
CROSSED PRODUCT C*-ALGEBRAS OF MINIMAL DYNAMICAL SYSTEMS

ON THE PRODUCT OF THE CANTOR SET

AND THE TORUS

by

WEI SUN

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2010



11

University of Oregon Graduate School

Confirmation of Approval and Acceptance of Dissertation prepared by:

Wei Sun

Title:

"Crossed Product C*-algebras of Minimal Dynamical Systems on the Product of the Cantor Set
and the Torus"

This dissertation has been accepted and approved in partial fulfillment of the requirements for
the Doctor of Philosophy degree in the Department of Mathematics by:

Huaxin Lin, Chairperson, Mathematics
Daniel Dugger, Member, Mathematics
Christopher Phillips, Member, Mathematics
Arkady Vaintrob, Member, Mathematics
Li-Shan Chou, Outside Member, Human Physiology

and Richard Linton, Vice President for Research and Graduate Studies/Dean of the Graduate
School for the University of Oregon.

June 14,2010

Original approval signatures are on file with the Graduate School and the University of Oregon
Libraries.



@2010, Wei Sun.

iii



iv
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Title: CROSSED PRODUCT C*-ALGEBRAS OF MINIMAL DYNAMICAL SYSTEMS ON

THE PRODUCT OF THE CANTOR SET AND THE TORUS

Approved: _
Dr. Huaxin Lin

This dissertation is a study of the relationship between minimal dynamical systems on

the product of the Cantor set (X) and torus (']['2) and their corresponding crossed product C*

algebras.

For the case when the cocyles are rotations, we studied the structure ofthe crossed product

C* -algebra A by looking at a large subalgebra Ax. It is proved that, as long as the cocyles are

rotations, the tracial rank of the crossed product C*-algebra is always no more than one, which

then indicates that it falls into the category of classifiable C*-algebras. In order to determine

whether the corresponding crossed product C*-algebras of two such minimal dynamical systems

are isomorphic or not, we just need to look at the Elliott invariants of these C* -algebras.

If a certain rigidity condition is satisfied, it is shown that the crossed product C* -algebra

has tracial rank zero. Under this assumption, it is proved that for two such dynamical systems, if

A and B are the corresponding crossed product C*-algebras, and we have an isomorphism between

Ki(A) and Ki(B) which maps K i(C(X x ']['2)) to K i(C(X x ,][,2)), then these two dynamical systems

are approximately K -conj ugate. The proof also indicates that C*-strongly flip conjugacy implies

approximate K-conjugacy in this case.

We also studied the case when the cocyles are Furstenberg transformations, and some

results on weakly approximate conjugacy and the K-theory of corresponding crossed product C*

algebras are obtained.
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CHAPTER I

INTRODUCTION AND NOTATION

1.1 INTRODUCTION

Let X be a compact metric space, and let a E Homeo(X) be a minimal homeomorphism of

X. We can construct the crossed product C*-algebra from the minimal dynamical system (X, a),

denoted by C*(Z, X, a).

One interesting question is how properties of the dynamical system (X, a) determine

properties of the crossed product C*-algebra, and how properties of the crossed product C*-algebras

shed some light on properties of the dynamical system (X, a).

For minimal Cantor dynamical systems, Ciodano, Putnam and Skau studied how the

relationship between two such dynamical systems and the relationship between the corresponding

crossed product C*-algebras interplay with each other. They found (in [CPS]) that for two minimal

Cantor dynamical systems, the corresponding crossed product C*-algebras are isomorphic if and

only if the minimal Cantor dynamical systems are strongly orbit equivalent.

Lin and Matui studied this problem when the base space is the product of the Cantor set

and the circle (see [LMl], [LM2]) , and they discovered that in the rigid cases (see Definition 3.1

of [11\111]), for two crossed product C*-algebras to be isomorphic, the dynamical systems must be

approximately K-conjugate (a "strengthened" version of weak approximate conjugacy, in the sense

that it is compatible with the K-data).

'l.,1e study minimal dynamical systems on the product of the Cantor set and the torus.

For the case that the cocycles take values in the rotation group, similar results are found for
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the relationship between C*-algebra isomorphisms and approximate K-conjugacy between two

dynamical systems, It is also shown that the tracial rank of the crossed product C*-algebra is no

more than one.

For the case that the cocycles are Furstenberg transformations, a necessary condition for

weak approximate conjugacy between two minimal dynamical systems (via conjugacy maps whose

cocycles are Furstenberg transformations) is given.

1.2 NOTATION

Let (X, a) be a minimal dynamical system, by a-invariant probability measure f.L, we

mean such a probability measure f.L on X satisfying f.L( D) = f.L( a(D)) for every f.L-measurable

subset D. Following the j\1arkov-Kakutani fixed point Theorem, it is shown that the set of

a-invariant probability measures is not empty (see Lemma 1.9.18 and Theorem 1.9.19 of [Lin2] for

details) .

Let 11 be a measure on X. For f E C(X), we use f.L(f) to denote Ix f(x) df.L.

For a minimal dynamical system (X, a) we use C*(Z, X, a) to denote C(X) Xa: Z, the

crossed product C*-algebra of the dynamical system (X, a).

In a topological space X, we say a subset D is clopen, if D is both closed and open.

In Chapters II, III, IV and V, unless otherwise specified, X denotes the Cantor set, ']['

denotes the circle, and ']['2 denotes the two-dimensional torus.

For a compact Hausdorff space Y, Homeo(Y) is used to denote the set of all the

homeomorphisms of Y.

As the Cantor set X is totally disconnected, we can write a homeomorphism of X X ']['2 as

a X t.p (the skew product form), with a E Homeo(X) and t.p: X --> Homeo(']['2) being continuous,

and
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For the case that the cocyeles take values in rotation groups, we can further express 0: x 'P

as (X x 11' x 11',0: X RI; x RI))' with ~,T): X -> 11' continuous, and

We use A to denote the corresponding crossed product C*-algebra. For x E X, the

subalgebra Ax is defined as below.

Definition 1.2.1. For a minimal dynamical system (X x 11' x 11', 0: X RI; x R7))' Ax is defined to be the

subalgebra of the crossed prod'uct C*-algebra generated by C(X x 11' x 11') and u· Co ((X\ {x}) x 'JI' x 'JI'),

with u being the implementing unitary in A satisfying u * f u = f 0 (0: X RI; X R,/) -1.

Remark: From the definition, if D is a elopen subset of the Cantor set X, and 1Dx1r2 is the

characteristic function of D x 11'2, then U1Dx1r2U* = 1Dx1r2 0 (0: X RI; x R7)) = 1",-l(D)X1r2.

Let {Pn : n E N} be as in the Bratteli-Vershik model of the minimal Cantor dynamical

system (X,o:) (see [HPS, Theorem 4.2]), and let Yn be the roof of Pn (denoted as R(Pn )). Then

{17,,} will be a decreasing sequence of elopen sets such that n~=1 Yn = {x}. Use An to denote the

subalgebra generated by C(X x 'JI' x 'JI') and u· CO((X\Yn ) x 11' x 11').

In a C*-algebra A, for a, bE A, a ~€ b just means Iia - bll ::; c. By a ~€1 b ~€2 e, we mean

Iia - bll ::; Cl and lib - ell::; c2· It is elear that a ~€1 b ~€2 eimplies a ~€1 +€2 e.

In a C*-algebra A, [a, b] (the commutator) is defined to be ab - ba.

For a C*-algebra A we use T(A) to denote the convex set of all the tradal states on A,

and Aff(T(A)) to denote all the affine linear functions from T(A) to R

In a C*-algebra A, for a E A+, we use Her(a) to denote the smallest hereditary subaglebra

that contains a.

For a C*-algebra A we use TR(A) to denote the tradal rank of A. The detailed definition

of tradal rank can be found in [Lin4, Definition 3.6.2]. We use RR(A) to denote the real rank of

A and tsr(A) to denote the stable rank of A. The detailed definition of real rank and stable rank

can be found in [Lin4, Definition 3.1.6] and [Lin4, Definition 3.1.1].
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Definition 1.2.2. Let A be a G*-algebm. Let p be a projection of A and let a E A+. We say that

p :::< a if p is Murmy-von Neumann equivalent to a projection q E Her(a).

Let A be a C*-algebra. We use U(A) to denote the group of all the unitary elements in A.

We use GU(A) to denote the norm closure of the group generated by the commutators of U(A).

In other words, GU(A) is the norm closure of the group generated by elements in {uvu*v*: u,v E

U(A)}. One can check that GU(A) is a normal subgroup of U(A) and U(A)jGU(A) is an abelian

group.

Definition 1.2.3. Let i.p : A - B be a G*-algebm homomorphism. We define

i.p~ : U(A)jGU(A) ----> U(B)jGU(B)

to be the map induced by i.p 'Which maps [u] E U(A)jGU(A) to [i.p(u)] E U(B)jGU(B).
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CHAPTER II

THE STRUCTURE OF THE SUBALGEBRA Ax

In this section, we study properties of a "large" subalgebra of A, namely Ax. The idea of

the construction of Ax was first given by Putnam, but the construction here is a bit different from

that in the sense that we are removing one fiber {x} x 11' x 11' instead of one point. In other words,

we define Ax to be the subalgebra generated by C (X x 11' x 11') and 'U • Co ((X\{x}) x 11' x 11'), with

u being the implementing unitary in A (as defined in Section 1.2).

ILl DIRECT LIMIT STRUCTURE OF Ax

The following lemma gives the basic structure of Ax .

Lemma 11.1.1. If (X x 11' x 11', a x R( x R'1) is minimal, then for any x E X there are k1 , k2 , ... E N
k n

and d",n EN for n E N such that Ax ~ U!aEBMds ,JC(1I'2)).
n 8=1

Proof. As CY x R( X R'l is minimal, it follows that (X, CY) is also minimal. For x E X, let P =

{X(n, v, k): v E V;" k = 1,2, ... , hn(v)} be as in the Bratteli-Vershik model ([HPS, Theorem 4.2])

for (X,o). Let R(P,.) be the roof set of Pn, defined by R(Pn) = UVEV
n

X(n, v, hn(v)). We can

assume that the roof sets satisfy

nR(Pn ) = {x}.
nEN

Let An be the subalgebra of the crossed product C*-algebra A such that An is generated

by C(X x 11' x 11') and u· Co((X\R(Pn)) x 11' x 11'), with u being the implementing unitary element

satisfying ufu* = f 0 (0: X R( x R'l) for all f E C(X x 1[' x 11'). Then it is clear that Ai C A2 C ....
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As we can approximate f E Co ((X\ {x}) x 1[ x 1[) with

j~ E Co((X\R(Pn)) x 1[ x 1[) = C((X\R(Pn)) x 1[ x 1[),

we have lim(An , qJn) = Ax with cPn: An ---7 A n + 1 being the canonical embedding.
---->

For C(X\R(Pn ) x 1[ x 1[), it is clear that we have

C((X\R(Pn )) x 1[ x 1[) ~ E9 E9 C (X(n, v, k) x 1(2) .
vEV" lSkSh,,(v)-l

Let ei',j = 1 X (n,v,'i) . u·i-
j

. Then eY,j . eY",j' = 0 if v -I Vi, Note that

V V-I . 'i-j k-s
ei,j . ek,s - X(n,v,i)' U . 1X(n,v,k) . u

- 1 1 i-j+k-s
- X(n,v.;)· X(n,v,k+i-j)' U

= Ok,j . ej',s·

In other words, {ey,)} :'S~ 1 is a system of matrix units.

As An is generated by

{e)',j 0 C (X(n, v, 0) 0 C(T2
)) : v E Yr" 1 s: 'i,j s: h(v)},

it follows that

An ~ E9 Mhn(v) (C(X(n, v, 1)) 0 C(1[2)).
VEV11

Let Bn = $vEVn Mhn(v)(C 0 C(1[2)). Then it is clear that Bn can be regarded as a

subalgebra of An'

As for the canonical embedding cPn,n+l : An ---7 A n + 1 , consider

a E An ~ E9 Mhn(v)(C(X(n, v, 1)) 0 C(1[2))
vEVn
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such that a = (J@g)'Ui- j E ei,j@C(X(n,v,1)@C(']['2)), with f E C(X(n,v,i)) ~ C(X(n,v,l))

and 9 E C(']['2).

Note that the Kakutani-Rokhlin partition of An+1 is finer than that of An. We can write

f= L fs,k withfs,kEC(X(n+l,vs,k)).
X(n+1,v8,k)CX(n,v,i)

It follows that

¢n,n+1(J @g) = L fs,k @g.
X (n+1,v8,k)CX(n.v,i)

Then we have

¢n.71+1(a) = ( L fa,k @g) . u
i
-

j

X (n+1.v8,k)CX(n,v,i)

L (Ja,k @ g) . u i- j ,
X (n+1,v8,k)CX(n,v,i)

with LX(n+1,v
s
,k)CX(n,v,i) (Ja,k @ g).ui- j being an element in A n+1. It is then clear that ¢n,n+1 (Bn ) C

Bn+1 if we regard Bn as a subalgebra of An and Bn+1 as a subalgebra of A n+1.

Just abuse notation and use ¢n,n+1 to denote the canonical embedding from Bn to Bn+1.

Then we have the following commutative diagram:

¢n,n+1 B ¢n+1,n+2
-----;..~ Bn -----;..~ n+1 ~ Bn+2 -----;..•...

In+' ljn+,

-----;... An ----*. A n+1----*. A n+2----*•...
¢n,n+1 ¢n+1,n+2

For every a E Ax = ~(A71' ¢n,n+1) and every E > 0, there exists an E An such that

Iia - anll < E/2 if we identity an with ¢n,oo(an ) E Ax. Without loss of generality, we can assume

that
L h,,(v)

an = L L L (Jk,v,i,j 12) gk,v,i.,j) . eY.J,
k=11JEVn i,j=1

with fk,1J,i,j E C(X(n,v,O)) and gk,1J.i,j E C(']['2).
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Let Ai = maXk,v,i,j {llgk,v,i,j II}. For all k, v, oi, j as above, we can find 0 > 0 such that for

;r, y EX, if dist(x, y) < 0, then

E

II!k,v,i,j(x) - !k,v,i,j(Y) II < 2. M· L ,111,,1, h
71

(v)2'

According to the Bratteli-Vershik model, nnEN R(Pn ) = {x}. We may further require

that for all n E 1"1, every block X(n,v,k) in Pn satisfies diam(X(n,v,k)) < l/n. Then we can

choose N E 1"1 such that diam(R(PN)) < O. Without loss of generality, we can assume that N 2: n.

In PN, for every X(N,v,k), choose WN,v,k E X(N,v,k). For k = 1, ... ,L, v E Vn,

i, j = 1, ... , hn (v), define

-----------h:,v,i,] = L fk,v,i,j(WN,v',k ' ) . l X(N,v',k' )'
X(N,v' ,k')CX(n,v,k)

-----------According to our choice of N, it is clear that Ilfk,v,i,j ~ fk.v,i,j II < 2.M.L'IJ'nl. h n(V)2'

For the a71 given above, define a;; E An by

As
~ E

Ilfk,v,i,j - fk,v,i,jll < 2. M· L ·lVnl· hn(v)2'

it follows that Ilan- anll < E/2.

-----------As fk.v,i,j is constant on X(N, v', k'), it follows that rPn,N(an ) E B N. It is clear that

IlrPn,N(an) - all ~ IlrPn,N(an ) - anll + Iia - anll

= Ilan- anll + Iia - an II

~E/2+E/2

=E.

Note that a E AI: and E > 0 are arbitrary. It follows that UnEN rPn,oo(Bn ) is dense in Ax. In other
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words, we have !.i!r;(Bn , ¢n,n+d ~ Ax· As Bn

A ~ lim ffik" M (C(T2)).x ---> \J7 s= Ids, n

o

Lemma 11.1.2. Let Ax be defined as above. Ifax RI; x R') is minimal, then Ax is simple.

Proof. This proof is essentially the same as that of Proposition 3.3 (5) in [LMl]. It works like this:

Note that X x TxT is compact and a x RI; x R') is minimal. It is clear that the positive

orbit (under a x R~ x R')) of (x, tIl t2) is dense in X x TxT.

The C*-algebra A corresponds to the groupoid C*-algebra associated with the equivalence

relation

and the C*-subalgebra Ax corresponds to the groupoid C*-algebra associated with the equivalence

relation

As the positive orbit of any (x, t l , t2) is dense in X x TxT, it follows that each equivalence

class of R x is dense in X x TxT. According to [Renault, Proposition 4.6], this is equivalent to

the simplicity of Ax .

o

11.2 K-THEORY OF Ax

In this section, we study the K-theory of Ax using its direct limit structure.
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Lemma 11.2.1. The group K O(C(']['2)) is order isomorphic to 7/} with the unit element identified

with (1,0) and the positive cone D being {(m,n): m > a} U {(a, a)}, and the group K 1(C(']['2)) is

isomorphic to 7/}.

Proof. By the Kiinneth Theorem, it follows that

and

For C(']['2), it is known that the order on K O(C(']['2)) is determined by the first copy of Z,

which corresponds to the rank of projections. It follows that K O(C(']['2))+ can be identified with

D.

o

Lemma 11.2.2. There is an isomorphism [: Ko(C(X x ']['2)) -----t C(X,Z2) which sends [1] to the

constant function with value (1, 0). Furthermore, [ maps K o(C(X x ']['2))+ onto C(X, D), with D

as defined in Lemma II.2.1.

Moreover, for a clopen set U of X and a projection T} E M k (C(']['2)) such that [T}] E

K O(C(']['2)) corresponds to (a, b) as in Lemma II. 2. 1, [([diag(1u, ... , lu) . T}D = (lu . a, lu . b).
"'-..--'

k

Proof. For D as in Lemma II.2.1, define

by

where T}m,n is a projection in Md=.n (C(']['2)) which is identified with (m, n) as in Lemma I1.2.1.
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If we can show that 'P is one-to-one, preserves addition, and maps the constant function

with value (1,0) to [lC(x X1I'2)J, then we can extend 'P to a group isomorphism from C(X, ;[;2) to

Ko(C(X X,][,2)).

It is easy to check that 'P((1, 0)) = [1C(xx1I'2)]. From the definition, it follows that 'P

preserves addition. We just need to show that 'P is one-to-one.

Injectivity of 'P:

If 'PU) = 0 for some j E C(X, D), then

L [(lr-,((m,n)), ... , lr-'((m,n))) . 7)m,n] = 0

(m,n)ED d v
rn,n

Ko(C(X X ']['2)) ~ EB Ko(C(f-l((m,n)) x ,][,2)),
(m,n)ED

we get that

[(1.r-'((m.n)),"" lr-'((m,n)))' 7)m,n] = 0 in Ko(CU-1((m, n)) x ']['2)) for all (m, n) E D.
.... J

V

dm,n

That is, there exists kEN such that

is Murray-von Neumann equivalent to diag(lcU -'((m,n))x1I'2), ... , 1CU-'((m,n))X1I'2)).
\, .I

v
k

Let s E Mdm . n +k(j-l ((m, n)) X']['2) be the partial isometry corresponding to the Murray-von

Neumann equivalence above. Choose x E j-l((m,n)). Then s(x) can be regarded as an element

in 1I1dmn +k(']['2) that gives a Murray-von Neumann equivalence between

7)m,n EB diag(l C (1I'2)), ... , 1c (1I'2)) and diag(l C (1I'2)), ... , lC(1I'2)).
" J \, Iv

k
v
k
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It then follows that Tlm,n = 0, which proves injectivity,

Surjectivity of cp:

For every projection p E A1oo (C(X X,][,2)), we can find a partition X = Ut~l Xi such that

IIp(x) -p(y)11 < 1 for all x,y E Xi. Choose Xi E Xi for i = 1, ... ,M, and identify Moo(C(X x ']['2))

with C(X, Moo (C(']['2))). Define pi E C(X, Moo (C(']['2))) by pi lx, = p(X.i)' It is clear that we can

regard pi Ix; as an element in M oo (C(']['2)).

Use (ai, bi ) to denote the corresponding element in K o(C(']['2)) as identified in Lemma

11.2.1 and let f = ~~~l Ix; . (ai, bi ). Then we can check that cpU) = [pi] in (Ko(C(X x ']['2)))+.

As [p] = [pi], we have proved surjectivity of cp.

As cp is unital, one-to-one and preserves addition, we can extend it to an ordered group

isomorphism cp: C(X,Z2) ------. Ko(C(X X,][,2)). Let [= cp-l, and we have finished the proof.

o

Lemma 11.2.3. There is an isomorphism

"Yn: An ------. EB Mh,,(v) (C(X (n, v, 1)) is) C(']['2)) ,
vEV"

such that for every clopen set U in X,

"Yn (1 Ux1r 2 ) = EB diag (lX(n,v,l)nU," ., l X (n,v,h(v))nU) .

vEVn

Proof. The proof is essentially the same as that of [Putnam, Lemma 3.1]. It can also be obtained

as a K-theory version of part of the proof of Lemma 11.1.1.

o
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Lemma 11.2.4. There is a gro'up isomorphism

¢: EB C(X(n,v,1),Z2) -----tC(X,Z2)/U-f oa- 1
: flY" =O}

vEVn

such that

¢ ((h, ... , fWnl)) = L [lX(n,v,l) . fv]
uEVn

for (h, .. ·, fW"I) E EB C (X(n, v, 1), Z2).
uEVn

Furthermore, if we define D to be

{(rn,n) E Z2: m > O} U{(O,O)},

and if we define the positive cone of EB C(X(n, v, 1), Z2) to be EB C(X(n, v, 1), D) and the

vEV" vEV"
positive cone ofC(X,Z2)/U-f o a- 1

; flY" =O} to beC(X,D)/U-foa- 1
: flY" =O}, then

both ¢ and ¢-l are order preserving.

Proof. For (h,.··,fw,,/) E EBVEV" C(X(n,v,1),Z2), define

Injectivity of ¢:

Suppose

(h, ... , fw"l) E EB C(X(n, v, 1), :£::2)
vEVn

and that ¢((h, ... , fW"I)) = O. That is, there exists H E C(X, &:;2) with H 1'1'" = 0 such that

W,,\
Lfv=H-Hoa-1

.

v=l

It follows that

(

h(V) ) (W"I) (h(V) )E1X(n,v,k) . ~ fv = E1X(n,v,k) . (H - H 0 a-I) .
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As H IY" = 0,

(
h(V)) (h(V) )
L 1X (n,v,k) ,(H 0 a-I) = L 1X (n,v,k) ,H

k=1 k=1

It then follows that

(
h(V)) (h(V))
L 1X (n,v,k) '(H ~ H 0 a-I) = L 1X (n,v,k) ,H

k=1 k=1
(

h(V) )
L 1X (n,v,k' H 0 a-I,
k=1

(
h(V) )

Use H v to denote L 1X (n,v,k)

k=1

h(v)

. H. It is clear that Hv is supported on UX(n, v, k).
k=1

Now we have fv = H v - H v 0 a-I. As fv is supported on X(n, v, 1), we get

on X(n, v, k) for 2 S; k S; h(v), which implies that for all x E X(n, v, 1),

As ah(v)-I(x) E Y", it follows that Hv(ah('u)-I(x)) = O. Now we can conclude that H v = O. It is

then clear that fv = o.

Applying the process to all v = 1, ... , h(v), we get H = O. It follows that fi = 0 for

'i = 1, ... , IVnl, which proves the injectivity of ¢'

Surjectivity of ¢:

For every g E C(X, Z2), we need to find

(iI,· .. , flVnl) E EB C (X(n, v, 1), Z2)
vEVn

such that

for some hE C(X, Z2) satisfying h IYn = O.
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Write gas
h(v)

g = 1 . g = L L 1X (n,v,k) . g.
vEV" k=1

For every k with 2 :S: k :S: h(v), consider (l X (n,v,k) . g) 0 a. It is easy to check that

(l X (n.v,k) . g) 0 a IY" = 0 and

1X (n,v,k) . g + ((l X (n,v,k) . g) 0 a - (l X (n,v,k) . g) 0 a 0 a-I)

is supported on X(n, v, k - 1).

By repeating this process, we get s E C(X,1:,2) such that 1X (n,v,k) . g + (s - so a) is

supported on 1X (n,v,I)'

Apply the process for all 1X (n,v,k) . g with v E Vn and 1 < k :S: h(v). We can find

H E C(X,1:,2) such that g + (H - H 0 a-I) is supported on a(R(Pn )) = EBvEv" X(n, v, 1).

According to the definition, if we set fv = 1X (n,v,l) . (g + (H - H 0 a-I )), then ¢ will map

Positivity of ¢:

As

¢ ((h, ... ,flY"I)) = L 1X (n,v,I)' fv,

vEV"

for

if the range of each fi is in the positive cone D, it is clear that LVEV" 1X (n,v,l) . fv E C(X, D).

Thus ¢ is order preserving.

Positivity of ¢-1:

For f E C(X, D), we will show that if there is

(h, .. ·, flY" I) E EB C (X(n, v, l),D)
vEVn
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such that

then iv E C(X(n, v, 1) for all 1 ~ v ~ IVnl.

In fact, such an element (iI, ... ,flVnl) can be constructed from f as in the proof of

surjec:tivity of c/J. The fact that f E C(X, D) then implies that for all v with 1 ~ v ~ IVnl, the

image fk is in D, whic:h finishes the proof.

D

Lemma 11.2.5. There is an order isomorphism

with the unit element and positive cone of

being [(lx, 0)] and

\/x EX, g(x) = (0,0) or g(x) = (a, b) with a > O}.

For a clown subset U of X and'rJ E Nh(C(1I'2)) such that ['rJ] E K O(C(1I'2)) corresponds to (a, b) as

in Lemma II. 2. 1, Pn ([diag(l u , ... , 1u) ''rJD is exactly [(lu' a, 1u· b)] with 1u denoting the continuous
'-v-'

k
function from X to Z that is 1 on U and 0 otherwise.

Proof. Consider the isomorphism
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as in Lemma II.2.3. It is clear that

(rn)*o: Ko(An) ------> K o (EB Mhn(v) (C(X(n, v, 1)) 129 C (']['2)))
vEVn

is an order isomorphism.

We know that

K o (EB Mhn(v)(C(X(n, V, 1)) 129 C(']['2))) ~ EB K o (Mh,,(v)(C(X(n, v, 1)) 129 C(']['2))) ,
vEV" vEVn

and use

to denote the order isomorphism.

There are natural order isomorphisms

By Lemma 11.2.2, we can find order isomorphisms

Sn,v: Ko(C(X(n, v, 1)) 129 C(']['2)) ------> C(X(n, v, 1), Z2)

such that each sn,v maps [l C(X(n,v,1))0C(']['2)] to the constant function with value (1,0).

Combining In,v and sn,v for all v, we get an order isomorphism

with the positive cone of EBVEVn C(X(n, v, 1), Z2) being EBvEVn C(X(n, v, 1), D) (D as defined in

Lemma II.2.1). Note that 'P is not unital.



According to Lemma II.2.4, there is an order isomorphism

'I/J: E9 C(X(n, v, 1), Z2) ----> C(X, Z2)/{j - f 0 a- 1
: f IYn = o}.

vEVn

Let

Then Pn is a group isomorphism from Ko(An ) to

C(X, Z2)/{j - f 0 a- 1
: f E C(X, Z2), f IYn = O}

because 'I/J, cp, hn and (In)*O are all group isomorphisms.

According to Lemma 11.2.3,

In(IA,,) = E9 diag(lx(n,v,l),"" lX(n,v,h(v)))'
vEV71

Thus

(/,1)*0([1A,,]) = L L [I X (n,v,kll·
vEVn lSkSh(v)

It is then clear that

Note that [l X (n,v,k)] = [lX(n,v,l)] in Ko(Mn(X(n, v, 1))). It follows that

cp (hn ((/n)*o([1A,,]))) = cp ( L [l X(n,v,k)],"" L [l X(n,V,h(k))])
lSkSh(l) lSkSh(lVnl)

= L h(v) . [l X (n,v,l)] .

18



19

According to the definition of ¢ as stated in Lemma 11.2.4, we get

1/; (ip(hn (bn)*o([IA,,])))) = 1/; (L h(v) . [I X (n,v,l)]) = LlfvJ
vEV" vEV"

with fv E C(X, Z2) satisfying fv IX(n,v,l) = h(v) and fv IX\X(n,v,l) = o.

Let

H= L
vEV" l:'Ok:'Oh(v)-1

Then it is clear that H IY" = 0 and

lX(n,v,k) . (h(v) - k).

H v 0 a-I = L L lX(n,v,k)' (h(v) - k + 1).
vEV" 2:'Ok:'Oh(v)

It is easy to check that

H - H 0 a-I = L. [( L l X (n,v,k)' (-1)) + l X (n,v,l) . (h(v) - 1)] .
vEV" 2:'Ok:'Oh(v)

In C(X, Z2), it is easy to check that (I:vEV" fv) -Ix = H - H 0 a-I. In other words, we

have

1/;(ip(hn(bnLo([IA,,])))) = L [fvJ = [Ix] ,
vEV"

which implies that Pn is unital.

To show that Pn is order preserving, we just need to show that 1/;, ip, hn and bn)*o are all

order preserving.

It is clear that hn and (,'n)*o are order preserving. According to Lemma 11.2.4, 1/; is also

order preserving. We just need to show that ip is order preserving.

Note that ip = EBvEv" (sn,v oln,v)' We just need to show that each sn,v oln,v is order

preserving. In fact, In,v is order preserving and sn,v is an order isomorphism. It follows that

Sn,v oln,v is order preserving. Thus ip is order preserving.

Now we will show that Pn is order isomorphism. In fact, we just need to show that for
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every (a, b) E {(m, n): m > 0, n E Z} U {O,O} and every clopen subset U of X, if we regard

(lu' a, 1u' b) as a function in C(X,Z2) defined by

and we define

{

(a, b)
(lu . a, 1u . b)(x) =

(0,0)

if x E U

if x t/:- U

to be the natural quotient map, then 7f((lu . a, 1u . b)) is in the image of Pn(Ko(An )+).

For a clopen subset U of X and 7} E Ah(C('['2)) such that [7}] E K O('['2) corresponds to

the (a.b) above (see Lemma II.2.1), we have

Pn([diag(lu, ... , 1u) . 7}]) = (¢ 0 'P 0 hn 0 h'n).o)([diag(lu, ... , 1u) . 7}]).
'-..,,-" '--v----"

k k

According to Lemma II.2.3,

(hn 0 (,'nLo)([diag(lu, ... , 1u) . 7}])
'--v----"

k

= (hn 0 h'n).o) ( L [diag(,lx(n,v.k)nu, ... , 1X(n,v.k)nu) . 7}])
vEVn ,l::;k::;h(v) Ie

= ( L [lX(n,v,k)nU . 7}]) .
l::;k::;h(v) vEV"

Then

('P 0 hn 0 h'n).o)( [diag(lu, ... , 1u) . 7}])
'-v--'

k

= ( L (la-(k-l)(X(n,v,k)nU)' a, 1Q-(k-l)(X(n,v,k)nU) . b))
l::;k::;h(v) vEV

n

which is an element of EBVEv
n

C(X(n, v, 1), Z2).
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According to the definition of ¢ as in Lemma II.2.4, it follows that

('!/J 0 rp 0 hn 0 (,n)*o)([diag(1u, ... , 1u)' 7)]) = (1/J)((rp 0 hn 0 (,n)*o)([diag(lu, ... , 1u)' 7)]))
'-,.---' '-,.---'

k k

= L 1X(n,v,1) . fv
vEVn

with

fv = ( L 1Q -(;'-I)(X(n,v,k)nU)' a, L 1Q -(k-l)(X(n,v,k)nU)' b) .
I "0: k"O:h(v) 1"O:k"O:h(v)

Note that for all k with 1 :::; k :::; h(v) - 1, we have 1X (n,v,k) IY" = O. Also, we can check

that

1X(n,v,k)nu - 1X (n,v,k)nU 0 a- 1
= 1X (n,v,k)nU - 1Q (X(n,v,k)nu)·

It follows that

[l X (n,v.k)nu] = [lo:(X(n.v,k)nU)] in C(X, Z)/ {J - f 0 a-I: f E C(X, Z), f IYn = O}

for k = 1,. .. , h(v). We then get that in C(X, Z)/ {J ~ f 0 a-I: f E C(X, Z), flY" = O},

= [ L 1X (n,v'k)nu].
I "0: k"O: h(v)

It then follows that

[ L. (l X (n,v,k)nu' a, 1X (n,v,k)nu . b)]
vEVn

I "O:k"O:h(v)

= ([luJ 'a, [lu] . b)

in C(X, Z2)/{1 - f 0 a-I: f E C(X, Z2), flY" = O}.

We have proved that Pn([diag(lu,.,., 1u ) '7)]) = 7T((lu' a, 1u' b)), It then follows that Pn
'-,.---'

k
is an order isomorphism, which finishes the proof.

o
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Corollary 11.2.6. Let p be a pmjection in Moo (An)' Then there exists pi E Moo(C(X X ']['2)) C

Moo(An ) such that [p] = [pi] in Ko(An ).

Pmof. According to Lemma 11.2.5, we have an isomorphism

Let P." ([p]) = [9] for some 9 E C(X, Z2). Without loss of generality, we can assume that there is a

partition of X as X = U~l Xi such that this partition is finer than Pn and 9 lx, is constant for

i=l,oo.,N.

As [p] is in (Ko(An ))+ and Pn is an order isomorphism, it follows that [g] is in the positive

cone (defined in the statement of Lemma 11.2.4). For as 9 above with Pn([P]) = [g], we can assume

that on any given Xi, 9 Ix; is either (0,0) or (ai,bi ) E Z2 with ai > O.

According to Lemma 11.2.1, there exist projections 7]i E M d(i)(C(']['2)) such that [7]i] in

K O(C(']['2)) can be identified with (ai, bi ).

Let

pi = diag (diag(~;.:.::;).7]1, ... ,diag(~).7]N) .
d(l) d(N)

Then it is clear that pi E Moo(C(X X,][,2)).

According to Lemma II.2.5, Pn([P']) = [g], so that Pn([P']) = Pn([P]). As Pn is an

isomorphism (by Lemma II.2.5 again), it follows that [p] = [pi] in Ko(An ).

o

Lemma 11.2.7. Let In: C (X X ']['2) ------> An be the canonical embedding, and let Land Pn be as in

Lemma II.2.2 and Lemma II. 2. 5. Let (jn)*O: Ko(C(X x ']['2)) ~ Ko(An ) be the induced map on

K o and let
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be the canonical quotient map. Then the follow diagram commutes:

Ko(C(X x ']['2)) -----------------*. C(X, Z2)

(jn).ol 1~n
Ko(An) Pn • C(X, Z2)/{f - f Q ex-I: f E C(X, Z2), f !Yn = O}

Proof. As Ko(C(X x Z2)) is generated by its positive cone (Ko(C(X x Z2)))+, we just need to

show that 1rn Q t. = Pn Q (jn)*O on (Ko(C(X x Z2)))+.

For every projection p E Moo(C(X X ,][,2)), according to the proof of surjeetivity of 'P

in Lemma II.2.2, there exist a partition X = U~~1 Xi and projections T/i E Mdi (C(']['2)) for i =

I, ... , M such that
M

[P] = I)(1x;, ... ,Ix,)' T/i]'
i=1 "-v--"

d;

According to Lemma II.2.I, T/i can be identified with (ai, bi ) E D. By Lemma 11.2.2, we

get /.([p]) = Lt~1 (Ix; . ai, lx, . bi ).

By Lemma II.2.5,

M

= 2.)(1 x; ·ai,Ix, ·ai)].
i=1

It is then clear that (1rn Q /.)([P]) = (Pn Q (jn)*O)([p]). Since p is arbitrary, we have finished the

proof.

D

Corollary II.2.8. Letp,q be projections in Moo (C(X X']['2)) C Moo (An) such that /.([P])-/.([q]) =

h - h Q ex-I for some h E C(X, Z2) satisfying h IYn = 0, with /. as in Lemma II. 2.2. Then

Proof. This follows directly from Lemma 11.2.7.



Lemma 11.2.9. For Ax as defined in the beginning a] this chapter,

le(Ax ) ~ C(X, 'l})/ {j - ] 0 a-I: ] E C(X';;Z,2)},

and

Ko(Ax )+ ~ C(X, D)/{j -] 0 a-I: ] E C(X, Z2)},

with D defined to be {(a, b) E Z2: a > 0, bE Z} U {(O, O)}.

Proof. From Lemma 11.2.5, we know that

satisfies (jn.n+l).i([]]) = []] for all ] E C(X, Z2). We can conclude that

K;(A x ) ~ C(X, Z2)/{j - ] 0 a-I: ] E C(X, Z2) and] IYn = 0 for some n EN}.

As n~=1 1";, = {x}, it follows that

{j E C(X, Z2): ] IY" = 0 for some n E N} = {j E C(X, Z2): ](x) = O}.

Then we have

24
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For every 9 E C(X, ;£2), define go = 9 - g(x). It is clear that

9 E {f E C(X, ;£2) and f(x) = O} and g(x) = o.

Note that go - go 00'-1 = 9 - goa-I. It follows that

Let jn.oo: An ----> Ax be the embedding of An into Ax. Then

According to Lemma II.2.5,

Similarly, using the fact that

{f E C(X, ;£2): f IY
n

= 0 for some n E N} = {f E C(X, ;£2): f(x) = O},

we can conclude that

Ko(Ax )+ ~ C(X, D)/{f - f 0 0'-1: f E C(X, ;£2) and f(x) = O}.

As

{f - f 0 0'-1 : f E C (X, ;£2) and f (x) = O} = {f - f 0 0'-1 : f E C (X, ;£2)},

we get

25

o
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Corollary 11.2.10. For Ax as in Definition 1.2.1, Ki(Ax ) is torsion free for i = 0,1.

Pmoj. According to Lemma II.2.9, we just need to show that C(X, 71})/{f - ]oa- 1 : ] E C(X, Z2)}

is torsion free.

A purely algebraic proof is given like this:

Suppose we have g E C(X, Z2) and n E Z \ {O} such that

If we can show that [g] = 0, then we are done. In other words, we need to find] E C(X, Z2) such

that g = ] - ] 0 a-I.

As [ng] = 0, there exists F E C(X, Z2) such that ng = F - F 0 a-I. If F(x) E nZ2 for all

x, just divide both sides by n. Then we get g = (f) - (~) 0 a-I with ~ E C(X, Z2).

Fix :ro E X, and define F = F - F(xo). It is clear that F(xo) = O. As F - F 0 a-I = ng,

we can easily check that F- F 0 a-I = ng. It then follows that

F(a(xo)) = F(xo) + ng(a(xo)) = 0 + ng(a(xo)) E nZ2
,

So for every x E Orbitz(xo), we get F(x) E nZ2
. Note that F is continuous on X and Orbitz(xo)

is dense in X. It follows directly that F(x) E nZ2 for all x E X, thus finishing the proof.

o

Corollary 11.2.11. For Ax as in Definition 1.2.1, TR(Ax ) ~ 1.

Pmoj. From Lemma II.1.I, we know that Ax is a AH algebra with no dimension growth. By

Lemma II.1.2, Ax is simple. According to Lemma II.2.9, Ki(Ax ) is torsion free.

As Ax is a simple AH algebra with no dimension growth, it follows that TR(Ax ) ~ 1. 0
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CHAPTER III

THE TRACIAL RANK OF THE CROSSED PRODUCT C*-ALGEBRA A

111.1 THE GENERAL CASE

'vVe start by showing that for the natural embedding j: Ax --> A, the induced

homomorphisms (j*)i: Ki(Ax) --> Ki(A) are injective for i = 0,1.

Lemma 111.1.1. Let A be C*(Z, X x TxT, a x R~ x R1)) and let Ax be as in Definition 1.2.1.

Let j: Ax --> A be the canonical embedding. Then j*o is an injective order homomorphism from

Proof. It is clear that j*o will induce an order homomorphism from Ko(Ax) to Ko(A) and j*o

maps [IA,] to [IA].

To show that j*o is injective, we need to show that whenever p, q E Moo(Ax) are projections

such that j*o([p]) = j*o([q]) in Ko(A), we have [p] = [q] in Ko(Ax). For projections p, q E Moo(Ax),

we can find n E N and projections e, f E Moo(An ) such that [e] = [p] and [f] = [q] in Ko(Ax).

According to Corollary I1.2.6, we can find e', l' E Moo (C(X X T 2
)) such that [ell = [e] and [1'] = [f]

in Ko(An ). We need to show that if j*o([p]) = j*o([q]) in Ko(A), then [P] = [q] in Ko(Ax). In fact,

if j*o([p] - [q]) = 0, we have j*o([p]) = j*o([q]), which implies that j*o([e']) = j*o([1']) in Ko(A).

The Pimsner-Voiculescu six-term exact sequence in our situation reads as follows:
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As j*o([p~]) = j*o([q~]), by the exact sequence above, [p;,] - [q~] is in the image of (id*o 

a_a). That is, there exists x in Ko(C(X x ']['2)) such that [p~] - [q~] = x - a_o(x). Apply i as

defined in Lemma II.2.2 on both sides. We get

Note that i(a*O(x)) = i(X) 0 a. We get i([P;,]) - i([q;,]) = (-i(X) 0 a) - (-i(X) 0 a) 0 a-I. We can

choose N E N such that for all k > N, (- i(x) 0 a) restricted to Yk will be a constant function, say

c E 'Z}. It is clear that

i([p~J) - i([q~J) = (-r(x) 0 a - c) - (-i(X) 0 a - c) 0 a-I.

Choose mEN such that m > max(n, N). Then (-i(X) 0 a - c) IY", = O. According to

Corollary II.2.8, we have Um)*O([P;,J) = Um)*O([q;,]) with jm as in Lemma II.2.7.

liVe have shown that [p;,] = [q~] in Ko(Am ). Note that [p~] = [Pn] and [q~] = [qn] in

Ko(An) and m > n. It follows that [p~] = [Pn] and [q~] = [qn] in Ko(Am ). We then have that

[Pn] = [qn] in Ko(Am), so that [Pn] = [qn] in Ko(Ax).

Note that [Pn] = [p] and [qn] = [q] in Ko(Ax). It then follows that [p] = [q] in Ko(Ax),

which finishes the proof.

o

Lemma 111.1.2. Let A be C*(Z,X x '][' x '][',a x RE x R7]) and let Ax be as in Definition 1.2.1.

Let j: Ax -> A be the canonical embedding. Then j*1 is an injective homomorphism from KI(Ax)

to KI(A).
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Pmof. The proof is similar to the proof of Lemma IlL I. I.

For any two unitaries x,y E Ax such that j.l([X]) = j.l([Y]) in K1(A), we need to show

that [x] = [y]. For x, y as above, we can find n E N and x', y' E Moo(An) such that [x] = [x'] and

From Lemma II.2.3, we get the structure of An, which then implies the fact that

Similar to the analysis of the Pimsner-Voiculescu six-term exact sequence as in the proof of Lemma

III. I. I. we get [x'] = [y'J in K1(Am) for m large enough. It then follows that [x'] = [y'] in K1(Ax),

which implies that [x] = [y] in K1(Ax).

o

The following result is a known fact, and it is used later to show approximate unitary

equivalence.

Lemma 111.1.3. Let A be an infinite dimensional simple unital AF algebra and let GU(A) be as

in Section 1.2. Then U(A) = GU(A).

Praof. For every unitary u E A and every E > 0, we will show that dist(u, GU(A)) < E.

As A is unital and infinite dimensional, we can assume that A ~ lim An with each An
----->

being a finite dimensional C*-algebra and each map jn,n+l: An '----> An+1 being unital. \Vrite

Bn

An ~ EBMdn;k(C)
k=l

with dn;I ::; dn ;2 ::; ... ::; dn;Sn'

Let d~ = min{dn;Sl' ... ,dn;s,J. As A is simple, we have limn->oo d~ = 00.

For u and E as given above, we can choose n large enough such that d~ > 2
0
7f and there exists

v E U(An) satisfying Ilu - vii < E/2. Let 71"n;k be the canonical projection from An to Mdn;k(C)'
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It is known that for any w E U(A), we have w E CU(An ) if and only if det(7rn ;dw)) 1 for

k = 1, ... , Sn' vVithout loss of generality, we can assume that

Choose Lk such that -7r :::; Lk < 7r and det(7rn ;dun )) = e'iL k . For k = 1, ... , Sn, define

Vi = diag(Ak l' e-'iL/dn;k ... Ak d . e-'iL/dn;k).
k 1 " 'n;k

Let Vi = diag( v~, ... , v~n)' It is then clear that Ilun ~ u~ II :::; 7r / d~. It is easy to check that

det(7rn ;sk (Vi)) = 1 for all k = 1, ... , Sn, which then implies that Vi E CU(An) C CU(A).

Note that d;l > 2c1r. We have

dist(u, CU(A)) :::; Ilu - viii

:::; Ilu - vii + IIv - viii

:::;c/2+c/2

=c.

As c can be chosen to be arbitrarily small, it follows that u E CU(A).

D

Vve will need the fact that a cut-down of the crossed product C*-algebra by a projection

in C(X) is similar to the original crossed product C*-algebra, and can be regarded as a crossed

product C*-algebra of the induced action. Some definitions and facts will be given here.

Let (X x 11' x 11', a x RE x Rry) be a minimal topological dynamical system as defined in

Section 1.2. Let D be a clopen subset of X, and let xED. For simplicity, we use cp to denote

Define 0: D x 11' x 11' ---> D x 11' x 11' by 0((Y,t1 ,t2)) = cp!(x)((y,tl,t2)), where f(x) is the
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first return time function defined by

f(x) = rnin{n E N: n> O,cpn(x) E U}.

As cp is minimal on X x 11' x 11', for every x E X, the orbit of x under cp is dense in X. It

then follows that the intersection of this orbit with D is dense in D, which implies that 0 is also

minimal on D x 11' x 11'. As the composition of rotations on the circle is still a rotation on the circle,

we can find maps ,[, Tj: D ~ 11' such that 0 = a x Rf x Ri) with a(x) = af(x)(x) for f as defined

above.

vVe claim that ~ and Tj are both continuous functions. In fact, as D is clopen, we have

that f is continuous, which then implies that ,[ and Tj are continuous.

As (D x 11' x 11',0) is a minimal dynamical system, the corresponding crossed product

C*-algebra C* (Z, D x 11' x 11',45) is simple. Use:U to denote the implementing unitary in C* (Z, D x

11' x 11', 0) .

Define Ax to be the subalgebra of C*(Z,D x 11' x 11',0) generated by C(D x 11' x 11') and

11' Co((D\{.T}) x 11' x 11').

The lemma below shows that the cut down of the original crossed product C*-algebra is

isomorphic to the crossed product C*-algebra of the induced homeomorphism.

Lemma 111.1.4. Let cp and 0 be defined as above. There is a C*-algebm isomorphism from

C*(Z, D x 11' x 11',0) to 1Dx1!'x1!' . A· 1Dx1!'x1!"

Proof. Let f: D ~ N be the first return time function. As D is clopen, f is continuous. As X

is compact and D is closed in X, D is also compact. Continuity of f then implies that f(D) is a

compact set, that is, a finite subset of N. Write f(D) = {k 1 , .•. , kN} with N, k1 , ... , kN E Nand

set Di = f-l(k i ).
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In lDx'il'x1r' A· lDx'il'x'il', let w = I:~llD.iX'il'X'il'· uk,. Then we have

N

~ 1 k -k 1L...J D, x'il'x'il' . U ' . u j D
J

x'il'x'il'

i,j=l

N

= L lUi x'iI'x'iI' . uk;-kj . lDj x'!fx'ir

'.,j=l

N

= L lDix'!fx'iI'·(1Djx'il'x'iI'o(axR~ xR1))k;-kj ).uk;-kj .

i,j=l

Vife need the following claim to get that ww* = lD.

Claim: For D" k i as above,

i -I j

Proof of claim:

If kJ > ki , then akj-k;(Dj ) eX \ D. Thus D i n akj-ki(Dj) = 0.

If k j < k i , we claim that D i n akj-k;(Dj ) = 0. If not, choose s E D i n akj-ki(DJ)'

We can assume s = akj-ki(y) for some y E D j . It is then clear that aki-kj(s) = y E D j C D,

contradicting the fact that the first return time of s (in D;) is k i .

If k j = k i , it is clear that lD i ' (lD
j

oak;-kj ) = lUi'

This proves the claim.



Using the claim, we get

N

WW* L ID,x1I'x'IT" (lD j X1I'X'][' 0 (a x R( x Rry)k,-kj ) • Uk,-k]

i,j=l

N

= L 1D., X']['x 'IT'

i=l

= IDX1I'X,][,'

Now we calculate w*w. It is clear that

w*w = (t ID i x']['x1I' . uk,) * (t ID i x'IT'X1I' • uk,)
1=1 1=1

(t u-kj . IDjX'IT'X1I') . (t ID i xTx1I" uk,)
)= 1 1=1

N"'"' -kj 11k,L u . D j x1I'x'][" D,x'IT'x1I" U .

i,j=l

N

= L u- k .,. . ID;,X1I'x'IT" uk,
i=l

N

= L IDi.x1I'x1I' 0 (a x R( x Rry)-k,

i=l

N

= L l(axR, xR,,)k·'(D.,xTx1I')
i=l

N

= L l<iO(D, x1I'x1I')

i=l

= IDx'IT'xl'

So far, we have shown that w is a unitary in IDxTx1I' . A· IDx1I'x'll"

Define a map

--y: C* (Z, D x 11' x 11',0) ----; IDx1I'x'JI' . A· IDx1I'x'ii'

by

--y(1) = f for all f E C(D x 11' x 11') and --y(u) = w.

33
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We will check that, is well-defined and gives the desired isomorphism between C* (&5, D x

'II' x 'II', ip) and IDx1fx'][' . A· IDx']['x1f. In fact, for all I E C(D x 'II' x 'II'), we have

,(1£*11£) = ,(f 0 ip-I)

= 10 ip-I.

,!\Te also have

,(1£*11£) = ,(1£*) . ,(f) . ,(1£)

= w*· I· w

(t IDj . u
kj

) * . (I' t IU;) . (t ID1 • u
kl

)

J=I >=1 1=1

N

'" k I I I I k,~ u- J. D j ' • D.;' D,' U .

'i,j,k=1

N

= L u- k , . (f. ID.;) . uk;

i=1

I ~-I
= Olp ,

which then implies that, is really a homomorphism.

To show that, is surjective, we will show that for every g E C(X x 'II' x 'II') and n E N,

IDxTx1f' (gun) ·lDx']['x'][' is in the image of ,. Note that

,!\Tithout loss of generality, we assume that

Note that there is s with I ::; s ::; N such that Dna-n(D) = D s , n = ks and D s is exactly I- 1 (n).
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It follows that

It is clear that we can identify 9 . ID
n

x'TI'x'lI' with a function in C(D x 1I' x 1I'). Note that w =
N k

I:i=l ID,x1rx'TI' . U'. vVe have

I ((g. ID"x'TI'X1I')' (u)) = I ((g. ID"x1l'x'lI'))' I(U)

= (g .1DsX'TI'x'lI') . (t ID,x'TI'x'Jl" Uk'i')
"=1

1 ks= g. DB x'lI'x'lI' . U

Then we have proved that I is surjective. As C* (Z, D x 1I' x 1I', cp) is a simple C*-algebra, it follows

that I is a C*-algebra isomorphism.

D

The idea of topological full group of the Cantor set is needed in the next lemma, and a

definition is given below.

Definition 111.1.5. Let X be the Cantor set and let a be a minimal homeomorphism of X. We

say that (3 E Homeo(X) is in the full gmup of a if (3 preserves the orbit of a. That is, for any

x E X. (3( {an(X)}nEZ) = {an(X)}nEZ' In this case, there exists a unique function n: X ----7 Z such

that (3(x) = an(xl(x) for all x E X.

We say that (3 E Homeo(X) is in the topological full gmup of a if the function n above is

continuous.

We use [aJ to denote the full gmup of a, and use [[aJ] to denote the topological full gmup
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of Q.

Lemma 111.1.6. Let X be the Cantor set and let a be a minimal homeomorphism of X. Let Y

and U be two clopen subsets of X such that U c Y. If there exists (3 E [raJ] such that (3(U) c Y and

un (3(U) = 0, then there exists"'t E [raj] such that "'t(Y) = Y, "'t Iu = (3lu and"'t jx\Y = id Ix\Y.

Proof. As (3 E [[a]]' there exists a continuous function 71.1: X ----> Z such that (3(x) = a"dx )(x) for

all x E X. Let U j = Un n11(j) for j E Z. As the sets n 1
1(j) are mutually disjoint for j E Z, so

are the sets Uj . Now we have (3(U) = U~-CXl aj(Dj ).

Define l' E Homeo(X) by "'t(x) = a"2 (X)(x), with

!
71.1 (x) xEU

71.2 (x) = - J x E a.J (U j )

o x 'I. U and x 'I. (3(U)

As U n8(U) = 0, we get Un aj(Uj ) = 0 for all j E Z. Thus 71.2 is a well-defined function.

Then we can check that "'t Iu = (3lu as 71.1 Iu = n2lu. It is also obvious that "'t((3(U)) = U and

"'t 1Y\(uuf:J(U)) = id F \(uu)3(U))' It follows that "'t(Y) = Y. As n2(x) = 0 when x 'I. Y, we get

~,lx\Y = id Ix\y.

o

Lemma 111.1.7. Let X be the Cantor set. Let a be a minimal homeomorphism of X, and let

x E X. Let A be the crossed product C*-algebm of the dynamical system (X, a). Use Ax to denote

the subalgebm genemted by C (X) and u . Co (X \ {x} ). Let D be a clopen subset of X and let 71. E N

be such that x 'I. U~:~ Q.k(D). In Ax, the element s = u· l",n-l (D)··· u· l",(D) . u· 1D is a partial

isometry such that s* s = 1D and ss* = l"'''(D)'

Proof. 'vVe just need to check ss* = l",n(D), s*s = 1D , and s E Ax.
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In fact,

and

= lD . u* . la(D) . u*·· .lan-I(D) . U* . u· lan-I (D)·.· u· la(D) . u· lD

As X t/:- U~:6 aA'(D), it follows that u· lakeD) E Ax for k = 0, ... , n - 1. Thus s, s* E Ax.

D

Remark: It is easy to check that s = ,un. lD and s* = (un. lD)* = lD . u-n .

Lemma 111.1.8. Let X be the Cantor set and let a be a minimal homeomorphism of X. Let 'u

be the implementing unitary of the crossed product C*-algebm C*(Z, X, a). For, E [raj], there

exist mutually disjoint clopen sets Xl, ... , X N and nl, ... , nN EN such that X = U;:l Xi and

,(x) = an, (x) for x E Xi. Furthermore, w = 2..= Ix; . 'uni is a unitary element in C*(Z, X, a)
iEN

satisfying w* fw = f 0,-1 for all f E C(X).

Proof. As, E [[a]], there exists a continuous function n: X -+ Z such that ,(x) = an(x) (x) for all

x E X. As X is compact and n is continuous, the range n(X) must be finite.

Define

w = 2..= lyk ' 'uk

kEn(X)

where Yk = n-l(k). As n(X) is finite, we have finitely many sets Yk. As, is a homeomorphism,
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We will check that ww* = 1 and w*w = 1.

Note that

= '" 1y . uk. u- j ·ly
~ k j

k.jEZ

= L 1Yk . (ly] 0 c/- j ) . uk - j

k ,jEZ

'" 1 1 k-j= ~ Yk' ",j-k(yj )' u .

kjEIl

= 1.

As C*(Z, X, 0') has stable rank one, it is finite. It then follows that w*w = 1. So far, we have

shown that w is a unitary element in C*(Z, X, a).

To show that w* fw = f 0 ,,-1, we just need to show that for each i and for every clopen

set DeY" we have w*l D w = 1D 0,,-1. As C(X) is generated by

{lD: D is a clopen set of Y, for some i E Z},

that will imply w* fw = f 0 ,,-1 for all f E C(X).
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For a clopen set D c Yi, it is clear that

= 1D oa- i

which finishes the proof.

D

Some facts about Cantor dynamical systems that will be needed are given below.

Lemma 111.1.9. Let (X,a) be a minimal Cantor dynamical system and let x E X. Let U and V

be two clopen subsets of X. Let A be the crossed product C*-algebra of (X, a) and let Ax be the

subalgebra generated by C(X) and u . Co(X\ {x}), with u being the implementing unitary element

in A satisfying ufu* = f 0 a-I for all f E C(X). If there exists an integer n ~ 1 such that

an(U) = V and x ~ U~:~ ak(U), then there exists w E Ax such that w ·lu· w* = Iv.

Proof. As x ~ U~:~ a k(U), we can find a Kakutani-Rokhlin partition P of X with respect to a

such that the roof set R(P) is a clopen set containing x and R(P) n (U~:~ ak(U)) = 0.

Write

P = U X(s,k)
l<s<N

l:'Ok:'O-h(s)

with a(X(s, k)) = X(s, k + 1) for all k = 1, ... , h(s) - 1 and a(R(P)) c U X(s,l).
l:'Os:'ON

Use Ap to denote the subalgebra generated by C(X) and u· Co(X\R(P)). Then

N

Ap ~ EB Mh(s)(C(X(s, 1))).
s=1
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In other words, there exists a C*-algebra isomorphism

N

cp: Ap ------> EBMh(s)(C(X(s, 1)))
s=l

satisfying

cp(l X (s,k)) = diag(O, ... ,0,1,0, ... ) E Mh(s) (C(X, 1))

with the k-th diagonal element being 1X (s,k)'

It is clear that 1u = Ls.k 1UnX (s,k) and Iv = Ls,k 1VnX (s,k)' Define Us to be

Uk (U n X(s, k)) and Vs to be Uk (V n X(s, k)). It is clear that 1u = L s Ius and Iv = L s 1vs '

Recall the isomorphism cp above. By abuse of notation, we can regard 1Us and 1Vs as two diagonal

matrices in Mh(s)(C(Xs,d).

If we can find unitary elements W s E A1h(s)(C(Xs,d) such that W s . Ius' w; = 1vs ' by

setting w = W1 + ... + w s, it is then clear that w is unitary element in EB~=l Mh(s)(C(X(s, 1)))

such that w . 1u . w* = 1v, which is equivalent to the existence of a unitary in Ap conjugating 1u

to Iv. As x E R(P), we can regard A p as a subalgebra of Ax . Then the unitary w in Ap is also

a unitary in Ax.

Let W s be a unitary element in Mh(s) (C(Xs,d) satisfying

for 'i = 1, ... ,h(s) -1 and

with (Ei,j) being the standard system of matrix units. It follows that W s ' Ius' w; = IVa' which

finishes the proof.

D

Lemma IILl.IO. Let (X, a) be a minimal CantoT dynamical system and let U, V be two clopen

s'ubsets of X satisfying an(U) = V fOT some n E N. Then theTe exists a pa-rtition of U, say
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U = U:':l Ui with each Ui clopen s'uch that for all k = 1, ... ,nand i,j = 1, ... ,m with i -I j, we

have ak(Ui ) n ak(Uj ) = 0.

Proof. We just need to find a partition of U into U = U:':l Ui such that for every given i with

1 s: is: m, the elopen sets a1(Ui ), ... ,an(Ui ) are mutually disjoint.

For every y E U, as a is a minimal homeomorphism, we can find a elopen set Dy C U

such that a 1 (D y ), ... , an (Dy ) are mutually disjoint. As U is compact, there exists a finite subset

of U, say {Y1, ... ,YN}, such that U~=l Dys = U.

As the intersection of two elopen sets is still elopen, without loss of generality, we may

assume that the sets D y" .•. , D YN are mutually disjoint. That is, U = U:': 1 D y ,. It is then elear

that for any given s with 1 s: s s: N, a k (D ys ) are mutually disjoint for k = 1, ... ,n , which finishes

the proof.

D

The lemma below is the strengthened version of Lemma III.1.9 in the sense that we no

longer require x rf- U~:6 ak(U).

Lemma I1Ll.1l. Let X be the Cantor set and let x EX. Let a be a minimal homeomorphism

of X and let Ax be defined as in Lemma II!. 1. 9. For every n E Pi! and clopen subset U eX, there

exists a unitary element w E Ax such that

w = L 1Dj U
j and w . 1u . w* = l",,,(u),

JEZ

where D j for j E Z are mutually disjoint clopen subsets of X satisfying X = UD j ! and all b'ut
]'EZ

finitely many D j are empty.

Proof. Let d be the metric on X. As (X, a) is a minimal dynamical system, x, a(x), ... , an(x) are

distinct from each other.

Let
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It is clear that R > o.

For k with 0 ::::: k ::::: n, if x E ak(U), as ak(U) is clopen, there exists rk > 0 such that

the open set {y EX: d(x, y) < rd is a subset of ak(U). If x tj. ak(U), as ak(U) is compact,

infyEak(u) d(x, y) = d(x, y') for some y' E ak(U). In this case, let rk = infyEak(u) d(x, y).

Let

and define E' to be

{y E X: d(x,y) < r}.

Then E' is an open subset of X. As the topology of the Cantor set X is generated by clopen sets,

we can find a elopen subset E c E' such that x E E.

According to the definition of r, it follows that for k = 0,1, ,n, either E' c ak(U) or

E' n ak(U) = 0. The fact that E c E' implies that for k = 0,1, , n, either E c ak(U) or

En ak(U) = 0.

Let P be a Kakutani-Rokhlin tower such that the roof set is E. As E is the roof set and

E, a(E), ... , an(E) are mutually disjoint, it follows that the height of each tower in P is greater

than n + 1.

Use X (N, v, s) to denote the clopen subset of the partition P at the v- th tower, with height

s. Then

X = U X(n,v,s),
vEV,l:'::k:'::h(v)

where h(v) is the height of the v-th tower.

Let Uv,k = Un X(N, v, k). Then

U = U Uv,k.
vEV,l:'::k:'::h(v)

For every v, k such that Uv,k i 0, if there exists mEN such that 1 ::::: m ::::: nand am(Uv,k) C a(E),

then En am-1(U) i 0. According to our choice of E, for all s with 1 ::::: s ::::: n, either E C as(U)
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or En as(U) = 0. By assumption, we have am(Uv,k) C a(E) and Uv,k of 0. Then

m-l ( )--1-a Uv,k I 0,

which implies that E C am-1(U).

Let A E be the subalgebra of A generated by C(X) and u· Co(X\R(P)), with u being

the implementing unitary of A. Vie will show that there exists a unitary element w E AE such

that

w = LIDjU
j

jE'2

with all the sets DJ for j E Z being mutually disjoint and w . lu . w* = l",n(u). As AE can be

regarded as a subalgebra of Ax, that is enough to prove the lemma if we can find the unitary w as

described above.

If k+n :s: h(v), this is the case that x tf- U~~~ aj(Uv,k). According to Lemma III.l.7, there

exists a partial isometry Sv,k E A,,; such that s~,ksv.k = lu",k and Sv,kS~,k = l",n(Uu,kl = lUv,k+n'

According to the remark after Lemma IlLl.7, we have SV,k = un . lU",k'

If there is a nonempty Uv,k such that k + n > h(v), then

According to the construction of E, it follows that E C ah(v)-k(U), which then implies that

a-(h(vl-k)(E) C U. Intersecting both sets with

a-(h(v)-k)(E) = UX(n,v',h(v') - (h(v) - k)),
v'EV



we get

UX(n, Vi, h(v' ) - (h(v) - k)) = o.-(h(v)-k)(E) n UX(n, Vi, h(v' ) - (h(v) - k))

v'EeV v'EV

c u n UX(n, Vi, h(v' ) - (h(v) - k))

v'EV

c UX(n,v',h(v')-(h(v)-k)),

v'EeV

which implies that

un U X(n, Vi, h(v' ) - (h(v) - k)) = UX(n, Vi, h(v' ) - (h(v) - k)).

v'EV v'EV

In other words,

UV',h(v')-(h(v)-k) = X(n, Vi, h(v' ) - (h(v) - k)) for all v E V'.

Now we have

-(h(v)-k)(E) U U U X
0. = v',h(v')-(h(v)-k) = v',h(v')-(h(v)-k)'

v'EV v'EV

It follows that

0." ( UUV',h(V')-(h(V)-k)) = o.n ( U XV',h(V')-(h(V)-k)) = U XV',n-(h(v)-k)'
v'EV v'EV v'EV

By Lemma III.l.7, there exists a partial isometry s~,k such that

S;J,kS;~k = lU(v',h(v')-(h(v)-k))

and

1* I 1
sv,ksv,k = an(U(v',h(v')-(h(v)-k))

= lU(v',h(v')+n-(h(v)-kll-h(v')'

44
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Furthermore, according to the remark after Lemma 111.1.7, s~,k E A E ,

For every non-empty Uv,b either k +n::::: h(v) or U::) a-(h(v)-k)(R(P)), Thus the above

two cases will give a partial isometry s E A E such that ss* = lu and s*s = l a n(u).

There exists a partial isometry s E A E such that

Let w = s + s. Then w is a unitary element in A E satisfying w . Iv . w* = l an(u), which finishes

the proof.

o

Lemma IILl.12. Let X be the Cantor set and let x EX. Let D be a clopen subset of X satisfying

xED, and use X x 1[' 1 X 1['2 to denote the product of the Cantor set and two dimensional torus. Let

A be the crossed product C*-algebm C* (Z, X X 1['1 X 1['2, a x R~ x RT)) and let u be the implementing

unitary of A. Let ZI E C(1['I,«:::) be defined by ZI(t) = t and let Z2 E C(1['2,«:::) be defined by

Z2(t) = t. By abuse of notation, we identify ZI with idx 181 ZI 181 id1l'2 and Z2 with idx 181 idll'l 181 Z2'

Suppose that there exists !vI E N such that

IluM ZiPU- M
- ziqll < c for i = 1,2, where p = ID and q = u M pu- M

.

Then there exists a partial isometry w E Ax (with Ax as defined in Lemma II!. 1. 9) such that

w*w = p, ww* = q and IlwZiPW* - ziqll < c for i = 1,2.

Proof. According to Lemma IlL 1. 11 , we can find a unitary element WI E Ax such that

WI = L u
k

l n -l(k)

kEZ

for some n E C(X, Z) and
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Let

be defined by jo (1)

homomorphism.

ID (9 f for all f E C(1[\ x ']['2). Then it is clear that j is an injective

As C(D X ']['1 x ']['2) c pAxp (with p = ID), we hence get the canonical inclusion map

Define

by

The fact that 'UJIPWr = q implies that wrqAxqwl = pAxq. So far, we have shown that

¢l is really a homomorphism from C(D x ']['2) to pAxp. As II¢l(g)11 = Ilgll, it is clear that ¢l is

injective.

Define 'Po = cPo 0 jo and 'PI = ¢l 0 jo. Then 'Po, 'PI are two injective homomorphisms from

C(']['2) to pAxp.

Let

j: pAxp ------> pAp

be the canonical embedding.

By Lemmas III.l.l and III.1.2,

will induce an injective embedding of K;(pAxp) into Ki(pAp) for i = 0,1.

Consider (:.pO).i and (<Pd.i: Ki(C(']['l x ']['2)) -> Ki(pAxp) for i 0,1. As <PI (1)
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'WtuM jn- M 'Wl, it is clear that (CPO)*i(a) = (CP1)*i(a) in Ki(pAp) for all a E K i(1I'1 x 11'2)' Since we

know that j*,j: Ki(pAxp) ----7 Ki(pAp) is injective, it follows that (CPO)*i(a) = (cpJ)*i(a) in Ki(pAxp)

for all a E K j(1I'1 x 11'2)'

For a C*-algebra B, recall from Section 1.2 that T(B) denotes the convex set of all tracial

states on B. For all T E T(pAp) and 9 E G(D X 11'1 x 11'2), it is clear that

As T(pAp) = T(pAxp), it follows that for every tracial state T' E T(pAxp) , we have

It is then clear that for all T' E T(pAxp) and f E G (11' 1 x 1I'2),

T' (CPO (f)) = T'(CPI(f)).

Recall from Definition 1.2.3 the maps

V'le will show that CPO(ZI 0lr2 )· CPI(ZI 0lr2 )-1 E GU(pAxp). If that is done, then we can show

that CPO(1T, 0 Z2) . CPI(lT, 0 Z2)-1 E GU(pAxp) in a similar way.

In fact,

* (1 ,0, 2"'is ,0, 1 )= 'WI' aM (D) '6' ZI . e '6' 1r2 . 'WI
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for some s E C(X,lR). As WI = 2..= ukln-I(kl and wIlDWr = uMpu-M , we get
kEZ

'PI(ZI @h2) = w~· (lo:M(Dl @ (ZI' e
21fiS

) @1]-2)'WI

(2..= ukln-I(klXlI'IX1I'2) * . (lO:M(Dl @ (ZI . e21fiS
) @ 1]-2) . (2..= ukln_I(klXlI'lX1I'2)

kE"£' kEZ

= 2..= In- I(klxlI'IX1I'2' u-k
. (lO:M(Dl @ (ZI . e21fiS

) @ 1]-,)) . u j
. In- I (jlXlI'I X1I'2

k,jEZ

= 2..= In- I(klxlI'IX1I'2' u-k
. (lO:M(Dl @ (ZI . e21fiB

) @ 1]-2)) . Uk. In- I(klxlI'IX1I'2
kEZ

for some h E C(X, lR). Then we have

with h E C(X, lR), and we also have

Note that pAxp n pC* (Z, X, a)p ~ pC*(Z, X, a)xp, which is an infinite dimensional simple AF

algebra by [HPS]. By Lemma III.1.3, it follows that

U(pAxp n pC*(Z, X, a)p) = CU(pAxp n pC*(Z, X, a)p).

Then we get

U (pAxp n pC*(Z, X, a)p) = CU (pAxp n pC*(Z, X, a)p) C CU(pAxp).

So far, we have shown that rp~(ZI @1]-2) = rp~(ZI @h'). In the same way, it follows that rp~(hI @

Z2) = 'P~ (1lI'I @ Z2).

According to [Linl, Theorem 10.10]' we conclude that rpo and rpl are approximately
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unitarily equivalent. Then there exists a unitary W2 E pAxp such that

Let w = w] W2. Then

We can easily check that

and

which finishes the proof.

o

Lemma 111.1.13. We write X x 11' x 11' as X x 11'] X 11'2 to distinguish the factors. Let A be the

crossed product C*-algebra C*(Z,X x 11'] X11'2,a x R~ x RlJ) and let·u be the implementing unitary

of A. Let x EX. For any N E 1'1, any E > 0 and any finite subset 9 c C(X x 11' x 11'), we have

a natural number IvI > N, a clopen neighborhood U of x and a partial isometry w E Ax (with Ax

defined as in Lemma 111.1.9) satisfying the following:

(1) a- N +](U),a- N +2(U), ... ,U,a(U), ... ,aM (U) are mutually disjoint, and p,(U) <

E /111 for all a-invariant probability measure p"

(2) w*w = 1u and ww* = l",M(u),

(3) 'u-iw'ui E Ax for i = 0,1, ... , M - 1,

(4) Ilwf - fwll < E for all f E g.

Proof. By abuse of notation, we identify f E C(X) with f®id1!'1 ®id1!'2' g E C(11'd with idx®g®id'Jl'2

and hE C(11'2) with idx ® id'Jl'2 ® h.
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\iVithout loss of generality, we can assume that

There exists a neighborhood E of x such that

for all y E E and i = 1, ... , k. It then follows that for any Yl, Y2 E E and i such that 1 ::; i ::; k,

we have

As (X, 0') is minimal, there exists M > N such that aM (x) E E. Let

K = max { M, ~ + 1} .

It is clear that the points a-N+1(x), a-N+2 (x), x, a(x), .. . , a K (x) are distinct. Then there exists

a clopen set U containing x such that U c E, aM (U) C E and a-N+1(U), a-N+2 (U), U, a(U),

K(U) d' .. t... , 0: are ISJOll1.

As a-N+1(U), a- N +2 (U), U, 0'( U), ... ,aK (U) are disjoint, for every a-invariant probability

measure p" we have p,(U) < ElM.

By Lemma III.1.12, there exists a partial isometry w E Ax such that w*w lu and

As U c E and aM (U) C E, it follows that Ilwi; - i;wll < E for 0 ::; i ::; k. The fact that

Ilu M z,pu- IvI - zigll < E implies Ilwz; - ziwll < E for i = 1,2. So far, (4) is checked.

From our construction of U, we have (1). The assertion (2) follows from our construction

ofw. Note that U,a(U), ... ,aM(U) are mutually disjoint. We can check that u-iwui E Ax for

i = 0, ... ,111 - 1, thus finishing the proof.

D
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Definition IILl.14. Let C be a category of unital separable C*-algebras. A separable simple

C*-algebra A is called C-Papa if for every finite subset F C A and E > 0, there exists a nonzero

projection pEA and a unital subalgebra B of pAp (with 18 = p) such that B E C and

1) \\[x,p]1I :s; E for all x E F,

2) p . :r . p Ec: B for all x E :F.

Lemma IILl.15. Let C be a category of unital separable C*-algebms. Let A be a separable simple

C*-algebra. If for every finite set F C A and E > 0, there exists a nonzero projection pEA and a

unital subalgebra B of pAp such that B is C-Popa and

1) II[x,p]11 :s; E for all x E F,

2) pxp Ec: B for all x E F,

then A is C-Popa.

Fmoj. For any E > 0 and any finite subset F C A, we can find a subalgebra B such that B is

C-Popa and

1) 11[:1',18111 :s; E for all:r E F,

2) 18 ·:r . 18 Cc: B for all x E :F.

Use 1BF18 to denote the set {18x18: x E F}. As 18 . X . 18 Ec: B, for every x E F,

choose an element Yx E B satisfying Ilyx - 18 . X • 18 II :s; E. Use 9 to denote {Yx: x E F} with Yx

as described.

As B is C-Popa, we can find E C B such that E E C and

a) II[lE,Yx]11 :s; E for all Yx E g,

b) IE' Yx . IE Ec: IE for all Yx E g.

'vVe then check that

111E' Yx - Yx ·lEII ~2c: 111E ·18' X ·18 -18 , X ·18 ·lEII ~2c: 111E' X - x ·lEII·
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It then follows that

111E . X - x· 1EII ::::;4c: 111E' Yx - Yx' 1EII·

As II [IE, Yx] II ::; E, we get II [x, Ie] II ::; 5E.

For any x E A, we have

dist(lE . x· IE, E) = dist(lE . (lB' x· 1B) . IE, E)

::::;c: dist(lE . Yx . IE, E))

Then it is clear that IE . x . IE E2c: E.

Thus for every finite subset F c A and E > 0, we can find the subalgebra E of A as

described above such that E E C and

1) II[x, 1e]11 ::; 5E for all x E F,

2) IE . X . IE E2c: E for all x E F,

which shows that A is C-Popa.

o

This following is a technical result, and the proof is essentially the same as that of [Lin4,

Lemma 2.5.5].

Proposition 111.1.16. Let A be a C*-algebra. For every a E A 8a such that Iia - a211 ::; 0 < i,
there exists a projection p E C*(a) such that lip - all::; V8.

Proof. According to continuous functional calculus,

The fact that Iia - a 211 ::; 0 < i implies that sp(a) C [-V8, V8] U [1 - V8, 1 + V8].
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Define f E C(sp(a), IR) by

i(x) ~ {
o x E sp(a) n [-JJ, JJ]

1 x E sp n [1 - JJ, 1 +JJ]

Then f(a) is a projection in C*(a), and it is easy to check that lip - all::; JJ.

o

Theorem 111.1.17. Let X be the Cantor set and let a x REx R1J be a minimal action on X x 'IT' x 'IT'.

Use A to denote the crossed product C*-algebra of the minimal system (X x 'IT' x 'IT',a x RE x Rry).

Then TR(A) ::; 1.

Proof. According to [HLX, Lemma 4.3]' for simple C*-algebra A, if for every c > 0, C E A+ \ {O}

and finite subset F C A, there exists a nonzero projection p and a unital subalgebra B of pAp

such that TR(B) ::; 1 and

1) II[x,p]1I ::; c for all x E F,

2) dist(p . x . p, B) ::; c for all x E F,

3) 1 - p ::S c as in Definition 1.2.2. That is, 1 - IE is Murray-von Neumann equivalent to

a projection in Her(c),

then it follows that TR(A) ::; 1.

Let Ax be as defined in Lemma 1.2.1. According to Lemma n.2.11, TR(Ax) = 1. If we

can find a projection e E Ax such that B = eAxe satisfies the previous three conditions, then we

are done.

As A is generated by C(X x 'IT' x 'IT') and the implementing unitary u, we can assume that

the finite set is F U {u} with Fe C(X x 'IT' x 'IT').

Choose N E N such that 27r / N < c and let

N-l

9 = U uiFu- i .
i=O
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According to Lemma III.1.l3, with respect to 9 and c above, we can find M > N, a clopen

neighborhood of x and a partial isometry w E Ax satisfying w*w = lu, ww* = laM (U) and

II [w,flll < c for all f E :F.

Let p = lu and q = laM (U). For t E [0,11"/2], define

P(t) = pcos2 t + sintcost(w + w*) + qsin2 t.

As pq = 0 and p, q are Murray-von Neumann equivalent via w, it follows that t f---' P(t) is a path

of projections with P(O) == p and P(11"/2) = q.

Define

According to Lemma III.1.13, u-iwui E Ax for i = 0, ... , m - 1. It is clear that e E Ax. It follows

that e is a projection.

We first show that for e E Ax above, the following hold.

1) !I[x,elll ::; c for all x E Fu {u};

2) dist(exe,eAxe)::; c for all x E FU {'u}.

(C1)

(C2)
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For the part of (Cl) involving 11" note that

ueu* - e = 1 - 11, C~ uipU-i +~ U- iP(i1r/2N)Ui) 11,*

_(1 _(~~N uipu-i + ~1 u-i P( i1r /2N)Ui ) )

M-N+l M-N N-l
L uipu-i + L uipn-i + L n-iP(i1r/2N)ui

i=1 i=O i=1

N-2

- L n - iP((i+l)1r/2N)ni

i=O

= p _nM- N+1p(n*)M-N+l + (u*)N-l P((N -1)1r/2N)nN- 1 - P(1r/2N)

N-2

+ L u-i(P(i1r/2N) - P((i + 1)1r/2N))ui

i=1

= p - P(1r /2N) + u-(N-l) P((N - 1)1r/2N)nN- 1 _ uM- N+1pn-(M-N+l)

N-2

+ L u-i(P(i1r/2N) - P((i + 1)1r/2N))ni .
i=l

As 21r/N < E, we get llueu* - ell < E. It then follows that liue - eull < E. By Lemma III.1.13,

life - efll < E for all f E :F. So far, we have checked (Cl).

For f E :F c C(X x 'f x 'f), as f E Ax, we get efe E eAxe. As eu E Ax, it is clear that

eue = e(en)e E eAxe. Thus we have checked (C2).

Let C be the set of all the unital separable C*-algebras C such that there exist N E Nand

one dimensional finite CW complexes Xi and di E N with 1 :s; i :s; Nand

N

C ~ EB Md n (C(Xn )).

n=1

Note that E can be chosen to be arbitrarily small, and also note that eAxe has tradal rank no

more than one, which implies that eAxe is C-Popa.

By Lemma III.1.15, A is also C-Popa. According to [Lin4, Lemma 3.6.6], A has property

(SP). For the given element c E A+, there exists a non-zero projection q E Her(c). Let 00 =

inf{r(q): r E T(A)}. As A is simple and q -=1= 0, we get r(q) > 0 for all r E T(A). As T(A) is a



56

weak* closed subset of the unit ball of A*, noting that the unit ball of A* is weak* compact by

Alaoglu's Theorem, it follows that T(A) is also compact. Thus 00 > O.

Without loss of generality, we can assume that E < min{l, too, (40~O)2} and q E F.

It remains to show that 1- e is Murray-von Neumann equivalent to a projection in Her(c).

As q E F, we have

II[q,eJII :s; E and dist(eqe,eAxe):S; E.

We can find bE (eAxe)sa such that Ileqe - bll :s; E. Note that II[q,e]11 :s; E implies that II(eqe)2

eqell :s; E. According to Proposition III.1.16, there exists a projection q' E A such that Ilq'-eqell :s;

Vi and q' ::5 eqe as in Definition 1.2.2.

Note that we have

IIb2 - bll :s; IIb2 - (eqe)211 + II(eqe)2 - eqell + Ileqe - bll

:s; 3E + e + E

=-~ 5e.

By Proposition III.1.16 again, there exists a projection p E eAxe such that

lip - bll :s; v'5E and [p] :s; [b].

As

lip - q'll :s; lip - bll + lib - eqell + Ileqe - q'll :s; & + E + VE:,

it follows that [p] = [q']. As

q' ::5 eqe and eqe ::5 q,

we conclude that p ;S q in A.

Note that

q = eqe + (1 - e)qe + eq(l - e) + (1 - e)q(l - e).
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For every 7 E T(A), we have

7(q) = 7(eqe) + 7((1 -- e)q(1- e)) + 7((1 - e)qe + eq(l - e)).

According to (C1) and our choice of 10, we have

1
7(eqe) + 7((1 - e)q(l - e)) > 7(q) - 10 > 27(q).

As 7 is a tradal state and e is a projection,

7((1 - e)q(l - e)) ::; 7((1 - e)l(l - e)) = 7(1 - e).

Note that 7(1 - e) < i7(q) for all 7 E T(A) (because 7(1 - e) < iOo). We can conclude that

1 1 1 1
7(eqe) > 27(q) - 7((1 - e)q(l - e)) :2: 27(q) - 7(1 - e) > 47(q) :2: 4:00> o.

In our construction, note that

lip - eqell ::; lip - bll + lib - eqell ::; V& + c.

It follows that
1 1

7(p) :2: 4:00 - (V5E + c) :2: 800 for all 7 E T(A).

According to our construction, we have

10 1
7 (1 - e) < !vI . !vI = 10 :::; 800 ::; 7 (p)

for all 7 E T(A), which then implies that 1 - e :s p. As [p] ::; [c] (as in Definition 1.2.2), we get

[1 - e] ::; [c] (as in Definition 1.2.2), which finishes the proof.

o



58

111.2 THE RIGID CASE

Proposition 111.2.1. Let A be the crossed prod'uct C*-algebra of the minimal dynamical system

(X x '][' x '][', a x R~ x R7]). Then

Ko(A) ~ C(X, 7i})/ {j - f 0 a-I: f E C(X, ;E,2)} EB '!}

and

Proof. Use j : C(X X ']['2) ~ A to denote the canonical embedding of C(X x ']['2) into A. We have

the Pimsner-Voiculescu six-term exact sequence:

We know that

and

Ko(C(X)) ~ C(X, Z), K 1(C(X))) = O.

According to the Kiinneth theorem, Ko(C(X x ']['2)) ~ C(X, Z2) and K 1(C(X x ']['2)) ~ C(X,Z2).

For i = 0, 1, consider the image of id. i - a.i. They are both isomorphic to

{j - f 0 a-I: f E C(X, Z2)}.

The kernel of id. i - a.i for i = 0,1 is

{j E C(X,Z2): f = foa}.

Assume that f is in the kernel of id. i - a.i for i = 0,1. Fix Xo E X. We have f(an(xo)) = f(xo)
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for all TL E Z. As a is a minimal homeomorphism of the Cantor set X and 1 is continuous, 1 must

be a constant function from X to Z2. Now we conclude that

ker(id. i - a.i) ~ Z2.

As the six-term sequence above is exact, we have the short exact sequence:

As ker(id. i - a.i) ~ Z2 and Z2 is projective, it follows that

As coker(id.o - a.o) ~ C(X, Z2)/ U - loa: 1 E C(X, Z2)}, we get

Similarly, we get that K1(A) ~ C(X,Z2)/U - loa: 1 E C(X,Z2)} EEl Z2.

o

If we require a certain "rigidity" condition on the dynamical system (X x 1['x 1[', axR~ xRry),

then the tracial rank of the crossed product will be zero.

Definition III.2.2. Let (X x 1[' x 1[', a x R~ x Rry) be a minimal dynamical system. Let /-L be an

a x R~ x Rry -invariant probability measure on X x 1[' x 1['. It will ind'uce an a-invariant probability

measure on X defined by 7r(u)(D) = /-L(D x 1[' x 1[') lor every Borel set D c X. We say that

(X x 1[' x 1[', a x R~ x Rry) is rigid il7r gives a one-to-one map between the a x R~ x Rry-invariant

probability measures and the a-invariant probability measures.

Remark: For minimal actions on X x 1[' x 1[' of the type a x R~ x Rry, it is easy to see that 7r

always maps the set of a x R~ x Rry-invariant probability measures over X x 1[' x 1[' onto the set of
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a-invariant measures over X.

According to Theorem 4.6 in [Lin-Phillips], the "rigidity" condition defined above implies

that the crossed product C*-algebra has tracial rank zero.

Proposition III.2.3. Let (X x 1l' x 1l', a x R~ x R1)) be a minimal dynamical system. If it is rigid,

then the corresponding crossed product C*-algebra C*(Z, X x 1l' x 1l', a x R~ x R1)) has tracial rank

zero,

Proof. Use A to denote C*(Z, X x 1l' x 1l', a x R~ x R1))' We will show that

p: Ko(A) --> Aff(T(A))

has a dense range, which will then imply that TR(A) = 0 according to [Lin-Phillips, Theorem 4.6].

For the crossed product C*-algebra B = C*(Z,X,a), we know that B has tracial rank

zero and PB: Ko(B) ~ T(B) has the dense range. According to [Putnam, Theorem 1.1], Ko(A) ~

C(X, Z)/{f - f 0 a-I}. For every x E Ko(A), we can find f E C(X, Z) such that £(r) := r(x)

equals r(f) = Jx f dp,T'

As a x RE x R1) is rigid, there is a one-to-one correspondence between (a x RE x RY,)-invariant

measures and a-invariant measures. In other words, T(A) is homeomorphic to T(B) (as two convex

compact sets). Let hE C(X) be a projection. Then h 01c(1rxll') is a projection in A.

As PB has a dense range in Aff(T(B)), we have that P has dense range in Aff(T(A)). As

X x 1l' x 1l' is an infinite finite dimensional metric space and a x RE x R,) is minimal, according to

[Lin-Phillips, Theorem 4.6], C* (Z, X x 11' x 1l', a x R~ x R1)) has tracial rank zero.

o

III.3 EXAMPLES

We start with a criterion for determining whether a dynamical system of (X x 1l' x 1l', a x

R~ x R1J) is minimal or not. This result is a special case of the remark of page 582 in [Furstenberg].

The proof here essentially follows that of Lemma 4.2 of [LMl].
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Lemma 111.3.1. Let Y be a compact metric space, and let (3 x Rry be a skew product homeomorphism

ofY x 1!' with (3 E Homeo(Y), 7/: Y -> 1!' and

((3 x R,/)(y, t) = ((3(y), t + 7/(Y)) with 1!' identified with lRjZ.

Then (3 x R,/ is minimal if and only if (Y, (3) is minimal and there exist no f E C(Y,1!') and

non-zero integer n such that

71,7/ = f 0 (3 - f.

Proof. Proof of the "if' part:

If (Y, (3) is minimal and there exist no f E C(Y,1!') and non-zero integer 71, such that

nr; = f 0 f3 - I, we will prove that (3 x Rry is minimal.

If (3 x Rry is not minimal, then there exists a proper minimal subset E of Y x 1!'. Let

11"y: Y x 1!' -> Y be the canonical projection onto Y. Note that 11"y 0 (f3 x Rry) = (30 11"y. It follows

that 11"y (E) is an invariant subset of Y. As Y is compact, so is 11"y(E). Since (Y, (3) is minimal,

the closed invariant set 11"y (E) must be Y.

Let's consider

D := {t E 1!' : (id y x Rt)(E) = E}.

As (id y x id'II'l(E) = E, the set D is not empty. Note that D is a subgroup of 1!'. It follows that

D is a non-empty subgroup of 1!' (with 1!' identified with the quotient group lRjZ).

If we have {tn}nEN C D such that tn -> t, then for any wEE, we have (id x RtJw E E.

Then tn. -> t implies that (id x Rt"lw -> (id x Rt)w. As E is closed, (id x Rt)w E E.

So far, we have shown that if tn E D for 71, E Nand tn --> t, then tED. Note that

"{tn}nEN C D and tn -> t" is equivalent to "{ -tn}nEN C D and -tn -> -t". It follows that

-t E D. In other words, we have

(id x Rd(E) c E and (id x R_t)(E) c E.

Then we get

E = (id x Rt)((id x R_t)(E)) c (id x Rt)(E) c E,
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which implies that (id x RdE = E. In other words, D is closed.

As E is a proper subset and 7fy(E) = Y, D must be a proper subgroup of T. Otherwise,

for any (y, t) E Y x T, as 7fy (E) = Y, there exists t' E T such that (y, t l) E E. Since t -- t' E D = T,

(y, t) = (id x Rt - t , )(y, t') E E, which indicates that E = Y x T, contradicting the fact that E is a

proper subset.

As a proper closed subgroup of T, D must be

{ ~} with n = IDI.
n O::;k::;n-l

Let 7f']' be the canonical projection from Y x Tonto T. For y E Y, use E y to denote 7f']'(E n

7fyJ({y})).

Using the fact that E is a minimal subset of ((3, R1))' we will show that Ey must be n

points distributed evenly on the circle for all y E Y.

\iVe claim that if t, t' E Ey, then for any m E IZ, t + m(t' - t) must be in Ey. To prove this

claim, if t, t' E E y , then there exists {kn}nEN such that kn ~ 00 and dist( ((3 x R1) )kn (y, t), (y, t')) ~

O. Note that

dist(((3 x R1))kn (y, t), (y, tl)) = dist(((3 x R1))kn (y, tl), (y, t + 2(t' - t))).

It follows that (y, t + 2(t' - t)) E Orbit,6xR1) ((y, t)). By induction, we conclude that if t, tl E Ey,

then for any m E IZ, t + m(tl - t) is also in Ey, proving the claim.

For any y E Y, consider E y , which is a non-empty closed subset of T. Let

Note that if t, tl E E y , then t + m(tl - t) E E y . The fact that E y s: T implies that ly > O. It is

then clear that E y is made up of l/l y points distributed evenly on T.

Claim: For every y E Y, l/ly = IDI.

For given y E Y, as (id x R t )(E) = E for all tED, we get that E y is invariant under Rt
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for all tED. It then follows that Illy = kn with k E !":I and n = IDj.

If k > 1, write

Ey = {(y,tI), ... ,(y,tkn)}'

As (3 is minimal, for every y' E Y, there is a sequence (mkhEN such that

The fact that Orbitox R
n
(Ey ) is dense implies that there exists t' E T such that (y', t') is in the

closure of OrbitoxR" (Ey ). Note that for every m E !":I, ((3 x R1))m(Ey ) consists of kn points

distributed evenly on the circle. It follows that E y ' contains at least nk points distributed evenly

on the circle,

Now we have shown that for every a E Y, Eo. is made up of at least nk evenly distributed

points on the circle, which then implies that D contain at least nk elements. The assumption that

k > 1 gives a contradiction.

We then conclude that k = 1, which proves the claim.

By the claim above, for all y E Y, the set Ey is made up of n points distributed evenly on

T, If we define

nE = {(x,nt): (x,t) E E},

then nE is the graph of some continuous map g: Y --> T. As E is closed, so is nE, which implies

that 9 is continuous. As E is ((3 x R1))-invariant, for every (x, t) E E, it follows that

((3 x R1))(x, t) = ((3(.1:), t + 'f)(x)) E E.

In other words, we have n(t + 'f)(x)) = g((3(x)). As nt = g(x), it follows that n'f) = go (3 - g, which

finishes the proof of "if" part.

Proof of the "only if" part:
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Suppose (3 x R7J is minimal. Then it is clear that (Y, (3) is a minimal system.

Suppose that there exists nonzero n E Z such that n7] = 9 0 (3 - 9 for some 9 E C(X, T).

Let

E = {(y, t) E Y x 11': nt = g(yn.

For (y, t) E E, we have (,8 x Rr/)(y, t) = ((3(y), t +7](Y)). As

n(t +7](y)) = nt + n7](Y) = g(y) + n7](Y) = g((3(y)),

it follows that E is ((3 x R7J)-invariant.

As 9 is continuous, E is closed. And it is clear that E is a proper subset of Y x 11'. Now

we have a proper closed ((3 x R,))-invariant set in Y x 11', contradicting the minimality of (3 x R7J'

o

Lemma III.3.1 provides an inductive approach to determine the minimality of some dynamical

systems. Following this lemma, we get the proposition below.

Proposition 111.3.2. Let 0: x R~ x R7J be a homeomorphism of X x 11' x 11'. Then 0: x R~ x R7J is

minimal if and only if

i) (X,o:) is minimal,

ii) ~ is not a torsion element in C(X, 11') / {f 0 0: - f},

iii) For r; E C(X x 11',11') defined by i)(x, t) = 7](x), the map r; is not a torsion element in

C(X x 1I', 1I')/{f 0 (0: x R~) - f: f E C(X x 11', 11'n.

Proof. Proof of the "if' part:

If i), ii) and iii) are true, we need to show that 0: x R~ x ~ is minimal.

Note that (X x 11' x 11',0: X R~ x R7J) is a skew product of 0: x R~ and R rp where R7J is

defined by

R7J: X x 11' ---+ Homeo(11'), with (R,) (x, t))( t l
) = t' + 7](x).
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From i) and ii), using Lemma 4.2 of [LMl], (X x T,a x R€) is minimal.

According to Lemma III.3.1, and by iii), we conclude that a x R€ x R,) is minimal.

Proof of the "only if' part:

As (X x T x T,a x R€ x Rl]) is the skew product of (X x T,a x R€) and Rl]: X x T-->

Homeo(T), with Rl) defined as above, the minimality of (X x TxT, a x R€ x Rl]) implies the

minimality of (X x T, a x R€). By Lemma 4.2 of [LMI], that implies (i) and (ii).

For (iii), suppose that if is a torsion element, that is, there is non-zero n E Z and f E

C(XxT, T) such that nij = fo(axR~)- f. By Lemma III.3.1, it follows that (XxTxT, axR€ xRl])

is not minimal, a contradiction.

o

Proposition III.3.2 enables us to construct minimal dynamical systems on X x TxT

inductively. In fact, we have the following lemma.

Lemma 111.3.3. Given any minimal dynamical system (X x T,a x Rd, there exist uncountably

manye E [0, I] such that if we 'use e to denote the constant function in C(X, T) defined by e(x) = e

fOT all x E X (identifying T with lR/Z), then the dynamical system (X x T x T,a x R€ x R e) is

still minimal.

Proof. Note that the dynamical system (X x T, a x R€) is minimal. According to Lemma III.3.1,

(X, a) must be a minimal dynamical system, and ~ is not a torsion element in

C(X, T)/U - f 0 a: f E C(X, Tn·

This implies that conditions i) and ii) in Proposition III.3.2 are already satisfied.

According to Proposition III.3.2, for (X x TxT, a x R€ x Re) to be minimal, we just need

to find eE lR such that for every n E Z \ {O} and f E C(X x T, T), we have
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If this is not true, then we have

n() = f - f 0 (a x Ri;)'

Let F: X x 11' -> IR; be a lifting of f. That is, F E C(X x 11', IR;) and the following diagram

commutes:

X x 11' ----~) 11',
f

with 7f(t) = t for all t E IR; (identifying 11' with IR;jZ).

We use [F] to denote 7f 0 F.

It follows that

n() = [F] - [F 0 (a x Ri;)]

= [F - F 0 (a x Rd].

In other words, there exists 9 E C(X x 11', Z) such that

n() - (F - F 0 (a x Rd) = g.

For every (a x Rd-invariant probability measure j.1, we have

withj.1(n())= r n()dj.1 andj.1(g) = r gdj.1
lxxll lxxll

Since j.1(n()) = nj.1(()), it follows that
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Let A be the crossed product C*-algebra of (X x 11', a x Rd. Define

p : Asa. ~4 Aff(T(A))

by p(a)(T) = T(a) for all a E Asa. and T E T(A). Then we have

pre) = p(~)

in Aff(T(A)).

Now we have show that if e (as a constant function) is a torsion element in

C(X x 11',11')/{f - J a a: J E C(X x 11', lI'n

with order n, then there exists 9 E C(X x 11', Z) such that pre) = p(~).

As 11' is connected, we have C(X x 11', Z) ~ C(X, Z). Note that the set

{:~: 9 E C(X x 1I',Z) ~ C(X,Z),n E Z \ {O}}

contains countably many elements. It follows that its image under p contains at most countably

many elements. The fact that [0,1] contains uncountably many elements and pre) = 0 if and only

if e = 0 implies that there exists (uncountably many, in fact) e E ~ such that e (as a constant

function) is not a torsion element in

C(X x 11', 1I')/{f - f a a: f E C(X x 11', 'Jrn,

which then implies that (X x 'Jr x 'Jr, a x R~ x Re) is still minimal.

o

We now give examples of rigid and non-rigid minimal actions of on X x 11' x 'Jr.

Let if!o: 11' --4 'Jr be a Denjoy homeomorphism (see [PSS, Definition 3.3] or [KatokHasselblatt,
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Prop 12.2.1]) with rotation number 7'('1') = 8 for some 8 E lR \ <Ql. It is known that 'Po has a unique

proper invariant closed subset of 1l, which is a Cantor set, and that 'Po restricted on this Cantor

set is minimal.

Let X be the Cantor set and use 'P: X -l X to denote the restriction of 'Po to X.

According to the Poincare Classification Theorem (see [KatokHasselblatt, Theorem 11.2.7]),

there is a non-invertible continuous monotonic map h: 1l -l 1l such that the following diagram

commutes:

Using the restriction of 'P to the invariant subset (which is the Cantor set X), we get a

commutative diagram:

It is known that for a Den.ioy homeomorphism, h Ix maps X onto 1l.

Recall that for l;, TJ: 1l -l 1l, the action

is called a Furstenberg transformation. Consider the action

ex x R~oh x R1)oh: X x 1l x 1l -l X X 1l x 1l.
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It is clear that we have the commutative diagram below :

QXR~oh XRT]oh
X x l' x l' -------»-) X x l' x l'

hlx xid.. xid,·l lh,x xid-,xid·.'

.,
1'x1'x1' )1'x1'x1'.

(III. 1)

In this case, if 1 is minimal, then 0 x REoh X R7joh is also minimal, as will be shown in the

next proposition.

Proposition 111.3.4. Fo, the minimal dynamical systems as in diagram (III.l), if (1' x l' x 1',1)

is a minimal dynamical system, then (X x l' x 1',0 X REoh x R7joh) is also a minimal dynamical

system.

Proof. Assume that (1' x l' x 1',1) is minimal and (X x l' x 1',0 X REoh x R7joh) is not minimal.

It then follows that there exist (x, t], t2) E X x l' x 1', nonempty open subset D C X and open

subsets U, V c l' such that

(III.2)

Define

7r], 7r2: X x l' x l' ----. l' x l'

by

As 0 is a minimal action on the Cantor set X, the statement IlL2 implies that for every kEN

such that ok(x) E D, we have

(IlL3)

Note that if we regard the Cantor set X as a subset of 1', then h Ix : X -t l' is a

l10ninvertible continuous monotone function. For the open set D eX, without loss of generality,
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we can assume that (by identifying X as a subset of'][' and identifying '][' with JR/Z)

D = (a,b) nx with a,b E (0,1) and a < b.

It then follows that there exists c, dE (0,1) with c < d (without loss of generality, we can assume

that 0 tt h Ix (D) such that h Ix (D) is one of the following:

(c,d), (c,d], [c,d) or [c,d].

In either case, there exists c',d' E (0,1) with c' < d' such that

(c', d') c h Ix (D).

Let t x = h Ix (x). It is then clear that

for all n E No As h Ix (D) is monotone, for every k E N, if R~(tx) E (c',d'), then we have

ak(x) E D, which implies (see (III.3)) that

Define

Pl, P2: '][' X '][' X '][' ----> '][' x ']['

Then we have that for every kEN such that R~ (t x ) E (C', d'),
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According to the definition of the Furstenberg transformation "'(, it follows that

contradicting the minimality of "'(, which finishes the proof.

o

The proposition below shows that if the two dynamical systems in Prop IlL3.4 are minimal,

then there is a one-to-one correspondence between the invariant measures on them.

Proposition 111.3.5. If the dynamical systems (1[' x 1[' x 1[', "'() and (X x 1[' x 1[', ex x R€oh x R7joh)

(as in diagram (II!. 1)) are minimal, then theTe is a one-to-one correspondence between the ex x

R€oh x R,/oh -invariant pTobability measures and the "'(-invariant pTobability measures.

Proof. First of all, we will define the correspondence between the ex x R€oh x Rryoh-invariant

probability measures and the "'(-invariant probability measures.

For simplicity, we use H to denote the function h Ix in diagram (IlL1). We use

A1oxR<Oh XR,joh to denote the set of ex x R€oh x Rryoh-invariant probability measures on X x 1[' x 1['

and ,~1, to denote the set of "'(-invariant probability measures on 1[' x 1[' x 1['.

Define

by

cp(/1)(D) = /1 ((H x id']f x id'nT 1(D)) and 'ljJ(v)(E) = v ((H x id'][' x id'][')(E))

for all Borel subsets D of 1[' x 1[' x 1[', Borel subsets E of X x 1[' x 1[', /1 E !vlaxR<ohxRnoh and v E !vI,.

We need to show that the cP and 1/) above are well-defined.

As every /1 E A1ax R<Oh xRY/Oh is a probability measure, it follows that cp(/1)(1[' x 1[' x 1[') = 1.

For every Borel subset D C 1[' x 1[' x 1[', as both ex x R€oh x Rryoh and "'( are homeomorphisms,

it follows that
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which implies that ip(fL) is i-invariant.

For a sequence of Borel subsets D 1 , D 2 , ... of TxT x T such that D; n D j = 0 if i -=f- j,

it is clear that (H x id'II' x idil )-1(Dd, (H x id1l' x id1l' )-1(D2 ), .•. are Borel subsets of X x TxT

(as H x id'II' X id1l' is continuous) satisfying (H x id1l' x idil)-1(Di ) n (H x idil x id'!J')-l(Dj) = 0 if

i -=f- j. Then we have that

So far, we have shown that ip is a well-defined map from lVlaxR<ohxR"oh to M'Y'

Now we will check the map ·VJ.

As every v E M"( is a probability measure, it follows that

'VJ(V)(X x TxT) = v(T x TxT) = 1.

For every Borel subset E c X x TxT, we will show that 'ljJ(v) (E) is well-defined. According

to the definition of 'ljJ(v) , we just need to show that (H x idil x id1l' )(E) is v-measurable,

For any two open subsets 8 1 and 8 2 of X x TxT, we have

As H is not one-to-one, we cannot get

but we still have

Note that H is just the restriction of h to X, where h is a noninvertible continuous



73

monotone map from 1I' to 1I' (see [KatokHasselblatt, Theorem 11.2.7]). It follows that H : X ---> 1I'

is one-to-one except at countablely many points of X. Use X o to denote this subset consists of

countably many points. Then we have that

As v(1I' x 1I' x 1I') = 1 and the minimal action "( has the skew product structure, it follows

that for every t E 1I', v( {t} x 1I' x 1I') = 0, which then implies that v(H(Xo) x 1I' x 1I') = O. Then we

get that

is of measure zero for all "(-invariant measure v.

For two sets A and B, we use A/:,; B to denote (A nBC) U (AC n B).

For every Borel subset F of X x 1I' x 1I', as F is generated by open sets via taking

complements, countably many unions and intersections, it follows that there exists a Borel set

F ' , such that

(H x id']]' x id']]' )(F) /:'; F'

is of measure zero for all "(-invariant measure v. Note that F ' is a Borel set. For every ,,(-invariant

measure v, F' is both v-measurable. It then follows that (H x id']]'x']]')(F) is measurable. Recall

that

'IjJ(v)(F) = v((H x id']]' x id']]')(F)).

It follows that for 'IjJ(v) is well-defined on all the Borel subsets of X x 1I' x 1I'.

For a sequence of Borel subsets E], E2 , . . , of X x 1I' x 1I' such that D i n D j = 0 if i f= j,

and for every "(-invariant probability measure v, we will show that
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According to the definition, we have

Note that

and

(H x id1f x id1f ) (Ei ) n (H x id1f x id1f)(Ej ) C H(Xo) x 1r x 1r for i # j.

Recall that H(Xo) x 1r x 1r is a set of measure zero for every I-invariant probability measure. It

follows that

For every Borel subset E C X x 1r x 1r, according to the commutative diagram (IILI), we

have

(r 0 (H x id1f x id1f))E = ((H x id1f x id1f) 0 (a x R~oh x Rryoh)) (E).

It then follows that

1/J(lJ)(E) = lJ((H x id1f x id1f)E)

= lJ(r((H x id1f x id1f)E))

= lJ ((H X id1f x id1f)((OO x R~oh x Rryoh)E))

= 1/J(lJ) ((a x R~oh x R'loh)E),

which implies that 1/J(lJ) is a x R~oh x Rryoh-invariant.

So far, we have shown that 1/J is a well-defined map from 111"1 to Mo: x R<oh x Rnoh .

Now we will show that for every a x R~oh x R'loh-invariant measure J.1 and I-invariant

measure lJ, we have

In fact, we just need to show that for every Borel subset D of 1r x 1r x 1r and every Borel
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subset E of X x l' x 1',

(IlIA)

and

(III.5 )

As

the equation (IlIA) holds.

Note that

The fact that X o consists of countably many points and the minimal action a x REoh x R7Joh has

skew product structure implies that

p(Xo x l' x 1') = O.

It then follows that the equation (III.5) holds, which finishes the proof.

D

By Proposition III.3.5 above, there is a one-to-one correspondence between the a x REoh x

R,/oh-invariant probability measures and the "Y-invariant probability measures (because if two

measures coincide on all the Borel sets, they must be the same measure).

It follows that a minimal Furstenberg transformation on 1'3 that is uniquely ergodic will

yield an example of a rigid minimal action on X x l' x 1', and a minimal transformation on 1'3 that

is not uniquely ergodic will yield an example of a non-rigid minimal action on X x l' x 1'.

Example III.3.6. This is an example of rigid minimal dynamical system (X x l' x 1', a x RE x R7J).
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Let (X, a) be a Denjoy homeomorphism with rotation number e1 E lR \ Q.

Choose e2 ,e3 such that 1,e1 ,e2 ,e3 E lR are linearly independent over Q. That is, if

Ao, )'1, A2, A3 E Q and satisfy

then Ai = 0 for 'i = 0, ... ,3.

The dynamical system (T x TxT, ReI x Re2 x Re3 ) is minimal and uniquely ergodic.

Define 'P: X --> Homeo(T2
) by

As (T x T x T,Re l x Re2 x R e3 ) is uniquely ergodic, so is (X x T2,a x rp). This gives an

example of a rigid minimal dynamical system (X x T x T,a x R€ x R7))'

Example III.3.7. We will give an example oj m'in'imal dynamical system (X x TxT, a x R€ x R7))

s'uch that it 'is not rigid.

According to [Furstenberg] (see page 585), there exists a minimal a Furstenberg

transformation

such that

/'0(Z1, Z2) = he211"ie, j(ZdZ2) for some eE lR \ Q and contractible j E C(T, T),

and /'0 is not uniquely ergodic.

Let (T, 'P) be a Denjoy homeomorphism with rotation number e. Let (X, a) be the minimal

Cantor dynamical system derived from (T,rp) which factors through (T,Re). In other words,
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a = cp Ix and we have the commutative diagram

(III.6)

with 7':: X ---> 1I' being a surjective map.

Define~: X ---> Homeo(1I') by ~(x)(z) = j(7':(x))z. We can then check that the following

diagram commutes:
axR€

X x 1I' ----*~ X x 1I'

n x id~'l In X id7

1I'2 --------+-. 1I'2
"To

As 7': is surjective, so is 7': X idT. Minimality of ,0 then implies minimality of aX R~. As ,0

is not uniquely ergodic, similarly to the proof of Proposition III.3.5, it follows that (X x 1I', a x R~)

is not uniquely ergodic.

In the commutative diagram (III.6), note that 7': is onto, and (1I', Re) is uniquely ergodic.

It follows that (X, a) is also uniquely ergodic.

As (X x T, a x R~) is not uniquely ergodic, there exist more than one (a x Rd-invariant

probability measure. Let fL and 1/ to be two such measures on X x T that are different from each

other.

According to Lemma III.3.3, there exists e E lR such that if we use Re to denote the

function in C(X, Homeo(T)) defined by

Re(x)(z) = ze2nie for all x E X and z E T,

then the dynamical system (X x TxT, a x R~ x Re) is still minimal.

Use m to denote the Lebesgue measure on T. For the (a x R~)-invariant probability

measures fL and 1/, as Re is a rotation of the circle, we can check that both fL x m and u x mare

(a x R~ x Re)-invariant probability measures on X x TxT.
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As jJ. and v are different measures, it is clear that jJ. x Tn is different from v x Tn.

Now we have at least two (a x R..; x ReHnvariant measures. Note that (X, a) is uniquely

ergodic. We have that the dynamical system (X x 'JI' x 'JI', a x R..; x Re) is not uniquely ergodic.

Remark: For this example, the corresponding crossed product C*-algebra has tradal rank one

and the dynamical system (X x T x 'JI', a x R..; x Re) is not rigid. The reason is as follows.

Consider the dynamical system (X x 'JI'1, a x R..;). It is not uniquely ergodic. As (X, a) is

uniquely ergodic, it follows that (X x 'JI'1, a x R..;) is not rigid.

Use A to denote the crossed product C*-algebra C*(2,X x 'JI'1,a x Rd. According to

Theorem 4.3 of [LM2], the algebra A has tradal rank one. By Proposition 1.10 (1) of [Ph2]'

PA(Ko(A)) is not dense in Aff(T(A)).

Note that A is an A'JI'-algebra. According to Theorem 2.1 of [EGL], A is approximately

divisible. By Theorem 1.4 (e) of [BKR], and noting that real rank of A is not zero (as tradal rank

of A is one and A is A'JI'-algebra), we have that the projections in A does not separate traces of A.

In other words, there exist two (a x R..;)-invariant measures jJ. and v such that

jJ. f v, and jJ.(x) = v(x) for all x E Ko(A).

Define measures jJ.x, Vx by

jJ.x(D) = jJ.(D x 1l) and vx(D) = v(D x 1l)

for all Borel sets D eX. It is clear that both jJ.x and Vx are a-invariant probability measures on

X.

Note that C(X, Z) is generated by the projections in C(X). Also note that the <C-linear

span of C(X, Z) is dense in C(X, IR). The fact that the projections in A do not separate jJ. and v

implies that C(X, Z) do not separate jJ.x and Vx I which then implies that jJ.X = Vx.

Use B to denote C*(2, X x 111 x 11'2, a x R..; x Re). Let Tn be the Lebesgue measure on 1l.

It is clear that jJ. x Tn and v x m are two (a x R..; x Re)-invariant probability measures.

We will show that the projections in B do not separate jJ. x m and v x m.
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From Proposition III.2.1,

Ko(B) ~ C(X, 'l})/ {(j, g) - (j, g) 0 a-I: j, g E C(X, Z)} EEl Z EEl Z. (III.7)

The two copies of Z correspond to the two generalized Rieffel projections el and e2, given

functions defined in Section 6 of [LIvIl], h(X,ZI,Z2) = h(X,ZI,Z~) and 12(x,zl,z2) = h(x,zi,Z2)

As the projections in A do not distinguish fJ and v, it follows that the elements in Ko(B)

that correspond to the first two summands of III.7 do not separate fJ x m and v x m.

For the generalized Rieffel projection e2, as 12 (x, Zl, Z2) is independent of Zl, we have

Recall that for a measure rJ on X and j E C(X), we use rJ(j) to denote Ix j(.T) dfJ (see

Section 1.2). We check that

(fJ x m)(e2) = (fJ x m)(12)

= r !2(x, ZI, Z2) d(fJ x m)
J(XX1rtlX1r2

= r F2(x, Z2) d(fJX x m)
} Xx1r2

= r F2(x, Z2) d(vx x m)
} XX'2

= j' !2(x, Zl, Z2) d(v x m)
(XX1rtlXll2

= (v x m)(12)

= (v x m)(e2)'

Then we have shown that e2 does not separate fJ x m and v x m either, which then implies

that the projections in B cannot separate traces of B.

According to Theorem 1.4 of [BKR], the real rank of B is not zero. Then it follows that

the tracial rank of B is not zero.

By Theorem III. 1. 17, the tradal rank of B must be one.
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According to Proposition III.2.3, the dynamical system (X x 1[' x 1[',0: x RE x Re) is not
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CHAPTER IV

APPROXIMATE K-CONJUGACY

In this chapter, we start with a sufficient condition for approximate K-conjugacy between

two minimal dynamical systems (X x 1[' x 1[',0 x R6 x R 7J1 ) and (X x 1[' x 1[',,8 X R~2 x R7J2 ).

Then we give an if and only if condition for weak approximate conjugacy of these two dynamical

systems, showing that weak approximate conjugacy just depends on 0 and,8. In Section IV.3,

an if and only if condition for approximate K-conjugacy between these two dynamical systems is

given.

In [LM3], several notions of approximate conjugacy between dynamical systems are

introduced. In [LMl], it is shown that for rigid minimal systems on X x 1[' (with X being

the Cantor set and 1[' being the circle; see Definition 3.1 of [LMl]) , the corresponding crossed

product C*-algebras are isomorphic if and only if the dynamical systems are approximately

K-conjugate.

For two minimal rigid dynamical systems (X x 1[' x 1[',0 x R~ x R7J) and (X x 1[' x 1[',,8 x

R~j x R7J1 ), we study the relationship between approximate K-conjugacy and the isomorphism of

crossed product C*-algebras.

We start with basic definitions and facts about conjugacy and approximate conjugacy.

Definition IV.D.l. Let X, Y be two compact metric spaces, and let 0 E Homeo(X) and,8 E

Homeo(Y) be two minimal actions. We say that (X,o) and (Y,,8) are conjugate if there exists

(J E Homeo(X, Y) s'uch that (J 00 = ,8 0 (J. We say that (X,o) and (Y,,8) are flip conjugate if

(X, 0) is conjugate to (Y,,8) or (Y, ,8-1).

Definition IV.D.2. Let X, Y be two compact metric spaces, and let 0 E Homeo(X) and,8 E
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Homeo(Y) be two minimal actions. We say that (X, a) and (Y, (3) are weakly approximately

conjugate if there exist (J"n E Homeo(X, Y) and 'Yn E Homeo(Y, X) for n E N such that

dist(jo(J"noa,f0(3o(J"n)->O and dist(goa0'Yn,g0'Yn0(3)->O asn->oo

for all f E C(X) and g E C(Y), where dist(h, 1"2) is defined to be SUPxED dist(h (x), h(x)) for all

continuous functions h, h on the metric space D.

It is clear that if two minimal dynamical systems are conjugate, they are weakly

approximately conjugate. Generally speaking, the inverse implication does not hold.

IV.! C*-STRONG APPROXIMATE CONJUGACY

Given minimal dynamical systems (X,a) and (Y,(3), if they are flip conjugate, then it is

easy to check that the corresponding crossed product C*-algebras C* (Z, X, a) and C* (Z, Y, (3) are

isomorphic.

According to [Tomiyama] (Corollary of Theorem 2), for two minimal dynamical systems

(X, a) and (Y, (3), there exists an isomorphism

'P: C*(Z,X,a) -----4 C*(Z, Y,(3)

satisfying 'P(C(X)) = C(Y) if and only if these two dynamical systems are flip conjugate.

In view of Tomiyama's result above, C* -strong approximate flip conjugacy is defined as

below.

Definition IV.!.!. Let (X, a) and (X, (3) be two minimal dynamical systems such that

TR(C*(Z,X,a)) = TR(C*(Z, X, (3)) = 0, we say that (X,a) and (X,(3) are C*-strongly

approximately flip conjugate 'if there exists a seq'uence of isomorphisms

'Pn: C*(Z,X,a) -> C*(Z,X,(3), 'ljJn: C*(Z,X,(3) -> C*(Z,X,a)
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and a sequence of isomorphisms Xn, An: C(X) --'> C(X) such that

1) [<Pn] = [<Pm] = ['l/>;;-l] in KL(C*(Z,X,a),C*(Z,X,a)) for all m,n E!'iI,

2) lim II<Pn 0 ja(J) - j(3 0 Xn(J)11 = 0 and lim II'l/>n 0 j(3(J) - ja 0 An(J)11 = 0 for all
n--+oo n--+oo

f E C(X), with ja,j(3 being the injections fmm C(X) into C*(Z, X, a) and C*(Z, X, (3).

Some notation will be introduced before the next result about C* -strong approximate

conjugacy.

Let A be a separable amenable C*-algebra that satisfies UCT. For B E K L(A, B), there

are induced homomorphisms r(B)i: Ki(A) --'> Ki(B) for i = 0,1. Define PA: A,a ------> Aff(T(A)) by

PA(a)(T) = T(a) for all a E A,a and T E T(A). Suppose A and B are two unital simple C*-algebras

with tradal rank zero and 'y: Ko(A) --'> Ko(B) is an order preserving homomorphism. As A has

real rank zero, I will induce a positive homomorphism 'Yp: Afl(T(A)) --'> Aff(T(B)).

The theorem below ([Lin4, Theorem 2.5]) gives one necessary condition for C* -strong

approximate flip conjugacy between two crossed product C*-algebras.

Theorem IV.1.2. Let (X, a) and (X, (3) be two minimal dynamical systems such that the

corresponding cTOssed pmduct C*-algebms A a and A(3 both have traeial rank zem. Then a and

f3 aTe C* -stmngly appmximately flip conjugate if the following holds: There is an isomorphism

X: C(X) --'> C(X) and there is B E K L(Aa , A(3) such that r(B) gives an isomorphism

and such that

and

fOT all f E C(X),a'

If Ki(C(X)) is torsion free, then a simplified version of this result holds ([Lin4, Corollary
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2.6]).

Corollary IV.1.3. Let X be a compact met'ric space with torsion free K -theory. Let (X, a) and

(X, ,8) be two minimal dynamical systems such that TR(Aa ) = TR(A13 ) = O. Suppose that there is

an order isomorphism that rnaps [lAal to [lA r;]:

such that there exists an isomorphism x; C(X) ----> C(X) satisfying

Then (X, a) and (X, (3) are C* -strongly approximately flip conjugate.

In the rest of this chapter, for a minimal homeomorphism a on the Cantor set X, we will

use KO(X, a) to denote the ordered group

C(X,'j})/U - faa-I; f E C(X,/f,2)}

with the positive cone being (denoted by KO(X, a)+)

C(X, D)/{f - f a a-I: f E C(X,Z2)}

where D is as defined in Lemma 11.2.9. In KO(X,a), we define the unit element to be

with (1,0)C(x,Z2) being the constant function in C(X,Z2) that maps every x E X to (1,0) E Z2.

V,le use 1K ()(X,a) to denote this unit element.

Lemma IV.1.4. Let X be the Cantor set. For every minimal action a E Homeo(X), if there is
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an order isomorphism

then there is an order isomorphism

0: (C(X, Z2), C(X, D), (1, O)c(X,:t?)) -----+ (C(X, Z2), C(X, D), (1, O)c(X,;I:;2))

s'Uch that the following diagram comm'utes:

(IV, 1)

where Jren JrI3 are the canonical projections from C(X, Z2) to KO( X, a) and KO(X, (3). In fact, there

exists (J E Homeo(X) s'Uch that <p(F) = F 0 (J-I for all FE C(X, Z2).

Proof. The proof is based on [LM3, Theorem 2.6].

Define KO(X, a) to be

C(X, Z)/ {g - go a-I: 9 E C(X, Z)}

and KO(X, a)+ to be

C(X, Z+ U {O})/ {g - 9 0 a-I: 9 E C(X, Z)}.

We can check that (KO(X, a), KO(X, a)+) gives an ordered group with order unit.

Define

h: KO(X,a) ---> KO(X,a) by h([f]) = [il]

for every f = (iI, h) E C(X, Z2), with iI, h E C(X, Z).

From the definition, we can check that h is surjective and h(KO(X,a)+) = KO(X,a)+,
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For the isomorphism

define

ipo: ]{O(X, a) -> ]{O(X, (3) by ipoU!]) = h(ip([(f, 0)]))

for all ! E C(X, Z).

Suppose that there exist !I, 12, g E C(X, Z) such that !I - 12 = g - goa-I. Then it

follows that (!I, 0) - (12, 0) = (g, 0) - (g, 0) 0 a-I, which implies that ip([(!I, 0)]) = ip( [(!I, 0)]). It

is now clear that ipo is well-defined.

Note that ipo([lc(x.z)]) = h(ip([(1,0)c(x.z2)])). As ip is unital, ip(lKO(X,Q)) = lKO(X,m,

which then implies that ipo([lC(x,z)]) = h([(l, 0)c(X,Z2)]) = [lC(x,z)]. We can now claim that ipo

is unital.

For any! E C(X, Z+U{O}), ipoU!]) = h(ip([(f, 0)])). As both ip and h are order preserving,

ipo is also order preserving.

So far, we have that ipo: ]{O(X, a) -> ]{O(X, (3) is untial and order preserving. According

to [LM3, Theorem 2.6], there exists a continuous order preserving map

such that the following diagram commutes:

Now we need to construct the unital positive linear map

0: (C(X, Z2), C(X, D)) -> (C(X, Z2), C(X, D)),

(IV.2)
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such that diagram (IV.l) commutes.

For the yO we get, note that yO is a unital positive isomorphism from Ko(C(X)) to

Ko(C(X)). As C(X) is a unital AF-algebra, by the existence theorem of classification of unital

AF-algebras, there exists an isomorphism 'Ij;: C(X) -> C(X) such that (identifying Ko(C(X)) with

C(X, Z) and Ko(C(X))+ with C(X, Z)+)

'Ij;*o: (C(X, Z), C(X, Z)+, [ID -> (C(X, Z), C(X, Z)+, [ID

coincides with cpo.

As 'I/J is an isomorphism, there exists (J': X -> X such that 'I/J(J) = 1o(J'-1 for all 1 E C(X).

Define <.p: C(X,Z2) -> C(X,Z2) by <.p((J,g)) = ('Ij;(J),'Ij;(g)) for all 1,g E C(X,Z). In

other words, <.p( (J, g)) = (J, g) 0 (J'-l for all (J, g) E C(X, Z2).

For the <.p above-defined, it is easy to check that it is unital and linear. It remains to show

that <.p maps positive cone to positive cone, and makes the diagram commute.

For every (J, g) E C(X, D), we get <.p( (J, g)) = (J, g) 0 (J'-l. As (J, g) E C(X, D), it is clear

that (J,g) 0 (J'-l E C(X, D). So far, we proved that <.p is a positive map.

We can check that

7r{3 0 <.p((J,g)) = 7r{3(h(J), h(g))

= 7r{3 (yO (J) , yO (g) )

= 7r{3(yo(J), 0) + 7r{3(0, yo(g))

= (7r~ 0 tpo(J), 0) + (0, 7r~ 0 tpo(g))

= (tpo 0 7r~ (J), 0) + (0, tpo 0 7r~ (g))

= tp 0 7ra ((J, 0)) + Y 0 7ra ( (0, g))

= yO 7ra ((J,g)),

which implies the commutativity of diagram (IV.l).

As <.p( (J, g)) = (1, g) 0 (J'-l for all 1, 9 E C(X, Z), we get that <.p is an isomorphism, which

finishes the proof.



88

o

Theorem IV.1.5. Let (X x 1I' x 1I', 0' xRi;, X R7)l) and (X x 1I' x 1I',,8 x R6 X R7)2) be two minimal rigid

Cantor dynamical systems. Use A, B to denote the two corresponding crossed product C*-algebms.

According to Proposition III. 2. 1, KO(X,O') is a direct summand of Ko(A) and K O(X,,8) is a direct

summand of Ko(B). Let

be defined by

jA(X) = (x, 0) and jB(X) = (x,O).

If there is an order preserving isomorphism p from Ko(A) to Ko(B) that maps KO(X,O') onto

KO (X,,8). then these two dynamical systems are C* -strongly approximately conjugate.

Proof. \iVe have the following commutative diagram:

According to Lemma IV.1.4, we can lift

to
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which will yield the commutative diagram

In fact, according to Lemma IV.1.4, there exists (J E Homeo(X) such that p(F) = FO(J-l. Define

According to the Kunneth Theorem, we get that K a(C(X X1I'2)) ~ C(X, Z2). By Lemma

II.2.1, if we identify Ko(C(X x 1I'2)) with C(X, Z2), the positive cone will be identified with

C(X, D), with D as defined in Lemma II.2.1. Choose x EX. According to Lemma II.2.9, we know

that Ko(Ax) ~ KO(X, a) and Ko(Bx) ~ KO(X, /3), with Ax, B x being the subalgebras of A and

B, as in Definition 1.2.1.

Now we have the commutative diagram

Ko(A) ----p--~.Ko(B)

CiGJ'O! p !CiIJJ*O
Ko(C(X x 1I'2)) • Ko(C(X X1I'2)) .

Note that pis induced by the x: C(X x 1I'2) ----> C(X X1I'2) defined above. We have shown

that pO (ja:)*.j = (j{3 0 X)*i, i = 0, 1.

We will show that IP 0 ja: = PA rJ 0 j{3 0 X on C(X)sa'

For every tradal state T E T( C* (Z, X, /3)), we know that it corresponds to a /3-invariant

probability meausure /-lB (in such sense that T(a) = /-l(E(a)) , with E being the conditional

expectation from C*(Z,X,/3) to C(X)).



90

For every ,8-invariant probability measure /-LB on X, if we use v to denote standard

Lebesgue measure on 1l, it is then clear that /-LB x v X v is ,8 X Rt:2 x R7)2-invariant. As the

dynamical system (X x 1l x 1l,,8 x Rt;, X R7)2) is rigid, for every ,8 x Rt:2 x R7)2-invariant probability

measure, it must be /-L x v x v, with /-L being an ,8-invariant probability measure and v being the

Lebesgue probability measure.

Note that A denotes C* (Z, X x 1l x 1l, a x Rt;, x R7)l) and B denotes C* (Z, X x 1l x 1l,,8 x

Rt;, x R7),). According to Proposition III.2.1, the fact that Ko(A) is isomorphic to Ko(B) implies

that K 1(A) is also isomorphic to KJ(B). According to Proposition III.2.3, the tradal rank of A

and B are both zero, thus classifiable via the K-data.

Let 'P: A ~ B be the C*-algebra isomorphism such that

'P*o: Ko(A) ----+ Ko(B)

coincides with the p in the statement. Define

'P*: T(B) ----+ T(A)

as 'P*(TB)(a) = TB('P(a)) for all a E A and TB E T(B).

Note that a C*-algebra with tradal rank zero must have real rank zero. We can now claim

that for every a E C*(Z,X,a)sa and TB E T(B) given by /-LB x V X v,

Consider

a = f t2I g t2I h E C(X x 1l X 1l)8a C A sa

with f E C(X)sa,g E C(1lLa and h E C(1l)sa, and use TA to denote 'P*(TB). As a x Rt:l x R7)l is

rigid, there exists an a-invariant measure /-LA such that TA(a) = (/-LA x V x v)(E(a)), with E being

the conditional expectation from A to C(X x 1l x 1l) and v being the Lebesgue measure on the

circle. It follows that ("(p 0 jo,(a)) (TB) = TA(a) = /-LA (f) . v(g)· v(h).
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As for ((PA/3 0 j{3 0 x)(a))(TB), we know from the definition that

Recall the definition of X. We have

If we can show that !lB (f 0 (j-l) = !lA (f), then it follows that

(!lB X V X v)(x(f ® 9 ® h)) = !lA(f) . v(g) . v(h) = (!lA x V X v)(f ® 9 ® h),

and we can then get

We will show that for all f E C( X, Z) and !lA,!lB as given above, we have !lB (f 0 (j-l) =

!lA(f). If that is done, noting that the (>linear span of C(X,Z) is dense in C(X)sa, we get

!lB(f 0 (j-l) = !lA(f) for all f E C(X).

According to our notation, for 9 E C(X), we have

= ip* (TB) (g ® idlI' ® idlI' )

= TB(ip(g ® idlI' ® idlI')).

According to digram (IV.2) in the proof of Lemma IV. 1.4, we have the commutative

diagram
;po

Ko(C(X)) ----'------------;..) Ko(C(X))

W~! !W~
Ko(C*(Z, X, a)) 'Po) Ko(C*(Z, X, (3)) ,

(IV.3)

where C* (Z, X, a) and C* (Z, X, (3) are the crossed product C*-algebras of dynamical systems
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(X, a) and (X, fJ) respectively, <Po, <Po are order preserving isomorphisms, and <Po agrees with X as

a map from C(X, Z) to C(X, Z).

By the proof of Lemma IV.1.4, for all j E C(X, Z), if we identify C(X, Z) with Ko(C(X)),

we get

From the commutative diagram (IV.3), we can conclude that (although we cannot claim

that cpU @ id'F 0 id'F) = xU) 0 id'F 0 id'1f)

As xU) = j OO"~l, it follows that

/-LAU) = (/-LA X V X v)U 0 idll' 0 idll')

= TA(f 0 id'f 0 id1r)

= <p*(TBHj 0 id']]' 0 id']j')

= TB (cp(f 0 id'F 0 id']]' ))

= TB (x(f) 0 id']]' 0 id'j]')

= PB(X(f))

= P'B(f 0 0"-1).

Now we have that PA (f) = JiB (f 0 0"~1) for all j E C(X, Z). Note that the C-linear span

of C(X, Z) is dense in C(X), we get

As both dynamical systems a x Ri;r x R'71 and (3 x R,;, X R7)2 are rigid, by Proposition

III.2.3, we have TR(A) = TR(B) = O. According to Corollary IV.1.3, these two dynamical systems

(X x 'Jr x 'Jr, a x Ri;r x R'7I) and (X x 'Jr x 'Jr, (3 X RI;2 X R7)2) are C* -strongly approximately conjugate.

D
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IV.2 WEAK APPROXIMATE CONJUGACY

For minimal homeomorphisms ex x RI;I x R'71 and f3 x R6 x Rr/2 , the following lemma shows

that whether they are weakly approximately conjugate or not is determined by ex and f3 only, and

has nothing to do with Rc and R lI , for i = 1,2.

Lemma IV.2.1. Let (X, ex) and (X,f3) be two minimal Cantor dynamical systems. For continuous

maps ~l, 6, 'TJl, 'TJ2 : X ---> 1I', (X x 1I' x 1I', ex x RI;I x R1)J and (X x 1I' x 1I', f3 X RI;2 X R')2) are weakly

approximately conJugate if and only if (X, ex) and (X, (3) are weakly approximately conjugate.

Proof The "if' part:

For every c > 0, we will show that there exists ern E Homeo(X x 1I' x 1I') such that

dist(ern 0 ex 0 er;:;-l, (3) < c.

As (X, (3) is a minimal Cantor dynamical system, there exists a Kakutani-Rokhlin partition

{Xs,k: 1 ::; s ::; n, 0::; k < h(s)}

such that h(s) > 5/c, and diam(Xs,j) < c/5, where diam(Xs,j) is defined to be SUPx,yEX.',j dist(x, y).

For any two elopen sets X SJoJ1 and X s2 ,h in the Kakutani-Rokhlin partition, there exists

OSI,j];S2,h > 0 such that if x,y E X SJoJ1 UXS2,j2 and dist(x,y) < oSI,j];s2,h, then either x,y E

XSI,Jlorx,yEXs2,h'

Let 0 = minos,j;sl,j', where Xs,j and Xs',j' traverse through all pairs of distinct elopen

sets in the Kakutani-Rokhlin partition above.

As (X, O~) and (X, (3) are weakly approximately conjugate, there exists "In E Homeo(X)

such that

distboexo"l~l(x),f3(x))< O.

According to the definition of 0, it follows that for every Xs,j in the Kakutani-Rokhlin partition
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above, we have

Without loss of generality (replacing a with, 0 a 0,-1), we can assume that a and f3

satisfies

Identify 1[' with lR/Z, and define 7r by 7r: lR ----> lR/Z, t I---> t + Z. For all x E Xs,o, define

h(x) = O. For x E Xs,k with 0 < k < h(s), define

k

h(x) = 1)6 - 6)(a- j (x)).
j=1

As 6 and 6 are both in C(X,1['), it follows that the above defined h is a continuous function

from X to 1['.

For x E Xs.k, define

h(s)

91(X) = L(6 - ~1)(a-j(ah(s)-k(x))) .

.i=1

It is also clear that 91 E C(X,1[').

As X is totally disconnected, we can divide X into U~=1 Xk, with every X k being a elopen

subset of X satisfying dist(h(x), h(y)) < ~ for x, y in the same X k . For 91 IXk' we can lift it to

continuous function Gl,k: X k ----> [0 - i, 1 + -,tJ satisfying 91 IXk = 7r 0 G 1•k .

Define G1 : X ---->lR by setting G1(x) to be G1,dx) if x E X k. It is then easy to check that

G 1 is a lifting of 91 satisfying

1 1
91 = 7l" 0 G1 and G1 (x) E [0 - 4,1 + 4J for all x EX.

For x E X s .k , define
Gdx), k

SI(X) = h(x) - h(s) + Z.
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Similarly, define J2(x) = 0 if x E Xs,o and

k

J2(x) = L(''72 -7)l)(a- j (x))
j=l

for x E Xs,k with 0 < k < h(5). Define

his)

92(X) = L(7)2 -7)1) (a-,j (ah(S)-k(x))) .
J=l

As X is totally disconnected, we can find a lifting G2 E C(X, lR) such that

for all x E X.

For x E Xs,k, define

For the 51 and 52 we have defined, it is easy to check that they are continuous function from X to

lR/Z, According to our identification, we can regard 51 and 52 as functions in C(X, 'IT').

\Ve will show that (idx x R SI x R S2 ) will approximately conjugate a x REI x R1JI and

For every (x, t1, t2) E X x 'IT' x 'IT', we have

(idxxRs ] xRs2 )o(axRE] x R1J])o (idx xRSI X RS2 )-1(X,t1,t2)

= (idx x Rs ] x RS2 ) 0 (a x REI x R1J')(x, t1 - 51(X), t2 - 52(X))

= (idx X Rs ] x RS2 )(a(x), t1 - 51(X) + 6(x), t2 - S2(X) + 7}1(X))

= (a(x), t1 + ~l(X) - 51(X) + 51(a(x)), t2+ 7)1 (x) - 52(X) + 52(a(x))),

and it is clear that
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As a(Xs,j) = (3(Xs,j) and diarn(Xs,j) < c/5, we have dist(a(x), (3(x)) < c/5 for all x E X.

Consider the distance between t] +~] (x) - s] (x) + s] (a(x)) and t] + 6(x), We get

According to the definition of S], if x E Xs,h(s) (that is, x is on the roof), then

h(s)
s](x) = '2:::(6 - ~d (a-j(x)) - G](x)

j=]

h(s) h(s)
= '2:::(6 -- ~]) (a-j(x)) - '2:::(6 - ~d(a-j(x))

j=] j=O

= -(6 - 6)(x)

= 0,

We know that s] (a(x)) = 0 as (a-h(sl)(x) E Xs,o, It is then clear that

if ,7.) is in the roof set,

If x is not in the roof, in other words, for x E Xs,k with 0 ::; k < h(s) - 1, we have

As G](x) E [0 - -!' 1 + -!J for all x, and we have h(s) > 5/c for all s, it then follows that

Is](a(x)) - S](x) +6(x) -6(x)[ < 2c/5 for all x E X.

Similarly, we have
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and

IS2(a(x)) - S2(X) + Til (x) - Tl2(x)1 < 2E/5 for all x EX.

So far, we have proved that

dist ((idx x RS1 x R.'2) 0 (a x R~l x R'7J 0 (idx x RS1 x R s2 )-1,,8 X R~2 x R'72)

< E/5 + 2E/5 + 2E/5

= E.

As we can construct such conjugacy maps for all E > 0, it follows that a x R~l x R'71 is weakly

approximately conjugate to ,8 x R~2 X R'72 if a is weakly approximately conjugate to ,8.

The "only if' part.

If a sequence of O"n in Homeo( X x ']['2) approximately conjugates a x R~l x R')l to ,8 X

R~2 X R'72' as X is totally disconnected, we can write O"n as "In X 'fi, with "In E Homeo(X) and

'P: X ----+ Homeo(']['2) being a continuous map.

Let P: X X ']['2 ----+ X be defined by P(X,(tl,t2)) = x (the canonical projection onto X).

We can easily check that

which then implies that

VVe have finished the proof of the "only if' part.

o
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IV.3 APPROXIMATE K-CONJUGACY

From Lemma IV.2.l, we know that the if and only if condition for 0: x R€! X R1)! and

B x R6 X R1)2 to be weakly approximately conjugate is that 0: and f3 are weakly approximately

conjugate.

One might be wondering whether we have weak approximate conjugacy between 0: x R€! X

R'7! and f3 x R6 X R'72 , can we expect to have the isomorphism between C*-algebras C* (2, X x

Generally speaking, weak approximate conjugacy is not enough to imply that the

corresponding crossed product C*-algebras are isomorphic. Examples can be found in [Ml], [LMl]

and [LM3].

As guessed by Lin in [LMl], if we strengthen the definition of weak approximate conjugacy

(in the sense that those conjugacies will induce an isomorphism of K-data of these two crossed

product C*-algebras), this might be equivalent to the isomorphism of two crossed product

C*-algebras.

That "strengthened" version of weak approximate conjugacy is called approximate

K-conjugacy. Before the definition of approximate K-conjugacy is given, the definition of

asymptotic morphism will be given and a technical result needs to be mentioned,

Definition IV.3.1. A sequence of contractive completely positive linear maps {<Pn} from C*-algebra

A to C*-algebra B is said to be an asymptotic morphism, if

lim II<pn(ab) - <pn(a)<pn(b)11 = 0 for all a,b E A.
'n-:'OO

Proposition IV.3.2. [Lin4J

Let (X, 0:) and (X, (3) be two dynamical systems. If there exists a seq'uence of homeomorphisms

an: X ---7 X such that limn->oo dist(an 0 0: 0 a;;l,(3) = 0, then for a seq'uence of unitaries {zn} in

Ax with

lim Ilznja(j) - ja(j)znll = 0 for all f E C(X),
n--?oo
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there exists a unital asymptotic morphism {cp~} from Ail to Au such that

for all f E C(X).

Proof. This is Proposition 3.1 in [Lin4]. The main ingredient in the proof is to use weakly

approximate conjugacies to construct a C*-algebra homomorphism from Ail to rr~ Au! EB~ Au,

and apply the lifting property of completely contractive positive linear maps.

It works like this:

Let 7r; rr~ Au -; EB~ Au be the quotient map. Define

00 00

by setting

To show that \[1 is a well-defined homomorphism, we just need to check that

As dist(O'n 0 a 0 0';; 1, (3) -; 0, we have

Thus \[1: Ai1 -; rr~ A u/ EB~ Au is a C*-algebra homomorphism.
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Consider

As Aj3 is amenable, according to [CE, Theorem 3.10], there exists a sequence of contractive

completely positive linear maps cp~: Aj3 ----> A", such that

71"({cp~(b): n EN}) = \II(b) for all b E Aj3.

As \II is a homomorphism, it follows that

lim IIcp~(ab) - cp~(a)<p~(b)11 = 0 for all a, bE Aj3,
n->oo

which indicates that {<p~: Aj3 ----> A", : n E N} gives a unital discrete asymptotic morphism.

o

Now we can give the definition of approximate K-conjugacy between two dynamical

systems (X, ex) and (X, (3).

Definition IV.3.3. FOT two minimal dynamical systems (X,ex) and (Y,f3), with X and Y being

compact metrizable spaces, we say that (X, ex) and (Y, (3) aTe appmximately K-conjugate if theTe

exist homeomoTphisms an: X ----> Y, Tn: Y ----> X, and an isomoTphism

between K -gmups such that

and the associated discTete asymptotic mOTphisms 'l/Jn: B ----> A and <Pn: A ----> B induce the

isomoTphisms p and p-l Tespectively.
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Remark: According to Proposition IV.3.2, the weak approximate conjugacy maps will induce

asymptotic morphisms. But it is not generally true that the asymptotic morphisms will induce

a homomorphism of K o and K 1 data. In Definition IV.3.3, those approximate conjugacies must not

only induce a pair of homomorphisms between Ki(A) and Ki(B), in addition, these homomorphisms

must be a pair of isomorphisms that are inverses of each other.

For the classical case of minimal Cantor dynamical systems, it is shown in [LM3] that two

Cantor minimal dynamical systems are approximately K-conjugate if and only if the corresponding

crossed product C*-algebras are isomorphic.

For the case of (X x '][',0 x R~), with 0 E Homeo(X) being minimal homeomorphism and

1;: X --> '][' being a continuous map, similar results are obtained in Theorem 7.8 of [LMl].

Based on Theorem IV.1.5 and Lemma IV.2.1, we will give an if and only if condition for

approximate K-conjugacy between 0 x R~l X R'71 and 13 x R6 X R'72'

Theorem IV.3.4. Let X be the Cantor set. Let 0,13 E Homeo(X) be minimal homeomorphisms,

and let 1;1,6, Til ,T!2: X --> '][' be continuous map such that both 0 x R~l X R'71 and 13 x R6 X R'72

are minimal rigid homeomorphism of X x '][' x '][' (as in Definition III. 2. 2). Use A to denote

the crossed product C*-algebra corresponding to the minimal system (X x '][' x '][',0 x R6 X R'71)'

and B to denote the one corresponding to (X x '][' x '][',13 x R6 x R1)2)' Use KO(X,o) to denote

C(X, Z)/ {f - foO-1: f E C(X, Z2)} and KO(X, 13) to denote C(X, Z)/ {f - fo{3-1: f E C(X, Z2)}.

The following are equivalent:

1) (X x '][' x '][', 0 XR~l XRT)l) and (X x '][' x '][', {3 x R6 XRT)2) are approximately K-conjugate,

2) There is an order isomorphism p: J(o(B) --> J(o(A) that maps J(O(X, {3) to J(°(X, 0).

Proof. 1) ~ 2) :

If (X x T x '][', 0 XR~l x R'71) and (X x'][' x'][',{3 x R6 x R'72) are approximately K-conjugate,

according to the definition of approximate K-conjugacy (Definition IV.3.3), there exists (In E

Homeo( X x TxT) such that
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and the discrete asymptotic morphism induced by {an: n E N} will yield an isomorphism from

K.(B) to K.(A).

That is, there exists an isomorphism

Define cP to be the restriction of cPo on Ko(A). We just need to show that cP maps KO(X, (3) to

KO(X, ex).

According to the Pimsner-Voiculescu six-term exact sequence (as in the proof of Proposition

III.2.1), we have

As ex x Rl;l X R'/l and (3 x RI;2 X R'/2 are approximately K-conjugate, for given projection

P E M=(B), there exists N E N such that for all m, n > N, we have [p 0 an) = [p 0 am] in Ko(A).

It is obvious that [p 0 an] E (jo,).(C(X x 11' x 11')). Then we can conclude that the

isomorphism p induced by the conjugacy maps will map KO(X, (3) to KO(X, ex).

2)==>1):

It is easy to check that 2) implies the following commutative diagram:

Ko(B)
p

• Ko(A)

(j(3).or I(jo,).o

KO(X, (3) • KO(X, ex) .
p IKO(X,(3)

According to Theorem IV.1.5, the two minimal homeomophisms ex x Ri;, x R'Jl and (3 x RI;2 X R'/2

are C' -strongly flip conjugate.

The map p above induces an order preserving isomorphism between KO(X, (3) (which is

isomorphic to C(X,71})/{f - f 0 (3-1}, with order described as in Lemma 11.2.9) and KO(X, ex)

(which is isomorphic to C(X, 71})/ {j - f 0 ex- 1 }, with order described as in Lemma II.2.9). Note
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that

[{'o(C*(Z, X, a)) ~ C(X, Z)/{g - 9 0 0'-1: 9 E C(X, Z)},

with

Ko(C*(Z, X, 0'))+ ~ C(X, Z)/{g - 9 0 0'-1: 9 E C(X, Z),g ;::: O}.

It follows that there is an order isomorphism

p: (Ko(C*(Z, X, (3)), Ko(C*(Z, X, (3))+, [l c *(Z,x,l3l])

~ (Ko(C*(Z, X, ex)), Ko(C*(Z, X, ex))+, [l c *(z,x,cx)])'

According to Theorem 5.4 of [LM3], (X, ex) and (X, (3) are approximately K-conjugate. Thus they

are weakly approximately conjugate.

For any f > 0 and any finite subset F c C(X x 1I' x 1I'), as (3 is minimal, we can find

Kakutani-Rokhlin partition

P = {X(s,k): s E 5,1 S k S H(s)}

3271" . E
such that H(s) > - for all s E 5 and dlam(X(s, k)) < -.

E 16

As C(X X 1I'1 x 1I'2) is generated by

{lD, ZI, Z2: D is a clopen subset of X, Zi is the identity function on T;},

without loss of generality, we can assume that

The fact that (X, ex) and (X, (3) are approximately K-conjugate implies that there exist

{(Tn E Homeo(X) : n E N} such that

(Tn 0 ex 0 (T;;-1 ~ {3.
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By choosing n large enough, just as in the proof of the "if" part of Theorem IV.2.1, we get

(O'n 0 a 0 O',.;-l)(X(S, k)) = (3(X(s, k)) for s E S,l ::; k ::; H(s).

\Vithout loss of generality, we can assume that

a(X(s, k)) = (3(X(s, k)) for s E S,l ::; k ::; H(s).

As in the proof of "if" part of Theorem IV.2.1, there exist maps {idx x Rgn x Rhn}nEN

such that

with all the gn, hn : X ~ l' being continuous functions as defined in the proof of Theorem IV.2.1.

We will show that the conjugacy maps {idx xRgn XRhn: n E N} will induce an isomorphism

between K.(B) and K.(A).

The idea is like this:

Vve know that these two dynamical systems a x Re 1 x R1]] and (3 x Rez x RIJZ are C'-strongly

flip conjugate. Thus there exists 'i/Jn: B ~ A such that the following diagram approximately

commutes:

'i/JnB ---------,..~ A

XnC(X x l' x 1') ---..,..~ C(X x l' x 1').

As we had assumed that (without loss of generality) a(X(s, k)) = (3(X(s, k)) for s E S, k =

1.... , H (s), the Xn in the diagram above satisfies

dist(Xn(x), x) < diam(X(s, k)) < ElM

for x E X(s, k). In other words, restricted on C(X x l' x 1'), Xn is close to the identity map.
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Note that {'0n} are isomorphisms and [1Pn] = [1Prn] in K L(B, A) for m, n large enough. If

we can find Wn E U(A) such that 10 O"n is close to W~1Pn(j)Wn in A, and W~41n(UB)Wn is close

to uA2n in A, where 2 n is a unitary element that "almost" commutes with C(X x 11' x 'IT'), then it

follows that the conjugacy maps {idx x Rgn x Rhn : n E N} will induce an isomorphism between

K.(B) and K.(A).

The complete proof is as below:

Let 91,92, il, h be as defined in the proof of Lemma IV.2.1, and let

:F1 = {9'i ' l x (s,k),fi . l x (s,k): s E S,1 :s; k :s; H(s)}.

We can further divide a- 1 (X (s, 1)) into the disjoint union of clopen sets Y (s, 1), Y (s, 2),

., ., Y(s, N(s)), and choose Xs,j E Y(s, j) such that

il(·7:) - l(xs ,j)! < E/16 for all 1 E :F1 , 1 :s; j :s; N(s), s E S.

Let G 1 , G2 be the same as the one defined in the proof of Theorem IV.2.1. That is, G 1 is the lifting
h(s) h(s)

of 91 (x) = 2:(6 -6) (a- j (ah(s)-k(x))), G2 is the lifting of 92(X) = 2: (7/2 -7/d(a- j (ah(s)-k (x))),
j=l j=l

and Gi(x) E [0 - t, 1 + t]· As both G 1 , G2 are path connected to the zero function, it is clear that

[ 1 ] [- -i2rrGk/H(s) 1 ]
Zi' Y(s,j) = "i' e . Y(s,j)

in K 1(A) for i = 1,2 and k = 1,2.

Let

is,j: C(IYs.J x 11' x 11') ---> lYs.J . A ·IYs.J

be the inclusion map. Let two homomorphisms

be defined by
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and

o '(1)(x Z Z) = id (x) '1(z ,e'i2trGdxs,,i)/H(s) - ,e'i2trG2(XS ,])/H(s))
S,) ,I, 2 Y s ,] 1 , "'2 .

Consider the maps

It is clear that these two maps are monomorphisms.

By Proposition III.2.3, TR(A) = 0, and it follows that TR(lYs,,i . A· lys,,i) = o.

As G I, G2 are contractible, we can claim that

For every 1 E 1Y s,] , A . 1Ys,,i' and for every tradal state T on 1Ys ,] . A . 1Ys,,i' consider

T((i S,) 0 6. s ,j)(1)) and T((is,j 0 Os,j)(1)). By Lemma III. 1.4, we can regard 1ys ,,i . A· 1ys ,,i as the

crossed product C*-algebra of the induced minimal homeomorphism of Ys,j x 1l' x 1l'. As a x R~ x R1]

is rigid, it follows that the traces on 1Ys,,i . A . 1Y",,i also corresponds to such measures like p., x v,

with v being the Lebesgue measure on the torus.

Now we have

T ((is,j 0 6. s ,))(1)) = T (idY(s,j) ® 1)

= J"(Y(S,j))· r 1 ((ZI' Z2)) dviT2
= p.,(Y(s,j))· h2 1 (ZI' e'i2trG 1 (x s ,,i)/H(s),Z2' ei2trG2(XS,,i)/H(S)) dv

As TR(ly . A ·ly) = 0, [is)' o6. s )·] = l'i s )' 0 OS)·] and
S,j S,j 1 l I ,

for all T E T(lys ,,i . A . 1Ys ,j)' According to Theorem 3.4 of [Lin3], the two monomorphisms

is,] o6.s ,j and is,j 0 OS,] are approximately unitarily equivalent. Thus there exists a unitary element
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Vs,j E 1ys ,] . A ·lYs ,j such that

N(s)

Let V s = L Vs,j' As Ys,l, Y s ,2, ... , Ys,N(s) are mutually disjoint, we have
)=1

II (v~)* zd(x)lQ-l(X(s,l))V~ - ze-
21rkG

;(x)/H(s) f(x)l",-J(X(s,l)) II < c/16 + Kc/(16K) + 10/16

< c/4.

for all f E F1,s E S.

Let

As a x R~ x R'7 is C*-strongly flip conjugate to a x R~ x R1]' for any 8 > 0, and for the

F2 C C(X x 'lr x 'lr), there exists a C*-algebra isomorphism 7j;: B ----* A such that

Note that 1X (s.k), for S E Sand 1 :s; k :s; H(s), are mutually orthogonal projections and

add up to 1B, and {l X (s,k): s E S,l :s; k s H(s)} C F2 . According to the perturbation lemma

[Lin2, Lemma 2.5.7], by taking 8 to be small enough, the fact that 117j;(jJ3(1)) - )",(1)11 < 8 will

imply that there exists v E U(A) such that

and

'V*l X (s,k)V = 1X (s,k) 013 and Ilv* fv - f 0 1311 < E/(4K) for allf E F2 .
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H(s)

Define W = L L lX(s,k)V-kV~Uk, Then we can check that
sES k=l

(

"\"'~ k k k)' "\"'~ k' k' k'VV*W = L.J L.J lX(s,k)V- vsu . L.J L.J lX(s',k')v- vs'u

sES k=l s'ES k'=l

H(s)

= L L (u-kv;kvklx(s,k)lx(s,k)V-kV~uk)

sES k=l

H(s)

"\"' "\"' -k ~k1 k k
= L.J L.J U V s a-1(X(s,1))vsu

sES k=l

H(s)

= L L u-
k

l a -l(X(s,l))U
k

sES k=l

H(s)

= L L lal"(a- 1 (X(s,1)))

sES k=l

H(s)

= L L lX(s,k)

sES k=l

As TR(A) = 0, we have tsr(A) = 1. Thus W·W = lA implies that WW* = lA, So far, it

is checked that W is a unitary element in A.

As

and

Ilv' Iv - I 0,81/ < c/(4K) for all IE F 2 and for all I E F 2 ,
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W* Zi1X(s,h:) TV =

-k -k kIll -k k k= 'u V s V X(s,k)Zi X(s,k) Xs,k v V s U

-k -k k( 1 ) -k k k= U V s V Zi X(s,k) V V s U

-k -k (( 1 ) 13k) h: k
~c:/(4J() U V s Zi X(s,k) 0 V s U

~€/(4J()+c:/4 (zl X (s,k») 0 a,

where

(x, t, + (t,,, (,,)-'(I1-'(x))) -" (l1- i (X))) - kG,(x)/H(,),

t,+ (t,", (ai -' (l1-k(x))) -", (l1- i (X))) - kG, (xl/H('I) ,
for x E X(s,k) with s E Sand 1:::; k:::; H(s),

Then it follows that

IIW* Zi1X(s,k) W - (zi1X(s,k») 0 all < K(c/4K) + c/4 < c.

Similar to the proof of Theorem IV.2.1, we have

Consider the map adW 0 1jJ, we have that

II(adW 0 1jJ) (j(3 (f)) - ja(f 0 a)11 < c + 6.
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If (adW 0 'l/J) maps UB to UA or UA . Y such that Ilyf - fY11 < E for all f E F, then it

follows that the K-map induced by approximate conjugacy map (J (restricted to F) will coincide

with [adW 0 'l/J] E K L(B, A).

In fact, we can check that

which then implies that Ilyf - fyll < E if we define y = u:4(W*vW) E U(A).

As

(adW 0 'l/J)(UB) = W'l/J(UB)W ;::::.,!(16K2) W*vW = UAY,

we may claim that the K-map induced by approximate conjugacy map (J (restricted to F) will

coincide with [adW 0 'l/J] E K L(B, A).

As C(X x 1I' x 1I') is separable, by taking F to be large enough and E ~ 0, it follows that

the weak approximate conjugacy map (J will induce an isomorphism from K;(B) to K i (A), which

finishes the proof.

o
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CHAPTER V

THE CASES \VITH COCYCLES BEING FURSTENBERG TRANSFORMATIONS

\lVe had studied properties of dynamical systems and the corresponding crossed product

C*-algebras if the action on X x 1[ x 1[ is (t x R~ x R1). That is, in the skew product, the actions

on t he torus are just rotations.

If the actions on torus are Furstenberg transformations, do we have similar results? This

chapter studies weak approximate conjugacy between two such systems and the K i of such crossed

product C*-algebras (which might be different from the case in the previous chapter), and shows

that there are two types of such minimal dynamical systems that will yield different K-theory for

the crossed product C*-algebras.

A definition of Furstenberg transformation on 1[2 is given below.

Definition V.O.1. A map F: 1[2 -+ 1[2 is called a Furstenberg transformation of degree d if there

e:r:ist 0 E 1[ and continuous functIOn f: IR -+ IR sati.~fying f(x + 1) - f(x) = d for all x E IR such

Ulal (identi:h/ing']I' with IR/Z)

F(t], t2) = (t 1 + D, t2 + f(tJl).

For the F above, d is called the degree of Furstenbe'rg transfor'm F, and is denoted by deg( F). The

l/umber d is also called the degree of f, and denoted by deg(J).
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V.I WEAK APPROXIMATE CONJUGACY BETWEEN TWO FURSTENBERG

TRANSFORMATIONS

Use FT(1I'2) to denote the set of all Furstenberg transformations on 11'2. We will consider

the relationship between 0: x tp and (3 x 1/;, with 0:,0 E Homeo(X), and tp,1/J: X ----., FT(1I'2).

Proposition V.1.l. Let F,G be two Furstenberg transformations on 11'2 (as defined above). If the

degree of F is m, and the degree of G is n, then FoG is still a Furstenberg transformation, and

the degree of FoG is m + n.

F 0 GUl, t2) = F(t 1 + 0, t2 + g(t 1 ))

= (t 1 + 0 + e, t2 + g(td + f(t 1 + 0)).

According to definition V.a.l, FoG is a Furstenberg transformation.

As deg F = m and deg G = n, it follows that

g(tl + 1) + f(tl + 1 + 8) - (g(tr) + f(tl)) = g(tl + 1) - g(td + f(t 1 + 1 + 0) - fUd

=m+n.

Thus the degree of FoG is m + n.

D

In this chapter, we identify 11' with lR/Z. For tl, t2 E lR/Z, we define the distance between

them by

The following observation will be used.

Proposition V.1.2. Let f, 9 E C(1I', 11'), and define dist(j, g) = sup dist(j (t), g(t)). If dist(j, g) <
tE1f

1/2, thendeg(j) =deg(g).
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Proof. Suppose that dist(f,g) < 1/2 and deg(J) i degg.

Note that f - 9 E C(lR/Z, JR/Z) is of degree deg(f) - deg(g), which is not zero. According

to the Intermediate Value Theorem, there exists t E JR and n E N such that

If(t) - g(t) + nl = 1/2.

It then follows that dist(f - g) = 1/2, contradicting with our assumption. So far, we have finished

the proof.

o

For two minimal homeomorphisms 0: x ip and 0: x 'ljJ (with ip, 'ljJ: X --4 FT('['2)), a necessary

condition for weak approximate conjugacy between them (with conjugacy maps having cocycles in

Furstenberg transformations) is given:

Proposition V.1.3. Let 0: x ip and (J x 'ljJ be two minimal homeomorphisms on X x '['2 with

'P, 'ljJ: X --4 FT(,[,2). If there exists 'In X cPn E Homeo(X x '['2) with cPn: X --4 FT('['2) continuous

such that bn x cPn) 0 (0: X ip) 0 bn x cPn)-1 --4 (J X 'ljJ, then

1) bn: n E N} approximately confugates 0: to (J,

2) there exists N E N s'uch that

deg('ljJbn(x))) + deg(cPn(x)) = deg(ip(x)) + deg(cPn(O:(x)))

fOT all n > N.

Proof. As bn x cPn) 0 (0: X ip) 0 bn x cPn)-l --4 {J X 'ljJ, we have

which is equivalent to
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Assume that cp, 1J, ¢n: X ----> FT(1I'2) are defined by

with lx, gx, hx just like the function I in definition V.O.1.

Note that

(In X ¢n) 0 (0: X cp)(x, (tl' t2)) = (In X ¢n) 0 (o:(x), (tl + BI(x),t2 + Ix(td))

= (J'n(O:(x)), (t l + BI(x) + ~n(O:(x)), t2 + Ix(td + hn,a(x)(td)),

and

([3 X 1J) 0 (In X c/Jn)(x, (tl' t2))) = ([3 X 1J)(rn(x) , (tl + ~(x), t2+ hx(td))

= ([3(1n(x)), (tl + ~n(x) + B2(1n(x)), t2 + hn,x(tl) + g,n(x)(tl)))'

It follows that dist(ln(O:(x)), [3(1n(X))) ----> 0 and dist(Hn,x(t l ), Gn,x(tl)) ----> 0, where

Hn.x(td == Ix(tl) + hn.a(~:)(td and Gn,x(td = hn,x(td + g'n(x)(tl).

Choose N E N such that if n > N. Then dist(Hn,x(tI), Gn,x(tl)) < 1/2.

As lx, hn,a(~;),hn,x and g,n(x) can be regarded as maps from 1I' to 1I', we can identify Hn,x

and Gn .x as functions in C(1I',1I'). According to Proposition V.1.2, it follows that for all n > N,

we have

deg(Hn.x) = deg(Gn,x).

Note that deg(fx) = deg(cp(x)), deg(gx) = deg(1J(x)), and deg(hn,x) = deg(¢n(x)). We

then have

deg(cp(x)) + deg(¢n(O:(x))) = deg(¢n(x)) + deg(1J(ln(x))) ,

which finishes the proof.
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D

V.2 K-THEORY OF THE CROSSED PRODUCT C*-ALGEBRA

For the minimal dynamical system (X x ']]'2, a x cp), let A be the crossed product C*-algebra.

\Ve will use the Pimsner-Voiculescu six-term exact sequence to get the K -data of A.

We use KO(X,a) to denote C(X,71.)/U - f 0 a: f E C(X,71.)}. Note that deg(cp(x)) E

C(X, 71.). Let 1f: C(X,71.) ---4 KO(X, a) be the canonical projection, and use [deg(cp(x))] to denote

1f(deg(cp(x))).

Proposition V.2.1. For the minimal dynamical system (X x ']]'2, a x cp) with cocycles being

Furstenberg transformations, use A to denote the crossed product C*-algebm of this dynamical

system.

1) If [deg(cp(x))] ¥- 0 in KO(X, a), then

Ko(A) ~ C(X, 71.2 )/U - f 0 a: f E C(X, 71.2 )} EEl 71.

and

K 1 (A) ~ C(X, 71.2 )/{(I, g) - (I, g) 0 a - (deg(cp) . (g 0 a), 0): f, 9 E C(X, Z)} EEl 71.2 .

2) If [deg(cp(x))] = 0 in KO(X, a), then

and

K 1 (A) ~ C(X, 71.2 )/{ (I, g) - (I, g) 0 a - (deg(cp) . (g 0 a), 0): f, 9 E C(X, Z)} EEl 71.2 .
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Proof. According to the Pimsner-Voiculescu six-term exact sequence, we have

It then follows that we have the exact sequences

and

We will study Ki(A) by looking at the kernel and co-kernel of id - (a x CP)*i (for i = 0,1).

From Lemma 11.2.1, we know that K i (C(1['2)) is isomorphic to Z2 for i = 0,1. Note that

Ko(C(X)) ~ C(X, Z) and KdC(X)) = O. According to the Kiinneth Theorem,

and

We will identify both Ko(C(X x 1['2) and K)(C(X x 1['2) with C(X,Z2).

According to Example 4.9 of [PhI], for every x EX,
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2 2 (m) ( 1 0) (m) ( m )rp(.T)*l: Z ---> Z ,f---l • = .
n deg(rp(x)) 1 n deg(rp(x)) . m + n

For (f,g) E C(X,Z2) ~ K1(C(X x 11'2)), we can consider H E U(C(X X11'2)) defined by

H(x Z z) = zf(x) . zg(x)
, 1, 2 1 2'

with Zi E 1I'i' and each 1I'i is identified with the unit circle in the complex plane C. It is then clear

that this H corresponds to (f, g) in K 1(C(X X11'2)).

Let rp(x) ((Zl' Z2)) = (Zl . ei27fe
(X), Z2 . zr' . s(zd) such that () E C (X, lR) is continuous, and

Sx E U(C(1I'd) is path connected to le(']!'t) for all x E X. We can check that

H 0 (0: X rp)(x, Zl, Z2) = H(o:(x), Zl . e,27fe(x) , Z2 . z~v(x) . sx(zI))

= (Zl . ei27fe(x))f(a(x)) . (Z2 . z~(x) . sx(zI))g(a(x)).

In U(C(X x ,][,2)), it is clear that H 0 (0: Xrp) is path connected to G, with G defined to be

G( .)
- .f(a(x)) ( w(x))g(a(x)) _ .f(a(x))+w(x)g(a(;r)) g(a(x))

X,Zl,Z2 -Zl . Z2' Z l -Zl 'Z2'

Noting that w(x) = deg(rp(x)), it then follows that

rpd((f,g))(X) = (f(o:(x)) + deg(rp(x))· g(o:(x)),g(o:(x))).

Now we will study ker(id - (0: Xrp)*0). For I, 9 E C(X, Z), we use (f, g) to denote a function

in C(X,Z2). If (f,g) satisfies (id - (0: x rp*o))((f,g)) = 0, as rp(x)*o: KO(C(1I'2)) ---> K O(C(1I'2)) is

the identify map, we get

1 0 0: = I and goo: = g.

The minimality of 0: then implies that both I and 9 are constant functions in C(X, Z). So far, we

have shown that ker(id - (0: x rp)*o) ~ Z2.
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As for ker(id~(exxCP)*l)' ifthere exists (f,g) E C(X, Z2) such that (id-(exxCP)*l)((f,g)) =

0, it follows that

f(x) = f(ex(x)) + deg(cp(x)) . g(ex(x)) and g(x) = g(ex(x)).

As ex is minimal, we conclude that g E C(X, Z) must be a constant function, say, g(x) == C for all

x EX.

To further study the kernel of id - (ex x CP)*l, we will consider two cases.

Case One: [deg(cp(x))] i= 0 in KO(X, ex).

In this case, if g(x) == C i= 0, we will show that there is no solution for

f(x) = f(ex(x)) + C deg(cp(x)).

In fact, if such f E C(X, Z) exists, it follows that C[deg(cp(x))] = °in KO(X, ex). Similar

to the proof of Corollary 11.2.10, we can show that KO(X, ex) is torsion free, which then implies

that [deg(i.p(:T))] = 0, a contradiction.

If g(x) == 0, note that ex is a minimal action on X. It is then clear that f(x) = f(ex(x)) +

deg(cp(x)) . g(ex(x)) implies f(x) is a constant function.

So far, we have proved that if [deg(cp(x))] i= 0 in KO(X, ex), then

ker(id - (ex x cp)d) ~ {(f,0): f == C for C E Z} ~ Z.

Case Two: [deg(cp(x))] = 0 in KO(X, ex)

In this case, there exists h E C(X, Z) such that h(x) - h 0 ex(x) = deg(cp(x)).

For (f,g) E ker(id - (ex x cp)d), if g == 0, similar to Case One, we can still get that f == C

(with C E Z).
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If 9 == M -=I 0, then f need to satisfy

f(x) = f(a(x» + M deg(cp(x».

If there are two functions !I, 12 E C(X, Z) satisfying

fi(x) = li(a(.'r» + M deg(cp(x» for i = 1,2,

then it follows that

(!I - 12)(x) = (!I - 12)(a(x»,

which implies that !I - 12 is a constant function.

According to our assumption, there exists h E C(X, Z) such that h(x) - h 0 a(x)

deg(cp(x», it is clear that Mh(x) - M . h 0 a(x) = M deg(cp(x».

It then follows that any f E C(X, Z) satisfying f(x) - f 0 a(x) = M deg(cp(x» must be in

{M·h+N:NEZ}.

So far, we conclude that

ker(id - (a x CP)*l) ~ {(C, 0): C E Z} U{(M. h + N, M): M -=I 0, NEZ},

which is isomorphic to

{(A1 . h + N, M): l\1I, NEZ}.

So far, we showed that in this case,

For either of the cases, as cp(x)*o: KO(C(']['2» ----> K O(C(']['2» is the identify map for all

x E X, we have

coker(id - (a x cp)*o) ~ C(X, Z2)/{f - f 0 a: f E C(X, Z2)}.
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For (f,g) E C(X, Z2), note that (a x CP)*l(f,g)(X) = (f(a(x)) + deg(cp(x)). g(a(x)),g(a(x))). It

follows that

coker(id ~ (a x cP)*d 2" C(X, Z2) / {(f, g) - (f, g) a a - (deg( cp) . (g a 0'),0): f, 9 E C(X, Z)}.

For either case, note that ker(id - (a x CP)d) is a free Z-module. It follows from short exact

sequences V.1 and V.2 that

and

For both cases, as we know the kernel and co-kernel of id - (a x CP)*i (for i = 0,1), the

K-data of A follows easily, which finishes the proof.

o

V.3 RIGIDITY

Similar to the idea of rigidity as in Definition III.2.2, we can define the rigidity condition

for the case that cocycles are Furstenberg transformations.

Definition V.3.l. Let (X x '['2, a x cp) be a minimal dynamical system with each cp(x) being a

Furstenberg transformation. Let fL be an a x cp-invariant probability measure on X x '['2. It will

induce an a-invariant probability meaS1lre on X defined by 7r(u)(D) = fL(D x ,[,2). We say that

(X x '['2, a x cp) is rigid if 7r gives a one-to-one map between the a x cp-invariant probability measures

and the a-invariant probability measures.
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V.4 EXAMPLES

Several examples of rigid minimal dynamical systems (X x 1'2, a x 'P) are given, with 'P(X)

being a Furstenberg transformation for all x EX.

a) The examples ofrigid (or non-rigid) minimal dynamical systems (X x l' x 1', a x R~ x R1))

are definitely the examples of rigid (or non-rigid) minimal dynamical systems of type (X x 1'2, aX 'P).

:For example, Example III.3.6 and Example III.3.7 in Section III.3.

b) The example of a rigid minimal dynamical system (X x 1'2, a x 'P), with 'P(x) being a

Furstenberg transformation for all x E X, and [deg('P(x))] i- 0 in KO(X,a).

Let (1'3,,) be a topological dynamical system on 1'3, with, defined by

for some eE JR \ Qi.

According to Theorem 2.1 of [Furstenberg], the dynamical system (1'3, ,) is uniquely

ergodic. Then there is only one ,-invariant probability measure on 1'3 (in fact, this measure

is the standard Lebesgue measure on 1'3).

Let (1', 'P) be a Denjoy homeomorphism of rotation number e. Let (X, a) be the minimal

Cantor dynamical system derived from (1', 'P) such that it factors through (1', Ro). In other words,

we have the following commutative diagram

with Jr: X ---> l' being a surjective map.

Regard Jr(x) as a unitary element in C (as Jr(x) C 1'), and define 'P: X ---> Homeo(1'2)

by
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It is then clear that the following diagram commutes:

According to Proposition III.3.5, there exists a one-to-one correspondence between the invariant

probability measure of (1r3 , 1') and that of (X x 1r2
, (l X <p). Thus (X x 1r2 , (l X <p) is an example of

rigid dynamical system with cocycles being Furstenberg transformations, and [deg(<p(x))] =I- 0 in



123

BIBLIOGRAPHY

[BKR] Blitckadar. B: Kumjian, A. : Rordam, rd. "Appr'O:1;imately central matrix units and the
structure of Noncommll.tative Tori", K-theory, 6 (1992), pp. 267-284.

ICE] Choi, :\I-D: Effros, E. "The completely positive lifting problem for C*-algebms", Ann. of
"lath. 104 (1976), pp. 585-609.

[EGL] George. A. Elliott: Gong, Guihua: Li, Liangqing. "AppT01;imate divisibility of simple
inductive limzt C*-algebm.s", Contemporary rdathematics, 228, pp. 87-97.

[Furstenberg] Furstenberg, H. "Strict ergodicity and tmnsformation of the torus", American
Jomnal of NIathematics, Vol. 83, No.4 (1961), pp. 573-601.

[CPS] Giordano, Thierry: Putnam, Ian F.: Skau, Christian F. "Topological orbit equivalence and
C*-cTOssed pTOducts." J. Reine Angew. l'vlath. 469 (1995), pp. 51-111.

[IlLX] Hu. Shallwen. Lin I-Iuaxin. Xue Yifeng. : "The tTacial topological rank of e:£fensions of
Ci-al!Jebras", rl'lath. Scand. 94 (2004), pp. 125-147.

[lIPS] Herman, R. I-I.. Putnam. 1. F .. Skau, C. F. : "Ordered Bratteli d'iagmms, dimension gTOUps
and topological dynanl:lcs" , Internat. J. i'dath. 3 (1992), pp. 827-864.

[KatokHasselblatt] Katok. Anatole: Hasselblatt, Boris: "Introduction to modern theory
of dynamzcal systems (Encyclopedia of Mathematics and its Applications)". Cambridge
Cniversity Press, 1996.822 pp. ISBN: 0521575575

[Lin-Phillips] Lin, Huaxin. Phillips, N. Christopher. "Crossed products by minimal
horneomorphzsm". http) / arxiv.org/ abs/math/0408291

[Lin 1] Lin, Huaxin. "Approximate unitary equivalence in szmple C*-algebras of tTacial Tank one",
htlp:/ /arxiv.org/abs/0801.2929v3

[LiIl2] Lin. Huaxin. "A n introduction to the classification of amenable C' -algebras", World
Scientific Publishing Co., Inc .. River Edge, NJ, 2001. xii+320 pp. ISBN: 981-02-4680-3

[Lin3] Lin, Huaxin. "Classification of homomorphisms and dynamical systems." Trans. Amer.
[dath. Soc. 359 (2007) no. 2, pp. 859-895.

[Lin4] Lin. Huaxin: "C*-algebras and K-thoery in dynamzcal systems", preprint

[LMl] Lin. Huaxin. Matui. Hiraki. : "Minimal dynamical systems on the product of the Cantor
set and the cirrlc", Connnun. Math. Phys 257 (2005). pp. 425-471.

[UI'!2] Lin. Huaxin. l\Iatui. Hiroki. "Minimal dynamical systems on the product of the Cantor
sci and the ciTclc' If', Sel. math., New ser. 12 (2006), pp. 199-239 .



124

[Ud3] Lin. H. l'datui, H.; "Minimal dynamical systems and appmximate conjugacy" Math, Ann.
332 (2005), no, 4. pp, 795-822,

[!\Jl] Matui, Hiraki. "Appro:£imate conjugacy and jilil groups of Cantor minimal systems", PubL
Res Inst. i\Iat.h, Sci, 41 (2005), no, 3, pp. 695-722,

[Phl] Phillips, N. Christopher, "Cancellation and stable rank for direct limits of recursive
sl/,bhoTTwgeneous algebras", Trans, Amer. l'vlath. Soc. 359 (2007), no. 10, pp, 4625-4652
(electlOnic) .

[Ph2] Phillips, N. Christopher. "Real rank and pmperty (SF) for direct limits of recursive
subhomogeneOlls algebms", http://arxiv,org/abs/math/D405265vl

[Putnam] Putnam, Ian F. "The C* -algebras associated with minimal homeomorphisms of the
Cantor sel," Pacific J, !\lath, 136 (1989), no, 2, pp, 329-353,

[1'55] PUtnarn, Ian F, Schmidt, Klaus, Skau Christian. ·'C* -algebras associated with Denjoy
HOm,tom01phzsms and I.he CiT'Cle," J, Operator Theory. 16 (1986), 99-126

[Rl'IIClult] Renault. J, "A groupoid approach to C*-algebms", Lecture Notes in Mathematics 793,
Berline: Springer 1980,

[TllOlllsen] Thomsen. Klaus, .. Truces, unztary chaT'Il,cters and crossed products by Z'. PubL RIMS,
Kyoto Univ, 31 (1995), pp, 1011-1029,

:Tumivmna] Tomiyama. Jun. .. Topological filii gTOUpS and stTucture of normalizers in
tro7lsformlllzo71 group C*-algebn1.8"', Pacific Journal of Mathematcis, 173 (1996), no, 2, pp.
571-583.


