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According to Lemma II1.1.13, with respect to G and € above, we can find M > N, a clopen
neighborhood of z and a partial isometry w € A, satisfying w*w = 1y, ww* = Ll my) and

Ilw, fl|l < e for all fe F.

Let p= 1y and ¢ = lymyy. For t € [0,7/2], define
P(t) = pcos®t + sint cos t(w + w*) + gsin?¢t.

As pg = 0 and p, ¢ are Murray-von Neumann equivalent via w, it follows that ¢ — P(t) is a path

of projections with P(0) = p and P(n/2) = q.
Define
M-N N1 _
e=1-— ( Z wpu™t + Z u_ZP(iTr/QN)uZ) .
i=0 i=1
According to Lemma I11.1.13, u™*wu® € A; for i = 0,...,m — 1. It is clear that e € A,. It follows
that e is a projection.
We first show that for e € A, above, the following hold.
1) ||z, e]]| < e for all x € FU {u}; (C1)

2) dist(exe,eA e) < € for all z € F U {u}. (C2)
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For the part of (Cl) involving u, note that

M-N  N-1 ‘
ueuy" —e=1—-u ( Z u'pu”t + Z u’zP(zﬁr/2N)uz> u

=0 =1

M-N '
( (Zupu_lﬂLZu" (im/2N)u ))

0
M—N+1

Z u'pu” +Zupu +Zui (in/2N)u

N-2
= > wTP((i+ )m/2N)ut

i=0
=p— uM~N+1p(u*)1\/[—N+1 + (u*)N—IP((N _ 1)7r/2N)uN_l - P(7I'/2N)

N-=-2

+ > uTHP(in/2N) — P((i+ 1)r/2N))u’

i=1
=p—Pr/2N)+u V"D P(N - )m/2N)ulV =1 — M~ N1y ~(M=N+1D)
N-2
+ 57 wTH(P(im/2N) ~ P((i + )m/2N)ud
=1
As 2 /N < g, we get |Jlueu* — el} < €. It then follows that ||ue — eul| < . By Lemma II1.1.13,

fife—efl] <eforall f e F. So far, we have checked (C1).

For fe FCC(X xTxT), as f € A, we get efe € eAze. As eu € A, it is clear that

eue = e(eu)e € eAze. Thus we have checked (C2).

Let C be the set of all the unital separable C*-algebras C such that there exist N € N and

one dimensional finite CW complexes X; and d; € N with 1 <¢ < N and

N
C =P My, (C(X,)).

n=1

Note that € can be chosen to be arbitrarily small, and also note that eA,e has tracial rank no

more than one, which implies that eA;e is C-Popa.

By Lemma 111.1.15, A is also C-Popa. According to [Lin4, Lemma 3.6.6], A has property
(SP). For the given element ¢ € A,, there exists a non-zero projection ¢ € Her(c). Let &y =

inf{r{q): 7 € T(A)}. As A is simple and ¢ # 0, we get 7(¢) > 0 for all 7 € T'(A4). As T(A4) isa
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weak* closed subset of the unit ball of A*, noting that the unit ball of A* is weak™® compact by

Alaoglu’s Theorem, it follows that T°(A) is also compact., Thus dp > 0.
Without loss of generality, we can assume that & < min{1, §do, m} and g € F.
It remains to show that 1 —e is Murray-von Neumann equivalent to a projection in Her(e).

As g € F, we have
g, €]l <e and dist(ege,eA e) < e.

We can find b € (eAze)s, such that |lege — b]| < e. Note that |[g,€]|| < e implies that ||(ege)? —
eqe|| < . According to Proposition I11.1.16, there exists a projection ¢’ € A such that ||¢’ —egel|| <

€ and ¢’ =< ege as in Definition 1.2.2,

Note that we have

167 = bl < [[b? — (ege)?|| + [|(ege)® — egell + llege — b
<3e+e+e

= De.
By Proposition III.1.16 again, there exists a projection p € eAze such that

Ilp — bll < v/5¢ and [p] < [0).

lp— 'l < llp— bll + 116 — ege|| + llege — ¢'|| < VBe + & + Ve,

it follows that [p] = [¢']. As

¢ =< eqe and eqe < q,

we conclude that p < ¢ in A.

Note that

qg=-eqe+ (1 —e)ge +eq(l —e) + (1 —e)g(l —e).
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For every 7 € T(A), we have
7(q) = 7(ege) + 7((1 - e)q(1 — €)) + 7((1 — e)ge + eq(1 — e)).

According to (C1) and our choice of ¢, we have

1

7(ege) +7((1 —e)q(l —¢)) > 7(g) —e > 57(a).

As 7 is a tracial state and e is a projection,
T((1=e)g(1 —¢e)) < 7((1 —e)1(1 —¢e)) =7(1 —e).
Note that 7(1 — e) < 17(q) for all 7 € T(A) (because T(1 —€) < 7Jp). We can conclude that

T(eqe) > 37(a) —7((1 ~ (1 =) 2 57(0) = (1 = ¢) > 77(0) 2 30 > 0.

In our construction, note that
lp — eqell < [lp— bl + [|b — egel| < v5e + .

It follows that
7(p) > %60 — (Ve 4¢) > ééo for all T € T(A).

According to our construction, we have
(1—-e)< M £ < 15 < 7(p)
_ . =g _ (5
e M- ==Y

for all 7 € T(A), which then implies that 1 —e < p. As [p] < [¢] (as in Definition 1.2.2), we get

[1 —e¢] <[] (as in Definition [.2.2), which finishes the proof.



o8

II1.2 THE RIGID CASE

Proposition I111.2.1. Let A be the crossed product C*-algebra of the minimal dynamical system
(X xT x T, x Re x Rpy). Then

Ko(A) = C(X.Z*)/{f - foa™': f e C(X,Z%)} @ Z°

and

K(A) =2 CX,Z)/{f - foa™t: f€C(X,2)} 72

Proof. Use j : C(X x T?) — A to denote the canonical embedding of C(X x T2) into 4. We have

the Pimsner-Voiculescu six-term exact sequence:

idap— g

Ko(C(X x T2)) Ko(C(X x T?)) —2=° Ko(A)

o |

K1(A) 1 R(C(X x T?)) =222 g (O(X % T2)).

We know that

Ko(C(T?)) = 2%, K,(C(T?)) = z2?

and

Ko(C(X)) = C(X, Z), K\ (C(X))) = 0.

According to the Kiinneth theorem, Ko(C(X x T?)) = C(X,Z?) and K,(C(X x T?)) = C(X,Z?).

For 1 = 0,1, consider the image of id.; — a.s. They are both isomorphic to

{f—foa™}: fe C(X,Z%}.

The kernel of id,; — @.; for i = 0,1 is

{(feC(X,Z%: f=foal.

Assume that f is in the kernel of id,; — a.; for i = 0,1. Fix 2o € X. We have f(a"(z0)) = f(z0)
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for alln € Z. As o is a minimal homeomorphism of the Cantor set X and f is continuous, f must

be a constant function from X to Z2. Now we conclude that

ker(idy; — o) & 72,

As the six-term sequence above is exact, we have the short exact sequence:

00— COkel‘(id*o — a*o) — Ko(A) — ker(id*l — a*l) — 0.

As ker(id.; — oui) = Z2 and Z? is projective, it follows that
Ko(A) =2 coker(idsg — ctan) © Z2.
As coker(idsg — awo) 2 C(X,Z3)/{f — foa: f € C(X,Z?)}, we get
Ko(A) = C(X,ZH/{f — foa: f € C(X,Z)} & Z*.

Similarly, we get that K1(A4) = C(X,Z%)/{f — foa: f € C(X,Z%)} & Z*.

If we require a certain “rigidity” condition on the dynamical system (X xTxT, axRe¢ xR,,),

then the tracial rank of the crossed product will be zero.

Definition II1.2.2. Let (X x T x T, x R¢ x R;) be a minimal dynamical system. Let j1 be an
a x R¢ x Ryy-invariant probability measure on X x T x T. It will induce an a-invariant probability
measure on X defined by w(u)(D) = p(D x T x T) for every Borel set D C X. We say that
(X x T x T,a x Re x Ry) is rigid of w gives a one-to-one map between the a x Re x Ry-invariant

probability measures and the a-invariant probability measures,

Remark: For minimal actions on X x T x T of the type o x R¢ x Ry, it is easy to see that 7

always maps the set of o X R¢ X Ry-invariant probability measures over X x T x T onto the set of
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a-invariant measures over X.

According to Theorem 4.6 in [Lin-Phillips|, the “rigidity” condition defined above implies

that the crossed product C*-algebra has tracial rank zero.

Proposition I111.2.3, Let (X x T x T,a x Re x Ry) be a minimal dynamical system. If it is rigid,
then the corresponding crossed product C*-algebra C*(Z, X x T x T, a x Rg x Ry)) has tracial rank

ZETO0.

Proof. Use A to denote C*(Z, X x T x T, x Re X Ry)). We will show that

p: Ko(A) — AR(T(A))

has a dense range, which will then imply that TR(A) = 0 according to [Lin-Phillips, Theorem 4.6].

For the crossed product C*-algebra B = C*(Z, X, ), we know that B has tracial rank
zero and pp: Ko(B) -» T(B) has the dense range. According to [Putnam, Theorem 1.1, Ko(A) &
C(X,Z)/{f — foa~1}. For every z € Ko(A), we can find f € C(X,Z) such that &(r) := 7(z)

equals 7(f) = [, fdu,.

As axRe¢ xRy, is rigid, there is a one-to-one correspondence between (ax R¢ xR, )-invariant
measures and a-invariant measures. In other words, T(A4) is homeomorphic to T'(B) (as two convex

compact sets). Let i € C(X) be a projection. Then h ® 1o (rxT) is a projection in A.

As pp has a dense range in Aff(T(B)), we have that p has dense range in Aff(T(A4)). As
X x T x T is an infinite finite dimensional metric space and a X R¢ x Ry, is minimal, according to

[Lin-Phillips, Theorem 4.6], C*(Z, X x T x T, x R¢ x Ry) has tracial rank zero.

111.3 EXAMPLES

We start with a criterion for determining whether a dynamical system of (X x T x T, a x
Re¢ x R;) is minimal or not. This result is a special case of the remark of page 582 in [Furstenberg].

The proof here essentially follows that of Lemma 4.2 of [LM1].
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Lemma ITL.3.1. LetY be a compact metric space, and let xRy, be a skew product homeomorphism

of Y x T with B € Homeo(Y), n: Y — T and
(6 x Ry, t) = (Bly), t +n(y)) with T identified with R/Z.

Then 8 x R, is minimal if and only if (Y,0) is minimal and there exist no f ¢ C(Y,T) and
non-zero integer n such that

nn=fof~f.

Proaf. Proof of the “if” part:

If (Y,3) is minimal and there exist no f € C(Y,T) and non-zero integer n such that
nn = foB~ f, we will prove that 3 x R,, is minimal.

If # x Ry, is not minimal, then there exists a proper minimal subset £ of ¥ x T. Let
my: Y x T — Y be the canonical projection onto Y. Note that my o (8 x R,;)) = Somy. It follows

that 7y (E) is an invariant subset of Y. As Y is compact, so is my (E). Since (Y, 8) is minimal,

the closed invariant set 7y (E) must be Y.
Let’s consider
D={teT:(idy x Re)(E) = E}.
As (idy x idp)(E) = E, the set D is not empty. Note that D is a subgroup of T. It follows that
D is a non-empty subgroup of T (with T identified with the quotient group R/Z).

If we have {t, }neny C D such that ¢, — ¢, then for any w € E, we have (id x Ry, Jw € E.

Then t, — ¢t implies that (id x R, )w — (id x R,)w. As E is closed, (id x R;)w € E.

So far, we have shown that if £, € D for n € N and ¢, — ¢, then ¢t € D. Note that
Ytntnen € D and t, — t” is equivalent to “{—t,}peny € D and —t, — —t”. It follows that

—t € D. In other words, we have
(id x Ry)(E) C B and (id x R )(E) C E.

Then we get

E=(d x R){(id x R_)(E)) € (id x Ry)(E) C E,
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which implies that (id x R;)E = E. In other words, D is closed.

As E is a proper subset and 7wy (E) =Y, D must be a proper subgroup of T. Otherwise,
for any (y,t) € Y xT, as 7y (F) = Y, there exists t’ € T such that (y,t’) € E. Sincet—t' € D =T,
(y,t) = (id x R4—y)(y,t') € E, which indicates that E =Y x T, contradicting the fact that F is a

proper subset.

As a proper closed subgroup of T, D must be

k
{—} with n = |D|.
"] o<k<n—1

Let mg be the canonical projection from ¥ x T onto T. For y € Y, use E, to denote mr(E N
Ty ({y}).
Using the fact that E is a minimal subset of (4,R,), we will show that E, must be n

points distributed evenly on the circle for all y € Y.

We claim that if ¢,¢' € E,, then for any m € Z, t + m(t’ —t) must be in E,. To prove this
claim, if ¢,#' € E,, then there exists {ky, }nen such that k, — oo and dist((8x R,,)* (y, ), (y,t')) —

0. Note that

dist((8 x Rp)** (y,t), (y,¢)) = dist((0 x Ry)*" (g, t'), (y,t + 2(' = 1))).

It follows that (y,t+2(t' —t)) € Orbitgxr, ((y,?)). By induction, we conclude that if ¢,t' € E,,

then for any m € Z, t + m(t’ —t) is also in E,, proving the claim,

For any y € Y, consider E,, which is a non-empty closed subset of T. Let

l, = inf dist(¢1,tq).
YT L hes, ist(t1,%2)

Note that if ¢,t" € Ey, then t + m(t' —t) € E,. The fact that E, C T implies that I, > 0. It is

then clear that E, is made up of 1/l, points distributed evenly on T.

Claim: For every y € Y, 1/l, = |D|.

For given y € V', as (id x Ry)(£) = E for all t € D, we get that £, is invariant under R,
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for all t € D. Tt then follows that 1/, = kn with k € N and n = |D|.
If k > 1, write
Ey - {(y5t1)7 ceey (y,tkn)}'
Use Orbitgyg, (Ey) to denote | Joo_; (6 x Ry)™(Ey).

As 3 is minimal, for every y’ € Y, there is a sequence (my)ren such that

B (y) — i

The fact that Orbitgyr,(Ey) is dense implies that there exists ' € T such that (y’,t') is in the
closure of Orbitgyr,(E,). Note that for every m € N, (8 x R,)™(E,) consists of kn points
distributed evenly on the circle. It follows that E,r contains at least nk points distributed evenly

on the circle.

Now we have shown that for every a € Y, E, is made up of at least nk evenly distributed
points on the circle, which then implies that D contain at least nk elements. The assumption that

k > 1 gives a contradiction.

We then conclude that k£ = 1, which proves the claim.

By the claim above, for all y € Y, the set E, is made up of n points distributed evenly on
T. If we define
nE = {(z,nt): (z,t) € E},

then nE is the graph of some continuous map g: ¥ — T. As F is closed, so is nE, which implies

that g is continuous. As E is (8 x R,)-invariant, for every (z,t) € E, it follows that

(8 x Ry)@,1) = (B(a),t + (@) € E.

In other words, we have n(t +n(z)) = g(f(z)). As nt = g(z), it follows that nn = go f — g, which

finishes the proof of “if” part.

Proof of the “only if’ part:
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Suppose § x R, is minimal. Then it is clear that (Y, ) is a minimal system.

Suppose that there exists nonzero n € Z such that nn = g o3 — g for some g € C(X,T).
Let
E={(y,t) €Y xT: nt = g(y)}.

For (y,t) € E, we have (8 x R,)(y,t) = (8(y),t +n(y)). As

n(t +n(y)) = nt +nn(y) = g(y) + nn(y) = g(B(y)),

it follows that E is (8 x R,)-invariant.

As g is continuous, £ is closed. And it is clear that £ is a proper subset of Y x T. Now

we have a proper closed (8 x R,)-invariant set in ¥ x T, contradicting the minimality of 8 x R,,.

O

Lemma I11.3.1 provides an inductive approach to determine the minimality of some dynamical

systems. Following this lemma, we get the proposition below.
Proposition II1.3.2. Let a x Re x R,y be a homeomorphism of X x T x T. Then a x R¢g x R, is
minimal if and only if

1) (X, ) is minimal,

i) & is not a torsion element in C(X,T)/{foa— f},

itt) For7j € C(X x T, T) defined by 7(x,t) = n(z), the map 177 is not a torsion element in
C(X xT,T)/{fo(axReg)—f: feC(X xT,T)}.

Proof. Proof of the “if” part:
If 1), ii) and iii) are true, we need to show that @ x Rg x R, is minimal.

Note that (X x T x T, x R¢ x R,;) is a skew product of a x R¢ and ﬁ:,, where f{\; is
defined by
f{;: X x T — Homeo(T), with (f{:,(z,t))(t’) =t' + n(x).
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From i) and ii), using Lemma 4.2 of [LM1], (X x T, x R¢) is minimal.
According to Lemma II1.3.1, and by iii), we conclude that a x R¢ x R, is minimal.
Proof of the “only if” part:

As (X x T x T, x Re X Ry) is the skew product of (X x T,a x R¢) and R,: X x T —
Homeo(T), with fi; defined as above, the minimality of (X x T x T,a x R¢ x R,) implies the

minimality of (X x T, @ % Re). By Lemma 4.2 of [LM1], that implies (i) and (ii).

For (iii), suppose that 77 is a torsion element, that is, there is non-zero n € Z and f &
C(XxT,T)such that nfj = fo(axR¢)—f. By Lemma II1.3.1, it follows that (X xTx T, axRe¢ xRy,)

is not minimal, a contradiction.
O
Proposition I11.3.2 enables us to construct minimal dynamical systems on X x T x T
inductively. In fact, we have the following lemma.

Lemma IIIL.3.3. Given any minimal dynamical system (X x T, x Re), there exist uncountably
many 8 € [0,1] such that if we use 8 to denote the constant function in C(X,T) defined by 6(x) = 6
for all x € X (identifying T with R/Z), then the dynamical system (X x T x T,a x Re x Ry) s

still minimal.

Proof. Note that the dynamical system (X x T, x R¢) is minimal. According to Lemma II1.3.1,

(X, o) must be a minimal dynamical system, and £ is not a torsion element in

C(X,TY/{f - foa: feC(X,T)}

This implies that conditions i) and ii) in Proposition 111.3.2 are already satisfied.

According to Proposition I11.3.2, for (X x T x T, @ x R¢ X Rg) to be minimal, we just need
to find € € R such that for every n € Z\ {0} and f € C(X x T, T), we have

nf # f — fo(axRg).
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If this is not true, then we have

nf=f—fo(axRe).

Let F': X x T — R be a lifting of f. That is, F' € C(X x T,R) and the following diagram

-,

comimutes:

XXT—r——

f

with m(¢) = ¢ for all ¢ € R (identifying T with R/Z).
We use [F] to denote mo F.

It follows that

nf = [F] — [F o (a x Re)]

=[F — Fo(axRg)
In other words, there exists g € C(X x T, Z) such that
nf— (F—Fo(axRe))=g.
For every (o x Rg¢)-invariant probability measure u, we have
p(nd) = p(g),

with p(nf) = /

XxT

Since u(nf) = nu(8), it follows that

n6du and p(g) =/ gdp
XxT
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Let A be the crossed product C*-algebra of (X x T,a x R¢). Define
p:Ase — AfI(T(A))
by p(a)(T) = 7(a) for all a € A5, and 7 € T(A). Then we have
pf)=p (%)
in Af(T(A)).
Now we have show that if § (as a constant function) is a torsion element in

CX xT,T)/{f - foa: f € C(X x T, T)}

with order n, then there exists g € C(X x T, Z) such that p() = p (%)

As T is connected, we have C(X x T,Z) = C(X,Z). Note that the set

{%: g€ C(X xT,2) ':VC(X,Z),nGZ\{O}}

contains countably many elements. It follows that its image under p contains at most countably
many elements. The fact that [0, 1] contains uncountably many elements and p(8) = 0 if and only
if & = 0 implies that there exists (uncountably many, in fact) § € R such that 8 (as a constant

function) is not a torsion element in
C(X x T, T)/{f - foa: f € C(X x T, T},

which then implies that (X x T x T, x Re x Ryp) is still minimal.

We now give examples of rigid and non-rigid minimal actions of on X x T x T.

Let wo: T — T be a Denjoy homeomorphism (see [PSS, Definition 3.3] or [KatokHasselblatt,
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Prop 12.2.1]) with rotation number () = & for some § € R\ Q. 1t is known that ¢g has a unique
proper invariant closed subset of T, which is a Cantor set, and that g restricted on this Cantor

set is minimal.
Let X be the Cantor set and use ¢: X — X to denote the restriction of g to X.

According to the Poincare Classification Theorem (see [KatokHasselblatt, Theorem 11.2.7]),
there is a non-invertible continuous monotonic map h: T — T such that the following diagram

commutes:

T

hl lh

T—= T
8

Using the restriction of ¢ to the invariant subset (which is the Cantor set X}, we get a

commutative diagram:

X 4 X
hlxl lhlx
T—x T
8

It is known that for a Denjoy homeomorphism, h |y maps X onto T.

Recall that for £,n: T — T, the action

Y (S,tl,tg) g (S +0,t + é(s)>t2 + 77(3))

is called a Furstenberg transformation. Consider the action

o X Reoh X Rypop 1 X x TxT— X xTxT.
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It is clear that we have the commutative diagram below :

aXReon XRpop

XXTXT——XxTxT (I11.1)
hlx Xid';)(id"l lh]x X id--xid~
TxTxT TxTxT .

In this case, if v is minimal, then a X Reon X Rpop is also minimal, as will be shown in the

next proposition.

Proposition I11.3.4. For the minimal dynamical systems as in diagram (IIL.1), if (T x T x T, ~)
is a minimal dynamical system, then (X X T x T, X Reon X Ryon) s also a minimal dynamical

system.

Proof. Assume that (T x T x T,v) is minimal and (X x T x T, X Reon X Ryop) is not minimal.
It then follows that there exist (z,¢1,t2) € X x T x T, nonempty open subset D C X and open

subsets U,V C T such that

{{a X Reop, X Rpop )" (z,t1,t2) tnen N(D x U X V) = @, (111.2)
Define
M, X XTXT—TxT

by

m{x,t1,t2) = ¢ and ma(z, t1,t2) = to.

As « is a minimal action on the Cantor set X, the statement I11.2 implies that for every k € N

such that o*(z) € D, we have

1 ((@ X Reon x Ryon)®(2)) ¢ U and ma (e X Reon x Ryon)¥(2)) ¢ V. (I11.3)

Note that if we regard the Cantor set X as a subset of T, then A|x : X — T is a

noninvertible continuous monotone function. For the open set D C X, without loss of generality,
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we can assume that (by identifying X as a subset of T and identifying T with R/Z)

D =(a,b) N X with a,b € (0,1) and a < b.

It then follows that there exists ¢,d € (0,1) with ¢ < d (without loss of generality, we can assume

that 0 ¢ h|x (D) such that h|x (D) is one of the following:

{c,d), (¢, d], [e,d) or [e,d].

In either case, there exists ¢/, d’ € (0,1) with ¢’ < d’ such that

(Cl,dl) C hlx (D).

Let t, = h

x (®). It is then clear that
h 'X ((a X REOh X Rqoh)n(gjvtl,b)) = 'Yn(t:rytlat2)

for all n € N. As h|x (D) is monotone, for every k € N, if RE(t,;) € (¢, d’), then we have

of(z) € D, which implies (see (II1.3)) that

T ((Oz X Rgoh X Rnoh)k(aj,tl,tz)) §Z U and Up) ((a X Rgoh X Rnoh)k(lf,tl,tz)) §Z V.

Define
pL,p2: TxTxT—TxT

by p1(to,t1,t2) = t1 and pe(lo, i1, t2) = ta. It is easy to check that for all n € N, we have
i (@ % Reon X Rpon)* (2, 11,12)) = ps (V¥ (b2, 11, 12)) -
Then we have that for every k € N such that R§(t,) € (¢, d"),

p1 (Y¥(tds, t1,t2)) ¢ U and py (V¥ (te, ty, 1)) ¢ V.
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According to the definition of the Furstenberg transformation -, it follows that

(Y (tz, t1,t2) nen N (¢, d Y x U x V) =,

contradicting the minimality of <, which finishes the proof.

The proposition below shows that if the two dynamical systems in Prop I11.3.4 are minimal,

then there is a one-to-one correspondence between the invariant measures on them.

Proposition II1.3.5. If the dynamical systems (T x T x T,v) and (X x T x T, o x Reon X Ryon)
(as in diagram (II1.1)) are minimal, then there is a one-to-one correspondence between the a X

Reon % Ryon-invariant probability measures and the y-invariant probability measures.

Proof. First of all, we will define the correspondence between the o x Rgon X Ryop-invariant

probability measures and the y-invariant probability measures.

For simplicity, we use H to denote the function h|x in diagram (ITI.1). We use
Mo xReon xRyon t0 denote the set of o x Reon, X Ryop-invariant probability measures on X x T x T

and M, to denote the set of v-invariant probability measures on T x T x T.

Define

0 MaxReonxRpon — M, and ¥ : M, — MuxRe, xR

noh

by
o(u)(D) = p ((H x idy x idr)"H(D)) and $(v)(E) = v ((H x idy x idy)(E))

for all Borel subsets D of T x T x T, Borel subsets F of X xT x T, u € MoxReonxRpon and v € M.
We need to show that the ¢ and 9 above are well-defined.

As every € MyxReop, xR, 1S @ probability measure, it follows that o(u)(Tx T x T) = 1.

noh

For every Borel subset D C TxTxT, as both arx Rgop, X Rpon and v are homeomorphisms,

it follows that

(H x idr x id7) 7' (v(D)) = (& x Rgon X Ryon) ((H x idr x idy) ~'(D)),
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which implies that o(u} is y-invariant.

For a sequence of Borel subsets Dy, Do,... of T x T x T such that D;nD; = @ if i # 7,
it is clear that (H x idy x idy) (D)), (H X idy % idg)~!(D2), ... are Borel subsets of X x T x T
(as H x idy x idr is continuous) satisfying (H x idy x idy) ™' (D;) N (H x idy x idy)~H(D;) = @ if

i # j. Then we have that

e(u) (]_I Dn) =Y () Dn).

n=1 n=1
So far, we have shown that ¢ is a well-defined map from MaxR, o xRyon 10 My
Now we will check the map 2.

As every v € M, is a probability measure, it follows that

YW X XTxT)=v(TxTxT)=1.

For every Borel subset £ C X xT x T, we will show that ¢ (v)(E) is well-defined. According

to the definition of (), we just need to show that (H x idy x idr){(E) is v-measurable,

For any two open subsets S; and S of X X T x T, we have
(H x idyp x idy)(S1 U Sp) = (H x idy x idp)(S1) U (H X idy x id7)(S2),
(H xidr x idp)}(S5) = (H x idp x idr)(S;))¢ fori=1,2.
As H is not one-to-one, we cannot get
(H x idp x id)(S1 N S3) = (H x idy x idp){(S1) N (H x idy x id)(S3),
but we still have
(H x idr x id)(S1 N S3) C (H x idy x idp)(S1) N (H x idp x idy)(S2).

We will consider ((H x idy x idr)(S1) N (H x idy x idp)(82)) \ (H x idy x idg)(Sy N Sy).

Note that H is just the restriction of h to X, where h is a noninvertible continuous
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monotone map from T to T (see [KatokHasselblatt, Theorem 11.2.7]). It follows that H: X — T
is one-to-one except at countablely many points of X. Use X to denote this subset consists of

countably many points. Then we have that

((H x idy x idp)(S1) N (H x idy x idy)(S2)) \ (H x idy x idy)(S; NS2) ¢ H(Xo) x T x T.

As v(T x T x T) =1 and the minimal action < has the skew product structure, it follows
that for every t € T, v({t} x T x T) = 0, which then implies that v(H(Xo) x T x T) = 0. Then we
get that

((H x id7 x id7)(S1) N (H x idy x idp)(S2)) \ (H x idy x id7)(S, N Sy)

is of measure zero for all y-invariant measure v.
For two sets A and B, we use A A B to denote (AN B°)U (AN B).

For every Borel subset F' of X x T x T, as F is generated by open sets via taking
complements, countably many unions and intersections, it follows that there exists a Borel set
F’, such that

(H X idp x idT)(F) A F

is of measure zero for all y-invariant measure v. Note that F’ is a Borel set. For every ~y-invariant
measure v, F is both v-measurable. It then follows that (H X idyxT)(F') is measurable. Recall
that

WWIE) = v ((H x idr x idr)(F)) .

It follows that for 1(v) is well-defined on all the Borel subsets of X x T x T.

For a sequence of Borel subsets F, Ey,... of X x T x T such that D; N D; = @ if { # 7,

and for every «v-invariant probability measure v, we will show that

n=1 n=1

»(v) (I_l b) = () (En).
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According to the definition, we have

Note that

((H x idp x ld’H‘) (D En)) = (Oo (H X idy % ld']]')(En))

n=1 i=1
and

(H X id’ﬂ‘ X ld']]‘)(EZ) N (H X id’ﬂ‘ X id’}]‘)(Ej) C H(X()) x T x T for i #j

Recall that H(Xo) x T x T is a set of measure zero for every <y-invariant probability measure. It

follows that

o0

P(v) (l_l E) =" W(w)(En).

For every Borel subset £ C X x T x T, according to the commutative diagram (II1.1), we

have

(yo (H x idp x idp))E = ((H x idr x id7) o (& X Reop X Ryop)) (E).

It then follows that

Y(WHE) = v((H x idy x idp)E)

vy ((H x idr x idr)E))

i

= v ((H xidr x idy)((e X Reon X Rpon)E))

= ’L/)(l/) ((a X Rth X Rnoh)E) ,

which implies that 1 (v) is a X Reop X Ryop-invariant.

So far, we have shown that ¢ is a well-defined map from M, to MuxR,o,xRpon -

Now we will show that for every a x Reop X Ryon-invariant measure p and vy-invariant
measure v, we have

(pov)(v)=vand (Yoyp)(u) = p.

In fact, we just need to show that for every Borel subset D of T x T x T and every Borel
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subset Eof X xTx T,
v ((H x idy x idr)((H % idy x idg) "' (D)) A D) =0 (I11.4)

and

1 ((H x idy x idr) "' ((H x idy x idg)(E)) A E) = 0. (I1L.5)

As
(H X id'_{[‘ X ldT)((H X id']y X ldT)‘l(D)) = D,

the equation (II1.4) holds.

Note that
((H x idr x id7) "' ((H x idy x id1)(E)) A E) € Xo x T x T.

The fact that Xy consists of countably many points and the minimal action a X Rgop, X Rpop has

skew product structure implies that
/J.(X()XTXT):O.

It then follows that the equation (IIL.5) holds, which finishes the proof.

By Proposition I11.3.5 above, there is a one-to-one correspondence between the o x Reop X
Ryon-invariant probability measures and the 7-invariant probability measures (because if two

measures coincide on all the Borel sets, they must be the same measure).

It follows that a minimal Furstenberg transformation on T2 that is uniquely ergodic will
yield an example of a rigid minimal action on X x T x T, and a minimal transformation on T® that

is not uniquely ergodic will yield an example of a non-rigid minimal action on X x T x T.

Example I11.3.6. This is an ezample of rigid mintmal dynamical system (X x TxT,axRe XR,).
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Let (X, a) be a Denjoy homeomorphism with rotation number #; € R\ Q.

Choose 9,03 such that 1,6;,02,03 € R are linearly independent over Q. That is, if
Ao, A1, Ao, Az € Q and satisfy
Ao 4 A + /\292 + )\393 = (,
then \; =0 for i =0,...,3.
The dynamical system (T x T x T, Rg, X Rg, X Ry, ) is minimal and uniquely ergodic.

Define p: X — Homeo(T?) by

o(x)(21,22) = (Zle%iﬂz’ 20213,

As (T x T x T,Rg, x Ry, x Rg,) is uniquely ergodic, so is (X x T2, x ¢). This gives an

example of a rigid minimal dynamical system (X x T x T,a x R¢ x Ry).
Example IT1.3.7. We will give an example of minimal dynamical system (X x T xT,axRe xRy)
such that it 18 not rigid.

According to [Furstenberg] (see page 585), there exists a minimal a Furstenberg

transformation

Yo: T? — T?

such that

Yo(z1,22) = (zleQ’”a, f(z1)z2) for some 8 € R\ Q and contractible f € C(T,T),

and v is not uniquely ergodic.

Let (T, o) be a Denjoy homeomorphism with rotation number §. Let (X, &) be the minimal

Cantor dynamical system derived from (T, ) which factors through (T,Rg). In other words,
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a = ¢|x and we have the commutative diagram

X—2 >Xx (I11.6)

with 7: X — T being a surjective map.

Define £: X — Homeo(T) by &(z)(2) = f(n(z))z. We can then check that the following

diagram commutes:

XR&
XxT XxT
‘Il'Xid’_‘l VL‘I\'Xid-j
Tz o Tz

As 7 is surjective, so is 7 x idy. Minimality of g then implies minimality of a x R¢. As g
is not uniquely ergodic, similarly to the proof of Proposition III.3.5, it follows that (X x T, a x R¢)

is not uniquely ergodic.

In the commutative diagram (I11.6), note that = is onto, and (T, Ry) is uniquely ergodic.

It follows that (X, a) is also uniquely ergodic.

As (X x T,a x Re) is not uniquely ergodic, there exist more than one (@ x R¢)-invariant
probability measure. Let p and v to be two such measures on X x T that are different from each

other.

According to Lemma I11.3.3, there exists § € R such that if we use Rg to denote the

function in C'(X, Homeo(T)) defined by

Ro(z)(z) = 2™ for allz € X and z € T,

then the dynamical system (X x T x T, x Rg¢ x Rg) is still minimal.

Use m to denote the Lebesgue measure on T. For the (& x Rg¢)-invariant probability
measures u and v, as Ry is a rotation of the circle, we can check that both p x m and v x m are

(o x R¢ x Rg)-invariant probability measures on X x T x T.
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As p and v are different measures, it is clear that u x m is different from v x m.

Now we have at least two (& X Re x Rg)-invariant measures. Note that (X, ) is uniquely

ergodic. We have that the dynamical system (X xTx T, ax R¢ x Rg) is not uniquely ergodic.

Remark: For this example, the corresponding crossed product C*-algebra has tracial rank one

and the dynamical system (X x T x T,a X Re¢ x Rg) is not rigid. The reason is as follows.

Counsider the dynamical system (X x Ty, a x Re). It is not uniquely ergodic. As (X, a) is

uniquely ergoedic, it follows that (X x T, a x Re) is not rigid.

Use A to denote the crossed product C*-algebra C*(Z, X x Ti,a x Rg). According to
Theorem 4.3 of [LM2], the algebra A has tracial rank one. By Proposition 1.10 (1) of [Ph2],
pa(Ko(A)) is not dense in Aff(T(A)).

Note that A is an AT-algebra. According to Theorem 2.1 of [EGL], A is approximately
divisible. By Theorem 1.4 (e) of [BKR], and noting that real rank of A is not zero (as tracial rank
of A is one and A is AT-algebra), we have that the projections in A does not separate traces of A.

In other words, there exist two (a x Re)-invariant measures p and v such that

w £ v, and p(z) = v(z) for all z € Ko(A).

Define measures ux, vx by

ux(D)=p(DxT) and vx(D)=v(DxT)

for all Borel sets D C X. It is clear that both ux and vx are a-invariant probability measures on

X.

Note that C(X,Z) is generated by the projections in C(X). Also note that the C-linear
span of C'(X,Z) is dense in C(X,R). The fact that the projections in A do not separate p and v

implies that C(X,Z) do not separate ux and vx, which then implies that ux = vx.

Use B to denote C*(Z, X x T1 x T2, x Re x Rg). Let m be the Lebesgue measure on T.

It is clear that u x m and v x m are two (& X Re x Ry)-invariant probability measures.

We will show that the projections in B do not separate p x m and v X m.
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From Proposition I11.2.1,

Ko(B) = C(X,2%)/{(f,9) - (f.g)oa™": [y € C(X,2)} DL D L. (IIL.7)

The two copies of Z correspond to the two generalized Rieffel projections e; and eq, given
by e1 = g1u* -+ f1 + ug1, and ez = gou* + fo + uge, where ey, fi, g; are defined similarly to the
functions defined in Section 6 of [LM1], fy(z, 21, 22) = fi(z, z1, 2%) and fa(z, z1,22) = fr(z, 2], 72)

for all z1, 2] € Ty, 22, 25 € Ta.

As the projections in 4 do not distinguish g and v, it follows that the elements in Kq(B)

that correspond to the first two summands of II1.7 do not separate ;o x m and v x m.

For the generalized Rieffel projection eq, as fo(z, z1,22) is independent of z;, we have

flz, z1, z2) = Fa(z, z9) for some F € C(X x Tq, R).

Recall that for a measure o on X and f € C(X), we use o(f) to denote [y f(x) du (see

Section 1.2). We check that
(1 x m)(e2) = (1 x m)(f2)

= / fg(.’l,',zl,ZQ) d(/l. X m)
(X xTy)xT2

:/ Fy(z,z2) d(pux x m)
XXTQ

:/ Fy(z,29) d(vx xm)
XXTQ

:/ falz, 21, 22) d(v x m)
(X xTy)xTs

= (v xm)(f2)

= (v x m)(ez).

Then we have shown that e; does not separate u x m and v x m either, which then implies

that the projections in B cannot separate traces of B.

According to Theorem 1.4 of [BKR], the real rank of B is not zero. Then it follows that

the tracial rank of B is not zero.

By Theorem 111.1.17, the tracial rank of B must be one.
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According to Proposition II1.2.3, the dynamical system (X x T x T,a x R¢ x Rg) is not
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CHAPTER 1V

APPROXIMATE K-CONJUGACY

In this chapter, we start with a sufficient condition for approximate K-conjugacy between
two minimal dynamical systems (X x T x T,a X R, X Ry,) and (X x T x T, 8 x Re, x Ry,).
Then we give an if and only if condition for weak approximate conjugacy of these two dynamical
systems, showing that weak approximate conjugacy just depends on & and §. In Section IV.3,
an if and only if condition for approximate K-conjugacy between these two dynamical systems is

given.

In [LM3]|, several notions of approximate conjugacy between dynamical systems are
introduced. In [LM1], it is shown that for rigid minimal systems on X x T (with X being
the Cantor set and T being the circle; see Definition 3.1 of [LM1]), the corresponding crossed
product C*-algebras are isomorphic if and only if the dynamical systems are approximately

K-conjugate.

For two minimal rigid dynamical systems (X x T x T,a x R¢ x Ry,) and (X x T x T, 8 x
Re¢, X Ry, ), we study the relationship between approximate K-conjugacy and the isomorphism of

crossed product C*-algebras.
We start with basic definitions and facts about conjugacy and approximate conjugacy.

Definition IV.0.1. Let X,Y be two compact metric spaces, and let @ € Homeo(X) and § €
Homeo(Y') be two minimal actions. We say that (X,a) and (Y, ) are conjugate if there exists
o € Homeo(X,Y) such that c oa = foo. We say that (X,a) and (Y,0) are flip conjugate if
(X, ) is conjugate to (Y, 8) or (Y,571).

Definition IV.0.2. Let X,Y be two compact metric spaces, and let & € Homeo(X) and 8 €
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Homeo(Y) be two minimal actions. We say that (X,a) and (Y,8) are weakly approzimately

congugate if there exist o, € Homeo(X,Y) and 7, € Homeo(Y, X) for n € N such that

dist(foopoa,fofoo,) — 0 and dist(goaoy,,goynof) —0 asn— oo

forall f € C(X) and g € C(Y), where dist(f1, f2) is defined to be sup,¢p dist(f1(x), f2(z)) for all

continuous functions fi, fo on the metric space D.

It is clear that if two minimal dynamical systems are conjugate, they are weakly

approximately conjugate. Generally speaking, the inverse implication does not hold.

IV.l C*-STRONG APPROXIMATE CONJUGACY

Given minimal dynamical systems (X, ) and (Y, 3), if they are flip conjugate, then it is
easy to check that the corresponding crossed product C*-algebras C*(Z, X, a) and C*(Z,Y, 3) are

isomorphic.

According to [Tomiyama] (Corollary of Theorem 2), for two minimal dynamical systems

(X, a) and (Y, B), there exists an isomorphism

p: CZ, X, ) — C*(Z,Y, )

satisfying ¢ (C(X)) = C(Y) if and only if these two dynamical systems are flip conjugate.

In view of Tomiyama’s result above, C*-strong approximate flip conjugacy is defined as

below.

Definition IV.1.1. Let (X, @) and (X, ) be two minimal dynamical systems such that
TR(C*(Z,X,a)) = TR(C*(Z,X,3)) = 0, we say that (X,a) and (X,0) are C*-strongly

approximately flip conjugate if there exists a sequence of isomorphisms

pn: C(Z, X, ) = C*(Z, X, B), n: C(Z, X, 8) — CH(Z, X, )
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and a sequence of 1somorphisms Xn, An: C(X) — C(X) such that
1) lon] = lpm] = [¥5'] in KL(C*(Z, X,a),C*(Z, X, )) for all m,n € N,

2) nlirrolo||90n o Ja(f) ~Jgo Xn(f)” = 0 and nlilrolo”wn © Jﬂ(f) —Ja © /\n(f)” = 0 for all
f € C(X), with ju,js being the injections from C(X) into C*(Z, X, a) and C*(Z, X, 3).

Some notation will be introduced before the next result about C*-strong approximate
conjugacy.

Let A be a separable amenable C*-algebra that satisfies UCT. For 8§ € K L(A, B), there
are induced homomorphisms I'(8);: K;(A) — K;(B) for i = 0,1. Define pa: Az, — Aff(T(A)) by
pala)(t) =T(a) for all a € Ay, and 7 € T(A). Suppose A and B are two unital simple C*-algebras
with tracial rank zero and v: Ko(A) — Ko(B) is an order preserving homomorphism. As A has

real rank zero, v will induce a positive homomorphism v,: Aff(T'(A)) — Aff(T(B)).

The theorem below ([Lin4, Theorem 2.5]) gives one necessary condition for C*-strong

approximate flip conjugacy between two crossed product C*-algebras.

Theorem IV.1.2. Let (X,a) and (X,B) be two minimal dynamical systems such that the
corresponding crossed product C*-algebras A, and Ag both have traciel rank zero. Then o and
B are C*-strongly approximately flip conjugate if the following holds: There is an isomorphism

x: C(X) — C(X) and there is 6 € KL(Aq, Ag) such that T'(8) gives an isomorphism
L(6): (Ko(Aa), Ko(Aa)+, [1], K1(Aa)) — (Ko(Ag), Ko(Ag)+, [1], K1(Ap)),

and such that
ljal x 0 =1jgox] in KL(C(X), Ag)

and

pag © g o xX(f) = (T(B)o)s) © pag © Jalf)
for all f € C(X)sq-

If K;(C(X)) is torsion free, then a simplified version of this result holds ([Lin4, Corollary
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2.6]).

Corollary IV.1.3. Let X be a compact metric space with torsion free K -theory. Let (X, «) and
(X, B) be two minimal dynamical systems such that TR(A,) = TR(Ag) = 0. Suppose that there is

an order isomorphism that maps [La,] to [La,]:
v (Ko(Aa), Ko(Aa)+, (L] K1(Aa)) = (Ko(Ap), Ko(Ap) 4 [Lagl K1(Ag)),
such that there exists an isomorphism x: C(X) — C(X) satisfying
Y0 (ja)ei = (a0 X)ei for i = 0,1 and 7, 0 Ja = pag 0Gg 0 X on C(X)sa.
Then (X,a) and (X, ) are C*-strongly approzimately flip conjugate.

In the rest of this chapter, for a minimal homeomorphism o on the Cantor set X, we will

use K%(X, ) to denote the ordered group
CX,Z/{f ~ foa™": feC(X,Z%)}
with the positive cone being (denoted by K°(X,a)4)
CX,D)){f - foa™l: f € C(X,Z%)}
where D is as defined in Lemma 11.2.9. In K°(X, a), we define the unit element to be
[(1,0)c(xz2y] € C(X,Z3)){f — foa™": f e C(X,Z%},

with (1,0)c(x z2) being the constant function in C(X,Z?) that maps every z € X to (1,0) € Z2,

We use 1xo(x,q) to denote this unit element.

Lemma IV.1.4. Let X be the Cantor set. For every minimal action o« € Homeo( X), if there is
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an order isomorphism

@ (KX, 0), KX (X, 0) 4, Lgo(x,ay) — (K°(X, 8), KX, B)+, Lko(x.9)»
then there is an order isomorphism

7 (C(X,2%),C(X, D), (1,0)cex,22)) — (C(X,Z%),C(X, D), (1,0)c(x.22))

such that the following diagram commutes:

(C(X,72),C(X, D)) ———— (C(X,2?), C(X, D)) (IV.1)

(KO(X,a), KO(X, a)1) ——— (K°(X, §), K°(X, B)+)

where mo, T3 are the canonical projections from C(X,Z?) to K°(X, ) and K°(X, B). In fact, there

ezists ¢ € Homeo(X) such that p(F) = F oo™} for all F € C(X,Z?).

Proof. The proof is based on [LM3, Theorem 2.6].

Define K%(X, a) to be

C(X,2)]{g —goa~t: g€ C(X,Z)}

and K%(X,a), to be
C(X,ztu{oh)/{g—goa~t:ge C(X,Z)}.

We can check that (K°(X,a), K%(X,a) ) gives an ordered group with order unit.

Define
h: K9(X,a) - KO(X,a) by h([f]) = [f1]

for every f = (f1, f2) € C(X,Z?), with fi, fo € C(X,Z).

From the definition, we can check that & is surjective and h(K®(X,a)y) = K(X,a),.
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For the isomorphism

w-: (KO(X,Q),KO(X,O{)+) - (KO(X,‘B),KO(X,ﬂ)_,_),

define

po: KO(X,a) = K°(X, ) by wo([f]) = h(#([(f,0)]))

for all f € C(X,Z).

Suppose that there exist fi, fo,g € C(X,Z) such that f; — fo = g —goa~!. Then it
follows that (f1,0) — (f2,0) = (g,0) — (g,0) o ™!, which implies that ¢([(f1,0)]) = @([(f1,0)]). It

is now clear that g is well-defined.

Note that vo([le(xzy]) = Ale([(1,0)c(x.z2)])). As ¢ is unital, o(1go(x,a)) = Lro(x,g)
which then implies that vo([lox,z)) = h([(1,0)cx.z2)]) = [le(x,z)]- We can now claim that g

is unital.

For any f € C(X,ZTU{0}), wo([f]) = h(e([(f,0)])). As both ¢ and k are order preserving,

g is also order preserving.

So far, we have that ¢o: K9(X,a) — KX, 3) is untial and order preserving. According

to [LM3, Theorem 2.6], there exists a continuous order preserving map
vo: (C(X,2),C(X,Z)+,1c(xz)) — (C(X,2),,C(X,Z)+,Loxm)
such that the following diagram commutes:
(C(X,2),0(X,2)4) e (C(X,2),C(X,Z)4) (1V.2)

w;l lw},

(K9(X,a), K°(X,a),) “— (KX, ), K°(X, 0),)

Now we need to construct the unital positive linear map

: (C(X,2%),C(X, D)) — (C(X,Z%),C(X, D)),
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such that diagram (IV.1) commutes.

For the @y we get, note that @ is a unital positive isomorphism from Ko(C(X)) to
Ko(C(X)). As C(X) is a unital AF-algebra, by the existence theorem of classification of unital
AF-algebras, there exists an isomorphism %: C(X) — C(X) such that (identifying Ko(C(X)) with
C(X,Z) and Ko(C(X))4 with C(X,Z),.)

et (C(X,2),C(X,Z)4,[1]) = (C(X,2),C(X,Z)+,[1])

coincides with @g.
As 9 is an isomorphism, there exists o: X — X such that ¢(f) = foo™* forall f € C(X).

Define &: C(X,Z*) — C(X,Z%) by §((f.9)) = (W(f),¥(9)) for all f,g € C(X,Z). In
other words, 3((f,9)) = (f,g) oo™} for all (f,g) € C(X,Z?).

For the @ above-defined, it is easy to check that it is unital and linear. It remains to show

that ¢ maps positive cone to positive cone, and makes the diagram commute,

For every (f,g) € C(X, D), we get 3((f,9)) = (f,g) oo™ L. As (f,g) € C(X, D), it is clear

that (f,g) oo™ € C(X, D). So far, we proved that ¢ is a positive map.

We can check that

mg 0 o((f,9)) = ma(h(f), M{9))
= m3(o(f), %o(g))
= ms(@o(f),0) + m5(0,0(g))
= (mj 0 po(f), 0) + (0,75 © Po(g))
= (po 0 15, (f),0) + (0, 0 0 w4 (9))
=poma((f,0)) + ¢ oma((0,9))

= @Oﬂa((f’g))v

which implies the commutativity of diagram (IV.1).

As §((f,9)) = (f,g) oo~ for all f,g € C(X,Z), we get that @ is an isomorphism, which

finishes the proof.
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Theorem I'V.1.5. Let (X xTxT,axRe, xRy, ) and (X xTxT, BxRe, xRy, ) be two minimal rigid
Cantor dynamical systems. Use A, B to denote the two corresponding crossed product C*-algebras.
According to Proposition 111.2.1, K°(X, ) is a direct summand of Ko(A) and K°(X, ) is a direct
summand of Ko(B). Let

ja: K%X,a) = Ko(A) 2 K%(X,a) ®Z* and jp: K°(X,B) - Ko(B) 2 K°(X,a) ® Z*

be defined by

jalz) = (z,0) and jp(z) = (z,0).

If there is an order preserving isomorphism p from Ko(A) to Ko(B) that maps K°(X,a) onto

K% X, ), then these two dynamical systems are C*-strongly approzimately conjugate.

Proof. We have the following commutative diagram:

Ko(A) P Ko(B)

IJ'B
pll\’O(X,u)

KO(X, ) — % . go(x, ) .

According to Lemma IV.1.4, we can lift

plrox,a t KX, o) — KX, B)

to

7 C(X,Z%) — C(X,Z2),
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which will yield the commutative diagram

In fact, according to Lemma IV.1.4, there exists ¢ € Homeo(X) such that p(F) = Foo~L. Define

x: C(X x T?) — C(X x T?)

by x(f) = f o (¢ x idye) for all f € C(X x T?).

According to the Kiinneth Theorem, we get that Ko(C(X x T?)) & C(X,7Z?). By Lemma
11.2.1, if we identify Ko(C(X x T?)) with C(X,Z?), the positive cone will be identified with
C(X, D), with D as defined in Lemma I1.2.1. Choose © € X. According to Lemma I1.2.9, we know
that Ko(A;) = K% X, a) and Ky(B,) & KX, 8), with A, B, being the subalgebras of A and

B, as in Definition 1.2.1.

Now we have the commutative diagram

Ko(4) P Ko(B)

(.70)*()T T(jﬁ)*()
7

Ko(C(X x T?)) Ko(C(X x T2)) .

Note that 7 is induced by the x: C(X x T?) — C(X x T?) defined above. We have shown
that po (ja)*i = (]ﬁ © X)*i» i=0,1

We will show that v, 0 jo = pa, 0 jgox on C(X)s

For every tracial state 7 € T(C*(Z, X, #)), we know that it corresponds to a f-invariant

probability meausure up (in such sense that 7(a) = p(E(a)), with E being the conditional
expectation from C*(Z, X, 8) to C(X)).
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For every [-invariant probability measure pug on X, if we use v to denote standard
Lebesgue measure on T, it is then clear that up x v x v is § x Rg, x Ry -invariant. As the
dynamical system (X X T x T, 8 x Re, X Ry,,) is rigid, for every 8 x Rg¢, x Ry,-invariant probability
measure, it must be 4 X v X v, with g being an f-invariant probability measure and v being the

Lebesgue probability measure.

Note that A denotes C*(Z, X x T x T, a x R¢g; X Ry, ) and B denotes C*(Z, X x T x T, § x
Re, X Ry, ). According to Proposition II1.2.1, the fact that Ko(A) is isomorphic to Ko(B) implies
that K;(A) is also isomorphic to K (B). According to Proposition 11I.2.3, the tracial rank of A

and B are both zero, thus classifiable via the K-data.

Let ¢: A — B be the C*-algebra isomorphism such that

px0t Ko(A) — Ko(B)

coincides with the p in the statement. Define

Y : T(B) — T(A)

as v*(7p)(a) = 7(w(a)) for all a € A and 75 € T(B).

Note that a C*-algebra with tracial rank zero must have real rank zero. We can now claim

that for every a € C*(Z, X, a)s, and 75 € T(B) given by up X v X v,

(o © Ja(a))(78) = ¢"(75)(a).

Consider

a=fRgOREC(X XTxT)y C Agq

with f € C(X)sa,9 € C(T)sq and h € C(T),,, and use 74 to denote ¢*(75). As o X Re, X Ry, is
rigid, there exists an a-invariant measure 4 such that 74(a) = (ua x v x v)(E(a)), with E being
the conditional expectation from A to C(X x T x T) and v being the Lebesgue measure on the

circle. It follows that (v, © jo(a))(78) = Ta(a) = pa(f) - v(g) - v(h).
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As for ((pa, o jg o x)(a))(TB), we know from the definition that

((pag o dpox)a))(me) = TB(X(f ® g ® R)) = (u x v x V)(x(f ® g ® h)).
Recall the definition of x. We have
(up % v x V) (X(f®g®h) = pp(foo™") v(g) v(h).
If we can show that us(f 0 0=!) = pa(f), then it follows that
(kB x v xv)(X(f ® g®h)) = pal(f) -v(g) - v(h) = (La x vxv)(f®g&h),

and we can then get

Yp © ja = pay ©jgox on C(X x T?) ga.

We will show that for all f € C(X,Z) and pa, up as given above, we have ug(foo™!) =

pa(f). If that is done, noting that the C-linear span of C(X,Z) is dense in C(X)sq, we get
pe(foo 1) = pa(f) for all f € C(X).

According to our notation, for g € C(X), we have

talg) = (pa x vxv)(g ®idr @ idr)
= 74(9 ® idr ® idr)
=" (75)(g ® idr @ idy)

= 7p(p(g ® idr ® idT)).

According to digram (IV.2) in the proof of Lemma IV.1.4, we have the commutative
diagram
Ko(C(X)) - Ko(C(X)) (Iv.3)

, 7
Ta l/ l‘"‘ﬂ

Ko(C*(Z, X, 0)) ——2—> Ko(C*(Z, X, B)) ,

where C*(Z,X,a) and C*(Z, X, () are the crossed product C*-algebras of dynamical systems
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(X, «) and (X, B) respectively, g, @o are order preserving isomorphisms, and @ agrees with x as

a map from C(X,Z) to C(X,Z).

By the proof of Lemma IV.1.4, for all f € C(X,Z), if we identify C(X, Z) with Ko(C(X)),
we get

Po(f) = foot.

From the commutative diagram (IV.3), we can conclude that (although we cannot claim

that ¢(f ® idr ® idy) = x(f) ® idr ® idy)
Te(p(f ®idr ®idr)) = 78(x(f) ® idr ® idT).
As x(f) = f oo™, it follows that

pa(f) = (pa x v xv)(f ®idy ® idy)
= 74(f ® idr ® idy)
= ¢"(r8)(f ® idr ® idy)
= 7p(p(f ® idr ® idy))
= 78(x(f) ® idy ® idr)
= pa(x(f))

=pp(foo™).

Now we have that pa(f) = up(foo™?!) for all f € C(X,Z). Note that the C-linear span
of C(X,Z) is dense in C(X), we get

palf) =pp(foo ) forall f € C(X)q.

As both dynamical systems o x Re¢; x Ry, and 8 x Re, x Ry, are rigid, by Proposition
I11.2.3, we have TR(A) = TR(B) = 0. According to Corollary IV.1.3, these two dynamical systems

(X xTxT,axRe xRy, ) and (X x T x T, B xRe, xRy, ) are C*-strongly approximately conjugate.

O
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IV.2 WEAK APPROXIMATE CONJUGACY

For minimal homeomorphisms a x Rg, x Ry, and B x R, x Ry, , the following lemma shows
that whether they are weakly approximately conjugate or not is determined by o and 3 only, and

has nothing to do with R¢, and R,, for¢=1,2,

Lemma IV.2.1. Let (X, o) and (X, 5) be two minimal Cantor dynamical systems. For continuous
maps &1,62,m,m2: X = T, (X xTxT,ax Re, xRy, ) and (X x T x T, [ x Re, x Ry,) are weakly

approzimately conjugate if and only if (X, o) and (X, 8) are weakly approzimately conjugate.

Proof. The “if” part:

For every € > 0, we will show that there exists ¢,, € Homeo{X x T x T) such that

dist(o, oot B) < e.

As (X, f) is a minimal Cantor dynamical system, there exists a Kakutani-Rokhlin partition
{Xsk:1<s5<n,0<k<h(s)}

such that ii(s) > 5/¢, and diam (X, ;) < €/5, where diam(X, ;) is defined to be sup, ,cx, ; dist(z,y).

For any two clopen sets X, ;, and X, ;, in the Kakutani-Rokhlin partition, there exists
Os1,j1is2,je > 0 such that if z,y € X, ;, | Xs,,j, and dist(z,y) < ds, j1555,52, then either z,y €

Xslvjl orzx,ye stsjz'

Let § = mind, ;v ;:, where X;; and X j traverse through all pairs of distinct clopen

sets in the Kakutani-Rokhlin partition above.

As (X,a) and (X, B) are weakly approximately conjugate, there exists v, € Homeo(X)
such that

dist(y o a oy~ (z), B(z)) < 6.

According to the definition of §, it follows that for every X, ; in the Kakutani-Rokhlin partition
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above, we have

Yoo 07—1(Xs,j) = ﬂ(Xs,j)'

Without loss of generality (replacing o with v o o o y™!), we can assume that a and £
satisfies

a(Xs,j) = ﬂ(Xs,j)'

Identify T with R/Z, and define 7 by m: R - R/Z,t — t + Z. For all x € X, define
h{z) = 0. For ¢ € X, with 0 < k < 2(s), define

k
=2 (G — &) (@),

As £, and & are both in C(X,T), it follows that the above defined f; is a continuous function

from X to T.

For z € X, , define

g1(z) = D _(62 — &)@ ("M (x))).

It is also clear that g; € C(X, T).

As X is totally disconnected, we can divide X into |_|ka: 1 Xg, with every X, being a clopen
subset of X satisfying dist(h(z), h(y)) < 1 for z,y in the same X;. For g1 |x,, we can lift it to

continuous function Gy x: Xk — [0 — §,1 + 1] satisfying g1 |x, =70 Gy

Define G;: X — R by setting G1(z) to be Gy x(x) if z € Xj. It is then easy to check that

G, is a lifting of g7 satisfying

1
g =70G andG’l(:c)e[O—Z,l—l—i] forall x € X.

For x € X, i, define
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Similarly, define fo{z) = 0if z € X, and

k
fo(z) = Z(Th —m)(a™(z))

j=1
for x € X, 1 with 0 < k < h(s). Define
h{s)

ga(2) = > (m —m) (a7 (P ©75(a)) ).

i=1

As X is totally disconnected, we can find a lifting Go € C(X, R) such that

1 1
g2 = moGy and Ga(x) € {O—Z,l—i—ﬂ

forallz € X.

For z € X, 1, define

sa(z) = fa(z) - QQIEECT))IC + Z.

For the s1 and sy we have defined, it is easy to check that they are continuous function from X to

R/Z. According to our identification, we can regard s; and sp as functions in C(X,T).

We will show that (idx x Ry, X R,,) will approximately conjugate a x Re, x Ry, and

,B X R{Q X R”)?’

For every (z,t1,t2) € X x T x T, we have

(idy x Ry, X Ry,) 0 (@ x Ry X Ryyy) 0 (idz X Ry, x Ray) 7z, 21, 82)

= (idy X Rs; X Ry,) 0 (@ X Re, X Ry ) (2,81 — s1(x), t2 — s2(x))

= (idy x Re; X Ry, )(a(z), t1 — s1(z) + &1(x), ta — s2(zx) + m(x))

= (a(z).t1 + &i(x) — s1(x) + s1(a(x)), ta + m(z) — s2(z) + sa(a(z))),

and it is clear that

(B x & x ma)(w,t1,t2) = (B(x), t1 + E2(), t2 + m2(7)).
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As (X, ;) = B(X;,;) and diam(X, ;) < /5, we have dist(a(z), B(z)) <e/5 for all z € X.

Consider the distance between 1 + &1 (z) — s1(z) + s1(a(z)) and ¢, + &2(z). We get
[t + &1(z) — s1(z) + s1(a(z)) — (t1 + &a(2))] = [s1(a(z)) — si1(z) + &1(z) — L2(2)].

According to the definition of sy, if 2 € X, »(,) (that is, z is on the roof}), then

h(s)
si{z) = Z(fz —&) (a7 (z)) — Gi(z)
h(s) ' R(s) A
= Z(fz ~ &) (a7 (2) - Z(fz —&)(a™(x))
i=1 3=0
= —(& — &i)(x)
= (.

We know that s; (a(x)) = 0 as (a™*®))(z) € X, 0. It is then clear that
Isi{a(z)) — si1(z) + &1(2) — §a(x)| =0

if z is in the roof set.

If z is not in the roof, in other words, for x € X, , with 0 < k < h(s) — 1, we have

si(a(z)) — si(x) = (§2 — &)(z) — Ghl((:;)

As Gi(z) € [0~ §,1 4 4] for all z, and we have h(s) > 5/¢ for all s, it then follows that
[s1{a(x)) — s1(z) + & (x) — €a(x)| < 2¢/5 for all z € X.
Similarly, we have

[tz +m(z) — s2(z) + s2((z)) ~ (b2 + ma(2))| = [s2(e(@)) — s2(2) + M (z) — 72()|
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and

[se(a(z)) — se(z) + m(z) — n2(x)] < 2¢/5 for all z € X.

So far, we have proved that

dist ((idy x Rs, X Rsy) 0 (@ X Re; X Ry ) 0 (idy X Ry, x Ry, )71, 8 x Re, X Ryyy)
<el/b+2e/5+2¢/5

= €.

As we can construct such conjugacy maps for all € > 0, it follows that a x R¢, X Ry, is weakly

approximately conjugate to 8 x Re, x Ry, if o is weakly approximately conjugate to 3.

The “only if” part.

If a sequence of o, in Homeo(X x T?) approximately conjugates o x Rg; X Ry, to 3 x
Re, X Ry,. as X is totally disconnected, we can write o, as v, X ¢, with v, € Homeo(X) and

©: X — Homeo(T?) being a continuous map.

Let P: X x T? — X be defined by P(z, (¢1,2)) = z (the canonical projection onto X).

We can easily check that
P((on o (a x Rg; x Ry, ) 0071 )(z, (t1,12))) = (v 0 @09 1) (2)-
As (0,0 (@ x Rg, x Rpyy)o0t) — 8 X Re, X Ry, we have
P((ono{axRe x Ry ) oo )z, (t1,12))) — P((B % R, X Ry )(z, (11, 12))),

which then implies that

(Y 0 a0y 1) (z) — B(x) for all z € X.

We have finished the proof of the “only if” part.
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IV.3 APPROXIMATE K-CONJUGACY

From Lemma IV.2.1, we know that the if and only if condition for a x R¢; x Ry, and
8 x Re, x Ry, to be weakly approximately conjugate is that o and § are weakly approximately

conjugate.

One might be wondering whether we have weak approximate conjugacy between a x Re, x
R,, and # X R¢, x R,,, can we expect to have the isomorphism between C*-algebras C*(Z, X x

TxT,axRe xRy )and CHZ, X x T xT,8 xR, xRy, )?

Generally speaking, weak approximate conjugacy is not enough to imply that the
corresponding crossed product C*-algebras are isomorphic. Examples can be found in [M1], [LM1]

and [LM3].

As guessed by Lin in [LM1], if we strengthen the definition of weak approximate conjugacy
{(in the sense that those conjugacies will induce an isomorphism of K-data of these two crossed
product C*-algebras), this might be equivalent to the isomorphism of two crossed product

C*-algebras.

That “strengthened” version of weak approximate conjugacy is called approximate
K-conjugacy. Before the definition of approximate K-conjugacy is given, the definition of

asymptotic morphism will be given and a technical result needs to be mentioned.

Definition IV.3.1. A sequence of contractive completely positive linear maps {¢n} from C*-algebra

A to C*-algebra B is said to be an asymptotic morphism, if

nlizgo}jwn(ab) —n(a)pn (b} =0 for alla,b e A

Proposition IV.3.2. [Lin{/

Let (X, @) and (X, B) be two dynamical systems. If there erists a sequence of homeomorphisms
on: X — X such that lim,_, dist(c, 0o @001, B) = 0, theﬁ for a sequence of unitaries {z,} in
Ay with

Jim ||z 70 (f) = Ja(f)zall = 0 for all f € C(X),
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there exists a unital asymptotic morphism {©S} from Ag to As such that
lim |97 (ug) — tazn|| = 0 and
n—oe
lim |97 (7 (f)) — Ja(foon)| =0
n—00

for dll f € C(X).

Proof. This is Proposition 3.1 in [Lin4]. The main ingredient in the proof is to use weakly
approximate conjugacies to construct a C*-algebra homomorphism from Ag to [[{° Aa/ DT Aa,

and apply the lifting property of completely contractive positive linear maps.
It works like this:

Let m: T]7° Aa — €D} A, be the quotient map. Define

@;AﬂHﬁAa/éAa
1 1

by setting
U(je(f)) =n({ja(foon): n e N}) and ¥(ug) = m({uazn: n € N}).

To show that ¥ is a well-defined homomorphism, we just need to check that

”(uazn)* Jalfo Tn) - (uazn) — Jalf Oﬁoan)” — 0.

As dist(o, o xo g1, B) — 0, we have

lim |[(uazn)* - Ja(f oon)  (uazn) — Ja(foBoop)|= lim | foo,oa— foBoo,| =0.

Thus U: Ag — [[]° Ao/ DT Aa is a C*-algebra homomorphism.
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Consider
I Aa

lw

Ap [T Aa/ T Aa

v

As Ag is amenable, according to [CE, Theorem 3.10], there exists a sequence of contractive

completely positive linear maps ¢%: Ag — A, such that

m({ph(b): n € N}) =¥(b) for all b € Ap.

As ¥ is a homomorphism, it follows that
1im [l2(ab) — 5 (@) (0)] = 0 for all a,b € Ag,

which indicates that {¢2: Az — Ay :n € N} gives a unital discrete asymptotic morphism.

Now we can give the definition of approximate K-conjugacy between two dynamical

systems (X, a) and (X, 3).

Definition IV.3.3. For two minimal dynamical systems (X, a) and (Y, 8), with X and Y being
compact metrizable spaces, we say that (X,a) and (Y, ) are approzimately K-conjugate if there

exist homeomorphisms o,: X - Y, 1,: Y — X, and an isomorphism
pi K.(C*(L,Y,B)) — K.(C™(Z, X, a))

between K -groups such that

Unoaoo';l_”ﬂ; 7'1101607}71_”ay

and the associated discrete asymptotic morphisms ¥,: B — A and v,: A — B induce the

1

1somorphisms p and p~* respectively.
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Remark: According to Proposition 1V.3.2, the weak approximate conjugacy maps will induce
asymptotic morphisms. But it is not generally true that the asymptotic morphisms will induce
a homomorphism of Ky and K; data. In Definition IV.3.3, those approximate conjugacies must not
only induce a pair of homomorphisms between K;(A) and K;(B), in addition, these homomorphisms

must be a pair of isomorphisms that are inverses of each other.

For the classical case of minimal Cantor dynamical systems, it is shown in [LM3] that two
Cantor minimal dynamical systems are approximately K-conjugate if and only if the corresponding

crossed product C*-algebras are isomorphic,
For the case of (X x T, a x R¢), with & € Homeo(X) being minimal homeomorphism and

€: X — T being a continuous map, similar results are obtained in Theorem 7.8 of [LM1].

Based on Theorem IV.1.5 and Lemma IV.2.1, we will give an if and only if condition for

approximate K-conjugacy between o X Rg, x Ry, and 3 x Re, X Ry,

Theorem IV.3.4. Let X be the Cantor set. Let o, 3 € Homeo(X) be minimal homeomorphisms,
and let £1,€2,m,m2: X — T be continuous map such that both a x Re; X Ry, and 8 x Re, x Ry,
are minimal rigid homeomorphism of X x T x T (as in Definition I11.2.2). Use A to denote
the crossed product C*-algebra corresponding to the minimal system (X x T x T, x Re; x Ryy,),
and B to denote the one corresponding to (X x T x T, 8 x Re, X Ry,). Use K°(X,a) to denote
C(X,2)/{f—foa"': f € C(X,2%)} and K°(X, ) to denote C(X,Z)/{f—foB™': f € C(X,Z%)}.

The following are equivalent:
(X XxTxT,axRe xRy,) and (X xTxT, BxRe, xR,,) are approzimately K-conjugate,

2) There is an order isomorphism p: Ko(B) — Ko(A) that maps K°(X, ) to K°(X,a).

Proof. 1) = 2):

F(XxTxT,axRe xRy, ) and (X xTxT, FxRe, xRy,) are approximately K-conjugate,
according to the definition of approximate K-conjugacy (Definition IV.3.3), there exists o, €

Homeo(X x T x T) such that

dist(ay, o (@ x Re, X Ry) 0oL, 8 x R, X Ryy,) — 0,
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and the discrete asymptotic morphism induced by {o,: n € N} will yield an isomorphism from

K.(B) to K.(A).
That is, there exists an isomorphism
$o: (Ko(B), Ko(B)+, (L8], K1(B)) — (Ko(A), Ko(A)+, [14], K1 (4)).
Define ¢ to be the restriction of ¢y on Kp(A). We just need to show that ¢ maps K°(X, ) to
K%X, a).
According to the Pimsner-Voiculescu six-term exact sequence (as in the proof of Proposition

I11.2.1), we have

(Up)o(C(X x T x T)) = K°(X,8) = C(X,Z)/{f ~ foa™: f € C(X,Z%)}.

As a x Rg, x Ry, and 8 x R, x Ry, are approximately K-conjugate, for given projection

p € My (B), there exists N € N such that for all m,n > N, we have [po o,] = [poon] in Ko(A).

It is obvious that [p o op] € (Ju)«(C(X x T x T)). Then we can conclude that the

isomorphism p induced by the conjugacy maps will map K°(X, 8) to K°(X, a).

2)=1):

1t is easy to check that 2) implies the following commutative diagram:

Ky(B) Ko(A)
(jﬁ)*oT T(j@*o
K%X,ﬁ) KO(X,Q).
pIKO(X,ﬁ)

According to Theorem IV.1.5, the two minimal homeomophisms o X Rg; x Ry, and § x R, X Ry,

are C*-strongly flip conjugate.

The map p above induces an order preserving isomorphism between K°(X, ) (which is
isomorphic to C(X,Z%)/{f — f o B~'}, with order described as in Lemma 11.2.9) and K°(X,«)
(which is isomorphic to C(X,Z?)/{f — f o a~1}, with order described as in Lemma 11.2.9). Note
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that

Ko(C*(Z,X,0)) = C(X,Z)/{g — goa™": g € C(X,2)},

with

Ko(C*(Z, X,0))y =C(X,Z)/{g—goa™': g€ C(X,Z),9 2 0}.
It follows that there is an order isomorphism

p: (Ko(C*(Z, X, 3)), Ko(C*(Z, X, 8))+, [Lc-z.x.5)])
— (Ko(C*(Z, X, @), Ko(C*(Z, X, @) 4, [1ew 2, x,0)])-

According to Theorem 5.4 of [LM3], (X, o) and (X, ) are approximately K-conjugate. Thus they

are weakly approximately conjugate.

For any € > 0 and any finite subset 7 € C(X x T x T), as § is minimal, we can find

Kakutani-Rokhlin partition
P={X(sk):s€8,1<k<H(s)}

such that H(s) > 32?” for all s € S and diam(X (s, k)) < 15—6

As C(X x T, x Ty) is generated by
{1p,21,2z9: D is a clopen subset of X, z; is the identity function on T;},
without loss of generality, we can assume that

F ={1x(s,k) 211 x(s.k)» 221 x(s,k): S € 5,1 < k < H(s)}.

The fact that (X,a) and (X, 3) are approximately K-conjugate implies that there exist

{on € Homeo(X) : n € N} such that

gpoaoa, — B
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By choosing 7 large enough, just as in the proof of the “if” part of Theorem IV.2.1, we get
(onoaoo, ) (X(s,k)) = B(X(s,k)) for s € 5,1 < k < H(s).
Without loss of generality, we can assume that

a(X (s, k) = B(X(s,k)) for s € 5,1 < k < H(s).

As in the proof of “if” part of Theorem IV.2.1, there exist maps {idx x Ry, X Rn, }nen

such that
(idx X Rg” X Rh”) o] (a X Ré] X Rm) o] (idx X Rgn X Rhn)_l — (ﬁ X Rgz X Rflz)’

with all the g, h,: X — T being continuous functions as defined in the proof of Theorem IV.2.1.

We will show that the conjugacy maps {idx xRy, xRy, : n € N} will induce an isomorphism

between K. (B) and K.(4).
The idea is like this:

We know that these two dynamical systems a X Re, x Ry, and 8xRe, xRy, are C*-strongly
flip conjugate. Thus there exists 1,: B — A such that the following diagram approximately

comrnutes:

¥n

CX xTxT) —2X" » (X xTxT).

As we had assumed that (without loss of generality) a(X (s, k)) = B(X (s, k)) for s € S,k =

1,..., H(s), the xp in the diagram above satisfies

dist(xn(2), z) < diam(X (s, k)) < e/M

for z € X(s,k). In other words, restricted on C(X x T x T), x» is close to the identity map.
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Note that {1, } are isomorphisms and [¢,,] = [¢,] in KL(B, A) for m,n large enough. If
we can find W, € U(A) such that f ooy is close to W)y, (f)W, in A, and Wi, (up)Whn is close
to uaz, in A, where z, is a unitary element that “almost” commutes with C(X x T x T), then it
follows that the conjugacy maps {idx x Ry, X Ry, :n € N} will induce an isomorphism between

K.(B) and K,.{A).
The complete proof is as below:

Let g1, 92, f1, f2 be as defined in the proof of Lemma IV.2.1, and let

Fr =19 Ixk) fi-Ixshy: s€ 5,1 <k < H(s)}

We can further divide o=!(X (s, 1)) into the disjoint union of clopen sets Y (s, 1), Y (s, 2),

..., Y(8,N(8)), and choose z;; € Y(s,7) such that
[flz) = flzs ) <e/l6forall feFi,1<j<N(s),s€S.

Let Gy, G be the same as the one defined in the proof of Theorem 1V.2.1. That is, G is the lifting
h(s) h(s)

of gi(z) =Y (62—&) (a7 (97F(x))), Gy is the lifting of go(x) = Y _(ma—m) (a7 (" (2))),

=1 i=1
and Gy(z) € [0—,14 ). As both Gy, Gz are path connected to the zero function, it is clear that

o—i2mGk/H(s) |

[20+ 1y (s.0] = [2: - Ly (s,)]

in K1(A) fori=1,2and k=1,2.

Let

ts,jt Cly,; X TxT) — 1y, - A-ly,

be the inclusion map. Let two homomorphisms
Ngj, 655 C(T?) — C(ly,, x T xT)

be defined by

A i(f) =idy i) ® f
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and

5S,j(f)(w7 Z1, Z2) = idYS.J (‘T) ) f(zl . eizﬂ-cl(xs'j)/H(S)aZ? . eizﬂ-GZ(ISJ)/H(S))'

Consider the maps

Ls,j O Dg gy s, 0055 C(Tz) — 1y, ;- A-ly, ;.

It is clear that these two maps are monomorphisms.
By Proposition 111.2.3, TR(A) = 0, and it follows that TR(1ly, ; - 4- 1y, ;) = 0.

As G, Gy are contractible, we can claim that

[ts,; 0 As 5] = [ts,j ©6s,5] in KL(C’('I[Q), ly,, - A-ly, ;)

For every f € 1y, , - A ly,,, and for every tracial state 7 on ly, , - A ly, ;, consider
7((ts,5 0 Dg;)(f)) and 7((ts,5 © 05;)(f)). By Lemma II1.1.4, we can regard ly,; - A- 1y, ; as the
crossed product C*-algebra of the induced minimal homeomorphism of ¥ ; x TxT. AsaxRe xR,
is rigid, it follows that the traces on ly, ; - A - ly, ; also corresponds to such measures like p x v,

with v being the Lebesgue measure on the torus.

Now we have

T((ts,50Ds5)(f)) =T (ldY(sJ) ® f)

Y (s, 7)) /f ((21,22))

- Y . . o127 G1(zs )/ H(s) 2w Ga(zs,5)/ H(s)
w(Y (s, 7)) flzi-e , 22" € dv
T2

=7 ((ts,5 ©0s,5)(f)) -

As TR(ly,, - A- 1y, ) =0, [ts; 0 g ;] = [ts; 0 855] and
7((ts,5 0 Bs,5)(f)) = 7((ts,5 © 05,5 )(f))

for all 7 € T(ly,, - A-ly, ;). According to Theorem 3.4 of [Lin3], the two monomorphisms

ts,;0As 5 and ¢4 06, ; are approximately unitarily equivalent. Thus there exists a unitary element
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Usj € ly,,; - A+ 1y, ; such that
[V} ;2ids,5Vs,5 — 2o 12 Gi(@s3)/ Hs) 1y, | <e/(16K) forallsec S,1 <k < H(s),1<j<N(s).

N{s)
Let v, = Z vs,j- As Ys1,Ys0,..., Y, n(s) are mutually disjoint, we have
j=1
H('U};)*Zif(l')la—l(X(s’l))'U;C — Ze_2ﬂkGi(z)/H(s)f(:l?)la—l(x(s,1))” < 6/16 + KE/(IGK) + 6/16

< eg/d.

forall f € Fi,s€ 5.

Let

Fo=FU {1ys.j,z,i1y

s

‘jazfloﬁl(x(s,l)): feFi,s€51<k< H(S)}

As o x R¢ x R, is C*-strongly flip conjugate to o x R¢ X Ry, for any § > 0, and for the

Fy € C(X x T x T), there exists a C*-algebra isomorphism ¢: B — A such that

1% (Ja(f)) = Ja (NIl <6 and |[(up)"ja (f)P(ur) — Jal(f o B)|| <4 for all f € Fs.

Note that 1x (4, for s € S and 1 < k < H(s), are mutually orthogonal projections and
add up to 1p, and {lx i :s € 5,1 <k < H(s)} C Fo. According to the perturbation lemma
[Lin2, Lemma 2.5.7], by taking 6 to be small enough, the fact that ||¢/(js(f)) — jo(f)l] < ¢ will

imply that there exists v € U(A) such that

v A2 y16K2) Y(uB)

and

V" 1x s,V = 1x(s,k) © B and |[v" fv — f o Bl} <e/(4K) for allf € F.
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H{(s)
Define W = Z Z 1X(s,k)v_kvfuk. Then we can check that
s€ES k=1

H(s) H(s)

W*W = Z Z 1X(s,k)v“kvfuk . Z Z 1X(S,,k,)v’k/v§uk/

s€S k=1 s'ESk'=1
H(s)
= Z Z (u_kv;kvklx(s,k)1X(3’k)v”kvfuk)
SES k=1
H{(s)
Z Z u"kv;klaq(x(s,l))vfuk
sES k=1
H(s)
=22 eyt
SES k=1
H{s)
=2 D Tt 10x (1)
sES k=1
H(s)

= Z Z Tx (s.0)

SES k=1

=14.

As TR(A) = 0, we have tsr(A) = 1. Thus W*W = 1, implies that WW™* =14. So far, it

is checked that W is a unitary element in A.

As
H(U_]:)*zif(l')la‘l(X(s,l))vf - Zeh%kc":(z)/H(s)f(ff)la—l(X(s,l))H <e/4d

and

lv*fv— fof| <e/(4K) for all f € Fy and for all f € Fs,
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we have
H(s1) " H(s2)
H/*ZilX(syk)Wf: Z lX(sl Y% klvfllukl ZilX(s,k) Z Z 1x(521k2)0~k21)§;uk2
S ki1=1 5268 k=1
H(sl) H{(s2)
v kipk ke
= Vs, U D x (e k) | Zilx (s Z Z 1 (og,k0) 0 20E2UR2
k1~1 52€8 ky=1
= U 1X(s k)zllx(s k)1Xs & kvfuk
= u‘k'us_kvk(zilx(srk))v_kvfuk
—k k. k
~eary U R0TF ((2ilx(s,0y) 0 B%) vl
Rej(ar)te/a (Zlx(s,k)) 00
where
o(z,t,ty) =

k
z,t + Z (7B *(2))) — & (B77(x)) | — kG (z)/H(s),

k
b | Y m (@ @)~ (579(@) | - kGu@)/HG) |

for x € X(s,k) with s € Sand 1 <k < H(s).

Then it follows that

||W*Z7;1x(s,k)vv - (ZilX(s,k)) OO’” < K(E/4K) +e/4 <e.

Similar to the proof of Theorem IV.2.1, we have

dist(0 o (& X Rg; X Ry )a ™1, B X Re, X Ryp,) < €

Consider the map adW o, we have that

I(@dW o 9)(is(f)) — ja(f o )| <e+4.
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If (adW o) maps up to ug or uu -y such that ||yf — fyl| < € for all f € F, then it
follows that the K-map induced by approximate conjugacy map o (restricted to JF) will coincide

with [adW o 9] € KL(B, A).

In fact, we can check that

W*’U*I/Vzilx(syk)W*UW =g 5'U»T421'1X(s,k)uA7

which then implies that ||y f — fy|| < € if we define y = i (W*vW) € U(A4).

As
(adW ] ’l,/))(’U,B) = VVU)(uB)W e/(16K2) W*oW = UAY,

we may claim that the K-map induced by approximate conjugacy map ¢ (restricted to F) will
coincide with [adW o 9] € KL(B, A).

As C(X x T x T) is separable, by taking F to be large enough and € — 0, it follows that
the weak approximate conjugacy map ¢ will induce an isomorphism from K;(B) to K;(A), which

finishes the proof.
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CHAPTER V

THE CASES WITH COCYCLES BEING FURSTENBERG TRANSFORMATIONS

We had studied properties of dynamical systems and the corresponding crossed product
C*-algebras if the action on X x T x T is oo x R¢ x R;,. That is, in the skew product, the actions

on the torus are just rotations.

If the actions on torus are Furstenberg transformations, do we have similar results? This
chapter studies weak approximate conjugacy between two such systems and the K; of such crossed
product C*-algebras (which might be different from the case in the previous chapter), and shows
that there are two types of such minimal dynamical systems that will yield different K-theory for

the crossed product C*-algebras.

A definition of Furstenberg transformation on T? is given below.

Definition V.0.1. A map F: T? — T? is called o Furstenberg transformation of degree d if there
erist 0 € T and continuous function f: R — R satisfying f(z + 1) — f(z) =d for all z € R such

that (idenlifying T with R/Z)

Ftytg) = (t1 + 0,12 + f(1a)).

For the F above, d is called the degree of Furstenberg transform F, and 1s denoted by deg(F'). The

number d is also called the degree of f, and denoted by deg(f).
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V.1 WEAK APPROXIMATE CONJUGACY BETWEEN TWO FURSTENBERG
TRANSFORMATIONS

Use FT(T?) to denote the set of all Furstenberg transformations on T?. We will consider

the relationship between o x ¢ and  x ¥, with o, 3 € Homeo(X), and ¢,1: X — FT(T?).

Proposition V.1.1. Let F,G be two Furstenberg transformations on T? (as defined above). If the
degree of F is m, and the degree of G is n, then F o G is still a Furstenberg transformation, and

the degree of F'o G is m + n.

Proof. Let F(t1,te) = (t1 + 6,t2 + f(t1)) and G(t1,t2) = (t1 + 6,ta + g(£1)). It follows that

FoG(t1,ts) = F(t1 + 6,22 + g(t1))

=(t1 +0+0,ta+g(t1) + f(t1 +9)).

According to definition V.0.1, F o G is a Furstenberg transformation.

As deg F' = m and deg G = n, it follows that

glti+ 1)+ ftr+ 1+ 0) = (g(t1) + f(t1)) = g(t1 +1) — g(t1) + f(t1 + 14 6) — f(t1)

=m-+n.

Thus the degree of F o G is m + n.

In this chapter, we identify T with R/Z. For t1,t; € R/Z, we define the distance between
them by

dist(t1,t2) = min{|t; —tz +n|: n € Z}.

The following observation will be used.
Proposition V.1.2. Let f,g € C(T,T), and define dist(f, g) = supdist(f(t), g(t)). Ifdist(f,g) <
teT
1/2, then deg(f) = deg(yg).
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Proof. Suppose that dist(f,g) < 1/2 and deg(f) # degg.

Note that f—g € C(R/Z,R/Z) is of degree deg(f) — deg(g), which is not zero. According

to the Intermediate Value Theorem, there exists t € R and n € N such that

[f() —g(t) +nf =1/2.

It then follows that dist(f — ¢) = 1/2, contradicting with our assumption. So far, we have finished

the proof.

For two minimal homeomorphisms a x ¢ and a x ¢ (with ¢,9: X — FT(T?)), a necessary
condition for weak approximate conjugacy between them (with conjugacy maps having cocycles in

Furstenberg transformations) is given:

Proposition V.1.3. Let a x ¢ and 8 x 9 be two minimal homeomorphisms on X x T? with
o, X — FT(T?). If there exists v, X ¢n € Homeo(X x T?) with ¢n: X — FT(T?) continuous

such that (v, X ¢n) o (a0 X ©) 0 (v X dn) ™1 — B x 9, then
1) {vn: n € N} approxzimately conjugates o to f3,

2) there exists N € N such that

deg(¥(va(7))) + deg(dn(x)) = deg(p(z)) + deg(dn(a(x)))

foralln > N.

Proof. As (7, X ¢y,) o (@ X ) 0 (4, X ¢n) "t — B x 1, we have

(Yn % ¢n) 0 (@ X @) 0 (vn X ¢) "z, (t1,82)) — (B x ¥)(z, (t1,12)),

which is equivalent to

diSt(( fn X ¢n) © (CY X (P)(xv (tlatQ))v (ﬂ X 1/)) © (’Yn X ¢71)(l‘7 (tlth))) - 0.
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Assume that ¢,1, ¢, : X — FT(T?) are defined by
p(z)((t1,t2)) = (t1 + 01(z), t2 + fa(t1)),

P(x)((t1,t2)) = (t1 + 02(2), t2 + g2(t1)),
¢n(m)((t17t2)) = (tl + fn(x)at? + hn,z(tl))y

with fz, gz, he just like the function f in definition V.0.1.

Note that

(Y X @n) o (o x @)(z, (t1,£2)) = (vn X @) © (a(z), (t1 + 01(2), L2 + fz(t1)))

= (1 (a(x)), (tr + 01(z) + &n(a(z)), t2 + fo(t1) + Ana(z) (01)))s
and

(B x ) o (1 X du)(z, (t1,t2))) = (B X ) (wn(z), (t1 + £(2), L2 + ha(t1)))

= (B0 (), (1 + &n (@) + O2(1n(2)) L2 + hne (B1) 4 Goy, () (82)))-

It follows that dist(y,(a(z)),B(y(z))) — 0 and dist(Hp (t1), Gn(t1)) — 0, where
Hy o (t1) = fo(t1) + Ppa@ (t1) and Gz (t1) = hp o (t1) + Gy, @) (E1)-

Choose N € N such that if n > N. Then dist(Hy, z(t1), Gn,. (1)) < 1/2.

As fz, hna(z), Pne and g, () can be regarded as maps from T to T, we can identify H, .
and Gy, , as functions in C(T, T). According to Proposition V.1.2, it follows that for all n > N,

we have

deg(H,..) = deg(Gp o).

Note that deg(f:) = deg(p(z)), deg(gz) = deg(v(z)), and deg(hy z) = deg(dn(x)). We
then have

deg(ip(z)) + deg(¢n(a(z))) = deg(n(x)) + deg(¥(m(2))),

which finishes the proof.
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V.2 K-THEORY OF THE CROSSED PRODUCT C*-ALGEBRA

For the minimal dynamical system (X x T2, a x ¢), let A be the crossed product C*-algebra.

We will use the Pimsner-Voiculescu six-term exact sequence to get the K-data of A.

We use K°(X,a) to denote C(X,Z)/{f — foa: f € C(X,Z)}. Note that deg(p(z)) €
C(X,Z). Let m: C(X,Z) — K°(X,a) be the canonical projection, and use [deg(¢(z))] to denote
(deg(ip(x)))-

Proposition V.2.1. For the minimal dynamical system (X x T? a x ¢) with cocycles being
Furstenberg transformations, use A to denote the crossed product C*-algebra of this dynamical

system.

1) If [deg(p(x))] # 0 in K9(X,a), then

Ko(A) = C(X,2%)/{f ~ foa: fe C(X,Z))} 0 Z

and
K1 (A) = C(X, 2% /{(f,9) — (f,9) o — (deg() - (g0 ), 0): f,g € C(X,2)} & Z°.
2) If [deg(ip(x))] = 0 in KO(X, a), then
Ko(A) = C(X,Z)/{f — foa: f € C(X, 2%} & 2
and

Ki(A) = C(X, 2 /{(f,9) = (f,9) o o — (deg(p) - (g0 @),0): f, g € C(X,Z)} ® Z*.
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Proof. According to the Pimsner-Voiculescu six-term exact sequence, we have

JA w0

id—(axp).o
- >

Ko(C(X x T?)) Ko(C(X x T%)) Ko(A)

| |

K1(A) _ K1(C(X % T2)) K1(C(X x T2)) .

JA w1 id—(axp).

It then follows that we have the exact sequences

0 —— coker(id — (& X ¥)x0) Ky(A) ker(id — (@ X p)s1) —=0 (V.1)

and

0 — coker(id — (@ X ¥)«1) K (A) ker(id — (& % @)w0) — 0. (V.2)

We will study K,(A) by looking at the kernel and co-kernel of id — (& X ¢).; (for i =0,1).

From Lemma I1.2.1, we know that K;(C(T?)) is isomorphic to Z? for i = 0,1. Note that

Ko(C(X)) = C(X,Z) and K;(C(X)) = 0. According to the Kiinneth Theorem,

Ko(C(X x T?) 2 Ky(C(X)) ® Ko(C(T*) D K1(C(X)) ® K1(C(T*) = C(X, Z°)
and

K1 (C(X x T?) = Ko(C(X)) ® K1(C(T2)) @D K1(C(X)) ® Ko(C(T?)) = C(X, 7).

We will identify both Ko(C(X x T?) and K, (C(X x T?) with C(X,Z?).

According to Example 4.9 of [Phl], for every z € X,

@(x)40: Ko(C(T?)) — Ko(C(T?))
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is the identify map, and o(z).1: K, (C(T?)) — K1(C(T?)) is given by

) , [ ™ 1 0 m m
(p(:E)*l V4 > 7 . — . —
n deg(p(z)) 1 n deg(p(z)) -m+n

For (f,g) € C(X,7Z?) = K,(C(X x T?)), we can consider H € U(C(X x T?)) defined by
H(z,21,2) = z{(x) . zg(z),

with z; € T;, and each T; is identified with the unit circle in the complex plane C. It is then clear

that this H corresponds to (f,g) in K1(C(X x T?)).

Let o(z)((21, 22)) = (21 - €™ 25 . 2 . 5(21)) such that § € C(X,R) is continuous, and

5. € U(C(Ty)) is path connected to 1o(r,y for all z € X. We can check that

Ho(ax @)(z, 21, 22) = H(oz), z1 - 20 2, zf)(z) - $z(21))

— (Zl .ei27r9(a:))f(a(a:)) . (22 . Z;U(z) . Sz(zl))g(a(a:))‘

In U(C(X x T?)), it is clear that H o (ar x ¢) is path connected to G, with G defined to be

Glz, 21, 23) = Z{(&'(m)) (zg - Zilu(l))g(a'(x)) — Z{(Q(I)Hw(x)g(&'(x)) . Zg(a(x)).

Noting that w(z) = deg(p(x)), it then follows that

Pu1((f,9))(2) = (fa(z)) + deg(p(z)) - 9(alz)), g(a(z))).

Now we will study ker(id—{(ax @)«0). For f,g € C(X,Z), we use (f, g) to denote a function
in C(X,2%). It (f,g) satisfies (id — (o X 920))((f,9)) = 0, a5 9(2)ao: Ko(C(T2)) = Ko(C(T?)) is
the identify map, we get

fooa=f and goa=g.

The minimality of o then implies that both f and g are constant functions in C(X,Z). So far, we

have shown that ker(id — (o X ¢),0) = Z2.



118
As for ker(id—(aX ).), if there exists (f, g) € C(X,Z?) such that (id—(axe)«1)((f,9)) =

0, it follows that

f(z) = falz)) + deg(p(z)) - g(a(z)) and g(z) = g(e(z)).

As o is minimal, we conclude that g € C(X,Z) must be a constant function, say, g(z) = C for all

zeX.

To further study the kernel of id — (o X )1, we will consider two cases.
Case One: [deg(p(z))] # 0 in K°(X, ).

In this case, if g(z) = C # 0, we will show that there is no solution for

f(z) = f(a(z)) + C deg(p(2)).

In fact, if such f € C(X,Z) exists, it follows that Cldeg(p(x))] = 0 in K°(X, ). Similar
to the proof of Corollary I1.2.10, we can show that K°(X,«) is torsion free, which then implies

that [deg(p(z))] = 0, a contradiction.

If g(z) = 0, note that « is a minimal action on X. It is then clear that f(z) = f(o(z)) +

deg(p(x)) - g(a(x)) implies f(x) is a constant function.

So far, we have proved that if [deg(p(z))] # 0 in K°(X, ), then

ker(id — (o X @)u1) Z {(f,0): f=C for C € Z} 2 Z.

Case Two: [deg(¢(z))] = 0 in K°(X,a)

Inn this case, there exists 4 € C'(X, Z) such that A(x) — h o a(z) = deg(p(x)).

For (f,g) € ker(id — (a X ¢).1), if g =0, similar to Case One, we can still get that f = C
(with C € Z).
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If g = M # 0, then f need to satisfy
f(=@) = fla(z)) + M deg(p(z)).

If there are two functions fi, fo € C(X,Z) satisfying
fi(z) = fila(z)) + M deg(p(x)) for i = 1,2,

then it follows that
(fi = f2)(@) = (fL = f2)(a2)),
which implies that f1 — f2 is a constant function.

According to our assumption, there exists h € C(X,Z) such that h(z) — ho alz) =

deg(p(z)), it is clear that Mh(z) — M - hoafz) = M deg(p(z)).

It then follows that any f € C(X,Z) satistying f(z) — f oa(z) = M deg(yp(z)) must be in
(M h+N:Nez}.

So far, we conclude that
ker(id — (o x ©),1) = {(C,0): C € Z}| J{(M -h+ N,M): M #0,N € Z},

which is isomorphic to

{((M-h+N,M): M,N €7}

So far, we showed that in this case,

ker(id — (a x p),1) & Z2.

For either of the cases, as ¢(z)s«0: Ko(C(T?)) — Ko(C(T?)) is the identify map for all

z € X, we have

coker(id — (a X @)a0) = C(X, 2 /{f ~ foa: f € C(X,Z%)}.
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For (f,g) € C(X,Z?), note that (o x 9).1(f, 9)(z) = (f(a(z)) + deg(p(z)) - g(a(z)), g(e(x))). It
follows that

coker(id — (@ X ©)u1) 2 C(X,Z%)/{(f,9) — (f,9) oo — (deg(p) - (g0 @),0): f, g € C(X,Z)}.

For either case, note that ker(id — (@ X ¢),1) is a free Z-module. It follows from short exact

sequences V.1 and V.2 that

Ko(A) = coker(id — (a X ¢)«g) ® ker(id — (& X ¢)x1)

and

K)(A) = coker(id — (a X ©)«1) @ ker(id — (o X ¢)40).

For both cases, as we know the kernel and co-kernel of id — (a x ). (for i = 0,1), the

K-data of A follows easily, which finishes the proof.

V.3 RIGIDITY

Similar to the idea of rigidity as in Definition I11.2.2, we can define the rigidity condition

for the case that cocycles are Furstenberg transformations.

Definition V.3.1. Let (X x T?, a X ¢) be a minimal dynamical system with each o(z) being a
Furstenberg transformation. Let j be an o x @-invariant probability measure on X x T?. It will
induce an a-invariant probability measure on X defined by w(u)(D) = u(D x T?). We say that
(X xT?, axp) is rigid if T gives a one-to-one map between the o X p-invariant probability measures

and the a-invariant probability measures.
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V.4 EXAMPLES

Several examples of rigid minimal dynamical systems (X x T2, a X ) are given, with ¢(x)

being a Furstenberg transformation for all z € X.

a} The examples of rigid (or non-rigid) minimal dynamical systems (X x Tx T, axRe xRy,)
are definitely the examples of rigid (or non-rigid) minimal dynamical systems of type (X xT?, a:x ).

For example, Example I11.3.6 and Example II1.3.7 in Section III.3.

b) The example of a rigid minimal dynamical system (X x T?, o x ), with ¢(z) being a

Furstenberg transformation for all x € X, and [deg(p(z))] # 0 in K°(X,a).

Let (T3, ) be a topological dynamical system on T®, with v defined by

2wl

(21,22, 23) = (21", 2129, 2923)

for some 6 € R\ Q.

According to Theorem 2.1 of [Furstenberg], the dynamical system (T3,7) is uniquely
ergodic. Then there is only one y-invariant probability measure on T? (in fact, this measure

is the standard Lebesgue measure on T?).

Let (T, ¢) be a Denjoy homeomorphism of rotation number 8. Let (X, ) be the minimal
Cantor dynamical system derived from (T, ) such that it factors through (T, Ry). In other words,

we have the following commutative diagram

=) x
X—X
T— T

with 7: X — T being a surjective map.

Regard m(z) as a unitary element in C (as 7(z) C T), and define ¢: X — Homeo(T?)

o(x) (21, 22) = (7(x)21, 21 22).
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It is then clear that the following diagram commutes:

axy

X xT? X x T2
X id-2 l lnxid,:g
T3 P T3

According to Proposition I11.3.5, there exists a one-to-one correspondence between the invariant
probability measure of (T3, 7) and that of (X x T?,a x ¢). Thus (X x T?, « x ) is an example of
rigid dynamical system with cocycles being Furstenberg transformations, and [deg(¢(z))] # 0 in

KX, a).
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