering those that are locally stable under learning. Given the large

theoretical literature there have naturally been some forays into empirical

estimation of models with learning, however, many of the early attempts were

constrained by a lack of computing power. Thus many of these empirical works

relied on calibration, that is, attempting to find parameter values that generate data

that match the stylized facts of the data.

Current computing power has relaxed these constraints, which allows an

econometrician to estimate DSGE models. These models allow for the researcher to

impose some structure to the data and thereby identify the "deep" parameters of

interest. Previously scholars used ad hoc, and sometimes contentious, identification

strategies. The advance in technology has led to the ability for some researchers to

relax the assumption of complete rationality and estimate DSGE models with

learning behavior.

The component of learning that has econometric interest is the gain

parameter, which governs the weight placed on updates to prior estimates. When

agents use a constant-gain the econometrician can estimate it, whereas a

decreasing-gain has no parameters to estimate since it is a function of time. A

constant-gain applies more weight to the most recent data, which scholars associate

with agents who are concerned with structural breaks. Considering the vast

structural break and Markov switching literature, assuming agents worry about

time varying parameters seems appropriate.

Milani (2007a) is the first to have estimated a small DSGE model that had

agents updating estimates with a constant-gain. In particular, Milani (2007a)

estimates a New Keynesian model whose stability properties have been well

documented in Bullard and Mitra (2002). Now that econometricians are able to
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estimate these models, it is important for them to be cognizant of whether the

model is stable. Stability of a model may provide natural parameter limits thus

constraining the search space. In addition, previous identification techniques relied

on the assumption of long-run stability, thus it seems unwise to estimate models

that are unstable.

As mentioned above, a constant-gain can be associated with potential

structural breaks. While this is beneficial on one hand, on the other, a constant-gain

produces greater volatility. Consequently, Marcet and Nicolini (2003) suggest an ad

hoc gain structure that switches between a constant and a decreasing-gain.

Essentially, they assume that agents believe that parameters may be constant for a

while, in which case a decreasing-gain would "stabilize" the economy, but every

once in a while there might be a change in parameter value, in which case a

constant-gain would allow agents to adjust to the new value more quickly.

Milani (2007b) shows that endogenous switching can have significant impacts

on time-varying volatility, which he claims may help explain the Great Moderation.

Recently debate has arisen over the way Milani incorporated Marcet and Nicolini

(2003).2 Specifically Marcet and Nicolini propose a rule for determining which type

of gain to use that is based on recent forecast errors. While they choose to compare

recent forecast errors to some arbitrary constant, Milani compares recent forecast

errors to the historical average of forecast errors. Both of these is inherently

backward looking, as it might take several periods for agents to realize a break has

occurred, but the historical average adds further problems, which I discuss in

Chapter III.

Murray (2008b) mimics Milani (2007b), but neither reports the stability

properties of the switching-gain. Consequently, I contribute to this literature by

2See Bullard (2008).
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examining the stability properties of this type of gain structure. Further, given

some of the problems with the switching-gain, I suggest an alternative that is more

forward-looking, and has some other favorable characteristics. Using the knowledge

gained from examining these gain structures I analyze, in depth, what taking a

learning model to data might reveal to the econometrician.

The rest of the dissertation unfolds as follows: the next chapter explores

monetary policy and endogenous-gain learning. Chapter III introduces my

alternative endogenous-gain and compares it and the Marcet and Nicolini gain to a

constant-gain. The fourth chapter presents preliminary results from an estimation

using my alternative endogenous-gain and compares it to the alternatives using

Bayesian analysis. Chapter V concludes.
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CHAPTER II

ADAPTIVE LEARNING, MONETARY POLICY AND INSTABILITY

Recent research on monetary policy has examined the stability of the rational

expectations equilibrium (REE) of a standard New Keynesian (NK) model in the

context of learning. Since determinacy does not guarantee stability under learning

researchers suggest that policymaker should favor monetary policy rules that result

in stability under learning. Learning relaxes the rational expectations assumption

by allowing agents to use econometrics to forecast the variables of the economy. As

new data appear over time agents "learn" by adjusting their forecast equations.

Most of the learning literature concerning monetary policy assumes that

agents use a particular type of learning called decreasing-gain learning, which

assumes agents utilize all data available. Evans and Honkapohja (2009) show that

many of these interest-rate rules are unstable for plausible parameterizations of the

so called constant-gain learning algorithm, which is akin to agents using a rolling

window. It is common to assume constant-gain learning in the presence of

unobserved structural breaks, since a decreasing-gain performs poorly under these

circumstances.

In addressing the issue of hyperinflation, Marcet and Nicolini (2003) suggest a

potential improvement to a constant-gain by creating hybrid of constant- and

decreasing-gain. This "switching" gain seems reasonable when agents believe
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coefficients exhibit occasional structural breaks. 1 Marcet and Nicolini argue that

during a hyperinflation episode the "tracking," or constant-gain, algorithm perform

better than a decreasing-gain. This results from the constant-gain algorithms

placing more weight on recent data instead of treating all data equally as is the case

under a decreasing-gain. Since a decreasing-gain results in stability, the ability to

switch to a decreasing-gain could plausibly allow monetary policy rules that were

previously unstable at small values of the constant-gain.

In this chapter I show that this reasonable, switching-gain rule leads to some

startling dynamics. I find that some values of the constant-gain portion of the

switching mechanism can lead to a prolonged period of temporary deviations from

the REE. In the very long-run these occurrences disappear and the REE is attained

(a result also found by Marcet and Nicolini (2003) in the context of their

hyperinflation model). I find that the switching-gain leads to significant increases in

variance of the aggregate variables, specifically 4 to 6 times more output volatility,

but does not lead to higher or lower means relative to the REE.

I consider several policy rules that have been suggested in the literature. I

extend Evans and Honkapohja (2009) by exploring commitment rules that result

from policymaker concerned with deviations from target interest-rates. Specifically,

I compare an expectations based rule in the flavor of Evans and Honkapohja (2006)

to a commitment rule from Duffy and Xiao (2007). In addition, I reexamine a

Taylor-type discretionary policy and commitment rules suggested by Svensson and

Woodford (2005) and McCallum and Nelson (2004). I find that the switching-gain

has a slightly higher cutoff for stability for all the monetary policy rules. Only the

expectations based rule with commitment is robustly stable.

1Miliani (2007b) provides support for the switching-gain with some empirical evidence that this
type of switching-gain may help explain some of the great moderation.
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The rest of the chapter proceeds as follows. First I present the standard NK

model and introduces the learning framework. The second section describes the

exotic dynamics present with the endogenously switching-gain under a Taylor-type

rule. Then I examine various rules under commitment. The penultimate section

explores multiple gains and how policymaker might make stability more likely. The

fifth section concludes.

1. A New Keynesian Model

The following NK model, presented in section 3 of Evans and Honkapohja

(2009), describes the economy,2

(1.1 )

(1.2)

where Xt deviations of output from potential, 1ft is inflation, and Ut and gt are

AR(l) processes. The following equations govern these processes:

Ut = PUt-l + Ut, and gt = P,gt-l + fit,

where fit rv iid(O, (T~), Ut rv iid(O, (T~), and 0 < 1p,1, Ipi < 1.3 The Euler equation for

consumption generates the output equation (1.1), while (1.2) describes the New

Keynesian Phillips Curve. The notation .T~+l refers to an expectational value,

specifically Et-l Xt+l, where the star indicates that expectations need not be rational.

2See Woodford (2003) for derivation.

3/J = P = 0.8 for all simulations.
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The model is closed by specifying an interest-rate rule. Duffy and Xiao (2007)

suggest an optimal policy rule based on policymaker minimizing a loss function that

includes interest-rate stabilization in addition to output and inflation stabilization.

Specifically policymaker minimize the following loss function. 4

(1.3)

where the relative weights of interest-rate and output stabilization are CYi and CY x ,

respectively. Using the first order conditions of this loss function Duffy and Xiao

(2007) derive the following interest-rate rule,

(1.4)

Throughout this chapter I maintain a focus on operational monetary policy

rules in the sense of McCallum (1999). Since policy rules that use current values of

endogenous aggregate variables are untenable, I follow Evans and Honkapohja

(2009) by using expectations of contemporaneous (or future) values of output or

inflation. This assumption changes the interest-rate rule slightly,

(1.5)

By substituting (1.5) into (1.1) the model can be rewritten in matrix form as,

(1.6)

4All the targets have been set to zero for convenience.
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where Yt = (Xt, 7ft)' and Vt = (gt, 7J,t)' and where,

(

_

aX

'P
2
-~) (1 ) (1 0)a a 1.pMo = 1 1. I'vf1 = and P =

- ax~2>. _ 'P:~2' A {3 + 1.pA A 1

Rewriting the exogenous shocks in matrix form yields,

where

As in Evans and Honkapohja (2009) I obtain parameter values from Table 6.1

of Woodford (2003), with ax = 0.048, 1.p = 1/0.157, A = 0.024, {3 = 0.99, and

ai = 0.077. Further, since I assume an operational monetary policy, agents form

expectations at time t, which means that they use current exogenous shocks to form

expectations. Under these assumptions, agents' perceived law of motion (PLM)

takes the form of the minimum state variable (MSV) solution,

Yt = a + CVt (1.7)

and expectations can be written as yf = a + CVt and Yf+l = a + cFVt. Substituting

these expectations into (1.6) yields the actual law of motion (ALM),

(1.8)
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There exists a mapping of perceived coefficients to the actual coefficients,

which the literature refers to as the T-map. In this particular case the T-mapping is,

T(a) = (Mo+ Mda,

T(c) = (lvIoc + AlIcF + P).

The set up of this model implies that if agents start at the REE then they never

deviate. However, a small, one time perturbation from the REE may cause agents'

expectations to either diverge or reacquire the REE. E-stability exists if the model

returns to the REE.

~. Recursive Least Squares

The learning literature uses a recursive form for two reasons. First, it satisfies

certain properties for theoretical results and, second, it is mathematically

convenient for time series simulations. The standard recursive least squares (RLS)

updating equations for a regression of ~ on X t are,

where cPt are coefficient estimates and Rt is the moment matrix.

For a univariate system "Y is usually a scalar. Frequently, the decreasing-gain

version "Y is the simply C I
. Decreasing-gain implies that the weight of each

observation is the same for a particular set of estimates, but decreases over time as

the sample size grows. For the constant-gain version "Y is fixed at some value
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between zero and one. Under this algorithm the oldest data has virtually no weight,

which means one can think of constant-gain learning as a rolling window. 5

A simple extension to this framework is to have multiple univariate RLS

algorithms each with a distinct gain. A clever use of Kronecker products allows for

a one step update of the coefficient estimates. Suppose the multivariate model of

the economy can be written in matrix notation as,

(1.9)

where Wt represents an m x 1 vector of dependent variables, Zt represents an n x 1

vector of independent variables, \[J, and n are m x m matrices of coefficients, and Et

is a m x 1 vector of white noise error terms. As an example suppose that Zt is an

exogenous VAR(1).6 Following the MSV solution, agents would estimate the

following model,

(1.10)

where b is an m x n matrix of coefficients, and Et are the corresponding error terms.

Examine the second equation in the RLS algorithm, which updates the

moment matrix. Clearly, even though they have the same data creating the moment

matrix, if each equation has a different gain parameter, then the moment matrices

differ for each equation. With n different explanatory variables the moment matrix

for a single equation is an n x n matrix. Since there are m equations, Rt is a mn x

mn matrix. In order to create this matrix, define Xt as Im ® Zt, where Im is an m x

m identity matrix, ® denotes a Kronecker product, and Zt is an n x 1 vector data

for period t.

5The window size can be found by taking the inverse of the value of the gain.

6This framework can be easily modified to accommodate alternative models.
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The updating equation for the coefficient estimates must now conform to these

matrix dimensions. Define JJt as vec(b') , which stacks the columns of b', and yt = Wt,

where Wt is an m x 1 vector of data for period t. Assuming, is a scalar, this setup

generates the exact same results as setting up a different algorithm for each

equation.

If one desires to incorporate multiple gain learning then I' must be redefined

as an mn x mn diagonal matrix where the values on the diagonal are the gain on

each coefficient. The first n are associated with the first equation the second n with

the second equation and so on.

2. Endogenously Switching-Gains

Evans and Honkapohja show that under constant-gain learning this model

achieves E-stablity if the constant-gain parameter takes values less than 0.024.

Figures ILl and II.2 depict a particular realization of the NK economy described

above under constant-gain learning. Figure ILl displays instability, while Figure

II.2 displays stability.

Evans and Honkapohja refer to the result as not being "robustly stable," in

the sense that it implies that if agents use less than 42 periods of data the model is

unstable under learning. Most estimates of constant-gain values imply that agents

use approximately 10 to 35 periods of data. 7 The next section allows agents to use

an endogenous-gain, which potentially decreases the number of periods of data that

results in stability.

The switch in Marcet and Nicolini's (2003) hybrid gain sequence is

endogenously triggered by forecast errors. Large errors cause agents to suspect a

structural break and therefore they would prefer to use a constant-gain to remove

7See Milani (2007a, 2007b) and Branch and Evans (2006).
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the bias of the older data. Once forecast errors fall below a cutoff agents switch

back to a decreasing-gain. In Milani (2007b) this cutoff is determined by the

historical average of forecast errors. Here I use the Milani variety switching-gain

where the historical volatility is a moving average,

'"V _ {;y;i+ k
/Z,t -

1z

(2.1)

where k is the number of periods since the last switch to a decreasing-gain, z

denotes a particular variable (IT or y), J is the number of periods for recent

calculations, and W is the number of periods for historical calculations.8 Thus, the

possibility for the output equation to have a decreasing-gain in the same period that

the inflation equation has a constant-gain, and vice versa, exists.

In order to compare directly to Evans and Honkapohja (2009), I use the

Woodford parameterization and use the same constant-gain value, 1z, for both

equations, but I allow agents to use the switching-gain described above. In my

baseline case I set the constant, 1z, equal to 0.025, which lies just outside the stable

range found by Evans and Honkapohja (2009). I set the historical window length,

W, to 35, which suggests that agents use about nine years of past data for the

historical volatility indicator. The window length for recent data, J, is set to 4,

which is the estimated value found by Milani (2007b).

The RLS algorithm requires a small burn in period to establish a history of

error terms. In order to create a seamless transition, I set the burn-in to equal the

inverse of the gain. During this period agents use the constant-gain. Given the

constant-gain value of 0.025 this implies a burn in length of 40 periods. This ensures

8In Milani (2007b) W was set to 3000 for very long simulations.
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no discontinuity at agent's first opportunity to switch; agents choose between

keeping the constant-gain or allowing the value of the gain to decrease.

In the initialization period agent's expectations do not have an effect in the

economy. Thus, the coefficients driving the simulation will be a small perturbation

away from the RE values. When the initialization period ends agents use the

switching-gain in (2.1).

Figure II.3 displays deviations of learning dynamics from the RE solution for a

particular realization of the NK economy when agents use the switching-gain with

1z = 0.025 for z = X, 1f.
9 Convergence under learning typically occurs relatively

rapidly, however, with a switching-gain large deviations occur for a prolonged period

of time. lO This behavior appears as a general characteristic of the stability of this

type of model.

Figure II.4 provides the values of the gain at each point in time. Notice that

right before the episode of instability, which occurs around 2400 in Figure II.3, both

gains spend a significant period of time near 0.025, or the unstable constant-gain

value. Also note that sequences do not mirror each other. In the penultimate section

of this chapter I address the stability when gain values differ across equations.

The historical average suggested by Milani partially drives this result. Should

one use an arbitrary value in the switching rule as suggested by Marcet and Nicolini

(2003), then, for a given value of the constant-gain, there exists a value above which

the model is explosive and below which the model rapidly settles into a continuous

decreasing-gain regime.

9Though the last deviation may be in an indicator of instability, extending the simulation to
10,000 periods can show that this deviation is temporary and the future deviations remain close
to the REE. This example is meant to show that relatively large deviations can occur later in the
simulation.

10A Lucas model with a large impact of expectations may take an extended period of time to
converge.
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Table 11.1: Examples of Temporary Deviations
Mean Variance

Total
100 Periods

Total
100 Periods

x
0.9755
0.9843

1.0082
1.0489

Jr

0.9757
0.9978

1.0133
0.9955

x
1.0996
4.8917

1.1178
6.3118

Jr

1.0000
1.0020

1.0000
1.0003

Shows the mean and variance of output and inflation
of learning relative to RE. The Total row presents
statistics for 5,000 period sample in which at least one
episode of temporary instability occurs. The 100 Peri­
ods row presents statistics for the 100 periods surround­
ing the episode. I use the Woodford calibrated values
and set W=35, J=4, and 'Yz=0.025

Table 11.1 provides a comparison of the economic significance of the temporary

deviations. I choose these examples from two independent simulations of 15,000

periods. After discarding the first 10,000 periods, I calculate the mean and variance

of output and inflation relative to the REE. I calculate these statistics for the entire

5,000 periods and also for a 100 period window around the largest temporary

deviation in that 5,000 period section.

These examples suggest that the exotic behavior leads to a large increase in

variance relative to RE. The top example shows that both inflation and output may

be lower than under RE, while the bottom example has both variables above RE.

Thus, the only unambiguous result is the increase in variance.

Table II.2 displays stability results for several different historical window

lengths.u These results are based on 5,000 simulations of 10,000 periods each. In

order to evaluate stability I compare the last value of the estimated parameters and

the T-map. If the coefficients lie within 2 percent I say that the particular

simulation achieved stability. The values represent the percentage of simulations

llThe constant-gain was set at 0.025, which is in the unstable region of a purely constant-gain
regime.
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Table II.2: Switching-Gain Stability: Varying the Window Size
Rist. Window 15 25 35 45 55 65
Percent Stable 38.32 68.00 78.18 83.66 85.46 86.86

Rist. Window
Percent Stable

75
87.32

85
86.92

95
87.28

105
86.54

115
86.84

125
85.12

Shows the percent of simulations in which the last value of the estimated
parameters lie within 2 percent of the T-map. The historical window is
the parameter the governs the number of periods used to calculate the
historical average MSFE.

that achieve stability.12 These results suggest that the relationship between the

historical window length and stability exhibits some non-linearity. This

non-linearity occurs because of the exogenous shocks that the economy happens to

face in a particular simulation. Appendix A provides probabilities for a different set

window lengths.

These results show that the intuition for stability under a Marcet and Nicolini

or Milani switching-gain may depend on the detailed structure of the constant-gain

portion of the algorithm. \iVhile Marcet and Nicolini (2003) find similar results in a

model with multiple equilibria, I have documented exotic behavior in model with a

single REE. Sargent (1999) uses a model in which agents temporarily escape a

self-confirming equilibrium as well, but examines government beliefs, not beliefs of

the entire economy. eho et al (2002) examine the ordinary differential equations

(ODEs) in the system and find that the "escape dynamics" include an additional

ODE relative to the mean dynamics. policymaker should be concerned with the

potential in this simple NK model for exotic behavior that temporarily strays from

the REE.

12It should be noted that these percentages are most likely lower bounds since the arbitrary cutoff
may happen to occur in the middle of one of the episodes of instability.
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3. Optimal Policy with Commitment

Evans and Honkapohja (2009) postulate that the policy rule with commitment

in Duffy and Xiao (2007) suffers from the same instability that arises under

discretionary policy. As mentioned above, Evans and Honkapohja restrict their

examination of commitment to rules where 0i = 0, which leaves Duffy and Xiao's

rule undefined. In this section, I evaluate the stability of Duffy and Xiao's

commitment rule, compare it to the expectations based rule similar to Evans and

Honkapohja (2003). I also investigate the cause of the temporary deviations by

using policy rules suggested by McCallum and Nelson (2004) and Svensson and

Woodford (2005).

As in Evans and Honkapohja (2009), I examine operational interest-rate rules,

which requires expectations of contemporaneous variables, or nowcasts. Using

nowcasts in the Duffy and Xiao optimal interest-rate rule under commitment (DX)

results in,

. cPA e oxcP ( e ) cPA + j3 + 1 . 1 .
'It = -Jrt + -- x t - Xt-I + j3 'It-I - -j3'lt-2'

0i 0i

The system under commitment can be written as,

(3.1)

(3.2)

where Wt = (it, it-I)' and the appropriate matrices for, M o, MI , No, N I , and P. The

MSV solution provides the PLM, which also supplies the form of the RE solution.

Yt = a, + bOYt-I + bI 11Jt-I + CVt· (3.3)
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For this particular system, the ALM includes the interest-rate process. First,

note that the law of motion governing the exogenous variables, Wt, can be written as,

(3.4)

Given this, it follows that the ALM has the following T-mapping,

T(a) = (1'1110 + Ml(I + bo+ blQo))a,

T(bo) = 1\I£obo + Ml (b6 + blQobo+ blQl) + No),

T(b l ) = Mobl + 1'v11 (bobl + blQobl + hQ2) + Nd,

T(c) = Moc + Ml (boc + blQoc + cF) + P.

Under the Woodford parameterization I find that the model achieves stability

for values of the gain of 0.008 or less. Using Milani's switching-gain extends this

region to 0.009, but it does not display the transitory exotic dynamics found under

a Taylor-type rule. As predicted by Evans and Honkapohja (2009), the policy under

commitment does not fare well under large gains. In fact the instability is so severe

that even allowing for temporary switches to a decreasing-gain does not significantly

extend the range of values that result in stability

For comparison I turn to the expectations based rule of Evans and

Honkapohja (2009). Their rule applies when ai = 0, however, I generalize their

expectations based rule to allow ai > 0. 13 This generalization results in the

following interest-rate rule (EH),

(3.5)

13Note that when Cii = 0, the EH rule is identical to the expectations based rule in Evans and
Honkapohja (2009).
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where,

J _ )../3 + )..2¢ + CYx ¢
3 - CYi¢-l + )..2¢ + CYx ¢'

If the monetary policymaker follow the EH rule, the matrix form of the model

is,

where M, N, and P are the appropriate matrices. The following MSV solution

serves as the PLM,

Yt = a + bYt-l + CUt·

Consequently the T-mapping is,

T(a) = M(I + b)a,

T(b) = !vIb + N,

T (c) = !vIbc + !vIcF + P.

(3.6)

(3.7)

Much like the result in Evans and Honkapohja (2009) all the eigenvalues of the

T-mapping under the Woodford parameterization lie within the unit circle. Though

the expectations based rule satisfies the E-stability condition, the lagged

endogenous variables imply that there exists a possibility for instability for

sufficiently high values of the constant-gain.

Similar to the expectations based rule when CYi = 0, the EH rule is robustly

stable. I find that values of the constant-gain equal to or larger than 0.184 result in

the instability of the EH rule under interest-rate stabilization. Using the Milani
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switching-gain extends the stable range significantly. The EH rule remains stable

until values of 0.252 or higher. In these simulations the distinctive dynamics of the

Taylor-type rule simulations also does not occur.

~. Alternative Commitment Rules and Temporary Deviations

The exotic behavior that arose under a Taylor-type rule does not appear in the

two forms of commitment rule found above. I also found that the range of values of

the constant-gain that yield stability increases under the switching-gain. Evans and

Honkapohja (2009) assess several other commitment rules, which may exhibit the

exotic behavior, or become robustly stable under a switching-gain learning. To

address these points, I set (Xi = 0 and check for exotic behavior and robust stability

under the Svensson and Woodford (SW) and McCallum and Nelson (MN) rules.

McCallum and Nelson (2004) suggest a rule based on the optimality condition

in the timeless-perspective. When ever this condition is above zero the interest-rate

should be above the inflation rate. Using nowcasts the interest-rate rule can be

written as,

(3.8)

Evans and Honkapohja (2009) establish the region of stability for this rule

under constant-gain learning, which ends at 0.018. Under a Milani-type

switching-gain the stable region extends to 0.019. 14 This value is not large enough

to be considered robustly stable according to Evans and Honkapohja (2009).15 In

addition, this rule does not exhibit exotic behavior either.

Similar to the MN rule, Svensson and Woodford (2005) also use the

timeless-perspective optimality condition, but also include a fundamentals based

14With Woodford parameterization except that Qi = 0 and e= 1.5.

15They suggest that a reasonable value for a constant-gain is 0.1 or less.
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term. This hybrid rule arose because fundamentals-based rules without interest-rate

stabilization can result in indeterminacy and instability under learning.

It has been shown that under rational expectations one can obtain the

following fundamentals-based reaction function,

(3.9)

where 'lj)x = bx[¢-l(bx -1) + bn], 'lj)9 = ¢-l, and 'lj)u = [bn + ¢-l(bx + p - l)cx + Cnp.

Additionally, 0 < bx < 1 is the unique solution to (3b; - (1 +(3+ ),,2/cxx )bx + 1 = 0,

Svensson and Woodford modify the rule by adding the timeless-perspective

optimality condition and introducing a new parameter, e> 0, that supplies the

relative weight of the fundamentals versus interest-rate stabilization. The resulting

interest-rate rule is,

(3.10)

As found by Evans and Honkapohja (2009), the stability region of this rule

ends at 0.018. Again, robust stability is not achieved under a Milani-type

switching-gain since the stable region only extends to 0.02.17 Despite this, I observe

exotic behavior when the gain equals 0.02.

It turns out that only the EH rule is "robustly stable," that is, attains

stability for plausible values of the the gain parameter. The switching mechanism

increases the values of the gain parameter for all of the interest-rate rules yet that

16See Svensson and Woodford (2005) p34-35 for the derivation.

17Same parameretization as the MN rule.
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increase is slight for most of them. This suggests that monetary policymaker should

place greater emphasis on the role of expectations on interest-rates.

The appearance of the exotic behavior under two distinct interest-rate rules

warrants further investigation. In order to establish the cause of this exotic dynamic

Table II.3 displays the eigenvalues of the derivative of the T-mapping for each of the

respective interest-rate rules. I8 From the table it is clear why the expectations

based EH rule does not exhibit the exotic behavior; all of the eigenvalues on the EH

rule T-mapping lie within the unit circle.

Evans and Honkapohja (2009) assert that the instability of large

constant-gains arises from the large negative eigenvalues found in most of the

interest-rate rules. However, this does not appear to be the case for the exotic

dynamics. The DX rule has the largest negative values, yet does not display the

same characteristics. In addition, the SW rule has smaller negative values and does

display the exotic behavior.

The MN rule provides a suitable comparison to the SW rule, since the large

negative numbers are approximately equal to each other. The clear pattern is that

the eigenvalues that lie within the unit circle are much larger under the SW rule

than under the MN rule. In order to test this hypothesis, I simulate the economy

using different values for e, and check for temporary deviations under the SW rule.

When e= 1.75, the eigenvalues for DTa are -19.187, and 0.938, those for Dn
are -19.295, 0.833, -20.284, and -0.108, and those for DTc are -19.405, and 0.727. In

this case the exotic dynamics do not appear. However, when e= 1, the eigenvalues

for DTa are -9.570, and 0.990, those for Dn are -9.672, 0.878, -10.604, and -0.118,

and those for DTc are -9.775, and 0.766. Under these circumstances the temporary

deviations remain present. Even though the eigenvalues outside the unit circle are

18 Appendix B supplies the analytical formulae for these derivatives.
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Table II.3: Eigenvalues of the T-Maps
Taylor DX EH SW

DTa -24.4349 -26.2047 0.0782 -15.9747
0.9841 0.6446 0.9169 0.9485

Dn -25.3538 0.0350 -16.0818
-0.8794 0.9114 0.8423

-26.0369 0 -17.0587
-0.0000 0 -0.1104

DTc -24.6657 -25.6947 0.0715 -16.19
0.7864 0.689 0.7192 0.7353

DTbr -26.3763
-0.1009

MN
-16.1301

0.873
-16.245
0.762

-17.2282
-0.1718

-16.3483
0.6626

Shows the Eigenvalues of the derivatives of the T-maps associated
with ea<.:h of the different monetary policy rules. I use Woodford
parameterization, except that (Xi = 0, and () = 1.5 for SW and
MN.

smaller, those within the unit circle are closer to one, which leads to the exotic

behavior. Thus the evidence suggests that the exotic behavior arise when there

exists a large negative root and a root within the unit circle, but close to one.

The eigenvalues result from the parameter values, which suggests that the

exotic behavior may exist for different parameter settings and monetary policy rule

combinations. Since policymaker have control over some of the parameters, <Yi and

ax, they may be able to avoid these episodes. The next section provides some

evidence for how policy may affect stability.

4. Multiple Constant-Gains

In this section I allow the gains to differ for each equation, but do not allow

agents to endogenously switch between constant- and decreasing-gain. Recall that

Evans and Honkapohja (2009) find that this particular model is unstable for a gain

value at or above 0.024, and depict an example of the stability with a gain of 0.02,

and instability with a gain of 0.04.
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In order to remain consistent I use the same values for the constant-gain as

bounds for the analysis. Instead of having the same constant-gain value for both

equations, I allow the gain parameter used in updating the coefficients of the output

equation to differ from that on the inflation equation. Using the Woodford

parameterization, I simulate the economy 100 times for each set of gain parameters.

Each simulation lasts 10,000 periods and I assess stability under learning at the end

of each simulation. Stability exists when the change in all coefficients differ by less

than two percent. 19

Table 11.4 displays the results of these simulations. I find that approximately

98 percent of the simulations were E-stable when the gain parameter on the output

equation is 0.02 regardless of the values of the gain on the inflation equation. If the

value of the gain on the output equations is greater than or equal to 0.024 then

none of the simulations are stable. This finding is striking since it implies that

stability depends on the pair of gain values and that one gain may exert greater

influence on the stability under learning.

So far I have explored how different monetary policy rules may affect stability,

however, policy parameters may also have a significant impact on stability under

learning. In order to assess the effect of policy I let ax = axO.048 and ai = aiO.On,

and vary ai and ax. This allows for the examination of relative changes. Table II.5

presents the results for simulations, where ai and ax take on values between 0.5 and

1.5.

When the ratio between ax and ai remains the same, i. e. on the diagonal of

the table, the greater the response by policymaker results in a greater probability of

stability. The upper-right triangle shows that whenever ax is larger than the

Woodford parameter ratio none of the simulations achieve stability. The lower-left

19There exist several numerical techniques that assess stability under learning which would not
significantly alter the results presented here.
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Table Ir.4: Stability of Multiple Constant-Gains
Ix

0.020 0.021 0.022 0.023 0.024
0.020 98 96 81 18 0
0.022 98 97 82 18 0
0.024 98 95 82 15 0
0.026 98 95 82 14 0
0.028 98 95 82 12 0

17': 0.030 98 95 79 8 0
0.032 98 95 76 5 0
0.034 98 95 74 4 0
0.036 98 94 72 2 0
0.038 98 93 70 2 0
0.040 98 91 68 3 0

Values in the table are the percent of the simulations in
which the difference in estimated coefficients from the T­
map was less than two percent. "h is the gain associated
with the output equation, and /7': is the gain associated
with the inflation equation.

triangle shows that the opposite is true when policy response to interest-rates is

relatively stronger.

This may seem counterintuitive, since the stability of the model reacts more to

changes to the gain on the output equation. A closer inspection of the set-up of the

model shows that a stronger reaction to interest-rates results in a reduction in the

effect of contemporaneous expectations, i. e the Mo matrix. Specifically stronger

interest-rate stabilization policy implies that policymaker react less to expected

inflation and output. Therefore, this analysis reinforces the notion that policymaker

should remain cognizant of agents' expectations.

5. Conclusion

Researchers have debated the merits of monetary policy rules under learning

using two types of gain structures, decreasing and constant. A hybrid of these two
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Table 11.5: Policy Effect on Stability
ax

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.5 29 a a a a a a a a a a
0.6 100 41 a a a a a a a a a
0.7 100 100 53 a a a a a a a a
0.8 100 100 100 63 a a a a a a a
0.9 100 100 100 100 64 a a a a a a

ai 1 100 100 100 100 100 68 a a a a a
1.1 100 100 100 100 100 99 70 a a a a
1.2 100 100 100 100 100 100 99 75 a a a
1.3 100 100 100 100 100 100 100 99 73 a a
1.4 100 100 100 100 100 100 100 100 98 76 a
1.5 100 100 100 100 100 100 100 100 100 97 76

The numbers in the table are the percent of simulations in which the difference in
estimated coefficients from the T-map was less than two percent. ai and ax scale
the parameters of the monetary policymakers loss function, ai and ax, respectively.
'Yx = 0.022 and 'Yrr = 0.04.

types of gains provides a cautionary tale for monetary policymaker. policymaker

should realize the potential for a model that is stable in the very long run to

experience 4 to 6 times more volatility for a particular length of time. In addition,

though the switching-gain extended the stable region for all interest-rate rules, only

the expectations based rule remains "robustly stable" in the sense suggested by

Evans and Honkapohja (2009).

Up till now the importance of alternative gain sequences in the NK model has

not been studied. While stability of traditional gain parameters abound, the

stability results for alternatives, such as Marcet and Nicolini (2003) and Milani

(2007b), have not been established. The analysis above shows that switching-gains

result in stability, but potentially develop exotic dynamics. In addition, the analysis

above provides evidence that under multiple gains the combination of gains

determines stability of the model. Stability results may be more sensitive to a

particular gain.
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While the choice of the interest-rate rule is important, policymaker may also

influence the stability of the model by changing policy parameters. The results

above suggest that monetary policy maker should pay close attention to

expectations and try to limit the impact of expectations on interest-rate

fluctuations.
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CHAPTER III

TIME VARYING PARAMETERS AND LEARNING

As models that incorporate learning behavior are brought to the data some

researchers have used endogenous-gain parameters to approximate agent behavior

under structural break uncertainty. A large empirical literature is devoted to

determining structural breaks, which suggests that expectation formation should

account for this potential strategy. Presumably when agents try to accomodate

structural breaks specifically their forcasting ability should improve.

Though intuition suggests that the type of modeling proposed by Marcet and

Nicolini (2003) should be superior to a constant-gain, the improvement has not been

documented. I show, using a simple model, that the ad hoc endogenous-gain

proposed by Marcet and Nicolini (2003) is indistinguishable from a constant-gain.

In addition, I propose an alternative, which performs well compared to a

constant-gain without expectational feedback. When expectational feedback exists

my endogenous-gain is a Nash equilibrium.

The motivation for the Marcet and Nicolini switching-gain relies on the

assumption that agents believe that coefficients may exhibit a structural break.

Under time-varying parameters, the optimal estimation technique is Bayesian

estimation using a filtering process. For example, random walk parameter variation

is optimally estimated using the Kalman filter. 1 However, the learning literature

1Each filtering process depends on the exact type of time variation.
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assumes that agents are boundedly rational, thus agents in these types of models

may not have the optimal tools available to them. In many cases, lack of

mathematical ability may be sufficient reason to dismiss agents' ability to use

Bayesian techniques.

Several papers address time-varying parameters in a variety of contexts within

learning. For example, Bray and Savin (1986) present a model where agents

misspecify the model by assuming parameters are constant, when in fact

expectational feedback causes parameters to vary over time. They find that agents,

using a stF1ndard Durbin-Watson statistic, detect their misspecification error, which

suggests that agents should adjust their specification appropriately. Bullard (1992)

and McGough (2003) investigate the convergence properties of a model when agents

correctly identify the time-varying nature of coefficients. The condition for

convergence requires that agents believe that the conditional variance of the time

varying parameter (TVP) declines toward zero.

The papers described above all assume the same TVP structure, namely, a

random walk. Consequently, the use of a Kalman filter seems quite natural. Beck

and Wieland (2002) and Wieland (2000) examine the performance of optimal

Bayesian learning and alternative decision rules in a TVP world. However,

alternative TVP processes are not compatible with the assumptions needed for

using the Kalman filter.

Evans and Ramey (2006) use a model of TVP that is complex enough to make

devising the optimal filter rather difficult. Thus, it is more natural for agents in

such a setting to use an approximation or an ad hoc rule to capture the variation

over time. Specifically Evans and Ramey (2006) examine agents choosing between a

constant and a decreasing-gain.
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My contribution extends and, in some ways, combines Carceles-Poveda and

Giannitsarou (2007) and Beck and Wieland (2002). These papers assess the

performance of various gain structures under different conditions. Carceles-Poveda

and Giannitsarou (2007) examine initialization of decreasing-gain, constant-gain and

stochastic gradient learning in models where the underlying parameters are

constant. Beck and Wieland (2002) examine various decision rules in a model with

TVP. I extend these papers by including endogenous-gain structures, and by

investigating an alternative TVP process.

For the sake of simplicity, I use a Cobweb model with TVP, which I modify

along two dimensions. 2 First, I compare a process similar to a random walk and an

alternative TVP setting similar to Evans and Ramey (2006). Second, I examine the

Nash equilibria in the presence of expectational feedback.

In addition to a constant and the Marcet and Nicolini ad hoc endogenous-gain,

I propose an alternative endogenous-gain that includes the standard deviation of a

potential estimate to derive the gain value. I use the mean squared forecast error as

a benchmark.

Under occasional structural breaks I find that the lVIarcet and Nicolini gain

rarely improves on a constant-gain. Statistically significant improvement is only a

0.5 percent improvement in mean squared forecast error over a constant-gain. My

endogenous-gain has greater improvement, as much as 4 percent, and also is a Nash

Equilibrium relative to a constant-gain. This 8 fold improvement over Marcet and

Nicolini suggests that my endogenous-gain algorithm provides significant

improvement. The endogenous-gain does not fair as well under a random walk type

scenario.

2This model adopts the same framework as Bray and Savin (1986).
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After describing the endogenous-gain processes used in the analysis, I

demonstrate the stability of my endogenous-gain in a simple NK model. The third

section presents the Cobweb model and results without expectational feedback.

Section 4 examines the Nash equilibria of the model with expectational feedback.

The fifth section concludes.

1. Endogenous-Gains

Econometric learning is a bounded rationality exercise that assumes that

agents have some idea of what the economy looks like mathematically, but do not

know the values of the parameters. Therefore, agents use recursively least squares

(RLS) to update their coefficient estimates when they receive new information. The

following is an example of a typical RLS algorithm:

(1.1 )

(1.2)

The first equation updates the coefficient estimate, cPt, using the new data, ~,

X t , and the second equation updates the moment matrix, Rt . An important

component in constructing the RLS algorithm is the gain parameter /. This

parameter governs the weight assigned to each observation. For example, the value

of decreasing-gain decreases as each new observation is incorporated in the estimate.

This means that recent data have little effect on the estimate value.

Another standard gain parameter choice, is a constant-gain. This type of gain

gives each new observation the same weight. This means that the weight on each

observation geometrically declines backwards in time. A constant-gain generally is

used when one believes that the underlying parameter values vary over time.
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Marcet and Nicolini's endogenous-gain combines these two concepts, allowing

agents to switch between a decreasing-gain and a constant-gain. Agents take

advantage of the lower volatility that a decreasing-gain provides when agents believe

a parameter remains constant. Yet they realize that parameters might change by

switching to a constant-gain when appropriate. While this makes sense in theory,

the rule used to govern this choice is inherently backward looking.

Specifically agents will switch if an average of forecast errors over the last J

periods are above some arbitrary value, v. If the recent forecast errors fall below

that value, then agents decrease the gain gradually by keeping track of the number

of periods, k, the recent forecast errors are below v.

{

--J+k
'Y - Iy
IY -

"!Y

if I:;'=t-J !Yi-yfl < v
J '

l
'f I:;=t-J IYi-yfl >

J _ v.

(1.3)

The rule Milani (2007b) uses is based on Marcet and Nicolini (2003), but sets

the arbitrary value, v, equal to the historical average of absolute forecast errors.

The historical average is updated as each period provides new information. The

historical average can either use all information available or have window size larger

than J.

These mechanisms rely on forecast errors of outcome variables when agents are

concerned with coefficient movement. Therefore, I propose an alternative

endogenous-gain. The motivation behind this gain is that agents should use

coefficient estimates to determine whether there has been a change.

The alternative gain uses the standard deviation of a hypothetical estimate for

the current parameter value using an average of the mean and variance of the past

w periods. If the potential estimate lies several standard deviations away from the

mean then agents should suspect a change in parameter values. Such a gain must
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increase with the standard deviation and have bounds of at least zero and at most

one.

I propose using a function that also allows for modulation depending on the

type of model an agent faces,

I~I
Ib = Ctlb + Ctsf 1_ - I'1 + bt~bt

CTb

(1.4)

where bt is the potential estimate, bt is the average of the past w estimates, and (Jb is

the average variance of the estimates.

The parameters, Ctlb and Ctsf' (that may be empirically testable) temper the

potential values the endogenous-gain can take and adds to the generality of the

model. The lower bound, Ctlb, and the scaling factor, Ctsf' define a range of gain

values that the agent will use. Note that if agents set Ctsf = 0, this endogenous-gain

becomes a constant-gain.

The following procedure updates agent's coefficient estimates. (1) use the value

of the previous gain parameter to find the potential estimate value (bt ). (2) Then

calculate, based on the potential estimate, the value of the current gain parameter.

(3) Last, update the estimate using the gain parameter provided by step two.

There are several reasons why one might prefer this type of ad hoc

endogenization of the gain parameter. First, it makes a clear distinction,

statistically, why one might suspect that there is a structural break. Second, most

macroeconomists would agree that agents do not only look backwards to form

expectations. My endogenous-gain uses an initial estimate of the current parameter

as the crucial piece of information for the decision mechanism. Lastly, this

endogenous-gain nests the possibility of a constant-gain.
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2. Stability of the Alternative

In the previous section I proposed an alternative endogenous-gain. In order to

assess the stability properties I use the following NK model, presented in section 3

of Evans and Honkapohja (2009),3

1rt = (31r:+ 1 + )...Xt + 'Ut,

. <p)... e <pax e
'it = -1rt + --Xt ,

ai ai

where 'Ut and 9t are AR(l) processes. The following equations govern these

processes:

Note that if there are six coefficients there are six different gain processes.

(2.1 )

(2.2)

(2.3)

This means that the agents assess the potential for a structural break in each of the

coefficients separately.

Since the endogenous-gain requires previous information, I begin all

simulations with a 40 period burn-in. During the burn-in each equation receives an

additional exogenous error each period for each equation. This allows for enough

variability in the data to generate variance covariance matrices necessary for the

construction of the endogenous-gain. After the burn-in, the additional exogenous

variation shuts down and the simulation continues without any extraneous noise.

Similar to Evans and Honkapohja (2009) I use the calibrated parameter values

1 from Table 6.1 of Woodford (2003), with ax = 0.048, <p = 1/0.157, )... = 0.024,

3See Woodford (2003) for derivation.
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(3 = 0.99, and CYi = 0.077. In Evans and Honkapohja (2009), they find that this

particular parameterization results in instability if agents use a constant-gain

greater than or equal to 0.024. In order to demonstrate the stability properties of

my endogenous-gain I set CYlb = 0.005 and CYst = 0.035.

Figure IlL 1 provides an example of the stability of the endogenous-gain. The

temporary deviations from RE continue indefinitely. In addition, I find that two of

the coefficients do not converge to their REE values. Since the temporary deviations

from RE occur more frequently, the standard methodology for assessing stability

does not provide useful results.

Therefore, in order to asses this type of stability I use the average deviations

in the last 100 periods of the simulation to determine a model stability. I define a

simulation as stable, if the average of the deviations in the last 100 periods are less

than 0.01. I find stability in approximately 75 percent of 1000 simulations.

These results suggest that an endogenous-gain may provide several useful

properties. This particular examples shows how an endogenous-gain can extend the

range of gain values that result in stability, perhaps resulting in "robust" stability in

the sense of Evans and Honkapohja (2009). In addition, the temporary deviations

occur in a standard NK model, which suggests that recurrent irrational behavior

may arise naturally with appropriate expectation formation modeling.

3. Evaluating the Endogenous-Gain

A Cobweb model serves as the basis for the analysis performed below. This

type of model has been used from early on in the learning literature. 4 In order to

examine the expectation formation in its purest setting, I first eliminate

expectational feedback. I assume that agents know the structural process, except for

4See the pioneering work of Bray (1982), Bray and Savin(1986), and others.
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Figure III.1: Stability of optimal Taylor-type rule with alt. endogenous-gain.

analysis below I assume that agents have no knowledge of the process governing the
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the parameter values. Therefore, they estimate coefficients using RLS. For the

TVP.

data. In this case the data generating process is as follows:

where Yt and Xt are data, Ilt is the TVP, ¢ is the coefficient on expectations, and Tit

is an iid, mean zero, variance (J~ white noise process. The superscript e represents

the expected value of current data and is referred to as a "nowcast," i. e.

Since I first examine the case where there is no expectational feedback I set ¢ = o.

Y~ = Et~lYt. Nowcasting implies that people may not have access to current data.
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Setting ¢ = 0 is desirable because it eliminates the possibility of game

theoretic behavior. Note that if ¢ = 0, this equation also represents the actual law

of motion (ALM) since expectations are not included. The perceived law of motion

(PL:M) is very similar, reflecting agents basic knowledge of the system, and lack of

knowledge of the parameter p,t. Below, I discuss the relevance of the ALM and the

PLM to E-stability.

The TVP process of the coefficient, J1.t, is based on Evans and Ramey (2006).

The motivation for this particular process is that it suggests that parameter values

are stable for the majority of time, but every once in a while they change.

{

J1.t-l
J1.t=

Vt

with Prob. (1-E),

with Prob. E.

(3.2)

where Vt is an iid, mean zero, variance (Jv white noise process, and E is the

probability of switching to a new parameter values. I choose this particular process

because the initial intuition behind using a switching-gain such as Marcet and

Nicolini was that agents believed there was potential for structural breaks.

While a parameter following a random walk changes value each period, the

Evans and Ramey process exhibits properties akin to random structural breaks.

Since the Bayesian filter associated with this process requires significant expertise, it

stands to reason that agents would use an approximation in this case. Even the

Kalman filter requires a fair amount of knowledge, thus an approximation of the

Kalman filter when the parameter follows a random walk seems appropriate as well.

When the underlying parameter changes one would hope that the

endogenous-gain places more weight on recent observations the switch to the new

parameter value to occur more quickly. The Marcet and Nicolini variety only
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switches once the forecast errors were "bad enough," whereas my endogenous-gain

reacts if statistically significant change in coefficient estimates occurs.

I consider a rigorous test of these gains. I generate rational expectations data,

which then is used in algorithms for each type of gain. Each gain structure has a

parameter or several parameters which can affect the forecast error. I optimize over

these parameters to achieve the smallest mean squared forecast error (MSFE) for

the given length of simulation.

For the standard constant-gain there is only one dimension with which to

optimize over, namely, the value of the constant-gain itself, "'/. Marcet and Nicolini

requires three parameters, the value of the constant-gain 'Yz, the recent window

length, J, and the arbitrary value, v. Finally, my endogenous-gain has three

parameters, the lower bound alb, the scaling factor asj, and the window size w.

After optimization I conduct out-of-sample simulation using the optimized

values for each gain. The optimization simulation lasts 50,000 periods. Using the

optimized parameter values, I conduct 100 independent simulations of 40,000

periods. I drop the first 20,000 periods to eliminate any influence of initialization of

the learning algorithm and any other initial conditions.

In performing this optimization routine on the Marcet and Nicolini gain, I

found two surprising results. First, there were no cases where Marcet and Nicolini

dominated a constant-gain, and second, the optimization routine performed

inconsistently. In order to mitigate this I expanded my search of the parameter

space and looked for optimal constant-gain values that could be improved by

allowing for a switch.

For this process I first optimized for a constant-gain over 50,000 periods. Then

conducted 100 independent simulations of 40,000 periods where agents follow the
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Marcet and Nicolini rule for different values of the arbitrary cutoff. The results are

provided in Table III. 1.5

I find that over the space where Marcet and Nicolini theoretically should not

perform well, it does not. Under conditions that one might expect Marcet and

Nicolini to perform well, it does so only marginally. While the average MSFE of

some of the simulations fall below one, only one is statistically different from one. In

that one case two standard deviations away from the mean only results in a 0.7

percent improvement. The additional tables in the appendix show that other ratios

of standard deviations do not show significant improvement.

Table III.2 displays the results for simulations with no expectational feedback,

2. e. ¢ = O. The upper panel shows that the endogenous-gain has a lower MSFE

when the ratio between the standard deviation is less than one half. The percentage

improvement increases as the ratio gets smaller. At the same time the value of the

optimal constant-gain gets larger. The estimates of the relative MSFE is two

standard deviations away from one for all the chosen parameter settings, except

when the ratio is two-thirds.

In the lower panel the structural breaks occur less frequently, and

consequently there is less improvement on the constant-gain. It takes a much larger

ratio (one-eighth) for the relative MSFE to be more than two standard deviations

from one. The optimal constant-gain values are significantly higher when the

structural breaks occur more frequently.

Finally, looking at the optimal endogenous-gain parameters a particular

pattern appears. In each case the optimal constant-gain lies between the lower and

upper bounds of the endogenous-gain. The upper bound of the endogenous-gain

5Additional tables for other parameter settings are included in the Appendix.
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Table IILl: Forecast Ability of the Marcet and Nicolini Switching-Gain
v 1 - E

0.01 0.05 0.1 0.9 0.95 0.99
0.5 1.0000 1.0000 1.0000 0.9999 0.9999 0.9994

4.71E-08 1.37E-07 4.13E-08 0.0004252 0.000177 0.0004043
1 1.0000 1.0000 1.0000 0.9997 0.9997 0.9987

1.43E-07 9.91E-08 1.20E-07 0.001217 0.001272 0.000554
1.5 1.0000 1.0000 1.0000 1.0000 0.9998 0.9980

2.24E-07 1.54E-07 1.68E-07 0.0006277 0.000665 0.001087
2 1.0000 1.0000 1.0000 1.0030 1.0010 0.9965

2.37E-07 1.61E-07 2.53E-07 0.002593 0.002526 0.001466
2.5 1.0000 1.0000 1.0000 1.0070 1.0020 0.9967

3.51E-07 4.32E-07 3.03E-07 0.002864 0.002661 0.002924
3 1.0000 1.0000 1.0000 1.0100 1.0050 0.9951

4.67E-07 2.83E-07 3.57E-07 0.003248 0.003667 0.003743
3.5 1.0000 1.0000 1.0000 1.0150 1.0080 0.9948

6.03E-07 4.20E-07 3.97E-07 0.003901 0.004053 0.003219
4 1.0000 1.0000 1.0000 1.0210 1.0120 0.9950

1.06E-06 4.66E-07 2.83E-06 0.005149 0.005139 0.003146
10 1.0000 1.0000 1.0000 1.1910 1.2020 1.1060

5.55E-06 3.08E-06 4.57E-06 0.01644 0.01195 0.01321
The first row indicates for each value of v indicates mean of the relative MSFE.
The second row reports the standard deviation. v is the value of forecast error
above which agents switch to a constant gain. c is the probability of structural
break in the underlying coefficient. The variance of the exogenous shock to the
forecasted variable (Jv = 4 and the variance of the coefficient (J '7 = 2.

increases as the ratio of the standard deviations decreases. In addition, as the

frequency of structural breaks increases the optimal window length decreases.

't. An Alternative TVP Process

While some empirical work relies on structural breaks, it is also common to

assume that parameters follow a random walk. This assumption works in practice

because the data sets tend to be fairly short and/or the standard deviation is

restricted to be quite small. The intuition behind assuming a random walk is that a

coefficient drifts around, but in all likelihood remains bounded given the small data

set and restrictions on the standard deviation.
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Table III.2: Forecast Ability of the Endogenous-Gain in a Model with Occasional
Structural Breaks

E = 0.01
(JT/ (Jv = 4 (Jv = 3
2 0.9878 (0.0048) 0.1981 1 (0) 0.1536

0.1149 0.3749 19 0.1536 0 20
1 0.9723 (0.0119) 0.3411 0.9793 (0.0087) 0.2756

0.1131 0.5350 19 0.1088 0.4440 19
0.5 0.9569 (0.0180) 0.5243 0.9685 (0.0134) 0.4457

0.1159 0.6524 18 0.0976 0.5578 20
E = 0.05

(JT/ (Jv = 4 (Jv = 3
2 0.9971 (0.0027) 0.3707 0.9995 (0.0014) 0.2920

0.2881 0.2856 11 0.2500 0.1704 11
1 0.9880 (0.0066) 0.5801 0.9927 (0.0046) 0.4939

0.3224 0.5043 12 0.3027 0.4081 11
0.5 0.9778 (0.0107) 0.7632 0.9831 (0.0099) 0.6922

0.3666 0.5559 11 0.3017 0.5703 11
The first row in each box displays the relative MSFE, the standard de­
viation of the relative MSFE, and the optimal constant-gain value. The
second row displays the optimal lower bound, scaling factor and window
size of the endogenous-gain. v is the value of forecast error above which
agents switch to a constant gain. c is the probability of structural break
in the underlying coefficient. (J" and (Jv are the variances of the exoge­
nous shock to the forecasted variable and the coefficient, respectively.

Since a random walk by definition is not bounded, and since I perform long

simulations, I assume that Itt is an AR(l) with a normally distributed error term.

(3.3)

where Wt is an iid, mean zero, variance (Jw white noise process and 0 < A < 1. I will

assign a large value to A so as to come close to a random walk.

I simulate the model under four different parameter settings. The results can

be found in Table III.3. The simulations show that the endogenous-gain does not

improve over the optimal constant-gain in any economically meaningful simulations.
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0.3502
14

(Jv = 0.5
(0.0006)
0.0938

0.9992
0.3109

0.5447
17

(Jv = 1
(0.0019)
0.2252

0.9958
0.4334

Table III.3: Forecast Ability of the Endogenous-Gain with a Random Walk Time­
Varying Coefficient

========:===========~===

0.5 0.9899
0.5039

(0.0046)
0.3361

0.7308
17

0.9961
0.4007

(0.0020)
0.2297

0.5447
18

The first row in each box displays the relative MSFE, the standard de­
viation of the relative MSFE, and the optimal constant-gain value. The
second row displays the optimal lower bound, scaling factor and window
size of the endogenous-gain. (J v and (Jv are the variance of the exogenous
shock to the forecasted variable and the innovations to the time-varying
coefficient, respectively.

The specific values chosen highlight that the relative standard errors provide the

appropriate comparison and show the general pattern under these conditions.

When the endogenous-gain does significantly improve on the constant-gain,

the parameter values imply agents use too little data. Changing the ratio of

standard deviations to reduce the value of the constant-gain causes the

improvement of the endogenous-gain to vanish.

This result should not be surprising since the motivation for the

endogenous-gain was occasional structural breaks. This experiment, shows that the

endogenous-gain is tailored toward structural breaks and does not necessarily

improve on all time varying parameter possibilities.

4. When Expectations Matter

An obvious criticism of the models described above, is that agents form

expectations but do not use them and therefore are not included in the data

generating process. Most learning models have some sort of expectational feedback,

which leads me to generalize the basic model to include expectations. I do this by

allowing ¢ to take values other than zero.
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Restating the Cobweb model with purely exogenous data from above,

Yt = /-ltXt-l + cPyf + T}t 1

where cP -=I- O. With this formulation it is important to assess E-stability, so that

parameter values are chosen appropriately. In general, E-stability imposes

restrictions on some, but not all the parameters of the model.

Assuming that agents observe the parameter values at all points in time,

(4.1)

standard rational expectations yield the following result. This is not necessary for

determining E-stability, but it can provide guidance.

RE p,t 1
Yt = 1 _ cP Xt-l + 1 _ cP T}t· (4.2)

In order to assess E-stability, one starts with an assumption regarding agents'

beliefs over the data generating process. Following the literature, I assume that

agents use the minimum state variable (MSV) solution in determining their PLM,

(4.3)

With this assumption agents expectations are yf = btXt-l, which yields the following

ALM,

(4.4)

Clearly the ALM is quite different than the PLM, however, if agents are able

to learn the REE then the coefficients on Xt-l must be equal to each other. Thus,

there should be a correspondence between the PLM and the ALM, which is referred
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to as a T-mapping. Given this particular ALM and PLM the T-map is,

(4.5)

For a univariate model assessing E-stability is straightforward. E-stability

requires that the derivative of T(bt ) - bt be less than zero. Thus, the following

condition must hold for stability: ¢ < 1. The intuition behind this result is that in

order to learn the feedback of expectations must be self reinforcing.

Table IlIA displays the results of the simulations with expectational feedback.

Across the board I find that my endogenous-gain performs better with expectational

feedback. The same general patterns appear as without expectational feedback,

which suggests that smaller ratios of standard deviations maintain corresponding

improvements.

One cause for concern is the relatively high values of the optimal

constant-gain. Even the smallest optimal constant-gain value implies that agents

use three periods of data in forming their estimates. Most empirical work suggests

that agents have smaller gains, or use more data. When agents use the

endogenous-gain, the lower bound appears more plausible.

'to Nash Equilibrium

Up till this point have assumed that agent's use the social optimal gain.

However, in the presence of expectational feedback a single agent may do better,

relative to the rest of the agents, using an different gain value. Finding the Nash

equilibrium for a constant-gain is straightforward since there agents only control one

parameter. Under the endogenous-gain agents have two parameters to choose which

makes the process more difficult.
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Table III.4: Forecast Ability of the Endogenous-Gain in a Occasional Structural Break
Model with Expectational Feedback

c = 0.01
O"TJ O"u=4 O"u = 3

2 0.9805 (0.0057) 0.3721 0.9881 (0.0040) 0.2972
0.1797 0.5685 18 0.1574 0.4756 15

1 0.9564 (0.0125) 0.5733 0.9701 (0.0099) 0.4894
0.1474 0.7672 17 0.1357 0.6847 19

0.5 0.9315 (0.0159) 0.7551 0.9418 (0.0139) 0.6834
0.1288 0.8286 19 0.1297 0.7975 20

c = 0.05
O"TJ 0"1/ = 4 O"u = 3

2 0.9885 (0.0046) 0.6014 0.9943 (0.0030) 0.5065
0.3892 0.5163 9 0.3482 0.4258 12

1 0.9709 (0.0072) 0.7927 0.9790 (0.0060) 0.7208
0.4188 0.5610 14 0.3878 0.5551 11

0.5 0.9619 (0.0090) 0.9126 0.9645 (0.0079) 0.8715
0.5414 0.4457 14 0.4620 0.5179 14

The first row in each box displays the relative MSFE, the standard de­
viation of the relative MSFE, and the optimal constant-gain value. The
second row displays the optimal lower bound, scaling factor and window
size of the endogenous-gain. 'V is the value of forecast error above which
agents switch to a constant gain. c is the probability of structural break
in the underlying coefficient. (J1/ and (Jv are the variances of the exoge­
nous shock to the forecasted variable and the coefficient, respectively. I
set the coefficient on the expectational term ¢ = 0.5

I focus on the economically relevant cases where the ratio between standard

deviations are one-half and two-thirds. I find that the Nash equilibrium of the

constant-gain almost matches the social optimal. Figures III.2 and 1II.3 displays the

fixed point of the equilibrium constant-gain value and the MSFE of the best

responses.

The exact intersection when O"u = 4, O"TJ = 2 occurs at 0.3733 and at that point

the optimal response of the endogenous-gain results in a 1.5 percent improvement in

MSFE. For O"u = 3, O"rj = 2, the intersection occurs at, 0.2977 and at the point the

optimal response of the endogenous-gain results in a 1 percent improvement in

MSFE.

j
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Figure III.2: The Nash equilibrium constant-gain value and MSFE of best responses.
av = 4, a rJ = 2, and c = 0.01.
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Figure III.3: The Nash equilibrium constant-gain value and MSFE of best responses.
a v = 3, aT} = 2, and c = O.OJ.
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In addition if I generate data with agents using the endogenous-gain response

to the constant-gain, then a single agent using a constant-gain cannot improve.

That is, given what everyone else is doing the endogenous-gain is preferred.

These results illustrate that the socially optimal constant-gain value and the

Nash constant-gain are identical in this particular model. Since this result does not

hold generally, the movement due to the structural break process must dominate the

learning dynamics. Game theoretic behavior serves no purpose because the agents'

concern themselves with tracking the structural break process.

5. Conclusion

Given the explosion of empirical research involving assumptions of learning

behavior by agents, an in depth comparison of different gain structures seems

appropriate. While a constant-gain is frequently used when the underlying

parameters vary over time, alternatives have been postulate to more accurately

describe agents' behavior. The switching-gain of Marcet and Nicolini intuitively

seems designed for potential structural breaks. I find that the switching-gain rarely

offers significant improvement over a constant-gain in the presence of structural

breaks.

As an alternative I have proposed an endogenous-gain that relies on statistical

information to determine the value of the gain. The stability properties of my

endogenous-gain closely relate to the dynamics found in Marcet and Nicolini (2003)

and warrant further research. I find that my endogenous-gain performs well under

occasional structural breaks, reducing the MSFE by at most 4 percent. In addition,

when agent's expectations feedback into outcome variables, my endogenous-gain

dominates the Nash equilibrium constant-gain.
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CHAPTER IV

DSGE ESTIMATION WITH LEARNING

Empirical macroeconomists spend a lot of time trying to explain, and in some

cases predict, output, inflation and interest-rates. Most estimations have used

reduced form time-series models. Bayesian techniques have allowed econometricians

to estimate structural parameters of dynamic stochastic general equilibrium

(DSGE) models, such as a simple NK model. l More recently, scholars have relaxed

the assumption of RE, by allowing agents to "learn" about the economy. 2

A natural consequence of a learning model is that the reduced form

coefficients vary over time. This allows for a better fit of the data, which is why

learning models tend to dominate RE. In this chapter, I present my preferred NK

model, discuss the estimation procedure, and present some comparative results.

These results are based on data from 1989-2007, which one might suspect has no

clear structural breaks. I also perform a Monte Carlo exercise that shows that the

learning estimation does not capture an RE equilibrium.

Milani (2007a) provides one of the first DSGE estimations with learning. 3 The

model I present more closely resembles Milani(2007b), but differs in several

lSee, for example, An and Schorfheide (2007), Fernandez-Villaverde and Rubio-Rameriz (2007),
and Justiniano and Primiceri (2008).

2See, for example, Milani (2007a,2007b, 2008), Murray (2007a, 2007b, 2008), and Solobodyan
and Wouters (2008).

3There have been other attempts to empirically test for learning behavior using other identifica­
tion techniques. See, for example, Branch and Evans (2006), and Chevillon et al. (2010).



53

dimmensions. First, I assume that monetary policymaker use "nowcasts" to inform

their decision over policy, whereas in Milani policymakers use lagged output and

inflation. Second, Milani's agents fail to account for autocorrelation. I also assume

that agents perceive past structural shocks.

Many empirical projects, most notably Fuhrer and Moore (1995), have shown

that there is persistence in interest/inflation rates. Thus many researchers,

including Milani, include a lagged interest-rate term in the monetary policy rule.

However, Cogley and Sbordone (2008), have shown that time varying trend inflation

can provide acceptable persistence. Therefore, instead of using lagged interest-rates

I assume that there is trend component to interest-rates that follows a random walk.

My estimation strategy innovates on another dimension since most papers

with forward looking RE models do not solve for the RE solution to estimate the

coefficients. Instead researchers have incorporated the RE forecast errors as part of

the error terms. 4 Actual data is used as an estimate of the RE value. Applying the

same technique to learning would marginalize the contribution of incorrect

expectation formation.

My results suggest that my endogenous-gain learning rule does the best job of

describing the data even though there is no apparent time-variation of the reduced

form coefficients. Using three model comparison strategies constant-gain learning

clearly outperforms RE, and endogenous-gain learning outperforms both.

Examination of the actual time path of the reduced form coefficients shows little

time variation, which suggests that although learning allows for time variation in

coefficients this is not what causes the improvement.

I dive straight into the model in the next section. I explain in further detail

the Bayesian estimation strategy employed in the second section. The third section

4See, for example, Clarida et al. (2000) and Kim and Nelson (2006).
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presents the results. The fourth examines ALM implied by agents learning to a

simple TVP estimation of a VAR. Section five concludes.

1. Incorporating '!rend Interest-Rates and Learning

As noted earlier, I depart from Milani (2007b) on several dimensions. Milani

assumes that the monetary policy rule is backward looking. I favor

contemporaneous expectations model of Evans and Honkapohja (2009) since I have

shown the stability properties of this model.

Thus the economy is described by the following NK mode15

(1.1 )

(1.2)

(1.3)

where 11.t and gt are AR(l) processes and Dt is a time varying trend that follows a

random walk. 6 This addition follows the same line of reasoning of Cogley and

Sbordone (2008) and results in a model that does not involve lagged endogenous

variables. The following equations govern these processes, Ut = PuUt-l + Vu,t, and

Having a model without lagged endogenous variables allows for quick

calculation of the REE. Thus instead of pushing the RE into the error term, I can

solve the model at each step. Assuming agents observe lagged shocks is critical. I

5See Woodford (2003) for derivation.

6The AR(l) assumption could be expanded to an AR(2) for future work. The decision whether
agents then know the lag structure of the exogenous shocks becomes important. Misspecification of
agents may not just lie in what data agents use, but also in their beliefs over autocorrelation.
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propose two different information sets for agents to use, one which favors the

rational expectations agents and one that favors learning agents.

In this section I demonstrate the formulation of the model when agents do not

have access to the time varying trend. This specification benefits learning, since I

assume the learning agents estimate an intercept. This allows agents to capture

some of the trend.

I assume that agents perceive the autocorrelation and that they have some

way of estimating those coefficients of the autocorrelation and distinguishing past

shocks. Thus, they know the following equation and its coefficients:

(1.4)

where Vt = (gt, Ut, Et)', Vt are the respective iid errors, and

Pg 0 0

F = 0 Pu 0

o 0 0

I assume that agents see lagged exogenous shocks and that agents estimate an

intercept term. Thus, the PLM takes the following form,

(1.5)

where Zt = (Xt, 7ft, it)', and at and Ct are coefficient vector and matrix of appropriate

dimensions, respectively. The agents learn the model coefficients according to the
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following RLS formulae:

(1.6)

(1. 7)

the estimated coefficients, X t = I3 ® (1, V~_l)' is a matrix of the stacked regressors,

and 'Yt,y is a matrix with the gain parameters on the diagonal. Using the PLM (1.7)

and the RLS equations, (1.6) and (1.7), we find the agents expectations:

(1.8)

(1.9)

where I 3 indicates a 3x3 identity matrix. Rewriting equations (1.2) to (4.1) in

matrix form:

AZt = Trnd + BEt-1Zt + CEt-1ZH1 + Vt (1.10)

where

1 0 cP 0 0 0 1 cP 0 0

A= -A 1 0 B= 0 0 0 C= 0 {3 0 Trnd= 0

0 0 1 ex err 0 0 0 0 [,t

Substitution of expectations equations (1.8) and (1.9) into (1.1) and (1.2) results in

the Actual Law of Motion (ALM):
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When considering RE with agents not having the trend interest-rate

information I assume that agents make an error. Since the agents do not have

access to the trend interest-rate I calculate the RE coefficients assuming the trend

does not exist and then reincorporate it in the actual law of motion. I refer to this

as Pseudo-RE, and it can be written as,

(1.12)

where c is the MSV RE solution assuming agents do not see the time varying trend.

c results from the vector, (I9 - (I3 0 Mo+ F' 0 M 1 ))-1(F' 0 h)vec(P).

'L. Gain Structures

In my empirical analysis I differentiate the model on one dimension, namely

the expectation formation process. I compare rational expectations to two learning

processes, a single constant-gain, and my alternative gain. The implementation of a

single constant-gain is straight forward. All that needs to be done is set "(toY = "( in

(1.6) and (1.7).

For my alternative endogenous-gain recall the formula,

I~I
"(bot = alb + asf IA - I'1 + bt~bt

O"b

(1.13)

where b refers to a particular coefficient. There are three parameters that can be

estimated, alb, asf, and w, but for simplicity I assume the w = 10 and only estimate

the other two. 7 While this setup is certainly less restrictive than the constant-gains

7This choice reflects the results from Chapter III, which suggest that for the different data
generating processes the average optimal value of w is around 10 when changes in structure occur
every 5 years.
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it still forces the lower and upper bounds to be the same across all parameters.

Relaxing this assumption would nearly triple the number of estimated parameters.

While learning may appeal to some because it does not require as much

knowledge, on the part of the agents, as RE, learning also provides an additional

advantage. The ALM provides the DSGE structure of the estimation and it

contains agents coefficient estimates, which change over time. This means that

constant-gain learning incorporates time variation in the reduced form of the model.

In addition, Branch and Evans (2007) shows that learning can cause

endogenous volatility. Milani (2007b) shows that endogenous learning can help

explain some of the changes in volatility of the macroeconomy. Thus, my

endogenous-gain incorporates time variation in both coefficients and volatility while

only adding two additional parameters.8

2. Bayesian Estimation

In recent years there has been an abundance of papers that use Bayesian

methods to estimate DSGE models. An and Schorfheide (2007) provide general

guidelines for Bayesian estimation of DSGE models. Milani (2007a and 2007b) uses

this technique to estimate a model with learning similar to the one above. In

contrast, Murray (2008a, 2008b, and 2008c) all rely on a maximum likelihood

approach. I favor the Bayesian approach, because it provides clearer model

comparison. Specifically, I use a single block Random Walk Metropolis-Hastings

(RW-MH) algorithm to sample the posterior distribution of model parameters.

8The time variation allowed is heavily restricted to the functional form of my endogenous-gain
and the learning algorithm. This restriction might improve forecasting ability.
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In order to conduct Bayesian estimation I rewrite the economy in state space

form:

et = Dt + Ftet-I + GWt

1";; = Het

(2.1)

(2.2)

where ~t = (Zt, Ut, gt, et, [,t)', Wt rv N(O, Q), and Dt, Ft , G and H are the appropriate

matrices. Under RE Ft remains constant, since the deep parameters are constant,

and Dt = 0, since the RE solution has no intercept. Under learning, Dt contains

A-I(B + G)at-I and zeros, and Ft contains A-I(BCt_1 + GCt-IF), and updates the

unobservables.

Once in state space form, the procedure is straightforward. Let the vector n
contain the structural parameters of the model,

(2.3)

To form the posterior requires evaluating the likelihood function, L(.), at the

candidate parameter vector. The Kalman filter combined with the state space

described above produces the likelihood value. Multiplying the likelihood by the

priors, p(.) detailed below, results in the posterior distribution.

I use the Metropolis-Hastings algorithm to generate 1,250,000 draws from the

posterior distribution. The first 250,000 are discarded as burn-in values. The

Metropolis-Hastings algorithm relies on a high volume of draws from a candidate

distribution. These draws are accepted or rejected based on the ratio of the

posterior of the candidate to the previous draw.

Suppose that the previous draw is defined as n, and [2* is defined as the

candidate. A standard candidate distribution is a random walk through the
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parameter space,

D* = D + c~,

where c is a scaling term, and ~ is a covariance matrix. For certain algorithms

(2.4)

~ = I for simplicity. I opt for simplicity, but modify some of the diagonal elements

to match the scale of the parameters.

In order to determine the acceptance probability, 0:', for each draw I use the

following equation,

. {P(D*)L(D*) }
0:' = mm p(D)L(D) ' 1 . (2.5)

Thus if a candidate draw has a higher posterior value, then the previous draw the

algorithm accepts the candidate with probability 1. If the candidate has a much

lower posterior value, then the probability of acceptance is low. This ensures that

the algorithm ranges over some of the unlikely parameter values while fully

exploring the peak of the posterior.

Averaging the acceptance probabilities of each draw over all the draws results

in the acceptance rate. Geweke (1999) suggests calibrating the candidate

distribution to achieve acceptance rates between 25-40 percent.

z. Priors

Table IV.1 reports the prior distributions for each of the structural parameters

in the model. I use the analysis above to form the prior over the constant-gain.

Similar to Milani (2007b), I impose a dogmatic prior on (3, namely, I set (3 equal to

0.99. Gamma distributions form the priors for all the standard deviations and the

slope of the Phillips Curve. The monetary policy parameters have a normal prior,

and the correlation coefficients of the autocorrelated errors have uniform prior.
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Table IV.l: Prior Distributions
Description Param Distr. Stats. Mean
Discount Rate {3 0.99
Elas. of Subs. ¢ IG 1.5,1 1.5
Slope of PC A IG 0.25,1 0.25
Feedback to Infl. err N 1.5,0.5 1.5
Feedback to Output ex N 0.5,0.25 0.5
Corr. of 9t JL U 0,0.97 0.485
Corr. of Ut P U 0,0.97 0.485
Std. 9t (Jg IG 0.5,3 0.5
Std. 'Ut (Ju IG 0.5,3 0.5
Std. et (Je IG 0.5,3 0.5
Std. [,t (JI- IG 0.5,3 0.5
Gain Params , U 0,0.4 0.2
Alt. Params alb,as! U 0,0.8 0.4
Note: IG stands for Inverse-Gamma with scale and shape val-
ues given, N stands for Normal with mean and variance values
given, and U stands for Uniform with upper and lower bound
values given.

zz. Data

The data come directly from the Federal Reserve Bank of St. Louis economic

database, FRED, and the Congressional Budget Office, CBO. The quarterly data

begin in 1984:II1 and ends in 2007:IV. I use the first twenty periods to initialize the

learning algorithm, thus the 1989:III-2007IV sample is used for the actual

estimation. Previous literature has shown that structural changes occurred prior to

1984, which would lead to further complexity of the model and estimation

technique. 9

I define inflation as the annualized quarterly rate of change of the GDP

deflator. The output gap is the log difference between GDP and potential GDP (as

defined by the CBO). And finally, for the interest-rate I use the federal funds rate.

9For example see Fernndez-Villaverde and Rubio-Ramirez. (2007), Fernndez-Villaverde et at.
(2009), Justiniano and Primiceri (2008), and Milani (2007).
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Table IV.2: Estimation Results of a Model with Limited Information
Description Param Pseudo-RE Constant-Gain Endog-Gain
Elas. of Subs. ¢ 0.674 0.0344 0.0987
Slope of PC A 0.200 0.0986 0.238
Feedback to Infi. en 1.134 1.0897 0.499
Feedback to Output ex 0.0172 0.299 1.198
Corr. of gt f-L 0.945 0.789 0.469
Corr. of Ut P 0.954 0.722 0.823
Std. gt CTg 0.0932 0.968 0.843
Std. Ut CTu 0.243 0.651 0.628
Std. et CTe 0.0985 0.133 0.1289
Std. Lt CT i 0.856 0.671 0.618
Gain 'Y 0.000698
Lower Bound alb 0.000349
Scale Factor asf 0.0496
ML(CJ) -332.2 -303.9 -262.7
ML(Harmonic) -300.7 -283.0 -264.2
BIC 774.2 739.4 667.3
Results presented here represent the mean of the posterior distribution of each pa­
rameter. I calibrate the values of c to ensure acceptance rates between 25-40%. All of
these estimations have the same starting values, except for the learning parameters.
ML(CJ) is the marginal likelihood value calculated according to Chib and Jeliaskov
(2001). ML(Harmonic) is the marginal likelihood using the modified harmonic mean,
as suggested by Adolfson et ai. (2007). BIC is calculated at the median value of the
posterior distributions.

3. Results

Table IV.2 displays the results of estimations that differ in the assumptions

over expectations. I use three different criteria for model selection. Bayesian model

comparison relies on obtaining the marginal likelihood. Chib and Jeliazkov (2001)

provide one method of approximation that relies on the same Markov Chain Monte

Carlo methodology used in sampling from the posterior. However, Adolfson et at.

(2007) suggest that in conjunction with RW-MH a modified harmonic mean reaches

the approximate marginal likelihood value more quickly. In addition, I use the
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Bayesian Information Criterion (BIC).l0 In each case numbers closer to zero

indicate a better model.

Looking at the estimates of the RE model the results seem consistent with

other literature. The data suggest that the model does not obey the Taylor rule,

but over this time period Fernndez-Villaverde et at. (2009) find similar results.

However, under learning these estimates get even smaller.

According to each of model comparison methods the data clearly favors the

learning models. Of the learning models the endogenous-gain version still provides

significant improvement even though only one additional parameter is estimated.

This comparison does not do the RE model justice, since under the learning

assumption the ALM coefficients vary over time.

A simple reduced form TVP would increase the number of parameters

estimated by five, which makes it unlikely to outperform a learning model. A

preferred model would allow the deep parameters to vary over time. Unfortunately,

allowing the combination of agents using the shocks as data and time varying deep

parameters seriously complicates the estimation. While the non-linearity in the

reduced form could be managed with a block sampling method, an estimation of the

structural equations would require non-linear techniques suggested by

Fernndez-Villaverde, J. and J. Rubio-Ramirez (2008). Therefore, I save this

comparison for future work.

While the results from the RE model are consistent with previous research,

the data seem to favor the learning models. The estimation results from the

learning models, however, run counter to past empirical work.

Figure IV.l displays the posterior distributions of each of the endogenous-gain

parameters. The data is clearly informative as the posterior distribution appear

lOIn calculate the BIC I use the likelihood calculated at the median values of the posterior distri­
bution.
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quite different than the prior distributions. Some were so different that r chose not

to include representations of the prior distributions in these graphs.

Clearly the inter-temporal elasticity of substitution, the lower bound, and the

exogenous structural shocks clearly favor certain values of the distribution. The

other parameters have narrowed the prior distributions to a range of the parameter

space, but the data does not speak clearly for a particular value. The inter-temporal

elasticity of substitution is centered on 0.1, which is quite different than the prior.

The posterior of the lower bound parameter, which governs the lowest value that

the endogenous-gain can take, places a lot of weight near zero, which matches the

constant-gain estimation.

z. Expanding the Information Set

As noted earlier, the model above favors learning. By including information

about trend inflation in agents data set swings the favor toward rational

expectations. The estimation strategy remains the same, but the underlying

matrices change.

r assume that agents observe the random walk time varying trend in much the

same way they observe the autocorrelated errors. This implies that agents know the

following,

(3.1)

where Vt = (gt, Ut, Ct, LtY, Vt are the respective iid errors, and

F=

Pg 0 0 0

o Pu 0 0

o 0 0 0

o 0 0 1
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Rewriting the NK model in a convenient form,

(3.2)

1 000

P = A-I 0 1 0 0

001 1

This chang"e in formulation implies that the coefficient matrix in the MSV solution

is now a (3x4) , the intercept terms, if any, remain the same.

In contrast, the Law of Motion under rational expectations is,

(3.4)

where c results from the vector, (112 - (14 0 Mo + F' 0 Md)-I(F' 013 )vec(P).

Table IV.3 presents similar results to when agents had less information. Both

learning models outperform the rational expectations model, and the

endogenous-gain model improves upon the constant-gain specification. In this case,

the improvement on rational expectations appears to be much greater.

The information used clearly has an effect on policy parameters. Assuming

RE, monetary policy followed the Taylor rule without the time varying trend

information, but did not with the information. Constant-gain learning obeyed the
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0.000177
0.0974
-256.2
-315.6
674.0

-267.8
-342.9
701.7

-350.4
-343.5
827.5

Table IV.3: Estimation Results of a Model with Trend Interest-Rate Information
Description Param RE Constant-Gain Endog-Gain
Elas. of Subs. ¢ 0.456 1.0516 0.942
Slope of PC A 0.000144 0.0724 0.133
Feedback to Infi. e1r 0.519 1.475 1.449
Feedback to Output ex 0.612 0.482 0.465
Corr. of gt fJ, 0.956 0.964 0.961
Corr. of Ut P 0.782 0.854 0.886
Std. gt (J"g 0.454 0.616 0.558
Std. Ut (J"u 0.262 0.568 0.588
Std. et (J"e 0.787 0.545 0.512
Std. it (J"t- 0.631 0.527 0.521
Gain I 0.0000398
Lower Bound alb

Scale Factor as!

ML(CJ)
ML(Harmonic)
BIC
Results presented here represent the mean of the posterior distribution of each
parameter. I calibrate the values of c to ensure acceptance rates between 25-40%.
All of these estimations have the same starting values, except for the learning
parameters. ML(CJ) is the marginal likelihood value calculated according to Chib
and Jeliaskov (2001). ML(Harmonic) is the marginal likelihood using the modified
harmonic mean, as suggested by Adolfson et al. (2007). BIC is calculated at the
median value of the posterior distributions

Taylor rule in both scenarios, and endogenous-gain learning followed the Taylor rule

with the information.

In terms of comparing across the endogenous-gain specifications, I find that

the scale factor, as!, doubles when agents incorporate the time varying trend in

their information set. This might result from agents using smaller time windows to

follow the random walk behavior of the trend.

One concern one might have is that some of the posterior means (specifically,

e1r , ex, (J"g, (J"u, (J"e and (J"J remain close to the prior means. Figure IV.2 shows that

this is not the case. Only in one case does the mean of the prior did receive any

weight in the posterior distribution.
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~~. Perceptions vs. Reality

If one takes the learning hypothesis seriously then the learning estimation

provides a convenient by product, the agents' perceptions. By backing out the PLM

and the ALM for the coefficients of the reduced form model that agents estimate,

one can interpret what agents react to, and how their reactions change over time.

Since, in terms of model comparison, the endogenous-gain estimation is preferred

the analysis below uses the results from the endogenous-gain learning estimation.

Figure IV.3 displays graphs of all twelve coefficients that agents estimate when

they do not have information on the trend of inflation. Each column represents each

equation for output, inflation and interest-rates respectively. The first row

illustrates the constant component of the forecasting equation, the following rows

represent the coefficients on the errors, gt,Ut, and et, respectively. The black line in

each graph represents the ALM and the gray line the PLM.

Looking at the ALM I find evidence of structural breaks in four of the

coefficients, which justifies the use of the endogenous-gain. The break in these four

coefficients indicate that something the inflation process has changed. Though

agents do not follow the ALM very closely, they do react to the break. The

structural break occurs at the beginning of the new millennium, right before the

2001 recession.

This period also saw a change in perceptions about reactions to interest-rate

shocks. Prior to the break agents perceived that output and interest-rates

responded to past interest-rate shocks. After the break the perceived inflation

responded the most to past interest-rate shocks.

While agents, in general, do not perceive the ALM well, they do the worst job

following the intercept for inflation. Recall that I hypothesized that not allowing

agents to have trend interest-rate information would benefit the learning model.
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This result shows that learning does not pick up the trend inflation as a part of the

intercept. This inability to track the trend of inflation probably causes the

differences between PLM and ALM.

Figure IVA displays the graphs of all 15 coefficients that agents estimate when

they do have information on the trend of inflation. The extra row supplies the

coefficients on the lagged trend of inflation.

In these graphs we see much less movement of the actual and perceived

coefficients. There are still a few indications of a structural break around 2000, but

not nearly as significant as when agents use less information. In addition, agents do

much worse in following the ALM. It does not appear that the large gain in BIC by

learning results from time variation of the parameters, since coefficients exhibit

fairly stable dynamics.

4. Rational Expectations Data and Learning

Qne result in Milani (2007b) asserts that if agents are learning and there is no

conditional heteroscedasticity then an econometrician may be fooled into estimating

ARCH/GARCH models. However, no research to date has investigated the

converse: would a researcher observe learning dynamics when agents use rational

expectations (RE)?

Chevillon et al. (2010) investigate a similar question, but focus on

identification. They also use classical inference as opposed to the Bayesian

techniques favored here. Specifically, Chevillon et al. show that the Anderson-Rubin

statistic, with appropriate choice of instruments, can result in valid inference. ll

11 Appropriate instruments usually are predetermined variables.
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The economy is described by a similar NK model as above except I remove the

time varying trend of the interest-rate from equation (2.3).

(4.1)

In order to derive the rational expectations solution used for the simulations I

rewrite the NK model in matrix notation,

(4.2)

where Yt = (Xt, Jr"t, it)', Vt = (gt, Ut, EtY, and Mo, M I , and P are the appropriate

matrices. Assuming the MSV solution yfE = CVt-I one can substitute in and solve

for the RE coefficients c. The substitution yields,

(4.3)

Using the following identity vec(ABC) = (C' ® A)vec(B), one can easily show that

C results from the vector, (19 - (13 ® M o + F' ® MI))-1(F1 ® 13 )vec(P). Thus, the

RE law of motion is,

(4.4)

For the learning estimation procedure I follow the same steps as above to

obtain the following ALM:
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z. Monte Carlo Experiment

}or simulations of the rational expectations model I use the same values for

the NK parameters as the previous chapter. Finally, I calibrate the parameters of

the error terms as /-l = P = 0.8 and CTg = CTu = CTe = 0.2. I conduct 100 simulations of

RE data of 120 periods each. This means that each estimation relies on 100 periods

of data.

In order to make an accurate portrayal I estimate the model assuming rational

expectations and assuming learning. Table IVA displays the results for the Monte

Carlo experiment.

The RE estimation naturally pins down all the parameter estimates within a

single standard deviations. This holds within each estimation and across the

estimations. The learning model, however, has small standard errors within each

estimation, and relatively large standard errors across estimations. This suggests

that particular realizations of the rational expectations model can fool a researcher

into believing that learning exists in the model. Not surprisingly, the model

comparison values overwhelmingly favor the rational expectations model.

Turning to the parameter estimates of learning estimation a striking pattern

emerges. The learning assumption cause the researcher to underestimate the deep

parameters and the correlations and overestimate the standard errors of the shocks.

The learning process subsumes some of the autocorrelation, and as a byproduct it

alters the parameter estimates.

Another interesting point is that the learning estimation does not nest the

rational expectations solution like one might suspect. In the theoretical learning

literature an extremely small constant-gain is typically considered consistent with

rational expectations. Even though the constant-gain term is not statistically



Table IV.4: RE and Learning Monte Carlo Experiment Results
Description Param Actual RE-Est Learning-Est
Elas. of Subs. ¢ 6.369 6.355 6.425

(0.210) 0.243
(0.252) (0.335)

Slope of PC 0.024 0.0234 0.022
(0.0050) (0.0037)
(0.0060) (0.0002)

Feedback to Infi. err 1.5 1.810 1.130
(0.333) (0.0752)
(0.358) (0.0628)

Feedback to Output ex 0.5 0.736 0.252
(0.253) (0.0574)
(0.267) (0.0348)

Corr. of 9t fl, 0.8 0.799 0.783
(0.0064) (0.0169)
(0.0073) (0.0032)

Corr. of Ut P 0.8 0.793 0.852
(0.0580) (0.0450)
(0.0521) (0.0109)

Std. 9t ag 0.2 0.206 0.253
( 0.0170) (0.0257)
(0. 0174) (0.0065)

Std. Ut au 0.2 0.201 0.467
(0.0163) (0.0637)
(0.0157) (0.0710)

Std. et ae 0.2 0.201 0.243
(0.0149) (0.0217)
(0.0150) (0.0095)

Constant-Gain 0.010
(0.0033)
(0.0001)

ML(CJ) -146.1 -286.2
ML (Harmonic) -46.3 -118.5
BIC 372.1 662.5
Note: Results presented here represent the mean of each parameter. Regular
parentheses indicate average standard deviation within estimations. Itali-
cized parentheses indicate standard deviation across estimations. ML(CJ)
is the marginal likelihood value calculated according to Chib and Jeliaskov
(2001). ML(Harmonic) is the marginal likelihood using the modified har-
monic mean, as suggested by Adolfson et al. (2007). BIC is calculated at
the median value of the posterior distributions
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different from zero, all the parameter estimates of the learning estimation do not

contain the actual parameter values in a 95% confidence interval.

5. Conclusion

Using a simple NK model I show that endogenous-gain learning provides

significant improvement on both RE and constant-gain learning. I use a different

approach than other DSGE estimations by using the lagged, filtered estimates of the

residuals as the regressors. I find that, conditional on the specification, agents

perceptions do not align with the actual path of the reduced form coefficients.

One reason why learning might fit the data better than RE is because it

allows for time-variation in the reduced form coefficients, however, analysis of the

reduced form coefficients shows little variation over time. In addition, I have shown

that if the underlying data generating process resulted from RE learning would

perform poorly. The Monte Carlo experiment also underscores that a learning

estimation does not nest the rational expectations result. Further research is

necessary to determine why this is the case.
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CHAPTER V

CONCLUSION

Macroeconomic models are heavily influenced by expectations. The learning

literature provides an excellent opportunity to relax the assumption of rational

expectations. My research explores a particular version of learning where agents are

allowed to change the amount of data they use to forecast future variables.

Marcet and Nicolini (2003) provides one of the first learning rules in economics

that allows agents to adjust the size of the data set they are using. The second

chapter showed that this particular form of learning exhibits some exotic dynamics.

These dynamics are a direct result of the tension between the instability of learning

under "large" constant-gain values and stability of decreasing-gain learning. I find

that during the episodes of temporary instability learning results in 4 to 6 times

more output volatility.

Chapter three focused on the forecasting ability of the Marcet and Nicolini

switching-gain and an alternative endogenous-gain. I find little evidence that the

Marcet and Nicolini switching-gain provides significant improvement over a

constant-gain. The alternative endogenous-gain can have up to eight times the best

improvement of the Marcet and Nicolini switching-gain.

The penultimate chapter uses a Bayesian estimation strategy of a NK DSGE

model to compare RE, constant-gain learning, and endogenous-gain learning. I find
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compelling evidence that the DSGE model with endogenous-gain learning fits

macroeconomic data better than RE and constant-gain learning.

The Monte Carlo exercise from the fourth chapter suggests that the properties

of a learning estimation deserve further investigation. Specifically, exploration of

how learning reacts to ARCH/GARCH dynamics and time-varying parameters.

Constant-gain learning with fixed deep parameters may be able to capture unknown

time-variation in parameters. Endogenous-gain learning might fit a model with

ARCH/GARCH dynamics, since that learning process generates endogenous

volatili ty.

Other future research should include looking at alternative information sets for

different agents. For example Bullard and Mitra (2006) provides theoretic results

when the Central Bank has a different information set than the private sector. This

would be straightforward to implement in a learning estimation and may improve

prediction.

Continuing on the line of information sets, most structural break models

assume that the underlying coefficients change values. An alternative for DSGE

models could be to assume that the structural break occurs in the information set.

Agents might use lagged endogenous variables in certain circumstances and

exogenous shocks in others.
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Table A.1: Switching-Gain Stability:
Hist. Window 35 85
Percent Stable 78.18 86.92

Varying Historical Window Length
135 185 235 285

84.18 78.58 72.26 67.18

Hist. Window 335
Percent Stable 62.06

385
58.44

435
54.12

485
52.50

535
50.46

585
49.00

Shows the percent of simulations in which the last value of the estimated
parameters lie within 2 percent of the T-map. The historical window is
the parameter the governs the number of periods used to calculate the
historical average MSFE.
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Table A.2: Forecast Ability of the Marcet and Nicolini Switching-Gain: (Jv = 4 and
(JTJ = 0.5

V 1-[
0.01 0.05 0.1 0.9 0.95 0.99

0.5 1.0000 1.0000 1.0000 1.0640 1.0870 1.0310
6.73E-08 1.61E-05 1.40E-07 0.0146 0.01981 0.02547

1 1.0000 1.0000 1.0000 1.2380 1.2700 1.1380
2.93E-07 1.08E-05 2.36E-07 0.02539 0.03364 0.04417

1.5 1.0000 1.0000 1.0000 1.3370 1.3860 1.2410
4.23E-07 2.14E-06 4.15E-07 0.03095 0.04325 0.05617

2 1.0000 1.0000 1.0000 1.3880 1.4510 1.2970
6.82E-07 9.31E-07 5.54E-07 0.03356 0.04578 0.0535

2.5 1.0000 1.0000 1.0000 1.4310 1.5070 1.3610
8.26E-07 6.83E-05 7.55E-07 0.04187 0.0448 0.05789

3 1.0000 1.0000 1.0000 1.4880 1.5640 1.4220
1. 15E-06 1.39E-06 8.24E-07 0.03864 0.04678 0.05412

3.5 1.0000 1.0000 1.0000 1.5390 1.6350 1.5110
1.23E-06 2.97E-05 1.80E-06 0.03726 0.05384 0.05477

4 1.0000 1.0000 1.0000 1.5990 1.7000 1.5970
1.29E-06 3.09E-05 1.23E-06 0.04544 0.06223 0.08049

10 1.0000 1.0000 1.0000 2.4670 3.1310 4.1860
1.08E-05 8.89E-06 8.23E-06 0.1092 0.159 0.4163

The first row indicates for each value of v indicates mean of the relative MSFE.
The second row reports the standard deviation. v is the value of forecast error
above which agents switch to a constant gain. E: is the probability of structural
break in the underlying coefficient.
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Table A.3: Forecast Ability of the Marcet and Nicolini Switching-Gain: (Jv = 2 and
(JT] = 2

v 1-c;

0.01 0.05 0.1 0.9 0.95 0.99
0.5 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995

6.88E-08 8.14E-08 1.05E-07 8.61E-05 0.0002599 0.0003398
1 1.0000 1.0000 1.0000 1.0000 0.9995 0.9989

2.03E-07 1.80E-07 1.51E-07 0.001294 0.0008205 0.0004679
1.5 1.0000 1.0000 1.0000 1.0030 1.0000 0.9973

3.06E-07 2.08E-07 2.70E-07 0.001996 0.001665 0.001421
2 1.0000 1.0000 1.0000 1.0050 1.0020 0.9966

4.47E-07 2.73E-07 4.09E-07 0.002419 0.002391 0.001941
2.5 1.0000 1.0000 1.0000 1.0100 1.0060 0.9976

6.25E-07 5.24E-07 6.16E-07 0.003472 0.002709 0.002289
3 1.0000 1.0000 1.0000 1.0180 1.0130 0.9978

9.65E-07 6.60E-07 6.15E-07 0.003438 0.004086 0.002763
3.5 1.0000 1.0000 1.0000 1.0290 1.0210 0.9993

1.59E-06 1.05E-06 1.12E-06 0.004924 0.00509 0.003423
4 1.0000 1.0000 1.0000 1.0410 1.0350 1.0030

3.58E-06 1.40E-06 1.33E-06 0.005826 0.006158 0.004386
10 0.9999 0.9999 0.9999 1.2390 1.3470 1.3880

5.09E-05 3.46E-05 4.10E-05 0.02088 0.02318 0.04167
The first row indicates for each value of v indicates mean of the relative MSFE.
The second row reports the standard deviation. v is the value of forecast error
above which agents switch to a constant gain. c is the probability of structural
break in the underlying coefficient.
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APPENDIX B

DERIVATIVES OF THE T-MAPS

The derivatives of the Taylor-type discretionary policy rule T-mapping are as

follows,

DTa = Mo+Ml ,

DTc = F'®Ml +I®Mo.

The derivatives of the Duffy and Xiao commitment rule are as follows,

DTa = M o + Ml(I + b) + MlboQo,

Dna = I ® M o + b~ ® M l + [® MlfhQo,

DTh = I ® Mo + I ® Mlbo + I ® MlblQo,

DTc = P' ® M l + I ® M o + I ® lvIlbo + I ® lvIlblQo.

The derivatives of the Evans and Honkapohja expectations based commitment

rule are as follows,

DTa = M(I + b),

Dn = b' ® M,

DTc = P' ® M + I ® Mb.
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The derivatives of the Svensson and Woodford and the McCallum and Nelson

commitment rules are as follows,

DTa = A10 + M1(I + b),

Dn = bl ® M 1 + I ® M1b + I ® Mo,

DTc = F I ® M 1 + I ® NI1b + I ® Mo.
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