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Define f E C(sp(a), IR) by

i(x) ~ {
o x E sp(a) n [-JJ, JJ]

1 x E sp n [1 - JJ, 1 +JJ]

Then f(a) is a projection in C*(a), and it is easy to check that lip - all::; JJ.

o

Theorem 111.1.17. Let X be the Cantor set and let a x REx R1J be a minimal action on X x 'IT' x 'IT'.

Use A to denote the crossed product C*-algebra of the minimal system (X x 'IT' x 'IT',a x RE x Rry).

Then TR(A) ::; 1.

Proof. According to [HLX, Lemma 4.3]' for simple C*-algebra A, if for every c > 0, C E A+ \ {O}

and finite subset F C A, there exists a nonzero projection p and a unital subalgebra B of pAp

such that TR(B) ::; 1 and

1) II[x,p]1I ::; c for all x E F,

2) dist(p . x . p, B) ::; c for all x E F,

3) 1 - p ::S c as in Definition 1.2.2. That is, 1 - IE is Murray-von Neumann equivalent to

a projection in Her(c),

then it follows that TR(A) ::; 1.

Let Ax be as defined in Lemma 1.2.1. According to Lemma n.2.11, TR(Ax) = 1. If we

can find a projection e E Ax such that B = eAxe satisfies the previous three conditions, then we

are done.

As A is generated by C(X x 'IT' x 'IT') and the implementing unitary u, we can assume that

the finite set is F U {u} with Fe C(X x 'IT' x 'IT').

Choose N E N such that 27r / N < c and let

N-l

9 = U uiFu- i .
i=O
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According to Lemma III.1.l3, with respect to 9 and c above, we can find M > N, a clopen

neighborhood of x and a partial isometry w E Ax satisfying w*w = lu, ww* = laM (U) and

II [w,flll < c for all f E :F.

Let p = lu and q = laM (U). For t E [0,11"/2], define

P(t) = pcos2 t + sintcost(w + w*) + qsin2 t.

As pq = 0 and p, q are Murray-von Neumann equivalent via w, it follows that t f---' P(t) is a path

of projections with P(O) == p and P(11"/2) = q.

Define

According to Lemma III.1.13, u-iwui E Ax for i = 0, ... , m - 1. It is clear that e E Ax. It follows

that e is a projection.

We first show that for e E Ax above, the following hold.

1) !I[x,elll ::; c for all x E Fu {u};

2) dist(exe,eAxe)::; c for all x E FU {'u}.

(C1)

(C2)
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For the part of (Cl) involving 11" note that

ueu* - e = 1 - 11, C~ uipU-i +~ U- iP(i1r/2N)Ui) 11,*

_(1 _(~~N uipu-i + ~1 u-i P( i1r /2N)Ui ) )

M-N+l M-N N-l
L uipu-i + L uipn-i + L n-iP(i1r/2N)ui

i=1 i=O i=1

N-2

- L n - iP((i+l)1r/2N)ni

i=O

= p _nM- N+1p(n*)M-N+l + (u*)N-l P((N -1)1r/2N)nN- 1 - P(1r/2N)

N-2

+ L u-i(P(i1r/2N) - P((i + 1)1r/2N))ui

i=1

= p - P(1r /2N) + u-(N-l) P((N - 1)1r/2N)nN- 1 _ uM- N+1pn-(M-N+l)

N-2

+ L u-i(P(i1r/2N) - P((i + 1)1r/2N))ni .
i=l

As 21r/N < E, we get llueu* - ell < E. It then follows that liue - eull < E. By Lemma III.1.13,

life - efll < E for all f E :F. So far, we have checked (Cl).

For f E :F c C(X x 'f x 'f), as f E Ax, we get efe E eAxe. As eu E Ax, it is clear that

eue = e(en)e E eAxe. Thus we have checked (C2).

Let C be the set of all the unital separable C*-algebras C such that there exist N E Nand

one dimensional finite CW complexes Xi and di E N with 1 :s; i :s; Nand

N

C ~ EB Md n (C(Xn )).

n=1

Note that E can be chosen to be arbitrarily small, and also note that eAxe has tradal rank no

more than one, which implies that eAxe is C-Popa.

By Lemma III.1.15, A is also C-Popa. According to [Lin4, Lemma 3.6.6], A has property

(SP). For the given element c E A+, there exists a non-zero projection q E Her(c). Let 00 =

inf{r(q): r E T(A)}. As A is simple and q -=1= 0, we get r(q) > 0 for all r E T(A). As T(A) is a
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weak* closed subset of the unit ball of A*, noting that the unit ball of A* is weak* compact by

Alaoglu's Theorem, it follows that T(A) is also compact. Thus 00 > O.

Without loss of generality, we can assume that E < min{l, too, (40~O)2} and q E F.

It remains to show that 1- e is Murray-von Neumann equivalent to a projection in Her(c).

As q E F, we have

II[q,eJII :s; E and dist(eqe,eAxe):S; E.

We can find bE (eAxe)sa such that Ileqe - bll :s; E. Note that II[q,e]11 :s; E implies that II(eqe)2­

eqell :s; E. According to Proposition III.1.16, there exists a projection q' E A such that Ilq'-eqell :s;

Vi and q' ::5 eqe as in Definition 1.2.2.

Note that we have

IIb2 - bll :s; IIb2 - (eqe)211 + II(eqe)2 - eqell + Ileqe - bll

:s; 3E + e + E

=-~ 5e.

By Proposition III.1.16 again, there exists a projection p E eAxe such that

lip - bll :s; v'5E and [p] :s; [b].

As

lip - q'll :s; lip - bll + lib - eqell + Ileqe - q'll :s; & + E + VE:,

it follows that [p] = [q']. As

q' ::5 eqe and eqe ::5 q,

we conclude that p ;S q in A.

Note that

q = eqe + (1 - e)qe + eq(l - e) + (1 - e)q(l - e).
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For every 7 E T(A), we have

7(q) = 7(eqe) + 7((1 -- e)q(1- e)) + 7((1 - e)qe + eq(l - e)).

According to (C1) and our choice of 10, we have

1
7(eqe) + 7((1 - e)q(l - e)) > 7(q) - 10 > 27(q).

As 7 is a tradal state and e is a projection,

7((1 - e)q(l - e)) ::; 7((1 - e)l(l - e)) = 7(1 - e).

Note that 7(1 - e) < i7(q) for all 7 E T(A) (because 7(1 - e) < iOo). We can conclude that

1 1 1 1
7(eqe) > 27(q) - 7((1 - e)q(l - e)) :2: 27(q) - 7(1 - e) > 47(q) :2: 4:00> o.

In our construction, note that

lip - eqell ::; lip - bll + lib - eqell ::; V& + c.

It follows that
1 1

7(p) :2: 4:00 - (V5E + c) :2: 800 for all 7 E T(A).

According to our construction, we have

10 1
7 (1 - e) < !vI . !vI = 10 :::; 800 ::; 7 (p)

for all 7 E T(A), which then implies that 1 - e :s p. As [p] ::; [c] (as in Definition 1.2.2), we get

[1 - e] ::; [c] (as in Definition 1.2.2), which finishes the proof.

o
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111.2 THE RIGID CASE

Proposition 111.2.1. Let A be the crossed prod'uct C*-algebra of the minimal dynamical system

(X x '][' x '][', a x R~ x R7]). Then

Ko(A) ~ C(X, 7i})/ {j - f 0 a-I: f E C(X, ;E,2)} EB '!}

and

Proof. Use j : C(X X ']['2) ~ A to denote the canonical embedding of C(X x ']['2) into A. We have

the Pimsner-Voiculescu six-term exact sequence:

We know that

and

Ko(C(X)) ~ C(X, Z), K 1(C(X))) = O.

According to the Kiinneth theorem, Ko(C(X x ']['2)) ~ C(X, Z2) and K 1(C(X x ']['2)) ~ C(X,Z2).

For i = 0, 1, consider the image of id. i - a.i. They are both isomorphic to

{j - f 0 a-I: f E C(X, Z2)}.

The kernel of id. i - a.i for i = 0,1 is

{j E C(X,Z2): f = foa}.

Assume that f is in the kernel of id. i - a.i for i = 0,1. Fix Xo E X. We have f(an(xo)) = f(xo)
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for all TL E Z. As a is a minimal homeomorphism of the Cantor set X and 1 is continuous, 1 must

be a constant function from X to Z2. Now we conclude that

ker(id. i - a.i) ~ Z2.

As the six-term sequence above is exact, we have the short exact sequence:

As ker(id. i - a.i) ~ Z2 and Z2 is projective, it follows that

As coker(id.o - a.o) ~ C(X, Z2)/ U - loa: 1 E C(X, Z2)}, we get

Similarly, we get that K1(A) ~ C(X,Z2)/U - loa: 1 E C(X,Z2)} EEl Z2.

o

If we require a certain "rigidity" condition on the dynamical system (X x 1['x 1[', axR~ xRry),

then the tracial rank of the crossed product will be zero.

Definition III.2.2. Let (X x 1[' x 1[', a x R~ x Rry) be a minimal dynamical system. Let /-L be an

a x R~ x Rry -invariant probability measure on X x 1[' x 1['. It will ind'uce an a-invariant probability

measure on X defined by 7r(u)(D) = /-L(D x 1[' x 1[') lor every Borel set D c X. We say that

(X x 1[' x 1[', a x R~ x Rry) is rigid il7r gives a one-to-one map between the a x R~ x Rry-invariant

probability measures and the a-invariant probability measures.

Remark: For minimal actions on X x 1[' x 1[' of the type a x R~ x Rry, it is easy to see that 7r

always maps the set of a x R~ x Rry-invariant probability measures over X x 1[' x 1[' onto the set of
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a-invariant measures over X.

According to Theorem 4.6 in [Lin-Phillips], the "rigidity" condition defined above implies

that the crossed product C*-algebra has tracial rank zero.

Proposition III.2.3. Let (X x 1l' x 1l', a x R~ x R1)) be a minimal dynamical system. If it is rigid,

then the corresponding crossed product C*-algebra C*(Z, X x 1l' x 1l', a x R~ x R1)) has tracial rank

zero,

Proof. Use A to denote C*(Z, X x 1l' x 1l', a x R~ x R1))' We will show that

p: Ko(A) --> Aff(T(A))

has a dense range, which will then imply that TR(A) = 0 according to [Lin-Phillips, Theorem 4.6].

For the crossed product C*-algebra B = C*(Z,X,a), we know that B has tracial rank

zero and PB: Ko(B) ~ T(B) has the dense range. According to [Putnam, Theorem 1.1], Ko(A) ~

C(X, Z)/{f - f 0 a-I}. For every x E Ko(A), we can find f E C(X, Z) such that £(r) := r(x)

equals r(f) = Jx f dp,T'

As a x RE x R1) is rigid, there is a one-to-one correspondence between (a x RE x RY,)-invariant

measures and a-invariant measures. In other words, T(A) is homeomorphic to T(B) (as two convex

compact sets). Let hE C(X) be a projection. Then h 01c(1rxll') is a projection in A.

As PB has a dense range in Aff(T(B)), we have that P has dense range in Aff(T(A)). As

X x 1l' x 1l' is an infinite finite dimensional metric space and a x RE x R,) is minimal, according to

[Lin-Phillips, Theorem 4.6], C* (Z, X x 11' x 1l', a x R~ x R1)) has tracial rank zero.

o

III.3 EXAMPLES

We start with a criterion for determining whether a dynamical system of (X x 1l' x 1l', a x

R~ x R1J) is minimal or not. This result is a special case of the remark of page 582 in [Furstenberg].

The proof here essentially follows that of Lemma 4.2 of [LMl].
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Lemma 111.3.1. Let Y be a compact metric space, and let (3 x Rry be a skew product homeomorphism

ofY x 1!' with (3 E Homeo(Y), 7/: Y -> 1!' and

((3 x R,/)(y, t) = ((3(y), t + 7/(Y)) with 1!' identified with lRjZ.

Then (3 x R,/ is minimal if and only if (Y, (3) is minimal and there exist no f E C(Y,1!') and

non-zero integer n such that

71,7/ = f 0 (3 - f.

Proof. Proof of the "if' part:

If (Y, (3) is minimal and there exist no f E C(Y,1!') and non-zero integer 71, such that

nr; = f 0 f3 - I, we will prove that (3 x Rry is minimal.

If (3 x Rry is not minimal, then there exists a proper minimal subset E of Y x 1!'. Let

11"y: Y x 1!' -> Y be the canonical projection onto Y. Note that 11"y 0 (f3 x Rry) = (30 11"y. It follows

that 11"y (E) is an invariant subset of Y. As Y is compact, so is 11"y(E). Since (Y, (3) is minimal,

the closed invariant set 11"y (E) must be Y.

Let's consider

D := {t E 1!' : (id y x Rt)(E) = E}.

As (id y x id'II'l(E) = E, the set D is not empty. Note that D is a subgroup of 1!'. It follows that

D is a non-empty subgroup of 1!' (with 1!' identified with the quotient group lRjZ).

If we have {tn}nEN C D such that tn -> t, then for any wEE, we have (id x RtJw E E.

Then tn. -> t implies that (id x Rt"lw -> (id x Rt)w. As E is closed, (id x Rt)w E E.

So far, we have shown that if tn E D for 71, E Nand tn --> t, then tED. Note that

"{tn}nEN C D and tn -> t" is equivalent to "{ -tn}nEN C D and -tn -> -t". It follows that

-t E D. In other words, we have

(id x Rd(E) c E and (id x R_t)(E) c E.

Then we get

E = (id x Rt)((id x R_t)(E)) c (id x Rt)(E) c E,
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which implies that (id x RdE = E. In other words, D is closed.

As E is a proper subset and 7fy(E) = Y, D must be a proper subgroup of T. Otherwise,

for any (y, t) E Y x T, as 7fy (E) = Y, there exists t' E T such that (y, t l) E E. Since t -- t' E D = T,

(y, t) = (id x Rt - t , )(y, t') E E, which indicates that E = Y x T, contradicting the fact that E is a

proper subset.

As a proper closed subgroup of T, D must be

{ ~} with n = IDI.
n O::;k::;n-l

Let 7f']' be the canonical projection from Y x Tonto T. For y E Y, use E y to denote 7f']'(E n

7fyJ({y})).

Using the fact that E is a minimal subset of ((3, R1))' we will show that Ey must be n

points distributed evenly on the circle for all y E Y.

\iVe claim that if t, t' E Ey, then for any m E IZ, t + m(t' - t) must be in Ey. To prove this

claim, if t, t' E E y , then there exists {kn}nEN such that kn ~ 00 and dist( ((3 x R1) )kn (y, t), (y, t')) ~

O. Note that

dist(((3 x R1))kn (y, t), (y, tl)) = dist(((3 x R1))kn (y, tl), (y, t + 2(t' - t))).

It follows that (y, t + 2(t' - t)) E Orbit,6xR1) ((y, t)). By induction, we conclude that if t, tl E Ey,

then for any m E IZ, t + m(tl - t) is also in Ey, proving the claim.

For any y E Y, consider E y , which is a non-empty closed subset of T. Let

Note that if t, tl E E y , then t + m(tl - t) E E y . The fact that E y s: T implies that ly > O. It is

then clear that E y is made up of l/l y points distributed evenly on T.

Claim: For every y E Y, l/ly = IDI.

For given y E Y, as (id x R t )(E) = E for all tED, we get that E y is invariant under Rt
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for all tED. It then follows that Illy = kn with k E !":I and n = IDj.

If k > 1, write

Ey = {(y,tI), ... ,(y,tkn)}'

As (3 is minimal, for every y' E Y, there is a sequence (mkhEN such that

The fact that Orbitox R
n
(Ey ) is dense implies that there exists t' E T such that (y', t') is in the

closure of OrbitoxR" (Ey ). Note that for every m E !":I, ((3 x R1))m(Ey ) consists of kn points

distributed evenly on the circle. It follows that E y ' contains at least nk points distributed evenly

on the circle,

Now we have shown that for every a E Y, Eo. is made up of at least nk evenly distributed

points on the circle, which then implies that D contain at least nk elements. The assumption that

k > 1 gives a contradiction.

We then conclude that k = 1, which proves the claim.

By the claim above, for all y E Y, the set Ey is made up of n points distributed evenly on

T, If we define

nE = {(x,nt): (x,t) E E},

then nE is the graph of some continuous map g: Y --> T. As E is closed, so is nE, which implies

that 9 is continuous. As E is ((3 x R1))-invariant, for every (x, t) E E, it follows that

((3 x R1))(x, t) = ((3(.1:), t + 'f)(x)) E E.

In other words, we have n(t + 'f)(x)) = g((3(x)). As nt = g(x), it follows that n'f) = go (3 - g, which

finishes the proof of "if" part.

Proof of the "only if" part:
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Suppose (3 x R7J is minimal. Then it is clear that (Y, (3) is a minimal system.

Suppose that there exists nonzero n E Z such that n7] = 9 0 (3 - 9 for some 9 E C(X, T).

Let

E = {(y, t) E Y x 11': nt = g(yn.

For (y, t) E E, we have (,8 x Rr/)(y, t) = ((3(y), t +7](Y)). As

n(t +7](y)) = nt + n7](Y) = g(y) + n7](Y) = g((3(y)),

it follows that E is ((3 x R7J)-invariant.

As 9 is continuous, E is closed. And it is clear that E is a proper subset of Y x 11'. Now

we have a proper closed ((3 x R,))-invariant set in Y x 11', contradicting the minimality of (3 x R7J'

o

Lemma III.3.1 provides an inductive approach to determine the minimality of some dynamical

systems. Following this lemma, we get the proposition below.

Proposition 111.3.2. Let 0: x R~ x R7J be a homeomorphism of X x 11' x 11'. Then 0: x R~ x R7J is

minimal if and only if

i) (X,o:) is minimal,

ii) ~ is not a torsion element in C(X, 11') / {f 0 0: - f},

iii) For r; E C(X x 11',11') defined by i)(x, t) = 7](x), the map r; is not a torsion element in

C(X x 1I', 1I')/{f 0 (0: x R~) - f: f E C(X x 11', 11'n.

Proof. Proof of the "if' part:

If i), ii) and iii) are true, we need to show that 0: x R~ x ~ is minimal.

Note that (X x 11' x 11',0: X R~ x R7J) is a skew product of 0: x R~ and R rp where R7J is

defined by

R7J: X x 11' ---+ Homeo(11'), with (R,) (x, t))( t l
) = t' + 7](x).
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From i) and ii), using Lemma 4.2 of [LMl], (X x T,a x R€) is minimal.

According to Lemma III.3.1, and by iii), we conclude that a x R€ x R,) is minimal.

Proof of the "only if' part:

As (X x T x T,a x R€ x Rl]) is the skew product of (X x T,a x R€) and Rl]: X x T-->

Homeo(T), with Rl) defined as above, the minimality of (X x TxT, a x R€ x Rl]) implies the

minimality of (X x T, a x R€). By Lemma 4.2 of [LMI], that implies (i) and (ii).

For (iii), suppose that if is a torsion element, that is, there is non-zero n E Z and f E

C(XxT, T) such that nij = fo(axR~)- f. By Lemma III.3.1, it follows that (XxTxT, axR€ xRl])

is not minimal, a contradiction.

o

Proposition III.3.2 enables us to construct minimal dynamical systems on X x TxT

inductively. In fact, we have the following lemma.

Lemma 111.3.3. Given any minimal dynamical system (X x T,a x Rd, there exist uncountably

manye E [0, I] such that if we 'use e to denote the constant function in C(X, T) defined by e(x) = e

fOT all x E X (identifying T with lR/Z), then the dynamical system (X x T x T,a x R€ x R e) is

still minimal.

Proof. Note that the dynamical system (X x T, a x R€) is minimal. According to Lemma III.3.1,

(X, a) must be a minimal dynamical system, and ~ is not a torsion element in

C(X, T)/U - f 0 a: f E C(X, Tn·

This implies that conditions i) and ii) in Proposition III.3.2 are already satisfied.

According to Proposition III.3.2, for (X x TxT, a x R€ x Re) to be minimal, we just need

to find eE lR such that for every n E Z \ {O} and f E C(X x T, T), we have
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If this is not true, then we have

n() = f - f 0 (a x Ri;)'

Let F: X x 11' -> IR; be a lifting of f. That is, F E C(X x 11', IR;) and the following diagram

commutes:

X x 11' ----~) 11',
f

with 7f(t) = t for all t E IR; (identifying 11' with IR;jZ).

We use [F] to denote 7f 0 F.

It follows that

n() = [F] - [F 0 (a x Ri;)]

= [F - F 0 (a x Rd].

In other words, there exists 9 E C(X x 11', Z) such that

n() - (F - F 0 (a x Rd) = g.

For every (a x Rd-invariant probability measure j.1, we have

withj.1(n())= r n()dj.1 andj.1(g) = r gdj.1
lxxll lxxll

Since j.1(n()) = nj.1(()), it follows that
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Let A be the crossed product C*-algebra of (X x 11', a x Rd. Define

p : Asa. ~4 Aff(T(A))

by p(a)(T) = T(a) for all a E Asa. and T E T(A). Then we have

pre) = p(~)

in Aff(T(A)).

Now we have show that if e (as a constant function) is a torsion element in

C(X x 11',11')/{f - J a a: J E C(X x 11', lI'n

with order n, then there exists 9 E C(X x 11', Z) such that pre) = p(~).

As 11' is connected, we have C(X x 11', Z) ~ C(X, Z). Note that the set

{:~: 9 E C(X x 1I',Z) ~ C(X,Z),n E Z \ {O}}

contains countably many elements. It follows that its image under p contains at most countably

many elements. The fact that [0,1] contains uncountably many elements and pre) = 0 if and only

if e = 0 implies that there exists (uncountably many, in fact) e E ~ such that e (as a constant

function) is not a torsion element in

C(X x 11', 1I')/{f - f a a: f E C(X x 11', 'Jrn,

which then implies that (X x 'Jr x 'Jr, a x R~ x Re) is still minimal.

o

We now give examples of rigid and non-rigid minimal actions of on X x 11' x 'Jr.

Let if!o: 11' --4 'Jr be a Denjoy homeomorphism (see [PSS, Definition 3.3] or [KatokHasselblatt,
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Prop 12.2.1]) with rotation number 7'('1') = 8 for some 8 E lR \ <Ql. It is known that 'Po has a unique

proper invariant closed subset of 1l, which is a Cantor set, and that 'Po restricted on this Cantor

set is minimal.

Let X be the Cantor set and use 'P: X -l X to denote the restriction of 'Po to X.

According to the Poincare Classification Theorem (see [KatokHasselblatt, Theorem 11.2.7]),

there is a non-invertible continuous monotonic map h: 1l -l 1l such that the following diagram

commutes:

Using the restriction of 'P to the invariant subset (which is the Cantor set X), we get a

commutative diagram:

It is known that for a Den.ioy homeomorphism, h Ix maps X onto 1l.

Recall that for l;, TJ: 1l -l 1l, the action

is called a Furstenberg transformation. Consider the action

ex x R~oh x R1)oh: X x 1l x 1l -l X X 1l x 1l.
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It is clear that we have the commutative diagram below :

QXR~oh XRT]oh
X x l' x l' -------»-) X x l' x l'

hlx xid.. xid,·l lh,x xid-,xid·.'

.,
1'x1'x1' )1'x1'x1'.

(III. 1)

In this case, if 1 is minimal, then 0 x REoh X R7joh is also minimal, as will be shown in the

next proposition.

Proposition 111.3.4. Fo, the minimal dynamical systems as in diagram (III.l), if (1' x l' x 1',1)

is a minimal dynamical system, then (X x l' x 1',0 X REoh x R7joh) is also a minimal dynamical

system.

Proof. Assume that (1' x l' x 1',1) is minimal and (X x l' x 1',0 X REoh x R7joh) is not minimal.

It then follows that there exist (x, t], t2) E X x l' x 1', nonempty open subset D C X and open

subsets U, V c l' such that

(III.2)

Define

7r], 7r2: X x l' x l' ----. l' x l'

by

As 0 is a minimal action on the Cantor set X, the statement IlL2 implies that for every kEN

such that ok(x) E D, we have

(IlL3)

Note that if we regard the Cantor set X as a subset of 1', then h Ix : X -t l' is a

l10ninvertible continuous monotone function. For the open set D eX, without loss of generality,
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we can assume that (by identifying X as a subset of'][' and identifying '][' with JR/Z)

D = (a,b) nx with a,b E (0,1) and a < b.

It then follows that there exists c, dE (0,1) with c < d (without loss of generality, we can assume

that 0 tt h Ix (D) such that h Ix (D) is one of the following:

(c,d), (c,d], [c,d) or [c,d].

In either case, there exists c',d' E (0,1) with c' < d' such that

(c', d') c h Ix (D).

Let t x = h Ix (x). It is then clear that

for all n E No As h Ix (D) is monotone, for every k E N, if R~(tx) E (c',d'), then we have

ak(x) E D, which implies (see (III.3)) that

Define

Pl, P2: '][' X '][' X '][' ----> '][' x ']['

Then we have that for every kEN such that R~ (t x ) E (C', d'),
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According to the definition of the Furstenberg transformation "'(, it follows that

contradicting the minimality of "'(, which finishes the proof.

o

The proposition below shows that if the two dynamical systems in Prop IlL3.4 are minimal,

then there is a one-to-one correspondence between the invariant measures on them.

Proposition 111.3.5. If the dynamical systems (1[' x 1[' x 1[', "'() and (X x 1[' x 1[', ex x R€oh x R7joh)

(as in diagram (II!. 1)) are minimal, then theTe is a one-to-one correspondence between the ex x

R€oh x R,/oh -invariant pTobability measures and the "'(-invariant pTobability measures.

Proof. First of all, we will define the correspondence between the ex x R€oh x Rryoh-invariant

probability measures and the "'(-invariant probability measures.

For simplicity, we use H to denote the function h Ix in diagram (IlL1). We use

A1oxR<Oh XR,joh to denote the set of ex x R€oh x Rryoh-invariant probability measures on X x 1[' x 1['

and ,~1, to denote the set of "'(-invariant probability measures on 1[' x 1[' x 1['.

Define

by

cp(/1)(D) = /1 ((H x id']f x id'nT 1(D)) and 'ljJ(v)(E) = v ((H x id'][' x id'][')(E))

for all Borel subsets D of 1[' x 1[' x 1[', Borel subsets E of X x 1[' x 1[', /1 E !vlaxR<ohxRnoh and v E !vI,.

We need to show that the cP and 1/) above are well-defined.

As every /1 E A1ax R<Oh xRY/Oh is a probability measure, it follows that cp(/1)(1[' x 1[' x 1[') = 1.

For every Borel subset D C 1[' x 1[' x 1[', as both ex x R€oh x Rryoh and "'( are homeomorphisms,

it follows that
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which implies that ip(fL) is i-invariant.

For a sequence of Borel subsets D 1 , D 2 , ... of TxT x T such that D; n D j = 0 if i -=f- j,

it is clear that (H x id'II' x idil )-1(Dd, (H x id1l' x id1l' )-1(D2 ), .•. are Borel subsets of X x TxT

(as H x id'II' X id1l' is continuous) satisfying (H x id1l' x idil)-1(Di ) n (H x idil x id'!J')-l(Dj) = 0 if

i -=f- j. Then we have that

So far, we have shown that ip is a well-defined map from lVlaxR<ohxR"oh to M'Y'

Now we will check the map ·VJ.

As every v E M"( is a probability measure, it follows that

'VJ(V)(X x TxT) = v(T x TxT) = 1.

For every Borel subset E c X x TxT, we will show that 'ljJ(v) (E) is well-defined. According

to the definition of 'ljJ(v) , we just need to show that (H x idil x id1l' )(E) is v-measurable,

For any two open subsets 8 1 and 8 2 of X x TxT, we have

As H is not one-to-one, we cannot get

but we still have

Note that H is just the restriction of h to X, where h is a noninvertible continuous
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monotone map from 1I' to 1I' (see [KatokHasselblatt, Theorem 11.2.7]). It follows that H : X ---> 1I'

is one-to-one except at countablely many points of X. Use X o to denote this subset consists of

countably many points. Then we have that

As v(1I' x 1I' x 1I') = 1 and the minimal action "( has the skew product structure, it follows

that for every t E 1I', v( {t} x 1I' x 1I') = 0, which then implies that v(H(Xo) x 1I' x 1I') = O. Then we

get that

is of measure zero for all "(-invariant measure v.

For two sets A and B, we use A/:,; B to denote (A nBC) U (AC n B).

For every Borel subset F of X x 1I' x 1I', as F is generated by open sets via taking

complements, countably many unions and intersections, it follows that there exists a Borel set

F ' , such that

(H x id']]' x id']]' )(F) /:'; F'

is of measure zero for all "(-invariant measure v. Note that F ' is a Borel set. For every ,,(-invariant

measure v, F' is both v-measurable. It then follows that (H x id']]'x']]')(F) is measurable. Recall

that

'IjJ(v)(F) = v((H x id']]' x id']]')(F)).

It follows that for 'IjJ(v) is well-defined on all the Borel subsets of X x 1I' x 1I'.

For a sequence of Borel subsets E], E2 , . . , of X x 1I' x 1I' such that D i n D j = 0 if i f= j,

and for every "(-invariant probability measure v, we will show that
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According to the definition, we have

Note that

and

(H x id1f x id1f ) (Ei ) n (H x id1f x id1f)(Ej ) C H(Xo) x 1r x 1r for i # j.

Recall that H(Xo) x 1r x 1r is a set of measure zero for every I-invariant probability measure. It

follows that

For every Borel subset E C X x 1r x 1r, according to the commutative diagram (IILI), we

have

(r 0 (H x id1f x id1f))E = ((H x id1f x id1f) 0 (a x R~oh x Rryoh)) (E).

It then follows that

1/J(lJ)(E) = lJ((H x id1f x id1f)E)

= lJ(r((H x id1f x id1f)E))

= lJ ((H X id1f x id1f)((OO x R~oh x Rryoh)E))

= 1/J(lJ) ((a x R~oh x R'loh)E),

which implies that 1/J(lJ) is a x R~oh x Rryoh-invariant.

So far, we have shown that 1/J is a well-defined map from 111"1 to Mo: x R<oh x Rnoh .

Now we will show that for every a x R~oh x R'loh-invariant measure J.1 and I-invariant

measure lJ, we have

In fact, we just need to show that for every Borel subset D of 1r x 1r x 1r and every Borel
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subset E of X x l' x 1',

(IlIA)

and

(III.5 )

As

the equation (IlIA) holds.

Note that

The fact that X o consists of countably many points and the minimal action a x REoh x R7Joh has

skew product structure implies that

p(Xo x l' x 1') = O.

It then follows that the equation (III.5) holds, which finishes the proof.

D

By Proposition III.3.5 above, there is a one-to-one correspondence between the a x REoh x

R,/oh-invariant probability measures and the "Y-invariant probability measures (because if two

measures coincide on all the Borel sets, they must be the same measure).

It follows that a minimal Furstenberg transformation on 1'3 that is uniquely ergodic will

yield an example of a rigid minimal action on X x l' x 1', and a minimal transformation on 1'3 that

is not uniquely ergodic will yield an example of a non-rigid minimal action on X x l' x 1'.

Example III.3.6. This is an example of rigid minimal dynamical system (X x l' x 1', a x RE x R7J).
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Let (X, a) be a Denjoy homeomorphism with rotation number e1 E lR \ Q.

Choose e2 ,e3 such that 1,e1 ,e2 ,e3 E lR are linearly independent over Q. That is, if

Ao, )'1, A2, A3 E Q and satisfy

then Ai = 0 for 'i = 0, ... ,3.

The dynamical system (T x TxT, ReI x Re2 x Re3 ) is minimal and uniquely ergodic.

Define 'P: X --> Homeo(T2
) by

As (T x T x T,Re l x Re2 x R e3 ) is uniquely ergodic, so is (X x T2,a x rp). This gives an

example of a rigid minimal dynamical system (X x T x T,a x R€ x R7))'

Example III.3.7. We will give an example oj m'in'imal dynamical system (X x TxT, a x R€ x R7))

s'uch that it 'is not rigid.

According to [Furstenberg] (see page 585), there exists a minimal a Furstenberg

transformation

such that

/'0(Z1, Z2) = he211"ie, j(ZdZ2) for some eE lR \ Q and contractible j E C(T, T),

and /'0 is not uniquely ergodic.

Let (T, 'P) be a Denjoy homeomorphism with rotation number e. Let (X, a) be the minimal

Cantor dynamical system derived from (T,rp) which factors through (T,Re). In other words,
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a = cp Ix and we have the commutative diagram

(III.6)

with 7':: X ---> 1I' being a surjective map.

Define~: X ---> Homeo(1I') by ~(x)(z) = j(7':(x))z. We can then check that the following

diagram commutes:
axR€

X x 1I' ----*~ X x 1I'

n x id~'l In X id7

1I'2 --------+-. 1I'2
"To

As 7': is surjective, so is 7': X idT. Minimality of ,0 then implies minimality of aX R~. As ,0

is not uniquely ergodic, similarly to the proof of Proposition III.3.5, it follows that (X x 1I', a x R~)

is not uniquely ergodic.

In the commutative diagram (III.6), note that 7': is onto, and (1I', Re) is uniquely ergodic.

It follows that (X, a) is also uniquely ergodic.

As (X x T, a x R~) is not uniquely ergodic, there exist more than one (a x Rd-invariant

probability measure. Let fL and 1/ to be two such measures on X x T that are different from each

other.

According to Lemma III.3.3, there exists e E lR such that if we use Re to denote the

function in C(X, Homeo(T)) defined by

Re(x)(z) = ze2nie for all x E X and z E T,

then the dynamical system (X x TxT, a x R~ x Re) is still minimal.

Use m to denote the Lebesgue measure on T. For the (a x R~)-invariant probability

measures fL and 1/, as Re is a rotation of the circle, we can check that both fL x m and u x mare

(a x R~ x Re)-invariant probability measures on X x TxT.
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As jJ. and v are different measures, it is clear that jJ. x Tn is different from v x Tn.

Now we have at least two (a x R..; x ReHnvariant measures. Note that (X, a) is uniquely

ergodic. We have that the dynamical system (X x 'JI' x 'JI', a x R..; x Re) is not uniquely ergodic.

Remark: For this example, the corresponding crossed product C*-algebra has tradal rank one

and the dynamical system (X x T x 'JI', a x R..; x Re) is not rigid. The reason is as follows.

Consider the dynamical system (X x 'JI'1, a x R..;). It is not uniquely ergodic. As (X, a) is

uniquely ergodic, it follows that (X x 'JI'1, a x R..;) is not rigid.

Use A to denote the crossed product C*-algebra C*(2,X x 'JI'1,a x Rd. According to

Theorem 4.3 of [LM2], the algebra A has tradal rank one. By Proposition 1.10 (1) of [Ph2]'

PA(Ko(A)) is not dense in Aff(T(A)).

Note that A is an A'JI'-algebra. According to Theorem 2.1 of [EGL], A is approximately

divisible. By Theorem 1.4 (e) of [BKR], and noting that real rank of A is not zero (as tradal rank

of A is one and A is A'JI'-algebra), we have that the projections in A does not separate traces of A.

In other words, there exist two (a x R..;)-invariant measures jJ. and v such that

jJ. f v, and jJ.(x) = v(x) for all x E Ko(A).

Define measures jJ.x, Vx by

jJ.x(D) = jJ.(D x 1l) and vx(D) = v(D x 1l)

for all Borel sets D eX. It is clear that both jJ.x and Vx are a-invariant probability measures on

X.

Note that C(X, Z) is generated by the projections in C(X). Also note that the <C-linear

span of C(X, Z) is dense in C(X, IR). The fact that the projections in A do not separate jJ. and v

implies that C(X, Z) do not separate jJ.x and Vx I which then implies that jJ.X = Vx.

Use B to denote C*(2, X x 111 x 11'2, a x R..; x Re). Let Tn be the Lebesgue measure on 1l.

It is clear that jJ. x Tn and v x m are two (a x R..; x Re)-invariant probability measures.

We will show that the projections in B do not separate jJ. x m and v x m.
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From Proposition III.2.1,

Ko(B) ~ C(X, 'l})/ {(j, g) - (j, g) 0 a-I: j, g E C(X, Z)} EEl Z EEl Z. (III.7)

The two copies of Z correspond to the two generalized Rieffel projections el and e2, given

functions defined in Section 6 of [LIvIl], h(X,ZI,Z2) = h(X,ZI,Z~) and 12(x,zl,z2) = h(x,zi,Z2)

As the projections in A do not distinguish fJ and v, it follows that the elements in Ko(B)

that correspond to the first two summands of III.7 do not separate fJ x m and v x m.

For the generalized Rieffel projection e2, as 12 (x, Zl, Z2) is independent of Zl, we have

Recall that for a measure rJ on X and j E C(X), we use rJ(j) to denote Ix j(.T) dfJ (see

Section 1.2). We check that

(fJ x m)(e2) = (fJ x m)(12)

= r !2(x, ZI, Z2) d(fJ x m)
J(XX1rtlX1r2

= r F2(x, Z2) d(fJX x m)
} Xx1r2

= r F2(x, Z2) d(vx x m)
} XX'2

= j' !2(x, Zl, Z2) d(v x m)
(XX1rtlXll2

= (v x m)(12)

= (v x m)(e2)'

Then we have shown that e2 does not separate fJ x m and v x m either, which then implies

that the projections in B cannot separate traces of B.

According to Theorem 1.4 of [BKR], the real rank of B is not zero. Then it follows that

the tracial rank of B is not zero.

By Theorem III. 1. 17, the tradal rank of B must be one.
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According to Proposition III.2.3, the dynamical system (X x 1[' x 1[',0: x RE x Re) is not
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CHAPTER IV

APPROXIMATE K-CONJUGACY

In this chapter, we start with a sufficient condition for approximate K-conjugacy between

two minimal dynamical systems (X x 1[' x 1[',0 x R6 x R 7J1 ) and (X x 1[' x 1[',,8 X R~2 x R7J2 ).

Then we give an if and only if condition for weak approximate conjugacy of these two dynamical

systems, showing that weak approximate conjugacy just depends on 0 and,8. In Section IV.3,

an if and only if condition for approximate K-conjugacy between these two dynamical systems is

given.

In [LM3], several notions of approximate conjugacy between dynamical systems are

introduced. In [LMl], it is shown that for rigid minimal systems on X x 1[' (with X being

the Cantor set and 1[' being the circle; see Definition 3.1 of [LMl]) , the corresponding crossed

product C*-algebras are isomorphic if and only if the dynamical systems are approximately

K-conjugate.

For two minimal rigid dynamical systems (X x 1[' x 1[',0 x R~ x R7J) and (X x 1[' x 1[',,8 x

R~j x R7J1 ), we study the relationship between approximate K-conjugacy and the isomorphism of

crossed product C*-algebras.

We start with basic definitions and facts about conjugacy and approximate conjugacy.

Definition IV.D.l. Let X, Y be two compact metric spaces, and let 0 E Homeo(X) and,8 E

Homeo(Y) be two minimal actions. We say that (X,o) and (Y,,8) are conjugate if there exists

(J E Homeo(X, Y) s'uch that (J 00 = ,8 0 (J. We say that (X,o) and (Y,,8) are flip conjugate if

(X, 0) is conjugate to (Y,,8) or (Y, ,8-1).

Definition IV.D.2. Let X, Y be two compact metric spaces, and let 0 E Homeo(X) and,8 E
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Homeo(Y) be two minimal actions. We say that (X, a) and (Y, (3) are weakly approximately

conjugate if there exist (J"n E Homeo(X, Y) and 'Yn E Homeo(Y, X) for n E N such that

dist(jo(J"noa,f0(3o(J"n)->O and dist(goa0'Yn,g0'Yn0(3)->O asn->oo

for all f E C(X) and g E C(Y), where dist(h, 1"2) is defined to be SUPxED dist(h (x), h(x)) for all

continuous functions h, h on the metric space D.

It is clear that if two minimal dynamical systems are conjugate, they are weakly

approximately conjugate. Generally speaking, the inverse implication does not hold.

IV.! C*-STRONG APPROXIMATE CONJUGACY

Given minimal dynamical systems (X,a) and (Y,(3), if they are flip conjugate, then it is

easy to check that the corresponding crossed product C*-algebras C* (Z, X, a) and C* (Z, Y, (3) are

isomorphic.

According to [Tomiyama] (Corollary of Theorem 2), for two minimal dynamical systems

(X, a) and (Y, (3), there exists an isomorphism

'P: C*(Z,X,a) -----4 C*(Z, Y,(3)

satisfying 'P(C(X)) = C(Y) if and only if these two dynamical systems are flip conjugate.

In view of Tomiyama's result above, C* -strong approximate flip conjugacy is defined as

below.

Definition IV.!.!. Let (X, a) and (X, (3) be two minimal dynamical systems such that

TR(C*(Z,X,a)) = TR(C*(Z, X, (3)) = 0, we say that (X,a) and (X,(3) are C*-strongly

approximately flip conjugate 'if there exists a seq'uence of isomorphisms

'Pn: C*(Z,X,a) -> C*(Z,X,(3), 'ljJn: C*(Z,X,(3) -> C*(Z,X,a)
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and a sequence of isomorphisms Xn, An: C(X) --'> C(X) such that

1) [<Pn] = [<Pm] = ['l/>;;-l] in KL(C*(Z,X,a),C*(Z,X,a)) for all m,n E!'iI,

2) lim II<Pn 0 ja(J) - j(3 0 Xn(J)11 = 0 and lim II'l/>n 0 j(3(J) - ja 0 An(J)11 = 0 for all
n--+oo n--+oo

f E C(X), with ja,j(3 being the injections fmm C(X) into C*(Z, X, a) and C*(Z, X, (3).

Some notation will be introduced before the next result about C* -strong approximate

conjugacy.

Let A be a separable amenable C*-algebra that satisfies UCT. For B E K L(A, B), there

are induced homomorphisms r(B)i: Ki(A) --'> Ki(B) for i = 0,1. Define PA: A,a ------> Aff(T(A)) by

PA(a)(T) = T(a) for all a E A,a and T E T(A). Suppose A and B are two unital simple C*-algebras

with tradal rank zero and 'y: Ko(A) --'> Ko(B) is an order preserving homomorphism. As A has

real rank zero, I will induce a positive homomorphism 'Yp: Afl(T(A)) --'> Aff(T(B)).

The theorem below ([Lin4, Theorem 2.5]) gives one necessary condition for C* -strong

approximate flip conjugacy between two crossed product C*-algebras.

Theorem IV.1.2. Let (X, a) and (X, (3) be two minimal dynamical systems such that the

corresponding cTOssed pmduct C*-algebms A a and A(3 both have traeial rank zem. Then a and

f3 aTe C* -stmngly appmximately flip conjugate if the following holds: There is an isomorphism

X: C(X) --'> C(X) and there is B E K L(Aa , A(3) such that r(B) gives an isomorphism

and such that

and

fOT all f E C(X),a'

If Ki(C(X)) is torsion free, then a simplified version of this result holds ([Lin4, Corollary
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2.6]).

Corollary IV.1.3. Let X be a compact met'ric space with torsion free K -theory. Let (X, a) and

(X, ,8) be two minimal dynamical systems such that TR(Aa ) = TR(A13 ) = O. Suppose that there is

an order isomorphism that rnaps [lAal to [lA r;]:

such that there exists an isomorphism x; C(X) ----> C(X) satisfying

Then (X, a) and (X, (3) are C* -strongly approximately flip conjugate.

In the rest of this chapter, for a minimal homeomorphism a on the Cantor set X, we will

use KO(X, a) to denote the ordered group

C(X,'j})/U - faa-I; f E C(X,/f,2)}

with the positive cone being (denoted by KO(X, a)+)

C(X, D)/{f - f a a-I: f E C(X,Z2)}

where D is as defined in Lemma 11.2.9. In KO(X,a), we define the unit element to be

with (1,0)C(x,Z2) being the constant function in C(X,Z2) that maps every x E X to (1,0) E Z2.

V,le use 1K ()(X,a) to denote this unit element.

Lemma IV.1.4. Let X be the Cantor set. For every minimal action a E Homeo(X), if there is
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an order isomorphism

then there is an order isomorphism

0: (C(X, Z2), C(X, D), (1, O)c(X,:t?)) -----+ (C(X, Z2), C(X, D), (1, O)c(X,;I:;2))

s'Uch that the following diagram comm'utes:

(IV, 1)

where Jren JrI3 are the canonical projections from C(X, Z2) to KO( X, a) and KO(X, (3). In fact, there

exists (J E Homeo(X) s'Uch that <p(F) = F 0 (J-I for all FE C(X, Z2).

Proof. The proof is based on [LM3, Theorem 2.6].

Define KO(X, a) to be

C(X, Z)/ {g - go a-I: 9 E C(X, Z)}

and KO(X, a)+ to be

C(X, Z+ U {O})/ {g - 9 0 a-I: 9 E C(X, Z)}.

We can check that (KO(X, a), KO(X, a)+) gives an ordered group with order unit.

Define

h: KO(X,a) ---> KO(X,a) by h([f]) = [il]

for every f = (iI, h) E C(X, Z2), with iI, h E C(X, Z).

From the definition, we can check that h is surjective and h(KO(X,a)+) = KO(X,a)+,
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For the isomorphism

define

ipo: ]{O(X, a) -> ]{O(X, (3) by ipoU!]) = h(ip([(f, 0)]))

for all ! E C(X, Z).

Suppose that there exist !I, 12, g E C(X, Z) such that !I - 12 = g - goa-I. Then it

follows that (!I, 0) - (12, 0) = (g, 0) - (g, 0) 0 a-I, which implies that ip([(!I, 0)]) = ip( [(!I, 0)]). It

is now clear that ipo is well-defined.

Note that ipo([lc(x.z)]) = h(ip([(1,0)c(x.z2)])). As ip is unital, ip(lKO(X,Q)) = lKO(X,m,

which then implies that ipo([lC(x,z)]) = h([(l, 0)c(X,Z2)]) = [lC(x,z)]. We can now claim that ipo

is unital.

For any! E C(X, Z+U{O}), ipoU!]) = h(ip([(f, 0)])). As both ip and h are order preserving,

ipo is also order preserving.

So far, we have that ipo: ]{O(X, a) -> ]{O(X, (3) is untial and order preserving. According

to [LM3, Theorem 2.6], there exists a continuous order preserving map

such that the following diagram commutes:

Now we need to construct the unital positive linear map

0: (C(X, Z2), C(X, D)) -> (C(X, Z2), C(X, D)),

(IV.2)
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such that diagram (IV.l) commutes.

For the yO we get, note that yO is a unital positive isomorphism from Ko(C(X)) to

Ko(C(X)). As C(X) is a unital AF-algebra, by the existence theorem of classification of unital

AF-algebras, there exists an isomorphism 'Ij;: C(X) -> C(X) such that (identifying Ko(C(X)) with

C(X, Z) and Ko(C(X))+ with C(X, Z)+)

'Ij;*o: (C(X, Z), C(X, Z)+, [ID -> (C(X, Z), C(X, Z)+, [ID

coincides with cpo.

As 'I/J is an isomorphism, there exists (J': X -> X such that 'I/J(J) = 1o(J'-1 for all 1 E C(X).

Define <.p: C(X,Z2) -> C(X,Z2) by <.p((J,g)) = ('Ij;(J),'Ij;(g)) for all 1,g E C(X,Z). In

other words, <.p( (J, g)) = (J, g) 0 (J'-l for all (J, g) E C(X, Z2).

For the <.p above-defined, it is easy to check that it is unital and linear. It remains to show

that <.p maps positive cone to positive cone, and makes the diagram commute.

For every (J, g) E C(X, D), we get <.p( (J, g)) = (J, g) 0 (J'-l. As (J, g) E C(X, D), it is clear

that (J,g) 0 (J'-l E C(X, D). So far, we proved that <.p is a positive map.

We can check that

7r{3 0 <.p((J,g)) = 7r{3(h(J), h(g))

= 7r{3 (yO (J) , yO (g) )

= 7r{3(yo(J), 0) + 7r{3(0, yo(g))

= (7r~ 0 tpo(J), 0) + (0, 7r~ 0 tpo(g))

= (tpo 0 7r~ (J), 0) + (0, tpo 0 7r~ (g))

= tp 0 7ra ((J, 0)) + Y 0 7ra ( (0, g))

= yO 7ra ((J,g)),

which implies the commutativity of diagram (IV.l).

As <.p( (J, g)) = (1, g) 0 (J'-l for all 1, 9 E C(X, Z), we get that <.p is an isomorphism, which

finishes the proof.
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o

Theorem IV.1.5. Let (X x 1I' x 1I', 0' xRi;, X R7)l) and (X x 1I' x 1I',,8 x R6 X R7)2) be two minimal rigid

Cantor dynamical systems. Use A, B to denote the two corresponding crossed product C*-algebms.

According to Proposition III. 2. 1, KO(X,O') is a direct summand of Ko(A) and K O(X,,8) is a direct

summand of Ko(B). Let

be defined by

jA(X) = (x, 0) and jB(X) = (x,O).

If there is an order preserving isomorphism p from Ko(A) to Ko(B) that maps KO(X,O') onto

KO (X,,8). then these two dynamical systems are C* -strongly approximately conjugate.

Proof. \iVe have the following commutative diagram:

According to Lemma IV.1.4, we can lift

to
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which will yield the commutative diagram

In fact, according to Lemma IV.1.4, there exists (J E Homeo(X) such that p(F) = FO(J-l. Define

According to the Kunneth Theorem, we get that K a(C(X X1I'2)) ~ C(X, Z2). By Lemma

II.2.1, if we identify Ko(C(X x 1I'2)) with C(X, Z2), the positive cone will be identified with

C(X, D), with D as defined in Lemma II.2.1. Choose x EX. According to Lemma II.2.9, we know

that Ko(Ax) ~ KO(X, a) and Ko(Bx) ~ KO(X, /3), with Ax, B x being the subalgebras of A and

B, as in Definition 1.2.1.

Now we have the commutative diagram

Ko(A) ----p--~.Ko(B)

CiGJ'O! p !CiIJJ*O
Ko(C(X x 1I'2)) • Ko(C(X X1I'2)) .

Note that pis induced by the x: C(X x 1I'2) ----> C(X X1I'2) defined above. We have shown

that pO (ja:)*.j = (j{3 0 X)*i, i = 0, 1.

We will show that IP 0 ja: = PA rJ 0 j{3 0 X on C(X)sa'

For every tradal state T E T( C* (Z, X, /3)), we know that it corresponds to a /3-invariant

probability meausure /-lB (in such sense that T(a) = /-l(E(a)) , with E being the conditional

expectation from C*(Z,X,/3) to C(X)).
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For every ,8-invariant probability measure /-LB on X, if we use v to denote standard

Lebesgue measure on 1l, it is then clear that /-LB x v X v is ,8 X Rt:2 x R7)2-invariant. As the

dynamical system (X x 1l x 1l,,8 x Rt;, X R7)2) is rigid, for every ,8 x Rt:2 x R7)2-invariant probability

measure, it must be /-L x v x v, with /-L being an ,8-invariant probability measure and v being the

Lebesgue probability measure.

Note that A denotes C* (Z, X x 1l x 1l, a x Rt;, x R7)l) and B denotes C* (Z, X x 1l x 1l,,8 x

Rt;, x R7),). According to Proposition III.2.1, the fact that Ko(A) is isomorphic to Ko(B) implies

that K 1(A) is also isomorphic to KJ(B). According to Proposition III.2.3, the tradal rank of A

and B are both zero, thus classifiable via the K-data.

Let 'P: A ~ B be the C*-algebra isomorphism such that

'P*o: Ko(A) ----+ Ko(B)

coincides with the p in the statement. Define

'P*: T(B) ----+ T(A)

as 'P*(TB)(a) = TB('P(a)) for all a E A and TB E T(B).

Note that a C*-algebra with tradal rank zero must have real rank zero. We can now claim

that for every a E C*(Z,X,a)sa and TB E T(B) given by /-LB x V X v,

Consider

a = f t2I g t2I h E C(X x 1l X 1l)8a C A sa

with f E C(X)sa,g E C(1lLa and h E C(1l)sa, and use TA to denote 'P*(TB). As a x Rt:l x R7)l is

rigid, there exists an a-invariant measure /-LA such that TA(a) = (/-LA x V x v)(E(a)), with E being

the conditional expectation from A to C(X x 1l x 1l) and v being the Lebesgue measure on the

circle. It follows that ("(p 0 jo,(a)) (TB) = TA(a) = /-LA (f) . v(g)· v(h).
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As for ((PA/3 0 j{3 0 x)(a))(TB), we know from the definition that

Recall the definition of X. We have

If we can show that !lB (f 0 (j-l) = !lA (f), then it follows that

(!lB X V X v)(x(f ® 9 ® h)) = !lA(f) . v(g) . v(h) = (!lA x V X v)(f ® 9 ® h),

and we can then get

We will show that for all f E C( X, Z) and !lA,!lB as given above, we have !lB (f 0 (j-l) =

!lA(f). If that is done, noting that the (>linear span of C(X,Z) is dense in C(X)sa, we get

!lB(f 0 (j-l) = !lA(f) for all f E C(X).

According to our notation, for 9 E C(X), we have

= ip* (TB) (g ® idlI' ® idlI' )

= TB(ip(g ® idlI' ® idlI')).

According to digram (IV.2) in the proof of Lemma IV. 1.4, we have the commutative

diagram
;po

Ko(C(X)) ----'------------;..) Ko(C(X))

W~! !W~
Ko(C*(Z, X, a)) 'Po) Ko(C*(Z, X, (3)) ,

(IV.3)

where C* (Z, X, a) and C* (Z, X, (3) are the crossed product C*-algebras of dynamical systems
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(X, a) and (X, fJ) respectively, <Po, <Po are order preserving isomorphisms, and <Po agrees with X as

a map from C(X, Z) to C(X, Z).

By the proof of Lemma IV.1.4, for all j E C(X, Z), if we identify C(X, Z) with Ko(C(X)),

we get

From the commutative diagram (IV.3), we can conclude that (although we cannot claim

that cpU @ id'F 0 id'F) = xU) 0 id'F 0 id'1f)

As xU) = j OO"~l, it follows that

/-LAU) = (/-LA X V X v)U 0 idll' 0 idll')

= TA(f 0 id'f 0 id1r)

= <p*(TBHj 0 id']]' 0 id']j')

= TB (cp(f 0 id'F 0 id']]' ))

= TB (x(f) 0 id']]' 0 id'j]')

= PB(X(f))

= P'B(f 0 0"-1).

Now we have that PA (f) = JiB (f 0 0"~1) for all j E C(X, Z). Note that the C-linear span

of C(X, Z) is dense in C(X), we get

As both dynamical systems a x Ri;r x R'71 and (3 x R,;, X R7)2 are rigid, by Proposition

III.2.3, we have TR(A) = TR(B) = O. According to Corollary IV.1.3, these two dynamical systems

(X x 'Jr x 'Jr, a x Ri;r x R'7I) and (X x 'Jr x 'Jr, (3 X RI;2 X R7)2) are C* -strongly approximately conjugate.

D
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IV.2 WEAK APPROXIMATE CONJUGACY

For minimal homeomorphisms ex x RI;I x R'71 and f3 x R6 x Rr/2 , the following lemma shows

that whether they are weakly approximately conjugate or not is determined by ex and f3 only, and

has nothing to do with Rc and R lI , for i = 1,2.

Lemma IV.2.1. Let (X, ex) and (X,f3) be two minimal Cantor dynamical systems. For continuous

maps ~l, 6, 'TJl, 'TJ2 : X ---> 1I', (X x 1I' x 1I', ex x RI;I x R1)J and (X x 1I' x 1I', f3 X RI;2 X R')2) are weakly

approximately conJugate if and only if (X, ex) and (X, (3) are weakly approximately conjugate.

Proof The "if' part:

For every c > 0, we will show that there exists ern E Homeo(X x 1I' x 1I') such that

dist(ern 0 ex 0 er;:;-l, (3) < c.

As (X, (3) is a minimal Cantor dynamical system, there exists a Kakutani-Rokhlin partition

{Xs,k: 1 ::; s ::; n, 0::; k < h(s)}

such that h(s) > 5/c, and diam(Xs,j) < c/5, where diam(Xs,j) is defined to be SUPx,yEX.',j dist(x, y).

For any two elopen sets X SJoJ1 and X s2 ,h in the Kakutani-Rokhlin partition, there exists

OSI,j];S2,h > 0 such that if x,y E X SJoJ1 UXS2,j2 and dist(x,y) < oSI,j];s2,h, then either x,y E

XSI,Jlorx,yEXs2,h'

Let 0 = minos,j;sl,j', where Xs,j and Xs',j' traverse through all pairs of distinct elopen

sets in the Kakutani-Rokhlin partition above.

As (X, O~) and (X, (3) are weakly approximately conjugate, there exists "In E Homeo(X)

such that

distboexo"l~l(x),f3(x))< O.

According to the definition of 0, it follows that for every Xs,j in the Kakutani-Rokhlin partition
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above, we have

Without loss of generality (replacing a with, 0 a 0,-1), we can assume that a and f3

satisfies

Identify 1[' with lR/Z, and define 7r by 7r: lR ----> lR/Z, t I---> t + Z. For all x E Xs,o, define

h(x) = O. For x E Xs,k with 0 < k < h(s), define

k

h(x) = 1)6 - 6)(a- j (x)).
j=1

As 6 and 6 are both in C(X,1['), it follows that the above defined h is a continuous function

from X to 1['.

For x E Xs.k, define

h(s)

91(X) = L(6 - ~1)(a-j(ah(s)-k(x))) .

.i=1

It is also clear that 91 E C(X,1[').

As X is totally disconnected, we can divide X into U~=1 Xk, with every X k being a elopen

subset of X satisfying dist(h(x), h(y)) < ~ for x, y in the same X k . For 91 IXk' we can lift it to

continuous function Gl,k: X k ----> [0 - i, 1 + -,tJ satisfying 91 IXk = 7r 0 G 1•k .

Define G1 : X ---->lR by setting G1(x) to be G1,dx) if x E X k. It is then easy to check that

G 1 is a lifting of 91 satisfying

1 1
91 = 7l" 0 G1 and G1 (x) E [0 - 4,1 + 4J for all x EX.

For x E X s .k , define
Gdx), k

SI(X) = h(x) - h(s) + Z.
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Similarly, define J2(x) = 0 if x E Xs,o and

k

J2(x) = L(''72 -7)l)(a- j (x))
j=l

for x E Xs,k with 0 < k < h(5). Define

his)

92(X) = L(7)2 -7)1) (a-,j (ah(S)-k(x))) .
J=l

As X is totally disconnected, we can find a lifting G2 E C(X, lR) such that

for all x E X.

For x E Xs,k, define

For the 51 and 52 we have defined, it is easy to check that they are continuous function from X to

lR/Z, According to our identification, we can regard 51 and 52 as functions in C(X, 'IT').

\Ve will show that (idx x R SI x R S2 ) will approximately conjugate a x REI x R1JI and

For every (x, t1, t2) E X x 'IT' x 'IT', we have

(idxxRs ] xRs2 )o(axRE] x R1J])o (idx xRSI X RS2 )-1(X,t1,t2)

= (idx x Rs ] x RS2 ) 0 (a x REI x R1J')(x, t1 - 51(X), t2 - 52(X))

= (idx X Rs ] x RS2 )(a(x), t1 - 51(X) + 6(x), t2 - S2(X) + 7}1(X))

= (a(x), t1 + ~l(X) - 51(X) + 51(a(x)), t2+ 7)1 (x) - 52(X) + 52(a(x))),

and it is clear that
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As a(Xs,j) = (3(Xs,j) and diarn(Xs,j) < c/5, we have dist(a(x), (3(x)) < c/5 for all x E X.

Consider the distance between t] +~] (x) - s] (x) + s] (a(x)) and t] + 6(x), We get

According to the definition of S], if x E Xs,h(s) (that is, x is on the roof), then

h(s)
s](x) = '2:::(6 - ~d (a-j(x)) - G](x)

j=]

h(s) h(s)
= '2:::(6 -- ~]) (a-j(x)) - '2:::(6 - ~d(a-j(x))

j=] j=O

= -(6 - 6)(x)

= 0,

We know that s] (a(x)) = 0 as (a-h(sl)(x) E Xs,o, It is then clear that

if ,7.) is in the roof set,

If x is not in the roof, in other words, for x E Xs,k with 0 ::; k < h(s) - 1, we have

As G](x) E [0 - -!' 1 + -!J for all x, and we have h(s) > 5/c for all s, it then follows that

Is](a(x)) - S](x) +6(x) -6(x)[ < 2c/5 for all x E X.

Similarly, we have
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and

IS2(a(x)) - S2(X) + Til (x) - Tl2(x)1 < 2E/5 for all x EX.

So far, we have proved that

dist ((idx x RS1 x R.'2) 0 (a x R~l x R'7J 0 (idx x RS1 x R s2 )-1,,8 X R~2 x R'72)

< E/5 + 2E/5 + 2E/5

= E.

As we can construct such conjugacy maps for all E > 0, it follows that a x R~l x R'71 is weakly

approximately conjugate to ,8 x R~2 X R'72 if a is weakly approximately conjugate to ,8.

The "only if' part.

If a sequence of O"n in Homeo( X x ']['2) approximately conjugates a x R~l x R')l to ,8 X

R~2 X R'72' as X is totally disconnected, we can write O"n as "In X 'fi, with "In E Homeo(X) and

'P: X ----+ Homeo(']['2) being a continuous map.

Let P: X X ']['2 ----+ X be defined by P(X,(tl,t2)) = x (the canonical projection onto X).

We can easily check that

which then implies that

VVe have finished the proof of the "only if' part.

o
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IV.3 APPROXIMATE K-CONJUGACY

From Lemma IV.2.l, we know that the if and only if condition for 0: x R€! X R1)! and

B x R6 X R1)2 to be weakly approximately conjugate is that 0: and f3 are weakly approximately

conjugate.

One might be wondering whether we have weak approximate conjugacy between 0: x R€! X

R'7! and f3 x R6 X R'72 , can we expect to have the isomorphism between C*-algebras C* (2, X x

Generally speaking, weak approximate conjugacy is not enough to imply that the

corresponding crossed product C*-algebras are isomorphic. Examples can be found in [Ml], [LMl]

and [LM3].

As guessed by Lin in [LMl], if we strengthen the definition of weak approximate conjugacy

(in the sense that those conjugacies will induce an isomorphism of K-data of these two crossed

product C*-algebras), this might be equivalent to the isomorphism of two crossed product

C*-algebras.

That "strengthened" version of weak approximate conjugacy is called approximate

K-conjugacy. Before the definition of approximate K-conjugacy is given, the definition of

asymptotic morphism will be given and a technical result needs to be mentioned,

Definition IV.3.1. A sequence of contractive completely positive linear maps {<Pn} from C*-algebra

A to C*-algebra B is said to be an asymptotic morphism, if

lim II<pn(ab) - <pn(a)<pn(b)11 = 0 for all a,b E A.
'n-:'OO

Proposition IV.3.2. [Lin4J

Let (X, 0:) and (X, (3) be two dynamical systems. If there exists a seq'uence of homeomorphisms

an: X ---7 X such that limn->oo dist(an 0 0: 0 a;;l,(3) = 0, then for a seq'uence of unitaries {zn} in

Ax with

lim Ilznja(j) - ja(j)znll = 0 for all f E C(X),
n--?oo
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there exists a unital asymptotic morphism {cp~} from Ail to Au such that

for all f E C(X).

Proof. This is Proposition 3.1 in [Lin4]. The main ingredient in the proof is to use weakly

approximate conjugacies to construct a C*-algebra homomorphism from Ail to rr~ Au! EB~ Au,

and apply the lifting property of completely contractive positive linear maps.

It works like this:

Let 7r; rr~ Au -; EB~ Au be the quotient map. Define

00 00

by setting

To show that \[1 is a well-defined homomorphism, we just need to check that

As dist(O'n 0 a 0 0';; 1, (3) -; 0, we have

Thus \[1: Ai1 -; rr~ A u/ EB~ Au is a C*-algebra homomorphism.
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Consider

As Aj3 is amenable, according to [CE, Theorem 3.10], there exists a sequence of contractive

completely positive linear maps cp~: Aj3 ----> A", such that

71"({cp~(b): n EN}) = \II(b) for all b E Aj3.

As \II is a homomorphism, it follows that

lim IIcp~(ab) - cp~(a)<p~(b)11 = 0 for all a, bE Aj3,
n->oo

which indicates that {<p~: Aj3 ----> A", : n E N} gives a unital discrete asymptotic morphism.

o

Now we can give the definition of approximate K-conjugacy between two dynamical

systems (X, ex) and (X, (3).

Definition IV.3.3. FOT two minimal dynamical systems (X,ex) and (Y,f3), with X and Y being

compact metrizable spaces, we say that (X, ex) and (Y, (3) aTe appmximately K-conjugate if theTe

exist homeomoTphisms an: X ----> Y, Tn: Y ----> X, and an isomoTphism

between K -gmups such that

and the associated discTete asymptotic mOTphisms 'l/Jn: B ----> A and <Pn: A ----> B induce the

isomoTphisms p and p-l Tespectively.
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Remark: According to Proposition IV.3.2, the weak approximate conjugacy maps will induce

asymptotic morphisms. But it is not generally true that the asymptotic morphisms will induce

a homomorphism of K o and K 1 data. In Definition IV.3.3, those approximate conjugacies must not

only induce a pair of homomorphisms between Ki(A) and Ki(B), in addition, these homomorphisms

must be a pair of isomorphisms that are inverses of each other.

For the classical case of minimal Cantor dynamical systems, it is shown in [LM3] that two

Cantor minimal dynamical systems are approximately K-conjugate if and only if the corresponding

crossed product C*-algebras are isomorphic.

For the case of (X x '][',0 x R~), with 0 E Homeo(X) being minimal homeomorphism and

1;: X --> '][' being a continuous map, similar results are obtained in Theorem 7.8 of [LMl].

Based on Theorem IV.1.5 and Lemma IV.2.1, we will give an if and only if condition for

approximate K-conjugacy between 0 x R~l X R'71 and 13 x R6 X R'72'

Theorem IV.3.4. Let X be the Cantor set. Let 0,13 E Homeo(X) be minimal homeomorphisms,

and let 1;1,6, Til ,T!2: X --> '][' be continuous map such that both 0 x R~l X R'71 and 13 x R6 X R'72

are minimal rigid homeomorphism of X x '][' x '][' (as in Definition III. 2. 2). Use A to denote

the crossed product C*-algebra corresponding to the minimal system (X x '][' x '][',0 x R6 X R'71)'

and B to denote the one corresponding to (X x '][' x '][',13 x R6 x R1)2)' Use KO(X,o) to denote

C(X, Z)/ {f - foO-1: f E C(X, Z2)} and KO(X, 13) to denote C(X, Z)/ {f - fo{3-1: f E C(X, Z2)}.

The following are equivalent:

1) (X x '][' x '][', 0 XR~l XRT)l) and (X x '][' x '][', {3 x R6 XRT)2) are approximately K-conjugate,

2) There is an order isomorphism p: J(o(B) --> J(o(A) that maps J(O(X, {3) to J(°(X, 0).

Proof. 1) ~ 2) :

If (X x T x '][', 0 XR~l x R'71) and (X x'][' x'][',{3 x R6 x R'72) are approximately K-conjugate,

according to the definition of approximate K-conjugacy (Definition IV.3.3), there exists (In E

Homeo( X x TxT) such that
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and the discrete asymptotic morphism induced by {an: n E N} will yield an isomorphism from

K.(B) to K.(A).

That is, there exists an isomorphism

Define cP to be the restriction of cPo on Ko(A). We just need to show that cP maps KO(X, (3) to

KO(X, ex).

According to the Pimsner-Voiculescu six-term exact sequence (as in the proof of Proposition

III.2.1), we have

As ex x Rl;l X R'/l and (3 x RI;2 X R'/2 are approximately K-conjugate, for given projection

P E M=(B), there exists N E N such that for all m, n > N, we have [p 0 an) = [p 0 am] in Ko(A).

It is obvious that [p 0 an] E (jo,).(C(X x 11' x 11')). Then we can conclude that the

isomorphism p induced by the conjugacy maps will map KO(X, (3) to KO(X, ex).

2)==>1):

It is easy to check that 2) implies the following commutative diagram:

Ko(B)
p

• Ko(A)

(j(3).or I(jo,).o

KO(X, (3) • KO(X, ex) .
p IKO(X,(3)

According to Theorem IV.1.5, the two minimal homeomophisms ex x Ri;, x R'Jl and (3 x RI;2 X R'/2

are C' -strongly flip conjugate.

The map p above induces an order preserving isomorphism between KO(X, (3) (which is

isomorphic to C(X,71})/{f - f 0 (3-1}, with order described as in Lemma 11.2.9) and KO(X, ex)

(which is isomorphic to C(X, 71})/ {j - f 0 ex- 1 }, with order described as in Lemma II.2.9). Note
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that

[{'o(C*(Z, X, a)) ~ C(X, Z)/{g - 9 0 0'-1: 9 E C(X, Z)},

with

Ko(C*(Z, X, 0'))+ ~ C(X, Z)/{g - 9 0 0'-1: 9 E C(X, Z),g ;::: O}.

It follows that there is an order isomorphism

p: (Ko(C*(Z, X, (3)), Ko(C*(Z, X, (3))+, [l c *(Z,x,l3l])

~ (Ko(C*(Z, X, ex)), Ko(C*(Z, X, ex))+, [l c *(z,x,cx)])'

According to Theorem 5.4 of [LM3], (X, ex) and (X, (3) are approximately K-conjugate. Thus they

are weakly approximately conjugate.

For any f > 0 and any finite subset F c C(X x 1I' x 1I'), as (3 is minimal, we can find

Kakutani-Rokhlin partition

P = {X(s,k): s E 5,1 S k S H(s)}

3271" . E
such that H(s) > - for all s E 5 and dlam(X(s, k)) < -.

E 16

As C(X X 1I'1 x 1I'2) is generated by

{lD, ZI, Z2: D is a clopen subset of X, Zi is the identity function on T;},

without loss of generality, we can assume that

The fact that (X, ex) and (X, (3) are approximately K-conjugate implies that there exist

{(Tn E Homeo(X) : n E N} such that

(Tn 0 ex 0 (T;;-1 ~ {3.
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By choosing n large enough, just as in the proof of the "if" part of Theorem IV.2.1, we get

(O'n 0 a 0 O',.;-l)(X(S, k)) = (3(X(s, k)) for s E S,l ::; k ::; H(s).

\Vithout loss of generality, we can assume that

a(X(s, k)) = (3(X(s, k)) for s E S,l ::; k ::; H(s).

As in the proof of "if" part of Theorem IV.2.1, there exist maps {idx x Rgn x Rhn}nEN

such that

with all the gn, hn : X ~ l' being continuous functions as defined in the proof of Theorem IV.2.1.

We will show that the conjugacy maps {idx xRgn XRhn: n E N} will induce an isomorphism

between K.(B) and K.(A).

The idea is like this:

Vve know that these two dynamical systems a x Re 1 x R1]] and (3 x Rez x RIJZ are C'-strongly

flip conjugate. Thus there exists 'i/Jn: B ~ A such that the following diagram approximately

commutes:

'i/JnB ---------,..~ A

XnC(X x l' x 1') ---..,..~ C(X x l' x 1').

As we had assumed that (without loss of generality) a(X(s, k)) = (3(X(s, k)) for s E S, k =

1.... , H (s), the Xn in the diagram above satisfies

dist(Xn(x), x) < diam(X(s, k)) < ElM

for x E X(s, k). In other words, restricted on C(X x l' x 1'), Xn is close to the identity map.
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Note that {'0n} are isomorphisms and [1Pn] = [1Prn] in K L(B, A) for m, n large enough. If

we can find Wn E U(A) such that 10 O"n is close to W~1Pn(j)Wn in A, and W~41n(UB)Wn is close

to uA2n in A, where 2 n is a unitary element that "almost" commutes with C(X x 11' x 'IT'), then it

follows that the conjugacy maps {idx x Rgn x Rhn : n E N} will induce an isomorphism between

K.(B) and K.(A).

The complete proof is as below:

Let 91,92, il, h be as defined in the proof of Lemma IV.2.1, and let

:F1 = {9'i ' l x (s,k),fi . l x (s,k): s E S,1 :s; k :s; H(s)}.

We can further divide a- 1 (X (s, 1)) into the disjoint union of clopen sets Y (s, 1), Y (s, 2),

., ., Y(s, N(s)), and choose Xs,j E Y(s, j) such that

il(·7:) - l(xs ,j)! < E/16 for all 1 E :F1 , 1 :s; j :s; N(s), s E S.

Let G 1 , G2 be the same as the one defined in the proof of Theorem IV.2.1. That is, G 1 is the lifting
h(s) h(s)

of 91 (x) = 2:(6 -6) (a- j (ah(s)-k(x))), G2 is the lifting of 92(X) = 2: (7/2 -7/d(a- j (ah(s)-k (x))),
j=l j=l

and Gi(x) E [0 - t, 1 + t]· As both G 1 , G2 are path connected to the zero function, it is clear that

[ 1 ] [- -i2rrGk/H(s) 1 ]
Zi' Y(s,j) = "i' e . Y(s,j)

in K 1(A) for i = 1,2 and k = 1,2.

Let

is,j: C(IYs.J x 11' x 11') ---> lYs.J . A ·IYs.J

be the inclusion map. Let two homomorphisms

be defined by



106

and

o '(1)(x Z Z) = id (x) '1(z ,e'i2trGdxs,,i)/H(s) - ,e'i2trG2(XS ,])/H(s))
S,) ,I, 2 Y s ,] 1 , "'2 .

Consider the maps

It is clear that these two maps are monomorphisms.

By Proposition III.2.3, TR(A) = 0, and it follows that TR(lYs,,i . A· lys,,i) = o.

As G I, G2 are contractible, we can claim that

For every 1 E 1Y s,] , A . 1Ys,,i' and for every tradal state T on 1Ys ,] . A . 1Ys,,i' consider

T((i S,) 0 6. s ,j)(1)) and T((is,j 0 Os,j)(1)). By Lemma III. 1.4, we can regard 1ys ,,i . A· 1ys ,,i as the

crossed product C*-algebra of the induced minimal homeomorphism of Ys,j x 1l' x 1l'. As a x R~ x R1]

is rigid, it follows that the traces on 1Ys,,i . A . 1Y",,i also corresponds to such measures like p., x v,

with v being the Lebesgue measure on the torus.

Now we have

T ((is,j 0 6. s ,))(1)) = T (idY(s,j) ® 1)

= J"(Y(S,j))· r 1 ((ZI' Z2)) dviT2
= p.,(Y(s,j))· h2 1 (ZI' e'i2trG 1 (x s ,,i)/H(s),Z2' ei2trG2(XS,,i)/H(S)) dv

As TR(ly . A ·ly) = 0, [is)' o6. s )·] = l'i s )' 0 OS)·] and
S,j S,j 1 l I ,

for all T E T(lys ,,i . A . 1Ys ,j)' According to Theorem 3.4 of [Lin3], the two monomorphisms

is,] o6.s ,j and is,j 0 OS,] are approximately unitarily equivalent. Thus there exists a unitary element
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Vs,j E 1ys ,] . A ·lYs ,j such that

N(s)

Let V s = L Vs,j' As Ys,l, Y s ,2, ... , Ys,N(s) are mutually disjoint, we have
)=1

II (v~)* zd(x)lQ-l(X(s,l))V~ - ze-
21rkG

;(x)/H(s) f(x)l",-J(X(s,l)) II < c/16 + Kc/(16K) + 10/16

< c/4.

for all f E F1,s E S.

Let

As a x R~ x R'7 is C*-strongly flip conjugate to a x R~ x R1]' for any 8 > 0, and for the

F2 C C(X x 'lr x 'lr), there exists a C*-algebra isomorphism 7j;: B ----* A such that

Note that 1X (s.k), for S E Sand 1 :s; k :s; H(s), are mutually orthogonal projections and

add up to 1B, and {l X (s,k): s E S,l :s; k s H(s)} C F2 . According to the perturbation lemma

[Lin2, Lemma 2.5.7], by taking 8 to be small enough, the fact that 117j;(jJ3(1)) - )",(1)11 < 8 will

imply that there exists v E U(A) such that

and

'V*l X (s,k)V = 1X (s,k) 013 and Ilv* fv - f 0 1311 < E/(4K) for allf E F2 .
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H(s)

Define W = L L lX(s,k)V-kV~Uk, Then we can check that
sES k=l

(

"\"'~ k k k)' "\"'~ k' k' k'VV*W = L.J L.J lX(s,k)V- vsu . L.J L.J lX(s',k')v- vs'u

sES k=l s'ES k'=l

H(s)

= L L (u-kv;kvklx(s,k)lx(s,k)V-kV~uk)

sES k=l

H(s)

"\"' "\"' -k ~k1 k k
= L.J L.J U V s a-1(X(s,1))vsu

sES k=l

H(s)

= L L u-
k

l a -l(X(s,l))U
k

sES k=l

H(s)

= L L lal"(a- 1 (X(s,1)))

sES k=l

H(s)

= L L lX(s,k)

sES k=l

As TR(A) = 0, we have tsr(A) = 1. Thus W·W = lA implies that WW* = lA, So far, it

is checked that W is a unitary element in A.

As

and

Ilv' Iv - I 0,81/ < c/(4K) for all IE F 2 and for all I E F 2 ,
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W* Zi1X(s,h:) TV =

-k -k kIll -k k k= 'u V s V X(s,k)Zi X(s,k) Xs,k v V s U

-k -k k( 1 ) -k k k= U V s V Zi X(s,k) V V s U

-k -k (( 1 ) 13k) h: k
~c:/(4J() U V s Zi X(s,k) 0 V s U

~€/(4J()+c:/4 (zl X (s,k») 0 a,

where

(x, t, + (t,,, (,,)-'(I1-'(x))) -" (l1- i (X))) - kG,(x)/H(,),

t,+ (t,", (ai -' (l1-k(x))) -", (l1- i (X))) - kG, (xl/H('I) ,
for x E X(s,k) with s E Sand 1:::; k:::; H(s),

Then it follows that

IIW* Zi1X(s,k) W - (zi1X(s,k») 0 all < K(c/4K) + c/4 < c.

Similar to the proof of Theorem IV.2.1, we have

Consider the map adW 0 1jJ, we have that

II(adW 0 1jJ) (j(3 (f)) - ja(f 0 a)11 < c + 6.
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If (adW 0 'l/J) maps UB to UA or UA . Y such that Ilyf - fY11 < E for all f E F, then it

follows that the K-map induced by approximate conjugacy map (J (restricted to F) will coincide

with [adW 0 'l/J] E K L(B, A).

In fact, we can check that

which then implies that Ilyf - fyll < E if we define y = u:4(W*vW) E U(A).

As

(adW 0 'l/J)(UB) = W'l/J(UB)W ;::::.,!(16K2) W*vW = UAY,

we may claim that the K-map induced by approximate conjugacy map (J (restricted to F) will

coincide with [adW 0 'l/J] E K L(B, A).

As C(X x 1I' x 1I') is separable, by taking F to be large enough and E ~ 0, it follows that

the weak approximate conjugacy map (J will induce an isomorphism from K;(B) to K i (A), which

finishes the proof.

o



III

CHAPTER V

THE CASES \VITH COCYCLES BEING FURSTENBERG TRANSFORMATIONS

\lVe had studied properties of dynamical systems and the corresponding crossed product

C*-algebras if the action on X x 1[ x 1[ is (t x R~ x R1). That is, in the skew product, the actions

on t he torus are just rotations.

If the actions on torus are Furstenberg transformations, do we have similar results? This

chapter studies weak approximate conjugacy between two such systems and the K i of such crossed

product C*-algebras (which might be different from the case in the previous chapter), and shows

that there are two types of such minimal dynamical systems that will yield different K-theory for

the crossed product C*-algebras.

A definition of Furstenberg transformation on 1[2 is given below.

Definition V.O.1. A map F: 1[2 -+ 1[2 is called a Furstenberg transformation of degree d if there

e:r:ist 0 E 1[ and continuous functIOn f: IR -+ IR sati.~fying f(x + 1) - f(x) = d for all x E IR such

Ulal (identi:h/ing']I' with IR/Z)

F(t], t2) = (t 1 + D, t2 + f(tJl).

For the F above, d is called the degree of Furstenbe'rg transfor'm F, and is denoted by deg( F). The

l/umber d is also called the degree of f, and denoted by deg(J).
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V.I WEAK APPROXIMATE CONJUGACY BETWEEN TWO FURSTENBERG

TRANSFORMATIONS

Use FT(1I'2) to denote the set of all Furstenberg transformations on 11'2. We will consider

the relationship between 0: x tp and (3 x 1/;, with 0:,0 E Homeo(X), and tp,1/J: X ----., FT(1I'2).

Proposition V.1.l. Let F,G be two Furstenberg transformations on 11'2 (as defined above). If the

degree of F is m, and the degree of G is n, then FoG is still a Furstenberg transformation, and

the degree of FoG is m + n.

F 0 GUl, t2) = F(t 1 + 0, t2 + g(t 1 ))

= (t 1 + 0 + e, t2 + g(td + f(t 1 + 0)).

According to definition V.a.l, FoG is a Furstenberg transformation.

As deg F = m and deg G = n, it follows that

g(tl + 1) + f(tl + 1 + 8) - (g(tr) + f(tl)) = g(tl + 1) - g(td + f(t 1 + 1 + 0) - fUd

=m+n.

Thus the degree of FoG is m + n.

D

In this chapter, we identify 11' with lR/Z. For tl, t2 E lR/Z, we define the distance between

them by

The following observation will be used.

Proposition V.1.2. Let f, 9 E C(1I', 11'), and define dist(j, g) = sup dist(j (t), g(t)). If dist(j, g) <
tE1f

1/2, thendeg(j) =deg(g).



113

Proof. Suppose that dist(f,g) < 1/2 and deg(J) i degg.

Note that f - 9 E C(lR/Z, JR/Z) is of degree deg(f) - deg(g), which is not zero. According

to the Intermediate Value Theorem, there exists t E JR and n E N such that

If(t) - g(t) + nl = 1/2.

It then follows that dist(f - g) = 1/2, contradicting with our assumption. So far, we have finished

the proof.

o

For two minimal homeomorphisms 0: x ip and 0: x 'ljJ (with ip, 'ljJ: X --4 FT('['2)), a necessary

condition for weak approximate conjugacy between them (with conjugacy maps having cocycles in

Furstenberg transformations) is given:

Proposition V.1.3. Let 0: x ip and (J x 'ljJ be two minimal homeomorphisms on X x '['2 with

'P, 'ljJ: X --4 FT(,[,2). If there exists 'In X cPn E Homeo(X x '['2) with cPn: X --4 FT('['2) continuous

such that bn x cPn) 0 (0: X ip) 0 bn x cPn)-1 --4 (J X 'ljJ, then

1) bn: n E N} approximately confugates 0: to (J,

2) there exists N E N s'uch that

deg('ljJbn(x))) + deg(cPn(x)) = deg(ip(x)) + deg(cPn(O:(x)))

fOT all n > N.

Proof. As bn x cPn) 0 (0: X ip) 0 bn x cPn)-l --4 {J X 'ljJ, we have

which is equivalent to
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Assume that cp, 1J, ¢n: X ----> FT(1I'2) are defined by

with lx, gx, hx just like the function I in definition V.O.1.

Note that

(In X ¢n) 0 (0: X cp)(x, (tl' t2)) = (In X ¢n) 0 (o:(x), (tl + BI(x),t2 + Ix(td))

= (J'n(O:(x)), (t l + BI(x) + ~n(O:(x)), t2 + Ix(td + hn,a(x)(td)),

and

([3 X 1J) 0 (In X c/Jn)(x, (tl' t2))) = ([3 X 1J)(rn(x) , (tl + ~(x), t2+ hx(td))

= ([3(1n(x)), (tl + ~n(x) + B2(1n(x)), t2 + hn,x(tl) + g,n(x)(tl)))'

It follows that dist(ln(O:(x)), [3(1n(X))) ----> 0 and dist(Hn,x(t l ), Gn,x(tl)) ----> 0, where

Hn.x(td == Ix(tl) + hn.a(~:)(td and Gn,x(td = hn,x(td + g'n(x)(tl).

Choose N E N such that if n > N. Then dist(Hn,x(tI), Gn,x(tl)) < 1/2.

As lx, hn,a(~;),hn,x and g,n(x) can be regarded as maps from 1I' to 1I', we can identify Hn,x

and Gn .x as functions in C(1I',1I'). According to Proposition V.1.2, it follows that for all n > N,

we have

deg(Hn.x) = deg(Gn,x).

Note that deg(fx) = deg(cp(x)), deg(gx) = deg(1J(x)), and deg(hn,x) = deg(¢n(x)). We

then have

deg(cp(x)) + deg(¢n(O:(x))) = deg(¢n(x)) + deg(1J(ln(x))) ,

which finishes the proof.
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D

V.2 K-THEORY OF THE CROSSED PRODUCT C*-ALGEBRA

For the minimal dynamical system (X x ']]'2, a x cp), let A be the crossed product C*-algebra.

\Ve will use the Pimsner-Voiculescu six-term exact sequence to get the K -data of A.

We use KO(X,a) to denote C(X,71.)/U - f 0 a: f E C(X,71.)}. Note that deg(cp(x)) E

C(X, 71.). Let 1f: C(X,71.) ---4 KO(X, a) be the canonical projection, and use [deg(cp(x))] to denote

1f(deg(cp(x))).

Proposition V.2.1. For the minimal dynamical system (X x ']]'2, a x cp) with cocycles being

Furstenberg transformations, use A to denote the crossed product C*-algebm of this dynamical

system.

1) If [deg(cp(x))] ¥- 0 in KO(X, a), then

Ko(A) ~ C(X, 71.2 )/U - f 0 a: f E C(X, 71.2 )} EEl 71.

and

K 1 (A) ~ C(X, 71.2 )/{(I, g) - (I, g) 0 a - (deg(cp) . (g 0 a), 0): f, 9 E C(X, Z)} EEl 71.2 .

2) If [deg(cp(x))] = 0 in KO(X, a), then

and

K 1 (A) ~ C(X, 71.2 )/{ (I, g) - (I, g) 0 a - (deg(cp) . (g 0 a), 0): f, 9 E C(X, Z)} EEl 71.2 .
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Proof. According to the Pimsner-Voiculescu six-term exact sequence, we have

It then follows that we have the exact sequences

and

We will study Ki(A) by looking at the kernel and co-kernel of id - (a x CP)*i (for i = 0,1).

From Lemma 11.2.1, we know that K i (C(1['2)) is isomorphic to Z2 for i = 0,1. Note that

Ko(C(X)) ~ C(X, Z) and KdC(X)) = O. According to the Kiinneth Theorem,

and

We will identify both Ko(C(X x 1['2) and K)(C(X x 1['2) with C(X,Z2).

According to Example 4.9 of [PhI], for every x EX,
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2 2 (m) ( 1 0) (m) ( m )rp(.T)*l: Z ---> Z ,f---l • = .
n deg(rp(x)) 1 n deg(rp(x)) . m + n

For (f,g) E C(X,Z2) ~ K1(C(X x 11'2)), we can consider H E U(C(X X11'2)) defined by

H(x Z z) = zf(x) . zg(x)
, 1, 2 1 2'

with Zi E 1I'i' and each 1I'i is identified with the unit circle in the complex plane C. It is then clear

that this H corresponds to (f, g) in K 1(C(X X11'2)).

Let rp(x) ((Zl' Z2)) = (Zl . ei27fe
(X), Z2 . zr' . s(zd) such that () E C (X, lR) is continuous, and

Sx E U(C(1I'd) is path connected to le(']!'t) for all x E X. We can check that

H 0 (0: X rp)(x, Zl, Z2) = H(o:(x), Zl . e,27fe(x) , Z2 . z~v(x) . sx(zI))

= (Zl . ei27fe(x))f(a(x)) . (Z2 . z~(x) . sx(zI))g(a(x)).

In U(C(X x ,][,2)), it is clear that H 0 (0: Xrp) is path connected to G, with G defined to be

G( .)
- .f(a(x)) ( w(x))g(a(x)) _ .f(a(x))+w(x)g(a(;r)) g(a(x))

X,Zl,Z2 -Zl . Z2' Z l -Zl 'Z2'

Noting that w(x) = deg(rp(x)), it then follows that

rpd((f,g))(X) = (f(o:(x)) + deg(rp(x))· g(o:(x)),g(o:(x))).

Now we will study ker(id - (0: Xrp)*0). For I, 9 E C(X, Z), we use (f, g) to denote a function

in C(X,Z2). If (f,g) satisfies (id - (0: x rp*o))((f,g)) = 0, as rp(x)*o: KO(C(1I'2)) ---> K O(C(1I'2)) is

the identify map, we get

1 0 0: = I and goo: = g.

The minimality of 0: then implies that both I and 9 are constant functions in C(X, Z). So far, we

have shown that ker(id - (0: x rp)*o) ~ Z2.
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As for ker(id~(exxCP)*l)' ifthere exists (f,g) E C(X, Z2) such that (id-(exxCP)*l)((f,g)) =

0, it follows that

f(x) = f(ex(x)) + deg(cp(x)) . g(ex(x)) and g(x) = g(ex(x)).

As ex is minimal, we conclude that g E C(X, Z) must be a constant function, say, g(x) == C for all

x EX.

To further study the kernel of id - (ex x CP)*l, we will consider two cases.

Case One: [deg(cp(x))] i= 0 in KO(X, ex).

In this case, if g(x) == C i= 0, we will show that there is no solution for

f(x) = f(ex(x)) + C deg(cp(x)).

In fact, if such f E C(X, Z) exists, it follows that C[deg(cp(x))] = °in KO(X, ex). Similar

to the proof of Corollary 11.2.10, we can show that KO(X, ex) is torsion free, which then implies

that [deg(i.p(:T))] = 0, a contradiction.

If g(x) == 0, note that ex is a minimal action on X. It is then clear that f(x) = f(ex(x)) +

deg(cp(x)) . g(ex(x)) implies f(x) is a constant function.

So far, we have proved that if [deg(cp(x))] i= 0 in KO(X, ex), then

ker(id - (ex x cp)d) ~ {(f,0): f == C for C E Z} ~ Z.

Case Two: [deg(cp(x))] = 0 in KO(X, ex)

In this case, there exists h E C(X, Z) such that h(x) - h 0 ex(x) = deg(cp(x)).

For (f,g) E ker(id - (ex x cp)d), if g == 0, similar to Case One, we can still get that f == C

(with C E Z).
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If 9 == M -=I 0, then f need to satisfy

f(x) = f(a(x» + M deg(cp(x».

If there are two functions !I, 12 E C(X, Z) satisfying

fi(x) = li(a(.'r» + M deg(cp(x» for i = 1,2,

then it follows that

(!I - 12)(x) = (!I - 12)(a(x»,

which implies that !I - 12 is a constant function.

According to our assumption, there exists h E C(X, Z) such that h(x) - h 0 a(x)

deg(cp(x», it is clear that Mh(x) - M . h 0 a(x) = M deg(cp(x».

It then follows that any f E C(X, Z) satisfying f(x) - f 0 a(x) = M deg(cp(x» must be in

{M·h+N:NEZ}.

So far, we conclude that

ker(id - (a x CP)*l) ~ {(C, 0): C E Z} U{(M. h + N, M): M -=I 0, NEZ},

which is isomorphic to

{(A1 . h + N, M): l\1I, NEZ}.

So far, we showed that in this case,

For either of the cases, as cp(x)*o: KO(C(']['2» ----> K O(C(']['2» is the identify map for all

x E X, we have

coker(id - (a x cp)*o) ~ C(X, Z2)/{f - f 0 a: f E C(X, Z2)}.
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For (f,g) E C(X, Z2), note that (a x CP)*l(f,g)(X) = (f(a(x)) + deg(cp(x)). g(a(x)),g(a(x))). It

follows that

coker(id ~ (a x cP)*d 2" C(X, Z2) / {(f, g) - (f, g) a a - (deg( cp) . (g a 0'),0): f, 9 E C(X, Z)}.

For either case, note that ker(id - (a x CP)d) is a free Z-module. It follows from short exact

sequences V.1 and V.2 that

and

For both cases, as we know the kernel and co-kernel of id - (a x CP)*i (for i = 0,1), the

K-data of A follows easily, which finishes the proof.

o

V.3 RIGIDITY

Similar to the idea of rigidity as in Definition III.2.2, we can define the rigidity condition

for the case that cocycles are Furstenberg transformations.

Definition V.3.l. Let (X x '['2, a x cp) be a minimal dynamical system with each cp(x) being a

Furstenberg transformation. Let fL be an a x cp-invariant probability measure on X x '['2. It will

induce an a-invariant probability meaS1lre on X defined by 7r(u)(D) = fL(D x ,[,2). We say that

(X x '['2, a x cp) is rigid if 7r gives a one-to-one map between the a x cp-invariant probability measures

and the a-invariant probability measures.
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V.4 EXAMPLES

Several examples of rigid minimal dynamical systems (X x 1'2, a x 'P) are given, with 'P(X)

being a Furstenberg transformation for all x EX.

a) The examples ofrigid (or non-rigid) minimal dynamical systems (X x l' x 1', a x R~ x R1))

are definitely the examples of rigid (or non-rigid) minimal dynamical systems of type (X x 1'2, aX 'P).

:For example, Example III.3.6 and Example III.3.7 in Section III.3.

b) The example of a rigid minimal dynamical system (X x 1'2, a x 'P), with 'P(x) being a

Furstenberg transformation for all x E X, and [deg('P(x))] i- 0 in KO(X,a).

Let (1'3,,) be a topological dynamical system on 1'3, with, defined by

for some eE JR \ Qi.

According to Theorem 2.1 of [Furstenberg], the dynamical system (1'3, ,) is uniquely

ergodic. Then there is only one ,-invariant probability measure on 1'3 (in fact, this measure

is the standard Lebesgue measure on 1'3).

Let (1', 'P) be a Denjoy homeomorphism of rotation number e. Let (X, a) be the minimal

Cantor dynamical system derived from (1', 'P) such that it factors through (1', Ro). In other words,

we have the following commutative diagram

with Jr: X ---> l' being a surjective map.

Regard Jr(x) as a unitary element in C (as Jr(x) C 1'), and define 'P: X ---> Homeo(1'2)

by
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It is then clear that the following diagram commutes:

According to Proposition III.3.5, there exists a one-to-one correspondence between the invariant

probability measure of (1r3 , 1') and that of (X x 1r2
, (l X <p). Thus (X x 1r2 , (l X <p) is an example of

rigid dynamical system with cocycles being Furstenberg transformations, and [deg(<p(x))] =I- 0 in
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