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\Ve study the graded representation theory of the Iwahori-Hecke algebra, denoted by Hd ,

of the symmetric group over a field of characteristic zero at a root of unity. More specifically, we

use graded Specht modules to calculate the graded decomposition numbers for Hd . The algorithm

arrived at is the Lascoux-Leclerc-Thibon algorithm in disguise. Thus we interpret the algorithm

in terms of graded representation theory.

We then use the algorithm to compute several examples and to obtain a closed form for the

graded decomposition numbers in the case of two-column partitions. In this case, we also precisely

describe the 'reduction modulo p' process, which relates the graded irreducible representations of

Hd over C at a pth_root of unity to those of the group algebra of the symmetric group over a field

of characteristic p.
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CHAPTER I

INTRODUCTION

The symmetric group :Ed is a classical object that has been very well studied over the

years. It is deeply connected to group theory in general since every finite group can be embedded

into a sufficiently large symmetric group. It also plays a fundamental role in combinatorics and

in Lie theory. One way to study symmetric groups is by exploring how they interact with vector

spaces; that is, to study their representation theory. Much of the foundation in the representation

theory of symmetric groups was laid down by Frobenius at the end of the nineteenth century. Since

his time, work has been done by countless mathematicians in an effort to fully understand this

basic and classical group.

The main goal in representation theory is to understand the irreducible modules. In more

modern language, the goal is to find bases for the Grothendieck groups of the categories of finite

dimensional representations and finitely generated projective modules respectively. Much work

has been done toward this end in describing both the irreducible representations of :Ed as well as

the indecomposable projective :Ed-modules. In fact, over fields of characteristic zero, both of these

sets of modules are well-known and well-understood.

However, over fields of positive characteristic, the representation theory of :Ed still contains

many open questions. For example, there are no explicit bases for the irreducible representations

as vector spaces. In fact, the dimensions of the irreducible representations are not even known.

In trying to approach this problem of mod'alar representation theory using induction, Kleshchev

studied the restrictions of irreducible modules from :Ed to :Ed-I' His work in [Kl]-[K6]' resulted in

the discovery of Kleshchev's modular branching rules.

These branching rules only provide partial information about the dimensions of irreducible

representations. However, Lascoux, Leclerc, and Thibon [LLT] were inspired by the subtle

combinatorics involved to discover deep connections between the representation theory of :Ed and
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representations of quantum Kac-Moody algebras. They showed that the modular branching rules

correspond to the cTystal graph - in the sense of Kashiwara - of the basic module of a certain Kac­

Moody algebra 9. This observation provided the framework for many of the exciting developments

currently appearing in the representation theory of ~d'

Other tools which are quite useful in the study of symmetric groups are the correspond­

ing IwahoTi-Hecke algebras. The Iwahori-Hecke algebra, H d := Hd(IF, 0, of ~d over a field IF

with parameter ~ E IF x is actually a generalization of the group algebra of the symmetric group.

Furthermore, since the work of Dipper and James [DJ] it has been known that the representation

theory of ~d over a field of characteristic p > 0 is closely related to the representation theory

of Hd over C when the parameter ~ is a primitive pth_root of unity. Thus, one may study the

representation theory of H d in general and gain information about the modular representation

theory of ~d by specializing to IF = C and ~ = e27ri
/

p
.

The connection between the representation theory of Hd(C, e27ri
/

p
) and the representation

theory of ~d in characteristic p can be made precise using a 'reduction modulo p' procedure.

In Section VIlA, we give an example of this procedure in the case of two-column partitions.

Unfortunately, reductions modulo p of irreducible modules over the Heeke algebra are not always

irreducible, however, James' ConjectuTe [14] predicts that they are in the James Tegion. If the

reduction modulo p of an irreducible H d-module is not irreducible, it can still be thought of as

a 'good approximation' of the corresponding irreducible module over the group algebra of the

symmetric group IF~d. It turns out that the work done by Lascoux, Leclerc, and Thibon in [LLT]

leads to a good understanding of the irreducible modules over Hd(C, e27ri
/

p
), at least in terms of

their characteTs.

More precisely, Lascoux, Leclerc, and Thibon conjectured an explicit connection between

the canonical bases of modules over affine Kac-Moody algebras 9, in the sense of Lusztig [Lus]

and Kashiwara [Kas1] - [Kas4], and projective indecomposable modules over the Iwahori-Hecke

algebras Hd(C, e27ri / P ). Lascoux, Leclerc, and Thibon also conjectured an explicit combinatorial

algorithm for computing the decomposition numbeTs for H d . The decomposition numbers are the

multiplicities of the irreducible Hd-modules in the corresponding Specht modules.

One can readily show that knowing the decomposition numbers is sufficient for computing

the dimensions and even characters of the irreducible Hd-modules since the characters of Specht

modules are explicitly known. The Lascoux-Leclerc-Thibon algorithm yields certain Laurent
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polynomials with non-negative coefficients that, when evaluated at q = 1, conjecturally compute

the decomposition numbers.

Using the powerful geometric results of Kazhdan-Lusztig [KL] and Ginzburg [CG, Chapter

8], Ariki [A] later proved the conjecture of Lascoux, Leclerc, and Thibon, thereby providing a way

to compute the decomposition numbers for complex Iwahori-Hecke algebras at roots of unity.

Following in Ariki's footsteps, Varagnolo and Vasserot [VV] later proved a similar theorem for

Schur algebras.

One nice way to connect the Iwahori-Hecke algebras to Lie theory is through the idea

of categorijication in the sense of 1. Frenkel. Let Ao be the fundamental dominant weight of the

Kac-Moody algebra 9 referenced above. It turns out that the finite dimensional modules over

Hd for all d ;::: 0 categorify the irreducible highest weight module V(Ao) over g. Notice that the

categorification by Ariki and Grojnowski only categorifies V(Ao) as a g-module, rather than as a

module over the quantized enveloping algebra Uq(g).

The fact that the canonical bases appeared when evaluated at q = 1 implies that Uq(g)

should playa relevant role however. Thus, the picture appears incomplete unless one categorifies a

q-analog of V(Ao). A standard way to approach this problem is to find a grading on the Iwahori­

Heeke algebras and to study graded representation theory, where the action of the parameter q on

the Grothendieck group corresponds to a 'grading shift.'

The existence of important, but well-hidden, gradings on the Iwahori-Hecke algebra and

the group algebras of the symmetric groups was predicted by Rouquier [R1] and Turner [T]. More

recently, Brundan and Kleshchev [BK2] were able to construct such gradings by constructing

an explicit isomorphism between Heeke algebras and certain quiver Heeke algebras (or Khovanov­

Lauda-Rouquier algebras) which were defined independently by Khovanov-Lauda [KhL, KhL2] and

Rouquier [R2]. The quiver Heeke algebras are naturally Z-graded. Thus, using the isomorphism,

Brundan and Kleshchev obtained an explicit grading on the Iwahori-Hecke algebra.

In [BKW], Brundan, Kleshchev, and Wang then grade the Specht modules, which allows

them to define the graded decomposition numbers for H d . In [BK1, BK3], Brundan and Kleshchev

prove a graded analogue of Ariki's theorem. More specifically, they prove that the graded

decomposition numbers are precisely the Laurent polynomials appearing in the conjecture of

Lascoux, Leclerc, and Thibon.
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The grading also provides new information about Hd-modules, which is collected into a

graded character of a module. The graded characters of Specht modules are computed explicitly

in [BKW]. As in the ungraded setting, knowledge of the graded characters of Specht modules

combined with knowledge of the graded decomposition numbers is equivalent to knowing the

graded characters of the irreducible Hd-modules.

The goal of this paper is to understand the graded characters of the irreducible H d ­

modules. In particular, the graded characters of the irreducible Hd(C, e21ri
/ P )-modules also give

partial information about the corresponding graded characters of the irreducible I8'~d-modules

when char I8' = p. Thus, in view of the previous discussion, the aim of the paper is to compute the

graded decomposition numbers for H d . In fact, the main result here is a combinatorial algorithm

for computing the graded decomposition numbers.

Towards this goal, the paper is organized as follows: In Chapter II, we define the Iwahori­

Hecke algebra as well as all of our basic objects which we will use throughout. We also give a

homogeneous presentation for the Iwahori-Hecke algebra H d and describe an important Z-grading

on it. Then, in Chapter III we setup all of the combinatorics which we will need to describe the

representation theory of H d and our algorithm. Specifically, we define partitions, Young diagrams,

tableaux, moves, and ladders and describe some nice combinatorics associated to each of them.

In Chapter IV, we give a general explanation of how studying graded representation theory

can yield additional insight into the usual representation theory. We then describe what is well­

known about the representation theory (both graded and ungraded) of Hd. VVe finish this chapter

by defining graded characters and graded decomposition numbers and setting up our main problem.

In Chapter V we define the ladder weight /\ (for any e-restricted partition A) which plays a

central role in our algorithm. We also prove several nice results about /\ and describe an explicit

multiplicity for /' in the irreducible Hd-module corresponding to A. Then, in Chapter VI we

describe the algorithm which computes the graded decomposition numbers of H d over any field of

characteristic zero.

In Chapter VII, we use the algorithm to compute a closed form for the graded

decomposition numbers in the case of two-column partitions. In this special case, we are also

able to completely describe the splitting of irreducible Hd-modules when making the 'reduction

modulo p' to the symmetric group algebra in characteristic p.



5

Despite taking a completely different approach, using the graded representation theory of

Rd, the algorithm described in Chapter V is equivalent to the one suggested in [LLT], although this

equivalence is not immediately obvious. In Chapter VIII, we briefly describe the LLT algorithm and

explain the equivalence of the two algorithms. Note that our approach gives a new interpretation

of some of the formal objects and coefficients appearing in the LLT algorithm.

The paper concludes with the computation of several examples using our algorithm in

Chapter IX. We carefully describe how to compute a complete set of graded decomposition numbers

for Rd and also how to compute a particular desired graded decomposition number from scratch.

In the final section we also provide several matrices of graded decomposition numbers in the cases

when e = 2,3, or 4.
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CHAPTER II

PRELIMINARIES

In this chapter, we set up some basic notation which will appear throughout and also

describe our primary object of study - the Iwahori-Hecke algebra, H d . In Section 11.1 we define the

quantum characteristic and the bar-involution on the space of Laurent polynomials Z[q, q-l], while

also introducing notation for the quantum integers. Then, in Section II.2 we give the standard

definition of the Iwahori-Hecke algebra by generators and relations. We also describe the Gelfand­

Zeitlin subalgebra and explain how it can be thought of as a 'Cartan subalgebra' for H d .

In Section II.3, we describe a different set of generators for H d which are homogeneous with

respect to a Z-grading. This Z-grading is non-obvious from the perspective of the standard set of

generators and relations. In fact, this new set of generators along with the relations and compatible

grading described in Section II.4, was derived from an isomorphism between H d and various quiver

Hecke algebras (or Khovanov-Lauda-Rouquier algebras) which was recently discovered by Brundan,

Kleshchev, and Wang [BKW].

ILl Basic Objects

Let IF be an algebraically closed field and ~ E IF x . The quantum characteristic is the

smallest positive integer, e, such that 1 + ~ +e + ... + ~e-l = 0, where we set e := 0 if no such

integer exists. Set I := ZjeZ. For any i E I we have a well-defined element

v(i) := {i
e

if~=l,

if ~ =J 1 ,
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of IF. Throughout the paper, q is an indeterminate and we define the baT-involution on Z[q, q-1 j

by p(q) = p(q-1) for all p(q) E Z[q,q-1j. We then refer to a Laurent polynomial p(q) E Z[q,q-1j

as baT-invaTiant if p(q) = p(q). We also denote quantum integers and quantum factorials by

II.2 The Symmetric Group and the Iwahori-Hecke Algebra

Let I:d denote the symmetric group on d letters and denote the simple transpositions by

Sr := (1',1' + 1) (1 ~ r < d).

Then IFI:d denotes the group algebra of I:d over the ground field IF. Recall that IFI:d can be

generated as an algebra by these simple transpositions Sl, ... ,Sd-1, subject only to the relations

(1 ~ r < d),

(1 ~ 1', t < d, IT - tl > 1).

The Iwahori-Hecke algebra of I:d with parameter C is the IF-algebra Hd = Hd(IF,O with

generators T 1 , T2 , ... ,Td-l and relations

T; = (~ - l)Tr + ~ (1 ~ r < d),

(1 ~ 1', S < d, IT - sl > 1).

We will typically use the shorter notation Hd rather than Hd(IF', ~), with the understanding that

the field IF' and the parameter ~ are fixed. Only when IF and ~ are not clear from context, or there

is more than one pair (IF,~) to consider will we specify the field and parameter explicitly.
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Observe that in the case when ~ = 1, we may identify Hd with the group algebra F~d by

identifying Sr and Tr for 1 :s: r < d. In this way we may think of H d as a generalization of F~d

and may consider the generators T 1 , ••• , Td- 1 as the 'simple transpositions' for Hd. Observe that

in the symmetric group case when ~ = 1, the quantum characteristic is just the characteristic of

the field, i.e. e = char F.

The Jucys-Murphy elements of Hd are:

if ~ = 1
(1 :s: r :s: d).

if ~ ~ 1

It is well-known and easy to check that the Jucys-Murphy elements commute, see e.g. [Ju, M].

The Gelfand-Zeitlin subalgebra is the commutative subalgebra (Ll,"" Ld) C H d generated by the

Jucys-Murphyelements. Okounkov and Vershik rOY] suggested studying the representation theory

of Hd by exploiting the Gelfand-Zetlin subalgebra as an analog of a 'Cartan subalgebra' for a Lie

algebra. More precisely, they suggested studying the corresponding 'generalized weight spaces' of

Hd-modules. The following Lemma describes the 'weights' of the Gelfand-Zeitlin subalgebra on

any finite dimensional Hd-module.

Lemma II.2.1. [G, Lemma 4.71,[K7, Lemma 7.1.2] Let V be a finite dimensional Hd-module.

Then all of the eigenvalues of Ll' ... , Ld on V are of the form IJ( i) for i E I.

Given i = (iI, ... 1 id) E Id and a finite dimensional Hd-module V, we define the i-weight

space of V to be:

Vi := {v E V I (L r - 1/ (ir)) N'I) = 0 for N » 0 and r = 1, ... , d}.

Then, by Lemma II.2.1 we have the weight space decomposition

iEId
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11.3 Homogenous Generators

Using the weight space decomposition of the left regular Hd-module, one gets a system of

orthogonal idempotents

in H d , almost all of which are zero, such that ~iEld e(i) = 1, and

e(i)V = Vi

for any finite dimensional Hd-module V, cf. [BK2].

We can now define a family of nilpotent elements Yl, ... Yd E: Hd via:

if ~ ~ 1,

(1 ::.:: r ::.:: d).
if ~ = 1.

In [BK2], Brundan and Kleshchev define explicit power series Pr (i), Qr(i) E: JF[[Yr, Yr+l]]

such that Qr(i) has non-zero constant term. Since each Yr is nilpotent in Hd, the power series

Pr(i) and Qr(i) can be interpreted as elements in Hd, with Qr(i) being invertible. We refer the

reader to [BK2, Section 3.3, 4.3] for precise definitions of these power series. Now set:

1/Jr := L (Tr + Pr(i))Qr(i)-le(i)
iEld

(l::'::r<d).

The main result of [BK2] asserts that H d is generated by the elements

and describes a set of defining relations as well.

This homogenous presentation yields a non-obvious Z-grading on Hd which allows one to

gain new insight by studying graded representation theory. To describe the grading explicitly, it

is convenient to introduce the notation of quivers.
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Let r be the quiver with vertex set I and a directed edge from i to j whenever j = i + 1.

So r is the quiver of type A(X) when e = 0 or of type A~~l when e > 0, with a specific orientation,

see Figure 1:

A(X) : . . . ------; - 2 ------; - 1 ------; 0 ------; 1 ------; 2 ------; . . .

0

A~~l :
0 0 -> 1 / \,

0<=1 /\, r 1
4 1

2 {------- 1
3 2 \ j

+--
3 +--2

Figure 1: The quivers A(X) and A~~l for e = 2,3,4, and 5.

The corresponding Cartan matrix, denoted (ai,jkjEI is defined by

2 if i = j,

0 if ifj,
ai,j := (ILl )

-1 ifi->jori+--j,

-2 if i '=> j.

Here the symbols i -> j and j +-- i are both interpreted to mean that j = i +1 cJ i - 1. The symbol

i '=> j means that j = i + 1 = i-I, and the symbol ifj means that j cJ i or i ± 1.

11.4 Homogenous Presentation

We now have the notation necessary to state the main result of [BK2].

Theorem 11.4.1. The algebra H d is generated by the elements

subject only to the following relations for i,j E I d and all admissible r, s:
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y~il ,0 e(i) = 0;

e(i)e(j) = 6i,je(i);

Yre( i) = e(i)Yr;

YrYs = YsYr;

~iEIde(i) = 1;

if s =I- r, r + 1;

iflr -sl>l;

if ir = i r + 1 ,

o
e(i)

(Yr+l - Yr)e(i)

(Yr ~ Yr+l)e(i) ifir t- i r +1 ,

(Yr+l - Yr)(Yr - Yr+l)e(i) ifir ~ i r +1 ;

('l/Jr+l'l/Jr'l/Jr+l + l)e(i) ifir+2 = i r --> i r+1,

('l/Jr+l'l/Jr'l/Jr+l -1)e(i) ifir+2 = i r t- i r+1,

('l/Jr+l'l/Jr'l/Jr+l - 2Yr+l

+Yr + Yr+2)e(i)

'l/Jr+ 1'l/Jr 'l/Jr+1e(i) otherwise,

Note that these relations depend only on e rather than on the specific parameter ~ chosen,

Recall that if ~ = 1 and char IF = p > 0, then e = p, Observe that e = p again in the case

when ~ = e21ri / p and IF = <C. Hence Hd(C, e21ri / p
) and Hd(lF, 1) ~ lFI:d have the same quantum

characteristic, which implies that they satisfy the same relations (over different fields). This is

suggestive of the fact that we can define a 'reduction modulo p' procedure to pass from graded

representations of Hd(C, e21ri / p ) over C, to those of lFI:d over a field of characteristic p.
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As alluded to earlier, this presentation is particularly useful because it is obviously homo­

geneous with respect to the following grading:

Corollary 11.4.2. There is a unique Z-grading on Hd such that

deg(e(i)) = 0,

for all admissible rand i.

deg(Yr) = 2,
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CHAPTER III

COMBINATORICS

In this chapter we review several combinatorial notions which will become useful in what

follows. In Section III.1 we discuss the basics of partitions, including the dominance order '::;1' and

the definition of an e-restricted partition. We also describe their associated Young diagrams, and

the notion of addable and removable nodes. Then, in Section III.2, we describe residue diagrams

and introduce the notion of the 'moves' for a partition.

Section III.3 reviews James' notion of ladders [J2] and introduces notation for keeping

track of how the ladders interact with the Young diagram of a given partition A. Finally, in

Section IlIA we recall the set of (standard) A-tableaux for a partition A. We also define, for each

standard A-tableau T, an associated residue sequence iT and the degree of T, denoted deg(T).

IIL1 Partitions and Young Diagrams

A partition is a non-increasing sequence of non-negative integers A = (AI;::: A2 ;::: ... ). We

set lA/ ;= Al + A2 + ... and refer to IAI as the size of A. If IAI = d, then A is said to be a partition

of d and we denote the set of all partitions of d by Pd. Given a partition A = (AI, A2,"') E Pd,

we define the transpose partition AT = (AT, AI, ... ) E Pd by setting AT = max{r I Ar ;::: i}.

Example 111.1.1. Let A = (4,3,1,1,1) E P lO . Then the transpose of A is AT = (5,2,2,1). 0

Let A = (AI, A2"") E Pd. We define the function a-k(A) = L:7=1 Ai· Given f.L E Pd, we

say f.L dom1:nates A, and we write {i 12: A, if a-df.L) ;::: a-dA) for all k ;::: 1. This defines a partial

order on Pd which we refer to as the dominance order following James PI]. The partition A is

called e-restricted if Ar - Ar+I < e for all r = 1,2, .... We then let RPd C P d be the subset of all

e-restricted partitions of d.
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Example III.lo2. Consider the case when d = 4 and e = 2. Then the dominance order actually

forms a total order on P4. The sets P4 and RP4, written in dominance order, are as follows:

P4 = {(4) ~ (3, 1) ~ (2, 2) ~ (2,1, 1) ~ (1,1,1, In and RP4 = {(2, 1, 1) ~ (1,1,1, I)}.

Note that, it is common practice to use exponents to express repeated parts of a partition and

write (2 2
) instead of (2,2) and (1 4 ) instead of (1,1,1,1) for the sake of brevity.

Given a partition A E Pd, the Young diagram of A is the set

o

The elements of this set are called the nodes of A. More generally, a node is any element of the

set Z>o x Z>o. Given nodes A = (al,a2) and B = (b l ,b2) we say A is above (resp. below) B if

al < bl (resp. al > bd·

We usually identify a partition A with its Young diagram as they are easier to visualize.

One can then reinterpret the dominance order and the function O"k using Young diagrams. Observe

that O"k(JL) counts the number of nodes in rows 1 through k of JL. Thus, the condition O"k(JL) ~ O"k(A)

for all k (or JL ~ A) can be interpreted as being able to move nodes of JL from earlier rows 'down'

to later rows and arrive at the shape of A. We can also more easily visualize the transpose of a

partition A. The transpose AT is exactly the partition which has the rows of A as its columns.

Example III.lo3. Consider the partitions JL = (3,2 2
) and A = (3,2,1 2 ). Following English

conventions, we draw nodes in the 4th quadrant so that the node (a, b) has its bottom right corner

at the point (-a, b) in the xy-plane. Then, JL, A, and AT have the Young diagrams in Figure 1:

~I
Figure 1: Young diagrams. Left: JL = (3,2 2 ). Center: A = (3,2,1 2 ). Right: AT = (4,2,1)

Observe that we can move the node (3,2) down in JL to position (4,1) to obtain the partition A

(see Figure 2). Hence JL ~ A. 0
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Figure 2: The graphical interpretation of moving the node (3,2) down to (4,1).

Let A E Pd. A node A E A is called removable (for A) if A\ {A} has the shape of a partition.

A node BttA is called addable (for A) if A U {B} has the shape of a partition. Observe that any

given row of a partition A can have at most one addable node and one removable node (although

it might not have either). In view of this observation, we may define the bottom removable node

of A to be the unique removable node which is below all other removable nodes.

Given any set of removable nodes A = {A l ,A2 , ... ,Am} for A, we denote the partition

obtained by removing these nodes from A by AA := A \ {AI, ... ,Am}. Similarly, for any set of

addable nodes B = {B l , B 2 , ... , Bm.} for A, we denote the partition obtained by adding these

nodes to A by AB := AU {B l ,··. ,Bm }.

Example 111.1.4. Again consider the partition JL = (3,2 2). Figure 3 contains the Young diagram

for A with two sets of nodes labeled.

fW
~J

... A ..~ ..

Figure 3: The Young diagram for (3,22 ) with sets of nodes labeled by A and B.

The set A = {(I, 3), (3, 2)} is exactly all of the removable nodes of JL, thus the node (3,2) is the

bottom removable node of A. Similarly, the set B = HI, 4), (2,3), (4, I)} is the set of all addable

nodes for JL. From these sets we create JLA = (22 ,1) and JLB = (4,3,2,1), see Figure 4. 0

I

-

Figure 4: Young diagrams. Left: JLA= (22 ,1). Right: JLB = (4,3,2,1).
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III.2 Moves

Given the node A = (a, b), the (e- ) residue of A is defined to be res A := b - a (mod e) E I.

We then define the residue diagram of a partition A to be the Young diagram for A where each

node is labeled by its residue. For i E I, a node A is called an i-node if res A = i. For A, fJ E Pd,

we say that A and fJ have the same content, and we write A rv fJ, if and only if for each i E I the

number of i-nodes in A is equal to that in fJ.

Example III.2.1. Figure 5 gives the residue diagram for the partition A = (4,3,2, 1) in the case

when the quantum characteristic is e = 3.

--

010 1 2

2 0 1
1 2 I

0
-

Figure 5: Residue diagram for A = (4,3,2,1) with e = 3.

A's content is written (4,3,3) meaning there are 4 zeros, 3 ones, and 3 twos. A quick calculation

shows that the set of all partitions with content (4, 3,3) is

{(10), (8,2), (7,3), (7,2, 1),(7, 13 ), (6,2, 12), (52),(5,22 , 1),(5,2,13 ),(42 ,1 2),(4,32),

(4,3,2,1),(4,3,13),(4,23), (4,2, 14),(4, 16 ), (33 ,1), (3,2, 15),(25),(23 ,14), (2 2 , 16 ), (lID)} <>

Given f.i E Pd, we call A E Pd a move for fJ if A ':::i fJ and A rv f.lo Informally, A is a move for

fJ if we can move nodes down in f.i to get A while maintaining the residue content. We denote the

set of moves for fJ by M(fJ). Put M(f.i, A) := {v E M(fJ)IA E M(I/)} for the set of nodes 'between'

fJ and A. Note that if A is not a move of fJ then M(fJ, A) is empty.

The standard dominance order on Pd gives a partial order on ]V[(fJ), so it makes sense to

refer to minimal non-trivial moves for fJ. A non-trivial move A for fJ is a minimal move if and only

if ]\1(fJ, A) = Vi, A}. Note that it is possible for fJ to have more than one minimal non-trivial move.

For A E ]\1(fJ), we define the distance between A and fJ to be

l(fJ, A) := I>k(/-i) - (Jk(A).
k2:1

Since A ':::i fJ, we know that (Jk(A) :s: (Jk(fJ) for all k ~ 1. So l(fJ, A) ~ 0, with equality if and only if

A = fJ. Observe also that if v E M(fJ, A), then l(fJ, v) :s: l(fJ, A) with equality if and only if v = A.
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Example 111.2.2. Consider the case when d = 5 and e = 2, with the partitions J-L = (3,2)

and A c= (22,1). Then M(J-L) = {(3,2),(3,12),(22,1),(15n, M(J-L, A) = {(3,2),(3,12),(22,ln and

l(J-L, A) = (3 -- 2) + (5 - 4) + (5 - 5) = 2. <>

111.3 Ladders

Following [J2], for m E Z>o we define the m th ladder L m as the set of nodes of the

form (1 + k,m - k(e -1)) for all non-negative integers k with k < e='l' Informally, the ladders

are straight lines with slope e~ l' Note that our ladders are transposed to those of James, since

we are using the newer Dipper-James-Mathas [DJM] notation for Specht modules. Observe that

res (1 + k, m - k(e - 1)) = [m - k(e - 1)] - [1 + k] = m - 1 - ek == m - 1 (mod e), regardless of

k. Thus, all of the nodes in the ladder Lm have the same residue, m - 1 (mod e), which we refer

to as the residue of the ladder, and denote res Lm . For a partition A and a positive integer m, we

keep track of the number of nodes in A which lie on Lm by setting rm(A) := IA n Lml. We then

denote by t).. the maximal index such that 'I't A(A) =I- 0, and refer to the ladders L1 , L2, ... ,LtA as

the ladde'l's of A (some of them could have trivial intersection with A).

Example 111.3.1. Let A = (4,3,1,1) and e = 3. The ladders that intersect A non-trivially can

be seen in Figure 6.

L, f---:,,..L-+-~-+-:T"'---+---C:C~---.J
L,

L3 h~+-·~'----L-:T""--J
L4

Ls

L6

L,

Figure 6: Ladders intersecting A = (4,3,1,1) non-trivially.

Observe that t).. = 7, since the lowest ladder that intersects A non-trivially is L7. The intersections

for each of the ladders L1 , ... , L7 are An L1 = {(I, In, An L2 = {(I, 2n, An L3 = {(2, 1), (1, 3n,

AnL4 = {(2, 2), (1, 4)}, AnL5 = {(3, 1), (2, 3n, AnL6 = 0, and AnL7 = {(4, In. Thus '1'1 (A) = 1,

r2(A) = 1, 'I'3(A) = 2, 'I'4(A) = 2, 'I'5(A) = 2, 'I'6(A) = 0, and 'I'7(A) = 1. <>
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In Example IlL3.1, we observe that the bottom ladder L 7 actually intersects the bottom

removable node of'\. It is true in general that the bottom ladder is exactly the ladder that

intersects the bottom removable node.

A ladder Lm is bottom complete for'\ if whenever a node A = (a, b) E L m belongs to '\,

all other nodes (a',b') ELm with a' > a also belong to'\. The following result of James describes

a nice feature of the shape of any e-restricted partition.

Lemma III.3.2. [J2, 1.2] Let,\ E Pd. Then,\ is e-restricted if and only if all ladders are bottom

complete for '\.

Let ,\ E Pd. For a removable i-node A in ,\ we define the degree of A to be:

dA ('\) := #{addable i-nodes below A}

-#{removable i-nodes below A}.

There is a notion of degree for an addable i-node B tJ. ,\ as well. We define the degree of B to be:

dB
(,\) := #{addable i-nodes above B}

-#{removable i-nodes above B}.

We also define, for each i E I,

di ('\) := #{addable i-nodes of ,\}- #{removable i-nodes of ,\}.

Example III.3.3. Consider the partition ,\ = (9,7,6,53 ,3,1) with e = 3.

0 1 2 0 1 2 011 121
2 0 1 2 0 1 21
1 2 0 1 2 0
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2
0 1 2

2

Figure 7: The residue diagram for the partition ,\ = (9,7,6,53 ,3,1).
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Observe that if we consider the removable 2-node A1 = (8,1), then there are no addable

or removable 2-nodes below A 1 , hence dA1 (A) = 0. If we take the removable 2-node A 2 = (2,7)

instead, then there is one addable 2-node below A2 at (4,6) and three removable 2-nodes below

A 2 at (6,5), (7,3), and (8,1) respectively. Thus dA2 (A) = 1- 3 = -2. Similarly, if we take the

addable O-node B = (7,4), then there are two addable O-nodes above B at (1,10) and (2,8) and

one removable O-node above B at (3,6). Hence, dB (A) = 2 - 1 = 1. Finally, there is one addable

2-node in A and five removable 2-nodes, which implies that d2(A) = 1 - 5 = -4.

IlIA Tableaux

<>

Let A E Pd. A A-tableau, T, is obtained from the Young diagram of A by labeling the nodes

by the integers 1, ... , d without repeats. Each A-tableau T then has an associated residue sequence

·T (. .) Id
'I, = '/,1,··· ,'/,d E ,

where iT denotes the residue of the node labeled by r in T (1 -s: r -s: d).

Example 11104.1. Let A = (4,3,2,1) and e = 3. Figure 8 gives the residue diagram for A.

0 1 2 01
2 0 1

1 2

0
-

Figure 8: Residue diagram for A = (4,3,2,1) with e = 3 again.

3 5 2 61
4 7 9

1 8
10

-

Figure 9: A (non-standard) A-tableau for A = (4,3,2,1).

The A-tableau T in Figure 9 has the associated residue sequence iT = (1,2,0,2, 1,0,0,2, 1,0). <>

A A-tableau, T, is TOw-strict if its labels increase from left to right within each row.

Similarly, T is column-strict if its labels increase from top to bottom within each column. T is
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standard if it is both row- and column-strict. The tableau in Example III.4.1 is not standard. We

denote the set of all standard A-tableaux by g(A). Let T\ denote the A-tableau in which the nodes

have been labeled sequentially by 1, ... ,d along each row and from top to bottom. We then set

.\ .T'
~ := ~ ..

Note that the symmetric group I:d acts on the complete set of A-tableaux on the left by permuting

the labels; i.e. if 7f E I:d and T has label ra,b on each node (a, b) E A, then 7f . T will be the A-tableau

with label 7f(ra,b) on the node (a, b) for each (a, b) E A.

Example III.4.2. Let A = (4,3,2,1), then Figure 10 shows the standard A-tableau T\.

1 2 3~4l

567

8 2J
10

Figure 10: The standard A-tableau, TA, for the partition A = (4,3,2,1).

Thus, refering again to the residue diagram in Figure 8, we have i\ := iTA = (0,1,2,0,2,0,1,1,2,0).

Figure 11 then shows the A-tableau 1r' T\ in the case when 7f = (35)(48)(6710) E I:10 .

r 5 81
3 7 10

4 9

~

Figure 11: The A-tableau 1r . T\ for A = (4,3,2,1) and 7f = (35)(48)(6710) E I: 1O .

).

This new A-tableau happens to be standard, and i1l"·T = (0,1,2,1,2,0,0,0,2,1). Note, however,

that if T is standard and1r E I:d , then 7f . T is not standard in general. o

Let T E g(A). For s E Z~o we denote by Ts: s and sh(Ts: s ) the tableau obtained by

retaining the nodes of T labeled by the numbers 1, ... , s and its shape respectively. Observe

that since T is standard, it follows that sh(T<s) is a partition in Ps for all 0 :::; s :::; d. Thus,

Ts: s E g(sh(Ts: s )) for 0:::; s:::; d.
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Example 111.4.3. Let A = (4,3,2,1) and let T be the A-tableau in Figure 12.

1 2 5 81
3 7 10

4 9

6
"-----

Figure 12: A standard A-tableau for A = (4,3,2,1).

Then TS7 is the tableau in Figure 13.

f
25

3 7

4

6

Figure 13: The tableau TS7 as created from the tableau T in Figure 12.

It has shape v = sh(T<7) = (3,2,1 2). Observe that residue sequence i TS7 = (0,1,2,1,2,0,0) is

exactly iT = (0,1,2,1,2,0,0,0,2,1) with the final three residues removed. <>

Let T E §(A) and let A be the node of A labeled by d in T. Following [BKW], we define

the degree of T inductively by:

if d > 0,

if d = O.

Example 111.4.4. Consider the partition A = (3,2,1 2 ) and the A-tableau T given in Figure 14.

r
12

2 0

1

o r
25J

3 7

4

6

Figure 14: Left: The residue diagram for A = (3,2,1 2 ). Right: A standard A-tableau T.

To calculate the degree of tableau T we must inductively calculate the degree of each node

in T starting with the node labeled by 7 and working backward.
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• Starting with the O-node A7 =, (2,2) which is labeled by 7, we can see that there is one

removable O-node below (2,2) and no addable O-nodes below it. Hence dA7 = -1.

• We then remove this node from the diagram and consider the O-node A6 = (4, 1) labeled by

6. There are no addable or removable O-nodes below this, hence dAG = O.

• Next, we remove A6 and consider the 2-node A 5 = (1,3) labeled by 5. There are no addable

or removable 2-nodes below A 5 , hence dAs = 0 also.

• After removing A5 we must consider the I-node A4 = (3,1) labeled by 4. There are no

addable or removable I-nodes below A4 that are left in the diagram (since we have removed

• Now we remove A 4 and consider the 2-node A3 = (2,1) labeled by 3. Once again, there are

no addable or removable 2-nodes below A 3 , so dAa = O.

• Next we have the I-node A 2 = (1,2) labeled by 2. There are no addable or removable I-nodes

below A 2 , thus dA2 = O.

• Finally, we are left with the single O-node Al = (1,1) labeled by 1. There are no addable or

removable O-nodes below AI, hence dA1 = O.

Having gone through this process, the degree of the tableau T is exactly

7

deg(T) = L dAi = -1.
i=1

<)



--------------_.---

23

CHAPTER IV

GRADED REPRESENTATION THEORY

In this chapter we lay the foundation for stating the main problem which this paper strives

to solve. In Section IV.I, we discuss the graded representation theory of a Z-graded algebra in

general. In particular, we explain the connection between graded representation theory and the

usual one. In doing so, we discuss the categories of finite dimensional graded representations and

finitely generated projective graded representations.

Then, in Section IV.2 we study the (ungraded) representation theory of H d by defining a

set of explicitly defined Specht modules and explaining that the complete set of finite dimensional

irreducible Hd-modules can be realized as quotients of these Specht modules. We add the Z­

grading to the story in Section IV.3 and explain how to 'grade' the Specht modules and the finite

dimensional irreducible modules so that we may study their structures as graded Hd-modules.

In Section IVA, we define the graded character of a graded Hd-module. We also describe

the graded character of each explicit Specht module. Then, in Section IV.5 we define the graded

decomposition numbers for H d and state some known results about them. We then carefully state

the main problem that this paper solves.

IV.! A General Picture

The main drive of this paper is to study the graded representation theory of the group

algebra of the symmetric group and the Iwahori-Hecke algebra. It is known that all of the

irreducible modules over finite dimensional Z-graded algebras are 'gradable.' Thus, in studying the

graded irreducible modules we 'do not lose any information,' but actually gain additional insight

into the structure of the ungraded irreducible modules. To be more precise about this, we will

briefly discuss graded representation theory in more generality.
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We will always use the term 'grading' to refer to a Z-grading. Let H be a graded IF­

algebra and let H-Mod denote the abelian category whose objects form the set of all graded

left H-modules, and whose morphisms are degree-preserving module homomorphisms, denoted by

Hom. Let Rep(H) denote the abelian subcategory of all finite dimensional graded H-modules and

Proj(H) denote the additive subcategory of all finitely generated projective graded H-modules. We

denote the corresponding Grothendieck groups by [Rep(H)] and [Proj(H)]. We can view [Rep(H)]

and [Proj(H)] as Z[q, q-l]-modules by setting

where V(m) denotes the graded H-module obtained by shifting the grading up by m so that

for each m, n E Z.

For any graded H-modules, V and W, and any integer n E Z we let

denote the space of all homomorphisms that are homogeneous of degree n. Thus, if e E

HomH(V, W)n, then e(Vm ) <;;:; W n+m for all m E Z. We then set

HOMH(V, W):= EJjHomH(V, Wk
neL

Given any finite dimesional graded vector space V = EBmEL Vm , we define its graded dimension

by an explicit Laurent polynomial

qclim V:= L(dim Vm)qm E Z[q,q-1J.
mEL

Then, there is a canonical Cartan pairing

(. , .) := [Proj(H)] x [Rep(H)] --> Z[q, q-l], ([P], [V]) = qdim HOMH(P, V).
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Note that the Cartan pairing is sesquilinear (meaning that it is anti-linear in the first position and

linear in the second).

We denote the category of finite dimensional ungraded H-modules (resp. finitely generated

projective ungraded H-modules) by Rep(H) (resp. Proj(H)) and we denote the morphisms in these

categories by Hom. Given a graded H-module V, we write V for the ungraded module obtained

by forgetting the grading. Then for V, WE Rep(H) we have

In addition to this nice fact, the following standard lemmas show, informally, that in studying

graded representation we do not lose any information from ungraded representation theory, but

actually gain information from the additional structure.

Lemma IV.I.l. /NV, Theorem 4.4.6 and Remark 4.4.8} If V is any finitely generated graded

H -module, then the radical of V is a graded submodule of V.

Lemma IV.l.2. /NV, Theorem 4.4.4(v)} If L E Rep(H) is irreducible, then L E Rep(H) is

irreducible as an ungraded module as well.

Lemma IV.l.3. /NV, Theorem 9.6.8}, /EGS, Lemma 2.5.3} Assume that H is finite dimensional.

If K E Rep(H) is irreducible, then there exists an irreducible L E Rep(H) such that L ~ K.

Moreover, L is unique of to isomorphism and grading shift.

IV.2 Representation Theory of Hd

In [GLl, Graham and Lehrer introduced the concept of cellular algebras. They also showed

that the Kazhdan-Lusztig basis for H d is a cellular basis thereby proving that H d is a cellular

algebra. Dipper, James, and Mathas [DJMl, then exploited the cellular structure to reconstruct a

special family of Hd-modules {S(p,) I p, E Pd}, labeled by the partitions of d, called Specht modules.

The original construction goes back to Dipper-James [DJl, although the Specht modules defined

in [DJ] are different from those in [DJM]. Here we follow the conventions of [DIM].
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For a more complete treatment of the following, please refer to [DJM]. There is a cellular

basis for Hd as an IF-module, different from that defined by Kazdhan and Lusztig,

which is in bijection with pairs of standard p,-tableaux for each p, E Pd. In the special case when

T and U are both taken to be TJ.t, we denote the basis element mTf>,T!' by m w

For each partition p, E Pd, we define an IF-submodule of Hd denoted by NJ.t that is spanned

-J.t -J.t
by {mT,U IT, U E 9"(A); A E Pd; A~ p,}. Set zJ.t = (mJ.t + N )/N , to be the coset representative of

mJ.t in Hd/ NJ.t. The Specht module, S(p,), is then the submodule of Hd / NJ.t given by S(p,) = ZJ.tHd.

The Specht modules are examples of cell modules which implies the existence of a nice

cellular basis

{CT I T E 9"(p,)}

parametrized, in this case, by the set of standard p,-tableaux. In Section IV.3, we will see a different

cellular basis which is well-suited to the task of 'grading' the Specht modules.

Since Hd is a cellular algebra, the cellular structure also provides an explicit bilinear form

(,) which acts on cell modules, hence on Specht modules. Let rad S(p,) denote the radical of S(p,)

under this bilinear form. We define D(p,) := S(p,)/ rad S(p,). In the case when D(p,) i 0, the

quotient D(p,) forms the irreducible head of S(p,).

If e = 0, then D(p,) = S(p,) for all p, E Pd and the set of Specht modules, {S(p,) I p, E Pd},

is a complete irredundant set of the irreducible Hd-modules. In the more interesting case e > 0,

the head D(p,) of S(p,) is non-zero (and therefore irreducible), provided p, E RPd, and the set

{D(p,) I p, E RPd} is a complete irredundant set of the irreducible Hd-modules.

IV.3 Graded Representation Theory of H d

As seen in Section 11.4, the algebra Hd has an explicit grading (see also [BKl]). Therefore

we may speak of graded Hd-modules. Theorem H.4.l also implies that Hd has a graded anti-

automorphism
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for all admissible r, s, and i. In [BK3, §2.7], this anti-automorphism leads to the introduction of

a graded duality, denoted by @, on the set of finite dimensional graded Hd-modules, sending each

module V to

V@ := HOMlF(V, IF),

with the action defined by

(xJ)(V) = f(vx@)

Since H d is a finite dimensional graded algebra, it follows from the discussion in

Section IV.l that each irreducible module D(fJ) can be graded uniquely up to a grading shift.

Khovanov and Lauda [KhL, §3.2] point out that there is a preferred choice of grading which makes

each module self-dual with respect to the graded duality @. This leads to the following result:

Theorem IV.3.l. (EK3, Theorem 4.11) For each fJ E RPd, there exists a unique grading on

D(fJ) which makes it into a graded Hd-module such that

Moreover, the set of modules

{D(fJ)(m) I fJ E RPd, mE Z}

forms a complete irredundant set of the finite dimensional irreducible graded Hd-modules.

In [BKW], Brundan, Kleshchev, and Wang exhibit a new explicit (cellular) basis for each

Specht module

{VI IT E 3'"(T)}

There are two major advantages which the vectors VI enjoy, which the natural cellular basis vectors

OI do not. First, the vectors VI are actually weight vectors:

Lemma IV.3.2. (EKW) Let fJ E Pd and T E 3'"(fJ). Then VI is an element of the weight space

S(fJ)iT = eW)S(fJ)·
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Secondly, they are homogeneous with respect to a grading of S(p,) as an Hd-module. Recall

the notion deg(T) which defined the degree of a standard p,-tableau (see Section IlIA). We can

then define the degree of VT to be

deg(vT) := deg(T).

With the grading defined on S(p,) in this way, the natural projection S(p,) ---» D(p,) is actually a

degree zero map for all p, E RPd. The following result also shows that this grading of S(p,) as a

vector space is compatible with the grading on Hd.

Lemma IV.3.3. [BKW] Let p, E Pd and T E g(p,). For each r, the vectors YrVT and't/J"vT are

homogeneous, and we have that

deg(YrvT) = deg(Yr) + deg(vT)

degCt/JrvT) = degCt/JreW)) + deg(vT)

In particular, our grading makes S(IJ.) into a graded Hd-module.

(i E ld),

(1 -s: r -s: d),

(1 -s: r < d).

While we may realize the finite dimensional irreducible Hd modules as quotients of

the explicit Specht modules, there is, as yet, no nice way of describing irreducible modules

independently. More specifically, there is no known basis for D(p,), nor is even the dimension

of D(IJ.) known in general. Certainly we would like to find answers to these questions. One nice

way of approaching these problems is through a study of graded characters.

IVA Graded Characters

Recall that for V = EBmEz Vm E Rep(Hd), we defined the graded dimension of V to be

qdim V := I:mEz(dim Vm)qm E Z[q, q-l] . Let 'fj' be the free Z[q, q-l]-module on ld, Given a

finite dimensional graded Hd-module V, we define its graded character to be

chq V := L (qdim Vi) . i E ~.
iEJd

The graded character of an Hd-module formally keeps track of the graded dimension of each

weight space of the module. Observe that grading shifts can also be kept track of via the graded
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character as chq V(m) = qrnchq V for all V E Rep(H). The graded character of D(fi) keeps track

of more information than simply the dimension of D(fi). Thus, we will answer the first of our main

questions by finding the graded character of D(fi) for each fi E RPd.

The homogeneous basis and associated grading of Specht modules described in Section IV.3

implies that the graded characters of Specht modules are as follows:

Theorem IVA.I. [BKW, §4.3] Let fi E Pd. Then

chq 5(fi) = L qdeg(T)iT.

TE.'Y(p)

Remark IVA.2. In particular, observe that chq 5(fi) depends only on fi and e as these are enough

to completely determine the set g(fi) and the degrees deg(T) for each T E g(fi). Thus, given

two Hecke algebras with the same quantum characteristic e, the graded character chq 5(fi) will be

exactly the same for each.

Example IVA.3. Let fi = (2,1 4 ). Then there are exactly 5 standard fi-tableaux as parametrized

by the label which appears on the node (1,2), see Figure 1 below.

1 2
3
4
5
6

Figure 1: Left: The set g(fi) for fi = (2,1 4 ). Right: The residue diagram for fi = (2,1 4
).

On the right of Figure 1 we also have the residue diagram for fi. Labeling these tableaux T1 , T2, T3,

T4 , and T5 from left to right then the residue sequences for these tableaux are iT} = (0,1,2,1,0,2),

i T2 = (0,2,1,1,0,2), iTs = (0,2,1,1,0,2), i T4 = (0,2,1,0,1,2) and i T5 = (0,2,1,0,2,1). We may

also calculate the degree of each tableau, following Example III.4.4, to find that deg(T1 ) = 0,

deg(T2) = 1, deg(T3) = -1, deg(T4 ) = 0, and deg(T5) = 1. Thus, the graded character for 5(fi) is

chq 5 (fi) = (0, 1, 2, 1, 0, 2) +(q+ q-1) (0, 2, 1, 1, 0, 2) +(0, 2, 1, 0, 1, 2) +q(0, 2, 1, 0, 2, 1). 0
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By extending the bar-involution from Z[q,q-l] to 'if so that t = i for all i EO I d , we may

interpret graded duality ® as the bar-involution on graded characters, i.e chq V® = chq V. The

fact that each irreducible module D(p,) was self-dual implies that:

Theorem IV.4.4. [BK:3, Theorem 4.18(3)] Let A E RPd . Then chq D(A) is bar-invariant.

Since each Specht module is an explicit finite dimensional graded Hd-module, it is also

natural to ask how each Specht module decomposes into a sum of irreducible D(p,)'s. Answering

this question is equivalent to finding the graded decomposition numbers.

IV.5 Graded Decomposition Numbers

For p, E Pd and A E RPd, we define the corresponding graded decomposition number to

be the Laurent polynomial

dl",A = dl",A(q) := L amqm E Z:::-:O[q,q-lj,
mEL

where am is the multiplicity of D(A)(m) in a graded composition series of S(p,). We refer to

{dIL,A I !L E Pd, A EO RPd} as the graded decomposition numbers for H d. We are now prepared to

state the main problem which this paper solves.

Main Problem IV.5.l. Calculate the graded decomposition numbers for Hd :

In Section VI.2 we describe an algorithm for solving this problem in general. We can relate

the graded characters of S(p,) and D(A) for A E RPd via the system of equations:

chq S(p,) = L dlL,Achq D(A)
AERPd

(IV.l)

Note that the graded decomposition numbers are q-analogs of their ungraded counterparts,

meaning that did (1) is the usual (or ungraded) decomposition number. The following result then

easily follows from well-known facts in the ungraded setting and the fact that the natural map

S(p,) ---» D(p,) is of degree zero. Recall that IIJ(p,) is the set of moves for p, (see Section III.2), then:
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Theorem IV.5.2. Let A E RPd and p E Pd. Then

(i) dJL ,>-. = 0 'unless A E M(p).

(ii) d>-.,>. = 1.

By Theorem IV.5.2, the graded decomposition matrix (dJL ,>.) is unitriangular. Thus, the

knowledge of the graded decomposition numbers actually implies the knowledge of the graded

characters of the irreducible Hd-modules. The converse is also true since the graded characters

of the irreducible Hd-modules are linearly independent, see e.g. [KhL, Theorem 3.17]). Thus, in

decomposing the Specht modules, we will also be finding the graded characters and dimensions of

the irreducible Hd-modules.

The following key fact is special for the case char IF = O. This is the important additional

fact which allows us to run our algorithm in characteristic zero, but not in characteristic p.

Theorem IV.5.3. [BK3, Theorem 3.9 and Corollary 5.15] Let char IF' = 0, A E RPd and p E Pd.

If p =J A, then dJL ,>-. E qZ~O [q].
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CHAPTER V

THE LADDER WEIGHT

In this chapter we define the ladder weight for an e-restricted partition A and describe its

nice properties. To do so, we start in Section V.I, by defining the bottom removable sequence for

A. Then, in Section V.2 we prove the main dominance lemma for e-restricted partitions and their

bottom removable sequences. It is this structural lemma which provides the basis for the useful

properties of the ladder weights.

In Section V.3, we give the explicit definition of the ladder weight, /', for any e-restricted

partition A and then prove that it has several nice properties. In particular, we also define the

explicit Laurent polynomial'rAwhich gives the exact multiplicity of jA within the graded characters

of both the Specht module S(A) and the irreducible module D(A). Finally, in Section VA, we set up

the notation for the multiplicity of jA in any graded Hd-module V and collect the nice properties

of jA into statements about its multiplicity in various graded characters.

V.1 The Bottom Removable Sequence of >.

Equation IV.I, which we hope to solve for the graded decomposition numbers, is actually

a system of equations for fL E Pd and the various weight spaces i E ]d. The complete system is

somewhat difficult to get a handle on, so we need a way to reduce to special weight spaces which

make the system of equations simpler, but still keep track of the decomposition information. More

precisely, we need to reduce Equation IV.I, which relates graded characters, to an equation which

only relates Laurent polynomials. The special weights which allow us to do this are called the

"ladder weights."

Recall the notion of ladders laid out in Section III.3. For A E RPd, let t = tA be the index

of its bottom ladder, and 'rt(A) = IA n Ltl. Denote the set of nodes of A that lie on ladder Lt by
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AnLt = {AI, ... ,Ar,(.\)}. Order the nodes of this set so that Au is below As whenever u < s.

Observe that all of the nodes in this set are actually removable. In fact, the bottom node in this

set, AI, is the bottom removable node of A (see Section IILl).

For the purpose of induction, it is natural to remove this bottom removable node. However,

if A is e-restricted, then the new partition AA 1 = A \ {Ad may not be. Looking at a few examples,

we can quickly see that AA
1

will still be e-restricted if and only if Al is the only node in the set

A n Lt. It follows that, if we wish to maintain the "e-restrictedness" while removing the bottom

removable node, then we must actually remove the entire set of nodes A n Lt. We therefore refer

to the sequence A = (AI, ... , A rt (.\)) as the bottom removable sequence of A. Recall that since all

of these nodes lie on a single ladder, L t , they all have the same residue which we refer to as the

residue of the bottom removable sequence.

Example V.I.I. Let A = (8,73 ,6,5,3,1) with e = 3. Figure 1 shows the residue diagram for A.

0 1 2 0 1 2 0 1 I
2 0 1 2 0 1 2

1 2 0 1 2 0 1
0 1 2 0 1 2 0
2 0 1 2 0 1
1 2 0 1 2
0 1 2

2

Figure 1: The residue diagram for the partition A = (8,73 ,6,5,3,1).

Let Al = (8,1), A2 = (7,3), and A 3 = (6,5) be the 2-nodes in the bottom ladder. Thus, the

bottom removable sequence for A is A = (AI, A 2 , A 3 ) and the residue of the bottom removable

sequence is 2. Observe that if we wish to remove AI, the new partition AA
1

will no longer be

e-restricted because (AA 1 h - (AA,)S = 3 - 0 = 3 1- e. This can seemingly be 'fixed' by removing

the next 2-node A2 as well. However, this simply shifts the problem from the difference between

rows 7 and 8 to that between rows 6 and 7. Thus, we must also remove the final 2-node, A 3 , as

well if we wish to maintain the property of being e-restricted. o
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V.2 A Dominance Lemma

The bottom removable sequence for an e-restricted partition A E RPd is compatible with

the standard dominance order '~' in a fundamental way. We can make this statement more

precise with the following technical result, which generalizes Lemma 1.1 in [KS]. As alluded to at

the beginning of this chapter, it is this fundamental result which provides the foundation for all of

the useful properties of the ladder weights.

Lemma V.2.1. Let A E RPd and J1 E Pd, with A1lJ1. Let A = (Ai1 ... ,Ar ) be the bottom

removable sequence for A, and i be its residue. If B = {B i , ... , B r } is any set of r removable

i-nodes for J1 then AA1lJ1B

Proof. Let AA ~ P,B. We need to show that A~ p,. Let Am be in row jm of A, and let B m be in

row 1m of J1 for m = 1, ... , r. By our convention jm = ji - (m - 1) for 1 ~ m ~ r. We may also

assume that It > .. , > lr.

Let Am = A\ {Am+i , ... , A r } and J1m = p, \ {Bm+i , ... , B r } for 0 ~ m ~ r. Then it suffices

to show by induction on m = 0,1, ... , r that Am ~ J1m , with the induction base case, m = 0, being

our assumption.

Let m > 0 and assume by induction that Am- i ~ J1m-i. Note that

if k 2 lm'

Since Am - i ~ J1m - i , we deduce that

Observe that since A was the bottom removable sequence, it follows that ji is the bottom

non-empty row in A. Since A is e-restricted, we know also that res (ji + 1, 1) ie i. Furthermore, we

have that row ji + 1 is empty in AA, which implies that it is empty in IkB as well since AA ~ J1B.
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Since B I is an addable i-node for /-lB, it follows that h < jl + 1. Since jm = jl - (m - 1)

and In < In-l for all 1 ~ n ~ T, it follows that lm ~ :im- Thus, for all k, we have that either

completes the proof. D

Informally, the bottom removable sequence A = (AI, ... ,Ar ) for A is the 'lowest addable'

sequence of (exactly T) i-nodes for AA. That is, there is no way to add exactly T i-nodes to AA and

arrive at a partition v with v <J A. From this point of view, the lemma is quite natural. If AA :'9/-lB

then certainly we should have A :'9/-l since the set A is the lowest addable sequence of T i-nodes.

V.3 Definition and Properties of /'

Let A E RPd have bottom removable sequence A = (AI, A 2 , ••. , A r ) and define the laddeT

weight {\ = UI, ... ,jd) inductively as follows: Jd = resAr and UI, ... ,jd-I) = {"A r . Thus, if

i = res A is the residue of the bottom removable sequence, then {\ has i as its final T residues.

Note that the idea that ladders playa fundamental role also appears in [LLT, §6.2].

Example V.3.l. In practice, we find the ladder weight /' by reading off the residues along each

ladder, starting with the top ladder and working our way down. That is, if L I , .. . , L t is the set

of ladders for A, Tm = Tm(A) = IA n L m\, and im = resLm for each m = 1, ... t, then the ladder

weight {\ will be

where the residue im appears T m consecutive times for each m.

Recall the partition A = (4,3,2, 1) which has the residue diagram given in Figure 2.

~
1 2 a I

a 1

1 2

a
-

Figure 2: The residue diagram for the partition A = (4,3,2,1).

By reading off the residues along each ladder from top to bottom, we end up with the ladder weight

{\ = (0,1,2,2,0,0,1,1,2,0). o
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Of course, we are interested in the ladder weight /' because it has a few remarkable

properties. Informally, the set of ladder weights {/' I ..\ E R'Pd} is actually enough to encompass

all of the graded decomposition information. To see this more explicitly, we first need the following

result, which shows that /' exhibits a nice triangularity condition.

Theorem V.3.2. Let..\ E R'Pd and f.J, E 'Pd , with f.J,r[...\. Then /' does not appeaT in chq S(f.J,). In

paTticulaT, if f.J, is e-TestTicted, then /' does not appeaT in chq D (f.J,) .

Proof We apply induction on d, the base case d = 0 being clear. Let d > 0 and suppose for a

contradiction that iT = /' for some T E !Y(f.J,). Let A = (A 1 , ... ,Ar ) be the bottom removable

sequence of ..\ and let i = res A be its residue. Let B = {B1 , ... , B r } be the nodes of f.J, labeled in

T with d, d - 1, ... , d - I' + 1. Since iT = /' we have that res B 1 = ... = res B r = i. Thus, B is

a set of I' removable i-nodes in f.J,. Let T' E !Y(f.J,B) be the tableau obtained from T by removing

B B Th ·T' 'AA h .AA . 1 S( ) B h d .1, ... , r' en t = J ,w ence J appears m c 1q f.J,B· Y t e in uctive assumptIOn,

f.J,B 12: ..\A· Now, by Lemma V.2.1, f.J, 12:..\, which is a contradiction. o

This triangularity condition works in conjunction with the triangularity condition on the

graded decomposition numbers to imply that, in fact, jA does appear in chq D(..\). The hope is thus

to use various ladder weights as 'indicators' of whether chq D(..\) appears in the decomposition of

chq S(f.J,). Unfortunately, the weight jA can (and does) appear in other graded characters chq D(v)

for v 12: ..\, so we actually need a little bit more information. More specifically, we would like to know

the multiplicity of jA in chq D(..\) explicitly. An explicit multiplicity is obtainable, and follows from

the following technical result.

Lemma V.3.3. Let..\ E R'Pd and set t = t A , I'm = Tm (..\), R m := 1'1 + ... + I'm, and ..\(m) :=..\ n

(L 1 u· . ·u L m ) faT m > O. 1fT E !Y(..\) has iT = jA then faT each m > 0 we have sh(T::;R=) = ..\(m).

Proof We apply induction on m > 0 with the induction base m = 1 being clear as 1') = 1.

Let m > 1 and assume that sh(T::;Rm_l) = )..(m - 1). Letting B denote the set of nodes in

sh(T::;Rm ) \ sh(T::;R=_l)' it suffices to prove that B = ..\ n L m . Since IBI = \).. n Lml = I'm, it is

enough to prove that B ~ ..\nLm . Observing that B is contained in ..\ it then remains to show that

B ~ L m . Observe that the nodes of B must have residue res L m since iT = jA. We know also that

none of the nodes in B belong to any of the ladders L 1 , ... , L m - 1 since sh(T::;R
m

_ 1 ) = ..\(m - 1).

We conclude that B ~ L m , completing the inductive step. o
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This technical result describes how a standard A-tableau, T E ,91(A), must be labeled in

order to have its residue sequence satisfy iT = {". Any such tableau must label the nodes so that

if A E An Lm and B E An Ln with n > m, then the label on A must be less than the label on B.

In other words, while labeling a A tableau T, the ladder Lm must be completely labeled (in any

way) by the lowest labels available, before moving on to the next ladder Lm + l .

Let A E Pd and set t = t).. and rm = rm(A) for m > O. We define

(V.1)

Theorem V.3.4. If A E R.Pd then j).. has multiplicity r).. in chq S(A).

Proof We must describe the complete set of A-tableau {T E ,91(A) I iT = j)..}. Lemma V.3.3

implies that for any tableau T in this set, the numbers d, d - 1, ... ,d - rt + 1 must appear in

the bottom removable sequence A = {AI,"" Ar ,} for A. Moreover, within this ladder, all Ttl

possible permutations of those labels are valid. Since A is e-restricted, Lemma III.3.2 implies that

all ladders are bottom complete for A, and thus the possible labelings of A give a contribution of

exactly h]~ to the multiplicity of j).. in chq S(A). The result then follows by induction on d. D

Corollary V.3.5. If A E R.Pd then j).. has multiplicity r).. in chq D(A).

Proof By Theorem V.3.4, j).. appears in chq S(A) with multiplicity T).., and by Lemma V.3.2, l
does not appear in chq D(f.L) for f.L <J A. By Theorem IV.5.2, the composition factors of S(A) are of

the form D(f.L) for {l :9 A, thus the result follows. D

In two special cases, where we have further restrictions on the shape of the partition A,

we can be more explicit.

Corollary V.3.6. Let A E Pd be a partition with Al < e. Then j).. has multiplicity 1 in chq S(A)

and in chq D(A).

Proof Observe that Al < e implies that rm :s; 1 for all 1 :s; m, :s; t)... The result then follows

directly from Lemma V.3.4 and Corollary V.3.5. D

Corollary V .3.7. Let A = (l~l, 1~2, ... ) be an e-restricted partition with II = e and Ii > IHI for

i 2: 1. Then the multiplicity of j).. in chq S(A) and in chq D(A) is ([2]q)k 1 •
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Proof. Use Lemma V.3.4 and Corollary V.3.5 and the fact that A has exactly k1 ladders of size

2, the remaining ladders of A having size at most 1. o

For each A E RPd, we now have an explicit multiplicity T).. for j).. in chq S(A) and

chq D(A). This will allow us to take the explicitly calculated multiplicity of j).. in chq S(fl) and find

complete copies of T).. within it. Recall the system defined by equation IV.l which expresses the

decomposition of S(fl) in terms of graded characters. Using this idea, we now reduce this system

to solving a single equation for each of the distinguished ladder weight spaces.

V A Ladder Weight Multiplicity

Let V be a finite dimensional graded Hd-module. For any A E RPd define m).. (V) to be

the multiplicity of j).. in chq V. We then collect the important properties of the function m)...

Theorem VA.I. Let A E RPd, fl E Pd! and V be a finite dimensional graded Hd-module. Then:

(i) l1I)..(V) E Z20[q,q-l];

(ii) if m).. (V) = 0 then [V : D(A)] = 0;

(iii) m)..(S(A)) = m)..(D(A)) = T)..;

(iv) m)..(S(fl)) = 0 unless A E .A1(fl);

(v) if fl E RPd, then m)..(D(fl)) == 0 unless A E M(fl);

(vi) m)..(S(fl)) = L d M,l/m)..(D(v)) + dM,)..T)...

l/eRPd n M(M,)..), 1/1)..

Proof. Recall that the graded character of a graded Hd-module is a formal sum of weights with

the coefficient of a weight i equal to the graded dimension of the weight space Vi, As such, it is

clear that the multiplicity of any particular weight must be in Z>O[q,q-l] proving (i).

Part (iii) is a restatement of Theorem V.3.4 and Corollary V.3.5. Now, (i) and (iii) imply

that if D(A) is a composition factor of V, then j).. must appear in chq V proving (ii).

To see (iv), assume that A cf. M(fl). Then either A l' IJ, or Ai!fl. In the first case it

follows from Theorem IV.5.2 that m)..(S({J,)) = 0, and in the second case the same follows from

Theorem V.3.2. Now (v) follows directly from (iv) and (i).

Finally, (vi) follows from (i), (iii), (v), and Theorem IV.5.2 0

Theorem V.4.1(ii) and (iii) make precise the way in which we may think of the ladder

weight j).. as an 'indicator' for the irreducible module D(A). Note that part (vi) is exactly the
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reduction of equation IV.1 to the /'-weight space that we were after. In the next section, we

introduce our main algorithm which allows us to solve this system of equations for the graded

decomposition numbers by induction.
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CHAPTER VI

THE ALGORITHM

In this chapter we describe the Main Algorithm which solves the problem of computing

the graded decomposition numbers for H d in general. Our algorithm gives an inductive process by

which we may reduce the problem to solving a single equation in the ladder weight space /'. This

type of equation can be solved more generally as explained in Section Vr.l below.

VLI Basic Algorithm

Our Main Algorithm will ultimately reduce to solving the following basic problem, thus

we will begin by describing an easy algorithm for solving this problem.

Problem VLI.I. Suppose d(q) E qZ[q], and m(q),r(q) E Z[q,q-lj are such that m(q) = m(q),

r(q) = r(q), and r(q) -=/=- o. If d(q)r(q) + m(q) is known and r(q) is known, find d(q) and m(q).

Remark VLI.2. It is easy to see that Problem Vr.l.l has a unique solution.

We now explain an inductive algorithm to solve Problem vr.l.l. Clearly, if we have

d(q)r(q) + m(q) = 0, then d(q) = m(q) = °by uniqueness. If d(q)r(q) + m(q) -=/=- 0 then we can

write it in the form

M

d(q)r(q) + m(q) = L anqn (-N:S M; a-N -=/=- 0, aM -=/=- 0).
n=-N

Note that the assumptions imply that M ? 0 and M ? N (but we might have N < 0 if m(q) = 0).

The algorithm proceeds by induction on the pairs of non-negative integers (M, ]'vl + N) ordered

lexicographically. The induction base is the pair (0,0) where d(q) = 0 and m(q) = ao by uniqueness.

Let (M,1'.1 + N) > (0,0). This implies 1'.1 > o. We denote the top term of r(q) by bqR, and note

that R ? 0 since r(q) is bar-invariant. We now consider two cases.
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Case 1: M > N. As m(q) is bar-invariant, the term aMqM must corne from d(q)r(q).

Thus atl qM-R is a term in d(q). Setting

dl( ) '= d( ) _ aM M-Rq. q b q ,

we are reduced to solving the basic problem for dl(q)r(q) +m(q). Note that the conditions required

in Problem VL1.1 still hold since dl(q) E qZ[q], but for this new equation we have ~A!r < M, so we

are finished by induction.

Case 2: M = N. As d(q) E qZ[q], the term a_Nq-N must therefore come from m(q).

Since m(q) is bar-invariant, a_NqN must be a term in m(q) also. Setting

we are reduced to solving the problem for d(q)r(q) + ml(q). Note that the conditions of Prob­

lem VL1.1 still hold, since ml(q) = ml(q), but we now have M I <::: M and M I + N I < M + N, so

we are again finished by induction.

Example VI.1.3. Suppose that r(q) = q + q-l, d(q) E qZ[q], 7n(q) = m(q) and that

d(q)r(q) + m(q) = 6q-3 + 2q-2 + q-l + 4 + 2q + 6q2 + 7q3.

To start, !'vi = N = 3, thus the term 6q-3 must come from m(q). Since m(q) is bar­

invariant, the term 6q3 is also part of m(q). Setting ml(q) = m(q) -- (6q-3 + 6q3) and we are left

with solving

d(q)r(q) + ml(q) = 2q-2 + 4 + q + 6q2 + q3.

3

Now Ai ~-' 3 and N = 2, so the top term q3 must come from d(q)r(q), so 9q = q2 is a term

in d(q). Thus, the term q2(q + q-l) = q3 + q is a term in d(q)r(q). Setting dl(q) = d(q) - q2 we

are left with solving

dl(q)r(q) + ml(q) = 2q-2 + 4 + 6q2.
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Now 1\1 = N == 2, so the term 2q-2 must come from m'(q), meaning that the bar-invariant

term 2q-2 + 2q2 is in m'(q). Setting m"(q) = m'(q) - (2q-2 + 2q2) we are left with solving

d'(q)r(q) + m"(q) = 4 + 4q2.

Now M = 2 and N = 1, so 4q2 must come from d'(q)r(q). Meaning that 4q is a term in

d'(q). Thus 4q(q +q-l) = 4q2+ 4 is a term in d' (q)r( q). Setting d"(q) = d' (q) - 4q we are left with

d"(q)r(q) + m"(q) = O. Thus d"(q) = 0 = m"(q) by uniqueness. We therefore have d(q) = q2 + 4q

and m(q) = 6q-3 + 2q-2 + 2q2+ 6q3. <>

Remark VI.1.4. The condition that a given Laurent polynomial a(q) E Z[q,q-lj can be de­

composed in the form a(q) = d(q)r(q) + m(q) where d(q), r(q), and m(q) satisfy the conditions

of Problem VI.l.1 is non-trivial. More specifically, if r(q) is taken to be a bar-invariant Laurent

polynomial that is not a constant polynomial, then most arbitrary Laurent polynomials a(q) will

not satisfy this condition and therefore cannot have the algorithm applied to them.

VI.2 Main Algorithm

From now on we assume that char W= O. If e = 0, then the Specht modules are irreducible,

so we also assume that we are in the interesting case e > O. That is, we deal with the case of the

Iwahori-Hecke algebra over a field of characteristic zero with parameter a primitive eth root of unity.

Under these assumptions, we now describe an algorithm for computing the graded decomposition

numbers of Hd.

Remark VI.2.10 The algorithm relies heavily on Theorem IY.5.3, which is why we need the

critical assumption that char W= O.

Let JL E Pd and A E RPd. We will compute dIL ,>. by induction. However, this induction

requires us to keep track of some extra information. By Theorem IV.5.2(i), A rt M(JL) implies

diL ,>. = 0, so we assume A E M(JL). We now calculate diL ,>. and m>.(D(ll)) by induction on the

distance [(JL, A) (see Section III.2). Of course, m>.(D(tl)) only makes sense when JL is e-restricted,

so we interpret this term as zero if JLrtRPd. Induction begins when [(JL, A) = 0, hence 11 = A, and

we have dlL'iL = 1 by Theorem IV.5.2(ii) and miL(S(JL)) = riL by Theorem V.4.l.
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Let IUL, A) > 0, so fLr>A. By induction, we know the graded decomposition numbers djL,u for

all v E RPdnM(fL,A) with v of. A and the multiplicities m)..(D(v)) for all v E RPdnA1(tL,A) with

v of. fL· To make the inductive step we need to compute djL,).. and, if fL is e-restricted, m)..(D(tL)).

If fL is not e-restricted, then by Theorem V.4.1(vi), we have

where all the terms in the right hand side are known by induction and Theorem IV.4.I.

Let fL be e-restricted. By Theorem V.4.1(vi), we have

m)..(D(fL)) + djL,)..T).. = m)..(S(fL)) - L djL,um)..(D(v)),
uERPdnM(jL,)..), uep).., uepjL

where all terms in the right hand side are known by induction and Theorem IV.4.I. Note T).. is

non-zero and bar-invariant, djL,).. E qZ::::o[q] by Theorem IV.5.3, and m)..(D(p)) is bar-invariant by

Theorem IV.4.4. Hence, we are in the assumptions of Problem VI.1.1 with m(q) = m)..(D(tL)),

d(q) = djL,)..' and T(q) = T)... Now we apply the Basic Algorithm described in the previous section

to calculate m)..(D(tL)) and djL,).. and complete the inductive step.

Remark VL2.2. In our algorithm, to calculate djL,).. and m)..(D(fL)) one only ever needs to compute

du,K and.m"JD(v)) for pairs (v, "") such that l(v, "") < l(fL, A) and v, "" E M(fL, A). For an example

of this type of calculation, see Section IX.2.
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CHAPTER VII

APPLICATIONS

The problem of calculating a closed form for the graded decomposition numbers is quite

difficult in general. However, we can calculate the graded decomposition numbers in a few special

cases. Here we will specifically treat the case of 2-column partitions which has also been studied

(in the ungraded setting) by James [11]. In fact, in this situation we can also compute the

adjustment matrix which describes how to make precise the 'reduction modulo p' from the graded

decomposition numbers of Hd to those of the symmetric group algebra JFI:d. Note that work

has been done using this algorithm in the case of 3-column and 4-column partitions as well. For

examples of this work we refer the interested reader to [L].

In Section VII. 1 we review the language of moves for two-column partitions and introduce

some new notation for this specific situation. More specifically, we introduce the definitions of

the size of a move as well as good and bad moves. We also introduce notation for keeping track

of various important residues. Then, in Section VII.2 we prove a few important technical results

regarding the multiplicity m;...(8(p.)) when A is a good move or bad move for p..

Section VII.3 contains the description and proof of the graded decomposition numbers for

the 2-column partitions in the case of Hd(JF,~) when char JF = 0 and ~ is an eth-root of unity.

Finally, in Section VIlA we use some results of James [11] for the group algebra of the symmetric

group in characteristic p to make sense ofthe 'reduction modulo p' alluded to in Section 11.3. We are

thus able to describe exactly how the irreducible modules over Hd(C, e21ri
/ p ) split when passing to

JF~d (where char JF = p). This means that we can fully describe the graded decomposition numbers

for JFI:d in this situation as well.
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VII.l Two-column Partitions

A 2-column partition J.l E Pd is a partition whose Young diagram has at most two non­

empty columns, thus it can be written in the form J.l = (2 j , 1d-2 j ) for some 0 :::; j :::; ~. Observe

that we choose to include the partition J.l = (1d) in the set of 2-column partitions. Given any

2-column partition J.l = (2 j , 1d - 2j ), we let i1(J.l) := res (d - j, 1) and i 2 (J.l) := res (j,2) denote the

residues at the bottom of columns 1 and 2 respectively. It is also useful to keep track of the number

b(J.l) defined from 0 :::; b(J.l) < e and b(fL) == i 2 (J.l) -- i1(fL) (mod e).

Observe that, if J.l = (2 j , 1d-2 j ) is a 2-column partition, then all of the moves for J.l are

also 2-column partitions and moreover, each move must be of the form A = (2 k , 1cl - 2k
) for k :::; j.

Thus we may think of each move A E M(J.l) in terms of the number of nodes moved from column 2

in J.l to column 1 in A. We define the size of the move A to be IfL, AI := j - k. The set of 2-column

partitions actually forms a totally ordered set under the standard dominance order. Thus, given

A E M(J.l), the set of moves between A and J.l is exactly the set of moves for fL of smaller (or equal)

size, i.e. M(J.l, A) = {v E M(J.l) I IfL, vi :::; 1J.l, AI}·

We say that A EO M(J.l) is a good move if 1J.l, AI to (mod e), otherwise we say A is a bad

move. Observe that 1J.l, AI == i1(A) - i1(fL) (mod e). Thus a move A for J.l is a good move if and only

if i1(A) fe i1(J.l). Note that every 2-column partition J.l admits a bad move, namely J.l itself, but

not every partition admits a good move. The fact that the set of 2-column partitions is a totally

ordered set implies that if J.l admits a non-trivial move (i.e. M(J.l) fe {J.l}) then there is a unique

non-trivial minimal move for fL. We refer to this unique non-trivial minimal move as the smallest

move for J.l. Moreover, if J.l admits a good move, which is necessarily non-trivial, then the smallest

move for J.l is a good move.

VII.2 A Few Technical Lemmas

To apply our algorithm to the case of 2-column partitions we need a few technical lemmas

describing the multiplicity m).,(S(J.l)) as dependent on whether A is a good or bad move for fL. To

start, given any e-restricted 2-column partition A, we describe a major portion of the labeling for

any 2-column tableau T such that iT = j)., in the following corollary.
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Corollary VII.2.1. Let A := (2k,ld - 2k ) be e-restricted, with t := t>., rm := rm(A), R m :=

r1 + ... + rm, and A(m) = An (L 1u··· U Lm) for m > 0 (as in Lemma V. 3. 3). Let p, E Pd be a

2-column partition, with J-l12:: A and {l(m) = J-l n (L 1U··· U Lm) for m > O. Set n := 1 + k(e - 1).

1fT E g(J-l) is such that iT = j>' then sh(T<R=) = J-l(m) for all 1 ::; m::; n.

Pl'Oof The important observation to make is that n is the exact index such that L n passes

through the node (k + 1,1). Thus, for all 1 ::; m ::; n we have J-l(m) = A(m). The result is now a

direct consequence of Lemma V.3.3. o

Remark VII.2.2. Corollary VII.2.1 implies specifically that for any 2-column partition J-l and

any standard It-tableau T with iT = jA, we have sh(T<2k+d = (2k, 1).

Let p, be a 2-column partition which admits a good move and let v be the smallest good

move. By computing a few examples, one can then observe that any other good move A for J-l

is necessarily a bad move for v. Conversely, any bad move for v is, in fact, a good move for J-l

as well. The smallest good move v for J-l turns out to playa dominant role in the decomposition

of 8(J-l). The following result makes this statement more precise by describing a way to relate

the multiplicity m>.(8(J-l», for an arbitrary good move A, to the multiplicity 1I1>.(8(v»), where v

denotes the smallest good move for J-l.

Lemma VII.2.3. Let J-l be a 2-column partition that admits a good move. Let v be the smallest

good move for J-l and let A = (2k, 1d- 2k ) be a bad move for v. Then 1I1>.(S(J-l» = q. 1I1>.(S(v».

Pl'Oof Set b := b(A) and note that since A # (2 d/2), the final b residues in j>' are exactly

i2(A) - 1, i2(A) - 2, ... ,'i l (A). Thus, for any standard A-tableau which gives the residue sequence

j>', it must be the case that the numbers d, d -1, . , . , d - b+ 1 appear in the final b nodes of column

1. So we define Ab := (2k, 1d-2k-b).

As A is a bad move for v, we have 'i 1(A) =c i 1(v) and i2(A) = i2(V). If there exists a

tableau T E g (v) with iT = j>' then the numbers d, d - 1, ... , d - b + 1 must appear in the nodes

(v[, 1), (vi - 1,1), ... , (vi - b+ 1,1) respectively. As these are all nodes in column 1, it follows

that deg(T) = deg(T<::::d-b) for all such T. If we denote v' := sh(T<::::d_b), then the previous discussion

shows that m>.(8(v» = m>."(8(v'))

As v is a good move for J-l, we have il(v) = i2(J-l), i2(V) = i 1(J-l), and 'i1(v) # i2(V). Note

that since 'i 1(A) = i 1(v) and i2(A) = i2 (v), we have b > 0 and moreover, b is exactly IJ-l, vi. If there
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exists aU E f7(p,) with i U
= /' then the numbers d, d - 1, ... , d - b+ 1 must appear in the nodes

(p,L 2), (p,'f -1,2), ... , (p,'f -b+1, 2) respectively (the final bnodes in column 2). Observe that these

nodes contain the residue i2(A) -1 = i 1(p,) -1 exactly once. Hence we have deg(U) = q. deg(U<d-b)

for all such U. If we denote p,' := sh(U<d-b), then this shows that m>..(S(p,)) = q·m>"b(S(p,')). Since

b = Ip" vi, it follows that v' = p,'. Hence m>..(S(p,)) = q. m>..(S(v)). D

Lemma VII.2.4. Let A = (2 k, 1d-2k) and p, = (2 j , 1d-2 j ) be partitions with A a bad move jor p,.

Then m>..(S(p,)) is bar-invariant.

Proof. Since A is a bad move for p" we have that i 1 (A) = i 1 (p,) and i2(A) = i2(p,). Let T E f7(p,)

be such that iT = j>". From Corollary VII.2.1 we know that sh(T<::2k+d = (2 k , 1). Moreover, the

possible ways of labeling (2 k , 1) and obtaining the proper start to j>" produces the bar-invariant

coefficient r(2k,1)' Thus it suffices to show that deg(T) = deg(T9k+1)'

Let a := i2(A) + k mod e. Observe that res (k + 1,2) = i2(A) - 1 and this residue does not

appear in the set of a residues, {-k - 1, ... , -k - a = i2(p,)}, where k denotes k (mod e). This

forces the numbers 2k + 2, ... , 2k + 1 + a to appear in the nodes (k + 2, 1), ... , (k + 1 + a, 1) of T

respectively. Since these are all in column 1, we have that deg(T<::2k+l+a) = deg(T9k+d. Observe

that starting with the (2k + 1 + a) + 1th residue, the sequence j>" proceeds sequentially starting

with the residue i 2 (p,) - 1 = i 2 (A) - 1 and continuing downward.

Set b := b(p,) and note that b = b(A) also. Thus the final b residues of j>" are exactly

i2(p,) - 1,i2(p,) - 2, ... ,i1 (p,). Hence, the numbers d, ... ,d - b + 1 must appear in the nodes

(p,'f, 1), ... , (p,f - b+ 1, 1) of T respectively (the final b nodes in column 1). Since these are in the

first column, deg(T) = deg(T<::d-b).

Since A is a bad move for p" by definition Ip" AI == 0 (mod e). It follows that the nodes

(k + 1, 2), (k + 2, 2), ... ,(j, 2), form a series of e-bricks with residues (i2(A) -1, i2(A) - 2, ... , i2(A)).

Note that the nodes (k + 1 + a + 1,1), (k + 1 + a + 2, 1), ... , (d - j - b, 1), form a series of e-bricks

with the residues (i 2(A) - 1, ... , i2(A)) as well.

These two sets of e-bricks contain all of the nodes in T<::d-b \ T9k+l+a' Since j>" proceeds

sequentially, iT = j>" implies that each e-brick must contain consecutive numbers in T. Thus by

Lemma 3.1.15 part (ii) from [BKW] (applied here in the transpose setting), none of these complete

e-bricks affect the degree of T. Therefore, we have shown deg(T) = deg(T<::d-b) = deg(T<::2k+l+a) =

deg(T9k+1) as required. D
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VII.3 Graded Decomposition Numbers for Two-column Partitions

Lemma VII.2.3 and Lemma VII.2A and the algorithm in Section VI.2 allow us to prove

the following result in the case where ~ is an eth-root of unity (recall that the algorithm requires

that we have charW = 0):

Theorem VII.3.1. (Graded Decomposition Numbers for 2-column Partitions)

Let t1 be an e-restricted 2-column partition. Then

if IJ admits no good moves,

if tI admits a good move,

where in the second case, 1/ denotes the smallest good move for tI.

Pmof. We prove the theorem using our algorithm from Section VI.2. Specificially, we show that

for any e-restricted A <SJ p we have

q if A is the smallest good move for tI,

dJ-l,>- = I if A = p,

o otherwise,

and

if A is a good move for tI,

if A is a bad move for tI.

As in our algorithm, we proceed by induction on the distance l(po, A). The induction

base is A = tI where we have m>-(D(A)) = m>-(S(A)) = T>- by Theorem V.4.I, and d>-,>- = I by

Theorem IV.5.2.

Let A =J tI. Theorem VA.I(v) gives us that

Now we consider various cases:

(VILl)
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Case 1: A is a bad move for /1.. Let v E RPd n M(/1', A) with /1 [> v [> A. This implies that

1(/1, v) < 1(/1, A). Thus, we know d/1,u and m)..(D(v)) by induction. If v is a bad move for /1" then

d/l,u = 0 so none of these terms will appear in the sum. If v is a good move for /1, then we know

that A is a good move for v as well. Thus, we have that m)..(D(v)) = 0, so none of these terms

appear in the sum either.

The above argument reduces equation VII.1 to m)..(D(/1)) + d/1,,\T).. = m)..(S(/1)). From

Lemma VII.2.4, we know that m)..(S(/1)) is bar-invariant and thus our Basic Algorithm from

Section VI.1 implies that d/l,).. = 0 and m)..(D(/1)) = m)..(S(/1')).

Case 2: A is the smallest good move fOT /1. Since the smallest good move for /1 must have

size < e, there are no v E RPdnJvI(/1, A) with /1,[> v[> A. Thus, there are no terms in the summation

in equation VII.l and we are left with m)..(D(/1)) + d/l,)..T).. = m)..(S(/1'))'

Applying Lemma VII.2.3 with v = A gives us that m)..(S(/1)) = q.m)..(S(A)) = q·T)... Thus

d/1,,\ = q and m)..(D(/1)) = 0 by the uniqueness of the solution to Problem VI.l.l.

Case 3: A is a good move fOT /1 with 1/1, AI > e. Let v E RPd n M(/1, A) with /1 [> v [> A.

If v is a bad move for /1, then by induction d/l,1/ = 0 and none of these appear in the sum. If v is

a good move for /1 and A is a good move for v, then by induction m)..(D(v)) = 0, so these do not

appear in the sum either.

Suppose v is a good move for /1 and A is a bad move for v. If v is not the smallest good

move, then by induction d/1,1/ = 0, so take v to be the smallest good move for /1. By induction we

have that d/1,1/ = q, so equation VII.l may be reduced to

Since v is the smallest good move for /1, Lemma VII.2.3 implies m)..(S(/1)) = q. m)..(S(v)).

Moreover, since A is a bad move for v, by induction m)..(D(v)) = m)..(S(v)). Thus equation VII.l

may be reduced to rr~)..(D(/1)) + d/l,)..T).. = 0 which gives m)..(D(/1)) = 0 and d/l,).. = 0 by the

uniqueness of the solution to Problem VI. 1. 1. 0

The one situation not considered in Theorem VII.3.1 is the only case where a 2-column

partition is not e-restricted, i.e. when /1 = (2d/ 2
) and e = 2. In this case, of course, D(/1') does not

make sense. In fact, in this situation our algorithm and the discussion in the proof above imply

that chq S (2 d / 2 ) = q . chq D (2 d / 2 -
1

, 12).
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VIlA Two-column Partitions for IFSd in Characteristic p

Let IF be a field of characteristic p. Recall that the group algebra of the symmetric group,

IF~d = Hd(IF, 1), and the Iwahori-Hecke algebra over C at a pth_root of unity, Hd(C, e27ri/ p
), both

have quantum characteristic e = p. From the discussion above in Section IV.2, we know that in both

situations there is a set of Specht modules {S(Il) III E Pd} and that they have irreducible heads

D(Il) which are non-zero if and only if 11 is e-restricted. Thus, we have the sets {D(A) I A E RPd}

(for Hd(C, e27ri
/

p
)) and {D(A) I A E RPd} (for JF~d) that are complete irredundant sets of the finite

dimensional irreducible representations for each algebra. Finally, we know from Remark IV.4.2

that the graded characters for our Specht modules are the same for each algebra as well.

We can thus make sense of the irreducible representations D(A) for IF~d as "reductions

modulo p" of the irreducible representations D(A) for Hd(C, e27ri/ p
). In this reduction, some of

the irreducible modules for Hd(C, e27ri/ p ) split. In the 2-column case, we can use the work of

James in [Jl] as well as our results above to write down an explicit formula for these splittings.

The adjustment matrix is a matrix which, when multiplied by the graded decomposition matrix for

Hd(C, e27rljp
) , gives the graded decomposition matrix for IF~d. Thus, by describing the splitting, we

will have described the portion of the adjustment matrix corresponding to the 2-column partitions.

In this way, we will also have found the graded decomposition numbers for 2-column partitions in

the case of the symmetric group in characteristic p.

First we recall some combinatorial definitions from James in PI]. Given two non-negative

integers a and b we write their prime power decompositions

a = ao + alP + ... + arpr (for 0::; ai < p , ar cF 0),

b = bo + blP + ... + bsps (for 0::; bi < P , bs cF 0).

Then we say that a contains b to base p if m < n and for each i we have bi = 0 or bi = ai. We

then for any non-negative integers nand m we define the function

Iv(n,m) {:
if n + 1 contains m to base p,

otherwise.
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A result of James regarding the case of the symmetric group JFp~d is the following theorem which

appears also in [J2] and[J3]. Here we state the result in the transpose setting where it still holds

since [J1, Theorem 8.15] implies that D(>") ~ D(>..T) Q:9 sgn, where sgn is the well-known sign

representation for ~d.

Lemma VII.4.1. [J1, Theorem 24.15] The multiplicity of D (2k, 1d-2k) as a factor of S (2 j , 1d-2j )

is fp(d - 2k,j - k).

In the case of the Iwahori-Hecke algebra at a pth_root of unity, Hd(C, e2Ki/p),

Theorem VIl.3.1 shows that the decomposition of any Specht module S(JL) has at most two factors.

However, for JF~d, Lemma VIlA.1, shows that many Specht modules S(JL) have more than two

factors in their decomposition. Since the Specht module S(JL) has the same weight spaces in

each case (although, over different fields), it follows that some of the irreducible modules in the

decomposition of S(JL) over Hd(C, e2Ki/p), must 'split' when viewed as JF~d-modules. Our goal

now, is to describe this splitting. To do so, we need a little bit more notation.

For simplicity, given two 2-column partitions>.. = (2k, 1d-2k) and v = (2 j , 1d-2j ) such that

k ~ j we define

So sp(v, >..) = 1 if and only if D(>") appears in the (ungraded) decomposition of S(v). We set

B(v) = {>.. E RPd n M(v) I>.. is a bad move for v and sp(v,>..) = I}.

The following result makes precise the reduction modulo p for 2-column partitions.

Theorem VII.4.2. (Reduction Modulo p for 2-column Partitions)

For v E RPd we have

chq D(v) = L chq D(>").
).El3('/)

Proof We denote the graded decomposition numbers for Hd(C, e2Ki/p) by du ,)., while denoting

their counterparts for JF~d by c().. Let>" E B(v), then sp(v, >..) = 1, which implies that D(>")

appears in the decomposition of S(v) as an JF~d-module. Thus d,/,).chq D(>") appears in chq S(v)

and dl/,). i= O. Since 17/,).(D(>")) i= 0 we now have that m).(S(v)) i= O. But>" is a bad move for v,

thus Lemma VIl.2A implies that m).(S(v)) is bar-invariant.
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We now have that each chq D(p,) is bar-invariant and that m.\(S(v)) and m.\(D(A)) are

bar-invariant. It follows that dv,.\ is bar-invariant which implies that dv,.\chqD(A) is bar-invariant.

Thus dv,.\chq D(A) appears in chq D(v) and not in chq D(v).

Evaluating du ,.\ when q = 1 gives the ungraded decomposition number which is known

from [J1] to be 1. The fact that dv ,.\ is bar- invariant now implies that dv ,.\ = 1 as well. This proves

that chq D(A) appears in chq D(v) and not in chq D(v).

Conversely, if A is a good move for v, then the proof of Theorem VII.3.1 gives us that

m,\(D(v)) = O. Thus chq D(A) cannot appear in chq D(v). Similarly, if sp(v, A) = 0, then the

ungraded character ch D(A) does not appear in ch S(v), wh1ch implies that chq D(A) does not

appear in chq S(v) either. D

By knowing the graded decomposition numbers for Hd(C, e21ri
/ p

) and the way each

irreducible module D(A) splits when 'reducing modulo p', we have effectively computed the graded

decomposition numbers for the symmetric group IFI:d in characteristic p. Specifically, the matrix

of graded decomposition numbers for IFI:d is the product of the matrix for Hd(C, e21ri / p
) and

the adjustment matrix which describes the splitting. Theorem VII.4.2 proves that, in the 2­

column case, this adjustment matrix is an integer matrix with all entries being either 0 or 1. This

observation supports the conjecture that the adjustment matrix is an integer matrix in general.
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CHAPTER VIII

CONNECTION TO LLT

There is a famous algorithm due to Lascoux, Leclerc, and Thibon [LL1'] for calculating

global crystal bases for various Fock spaces. It was later proved by Ariki [A] to also calculate the

graded decomposition numbers for the Iwahori-Hecke algebra. While our algorithm is different

from the LLT algorithm, it is actually equivalent. Our approach comes directly from the graded

representation theory of Hd rather than more formal calculations within Fock spaces.

In this chapter, we briefly describe the LLT algorithm and discuss how the two algorithms

are related. The advantage to our approach is that it allows us to interpret several formal objects

that appear in the LLT algorithm in terms of the graded representation theory of H d . We make

this statement more precise in what follows.

In Section VIlI.I, we define the quantized enveloping algebra and revisit the Grothendieck

groups of the categories of finite dimensional and finitely generated projective graded

representations (see Section IV.I). For the Grothendieck groups, we look this time at the more

specific case of the Iwahori-Hecke algebra H d . We also reinterpret the graded decomposition

numbers in terms of the isomorphism classes of modules within these Grothendieck groups.

Next, in Section VIlI.2 we define the Fock space which plays a fundamental role in [LLT].

We give a basis for it as a Q(q)-vector space and describe an action of the quantized enveloping

algebra on it, making it into a module. Then, in Section VIlI.3 we describe a special set of

graded projective Hd-modules which are graded representation theoretic analogs of the formal

'first approximations' A(A) appearing in the LLT algorithm. Finally, in Section VIllA, we explain

how our algorithm is equivalent to the LLT algorithm despite our very different approach using

graded representation theory. \Ve also interpret a family of formal coefficients which appear in the

LLT algorithm as multiplicities of various ladder weights.
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VIII. 1 The Quantized Enveloping Algebra Uq(g) and Grothendieck Groups

Let 9 be the Kac-Moody algebra corresponding to the Cartan matrix (11.1) described in

Section 11.3, so 9 = ;[e(CC) if e > 0 and 9 = s[=(CC) if e = O. Let Uq(g) be the quantized enveloping

algebra of g. So Uq(g) is the Q(q)-algebra generated by the Chevalley generators B i , Fi , and K;I
for i E I, subject only to the usual quantum Serre relations (for all admissible i,j E 1):

K E K -I a"E; j ; = q ',.1 j

[ F]
£ K; - Ki l

E;, j =U;,j q_q-I '

(adq E;) I-a;,; (Ej ) = 0

(adqF;)I-aj.i(Fj ) = 0

where (adq x) n (y) is defined by:

(i # j),

(i # j),

Now, to compare the two algorithms, we must first recast some notions from [LL1'] and

[BK3]. Recall that [Rep(Hd)] (resp. [Proj(Hd)]) denotes the Grothendieck group of the category

of finite dimensional (resp. finitely generated projective) graded Hd-modules. [Rep(Hd)] is a free

Z[q,q-I]-module with basis {[D(A)] I A E RPd} (the isomorphism classes of irreducible graded

Hd-modules). For each A E RPd, let P(A) be the projective cover of D(A); in particular there

exists a degree preserving surjection P(A) ---» D(A). Then [Proj(Hd)] is a free Z[q, q-l]-module

with basis {[P(A)] I A E RPd }.

Recall that the Cartan pairing is a natural pairing of [Proj(Hd)] and [Rep(Hd)] and is

defined by ([P], [M]) = qdim HOM Hd (P, M) for P E Proj(Hd) and A1 E Rep(Hd). We denote

[Rep(H)] = EBd~o[Rep(Hd)] and [Proj(H)] = EBd~o[Proj(Hd)] and then extend the pairing to

[Proj(H)] x [Rep(H)] so that ([Proj(Hc )]' [Rep(Hd)]) = 0 for cold.
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By definition of the graded decomposition numbers d",>.., for every J-L E Pd , we have

[S(J-L)] = L d",>..[D().)]
>"ERPd

in [Rep(Hd)]. Moreover, from [BK3, Theorem 3.14, Theorem 5.13] it follows that we have:

[P().)] = L d",>..[S(J-L)]
ILEPd

(VIlLI)

in [Rep(Hd)] as well. These two statements can be interpreted as (graded) Brauer reciprocity.

VIII.2 Fock Spaces

For more complete treatment of the following, see [BK3]. Given a partition J-L E Pd, recall

the definitions of dA (J-L), dB (J-L), and di (J-L) from Section IlL3. Following the work of Hayashi [H]

and Misra and Miwa [MM], we define the Fock space, J', to be the Q(q)-vector space on basis

{M" I J-L E EljPd},
d?:O

which is referred to as the monomial basis. The Fock space can be made into a Uq(g)-module by

defining the action of the generators via:

XM .- (]d;(IL)M
'I- J..l'- JLl

where the first sum is over all removable i-nodes B for J-L, and the second sum is over all addable

i-nodes A for J-L. We denote the divided powers of these generators by

pIT) = Pi
2 [r]q'

and

In general, J' is not irreducible, but the subrnodule of J' generated by the vector 1\10
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(corresponding to the empty partition) is the irreducible highest weight Uq(g)-module V(Ao).

There is a canonical Uq(g)-module homomorphism 7f : J ---» V(Ao), see [BK3, (3.29)]. We can, and

always will, identify

[Rep(H)] ® Q(q) = V(Ao) c J.
Z[q,q-]]

This identification is the result of a categorification of the module V(Ao). Under this identification,

we have 7f(fl) = [3(fl)] for each fl.

Given any e-restricted..\ E RPd with t = tA and rm, = rm,(..\) for m > 0, we define

F '- F(r'·)F(rt - Jl ... Fh)F,(rJl
A'~ t-l t-2 1 0 .

Observe that the residue sequence formed by taking the lower indices of FA in reverse order is

(or'], 1"2, ... , (t-1)r,) which is exactly jA. Moreover, the product of the denominators coming from

the divided powers is exactly rA' Hence, we may write FA = /~ F:~ 1F;~2] ... F;2 F;]. Following

[LLT] we define, for each ..\ E RPd, the 'first approximation' A(..\) by

Observe that if we identify each basis vector NI/-' with the Young diagram for fl, then it is

possible to keep track of extra information while applying FA' Each successive Fi has the effect of

adding an i-node to each fl in the sum. If we keep track of the order in which nodes are added,

then we may think of each particular partition ft as a standard fl-tableau.

Example VIII.2.1. We can better explain this idea within the framework of an example. Consider

the case of d = 5 and e = 2 with the partition ..\ = (22,1). Then j(2
2

,1) = (0,1,1,0,0) which means

that F(22 1) = -1--FoFoFIFIFo, where r(22 1) = [2]q . [2]q. When applying F(22 1) to M 0 we
, r(2 2 ]) , ,

first apply Fo. With only one way to add a O-node to the empty partition we immediately obtain

FoM0 = NI(1). Next, apply F1 to the previous result 1\1(1)' There are two ways to add a I-node.

Taking degrees into account we have,
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Applying F l again there is exactly one way to add a I-node to each partition. Hence,

Now we apply Fa. There are three ways to add O-nodes to the partition (2,1). Thus,

Finally, we apply Fa one more time. There are two ways to add O-nodes to each partition. Thus,

Observe that each term does, in fact, contain a factor of 7'(22,1)' Hence, after dividing by this

factor, we find that A(22
, 1) = F(22,1)M0 = q2 M(3,2) + qM(3,I2) + M(22 ,1)'

Now, if we keep track of the order in which nodes are added we can view each term in

the sum as a standard tableau. Figures 1 - 3 show the various tableau generated by this process,

starting with the first application of Fl. At each stage, the tableau are ordered so that all those

generated from the same tableau in the previous step will be grouped together.

1
2

r--,-,

1 :3
,2
"-----

~.~----

, -----

1 2 4 1 2 1 2: 1 3 4 : 1 3 1 3
34'

~ ~-.--- --- -.~

3 3 2 ,2 4 2
---

4 :4

By construction, the set of tableaux in Figure 3 is exactly the complete set of standard

tableaux of any shape which have residue sequence l22,1). Moreover, one can check that, for each

tableau T, the degree deg(T) is exactly the coefficient obtained through the application of F(22,1).



1 21
:34
}J-

1 2i5'
3

'4

i1T2l, , I
f----------+---

2J2!
4:

L_'

! 13 4
! 2! 5!
~~'-'

~
21
~~;

1 3
24,
15~'

~
! 2!
! 4:
~

1 3
~~_'

2'5!L_, ~

I~
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o

From this perspective, it follows that, in general, FAM 0 exactly produces the set of

standard tableaux of any shape with corresponding residue sequence jA. In practice, the basis

vectors {M,.,} only encode partition data, not particular standard tableau. However, in view of

Example VIII.2. 1, it is easy to see that

(VIII.2)

VIII. 3 Projective Hd-modules

Recall from Section II.3 that for each i E I d there is a unique idempotent e( i) E H d

(possibly zero) such that e(i)V= Vi for any finite dimensional Hd-module. Moreover, for each

weight i such that e(i) of- 0, we have a corresponding projective module Hde(i). In the special case

when i is a ladder weight, we have:

Lemma VIII.3.1. If A E RPd, then Hde(jA) = EB mA(D(f-L))P(p}
!-'ERPd

Proof. Recall that if 111 and N are graded Hd-modules, then HOMH " (M, N) is the graded vector

space which consists of all, and not necessarily homogeneous, Hd-homomorphisms from 111 to N

(see Section IV.I). Now, the graded multiplicity of P(f-L) in Hde(jA) is exactly equal to result of

the Cartan pairing of P(f-L) with Hde(jA). Thus, the graded multiplicity is

as required. o
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It turns out that the Grothendieck group element [Hde(I")] can be expressed in several

different ways, as evidenced by the following corollary.

Corollary VIII.3.2. For A E RPd, we have in [Rep(Hd)]:

(i) [Hde(I")] = L/1ERPd TnA(D(p,))[P(p,)],

(ii) [Hde(jA)] = L/1EPd mA(S(p,))[S(ll)],

(iii) [Hde(jA)] = L/1ERPd mA(P(p,))[D(p,)],

Proof. (i) is a restatement of Lemma VIIL3.I in the Grothendieck group. (ii) follows from (i)

and equation (VIlLI) since:

L mA(D(p,))[P(p,)] = L mA(D(p,)) L dV,/1[S(v)]
/1ERPd /1ERP d VEPd

L ( L m A(D(p,))dV,/1) [S(v)] = L mA(S(v))[S(v)].
//EPd /1ERPd VEPd

Similarly, (iii) follows from (ii) and equation (VIII.1) since:

L mA(S(p,))[S(p,)] = L mA(S(p,)) L d/1,v[D(v)]
/1EPd /1EPd vERPd

L (L m A(S(p,))d/1,v) [D(v)] = L m,,(P(v))[S(v)].
vERPd /1EPd vERPd

This completes the proof. o

Using equation VIII.2 and Corollary VIIL3.2(ii) we may connect the first approximation

A(A) to the element [Hde(jA)] via the equation

Thus, we have an explicit connection between the formal sum A(A) E J and the graded

representation theory of H d .
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VIllA Comparing the Algorithms

Consider the following system of equations over Z[q,q-l]:

m).,(S(p,)) = L dM,vm).,(D(v)) (.\ E RPd, p, E Pd),
vERPd

(VIlI.3)

with unknowns dM,v and m).,(D(v)) for p, E Pd and .\,V E RPd. Note that m).,(S(p,)) are known

from Theorem IV.4.l.

The algorithm described in Section VI.2 allows us to solve system (VIIl.3) and relies on

the fact that it has a unique solution under the following conditions:

(i) all m).,(D(v)) E Z[q, q-l] are bar-invariant and m).,(D(.\)) = T).,;

(ii) dM,v = 0 unless v Sl p" dv,v = 1, and dM,v E qZ[q] for p, # v.

It turns out that the LLT algorithm also relies on being able to solve system (VIlI.3). In

[LLT], the vector A(.\) for .\ E RPd is a first approximation to the canonical basis element G(.\),

which calculates a col'u,mn of the decomposition matrix:

G(.\) = L dM,).,Mw
MEPd

Since the set {G(.\) 1.\ E RPd} forms a basis for the Fock space, one may write

T).,A(.\) = L b)."IJG(v)
/JERPd

(VIIIA)

(VIII.5)

for some bar-invariant coefficients b)."v' Combining equations VIlI.2, VIllA, and VIlI.5 we have:

L mA(S(p,))MM = L bAY L dM,vMW
MEPd vERPd MEPd

Now, fixing p. (i.e. fixing a TOW of the matrix) we are left with solving

m).,(S(p,)) = L b)."VdM,V
vERPd

for each p. E Pd and .\ E RPd. Since conditions analogous to (i) and (ii) are known to hold in the



61

Lascoux-Leclerc-Thibon setup [LLT], we are left with solving the same system of equations under

the same conditions. Moreover, the b)..,v appearing in the LLT algorithm can now be interpreted

as the graded weight space multiplicities m)..(D(v)) for each A,V E RPd.
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CHAPTER IX

EXAMPLES

In this chapter we use the algorithm to compute a few examples. In Section IX.1 we

describe a step by step process to compute the full matrix of decomposition numbers for H d in

the case when d = 6 and e = 3. Then, in Section IX.2, we describe how to compute a particular

decomposition number. Finally, in Section IX.3 we give the matrix of decomposition numbers for

H d in several cases.

IX.l Graded Decomposition Numbers for H d with d = 6 and e = 3

To compute the matrix of graded decomposition numbers (d/l-,>')/l-EP6; >'ERP6 using our

algorithm, recall that at each stage we calculate d/l-,>' and (if Jl is 3-restricted) m>.(D(Jl)). Recall

also that d>.,>. = 1 for all A E RPd while d/l-,>' = °unless A E M(Jl) thanks to Theorem IV.5.2.

We order the matrix in reverse dominance order with all 3-restricted partitions appearing before

any that are not 3-restricted. Under this ordering, we only need to compute the entries that are

strictly below the diagonal. The complete set of partitions in P6 is

while RP6 = {(4,2), (3,2, 1), (3, 13 ), (23 ), (22 ,1 2), (2, 14
), (1 6)} is the set of 3-restricted partitions.

The algorithm proceeds in reverse dominance order, starting with the partition (1 6 ). The

set of moves for (1 6 ) is M(1 6 ) = {(16 )} and the ladder weight is j(16) = (0,2,1,0,2,1). In fact,

and
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Of course, Theorem IV.5.2 was sufficient to impart the knowledge of all entries in the first

row of the matrix. Here we simply illustrated some of the information we must keep track of as the

algorithm proceeds. For one, we must keep track of the ladder weights /' for each A E RPd. From

here on, we will omit discussion of the entries on the 'diagonal' and will only maintain information

that is important for the induction.

Next, we proceed to the partition (2,1 4 ). The set of moves is M(2, 14 ) = {(2, 14 ), (16)}.

The ladder weight is j(2,14) = (0,1,2,1,0,2) and m(2,14)(D(2,1 4 )) = T(2,14) = 1. One calculates

that m(lG)(S(2, 14)) = q. Hence, using the Basic Algorithm, we find that

and

completing the second row of the matrix.

In the case of the partition (22,1 2), we have that M(2 2 ,12
) = {(22,12)}. The ladder

weight is j(2
2

,12) = (0,1,2,0,1,0) and T(22,I2) = 1. The fact that there are no non-trivial moves

for (22,1 2) implies that the Specht module S(2 2 , 12) is, in fact, irreducible. Hence, all of the

off-diagonal entries in the third column of the matrix are o.

The partition (23) has ladder weight j(2
3

) = (0,1,2,0,1,2) and T(23) = 1. The moves for

(23
) are M(23 ) = {(23), (2, 14 ), (16)}. One computes that m(2,14) (S(2 3 )) = q. Hence, the Basic

Algorithm implies that

and

Next, one computes that m(lG)(S(23 )) = 0, which implies that

and

completing the fourth row.

The partition (3,1 3 ) has ladder weight j(3,1') = (0,1,2,2,0,1) and T(3,IS) = q +q-l. The

moves for (3,1 3) are M(3, 13) = {(3, 13), (2, 14), (16)} and one computes that m(2,14) (S(3, 13 )) = q

and m(lG)(S(3, 13 )) = o. Hence, similar to the previous case,

and 3
d(3,l"),(lG) = 0; m(lG)(D(3, 1 )) = O.
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The partition (3,2,1) has ladder weight j(3,2,l) = (0,1,2,2,0,1) and 1'(3,1") = q + q-l.

The moves for (3,2,1) are M(3,2,I) = {(3,2,I),(3,I 3),(23),(2,I4),(I6)}. One calculates that

1n(3,1") (S(3, 2,1)) = q2 + 1. This is exactly q . 1'(3,13) = q(q + q-l), meaning that the Basic

Algorithm implies that d(3,2,1),(3,13) = q and 1n(3,13)(D(3, 2, 1)) = 0. For the other moves one can

compute that 1n23(S(3, 2,1)) = q, 1n(2,14)(S(3, 2,1)) = q2, and 1n(IG)(S(3, 2, 1)) = q. Hence,

d(3,2,1),(2 3 ) = d(3,2,1),(I G) = q and

while 1n,\(D(3, 2,1)) = °for all A E M(3,2, 1) \ {(3, 2, I)}. This completes the sixth row.

The next 3-restricted partition is (4,2). It has ladder weight j(4,2) == (0,1,2,2,0,0) and

1'(4,2) = q2 + 2 + q-2. As it turns out M(4,2) = {(4,2)}, which implies that the Specht module

S(4,2) is irreducible. Hence, all of the off-diagonal entries in the seventh row are zero.

Now we move onto the partitions which are not 3-restricted, again in reverse dominance

order. None of these partitions will have associated ladder weights or 'diagonal' entries in the

matrix. The partition (32) has moves 1\1(32) = {(32),(3,2,I),(3,I3),(23),(2,I4),(I6)}. One

computes that 1n(3,2,1)(S(32)) = q2 + 1 = q(q + q-l) = q. 1'(3,2,1), while 1n(3,13)(S(32)) = 0,

1n(23)(S(32)) = 0, 1n(2,14)(S(32)) = 0, and 1n(lG) (S(32)) = q2. Hence,

d(3 2 ),(3,2,1) = q,

Of course, since (32) is not 3-restricted, D(32), and therefore 1n,\(D(32)), do not make sense.

The partition (4,1 2) has moves M(4, 12) = {(4, 12), (3,2, 1), (3, 13 ), (23 ), (2, 14), (I6)}. One

computes that 1n(3,2,1) (S( 4,1 2)) = q2 + 1 = q(q + q-l) = q. 1'(3,2,1) and 1n(3,13)(S(4, 12)) = q3 + q =

q2(q + q-l) = q2. 1'(3,1"), while 1n(23 )(S(4, 12)) = 1n(2,14)(S(4, 12)) = 1n(lG)(S(4, 12)) = 0. Hence,

d(4,1 2 ),(3,2,1) = q,

The partition (5,1) has M(5,I) = {(5,I),(4,I2),(32),(3,2,I),(3,I3),(23),(2,I4),(I6)}.

Note that we need not check (4,12) or (32) as these are not 3-restricted. One calculates that

1n(3,2,1)(S(5,I)) = q3 + q = q2(q + q-l) = q2 . 1'(3,2,1) and 1n(23) (S(5, 1)) = q, and also that
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m(3,IS) (S(5, 1)) = m(2,14)(S(5, 1)) = m(l6)(S(5, 1)) = O. Hence,

d _ - 2(0,1),(3,2,1) - q , d(5,1),(2 3 ) = q, and d(5,1),(3,IS) = d(5,l),(2,1 4 ) = d(5,1),(16) = O.

Finally, we must check the partition (6). It has moves M (6) = {(6), (5, 1), (4,1 2), (32),

(3,2,1), (3, 13), (23), (2, 14 ), (1 6 )}. Actually, chq S(6) = q2(0, 1, 2, 0,1,2) which is exactly q2j('2
3

).

Hence, m('23)(S(6)) = q2, while all other multiplicities are zero. Hence,

and d(6),(3,2,1) = d(6),(3,IS) = d(5,l),('2,1 4 ) = d(5,1),(16) = O.

The matrix of graded decomposition numbers is then given in Table 1.

(16) 1 0 0 0 0 0 0

(2,1 4 ) q 1 0 0 0 0 0

(22,1 2) 0 0 1 0 0 0 0

(23) 0 q 0 1 0 0 0

(3,1 3) 0 q 0 0 1 0 0
I

(3,2,1) q q2 0 q q 1 0

(4,2) 0 0 0 0 0 0 1

(3'2) q'2 0 0 0 0 q 0

(4,1'2) 0 0 0 0 q2 q 0

(5,1) 0 0 0 q 0 q'2 0

(6) 0 0 0 q2 0 0 0

Table 1: The matrix of graded decomposition numbers with d = 6 and e = 3.

Remark IX.l.l. The previous example was somewhat simplified because of the fact that, in this

case, m\(D(J-L)) = 0 whenever A =I J-L. This occurs only in cases where d is 'small' - a notion which

depends directly on e. In the following example we will see how having m\ (D(J-L)) =I 0 makes the

computation slightly more complicated.
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IX.2 Computing a Particular Graded Decomposition Number

Consider the case when d = 8 and e = 3 and suppose one wants to compute the

graded decomposition number d(3Y,1),(18). The moves for the partition (3,22 ,1) are lVI(3, 22 ,1) =

{(3, 22, 1), (3,2, 13), (23,12), (18)}. Using the algorithm here we proceed to induct on the distance

between the partitions. Hence we start with the closest move to (3,2 2 ,1), namely (3,2,1 3 ). One

computes that m(3,2,13)(S(3, 22 ,1)) = q2 + 1 = q(q + q-1) = qT(3,2,I3)' Since j(3,2,1
3
) could not

have come from any other moves, it follows that

d(3,2,I3),(3,22 ,1) = q and

Next, consider the move (23 ,1 2 ). One computes that m(23,12)(S(3, 22 , 1)) = q2 + 1, while

T(23,I2) = 1. It is possible that j(2
3

,1
2

) appears in chq D(3,2,1 3), hence we must also calculate

m(23 ,12) (D(3, 2,1 3 )). Calculating m(23 ,12) (S(3, 2, 13 )) = q, one finds that m(23,I2) (D(3, 2, 13)) = o.
(23 12

) 3Hence, j , does not appear in chq D(3, 2,1 ), and we have

and

Observe that the weight j(2
3

,1
2

) actually appears in the graded character of D(3,22, 1) with a

non-zero (and necessarily bar-invariant) coefficient.

Finally, we must consider the desired move (18). One computes that m(18) (S(3, 22,1) = q2.

Again, it is possible that j(1
8
) appears in either D(3,2,13) or D(23,12). One computes that

m(18)(S(3, 2,13 )) = 2q and that m(18)(D(23, 12 )) = 1, which implies that m(l8)(D(3, 2,13 )) = 0

and m(18)(D(23, 12 )) = 1. Hence, the factor q2chq D(23, 12 ) appearing in the decomposition of

chq S(3, 22 , 1) actually contains the copy of q2j(18) appearing in chq S(3, 22 ,1). Thus,

and

despite the fact that m(18)(S(3, 22 , 1)) was non-zero and not bar-invariant.



IX.3 Matrices of Graded Decomposition Numbers

I !L"'A [Q1J (2,1
2

) I (15) 1 0 0

I !L"'A [Q1J (2,1) I (1 4
) 1 0 (2,1 3 ) 0 1 0

(1 3
) 1 0 (2,1 2) 0 1 (22 ,1) 0 0 1

(2,1) 0 1 (22) q 0 (3, 12) q 0 q

I (3) GJ 0
I

(3,1) q q2 (3,2) 0 0 q2

(4) q2 0 (4,1) 0 q 0

(5) q2 0 0

Table 2: The matrices of graded decomposition numbers with e = 2 and d = 2,3,4,5.

(1 6) 1 0 0 0

(2,14 ) q 1 0 0

(2 2 ,1 2) 0 q 1 0

(3,2,1) 0 0 0 1

(23
) 0 0 q 0

(3,1 3 ) q q2 q 0

(3 2) 0 0 q2 0

(4, 12) q2 q q2 0

(4,2) 0 q2 q3 0

(5,1) q2 q3 0 0

(6) q3 0 0 0

Table 3: The matrix of graded decomposition numbers with e = 2 and d = 6.
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(13) 1 0

(2,1) q 1
'----

(1 2
) 1 o I

(2) 0 1 I

Table 4: The matrices of graded decomposition numbers with e = 3 and d = 2,3.

1(14 ) 1 0 0 0

(2, 12
) 0 1 0 0

(22
) q 0 1 0

(3, 1) 0 0 0 1

(15) 1 0 0 0 0

(2,1 3 ) 0 1 0 0 0

(22 ,1) 0 q 1 0 0

(3,1 2) 0 0 0 1 0

(3,2) q 0 0 0 1

Table 5: The matrices of graded decomposition numbers with e = 3 and d = 4,5.

(1 6 ) 1 0 0 0 0 0 0

(2,1 4
) q 1 0 0 0 0 0

(22 ,1 2) 0 0 1 0 0 0 0

(23
) 0 q 0 1 0 0 0

(3,1 3
) 0 q 0 0 1 0 0

(3,2,1) q q2 0 q q 1 0

(4,2) 0 0 0 0 0 0 1

(32 ) q2 0 0 0 0 q 0

(4,1 2) 0 0 0 0 q2 q 0

(5,1) 0 0 0 q 0 q2 0

(6) 0 0 0 q2 0 0 0

Table 6: The matrix of graded decomposition numbers with e = 3 and d = 6.
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(12) 1 0

(2) 0 1

(1 3
) 1 0 0

(2,1) 0 1 0

(3) 0 0 1

Table 7: The matrices of graded decomposition numbers with e = 4 and d = 2,3.

oqooI (5) 0 0

I 11".>' [Q1J (2, 12
) [£2] (3, 1) I (15) 1 0 0 0 0 0

(1 4
) 1 0 0 0 (2,1 3

) 0 1 0 0 0 0

(2,1 2) q 1 0 0 (2 2 ,1) q 0 1 0 0 0

(22) 0 0 1 0 (3,1 2) 0 0 0 1 0 0

(3,1) 0 q 0 1 (3,2) 0 0 q 0 1 0

I
(4) 0 0 0 q

I

(4,1) 0 0 0 0 0 1
,-----

Table 8: The matrices of graded decomposition numbers with e = 4 and d = 4,5.

(16) 1 0 0 0 0 0 0 0 0

(2,1 4 ) 0 1 0 0 0 0 0 0 0

(22 ,1 2 ) 0 q 1 0 0 0 0 0 0

(23
) q 0 0 1 0 0 0 0 0

(3,1 3 ) 0 0 0 0 1 0 0 0 0

(3,2,1) 0 0 0 0 0 1 0 0 0

(32) 0 0 q 0 0 0 1 0 0

(4, 12) 0 0 0 0 0 0 0 1 0

(4,2) 0 0 0 q 0 0 0 0 1

Table 9: The matrix of graded decomposition numbers with e = 4 and d = 6.
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