
SYSTEMATICS AND PALEOECOLOGY OF NORTHERN GREAT BASIN 

MYLAGAULIDAE (MAMMALIA: RODENTIA) 

by 

JONATHAN J. CALEDE 

A THESIS 

Presented to the Department of Geological Sciences 
and the Graduate School ofthe University of Oregon 

in partial fulfillment of the requirements 
for the degree of 

Master of Science 

June 2010 



"Systematics and Paleoecology ofNorthern Great Basin Mylagaulidae (Mammalia: 

Rodentia)," a thesis prepared by Jonathan J. Calede in partial fulfillment of the 

requirements for the Master of Science degree in the Department of Geological 

Sciences. This thesis has been approved and accepted by: 

Date 

Committee in Charge: 

Accepted by: 

ms, Chair of the Examining Committee 

Dr. Samantha S.B. Hopkins, Chair 
Dr. Madonna Moss 
Dr. Gregory J. Retallack 

Dean ofthe Graduate School 

ii 



iii 

© 2010 Jonathan J. Calede 



IV 

An Abstract of the Thesis of 

Jonathan J. Calede for the degree of Master of Science 

in the Department of Geological Sciences to be taken June2010 

Title: SYSTEMATICS AND PALEOECOLOGY OF NORTHERN GREAT BASIN 

MYLAGAULIDAE (MAMMALIA: RODENTIA) 

/ 

Approved: --

' 

-· _,-<-f_,·�-/)'=/, .�_· ___ __ __ _ 
�.Samantha S.B. Hopkins 

Burrowing rodents are important ecosystem engineers in today's 

environments. The fossil record offers the opportunity to study patterns and processes 

in the evolution of the burrowing rodent guild through the Cenozoic. During the 

Miocene, this guild was very diverse, including numerous families ranging in ecology 

from semi-fossorial to subterranean. I use the emblematic family Mylagaulidae, a 

group of subterranean rodents, to test hypotheses of abiotic and biotic controls on 

mammalian evolution with the goal of better understanding turnover in the 

composition of the fossorial rodent guild in the Miocene of the Great Basin. I 

investigate the relative contributions of climate and biotic interactions to the 

purported intraguild competition between mylagaulids and geomyids with an 

emphasis on differences and similarities in patterns of occurrence and diet. Patterns of 

site occupancy and microwear suggest the importance of habitat changes in driving 

changes in guild composition among burrowers. 
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CHAPTER I 

INTRODUCTION: MYLAGAULID PALEOECOLOGY AND 

DRIVERS OF MAMMALIAN EVOLUTION 

1 

In light of the recent climate change, concerns have risen over declining diversity 

and changing ecologies of animals. Ongoing global warming and the resulting changes in 

habitat have consequences for the ecology and diversity of mammals (e.g., Root et al. 

2003 , Parmesan and Yohe 2003 , Pounds et al. 1 999) and in particular for small mammals 

(e.g. ,  Myers et al. 2009). Small mammals (mammals weighing less than 5 kilograms,) are 

important members of modem mammalian communities. Rodents, in particular, represent 

about 40% of modem mammalian faunas and their diverse ecologies often make them 

keystone species in communities (Brown and Beske 1 990, Merritt 20 1 0, Kay and 

Hoekstra 2008). Beavers are very famous for their logging and damming behavior 

(Jenkins and Busher 1 979, Nolet et al. 1 994, Hillman 1 998) and burrowing animals 

greatly impact the soils, plants, and other animals in their environments (Reichman and 

Seabloom 2002, Reichman and Jarvis 1 989, Cameron 2000) . The effects of current shifts 

in habitats, extirpations, and global variations in temperature, precipitation, or seasonality 

on the diversity and ecology of these ecosystem engineers are critical to our 

understanding of future changes in mammalian communities. The fossil record is critical 



to understanding past patterns in mammalian evolution and extinctions and to avoiding 

future extinctions (Hadly 2003 , Hadly and Barnosky 2009, Barnosky et al . 2003 , 

Barnosky and Bell 2003 ) .  The study of the taxonomic succession of fossorial rodents in 

2 

the late Cenozoic of North America has been the subject of much study (e.g. ,  Samuels and 

Van Valkenburgh 2009, Hopkins 2007b) and has recently been stimulated by the interest 

in better understanding the family Mylagaulidae (Hopkins 2005,  Hopkins 2008a, Korth 

1 999, Korth 2000). This family of subterranean rodents is abundant in the terrestrial 

Miocene of North Americaand is characterized by peculiar cranial and dental 

morphology. Those particularities have long made this group of rodents an emblematic 

member of Miocene faunas (e.g., Cope 1 88 1  a, Cope 1 88 1  b, Riggs 1 899). The mylagaulid 

fossil record in the Great Basin is very rich and ranges from the Hemingfordian to the 

Hemphillian (Shotwell, 1 95 8a, Korth 1 999). Here I review the systematics of the 

Mylagaulidae in order to use them as a case study in understanding the relative 

contributions of climate and biotic interactions to the purported intraguild competition 

between mylagaulids and geomyids (Baskin 1 980). Indeed, while several authors (Baskin 

1 980; Hopkins 2005,  2007; Samuels and Van Valkenburgh 2009) have suggested various 

processes may drive the changes in diversity of mylagaulids and other fossorial rodent 

groups, none has formally investigated the competitive hypothesis of mylagaulids and 

geomyids. The revised systematics provides a framework for a paleoecological analysis of 

the changes in the fossorial rodent guild in the Miocene of the Great Basin dominated by 

the mylagaulids. In the third chapter of this Thesis, I investigate patterns of occurrence of 
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mylagaulids, and their purported competitors, the geomyids, as well as summarize and 

build upon the paleoenvironmental data for southeastern Oregon and northwestern 

Nevada, geographical focus of the study. In the fourth chapter of this Thesis, I use 

microwear analysis to constrain the diet of fossil burrowing rodents to test the hypotheses 

that the distribution of rodents over the landscape might be a result of the dietary needs of 

mylagaulids and geomyids. 

The integration of microwear analysis and faunal analysis in studying the 

mylagaulid fauna from the northern Great Basin may provide clues in the patterns of 

burrowing mammal evolution and the processes that drive them. The focus of this thesis is 

on the evolutionary ecology of the Mylagaulidae and, in particular, their use of the 

landscape in relation to other members of the community, global climate changes, and 

environmental variations, as well as their diet through time, space, and across taxa. The 

insight gained from such study can offer a snapshot of the future of the burrowing rodent 

guild; 
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CHAPTER II 

INTRASPECIFIC VERSUS INTERSPECIFIC VARIATION IN 

MIOCENE GREAT BASIN MYLAGAULIDS: IMPLICATIONS 

FOR SYSTEMATICS AND EVOLUTIONARY HISTORY 

INTRODUCTION 

The family Mylagaulidae is an extinct clade of North American burrowing rodents 

whose peculiar tooth morphology has made it an iconic member of Miocene faunas. It 

includes a wide variety of species of large fossorial animals, including the unusual horned 

burrower Ceratogaulus (Matthew, 1 902). Since Cope ( 1 878) named the first two species 

within the genus Mylagaulus, numerous discoveries have added to our understanding of 

the diversity of the mylagaulid family (e.g., Douglass 1 903 ; Matthew 1 902; Gidley 1 907; 

Matthew 1 924; Hibbard and Phillis 1 945 ;  Korth 1 999, 2000). As a consequence, 

extensive taxonomic problems have arisen; only recently have revisions (i .e. Korth 2000, 

Hopkins 2008a) begun to address the systematics of the whole family. In particular, 

numerous specimens had been referred to the genus Mylagaulus. This genus was 
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described on the basis of inadequate type specimens which prevents confident assignment 

to this taxon. Korth (2000) addressed this problem in Nebraska in his reexamination of the 

northern Great Plains mylagaulids. Korth ( 1 999) made an effort to update the systematics 

of the Mylagaulidae in the Great Basin; however, he had at his disposal only a l imited 

sample consisting primarily of previously described specimens. New unpublished 

material primarily from the Barstovian and Clarendonian North American Land Mammal 

Ages (NALMAs) enables systematic description of additional Great Basin mylagaulids 

beyond those revised by Korth. 

Ontogeny is a critical issue in mylagaulid systematics because these rodents 

exhibit a hypsodont dentition worn down throughout an individual ' s  life .  As a 

consequence, there appears to be great variation in occlusal morphology of the teeth 

because of the different ages of individuals at time of death. Most of the fossil record of 

the Mylagaulidae consists of dental remains (Hopkins 2008a), and, as a result, teeth are 

critical to systematic and phylogenetic understanding of this family of rodents . In addition 

to wear-related variation within an individual 's  lifetime, the expected non-wear-related 

intraspecific variation in mylagaulids has been poorly documented, creating challenges in 

the effort to diagnose species. 

Here we present a study of intra- and interspecific variations in the Mylagaulidae 

of the Great Basin. Shotwell ( 1 95 8a) first summarized mylagaulid systematics in this 

region of the western United States. In his review, Shotwell interpreted most of the 

specimens as belonging to genera known from the Great Plains or left them taxonomically 
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unassigned. S ince then, the age control on the mylagaulid localities of the Great Basin has 

been greatly improved. Korth ( 1 999) reexamined some of Shotwell ' s  specimens and 

recognized two new species both from a new genus: Hesperogaulus gazini from the 

Barstovian and H. wilsoni from the Hemphillian NALMA of Oregon. We extended the 

geographic range of Korth's work to include localities from Oregon and Nevada, focusing 

primarily on the northern part of the Great Basin (Fig. 1 ). We consider mylagaulids from 

the late Hemingfordian (LHMF) to the early late Hemphillian (ELHP). A summary of the 

Formations and Faunas included in this study is provided in Table 1 .  

In addition, we also consider the odd assemblage of the Warm Springs Fauna 

(Dingus 1 990). This fauna includes mylagaulid specimens surprisingly more derived than 

expected this early in the evolution of the Mylagaulidae. Woodbume and Robinson 

( 1 977) and Dingus ( 1 990) have discussed this peculiar mammal fauna and diverge in their 

interpretation of its age, and its relationship to other units of the Basin. Indeed, 

Woodbume and Dingus ( 1 977) interpreted this fauna as Late Hemingfordian. Tedford et 

al . (2004) prefer an early Hemingfordian interpretation (EHMF). Later work considering 

al l members of this fauna will shed light on the exact affinities of the mammalian fauna 

from Warm Springs. 
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FIGURE 1 :  Map of the area considered in this study with the localities and North 
American Land Mammal Ages. 
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TABLE 1 :  Constraints on the ages of Great Basin formations and faunas. Data are from 
Tedford et al . 2004, Smith 1 986, Carrasco et al . 2005 .  Ages in Ma. Faunas in parentheses. 
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Max 
1 6.60 1 5.90 1 5 .90 1 5.90 1 5.77 1 5.90 1 1 .7  1 0  1 0.0 8.00 7.50 6.70 6.70 

Age 

Mean 
1 6.55 1 5.54 

Age 
1 5 .35 1 5.35 1 5.29 1 5.70 1 1 .35 9 9.7 7.75 7.30 5.90 6.30 

Min 
1 6.50 1 5. 1 8  1 4.80 1 4.80 1 4.80 1 5.80 1 1 .00 9.5 9.4 7.50 7. 1 0  6.30 5.90 

Age 

+I- 0.05 0.36 0.55 0.55 0.48 0. 1 0  0.35 0.5 0.3 0.25 0.20 0.30 0.40 

Nevertheless, the mylagaulid specimens from these localities are relevant to 

understanding late promylagaulines and mesogaulines and the evolution of early 

mylagaulines in the Great Basin. Understanding the mylagaulids from the Great Basin is 

critical to better comprehend the evolutionary history of the family as a whole. In 
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addition, mylagaulids are fossorial rodents and as such act as ecosystem engineers; this 

study will thus facilitate future paleoecological studies and analyses of community 

structure. The rich mylagaulid fossil record of the Great Basin is typical of the family : 

cranial material is rare, dental remains are common, and there are few, sparse, isolated 

postcranial elements often without associated dental material . The dental morphology of 

mylagaulids is unusual because the tooth row is characterized by an enlarged fourth 

premolar that dominates the adult dentition. Juvenile specimens retain the first molar 

when the adult P4 first erupts, but as the P4 occlusal surface erodes, it becomes larger 

toward the root, progressively driving out the first and sometimes even the second molars 

in the toothrows of older adult individuals .  Thus, the typical dental formula for a juvenile 

individual is 1 1 1 , 0/0, 1 1 1 ,  3/3 ; that of adults is 1 1 1 , 0/0, 1 1 1 , 2/2. The premolars in 

particular are high-crowned, deeply rooted in the jaws, and are worn down throughout the 

life of the individual, apparently from an abrasive diet and possibly the exogenous grit 

associated with burrowing. The cusps of unworn teeth become blunt and wear away, 

leaving lakes of enamel (i .e. fossettes on the upper teeth, fossetids on lower ones) 

surrounded by exposed dentine on the occlusal surface of the tooth row. The changes in 

morphology of those lakes with wear have previously been discussed in a limited sample 

of Umbogaulus monodon (McGrew 1 94 1 )  and in Mesogaulinae (Black and Wood 1 956) 

but never between multiple species of derived mylagaulids. We offer new insights into 

ontogenetic and phylogenetic changes in occlusal morphology in Mylagaulinae, a 

subfamily of derived mylagaulids. 
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The rich fossil record of the Great Basin offers large enough sample sizes of 

isolated premolars to investigate changes in occlusal morphology within and between 

species, thus allowing us to revisit the species diversity of Mylagaulidae in the Miocene 

of the Great Basin. We describe a new species in the genus Hesperogaulus and a new 

occurrence of Alphagaulus vetus (Matthew 1 924) in addition to the previously described 

H. gazini, and H. wilsoni (Korth 1 999). We also discuss new rare and large mylagaulid 

specimens that exhibit complex occlusal morphologies . 

Institutional abbreviations 

AMNH 

CM 

F :AM 

FMNH 

JODA 

LACM 

MCZ 

UCMP 

UOMNH 

American Museum ofNatural History, New York, NY 

Carnegie Museum, Pittsburgh, P A 

Frick Collection, American Museum ofNatural History, New York, NY 

Field Museum, Chicago, IL 

John Day Fossil Beds National Monument, Dayville, OR 

Los Angeles County Museum, Los Angeles, CA 

Museum of Comparative Zoology, Harvard University, MA 

University of California Museum of Paleontology, Berkeley, CA 

University of Oregon Museum of Natural and Cultural History Condon 

Fossil Collection, Eugene, OR. 

YPM Yale Peabody Museum, New Haven, CT 
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MATERIAL AND METHODS 

The material described here consists of numerous specimens from Nevada and 

Oregon ranging in age from 1 8  to 6 Ma. They are compared with specimens from the 

published l iterature (Korth 1 999, 2000), two juvenile (UWBM 59077 and UWBM 54683) 

and one adult (UWBM 32664) specimen of Alphagaulus pristinus (Calede and Hopkins 

unpubl. data), adult and juvenile specimens of Aplodontia rufa (UOMNH R-8568 and 

UOMNH R-8453 ,  respectively) from the University of Oregon Museum of Natural and 

Cultural History collections. A. rufa was chosen because it is the closest l iving relative of 

mylagaulids in addition to exhibiting adaptations to burrowing and hypsodont teeth 

(Hopkins 2008a). A summary of the newly established species ranges are presented in 

Fig. 2 .  
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North American Land Mammal Ages Northern Great Basin 

Northwestern Nevada Eastern Oregon 
LLHP Hesperogaufus wilson! 
ELHP I Hemphillian 
LEHP Hesperogaulus shotwelli I 
EEHP 

LCLA 

Clarendon ian MCLA Hesperogaulus sp. A 

ECLA 

Barstovian 
LBAR 

Hesperogaufus gazini 

EBAR I 
LHMF 

Hemingfordian 
EHMF Alphagaufus vetus 

FIGURE 2: Revised range of the mylagaulid species present in the Great B asin. 
Stratigraphy after Tedford et al. 2004. Abbreviations: EHMF, Early Hemingfordian; 
LHMF, Late Hemingfordian; EBAR, Early Barstovian; LBAR, Late Barstovian; EC.LA, 
Early Clarendonian; MCLA, Middle Clarendonian; LCLA, Late Clarendonian; EEHP, 
Early early Hemphillian; LEHP, Late early Hemphillian; ELHP, Early Late Hemphillian; 
LLHP, Late late Hemphillian. 

The taxonomic and phylogenetic framework of this study is provided by Hopkins 

(2008a), Calede and Hopkins (unpubl .  data), and Korth ( 1 999, 2000). We coded and 

added a newly described species of the genus Hesperogaulus to the revised character 

matrix of Calede and Hopkins (unpubl. data) and recodedAlphagaulus vetus, H. gazini, 

and H. wilsoni. All described mylagaulid species except Mesogaulus ballensis (Riggs 

1 899), which is known only from a specimen with teeth too worn to code most of the 

characters, are included as Operational Taxonomic Units (OTUs), in addition to the new 
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material described here. The character matrix for this analysis is detailed in Appendix A. 

The character matrix was constructed in Mesquite 2. 72 (Maddison and Maddison 2002) . 

The phylogeny was analyzed in PAUP 4.0b 1 0  (Swofford 2003) using the semi-ordered 

character configuration of Hopkins (2008a). Searches were run using stepwise addition of 

taxa and maximum parsimony as the criterion for tree selection, over 1 000 random 

addition replicates. Meniscomys uhtoffi and Aplodontia rufa were used as outgroups. The 

measurements mentioned in this paper are either drawn from the literature or were taken 

on the specimens using Mitutoyo Absolute Digimatic CD-6"C calipers. The nomenclature 

used follows Wahlert ( 1 974) for skull terminology and cranial foramina. The terminology 

for dentition follows Shotwell ( 1 958a) and Hopkins (2008a) .  It is worth noting that the 

parafossette of Korth ( 1 999, 2000) is equivalent to the anterofossette of Shotwell ( 1 958a) .  

A detailed summary of the dental terminology is provided in Fig .  3 .  The occlusal surfaces 

of the teeth were digitized using a LEICA MZ 95 stereomicroscope. The variation in lakes 

across individuals and species were analyzed by focusing on the homologies of the 

fossettes and fossettids. I recognized and coded the lakes according to their affinity. Lakes 

that split with ontogeny are thus recognized as having a similar origin. Differences across 

species and within taxa can therefore be recognized and form the basis for the systematics 

presented in this paper. 
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LABIAL 

Parafossette Metacone 
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FIGURE 3 :  Summary of the dental morphology of mylagaulids (redrafted and modified 
from Hopkins 2008a) .  A. P4 of a mylagaulid (Alphagaulus vetus) ;  B .  p4 of a Mylagaulid 
(Alphagaulus vetus). 
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SYSTEMATIC PALEONTOLOGY 

MAMMALIA Linnaeus, 1 785 

RODENTIA Bowdich, 182 1  

APLODONTOIDEA Matthew, 1 9 1 0  

MYLAGAULIDAE Cope, 188 1  

MESOGAULINAE Korth 2000 

MYLAGA ULODON ANGULA TUS (Sinclair, 1 903) 

Fig. 4 

Synonymy: Mylagaulodon angulatus Sinclair, 1 903 

Mylagaulodon cf. angulatus MacDonald, 1 963 

Mylagaulodon cf. angulatus MacDonald, 1 970 

Mylagaulodon cf. angulatus McGrew, 1 94 1  

Mylagaulodon angulatus Shotwell, 1 958a 

Type Specimen: UCMP 1 652,  partial skull with right incisor, P3-P4, left incisor, P3 

1 5  

(Sinclair, 1 903 : fig. 1 )  from John Day Formation, Oregon (UCMP 863, Black Bow Hill). 

. 'l 
,, 
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Referred Material: From Rosebud Beds by McGrew, 1 94 1 :  FMNH P26266, isolated P4. 

From John Day Fm. (JDNM 1 50, Warm Springs) : JODA 4666, isolated p4. From John 

Day Formation (V76 1 24, Drees 2): UCMP 76887, partial dentary with p4-m3 . 

FIGURE 4 :  Occlusal morphology of the p4 of Mylagaulodon angulatus from the John 
Day Formation of Oregon. Scale bar equals 0 .5  em. 

Distribution: Late early Arikareean of Rosebud Beds of South Dakota (McGrew 1 94 1 ,  

MacDonald 1 963,  1 970) and Late early to Early late Arikareean of the John Day Fm., 

Oregon (Sinclair 1 903, Shotwell 1 958a, this paper). 

l 
,; 
T 
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Discussion: This taxon is known from rare, very incomplete material . The specimen from 

Warm Springs, an isolated p4, is identical in morphology to the specimen from Drees 2 .  

MYLAGAULINAE Cope, 1 88 1  

ALPHA GA ULUS VETUS (Matthew, 1 924) 

Figs. 5 ,6,7 

Synonymy: Mylagaulus pristinus (in part) Kellogg, 1 9 1 0  

Mylagaulus vetus Matthew, 1 924 

Mesogaulus vetus Cook and Gregory, 1 94 1  

Alphagaulus vetus Korth, 2000 

Mylagaulus sp. (in part) Downs 1 956  

Type Specimen: AMNH 1 8905 , right mandible with incisor and p4, m2 (Sutton and Korth, 

1 995 :fig. 3H) from Thompson Quarry, Sheep Creek Formation, Nebraska. 

Referred Material: From type locality (Thompson Quarry, Sheep Creek Formation) by 

Korth (2000): AMNH 20504, 20507, 90734; F :AM 655 1 5 ,  655 1 7 - 65520, 65523,  65526, 

65527. From Observation Quarry by Korth (2000) : F :AM 65532,  65534 - 65536, 65538  

- 65 5 5 1 ,  65556 ,  65558 ,  655 59,  6556 1 .  From Split Rock Local Fauna by Munthe ( 1 988): 

,, 
·I• 

II: j 
I 
i 
! 
I 
j 
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UCMP 1 2 1 693 ,  an almost complete skull and mandibles of an adult specimen (V69 1 90, 

Third Bench); UCMP 1 2 1 694, a partial adult skull (V77 1 44, Split Rock Microsite); 

UCMP 1 2 1 679, an isolated P4 (V69 1 90, Third Bench); CM 1 4268 and CM 1 4269, 

isolated M l ;  UCMP 1 2 1 680, UCMP 1 2 1 685 ,  isolated M2 (V69 1 9 1 ,  Second Bench); 

UCMP 1 2 1 688,  UCMP 1 2 1 689, isolated M2 (V69 1 92, First Bench); CM 1 3 998, isolated 

dp4; UCMP 1 2 1 686, isolated dp4 (V69 1 9 1 ,  Second Bench); UCMP 1 2 1 690, isolated dp4 

(V69 1 92, First Bench); MCZ 73 1 8, CM 1 4700, isolated p4; UCMP 1 2 1 68 1 ,  isolated p4 

(V69 1 90, Third Bench); MCZ 6224, isolated m 1 ; UCMP 1 2 1 692, isolated m 1  (V77 1 47, 

Split Rock Eagle' s  Nest); CM 1 4695, CM 1 5 825,  isolated m2; UCMP 1 2 1 682, isolated 

m2 (V69 1 90, Third Bench); UCMP 1 2 1 687, isolated m2 (V69 1 9 1 ,  Second Bench); 

UCMP 1 2 1 69 1 ,  isolated m3 (V77 1 44, Split Rock Microsite) . From Virgin Valley Fm. : 

UCMP 1 1 540, UCMP 1 1 683 ,  UCMP 1 1 684, UCMP 1 1 843 , UCMP 40988, UCMP 

1 3024 1 ,  isolated p4 (UCMP 1 090, Virgin Valley 9); UCMP 1 2580, isolated p4 (UCMP 

1 095 ,  Virgin Valley 1 4);  UCMP 1 30245,  isolated p4 (V73056, Prospect 1 ) ;  UCMP 

1 52493 , UCMP 1 52495 , isolated p4 (V90052, Gooch Table NE 3);  UCMP 1 30239, 

UCMP 1 30240, UCMP 1 30242, UCMP 40955 ,  UCMP 40993 ,  isolated P4 (UCMP 1 090, 

Virgin Valley 9); UCMP 1 30243 , isolated P4 (V73056, Prospect 3); UCMP 1 30244, 

UCMP 1 30246 - 1 30248, isolated P4 (V73056, Prospect 1 ) ;  UCMP 1 1 303, partial 

isolated P4 (UCMP 1 095 ,  Virgin Valley 1 4); UCMP 1 3025 1 ,  partial isolated P4 (V73056, 

Prospect 1 ) ; UCMP 1 30249, partial isolated 4th premolars with associated partial distal 

humerus (V73056,  Prospect 1 ) ; UCMP 1 30250, isolated partial right P4 with associated 
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caudal vertebra, partial distal left humerus, and a partial edentulous maxilla (V73056, 

Prospect 1 ) ;  UCMP 1 30252,  isolated M3 (V73056, Prospect 1 ) ;  UCMP 1 1 686, isolated 

M3 (UCMP 1 090, Virgin Valley 9). From Massacre Lake Local Fauna (RV7043 , 

Massacre Lake 1 ) :  UCMP 3 1 5432, UCMP 3 1 5433 ,  UCMP 3 1 5686, UCMP 3 1 60 1 0, 

UCMP 3 1 643 1 ,  UCMP 3 1 6433 - 3 1 643 5 ,  isolated p4; UCMP 3 1 543 1 ,  UCMP 3 1 5685 ,  

UCMP 3 1 5988,  UCMP 3 1 5989, UCMP 3 1 6007 - 3 1 6009, UCMP 3 1 6430, UCMP 

3 1 6432, UCMP 3 1 9237, isolated P4; UCMP 3 1 8368, partial right mandible fragment with 

m2; UCMP 3 1 6072, partial right mandible with incisor fragment; UCMP 3 1 6436, partial 

right mandible with incisor and p4; UCMP 3 1 643 8,  partial right mandible with dp4, m 1 -

m3 ; UCMP 3 1 8367, a partial left mandible with dp4, m 1 -m2; UCMP 3 1 5684, a partial 

skull with left P4, M2-M3 and right P4, M2; UCMP 3 1 6437, partial skull of a juvenile 

with left and right P4, M l -M2 and left M3 . From Massacre Lake Local Fauna (V6 1 6 1 ,  

Massacre Lake 2) :  UCMP 6 1 709, a partial left mandible with p4, m2-m3 ; UCMP 6 1 7 1 0, 

a partial skull of a juvenile with left and right P4, M 1 -M3 . From Mascall Fm. (Crooked 

River) : UOMNH F-1 6722, UOMNH F-1 6898, isolated p4. From Mascall Fm. : YPM 

1 43 1 1 , isolated P4; YPM 1 43 1 0, isolated p4. 
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F. 

@ 

FIGURE 5 :  Occlusal morphology of the 4th premolars of Alphagaulus vetus. Scale bar 
equals 1 em. A. UCMP 6 1 709, left p4 (mirrored); B. UCMP 3 1 6433 ,  left p4 (mirrored); 
C. UCMP 3 1 8367 left p4 (mirrored), D.  UCMP 3 1 6434, left p4 (mirrored); E. UCMP 
3 1 643 1 ,  left p4 (mirrored); F. UCMP 3 1 1 843 , left p4 (mirrored); G. UCMP 1 1 540, left p4 
(mirrored); H. UCMP 1 1 684, left p4 (mirrored); I. UCMP 3 1 5432, left p4 (mirrored); J. 
UCMP 3 1 6435 ,  right p4; K. 3 1 60 1 0, right p4; L. UCMP 3 1 5686, right p4; M. UCMP 
3 1 6430, right p4; N. UCMP 3 1 543 1 ,  left P4 (mirrored); 0. UCMP 1 30244, left P4 
(mirrored); P. UCMP 3 1 6008, left P4 (mirrored); Q. UCMP 1 52495 ,  left P4 (mirrored); R. 
UCMP 3 1 6007, right P4; S .  UCMP 3 1 6437, right P4; T. 1 30247, right P4; U. UCMP 
3 1 9237,  right P4; V. UCMP 1 5684, right P4; W. UCMP 1 30240, right P4. 
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Distribution: Late Hemingfordian of Sheep Creek Formation of Nebraska (Sutton and 

Korth 1 995 ,  Korth 2000), Split Rock Fauna of Wyoming (Munthe 1 988), and Massacre 

Lake Fauna of Nevada (this paper) . Early Barstovian of Sand Canyon Beds Formation 

(Observation Quarry) ofNebraska (Korth 2000), Virgin Valley Formation ofNevada, and 

Mascall Formation of Oregon (this paper). 

Description of the postcranial elements: Postcranial elements associated to dental material 

confidently identifiable as Alphagaulus vetus are shown in Fig. 7. The single anterior 

caudal vertebra of A. vetus belongs to specimen UCMP 1 30250 from the Virgin Valley 

Formation. It is antero-posteriorly elongated, more so than in A. rufa (even though there is 

little body size difference between the two species and the two specimens are 

juveniles) .The zygapophyses are small. The transverse processes are broadened 

posteriorly. The epiphyses of the vertebra are missing from this juvenile specimen. The 

neural spine is very small .  

The partial distal left humerus of UCMP 1 30250 only includes the distalmost part 

of the bone where it is enlarged. Relative to length, the distal humerus of A. vetus is 

broader than that of A. rufa or even than that of A. pristinus. The supracondyloid foramen 

is preserved enough to be described. It is ovoid and quite unlike that of A. rufa which is 

more rounded. It is quite large unlike that of P. laevis (Fagan 1 960) or that of A. pristinus. 

The medial epicondyle bends posteriorly, consistently with P. laevis or A. pristinus 

(Fagan 1 960). The fossa posterior to the medial epicondyle is comparable in depth to that 
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of A. pristinus and deeper than that of A. rufa. This seems to be a characteristic of 

Mylagaulidae because it also occurs in P. laevis (Fagan 1 960). The capitulum is slightly 

more broadened than the trochlea, which is in turn sharper and more elongated 

anteroposteriorly. The articular surface of A. vetus is, in this aspect, larger than that of A. 

pristinus. The olecranon fossa is shallow, as in other mylagaulids (Fagan 1 960). This 

fossa is also similar to A. pristinus in that it is narrower than the capitulum and trochlea 

together. 

FIGURE 6 :  Cranial morphology of UCMP 3 1 6437, the skull of a juvenile Alphagaulus 
vetus. Scale bar equals 1 em. 
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FIGURE 7: Postcranial morphology of UCMP 1 30250. A. partial distal humerus; B .  
caudal vertebra. Scale bar equals 1 em. 

Discussion: The genus Alphagaulus (Korth 2000) is a critical genus when trying to 
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understand the evolutionary history of Mylagaulidae. This paraphyletic taxon at the base 

of the Mylagaulinae sheds light on the early history of the family Mylagaulidae. 

Alphagaulus vetus is particularly important, as it is represented by a more complete and 

geographically widespread fossil record than any other species of the genus Alphagaulus 

(Korth 2000) . A. vetus is present in three different biogeographic regions (Nebraska: 

Northern Great Plains; Wyoming: Northern Rockies; Nevada: Columbia Plateau; 

Barnosky et al . 2005) and two NALMAs (Hemingfordian and Barstovian). Moreover, all 

stages of ontogeny are represented from juveniles to adults. The specimens from Crooked 

River (Mascall Formation) constitute the first record of Alphagaulus vetus from Oregon. 

Fig. 5 shows the occlusal surface of the upper and lower fourth premolars of 

Nevadan specimens. There are five to six fossetids on the premolars, with the exception of 

i ;i , I� 
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UCMP 1 6435 on which there are seven fossettids . Korth (2000) reported up to nine 

fossettids in Nebraskan specimens. The fossettids are not oriented antero-posteriorly but 

obliquely running from the posterolingual comer of the tooth to the anterolabial one. 

There are two fossettids in the anterolingual comer of the tooth (as noted by Korth 2000), 

a third one in the posterolabial comer, and two others running in between them. The 

fossetids that splitt include the posterolabial one (metafossettid, Shotwell 1 95 8a) and the 

mesofossettid (Shotwell 1 958a) .  Often, the mesofossettid and more occasionally the 

metafossettid and hypofossettid run more bucco-lingually in young individuals (e.g. , 

UCMP 3 1 8367, UCMP 3 1 5686) .The upper premolars exhibit a similar number of lakes 

(between four and six). Unlike the specimens from Nebraska that mostly show six or 

seven fossettes, most of the Nevadan specimens exhibit five lakes. As mentioned by 

Korth (2000) in the Great Plains specimens, the anterofossette is the largest fossette and 

remains branched very late in wear. The fossettes are more or less anteroposteriorly 

oriented. In late stages of wear, the anterofossette is the only lake to occupy the anterior 

lobe of the P4 and is still forked (e.g., UCMP 1 6007). In the DP4, the anterolingual 

fossette runs more bucco-lingually (e.g., UCMP 3 1 6437). 

Comparisons of measurements between Nebraskan specimens and those of the 

Great Plains reported by Korth (2000) show very few differences (see Table 2). The width 

of the teeth is greater relative to the length in the Nevadan specimens than it is in those of 

the Great Plains or Rockies. The difference is within the published ranges for the species. 
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A juvenile specimen from the Massacre Lake Local Fauna (UCMP 3 1 643 7 ,  fig. 6) 

provides information on changes within A. vetus through ontogeny. 

TABLE 2: Dental measurements of Alphagaulus vetus in the Great Plains, Rocky 
Mountains, and the Great Basin faunal provinces. Data for the Great Plains are from 
Korth (2000), Rockies data from Munthe ( 1 988) .  No ranges were given by Munthe 
( 1 988). Only adults are included in the Virgin Valley and Thousand Creek samples. 
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Measurement Sample Size Range Mean Std. Dev. 

Split Rock, WY (Late Hemingfordian) 
P4 Length 3 NA 7.4 0.4 

Width 3 NA 5 .7  0.3 
p4 Length 4 NA 8.2 1 . 1  

Width 4 NA 4 .3  0 .3  

Massacre lake, NV (Late Hemingfordian) 
P4 Length 7 5 . 59 - 8.6 7 .86 0,7 

Width 7 5 . 1  - 7.22 6.025 0.9 
p4 Length 4 6.42 - 8 .85  7 .53  0 .85  

Width 4 3 . 5 5 - 4.8  4 .26 0.4 
Sheep Creek, NE (Late Hemingfordian) 

P4 Length 4 7 . 5 - 8.0 7 .8  0.2 
Width 5 5 .0 - 5 .6  5 .2 0.2 

p4 Length 1 2  7 .3 - 9.3 8 . 1 0 .7 
Width 1 2  4 . 1 - 5 .2 4 .6 0.3 

Observation Quarry, NE (Early Barstovian) 
P4 Length 1 5  7 .3 - 9.0 8 .0 0 .5  

Width 1 5  4 .7 - 6. 1  4.7 0.4 
p4 Length 3 1  6 .9 - 9.3 8 .4 0 .6 

Width 3 1  3 .3 - 5 . 6  4.4 0 .5 
Virgin Valley, NV (Early Barstovian) 

P4 Length 6 7 .2 1 - 8.45 7 .57  0 .5 1 
Width 6 4.77 - 5 .6  5 .23 0.3 

p4 Length 5 6.45 - 9.48 7.87 1 .3 
Width 5 3 . 83 - 5 .05 4 .39 0 .5  
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This individual retains a juvenile dentition with the remaining deciduous P3 and P4, the 

retained M 1 ,  the adult M2, and the erupting M3 .  The skull is poorly sutured. As in A.  

pristinus and H. gazini (see discussion of H. gazini in  this paper), there are a number of 

cranial features that change drastically between juveniles and adults . The zygomatic arch 

of UCMP 3 1 6437 is straight and gracile. It has been crushed taphonomically and thus 

brought closer to the midline of the skull. However, it could not have been as broad and as 

widely curving as it is in adult specimens prior to crushing. The infraorbital foramen is 

small, the partial occipital plate available for description is quite straight and doesn't slope 

posteroventrally as in adults (see Munthe 1 988,  fig. 8). The parasagittal and occipital 

crests, which differ importantly among early mylagaulines (Hopkins 2008a) are missing 

and therefore cannot be described. 

HESPEROGA ULUS GAZINI (Korth, 1 999) 

Figs. 8 ,  9 

Synonymy: Mylagaulus cf. laevis Gazin 1 932 .  

Mylagaulus cf. laevis Scharf 1 93 5 .  

Mylagaulus cf. laevis Wallace 1 946. 

Mylagaulus sp. Downs (in part) 1 956  

Hesperogaulus gazini Korth 1 999 
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Type Specimen: LACM (CIT) 68,  skull with left P4, M2-M3 (Korth 1 999: figs 2 . 1 ,  2 .2) 

from Sucker Creek Formation of Oregon (Skull Springs) . 

Referred Material: From Skull Springs (Sucker Creek Formation) by Korth ( 1 999) : 

LACM (CIT) 69, LACM (CIT) 365 - 367, LACM 60 1 8, LACM 4987, partial skulls or 

upper dentitions; LACM (CIT) 70, LACM (CIT) 368,  LACM (CIT) 369, mandibles with 

dentition; LACM (CIT) 5 1 6 - 523,  isolated p4, LACM (CIT) 524 - 53 1 ,  isolated P4. 

From Beatty Buttes Fauna: UCMP 1 3033 1  (V84 1 06, Dog-Leg Ridge SE), UCMP 1 30335  

(V84 1 00, Breakfast Square Butte 2), UOMNH F-1 7650 (UO 24 1 8, Beatty Buttes), 

UOMNH F-2 1 9 1 1 (UO 24 1 8, Beatty Buttes), isolated P4; UOMNH F- 1 7665 (UO 24 1 8, 

Beatty Buttes), UOMNH F-2 1 930 (UO 24 1 8, Beatty Buttes), i solated p4, UOMNH F-

1 7666 (UO 24 1 8, Beatty Buttes), UCMP 1 88841 (V84 1 03 ,  Rattlesnake Butte (Pancake 

Butte) 2), partial isolated 4th premolars. From Mascall Fm. : JODA 3308, an almost 

complete skull with left partial P4 and complete M3 (V4827, Mascall 1 3) ;  JODA 2330, 

isolated M2 (JDNM 4, Mascall Formation General) .  From Simtustus Fm. :  JODA 8678, 

isolated P4 (Coburn Well). 
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A. 

B. 

c. 

D. 

E. 

FIGURE 8 :  Occlusal morphology of the 4th premolars of Hesperogaulus gazini. A. CIT 
52 1 ,  left p4 (mirrored); B. CIT 524, right P4; C. CIT 525,  right P4; D. CIT 527, right P4; 
E. JODA 3308, left P4 (mirrored) . Scale bar equals 1 em. 
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Distribution: Early Barstovian from the Sucker Creek (Korth 1 999), Mascall, and 

Simtustus Formations, Beatty Buttes Fauna of Oregon (this paper) . 

Discussion: Korth ( 1 999) described the species Hesperogaulus gazini with material 

restricted to the Sucker Creek Formation of Oregon. We present additional specimens 

from the Mascall, and Simtustus Formations as well as the Beatty Buttes Fauna of 

Oregon. We find that H. gazini is still restricted to the Early Barstovian. A single P4 from 

the Simtustus Formation is the first mylagaulid specimen to be published from this 

Miocene unit of central Oregon. This unit is stratigraphically equivalent to the better 

known Mascall Formation (Downs 1 956) where other H. gazini specimens have been 

found. The Simtustus Formation is composed of volcaniclastic sandstones and mudstones 

interbedded with volcanic (tuff, lava flows) of the Columbia River Basalt Group. A date 

of 1 5 .7 ±0. 1  Ma (Smith 1 986) is consistent with the stratigraphic correlations with the rest 

of the well-known central Oregon units. The isolated tooth from the Simtustus is that of 

an adult specimen at a mid-wear stage. The morphology of the lakes is consistent with the 

rather short bucco-lingually extended fossettes of the specimens described by Korth 

( 1 999, fig. 1 ) .  Similarly, in concordance with the published specimens, the lakes of the 

Simtustus tooth are anteroposteriorly oriented. The only major difference is in the shape 

and size of the posterolabial fossette. Unlike the specimens previously described, but 

similar to numerous specimens described herein, there is an unnamed posterolabial-most 

lake (see Fig. 6). The specimens from the Mascall Fm. include an isolated M2 from the 
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Mascall Ranch locality and an almost complete skull from Coburn Well (Fig. 9) .  The 

skull, although lacking much of the dentition, is very similar in cranial morphology to the 

type specimen (LACM (CIT) 68) of the species. Numerous isolated P4 and p4 from the 

Beatty Buttes Fauna. complete the material now available for H. gazini. The specimens 

from Beatty Buttes represent juvenile individuals. We therefore have an ontogenic series 

available from juvenile and young adult specimens at Beatty Buttes to young adult in the 

Mascall Formation to adults in the Sucker Creek Fm. (Fig. 6). This ontogenic series 

indicates important changes in the shape and size of the fossettes in H. gazini through 

development. The changes are greater in the anteriormost fossette. The separation of the 

branches of the anterofossette, is not a consistent character between specimens of the 

species H. gazini. Korth ( 1 999) had noted some inconsistency and none of the additional 

specimens presented herein shed light on this issue. There is no evidence for a preferential 

separation of either branch of the anterofossette in the specimens observed in the JODA or 

LACM collections. Korth ( 1 999) suggested H. gazini might be subject to sexual 

dimorphism expressed by differences in size and muscle development. The cranial 

material presented here does not resolve this issue. It most closely resembles (Fig. 9) the 

type specimen LACM(CIT) 68 illustrated by Korth ( 1 999). There are now therefore two 

skulls for this morphotype of H. gazini versus one for the other morphotype (LACM 

4987). The skull from the Mascall Formation is slightly smaller than the type and exhibits 

bumps on the anterior end of the nasal bones (a part of the skull not preserved in the type 

specimen of H. gazini) that are similar in size and shape to those of H. wilsoni. These 
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bumps are also present in a third species of Hesperogaulus described later in this paper. 

The partial P4 available for description lacks the anterior part of the tooth but exhibits the 

two posteriormost lakes as well as the anterofossette and the anterobuccal lakes. The 

anterobuccal lake is unusually elongated anteroposteriorly, but the other lakes are 

consistent in morphology with those of the referred specimens of Korth ( 1 999). Although 

Gazin ( 1 932) provided a description of the type specimen, later completed by Korth 's  

description of the species ( 1 999), numerous features should be highlighted in reference to 

the new skull. The Mascall specimen differs from the type specimen in a few characters. 

The postorbital processes of the jugal and frontal are smaller in the Mas call specimen. 

The incisive foramina differ in shape between the two specimens with the Mascall skull 

exhibiting more fusiform and broader foramina. Finally, the infraorbital foramina are 

rounder in the Mascall specimen. In JODA 3308, the left foramen is essentially round, 

while the right one is oval with the long axis oriented dorsolaterally. The rest of the 

cranial morphology is consistent with the type where comparison is possible, although the 

two specimens are to some degree complementary in the areas of the skull that are 

preserved. The parietal region of JODA 3 308 is missing whereas the basicranium is better 

preserved than in the type specimen. The nasal-maxilla, and the premaxilla-maxilla 

sutures can be observed on JODA 3308 but cannot be seen on LACM (CIT) 68. The 

Mascall specimen might thus be a younger individual than the holotype; the differences 

between the two specimens may thus be ontogenic. Calede and Hopkins (unpubl. data) 

observed in Alphagaulus pristinus numerous characters that change throughout ontogeny 



32 

including the shape and size of the infraorbital foramen and zygomatic arch, the height of 

occipital and sagittal crests, and the size and position of the postorbital processes. The 

overall similarity in these cranial features between the two specimens of H. gazini 

examined and the fact that both specimens have a fully adult dentition (even though some 

teeth are missing from the JODA specimen) suggests that the JODA specimen is a young 

adult, not a juvenile. 

The pattern seen in H. gazini is similar to that described for A. pristinus. It is worth 

noting that the angle ofthe occipital plate mentioned by Gazin ( 1 932) and Korth ( 1 999) 

also changes throughout the development of an individual. Therefore, ontogeny needs to 

be accounted for before to use this character. The fact that early Barstovian specimens are 

smaller was already noted by Korth ( 1 999) and Shotwell ( 1 958a) concerning the 

specimens from Sucker Creek and Virgin Valley. On the basis of the more complete 

cranial material available to us, we cannot discriminate two different species and retain 
: r  

H.gazini as the lone taxon, contrary to the possibility suggested by Korth ( 1 999). 
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FIGURE 9 :  Cranial morphology of  Hesperogaulus gazini from the Mascall Formation 
(JODA 3308). A. Dorsal view; B .  Ventral View; C. Lateral View. Scale bar equals 1 ern. 



HESPEROGA ULUS SPECIES A (SP.NOV.) 

Figs. 1 0, 1 1 , 1 2  

Synonymy: Mylagaulus monodon (in part) Kellogg 1 9 1 0  

Mylagaulus sp. MacDonald 1 956 

Mylagaulus sp. (in part) . Shotwell 1 958a 

Mylagaulus sp. Hall 1 930  

Hesperogaulus sp. (in part) Korth 1 999 

Type Specimen: UCMP 320004, partial skull with left incisor, P4, M2-M3 and right 
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incisor, M2-M3, and associated mandibles with left and right incisors, P4, M2-M3 from 

RV-8000, Thousand Creek General, Thousand Creek Formation, Nevada. 

Referred Material: From Esmeralds Formation (V2804, Fish Lake Valley Fauna) by 

Korth ( 1 999): UCMP 29637, isolated p4. From Thousand Creek Fm. by Korth ( 1 999) : 

F :AM 6587 1 ,  FAM 65873,  F :AM 65874. From Truckee Fm. (V4845, Brady Pocket 1 ) :  

UCMP 3 8665, isolated p4; UCMP 1 52496, isolated P4. From Juntura Formation (Black 

Butte Fauna) : UOMNH F-5425 (UO 233 5), UOMNH F-5443 (UO 2334), UOMNH F-

5557 (UO 2344), UOMNH F-5558  (UO 2344), UOMNH F-5772 (UO 234 1 ), UOMNH F-

6273 (UO 2340), UOMNH F-1 0977 (UO 233 5), UOMNH F- 1 7508 (UO 2334), isolated 

P4; UOMNH F-577 1 (UO 234 1 ), isolated p4. From Drewsey Fm.:  UOMNH F-6 1 1 3 , 
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UOMNH F-6 1 1 5 , UOMNH F- 1 5697, isolated p4 (UO 2347, Otis Basin); UOMNH F-

1 569 1 ,  isolated P4 (UO 23 56, Stinking Water) . From Thousand Creek Fm. (UCMP 1 098, 

Thousand Creek 5) :  UCMP 1 1 878, isolated P4. 

Distribution: Middle Clarendon ian through Late Early Hemphillian of the Esmeralda 

(Korth 1 999, this paper), Truckee (this paper), and Thousand Creek Formations of 

Nevada (Korth 1 999, this paper); Juntura and Drewsey Formations of Oregon (this paper). 

Diagnosis: Species intermediate in size between H. gazini and H. wilsoni (upper tooth 

row length : 1 6 .86 mm, lower tooth row length: 1 6 .97 mm); six to nine fossettes on P4, 

more fossettes than in H. gazini, as many as in H. wilsoni; six to seven fossettids in p4, as 

many as in H. gazini; anterolingual and posterolabial fossettes split in H. species A unlike 

H. gazini, additional posterolingual fossette compared to H. gazini; shape of the outline of 

P4 intermediate between H. gazini and H. wilsoni; fossettids oriented obliquely unlike H. 

wilsoni but similar to H. gazini; Postorbital index (0.40) larger than in Hesperogaulus 

gazini or H. wilsoni (0 .3 1 -0 .35  and 0.22-0.25 respectively); largest infraorbital foramen of 

the genus (6 . 5  by 3 .95 mm). 
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A 

B 

c 

FIGURE 1 0 :  Cranial morphology of the type specimen of Hesperogaulus species A, 
UCMP 320004. Scale bar equals 1 em. A. Dorsal view; B. Ventral view; C.  Lateral view. 
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Description: The type specimen, UCMP 320004, of the species provides much 

information about the cranial and dental morphology of the species. The skull of 

Hesperogaulus species A is intermediate in depth and robustness between those of H. 

gazini and H. wilsoni (Fig. 1 0). The zygomatic arch is broken and mostly missing, but the 

zygomatic plate is very tall, taller than in H. gazini. The posterior part of the skull is 

missing. The maxillary-premaxillary suture begins at the posterior edge of the incisive 

foramina (as it does in most Aplodontidae). The diastema is long ( 1 7  mm, as in A. 

pristinus, Calede and Hopkins unpubl .  data), moreso than in H. gazini from the Mascall 

Formation ( 1 1 mm). The rostrum is composed a large premaxilla and a slightly smaller 

maxilla. The P4 is placed about 6 mm posterior to the premaxilla-maxilla suture which 

continues dorsally up the lateral sides of the rostrum as a highly convoluted suture. The 

nasals are broken off laterally, exposing the root of the incisor in the upper jaw. There is a 

small bump on the dorsal surface of the nasal bones similar to that found in the specimen 

of H. gazini from the Mascall Fm. Wahlert ( 1 974) noted that the interpremaxillary 

foramen is minute in derived mylagaulids; H. species A is no exception. The incisive 

foramina are about 8 mm long, close to half of the rostrum length. For comparison, they 

are only 5 mm long in A. pristinus that has a rostrum of similar length. There is no 

procumbency of the upper incisors. The anterior root of the zygomatic arch, the 

zygomatic plate, is thickened and almost as tall as the entire skull .  This is a feature 

common to mylagaulids (Hopkins 2006) . The dorsal edge of the zygomatic plate is 

thickened anteriorly and posteriorly above the foramen. It is high, extending from the 
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alveolus of the P4 to the dorsalmost surface o f  the frontal . I t  i s  about 1 7 . 5  mm in height as 

compared to about 1 3 . 3  mm in the Mascall H. gazini. The anteriormost part of the 

zygomatic arch just posterior to the zygomatic plate is thick, thicker than in H. gazini but 

thinner than in A. pristinus. It therefore seems that the zygomatic plate is greatly enlarged 

relative to the jugal in H. species A compared to other mylagaulids. The postorbital 

process of the jugal is missing; that of the frontal is rounded and lobate in form and quite 

prominent. The Postorbital Index (POI) of Korth (2000) of H. species A is larger' than 

those of H. gazini or H. wilsoni (0.40 versus 0.3 1 -0 .3 5 and 0.22-0.25 respectively, Korth, 

2000). It falls within the range of the genus Pterogaulus from the Great Plains. This is 

primarily due to the narrow width of the frontal posterior to the postorbital process 

(parameter C of the POI equation of Korth 2000). The outline of the orbit indicates a very 

small opening for the eye. The infraorbital foramen is ovoid. It runs from the dorsolateral 

end ofthe plate (where the curvature of the zygomatic arch initiates) towards the 

medioventral end of it, dorsolaterally to P4. The infraorbital foramen of H. species A is 

close in shape to that of Aplodontia. It is very large with a length of 6.5 mm and a width 

of 3 .95 mm. This is larger than for the H. gazini specimen from the Mascall Fm. whose 

very round infraorbital foramen is 4 .8  mm wide. This latter measurement is at the high 

end ofthe range given for mylagaulids by Wahlert ( 1 974), which ranges from 1 .9 to 4 .8  

mm. H. species A's  infraorbital foramen size is thus larger than the maximum of the 

published range. Because of the increased thickness of the zygomatic plate in 

mylagaulids, the infraorbital foramen appears to be positioned more dorsally than in 
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Aplodontia. The orbital region is well-preserved, but the bones of this area are fused as a 

consequence of the maturity of the specimen. Although the sutures cannot be 

distinguished, the foramina of the orbital area can. The optic foramen is very large for a 

mylagaulid, approaching the size of that of Aplodontia rufa (see Wahlert 1 974) . 

Nevertheless, A. rufa, and thus H. species A, have very small optic foramina relative to 

other rodents and can therefore be inferred to have very poor eyesight (Carraway and 

Verts 1 993 ,  Kay and Kirk 2000, see Hopkins 2005 for a discussion of the consequences of 

vision for behavior in mylagaulids). An interorbital foramen is also present immediately 

anterior to the optic foramen. This feature is also observed in Allomys and in Aplodontia, 

where there is a pit in front of the optic foramen where the rectus muscles of the eye 

originate (Wahlert 1 974) . The palate is strongly grooved as it is in A. pristinus, A. vetus, 

and other specimens of the genus Hesperogaulus (Korth 1 999, figure 2, 3) .  The grooves 

terminate in the single pair of posterior palatine foramina. As in other mylagaulids with 

increased hypsodonty (Calede and Hopkins unpubl .  data) and unlike in Meniscomys 

(Hopkins 2006), the maxilla is deep dorsal to the cheek teeth. The palate extends 

posteriorly down to the internal naris and terminates there, posterior.to M3 . The posterior 

maxillary foramen is missing due to taphonomic damage. Most of the basicranium is 

missing in this specimen but the pterygoid fossa and part of the pterygoid flanges are 

present. The pterygoid fossa is very deep, moreso than in A.  pristinus, more as in H. 

gazini from the Mascall Fmormation or the modern A. rufa. Only the anteriormost parts of 

the pterygoid flanges are present. They are very similar to those of H. gazini. The portion 
l 
I 
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of the dorsal surface of the skull available for description is very flat as in all mylagaulids. 

Both dentaries of UCMP 320004 are preserved. The dentaries are short but extremely 

robust (Fig. 1 1  ) .  

A 

B 

FIGURE 1 1 :  Mandibular morphology of the type specimen of Hesperogaulus species A, 
UCMP 320004. Scale bar equals 1 em. A. Dorsal (Occlusal) view; Lateral view. 
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They are very deep (i .e .  1 1 .5 mm at the diastema and 1 9 .5 mm at its deepest point 

underneath the greatly hypsodont p4) . This short, deep dentary is a common feature of 

mylagaulids . In addition, the lower jaw is also very wide in lateral dimension. In contrast 

with the members of the genus Alphagaulus such as A. pristinus, in which the short, deep 

lower jaw is gracile (Calede and Hopkins unpubl .  data), the lower jaw of H. species A is 

thickened mediolaterally. This is emphasized by the bulge on the lateral surface of the 

lower jaw caused by the roots of p4. The tips of the lower incisors project slightly 

anteriorly, as in A. pristinus (Calede and Hopkins unpubl .  data) or A. vetus. The root of 

the incisors can be observed curving below and around the cheek teeth to a point 

posterolateral to the m3 , forming a half-circle. The diastema is long (about 1 0.2 mm). The 

mandibular symphysis is very long and covers the whole depth of the mandible. The 

dentaries are very strongly fused. There is a single mental foramen on the lateral side of 

each dentary ventral to the diastema, close to its posterior end, a few mm anterior to the 

root of p4. This foramen is large, almost 2 mm in diameter. It is almost round with a 

narrower end pointing anteriorly. The posterior end of both dentaries is missing, 

preventing the description of the masseteric fossa, the angular, condyloid, and coronoid 

processes. The mandibular foramen is present. It is ovoid and located a few mm posterior 

to m3 . It cannot be easily measured but is larger than in A. pristinus. The dentition, as 

previously mentioned, is hypsodont. The roots of the left p4 can be seen and extend as 

much as 1 .3 em into the bone of the dentary. The total height of the p4 of this adult 

specimen is 1 .  7 em. 



E. 
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R. 

FIGURE 1 2 :  Occlusal morphology of the 4th premolars of Hesperogaulus species A. 
Scale bar equals 1 em. A.UCMP 3 8665, left p4 (mirrored); B. UOMNH F-6 1 1 5 , left p4 
(mirrored); C. UCMP 29637, left p4 (mirrored); D. UOMNH F-577 1 ,  right p4; E. 
UOMNH F-577 1 sawed, right p4; F .  UCMP 320004 (type), right p4; G.  UOMNH F-6 1 1 3 , 
right p4; H .  UOMNH F- 1 5697, right p4; I .  UOMNH F- 1 7508, left P4 (mirrored); J .  
UOMNH F-5772, left P4 (mirrored); K. UOMNH F-5772 sawed, left P4 (mirrored); L. 
UOMNH F-5443 sawed, left P4 (mirrored); M.  UCMP 320004 (type), left P4 (mirrored); 
N. UCMP 1 1 878,  left P4 (mirrored); 0. UOMNH F-5557, right P4; P .  UOMNH F-577 1 
sawed, right P4; Q.  UOMNH F-5558 ,  right P4; R. UOMNH F-5558  sawed, right P4; S .  
UOMNH F- 1 569 1 ,  right P4; T .  UOMNH F- 1 0977, right P4. 
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The dentition is the same as in other derived mylagaulids; there is only one 

premolar retained, the p4 (and P4). The 1 st molars are lost early in development as they 

are pushed out by the enlarged growing single premolar. As for all mylagaulids, the dental 

formula is therefore 1 11 ,  0/0, 1 1 1 , 2/2 in adults. The total length of the cheek teeth is 1 6 .9 

mm for the upper left tooth row and 1 7 .3 mm for the lower right one. The occlusal surface 

of the tooth rows is complex and characteristic of mylagaulids. The P4 of H. species A 

converges on the double-lobed shape of A.  pristinus or A. vetus but because the 

indentation that separates the two lobes is not as strong in the new species, it still appears 

pear-shaped with a wider posterior end and a narrowing anterior one (see Fig. 1 2) .  There 

are six fossettes in the type specimen of the species that are mostly anteroposteriorly 

oriented. Other specimens discussed below display up to nine lakes. This is a greater 

number than in H. gazini and approaches that of H. wilsoni. The anterofossette is the 

largest fossette and is forked in the holotype. In later stages of wear, the labial branch of 

the anterofossette separates first later followed by the lingual one in a specimen in very 

late stage of wear (UOMNH F-5443).  Other fossettes that separate include the 

hypofossette, parafossette, and the anterolingual fossette (protofossette of Shotwell 

1 958a). There are seven fossettids on the p4s of the holotype. This number varies between 

six and seven depending on the specimen considered. This is less than the maximum for 

H. gazini (eight lakes). The lakes on the p4 are elongated and obliquely oriented, running 

from the posterolingual corner of the tooth to the anterolabial one, as discussed above in 

A. vetus . There are some specimens (see Fig. 1 2) that show some rounder lakes. There are 



two lakes on the lingual edge of the tooth, two on the labial one and three aligned in 

between. The anterolabial fossettid and the anterior most fossettid split with wear. 
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Discussion: The assignment of H. species A (sp. nov.) to the genus Hesperogaulus is both 

consistent with the diagnosis of the genus and the presence of H. gazini and H. wilsoni in 

the Great Bain. These two species are the only other derived mylagaulids in Oregon. As a 

consequence, the decision to assign the new species to the genus Hesperogaulus is both 

consistent with morphology and the most parsimonious biogeographically. H. species A 

.also exhibits important morphological differences with the two previously described 

species of the genus. In addition, it also occurs in a time frame intermediate (with l ittle 

overlap) between those of H. gazini and H. wilsoni. Those two features call for the 

publication of a new species. 

The characters exhibited by H. species A are often either shared with H. gazini or 

H. wilsoni, or intermediate between the other species of the genus Hesperogaulus. There 

are a few exceptions, especially in the size and shape of the foramina, the POI, or in the 

morphology of the palatine region. Some specimens of H. species A display occlusal 

morphology that differs from that of the type specimen. This also occurs in other 

mylagaulids such as H. wilsoni (see above). I recognized in H. species A an extra 

posterolingual lake on both the upper and the lower premolars. Differences in the shape of 

the lakes between specimens (Fig. 1 2) correspond to the wear pattern from juveniles to 



late adults. Thus, few lakes of complex shapes in juveniles will separate into more 

numerous fossettes or fossettids of less complex shape in adults with wear. 

HESPEROGA ULUS WILSON! (Korth, 1 999) 

Fig. 1 3  

Synonymy: Mylagaulus cf. monodon Wilson 1 937  

Mylagaulus sp. Shotwell 1 958a 

Hesperogaulus wilsoni Korth 1 999 

Type Specimen: LACM 1 42506, complete skull with incisors and right P4 from Rome 

Fauna (Drewsey Formation), Oregon. 
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Referred Material: From Drewsey Formation (Rome Fauna) by Korth ( 1 999): LACM 

1 42507,  skull ;  LACM (CIT) 1 952, LACM (CIT) 1 953 ,  LACM (CIT) 1 955 ,  isolated P4; 

LACM (CIT) 1 954, LACM (CIT) 1 956 - 1 958, lower dentitions. From McKay Fm. (UO 

2222, McKay Reservoir) : UOMNH F- 1 0349, isolated P4; UOMNH F- 1 0347, UOMNH F-

1 0348, isolated p4. 

Distribution: Late early to early late Hemphill ian of the Drewsey (Korth 1 999) and 

McKay Formations of Oregon (this paper) . 
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Discussion: Part of the material referred to Hesperogaulus wilsoni by Korth ( 1 999) comes 

from the McKay Reservoir locality (U02222) . When first describing the fauna from the 

area, Shotwell ( 1 956) hypothesized that this was a unit of the Shutler Formation. Since 

then, other authors (Wagner 1 976, Feranec et al. 2005) have used the term Shutler Fm. 

when referring to the McKay specimens. However, Farooqui et al . ( 1 98 1 )  and Newcomb 

( 1 97 1 )  proposed that the Shutler Fm. be broken up into the McKay Fm. that includes the 

locality UO 2222 and the Alkali Canyon Fm. (Farooqui et al. 1 98 1  ) .  I therefore refer to 

the specimens from the McKay Reservoir as being part of the McKay Fm. 

When describing Hesperogaulus wilsoni, Korth ( 1 999) mentioned two specimens 

from the UOMNH collections. These specimens were figured by Shotwell ( 1 958a) and 

attributed to Mylagaulus sp. There are actually three specimens from the McKay 

Formation (McKay Reservoir, UO 2222) of Hesperogaulus wilsoni. Fig. 7 shows the 

occlusal morphology of these three specimens. As mentioned by Korth ( 1 999), the 

number of lakes in H. wilsoni is the greatest of the genus and in late stage of wear 

specimens can exhibit eight, nine, or even ten fossettids. The fossettids vary more in 

orientation than the fossettes, which are elongated and oriented anteroposteriorly.  On the 

other hand, although usually the fossettids extend from the posterolingual corner of the 

tooth to the anterolabial one, the orientation seems to be more prone to changes with wear 

and among individuals. UOMNH F-1 0347, in particular, at a wear stage comparable to 

that of UOMNH F- 1 0348, shows many more small smaller curved lakes with varying 

orientation. It is worth noting that in addition to the six main fossettids (see Shotwell 
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1 958a, fig. 7), there are two other lakes of different homology, as both lower teeth exhibit 

an additional lingual lake. There is a posterolingual fossette, an anterolingual one, and a 

third one located in between. Furthermore, UOMNH F-1 0347 also shows another 

fossettid lingual to the anteriormost fossettid. A similar phenomenon is found in the upper 

tooth, UOMNH F- 1 0349, as well as in the specimens figured by Korth ( 1 999, figs. 1 .3 ,  

1 .4) in which there is an additional lake in the posterolabial corner of the tooth. Within the 

species H. wilsoni, there is little variation in size of the premolar. All specimens from the 

UO as well as the specimens described by Korth ( 1 999) are in the same size range (within 

a couple millimeters of each other) around 1 2  mm for the p4 (Table 3) .  
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TABLE 3 :  Summary of the tooth row lengths and 4th premolars of the mylagaulids from 
the northern Great Basin. Tooth row length data for Alphagaulus vetus, Hesperogaulus 
gazini and H. wilsoni are from Hopkins 2007. The second set of P4 data and the p4 data 
for H. gazini come from (Korth 1 999). Note that the size estimate of H. wilsoni is biased 
by the loss of the molars (the tooth row is reduced to the 4th premolar). H. wilsoni is 
actually the largest species of the genus (Korth 1 999, this paper) as indicated by cranial 
material . The size of the 4th premolar by itself should not be considered as a proxy for 
body size since it may be affected by changes in ecology as well. Lower Tooth Row 
Length=LTRL, Upper Tooth Row Length=UTRL, N=sample size, S=standard deviation, 
M=mean. 

Taxon UTRL (mm) LTRL (mm) P4 length p4 length in 

in mm: M, mm: M, (N, 

(N, S) S) 

Alphagaulus vetus 1 4 .46 1 6.04 7 .70 7 .7  

( 1 1 ,0 . 57) ( 1 3 , 1 .05) 

Hesperogaulus gazini 1 5 .52 1 8 .24 7 .8  9 .03 ( 1 1 ,  

(2,0.44), 0 .62) 

8 . 38  

( 1 0,0 .56) 

Hesperogaulus wilsoni 1 3 .83 1 2  1 3 .92 ( 1 ,  1 3 . 39  

NA) (2, 1 .03) 

Hesperogaulus species 1 6 .86 1 6 .97 9 . 1 3  1 0.29 

A (8,0.78) (6, 1 .55)  

Mylagaulidae indet. NA NA 8 .96 ( 1 ,  NA 

from Beatty Buttes NA) 

Mylagaulidae indet. NA NA 9.66 ( 1 ,  1 1 .75 

from Juntura NA) (2,2.2 1 )  

Mylagaulidae indet. NA NA 1 0. 36  ( 1 ,  NA 

from Piute Creek West NA) 



A. 

B. 

c. 

FIGURE 1 3 :  Occlusal morphology of  the 4th premolars of  Hesperogaulus wilsoni. A.  
UOMNH F- 1 0347, left p4  (mirrored); B .  UOMNH F- 1 0348, right p4; C .  UOMNH F-
1 0349, right P4. Scale bar equals 1 em. 
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MYLAGAULIDAE INDET. 

Figs. 1 4, 1 5 , 1 6  

Synonymy: Epigaulus minor (in part) Shotwell 1 958a 

Mylagaulus sp.  (in part) Shotwell 1 963 

Mylagaulus monodon (in part) Kellogg 1 9 1 0  

Mylagaulus sp. (in part) Shotwell 1 958a 

Referred Material: From Piute Creek West (UCMP V-85 1 05 ,  Formation unknown): 

UCMP 1 88927, isolated P4. From Juntura Fm. (Black Butte Fauna) : UOMNH F-6 1 65 

(UO 2343), UOMNH F-6 1 66 (UO 2343), isolated P4; UOMNH F-545 1 (UO 2334), 

UOMNH F- 1 5694 (UO 2339), isolated p4; UOMNH F- 1 5695 (UO 2339), fragmentary 

fourth premolar; UOMNH F5770 (UO 234 1 ), partial right mandible with m l .  From Cox 

Butte (UO 24 1 7, Beatty Buttes Fauna?) : UOMNH F- 1 768 1 ,  partial skull with left and 

right P4. From Massacre Lake Local Fauna (RV7043, Massacre Lake 1 ) : UCMP 3 1 6439, 

UCMP 3 1 9224, partial incisors; UCMP 3 1 5687, partial mandible with partial incisor; 

UCMP 3 1 5730, partial juvenile cheek tooth. From John Day Fm. (RV73 1 4, Warm 

Springs 1 ) : UCMP 3 1 6526, isolated left P4. From Virgin Valley Fm. : UCMP 1 1 326 

(UCMP 1 095, Virgin Valley 1 4), UCMP 1 52494 (V73056, Prospect 1 ), partial 41h 

premolars, UCMP 4 1 026 (UCMP 1 090, Virgin Valley 9), left and right mandibles with 

partial left incisor, left m2-m3, partial right incisor and right p4; UCMP 1 1 572 (UCMP 

I .  
, .  
' 

; i 
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1 065,  Virgin Valley), partial mandible with p4; UCMP 1 1 662 (UCMP 1 065,  Virgin 

Valley), isolated p4. From Mascall Fm. (JDNM 4, Mascall Formation General): JODA 

2329, partial left mandible with dp4-m2 and erupting p4. 

A. 

B. 

c. 

FIGURE 1 4: Occlusal morphology of the 4th premolars of the Virgin Valley specimens of 
indeterminate mylagaulids. A. UCMP 1 1 572, left p4 (mirrored); B .  UCMP 1 1 662, right 
p4; C. UCMP 4 1 026, right P4. Scale bar equals 1 em. 

. I . ' I  

: :  

I : : 

: �. 



52 

Distribution: Early Hemingfordian John Day Fm.,  Oregon, Late Hemingfordian Massacre : I I 

Lake Local Fauna, Nevada, Oregon; Early Barstovian Beatty Buttes Fauna, Virgin Valley 

Fm., and Mascall Fm. of Oregon; Late Clarendonian the Juntura Fm., Oregon. Barstovian 

of Piute Creek West (Formation unknown). 

Discussion: The indeterminate specimens from the Massacre Lake Fauna and the Virgin 

Valley Fm. most likely belong to individuals of A. vetus. The lack of diagnostic features 

on those specimens does not, however, allow such assignment to be confidently made. 

Specimens UOMNH F-6 1 65 and UOMNH F-6 1 66 from Black Butte are curated with two 

different specimen numbers but they are premolars of opposite sides and Shotwell ( 1 958a) 

reported they were collected on float a few inches apart from each other. They appear to 

represent the left and right P4 of a single individual, as the unusual fossette morphology 

and wear stage are identical . The outline of the tooth is simple, similar to other 

mylagaulids but the shape of the lakes shown in Fig. 1 5  is very complex. In particular, the 

anterofossette' s  branching is not a simple "Y" but rather consists of two parallel 

anteroposteriorly elongated lakes joined by a bucco-lingually oriented lake perpendicular 

to the first two. The anterolabial fossette of UOMNH F-6 1 65 exhibits a high degree of 

complexity as well .  It extends to the posterolingual side of the tooth and branches 

anteroposteriorly. The posterolabial fossette in both specimens is horseshoe-shaped and 

consists of the metafossette of Shotwell ( 1 958a) joined to another, parallel labial fossette 

which, as described above for a specimen of Hesperogaulus sp. ,  is an additional lake of 
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different homology. The very peculiar lake morphology of these specimens and the large 

size of the teeth suggest that this single individual represent a new rare taxon. No formal 

description of this possible new species, sympatric with H. species A, will be undertaken 

here and awaits discovery of a more complete specimens. Specimen UOMNH F-545 1 is a 

p4 in very early stage of wear. The tooth is damaged and no description or identification 

of it is possible. Specimen UCMP 1 88927 from the Barstovian is also a very large 

mylagaulid. The tooth is very wide bucco-lingually as well .  This single upper left P4 

shows no branching of the lakes. It is a late stage of wear and younger specimens of the 

same species would be expected to show some branching of the anterofossette. The 

fossettes are oriented and elongated antero-posteriorly. There is a total of seven fossettes 

on the occlusal surface of this tooth. As mentioned earlier for other taxa, there is an 

additional posterolabial fossette not homologous to the lakes described by Shotwell 

( 1 95 8a, fig. 7) or Hopkins (2008a, fig. 1 ). Because of its large size and its peculiar 

occlusal morphology, this individual may represent a rare, large species similar to the 

Black Butte specimen. Piute Creek West (V-85 1 05), the site where the specimen was 

collected, is unpublished and very little information is available with which to better 

constrain the age of this specimen. UOMNH F- 1 768 1 from Cox Butte (Oregon) is a 

partial skull of a large mylagaulid. The P4s exhibit an occlusal morphology very close to 

that of Alphagaulus vetus, but with more elongated fossettes . The size of the teeth is 

within the range of A.  vetus but the P4 of specimen UOMNH F - 1 7  568 1  is more elongated 

bucco-lingually, appearing rounder than that of an A. vetus . The outline of the teeth of the 
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Cox Butte specimen is different from that of the teeth of A. vetus. The tooth is still 

separated in an anterior and a posterior lobe but the posterolabial indentation found in 

UCMP 1 2 1 693 (a mature individual of A. vetus) is not as pronounced in the Cox Butte 

specimen. The additional fossette of the posterolabial corner of the tooth described in 

other taxa in this paper is present in this specimen as well .  This specimen possibly 

represents another rare new taxon. Dingus ( 1 990) reported a mylagaulid left P4 from 

Warm Springs (RV-73 1 4, early Hemingfordian, Oregon) that he attributed to Alphagaulus 

aff. A. vetus. Dingus ( 1 990) mentioned that the specimen differed from A. vetus in having 

a slightly more posterior protocone, complete enamel covering on all roots, and a 

narrower bucco-lingual width. In addition to those differences, I find that the morphology 

of the posterior lakes of the Warm Springs P4 differs from that of A. vetus, in particular 

on its buccal side. As a consequence of these various differences, I assign the single 

Warm Springs specimen to Mylagaulidae indet. This specimen comes from the locality 

UCMP RV -73 1 4  which is assigned to the early Hemingfordian by Woodburne and 

Robinson ( 1 977). A single juvenile specimen (JODA 2329, fig. 1 6) from the Mascall 

Formation could not be confidently identified. It is most likely either one of Alphagaulus 

vetus or Hesperogaulus gazini present in the Mascall Formation. The lack of an adult 

dentition precludes definitive identification to a mylagaulid species. The m 1 is close to 

being pushed out of the tooth row by the erupting p4. The absence of well-preserved 

lower second molars early in wear (in order to be comparable to that erupting in JODA 

2329) and published deciduous lower fourth premolars for A. vetus and H. gazini make 
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impossible a definitive assignment ofthis specimen to either one of  the mylagaulids 

species found in the Mascall Fm. The partial mandible from the Juntura Fm. most likely 

belongs to H. species A. Because of the lack of diagnostic dental material, this specimen 

cannot be identified with confidence. 

A. 

B.  

C.  

FIGURE 1 5 : Occlusal morphology of the 4th premolars of indeterminate mylagaulids. A. 
UOMNH F-6 1 66, right P4; B .  UOMNH F- 1 768 1 ,  right P4; C. UCMP 1 88927, left P4 
(mirrored) . Scale bar equals 1 em. 
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Three specimens (UCMP 4 1 026, UCMP 1 1 572, UCMP 1 1 662) of mylagaulids 

from the Early Barstovian Virgin Valley Formation exhibit a morphology intermediate 

between that of the commonly found sympatric A. vetus and H. gazini from the Early 

Barstovian of Oregon. The tooth size of these specimens is close to that of H. gazini. 

Similarly, the number of lakes in these specimens and in H. gazini is very close. In 

particular, they both exhibit an anterolingual fossettid absent in all A. vetus specimens. 

However, these Virgin Valley specimens share with Alphagaulus vetus a common general 

tooth shape. The shape of the fossettids of the three specimens is intermediate between A. 

vetus and H. gazini. The orientation of the lakes is closer to that of A. vetus. In UOMNH 

F -4 1 026, I can also recognize an additional fossette located in the posterolabial comer of 

the tooth, labially to the metafossette and posteriorly to the parafossette of Shotwell 

( 1 95 8a, fig. 7). This character varies intraspecifically in other taxa (e.g., Hesperogaulus 

species A). These three specimens might represent evidence for a new taxon but the 

scarce material currently available prevents further description. 

The occurrence of Great Baisn Mylagaulids in the formations and faunas of 

Oregon and Nevada is summarized in Table 4. The specimens of large rare mylagaulids 

from the Barstovian and Clarendonian of Oregon suggests that at least one additional 

lineage of large mylagaulids was present and lived sympatrically with the smaller H. 

species A and H. gazini. Further field work in the Miocene deposits of southeastern 

Oregon will hopefully recover additional material of this poorly-known taxon. 
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FIGURE 16:  Occlusal morphology of the dp4-m2 of an indeterminate mylagaulid from 
the Mascall Formation of Oregon. Scale bar equals 1 em. 



TABLE 4 :  Summary of the occurrences of mylagaulids in the northern Great Basin. 

Formations (Collection area) Taxa present 

(Massacre Lake) Alphagaulus vetus, Mylagaulidae indet. 

John Day Mylagaulidae indet., Mylagaulodon angulatus 

Virgin Valley Alphagaulus vetus, Mylagaulidae indet. 

Beatty Buttes Hesperogaulus gazini, Mylagaulidae indet. 

Sucker Creek Hesperogaulus gazini 

Hesperogaulus gazini, Alphagaulus vetus, 
Mas call 

Mylagaulidae indet. 

Simtustus Hesperogaulus gazini 

Drewsey Hesperogaulus wilsoni, Hesperogaulus species A 

McKay Hesperogaulus wilsoni 

Esmeralda Hesperogaulus species A 

Truckee Hesperogaulus species A 

Thousand Creek Hesperogaulus species A 

Juntura Hesperogaulus species A, Mylagaulidae indet. 

(Piute Creek West) Mylagaulidae indet. 
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PHYLOGENETIC RESULTS 

The phylogenetic analysis produced 1 66 most parsimonious trees. The consensus 

of these trees is shown in Fig. 1 7 .  The general topology is very different from that 

presented by Hopkins (2008a, Fig. 3) .  Among the major differences, the monophyletic 

Promylagaulinae previously found does not occur in this new analysis .  Promylagaulus 

falls as the outgroup to the clade including Galbreathia bettae and all descendants of its 

common ancestor with other mylagaulids. The genus Galbreathia is paraphyletic. The 

reorganization at the base of the tree, where no taxa were recoded, suggests that the 

instability of the tree within the Mylagaulidae is great enough to make fine points of the 

phylogeny unreliable. I find the most basal Mylagaulinae to be Alphagaulus tedfordi and 

A. douglassi unlike Hopkins (2008a) who found A.  pristinus as the most basal 

mylagauline. The genus Alphagaulus remains paraphyletic. The Massacre Lake A. vetus 

OTU is found to be a sister taxon to A. vetus thus confirming the taxonomy presented 

above. Hesperogaulus species A falls within a polytomy of all derived mylagaulids that 

includes the genera Umbogaulus, Mylagaulus, Hesperogaulus, Pterogaulus and 

Ceratogaulus, as well as the more primitive species A. vetus and A. pristinus. The support 

for the tree as a whole is very low and its configuration very unstable. The poor resolution 

of the tree is a consequence of the nature of the characters . Hopkins (2008a) used those 

characters to resolve the relationships between aplodontoid species. The characters use for 

the analysis yielded a rather well resolved tree for the whole super-order. Hopkins 
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(2008a),  however, did mention that such characters may not offer a good resolution when 

considering mylagaulids only, because the dependence on characters related to the 

configuration of the cusps is problematic in a group with hypsodont dentition. Most of the 

characters used in this phylogenetic analysis are appropriate in differentiating between 

aplodontids and mylagaulids or between promylagaulines and mylagaulids. However, 

because all derived mylagaulines share many of these characters, the differentiation 

between two derived mylagaulines is sometimes impossible and leads to the numerous 

polytomies observed in the tree. Numerous characters are symplesiomorphic when 

considering the mylagaulines. A number of these characters differs between mylagaulid 

species because the morphology of the occlusal surface is not tightly constrained and may 

evolve rapidly rather than as a consequence of shared ancestry. The present analysis 

emphasizes this point and calls for further work on the phylogenetic relationships within 

the family Mylagaulidae. Reviews of the mylagaulid material such as this study may help 

build a character matrix that focuses on distinguishing the dentition of different derived 

mylagaulids species. The addition of more cranial and postcranial characters will also 

supplement the set of characters and allow a better understanding of the relationships 

within the Mylagaulinae. 



Alphagaulus pristinus 

Deep River Alphagau/us pristinus 

Alphagaulus vetus 

Massacre Lake Alphagaulus vetus 

Ceratogaulus anecdotus 

Ceratogaulus hatcheri 

Ceratogaulus minor 

Ceratogau/us rhinocerus 

Hesperogaulus gazini 

Hesperogaulus wilsoni 

1---- Hesperogaulus sp. A 

My/agaulus kinseyi 

Mylagau/us e/assos 

Mylagaulus sesquipedalis 

Pterogaulus barbarellae 

Mesogau/us paniensis 

Trilaccogaulus /emhiensis 

Tri/accogaulus montanensis 

Trilaccogaulus ovatus 

FIGURE 1 7 : Consensus tree of the 1 66 most parsimonious trees of the phylogenetic 
relationships within the family Mylagaulidae. 
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ONTOGENETIC TRAJECTORIES AND TOOTH DEVELOPMENT 

Black and Wood ( 1 956) first approached the problem of interspecific versus 

intraspecific variation in Mylagaulidae. They used serial sections of 4th premolars to look 

at changes in lake patterns through wear in order to better understand age and individual 

variation. They concluded that species determination without serial sections was difficult 

as a consequence of the challenge of differentiating between interspecific and intraspecific 

variation. Shotwell ( 1 958a) sectioned a number of specimens from Oregon (including 

several figured in this paper) to minimize the ontogenetic signal and review the 

systematics of Great Basin mylagaulids . In this study, I demonstrate that one can avoid 

such destructive protocol by using a large sample size of premolars to understand changes 

in occlusal morphology with different wear stages. 

Isolated premolars of mylagaulids make up most of the fossil record of this family 

of burrowing rodents. There are extensive collections of upper and lower fourth premolars 

from numerous sites across the United States . Samples of many individuals from a single 

species in different ontogenic stages approximate the various wear stages of a single 

animal, avoiding a need for sectioning. As noted before by Shotwell ( 1 958a), Korth 

(2000), and others, tooth wear through time triggers a change in tooth size, tooth shape, 

number of lakes on the occlusal surface of the tooth, and shape of these lakes. The number 

and length of the lakes increases through development whereas the width and complexity 

decreases. There is very little change in the orientation of the lakes throughout ontogeny. 
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Rectangular premolars in juvenile specimens tend to become more oval with wear. A 

number of teeth have a wear surface that is concave rather than flat. This occlusal 

curvature affects the morphology of the lakes both in their shapes and their dimensions by 

elongating the fossettes and fossettids antero-posteriorly. There is also a slight difference 

between individuals in the angle of the wear of the tooth. This tilting of the wear surface 

is very limited, but may be responsible for some inter-individual differences in fossette 

morphology. All of these wear patterns are tightly constrained by jaw mechanics; 

however, the hypsodonty of the tooth crown allows imprecise occlusion of the teeth, 

explaining some of the variability in the occlusal surface morphology of mylagaulids .  In 

order to avoid such issues, numerous teeth must be examined with a focus on the adult 

wear stage. This need for a large sample size is one of the reasons I did not identify the 

specimens described as indeterminate mylagaulids to the species level. Intraspecific 

variation in mylagaulids includes variation in both tooth size and number of lakes, driven 

by tooth wear, but the orientation of the lakes and the shape and complexity of the lakes is 

consistent across individuals of the same wear stage. Between species, accounting for 

wear stage, the tooth size and the number of lakes differ, as do lake orientation and the 

shape and complexity of the lakes. 
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CHAPTER III 

BIOTIC AND ABIOTIC DRIVERS OF TURNOVER IN 

BURROWING RODENTS 
' 

.. I : , 

INTRODUCTION 

Numerous studies have cited competitive replacement as a cause for the succession of 

taxa observed in the fossil record among invertebrates (e.g. ,  Sepkoski et al . 2000) and 

vertebrates (e.g., Benton 1 987) including burrowing insectivores (Barnosky 1 98 1  ). Others 

have doubted the role of competition in evolution (e.g. ,  Simpson 1 944) . Some authors (in 

particular Connell 1 980) have suggested that detecting competition even in living species 

is very challenging, leading many to despair of ever detecting it in fossil ecosystems. 

However, a few studies of fossil animals have tested hypotheses of competitive 

replacement (i .e. Krause 1 986, Van Valkenburgh 1 999, Sepkoski et al . 2000) . Studies of 

modern mammalian community ecology have provided evidence in favor of competition 

shaping mammalian community structure, and in particular within desert rodent species 

(e.g. Brown and Heske 1 990, Hughes et al . 1 994, Yunger et al . 2002). 

( , ,  I 
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Several researchers (e.g., Kennerly 1 959) have suggested that interspecific competition in 

fossorial rodents is of minor importance, because they are mostly allopatric. More recent 

studies (e.g. ,  Thaeler 1 968, Miller 1 964, Cameron 2000 and references therein) have 

shown that this allopatry is very often the result of interspecific competition, indicating 

that this process is a critical one in the distribution of burrowing rodents across the 

landscape. Cameron (2000) mentioned competition among subterranean rodents as having 

an important effect in shaping their distribution. Although subterranean rodents are rarely 

sympatric in modern ecosystems (Cameron 2000, references therein), numerous localities 

in the fossil record have two or more species of burrowing rodents in the same area 

(Shotwell 1 963 ,  1 968;  Table 1 ) .  The goal of this study was to investigate the diversity 

pattern of fossorial rodents in the Miocene of the Northern Great Basin in search of the 

causes of turnover among burrowing rodents . Patterns of change in abundance were 

compared to global climate change, changes in vegetation, and the changes in abundance 

of other, potentially competing, burrowing rodent taxa. These comparisons should reveal 

whether biotic or abiotic forces are more important in driving the major changes in the 

burrowing herbivore guild during the late Miocene. 
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TABLE 1 :  List of the species of burrowing rodents considered in this study. 

Famill: Genus Srecies 
Aplodontidae Liodontia alexandrae 
Aplodontidae Liodontia dailyi 
Aplodontidae Liodontia furlongi 
Aplodontidae Tardontia occidentalis 
Geomyidae Brachygeomys sp. 
Geomyidae Mojavemys magnumarcus 
Geomyidae Mojavemys mascallensis 
Geomyidae Pliosaccomys magnus 
Geomyidae Pliosaccomys minimus 

Mylagaulidae Alphagaulus vetus 
Mylagaulidae H esperogaulus gazini 
Mylagaulidae Hesperogaulus species A 
Mylagaulidae H esperogaulus wilsoni 

Sciuridae Ammospermophilus junturensis 
Sciuridae Marmot a minor 
Sciuridae Eutamias sp. 
Sciuridae Miospermophilus wyomingensis 
Sciuridae Paenemarmota nevadensis 
Sciuridae Petauristodon sp. 
Sciuridae Protospermophilus angusticeps 
Sciuridae Protospermophilus malheurensis 
Sciuridae Spermophilus tephrus 
Sciuridae Spermophilus wilsoni 
Sciuridae Spermophilus ridgewayi 

The guild of burrowing herbivores is composed of a rich and diverse group of 

rodents that dig extensive burrow systems for shelter, for food, and to protect their young. 

Some of the most extreme adaptations for this life habit occur in subterranean rodents, 

which spend almost all of their time underground and rarely come up to the surface. 

· Today, subterranean rodents are dominated by the Geomyidae in North America (Lacey et 
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al. 2000, Nevo 1 999), but in the past this ecological role has been filled by a variety of 

taxa, including castorids and mylagaulids .  This study focuses on animals with extensive 

underground life habits, encompassing both fossorial and subterranean forms. The term 

fossorial refers in this paper to both animals that hide and dig extensive networks of 

tunnels but reproduce and feed above ground on surface vegetation and/or animals 

(Reichman and Smith 1 990), and subterranean rodents that live and reproduce 

underground, feeding mostly on roots and tubers (Reichman and Smith 1 990, Lacey et al . 

2000) . This definition excludes many mammals that dig simple burrows but do not, as a 

consequence, exhibit osteological adaptations to a burrowing way of life .  

Throughout the Cenozoic, the composition and importance of the burrowing 

herbivore guild has changed. In the Oligo-Miocene ofNorth America, several groups of 

rodents replace one another as the most abundant member of the burrowing rodent fauna. 

In the early Arikareean (30 to 23 Ma), pleurolicine geomyids dominated the fauna, 

especially in eastern Oregon (Rensberger 1 973,  Samuels and Van Valkenburgh 2009). 

Later, in the late Arikareean (23 to 1 9  Ma), fossorial beavers (Palaeocastorinae) became 

more abundant, in particular in the fossil record of the Great Plains (Martin and Bennett 

1 977, Samuels and Van Valkenburgh 2009, Hopkins 2007). In the early Hemingfordian 

( 1 9  to 1 7 . 5  Ma), mylagaulids became abundant, as shown in the Great Plains and Great 

Basin fossil record. They continued to be diverse and abundant until the late Hemphillian 

(5 Ma). In the Great Basin, in particular, they seem to be more abundant than in the Great 

Plains or the Rocky Mountains, whereas geomyids are conversely rarer in the northern 
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Great Basin. At this point, mylagaulids waned and the geomyids became more abundant 

in the Great Basin and even moreso in other areas of the west (e.g. ,  Split Rock, WY). 

Members of the Aplodontidae are common in the Whitneyan to late early Arikareean (32 

to 19 Ma), decline at the end of Oligocene (Hopkins 2007, Rensberger 1 9 83), and remain 

at low diversity until the end of the Miocene. Aplodontids then disappear from the fossil 

record until the Pleistocene, when they are found in Californian cave deposits (Hopkins 

2007, Lyman 2008). 

Numerous hypotheses have been proposed to explain these successive changes in 

fauna. Samuels and Van Valkenburgh (2009) proposed that predator pressure from 

burrowing carnivores might have been important in driving fossorial beavers to 

extinction. Samuels and Van Valkenburgh (2009) as well as Hopkins (2007) have 

suggested that the rise of the Mylagaulidae could have been responsible for the 

competitive replacement of the Paleocastorinae. Conversely, Baskin ( 1 980) suggested that 

the rise of the geomyids impacted the decline of the mylagaulids. Samuels and Van 

Valkenburgh (2009) suggested that similar processes to those affecting the evolutionary 

history of the fossorial beavers might have influenced the less fossorial ground squirrels 

and marmots (Sciuridae: Marmotini). Hopkins (2007), however, did not find a correlation 

between sciurid or castorid diversity and that of aplodontids. This project will further 

attempt to investigate possible interactions within the fossorial herbivore guild that would 

involve marmotins. Other researchers have preferred abiotic explanations to the diversity 

changes within the burrowing herbivore guild. Shotwell ( 1 958a) favored an 
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environmental explanation for changes in diversity of mylagaulids. He tied the radiation 

and decline of the Mylagaulidae to changes in the distribution of dry habitats . Shotwell 

( 1 958a) suggested that after the Hemingfordian, aplodontids occupied mesic forested 

environments while mylagaulids occupied drier savanna-like open environments (see also 

Baskin 1 9 80) . Hopkins (2007) tested many factors that could have affected the evolution 

of mylagaulids and aplodontids, and found no evidence coupling global climate change 

(as indicated by marine oxygen isotopes) with changes in aplodontid and mylagaulid 

diversity. She suggested that the changes in vegetation, in particular related to the rise of 

grasslands, might explain some of the decline in diversity during the late Oligocene and 

late Miocene (Hopkins 2007). 

This study further investigates the drivers of fossorial mammal guild dynamics in 

the northern Great Basin (southeastern Oregon and northwestern Nevada). This area has a 

very rich fossil record that has been extensively collected (Davis and Pyenson 2007, 

Shotwell 1 963).  The terrestrial fossil record of this area spans the late Hemingfordian 

through early late Hemphillian, from 1 7 . 5  to 5 . 8  Ma, a time period critical to the spread of 

grasslands in North America (Stromberg 2005, Retallack 2007) . This event has been 

suggested to be important in the evolution of some rodent taxa included in this study 

(Stirton 1 94 7, Webb 1 966, Hopkins 2007). The most abundant fossorial rodents during i 
! 
.I 

the late Hemingfordian and early Barstovian in the study area considered here are the 

mylagaulids. These large, highly fossorial to subterranean rodents are critical to 

understanding the ecology of burrowing rodents in the Miocene. They were purportedly 
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involved in two competitive replacement events and radiated during the spread of 

grasslands (Hopkins 2007, 2008, Baskin 1 980) at a critical time for climate change in the 

Miocene: the Mid-Miocene Climatic Optimum (Zachos et al . 200 1 ,  Retallack 2009). This 

event was the warmest and wettest time on Earth since the beginning of the Oligocene and 

corresponds to some predictions of global warming for the upcoming century (Zachos et 

al . 200 1 ,  Houghton et al . 200 1 ,  Solomon et al . 2007). 

This study system provides the opportunity to set up a test of competition and its 

impact on changes in the burrowing rodent guild. Thus, the competitive interaction of 

mylagaulids and geomyids (Baskin 1 980), should result in a negative relationship between 

the relative abundance of mylagaulids and that of a potential competitor: the Geomyidae. 

Alternatively, if mylagaulids are ecologically more like their close relatives, mylagaulid 

relative abundance should be negatively correlated with that of ground squirrels 

(Marmotini) or their fossorial sister clade, the Aplodontidae. 

In light of the results of the tests of this hypothesis (see results and discussion), we 

also investigated climatic and environmental factors that could have driven changes in the 

burrowing herbivores. 
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MATERIAL AND METHODS 

Study system 

Data on the diversity of fossorial rodents in the Miocene of the Great Basin were 

collected from collection records. The time frame for this study starts with the peak of the 

Mid-Miocene Climatic Optimum (Miller et al. 1 997, Zachos et al. 200 1 )  and ends with 

the end of the Hemphillian (i .e. 1 7  Ma to 4.8 Ma) .  This time frame was chosen not only 

because of the abundant and well-dated fossil record but also because, in addition to a 

change in climate, it experienced substantial changes in flora and fauna. 

The geographic area of this study was limited to southeastern Oregon and 

northwestern Nevada (Fig. 1 )  to represent the approximate scope of a modem ecosystem, 

encompassing a scale over which real ecological interactions would be expected to take 

place. Hopkins (2007) suggested that regional scale studies may be more appropriate for 

investigating the effects of changing environments on diversity. The geographic area 

considered in this study provides an area representative of a single ecosystem that allows 

such test. This area, the northern Great Basin, remains among the richest sequences 

available for this time period in North America. It includes parts of Oregon, Nevada, and 

Idaho and has been referred to by some paleontologists as the Columbia Plateau 

(Bamosky et al. 2005, Tedford et al. 2004). This region includes faunas from the 

Drewsey, Grassy Mountain, Juntura, Chalk Butte, Butte Creek Volcanic Sandstone, Deer 
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Butte, Sucker Creek, Thousand Creek, and Virgin Valley Formations as well as th� 

Massacre Lake Local Fauna, Beatty Buttes, Piute Creek, and Rattlesnake Butte Faunas . 

• Hemphil l ian 

0 Clarendon ian 

• Barstovian 

<I Hemingford ian 

� Arikareean 

Oregon 

1 00 km 

Pi 
• Ra 

\ se 

Ju •
Ch 

0• Bu 
De 

Dr  •• • • 
Gr Su 

e • Th 

<I Vi 

Ml  

Nevada 

FIGURE 1 :  Map of the formations and collection areas included in this project with the 
North American Land Mammal Ages indicated. Abbreviations: Be. Beatty Buttes Fauna; 
Bu, Butte Creek Volcanic Sandstone Fm., Ch, Chalk Butte Fm.;  De, Deer Butte Fm.; Dr. 
Drewsey Formation; Gr, Grassy Mountain Fm. ; Ju. Juntura Fm.;  Ml .  Massacre Lake 
Fauna; Pi .  Piute Creek Fauna; Ra, Rattlesnake Butte Fm. ;  Su. Sucker Creek Fm; Th. 
Thousand Creek Fm.;  Vi. Virgin Valley Fm. 
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Southeastern Oregon and northwestern Nevada, which are the focus of this study, are 

the primary drainage basin of the Snake River and its tributaries (the Malheur and 

Owyhee Rivers). The area is bounded to the west by the southeastern Cascade Range and 

the northernmost Sierra Nevada, and to the east by the Owyhee Mountains. The northern 

boundary of the study area corresponds to the southern boundary of the Blue Mountains. 

The region of interest is thus primarily in Malheur, Lake, and Harney Counties in Oregon, 

and Humboldt and Washoe Counties in Nevada. The succession of basins and ranges 

(e.g. ,  Juntura Basin, Steens Mountains, Harney Basin) in these counties is characteristic of 

the larger structure of horst and graben that was responsible for the Cenozoic extension in 

the larger geologic province of the Basin and Range that extends south of the province 

studied. The terrain where fossils occur in the region is a rugged, hilly and 

topographically complex high desert. Elevation varies greatly, reported by Kittleman et al. 

( 1 965) to range from 2,400 to 6,500 feet for Malheur County where many of the fossils 

used in this study were found. The modern habitat over much of this area is desert. 

Retallack (2004) found the area to be mostly dry in the Miocene as well ( < 400 mm mean 

annual precipitation). The region is extensively covered by both extrusive volcanic rocks 

and ashy sediments of the Miocene through Pleistocene due to frequent volcanic events 

(see Kittleman et al. 1 965).  

The collection record of southeastern Oregon is believed to be representative of the 

original assemblage preserved in the rock, a result of systematic collecting efforts, 

designed for paleoecology studies, by Shotwell and his field assistants (Shotwell 1 963,  
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Hutchison 1 968) to maximize the degree to which museum collections reflect the living 

ecology. Significant amounts of matrix (up to several hundred tons) were screened with 

standard and fine screens. The numerous localities of this region have yielded and still 

yield a very rich fossil record of Miocene mammals whose taxonomy and morphology is 

well understood (Hutchison 1 966, 1 968,  Shotwell 1 954, 1 958a, 1 958b, 1 967a, 1 967b, 

1 968,  1 970) .  While the systematics of mammalian species in the northern Great Basin has 

been well studied, very few studies have attempted to decipher either small mammal 

paleoecology or their paleoenvironments in the northern Great Basin since the late 1 960s 

(but see Davis and Pyenson 2007, and Davis 2005 for work on Thousand Creek and 

Virgin Valley as well as Retallack 2004 for work on southeastern Oregon paleoclimate). 

The taxa included in this study, in addition to the Mylagaulidae, are the family 

Geomyidae as well as the Aplodontinae and Marmotini. These taxa have been suggested 

to be involved in competition within the guild of fossorial herbivores along with 

mylagaulids (Baskin 1 980, Samuels and van Valkenburgh 2009) . Fossorial castorids have 

been previously reported to be important in those events (Hopkins 2007, Samuels and van 

Valkenburgh 2009) . However, although there are numerous occurrences of aquatic 

species of castorids (e.g., Dipoides, Monosaulax), there is none of burrowing beavers in 

the area considered during the time frame investigated. There is also no fossil of another 

possibly important group, the Arvicolinae (voles, lemmings, muskrats), in the area during 

the Miocene. A summary of the fossils considered in this study is provided in Table 1 .  
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I follow the taxonomy and phylogeny of Korth ( 1 999, 2000) and Hopkins (2008a) for 

mylagaulids . I follow Hopkins (2008a) for aplodontines and Black ( 1 963) for sciurids. 

Geomyids of southeastern Oregon are extensively described in the work of Shotwell 

( 1 967b). 

Data collection 

The different hypotheses are investigated with the same original dataset: abundances 

of fossorial rodents relative to all small mammals (i.e. mammals with body mass <5 kg, 

Merritt 20 1 0). The relative abundance data were derived from collection records of the 

University of California Museum of Paleontology (UCMP), the Los Angeles County 

Museum (LACM), and the University of Oregon Museum ofNatural and Cultural History 

(UOMNH). Specimen data from UCMP were downloaded from the online catalog 

(http://www.ucmp.berkeley.edu/science/vertebrate col l .php). Specimen data from the 
I I '  

LACM were collected on-site from the electronic records of the collections. Specimen 

data from the UOMNH were obtained through digital cataloguing of all curated small 

mammal specimens from southeastern Oregon as well as additional curating and 

cataloguing of previously uncurated specimens from the area of interest by the author and 

collaborators. This additional curation and cataloguing focused on small mammals with 

the goal of covering all localities included in this study. All fossorial rodents available 

were curated and catalogued. Numerous, other, non fossorial, small mammals were also 
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included. I address the potential issue of biases in abundance due to the lack of 

comprehensive curating and cataloguing of previously unrecorded non fossorial small 

mammals by using the MNI as well as occurrence data. The choice to use collection 

records rather than occurrences from databases was motivated by the inherent bias of 

publications (Davis and Pyenson 2007) as well as the focus of the study on southeastern 

Oregon, an area with substantial unpublished collections. In addition, the focus of this 

study on relative abundance necessitated the larger sample size of collections records. 

For each locality where at least one of the burrowing rodent taxa of interest (i .e .  

Mylagaulidae, Aplodontidae, Marmotini, Geomyidae) was represented by at least one 

specimen, I gathered a complete faunal list with information covering taxonomic affinity 

and element represented. For each of the localities, I used the catalog information to 

determine the Number of Identified Specimens (NISPs) and the Minimum Number of 

Individuals (MNis) for dental remains of all small mammals .  All raw data are provided in 

Appendix B .  Due to their adaptation to burrowing, fossorial rodents exhibit a very 

peculiar morphology that might bias the relative abundances of these taxa as a 

consequence of being more diagnostic than that of small mammals of more generalized 

ecology. Therefore, only adult teeth (including incisors) are used to determine the NISP 

for each taxon of interest (deciduous teeth are ignored since they could lead to 

overrepresentation with individuals counted both as juveniles and adults) . The data from 

the collection records were analyzed using relative abundances because it is a better proxy 

of the importance of the taxon at a local to regional scale. The use of relative abundance 
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was also motivated by the suggestion that relative abundance might be more relevant to 

studies of competitive replacement (Krause 1 986). The relative abundance of each small 

mammal taxon at each locality was determined from the MNI .  The relative abundances of 

taxa were lumped at the family level. MNis were determined using the method of Binford 

( 1 978); when information on the side (i.e. left versus right) of the specimen was missing 

from the catalog records, MNis were obtained from NISPs by considering all teeth (both 

left and right) and dividing by two (symmetrical elements). This method is efficient and 

allows use of data even when records don 't have specimens completely sided, a frequent 

problem with unpublished specimens. 

The data were analyzed in two different ways. I grouped the locality level 

information into collecting areas (i .e. formation or local fauna) as well as within 

subdivisions of North American Land Mammal Ages (NALMAs) to look for variation 

through time and across the landscape. All analyses were performed in R 2 . 1 0. 1 (2009) . 

Whenever competitive replacement of one taxon by another is suggested, it is 

assumed that the replacing clade possesses a superior competitive ability over the replaced 

one. In such a case, when the two groups co-occur, the replacing clade will force the 

replaced clade out of its ecological niche and fill this newly available niche. If the 

diversity dynamics of some taxa are driven by competitive replacement, I should observe 

a dQuble-wedge pattern (Benton 1 987) in the abundance of taxa (Fig. 2). The presence of 

such a pattern is necessary but not sufficient to conclude that competition was the driver 

of evolution in the taxa studied. In order to fully test for competitive replacement, it is 
I 
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also necessary to consider the paleoecology of the organisms as a whole through habitat 

use, body size, and diet. 
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FIGURE 2 :  Expected diversity or abundance pattern of competing taxa (after Hopkins 
2007) . 

I also collected data on the presence/absence of all mammalian taxa for all 

localities in the region studied (Appendix C). The nature of the collection record of the 
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UOMNH did not allow relative abundance information to be gathered from the catalog for 

all mammals (only small ones). The presence/absence data for those collections were 

completed using published occurrences with the help of MIOMAP (Carrasco et al. 2005) .  

Those published records come mostly from the work of Shotwell (e.g., 1 963,  1 968), 
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Hutchison ( 1 968), and Russell ( 1 956) who provided extensive faunal lists for southeast \ i  
' , , .  

Oregon. 

Localities, stratigraphic and geographic information 

Over 60 localities from southeastern Oregon and northwestern Nevada are 

included in this analysis. The accuracy of the dating varies greatly. Dating of the 

sediments of those localities relies on several methods including biostratigraphy, 

magnetostratigraphy, and radiometric dating. A few localities have been dated with 

limited accuracy using fossil assemblages, and cannot be assigned more accurately than to 

a NALMA. Although I found a few chronologically poorly-constrained localities to be 

relevant to the discussion of the results, I only analyzed data from localities that could be 

assigned to a subunit ofNALMA. These subunits are most often less than two million 

years long (with the exception of the late Barstovian) . Binning the data by subunits of 

NALMAs prevents inaccuracies in the dating of localities from influencing our results. I 

These temporal bins are not equal in duration but this has little effect on diversity counts 

since there is no correlation between the length of each bin and the number of localities 

for these time periods (consider the early Barstovian versus the late Clarendonian for 

example) and since no locality spans the entire time represented by each subunit (see also 

Barnosky et al. 2005). All age assignments for NALMAs follow Tedford et al. (2004) . For 
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analyses binning taxa by collecting areas, I used the age of the formation as published (see 

Table 2 for ages and references). 

TABLE 2 :  Summary of the data for the formations and collection areas considered in this 
study. Abbrevations for subdivisions of North American Land Mammal ages (NALMAs): 
LHMF, late Hemingfordian; EBAR, early Barstovian; LBAR, late Barstovian; LCLA, late 
Clarendonian; EEHP, early early Hemphil lian; LEHP, late early Hemphil l ian; ELHP, 
early late Hemphillian. Collection areas in parentheses. 
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Ecological category assignment and predictions of competitive replacement 

The biotic interactions examined by this study are possible competitive 

replacements within the burrowing herbivore guild. In order to assess if such interactions 

are of any importance in the evolution of mylagaulids, I compared both the relative 

abundance through time and the MNI through time of the mylagaulids and their potential 

competitors. These two proxies are expected to give very similar results (the relative 

abundance is derived from the MNI) but the MNI, unlike the relative abundance, does not 

consider the abundance of other small mammals in the area. Furthermore, I graphed the 

number of localities through time at which the taxa occur in order to look for a signal in 

the occupancy of the landscape by the clades studied. In addition to comparing data 

through time, I also looked at the locality data in search of sites where mylagaulids and 

their potential competitors co-occurred. I tested the randomness of the co-occurrence of 

the two taxa using the Chi-square test. It was not possible to plot the relative abundance of 

mylagaulids versus that of geomyids (or any other combination of the members of the 

guild) since the absence of one of the two taxa in most sites violates the assumptions of a 

linear regression. 

The competitive replacements in which mylagaulids might have been involved 

must have also involved taxa with similar ecological requirements . For geomyids to 

replace mylagaulids in this niche, they must have shared very similar ecologies. 

Assessment of the ecological similarity between geomyids and mylagaulids consists here 
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of contrasting their likely diets, body sizes, and habitat use. Similarly, I also assessed the 

potential overlaps in ecology between mylagaulids and sciurids as well as mylagaulids 

and aplodontids using similar variables. Although some information is missing for the 

species considered in this project, the families as a whole have good fossil records and 

their paleoecologies can be approximated accurately enough for family scale 

comparisons. These data allow for the ecologies of the four families to be estimated. 

Important paleoecological characteristics of the taxa considered that can be 

approximated from the fossil record include: ( 1 )  body size, (2) diet and, (3) degree of 

fossoriality. Table 3 summarizes those data for each of the four families considered in this 

study. 

TABLE 3 :  Summary of the paleoecological parameters for each of the taxa of the 
burrowing herbivore guild. Body size is indicated by the lower tooth row. Data for 
aplodontids, marmotins, and mylagaulids are from Hopkins (2007, Appendix 1 ), and 
Calede (second chapter of this thesis). Note that the size estimate of H wilsoni is biased 
by the loss of the molars (the tooth row is reduced to the 4th premolar). H wilsoni is 
actually the largest species of the genus (Korth 1 999, first chapter of this thesis) as 
indicated by cranial material . The upper limit of the body size range of Geomyidae is 
based on the upper tooth row length. All measurements are in mm. 

Taxon Body Size Range Diet Degree of fossoriality 
Abrasive diet 

Semifossorial to 
Aplodontidae 1 1 .66 - 1 3 .6 1 feeding (above 

fossorial 
ground) 

Geomyidae 4.20-5 . 36  
Abrasive diet 

Subterranean 
(underground) 

Marmotini 6 .6 - 1 1 . 3 5  
Seeds, nuts, fungi, Semifossorial to 
. . .  (above ground) fossorial 

Abrasive diet 
Mylagaulidae 1 2 - 1 8 .24 Subterranean 

(underground) 
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The body size of rodents, especially of non-muroids, can be accurately estimated 

from the toothrow length (Hopkins 2008b ). Appendix 1 of Hopkins (2007) provides body 

size information for most taxa used in this study. I followed the method of Hopkins 

(2008b) to provide the missing body size data. When no complete tooth row was 

available, I added the lengths of each tooth to obtain measurements based on a composite 

tooth row. 

The diets of the fossil taxa considered here have been studied very little .  Diets are 

estimated from gross dental morphology, a method that has proven reasonably accurate 

(e.g. ,  Janis 1 995),  though ongoing work to apply more precise proxies to this question will 

improve the accuracy of dietary reconstructions. 

The degree of fossoriality of those variably burrowing rodents can be assessed 

through the qualitative study of postcranial elements or the use of quantitative 

morphological proxies (Mauk et al. 1 999, Hopkins and Davis 2009). The humeral index 

has been used by Korth (2000) to approximate the degree of fossoriality of mylagaulids. 

Numerous other measurements of the limbs and skull can also be used when available 

(Hopkins and Davis 2009). Unfortunately, postcranial elements of most of the rodent taxa 

from the Great Basin are not well represented in the fossil record. 

Another line of evidence available for the study of fossoriality in fossil rodents is 

ichnology and the morphology of preserved burrows. Although none have been recovered 

in the Great Basin, there are possible occurrences of fossorial rodent burrows in the tuff 

beds of the Beatty Buttes Fauna (Wallace 1 946). Nevertheless, some Great Plains 
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specimens shed light on the burrowing habits of related species both within mylagaulids 

and geomyids (Gobetz 2006, Gobetz and Martin 2006). 

Geomyids and mylagaulids are found to have very similar burrowing habits. Both 

groups are highly fossorial to subterranean animals. The complex morphology of a 

recovered mylagaulid burrow from the Great Plains is similar to that of Geomys (eastern 

pocket gopher,) and indicates a highly subterranean way of l ife (Gobetz 2006). Gobetz 

and Martin (2006) described a gopher burrow from the Harrison Formation ofNebraska 

and presented evidence for fossorial chisel-tooth digging habits in an entoptychine 

(Geomyidae), thus confirming that the fossorial ecology widespread in modern gophers 

was already present in the early Miocene. 

Geomyids differ from mylagaulids in their body size. The latter are large rodents 

(mass > 1 kg, Hopkins 2008a, b) comparable in size to their closest modern relative, the 

sewellel (Aplodontia rufa), whereas geomyids are much smaller animals that are no 

bigger than a few hundred grams. This difference in body size, however, may not be an 

obstacle to competition as shown in modern systems (e.g. , Brown and Davidson 1 977). 

There is no need for a precise size match but rather a size that is similar enough to imply 

similar use of food and space resources. The diet of the fossil forms is poorly known (but 

see fourth chapter of this thesis). Mylagaulids have been suggested to feed on very 

abrasive food (as indicated from their hypsodont dentition). Geomyids have quite a high-

crowned dentition and wear down their teeth, leaving lakes of dentine surrounded by 

enamel at the occlusal surface. Modern gophers feed on grasses (Williams 1 982) or 
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underground food rich in nutrients, but also ingest exogenous grit (Jones and Baxter 

2004). I can thus infer an abrasive diet for geomyids as wel l .  These two groups of rodents 

seem to be likely competitors and further exploration of the hypothesis of Baskin ( 1 980) 

is justified. 

Marmotini and aplodontids differ somewhat in ecology from geomyids and 

mylagaulids . They are not as fossorial. They mostly feed above ground on a diversity of 

foods (Carraway and Verts 1 993,  Belk and Smith 1 99 1 ,  Frase and Hoffmann 1 980, 

Gannon and Forbes 1 995 ,  Jenkins and Eshelman 1 984). This diversity of food does not 

preclude overlap in diet with mylagaulids (in particular in light of the results of the fourth 

chapter of this thesis). Both aplodontids and marmotins are well above the body sizes of 

geomyids. However, both aplodontids and Marmotini are more similar in body size to 

mylagaulids (Kwiecinski 1 998, Nagorsen 1 987, Carraway and Verts 1 993 ,  Hopkins 2007, 

Hopkins 2008b ) .  Aplodontids and Marmotini are close in size to each other. Aplodontids, 

on the other hand, are restricted to the genera Liodontia and Tardontia. These rodents are 

smaller than the modern mountain beaver (Aplodontia rufa), closer in size to ground 

squirrels, and may feed on rather abrasive food as indicated from their hypsodont 

dentition. There are no known postcrania of Liodontia that could inform the degree of 

fossoriality of this taxon. However, cranial morphology suggests burrowing habits close 

to those of Meniscomys (Morea 1 98 1 ,  Hopkins 2006), which are similar to those of 

ground squirrels . The distribution and ecologies as well as habitat requirements of modern 

Marmotini and mountain beavers are quite unlike each other. The modern Aplodontia rufa 
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is present in a very restricted geographic area with temperate rainforest whereas ground 

squirrels and marmots are found in very diverse environments, some very dry (Caraway 

and Verts 1 993 ,  Belk and Smith 1 99 1 ,  Frase and Hoffmann 1 980, Gannon and Forbes 

1 995 ,  Jenkins and Eshelman 1 9 84). The diversity in ecology within marmotins including 

overlaps with mylagaulids, and the similarities between mylagaulids and aplodontids 

(including their shared evolutionary history) supports the need for additional testing (see 

also Hopkins 2007) of the hypothesis that Marmotini (Samuels and Van Valkenburgh 

2009) and aplodontids might have influenced the relative abundance of mylagaulids in the 

Miocene of the Great Basin. 

Patterns in abundances within the fossorial herbivore guild 

I also investigated variations in relative abundance and MNI for all burrowing 

rodent taxa through time. I present data on the changes in the relative contribution of each 

family to the burrowing herbivore guild throughout the mid to late Miocene. I analyze \ . ' '·  

I those with the help of chord distance analysis across subunits ofNALMAs. Chord 

distance analysis is a measure of the difference based on the cosine of the angle between 

two vectors of abundance data (the relative contribution of each fossorial rodent group to 

the guild in two different NALMA subdivisions). Chord distance analysis is used to look 

for faunal turnover in mammalian assemblages (e.g. , Frost 2007, Bobe et al. 2002) . The 
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measure of the chord distance between a sample j and a sample k runs from 0 to 2 1 12 and is 

computed from the following formula (see Bobe et al. 2002): 

CRDjk = [2( 1 -CCOSjk)] 1 12 ( 1 )  

Using Xij, the abundance of the ith taxon in sample j ,  Xib the abundance of the ith taxon 

in sample k, and Xs, the total number of taxa in both samples, ccOSjk is computed with: 

The chord distance was calculated both for the MNI and the relative abundance of 

each fossorial rodent group within the guild across the subdivisions ofNALMA to look 

for important changes in the composition of the guild through time. The early late 

Hemphill ian was removed from this analysis due to the very small sample size of fossorial 

rodents in this time interval . 

Climate and fossorial rodent diversity 

There is very little local to regional information on the climate of the northern 

Great Basin. There is no information for southeastern Oregon and northwestern Nevada 

proper (but see Retallack 2004). The closest terrestrial area for which there is climatic 
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data is the John Day Basin. Retallack (2007) has developed a climate curve for central 

Oregon (i.e. John Day area) from paleosol data, but this dataset lacks mean annual 

temperature information for the late Barstovian through the early late Hemphillian, which 

comprises most of the time frame spanned by this study. Nevertheless, the climate curve 

for central Oregon follows closely the global temperature trend as indicated by the stable 

isotope proxy 8180 (Zachos et al. 200 1 ) . These data come from Pacific Ocean sediment 

cores spanning the Cenozoic. The data were binned by subunit of NALMAs in order to be 

comparable to the relative abundance of fossorial rodents. The influence of global 

temperature changes (as a proxy for regional changes) on the abundance of the fossorial 

rodent taxa was assessed through simple linear regressions of the relative abundance of 

the family against the 81 80. I tested the effect of changing climate on the abundance of 

fossorial rodents as a whole as well as on the mylagaulids and the geomyids. 

Environmental and vegetational changes in the mid to late Miocene of Oregon 

The spread of grasslands in the mid Miocene and the rise in C4 vegetation in 

North America has had a major impact on the changes in fauna, in particular within 

ungulates. While there is no C4 vegetation in eastern Oregon (Cerling et al. 1 997), the 

spread of grasslands in Oregon might nevertheless have been a major driver of the 

evolution of mylagaulids and other fossorial rodent taxa. Hopkins (2007) focused her i' i 

analysis of the vegetational changes and their potential relation to changes in aplodontid 
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and mylagaulid diversity in the Great Plains but mentioned that the aplodontid and 

mylagaulid record of the northern Great Basin should be investigated as welL There are 

two sources of data when considering the switch from a more woodland-dominated early 

Miocene and a more grassland-dominated mid to late Miocene. Paleosol data can provide 

information on ecosystems in the area during the middle and late Miocene (e.g. Retallack 

2007, Retallack et al. 2000). In addition, phytoliths have been used to study the spread of 

grasses in the Great P lains (e.g. Stromberg 2005) .  There is a small dataset of paleosol data 

from southeastern Oregon (Retal lack 2004) that provides limited paleoenvironmental 

information. No phytolith data are yet available for the time frame or geographic range 

used in this study. 

To look for differences across sites with little ancillary information, faunal 

differences can be evaluated as a proxy for microhabitats. Some taxa have very restricted 

environmental requirements, and mammalian faunal similarity provides a reasonable 

proxy for overall ecosystem similarity (van Dam 2006, Heikinheimo et al. 2007). I 

therefore performed a cluster analysis of the localities based on the presence or absence of 

other mammalian taxa as a proxy for environmental conditions. This analysis was run in 

R 2 . 1 0. 1 (2009) using euclidean distances and the Ward clustering algorithm. For this 

analysis I only used localities where mylagaulids, geomyids, or both are present. I 

excluded from the faunal list the geomyid and mylagaulid taxa and only considered in the 

analysis localities for which five or more mammalian taxa are present and either recorded 

in catalogs or on MIOMAP (for the UOMNH localites). I excluded bats 
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(Vespertilionidae) from the dataset because they do not share a common taphonomy with 

land mammals because of their very fragile nature and their aerial ecology. This analysis 
, <  

allows the investigation of the possibility of an association of some fossorial taxa with 

microhabitats. A pattern of reciprocal exclusion between mylagaulids and geomyids 

might be evidence either for biotic interactions or for environmental preferences; 

consideration of the remainder of the fauna will make it possible to suggest which ofthese 

possibilities is most likely. 

RESULTS 

Sampling through time 

Fig. 3 shows the sampling of the region 's  fossil record throughout the time frame 

considered. The early early Hemphillian represented by the Thousand Creek Formation 

(9-7 Ma) is the most poorly sampled subdivision ofNALMAs with 1 62 specimens of 

small mammals versus 84 1 small mammal specimens in the late Barstovian ( 1 2.5 - 1 4 .8 

Ma). The early late Hemphillian is the most poorly sampled time interval for fossorial 

rodents (26 specimens). This is not associated with an overall decrease in small mammal 

sampling and might reflect a true trend in the abundance of small fossorial mammals (see 

Hutchison 1 968 for a case study in moles). Nevertheless, this time subunit had to be 



discarded for some of the analyses described below and its data should be considered 

cautiously. 
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FIGURE 3 :  Sampling through time of all small mammals and fossorial rodents in the area 
of interest. Abbreviations: NISP, Number of ldentified Specimens; MNI, Minimum 
Number of lndividuals . Vertical bars indicate the limits of the subdivisions ofNorth 
American Land Mammal Ages. 

Biotic interactions within the burrowing herbivore guild 

The trends in relative abundance through time of the burrowing herbivore guild 

show an overall decrease through time with the exception of the early early Hemphill ian, 

" 
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when burrowing rodents, and geomyids in particular, are abundant in the Thousand Creek 

Formation (Fig. 4). 
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FIGURE 4 :  Relative abundance, Minimum Number of lndividuals (MNI), and number of 
localities of all fossorial rodents and 8 1 s0 through time as a proxy for global climate. 

The mylagaulids, Marmotini, and aplodontids show a decline in relative abundance 

throughout the mid- to late Miocene (Fig. 4). The geomyids, on the other hand, show an 

increase in abundance up to the early early Hemphillian. This is followed by a decline in 

relative abundance in the late early Hemphillian and early late Hemphillian. The pattern 

observed between mylagaulids and geomyids is consistent with a negative correlation 

between the two taxa rather than the directional pattern of a double-wedge. The transition 
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in relative abundance is unfortunately happening in a poorly-preserved interval (early 

early Hemphillian). There is no evidence for a double-wedge pattern between Marmotini 

and aplodontids. Most of the variation in the relative abundance of each fossorial rodent 

group is concentrated in the earliest (Barstovian) and latest (Hemphillian) parts of the 

time range studied. There are no substantial differences between the late Barstovian and 

the late Clarendonian where the largest gap in sampling is found. One would expect a 

longer unsampled time interval to lead to larger differences in faunas if change is 

relatively constant through time. This is not evident in this dataset and supports the 

hypothesis of events rather than directional trends driving the evolution of the community 

structure. This does not mean that the early and middle Clarendonian were uneventful; 

rather that those events did not trigger long term changes in the guild composition. When 

looking at the MNI values rather than the relative abundance, the data are more sensitive 

to sampling but support similar conclusions (Fig. 5) .  The pattern of negative correlation 

displayed by the geomyids and mylagaulids appears to be stronger with few geomyids in 

the Barstovian when mylagaulids are abundant and numerous gophers in the Hemphillian 

when mylagaulids are rarer. The curves intersect after the late Clarendonian as they do in 

the graph of the relative abundance. Once again, there is no pattern suggesting 

competitive interaction between ground-dwelling sciurids and aplodontids or between 

these groups and geomyids or mylagaulids. 
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the fossorial rodent groups. 

Rather than considering the relative abundance of taxa at the localities, one can 

also look at the distribution of the taxa over the landscape. Fig. 6 shows the number of 

localities where at least one taxon is present through time. There is a greater number of 

localities occupied by fossorial rodents in the late Barstovian than in the Hemphillian. 

Mylagaulids and geomyids seem to follow opposite trends. Marmotini and Aplodontidae 

display a stronger double-wedge pattern than in the previous analyses but this trend 

doesn 't hold in the late Hemphillian. 
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Because the curve of Fig. 6 is affected by sampling, I also normalized the number 

of localities where mylagaulids and geomyids occur by dividing the number of localities 

where each group is present by the total number of fossorial rodent localities (Fig. 7). 

These values show a very strong negative correlation between the two taxa. This pattern 

is suggestive of habitat tracking rather than direct competition. Trends in relative 

abundances of two competing taxa, illustrated by a double-wedge pattern, should be a 

directional pattern of the decrease in abundance of one of the taxa associated to the 



increase of the other. This pattern should be resolved once rather than exhibiting 

alternating abundances. 
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FIGURE 7 :  Changes in the normalized number of localities occupied by geomyids and 
mylagaulids through time. 

The significant negative relationship between the presence of a mylagaulid in a 
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site and the presence of a geomyid can be tested using a Chi-Square test on the numbers 

of sites where these animals do and do not co-occur. If those two taxa had similar habitat 

tolerances and did not interact with each other, their distribution relative to one another 
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should be random. However, if these animals either competitively exclude each other or 

have very different environmental requirements, they would be expected to co-occur less 

frequently than predicted by random assortment. Table 4 shows the results of this test. 

Mylagaulids and geomyids co-occur only at three out of 52  sites and the difference from a 

random distribution is strongly significant. 

TABLE 4 :  Summary of the Chi-square analysis on the number of localities where 
mylagaulids and geomyids co-occur. N = number of localities. 

Proportion of 

Taxon 
N co- N no co- Total localities 

X2 
occurence occurence N without co-

occurrence 

p 

Mylagaulidae 3 3 8  4 1  0.927 29.88 <0.005 
Geoml:idae 3 I I  1 4  0.786 4.572 0.05<)2<0.25 

In addition to looking at changes in the relative abundance, minimum number of 

individuals, or number of localities of geomyids and mylagaulids through time, I also 

plotted those variables within each collecting area of the region studied. Relative 

abundances (Fig. 8) by collecting area show that for all but three of those areas, only one 

ofthe two potential competitors, mylagaulids or geomyids, is  present. The Juntura, 

Thousand Creek, and Drewsey Formations include both taxa. In the Juntura and Drewsey 

Formations, mylagaulids are much more abundant than geomyids. In the Thousand Creek 

Formation, the pattern is reversed with a very strong geomyid presence and few 



mylagaulids. This pattern of co-occurrence of mylagaulids and geomyids within an area 

does not, however, translate as co-occurrence at the scale of localities. 
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FIGURE 8 :  Abundance of each of the fossorial rodent groups relative to all small 
mammals in each of the formations and collection areas considered in this study. 

The same pattern is observed in the MNI (Fig. 9). When looking at the number of 
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localities normalized for sampling (in a similar method to that used for the normalization 

of the data binned by subunits of NALMA), the opposing pattern of landscape occupation 

is very clear (Fig. 1 0, 1 1  ). Interestingly, geomyids are present and mylagaulids absent in 



the late Barstovian Deer Butte Formation, and geomyids are absent in the presence of 

mylagaulids in the Butte Creek Volcanic Sandstone. This may be a consequence of 

collecting bias and is discussed later in the discussion of the cluster analysis. 
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FIGURE 9 :  Minimum Number of Individuals (MNI) of each of the fossorial rodent 
groups in each of the formations and collection areas considered in this study. 

Changes in the burrowing herbivore guild through time 

To test the hypothesis that dynamics in the relative abundance ofburrowing taxa took 
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place as turnovers rather than slow gradual changes, I performed a chord distance analysis 
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of the changes in the fauna across the subunits ofNALMA from the late Hemingfordian 

to the early Hemphillian. Whether the analysis used MNI or the relative abundance of the 

taxa, the results (shown in Table 5) were the same. Fig. 1 2  shows the trend through time 

in the abundance of each group of the burrowing rodent guild relative to the whole guild. 
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FIGURE 1 0 :  Number of localities where each of the fossorial rodent groups occur in each 
of the formations and collection areas considered in this study. 

The general trend is similar to that described above and shown in Fig. 4. The result of the 

chord distance analysis suggests very little change within the guild during the late 
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Hemingfordian, the Barstovian and the Clarendonian. However, there are two very strong 

changes in burrowing rodent fauna between the end of the Clarendonian and the 

beginning of the Hemphillian as well as between the early early Hemphillian and the late 

early Hemphil lian. The former may be affected by a shift in sample size but the change 

between the early early Hemphillian and the late early Hemphillian appears to be driven 

by the decrease in geomyids and the corresponding increase in mylagaulids and 

aplodontids. 
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FIGURE 1 1 : Normalized number of localities where geomyids and mylagaulids occur in 
each of the formations and collection areas considered in this study. 
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There is little change in the abundance of Marmotini through time. The results of this 

chord distance analysis support the hypothesis of geomyids and mylagaulids alternatively 

being more abundant than one another in the burrowing herbivore guild of southeastern 

Oregon. 

TABLE 5 :  Summary ofthe Chord-distance analysis performed on the Minimum Number 
of lndividuals of the burrowing herbivore guild taxa. Analysis of the relative abundance 
yielded the same results. A summary of the number of localities through time is provided 
in Appendix A. Abbreviations: LHMF, late Hemingfordian; EBAR, early Barstovian; 
LBAR, late Barstovian; LCLA, late Clarendonian; EEHP, early early Hemphillian, LEHP, 
late early Hemphillian. 

Subdivision of 
Aplodontidae Geomyidae Marmotini Mylagaulidae All 

Chord 
NALMA Distance 

LHMF 1 4  0 1 2  1 7  43 0.23 

EBAR 1 8  0 1 0  28  56 0.49 

LBAR 1 4  4 20 1 6  54 0.53 

LCLA 1 4 7 1 1  23 1 .0 1  

EEHP 4 1 9  3 3 29 0.98 

LEHP 1 0  4 5 1 0  29 
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FIGURE 1 2: Abundance of each of the fossorial rodent groups relative to all fossorial 
rodents through time binned by subunits ofNorth American Land Mammal Ages 
(NALMA) and curve of the chord distance analysis. The value under each bar of the 
graph indicates the Minimum Number of Individuals (MNI) for each subunit of land 
mammal age. 

Effects of climate on fossorial herbivore abundance 

The trend in climate through time versus the relative abundances of the fossorial 

herbivore group relative abundances is presented in Fig. 4. Regressions are shown in Figs. 

1 3- 1 5 .  Fossorial herbivores are very abundant in the late Barstovian, but experience a 

dramatic drop in the late Clarendonian despite little change in climate between those two 

time intervals. F ossorial rodents become very abundant in the early late Hemphill ian even 

though there is no corresponding drastic change in climate. 
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FIGURE 1 3 :  Regression of the relative abundance of all fossorial rodents versus < h sO. 
The regression of the relative abundance of the fossorial rodents versus the 8 1 s0 value 
binned by subunits ofNALMAs shown in Fig. 1 3  explains little of the variance for the 
abundance of burrowing herbivores as a whole (R2 = 0 .32 1 ,  p=0. 1 85) .  



45 

40 

35 

'*' 30 
V't OJ u c: 

25 ro -o c:: ;;;J .D <( 20 OJ > 
·.;::; ro 
(jj 15 a: 

10 

5 

0 

• 

• 

1.6 

y - 1 2. 77x - 2 2.98 

R2 = 0.208 

1 . 8  2 .0  

• Geomyidae 

• Mylagaul idae 

2 .2  

y = -18.72x + 58.41 

R2 = 0.694 

2.4 

Delta180 

1 05 

2 . 6  2 . 8  3 . 0  

FIGURE 14:  Regressions of the relative abundances of the Geomyidae and Mylagaulidae 
versus o t sO.  

However when broken down by group of fossorial rodents, i t  seems that mylagaulids do 

show changes in relative abundance that are partially explained by changes in climate (R2 

= 0.694, p =0.020). With increasing 8 1 s0 and decreasing temperatures, mylagaulid 

relative abundance increases (Fig. 1 4) .  Geomyids do not seem to be affected much by 

climate (R2 = 0.208, p = 0.304). Both aplodontids (R2 = 0 .5597 ,  p = 0.053 1 )  and 

Marmotini (R2 = 0.4387; p = 0. 1 05) display some correlation between climate and relative 

abundance but only about half of the variance is explained (Fig. 1 5) .  
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FIGURE 1 5 :  Regressions of the relative abundances of the Marmotini and Aplodontidae 
versus c h sO.  

As a consequences of looking for climate affecting the relative abundance of different 

groups of fossorial rodents, I corrected the p value with the Bonferonni correction (p= 

0.05/Number of tests, Shaffer 1 995) .  Thus the threshold for significance is p=0.0 1 25 for 

each test. None of the results are found to be significant. Additionally, this result should 

3 

be considered very carefully due to the limited number of points this regression is run on. 
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Habitat differences among fossorial rodents 

The cluster analysis of the fossil localities from the northern Great Basin where 

geomyids and/or mylagaulids are present yielded the results shown in Fig. 1 6 . Four of the 

localities where geomyids occur alone are found to cluster together (UO 2500, UO 2239, 

UO 2337, UO 25 1 6). A fifth locality (UO 2347) clusters very close to localities where 

only mylagaulids are present. This clustering of geomyid localities is independent of age 

and includes localities from the late Clarendonian Juntura formation (UO 2500, Black 

Butte) as well as the Little Valley site (UO 25 1 6, Chalk Butte Formation) of the early late 

Hemphillian and UO 2337 .  UO 2465 (Quartz Basin) and UO 2495 (Red Basin) cluster 

together although only mylagaulids are present in UO 2495 and both are present in Quartz 

Basin. Another locality where only geomyids are present (V69 1 1 4) clusters with 

mylagaulid localities of the Drewsey Formation (U023 58) and the Massacre Lake Fauna 

(V6 1 60). This cluster is completed by a locality where both mylagaulids and geomyids 

occur (U02347) and a mylagaulid locality (CIT62). All other clusters of localities 

obtained through this analysis include only mylagaulid localities with the exception of the 

locality V86028 (Rattlesnake Butte, Harney Basin) where both mylagaulids and geomyids 

occur together. This locality is an unpublished, poorly known locality from southeastern 

Oregon for which no stratigraphic or temporal data are available. 
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FIGURE 1 6 :  Cluster Analysis of the faunal assemblages of the localities of the area of 
study. Black boxes indicate those where only geomyids are present; dark grey where both 
geomyids and mylagaulids are present; light grey where only mylagaulids are present. 
Numbers indicate age of the locality :  1 .  LHMF, 2. EBAR, 3 .  LBAR, 4. BARS, 5 .  LCLA, 
6. EEHP, 7. LEHP, 8. ELHP. Abbreviations as in Table 2 .  
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DISCUSSION 

Overall ,  the results do not allow me to reject the possibility of competitive 

interactions between mylagaulids and geomyids. Rather than the directional pattern of a 

double wedge suggestive of competitive replacement, I find a negative correlation 

between the relative abundance of geomyids and mylagaulids, which is more suggestive 

of habitat tracking. 

When considering the relationship of climate through time to fossorial rodent 

group relative abundances, it appears that fossorial rodents as a whole and geomyids in 

particular are very little affected by climate (Figs. 1 3- 1 5) .  Correlation between climate 

and mylagaulid relative abundance occurs but this may not be indicative of causation. The 

most drastic changes in 81 80 occurred between the early Barstovian and the late 

Barstovian as well as between the late Barstovian and the late Clarendonian without 

leading to important changes in the relative abundance of mylagaulids, suggesting that the 

relationship of mylagaulids to temperature is not a simple linear one. 

The clustering of geomyid-containing localities based on faunal content is very 

interesting in light of previously published conclusions about the habitats they represent. 

The habitat interpretations of these localities by Shotwell ( 1 963) on the basis of the 

mammalian assemblage present concluded that UO 2347 (Otis Basin) was most likely a 

border community (i .e. a unique arrangement of savanna, pond-bank, open grassland, and 

woodland, Shotwell 1 963) .  In addition, UO 2500 (Black Butte) was interpreted as a pond-
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bank, slow moving stream habitat (Shotwell 1 963).  UO 2337 was also interpreted as a 

pond-bank community. This suggests a clustering of the pond-bank communities together 

as a favorable habitat for geomyids. Red Basin and Quartz Basin cluster together. These 

two localities from the late Barstovian share many similarities but also differ greatly in 

fauna. Shotwell ( 1 968) reported, in particular, differences in body size with large 

ungulates and carnivores in Red Basin and small mammals in Quartz Basin. This may be 

an artifact of the sampling method used. Unlike Red Basin, Quartz Basin was very heavily 

screened for microvertebrate remains (three tons of matrix with standard screen, 400 

pounds with fine screen, Hutchison 1 968). In Red Basin (UO 2495), only mylagaulids are 

present, whereas in Quartz Basin (UO 2465), geomyids are present but mylagaulids are 

absent. Quartz Basin was interpreted as a stable, ponded, slow-moving water environment 

on the basis of its odd mammalian assemblage (Hutchison 1 964). This is consistent with 

the interpretation of the close cluster of geomyid localities. The difference in fossorial 

herbivore fauna between the two localities may also be an artifact of collection methods. 

Most of the numerous mylagaulid-only localities lack paleoenvironmental data 

that would allow discussion of the likely habitat preferences of mylagaulids. However, 

Shotwell ( 1 963, p . 1 8) mentioned that, on the basis of mammalian assemblages, the 

"savanna community is well represented in the Clarendonian Black Butte Fauna" (where 

most of the mylagaulid-only localities of the UOMNH are located). The clustering of 

localities yielded supports the hypothesis of differential habitat requirements between 

mylagaulids and geomyids in the northern Great Basin during the mid to late Miocene. 
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The paleopedology of the locality UO 2337 (Black Butte, late C1arendonian, 

Juntura Formation) was investigated by Retallack (2004) . The section studied is 

dominated by gray siltstone and sandstone derived seasonally waterlogged soils. This is 

evidence for a riparian environment associated with moderately developed woodlands 

(Retallack 2004 ) . The degree of development of the soils supports the hypothesis of a 

rather stable environment. The wetter environment of UO 2337 appears favorable to a 

geomyid, Pliosaccomys sp. ,  although this particular genus of burrowing rodent is only 

represented by a single specimen. There are no mylagaulids at this locality. The few 

paleobotanic data from macrofloras of the Great Basin as well as a few isotopic analyses 

of mammalian enamel from the Juntura Formation and Quartz Basin locality indicate a 

MAT of about 1 3- 1 8°C and MAP of 900- 1 000 mm (Retallack 2004, Kohn et al. 2002, 

Wolfe 1 994, Wolfe et al. 1 997, Graham 1 999). Kohn et al. (2002) recommended further 

analyses of different taxa (i .e. not horses) from those areas. 

Paleosol data from the Pawnee Creek Formation of northeastern Colorado where 

burrows of a mylagaulid occur indicate an environment vegetated by shrubs and 

hackberry trees (Celtis sp.) and a rich soil located above the water table in a floodplain 

environment (Gobetz 2006). This habitat would have been drier than that described for 

geomyids at UO 2337 .  

The cluster analysis supports the hypothesis that the apparent exclusion of geomyids 

and mylagaulids, rather than being a consequence of competition, is a result of the fact 

that mylagaulids and geomyids were habitat specialists. It may be difficult to determine 
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precisely which taxa occupied which habitats without gathering additional 

paleoenvironmental data for the area studied. From studies of paleopedology in the Great 

Plains and the Great Basin, it appears that mylagaulids might have preferred a drier 

environment than geomyids. Modem data on the habitat preferences of geomyids indicate 

widespread heterogeneity in habitat preference within and across genera (Lacey et al. 

2000). For example, Thomomys bottae generally favors alluvial areas for burrowing, and 

particularly creeks during droughts, although it may be relegated to drier, harder soils 

when in contact with other geomyid taxa (Jones and Baxter 2004). On the other hand, 

Geomys pinetis was found to be most abundant in dry soils (Pembleton and Williams 

1 978). It seems that the geomyids present in southeastern Oregon during the Miocene 

expressed affinities to wetter environments, maybe similar to those favored by Thomomys 

today, and did not associate with the dry habitats preferred by the modem Geomys. On the 

other hand, mylagaulids seem to show affinities for savanna habitats. 

The local to regional scale differences in environment between wetter, more riparian 

habitats and drier savanna ones would explain the opposite expansions and contractions of 

the habitat range of each of the fossorial rodent families and the associated variation in the 

composition of the burrowing herbivore guild. Rather than an intra-family habitat 

partitioning observed in modem geomyids, geomyids and mylagaulids might have 

experienced inter-family habitat partitioning during the Miocene. 

Shotwell ' s  ( 1 958a) hypothesis of the habitats from which these fossils were derived 

may well be confirmed with the caveat that although our data suggest that changes in the 
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abundance of the mylagaulids are related to changes in habitats, I cannot conclusively tie 

those variations to the spread of grasslands as suggested by Shotwel l  ( 1 958a) or Hopkins 

(2007). The results of my work also emphasize the similarities between paleoecological 

studies at different scales. With changes in global or local climates (Zachos et al. 200 1 ,  

Kohn et al. 2002, Retallack 2004), the dominant habitat switched back and forth between 

drier, more savanna-like environments, and more mesic, riparian habitats. This seems to 

have led to turnover events in the burrowing herbivore guild. These turnovers may be 

related to the abi lity of the animal to burrow in different habitats. The abi l ity to burrow 

determines the potential for escape from predators. Samuels and Van Valkenburgh (2009) 

hypothesized high predation pressure on fossorial rodents and Hopkins (2005) 

demonstrated that the evolution of the horns of the Great Plain mylagaulid  Ceratogaulus 

was related to defense against predators. Burrowing herbivores might have been subject to 

important pressure from predation. If soils prevented burrowing because of a change in its 

physical properties (water content, induration, vegetation presence, nature of the parent 

material, etc), there could have been resulting changes in the predation pressures upon 

burrowing herbivores of different clades and, in turn, extirpation of one taxon or another. 

From the late Hemingfordian to the late Clarendonian in the northern Great Basin, 

mylagaulids were more abundant than geomyids in the burrowing herbivore guild of the 

northern Great Basin. In the early early Hemphilian, without any evidence from global 

climate curve of an important change in climate, geomyids became more abundant. This 

may be the consequence of a switch to an environment promoting the habitat most 
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favorable to geomyids. Alternatively, rather than being beneficial to geomyids, it is 

possible that the environment was very unfavorable to mylagaulids. Under this scenario, 

as the mylagaulids retreated with the contraction of their environment, they would have 

left room for geomyids that could have occupied the soils now hostile to the family 

Mylagaulidae. In the late early Hemphillian, another switch in climate led to the return of 

a microhabitat preferred by mylagaulids. Again, there does not seem to be a causative 

change in the global climate. Instead, an important local change in environment, causing a 

switch in habitat, appears to be imprinted on an apparently disconnected global trend that 

correlates but does not cause the change in fauna. This has been observed on a shorter 

time scale in the late Pleistocene of Washington state (Rensberger and Barnosky 1 993). 

Further study of the paleopedology at the sites collected by Shotwell and others is needed 

to complete the paleoenvironmental data for the region and provide material for further 

analysis of the pattern described herein. The importance of habitat changes in mitigating 

or enhancing climate changes on mammalian taxa and the environmental preferences of 

mammals is believed to be a driving force of evolution in the Cenozoic (Blois and Hadly 

2009). The present dataset does not allow me to conclude whether or not environmental 

changes are responsible for the decline of mylagaulids in North America as a whole, or 

for their final extinction at the end of the Miocene. 
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CONCLUSIONS 

This study focused on the paleoecology of the burrowing herbivore guild from the late 

Hemingfordian through the early late Hemphill ian in the northern Great Basin. I found 

that, rather than mutually exclusive causes for the waning of mylagaulids, climate, 

environmental variation, and biotic interactions may have come together to drive one of 

the most successful groups of burrowing rodents of the North American fossil record to its 

extinction. The first hypothesis formulated at the beginning of this paper of competitive 

interactions between mylagaulids and geomyids is not supported. Changes in the fossorial 

herbivore guild as a whole do not seem to be a gradual change in the composition of the 

guild but rather stasis in the early part of the record followed by a succession of turnover 

events falsifying the second hypothesis of competitive interactions between members of 

the fossorial herbivore guild. Those changes in faunal composition do not seem to be a 

consequence of global climate change. Environmental changes around turnovers in 

burrowing rodent fauna may have driven the changes in their relative abundances. 

I present a new hypothesis for the decline of mylagaulids in which local to regional 

scale c limatic changes triggered dramatic fluctuations in the dominant habitat, thus 

mediating competitive interactions by allowing one taxon to take over the other on the 

landscape as the fossorial rodent niche was left emptied in tracking a more favorable 

habitat. The observed pattern suggests that the Miocene burrowing herbivore guild was 

partitioned according to preferences in microhabitats at the local to regional scale. 
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CHAPTER IV 

MICRO WEAR ANALYSIS OF FOSSIL GEOMYIDAE AND 

MYLAGAULIDAE FROM THE GREAT BASIN 

INTRODUCTION 

The study of microwear features on the enamel surface of mammalian teeth is 

widely used to reconstruct paleodiets of extinct mammals (e.g. , Solounias and Semprebon 

2002, Merceron and Ungar 2005 ,  Billet et al. 2009, Rivals and Solounias 2007, Ungar et 

al. 2007, and references therein) . This technique has become increasingly popular for 

determining the diets of extinct mammalian taxa, particularly ungulates (e.g., Rivals and 

Semprebon 2006, Merceron, Zazzo et al. 2006), primates (Merceron, Taylor et al . 2006, 

Rafferty et al . 2002), moles (Talpidae; Silcox and Teaford 2002), sirenians (Sirenia; 

Beatty et al. 2009), carnivores (Carnivora; Goillot et al. 2009), and hyraxes (Hyracoidea; 

Walker et al. 1 978). Few of these prior studies have focused on rodents and those that did 

often focused on a single taxon or a few related taxa (Rensberger 1 978 ,  Nelson et al. 

2005,  Hopley et al; 2006, Townsend and Croft 2008, Gomes Rodrigues et al. 2008, 
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Hautier et al. 2009). The order Rodentia is very diverse, ranging widely in body size, 

behavior, habitat, and diet (Merritt 20 1 0, Kay and Hoekstra 2008) and thus spans a wide 

variety of ecologies. Broad sampling is necessary in order to get representative modern 

taxa of different diets and behaviors. In particular, burrowing and the associated ingestion 

of exogenous grit have been recognized as having a major effect on the micro wear 

signature of an animal (Daegling and Grine 1 999) and must be considered in studies of 

diet and micro wear of rodents. 

Rodents are an important part of the fossil mammal communities of southeastern 

Oregon during the Miocene (Shotwell 1 958a, 1 963). The presence of several different 

species of subterranean rodents in this area of the northern Great Basin raises the question 

of the potential for interspecific competition over food resources and habitat 

specialization. Addressing these questions requires one to determine the diet of these 

animals. I focus on mylagaulids and geomyids, two groups of extinct subterranean rodents 

present in the Great Basin during the Miocene. The Mylagaulidae, a family of burrowing 

rodents from the Miocene of North America, include species of large (mass > I kg) 

subterranean to fossorial herbivores. Previous paleoecological studies have benefited from 

data on the body size of the Mylagaulidae (Hopkins 2007, 2008b). Knowledge of their 

diet wil l  allow further investigation ofthe paleoecology ofthis peculiar family of fossil 

rodents. This family of burrowing rodents exhibits an unusual dentition. They lose the 

first molar early in ontogeny and possess reduced second and third molars as well as a 

characteristic enlarged fourth premolar that provides most of the chewing surface. Those 
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cheek teeth are hypsodont and this feature has been suggested to be related to an abrasive 

diet and the spread of grasslands in North America. This hypothesis has been tested by 

Hopkins (2007) but further investigation of this question can be undertaken with new 

lines of evidence. I use microwear analysis to further test this technique, and establish the 

diet of burrowing rodents and its bearing on species interactions. This association of 

hypsodonty, abrasive diet, and spread of grasslands has been extensively studied in 

ungulates (e.g., Janis et al. 2002, Webb 1 977, but see Stromberg 2006) but only suggested 

in rodents (Stirton 1 947, Webb 1 966). Calede (third chapter of this thesis) suggested that 

mylagaulids may have been involved in habitat partitioning with other subterranean 

rodents : the geomyids. Divergent diets may not allow a definitive conclusion on habitat 

partitioning (third chapter of this thesis), they may provide additional evidence against 

direct competitive interactions. 

The microwear signature of an organism can be defined as the proportion of 

scratches and pits on its tooth enamel ;  it is a direct consequence of feeding behavior 

(Walker et al . 1 978) .  As abrasive food is ingested (e.g. , grasses), the phytoliths of the cell 

walls mark the enamel surface with scratches (Merceron et al . 2004) . The consumption of 

hard objects (e.g. , seeds, nuts, fruit pits) creates pits (Rafferty et al. 2002). The resulting 

microwear signature is erased and replaced by subsequent feeding in 24 to 48 hours, so 

that microwear exhibits the "last supper effect" (i .e. the observed microwear signature is 

that of the last meal before the death of the individual; Grine 1 986). Thus, it is possible to 

link the diet of an extant animal whose feeding behavior is known with the microwear 
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signature observed on the surface of the enamel of its teeth. This calibration of microwear 

signature with diet using data from extant taxa can be used to assess the diet of an extinct 

animal. There are two main methods for observing and counting microwear features. 

Microwear was first studied using scanning electron microscopy to take pictures of the 

tooth at high magnification (i .e. 500x, Silcox and Teaford 2002). The other method only 

requires a stereomicroscope (magnification 30x to 75x) and uses transmitted light through 

transparent casts, therefore avoiding the mounting and coating of the specimens. The light 

microscope method is a much cheaper and faster method that allows for larger sample 

sizes (see Solounias and Semprebon 2002). Microwear studies have proven effective in 

distinguishing between broad diet categories such as browsing (where leaf material and 

sometimes hard foods such as fruits and nuts constitutes most of the diet), grazing (where 

grasses and forbs constitute most of the diet) and mixed feeding behavior (Solounias and 

Semprebon 2002, Ungar et al. 2007). 

Unlike ungulates whose diets range along a browsing-grazing continuum, rodents 

exhibit a wider variety of feeding behaviors. Although most are herbivorous, some have 

omnivorous feeding behaviors or even carnivorous diets (e.g., Tamias senex, Gannon and 

Forbes 1 995 ;  Onychomys torridus, McCarty 1 975) .  Indeed, small mammals exhibit a 

diversity of feeding behaviors that are more opportunistic and variable than that of most 

ungulates. Previous research (Townsend and Croft 2008) on microwear in rodents has 

attempted to cluster rodent species in dietary groups according to the proportion of seeds, 

fruits, grasses, and leaves in the diet. These categories were developed for caviomorph 
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rodents in which herbivory is the dominant feeding behavior and green vegetation is 

almost always the main constituent of the diet. In this study, I include taxa with more 

diverse diets including fungivory as well as roots, tubers, bulbs, and corms. The 

microwear of extant taxa will be used to provide a framework for understanding the diet 

of extinct fossorial rodents and their bearing on the paleoecology of fossorial rodents. 

Low magnification microwear analysis should distinguish between broad and diverse 

dietary categories in the rodents included in this study as it has for other taxa (e.g. ,  

Solounias and Semprebon 2002, Semprebon et al .  2004, Nelson et al. 2005,  Townsend 

and Croft 2008). I also expect to recognize burrowing behavior, with the associated 

ingestion of exogenous grit, from the microwear signature of extant rodents. Using the 

relationships between diet and microwear signature developed from the extant species, it 

should be possible to determine the diet and burrowing habits of extinct rodents on the 

basis of their microwear signature. 

MATERIAL AND METHODS 

Dietary categories 

We implemented the categorization of Townsend and Croft (2008) that included three 

categories (i .e. grass-leaf, fruit-leaf, fruit-seed) to cover the more diverse diets of the taxa 

considered in this study. The categories are determined by the most important sources of 
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food for the species and do not necessarily reflect secondary nutritional resources. Diet 

data and references for extant rodent taxa are drawn from the literature and are provided 

in Table 1 .  I was careful to consider seasonal variation in assigning species to categories 

as Townsend and Croft (2008) suggested. In addition to the categories of Townsend and 

Croft (2008) slightly redefined for the purpose of this study, I added two categories for 

feeding behaviors unobserved in caviomorph rodents. The categories used in this study 

include: ( 1 )  Abrasive food (i.e. grass-leaf group, the diet mostly comprises grasses and 

leaves, aquatic vegetation, other soft green vegetation), (2) Hard food (i .e. fruit-seed 

group, the animal relies on acorns, seeds, nuts, and fruit pits as its main nutritional 

source), (3) Mixed food (i .e. fruit-leaf group, the counterpart to the previously described 

groups, both green vegetation and seeds are important in the diet), ( 4) Underground food 

(i.e. root-bulb group, tubers, roots, corms, bulbs and buried food constitute most of the 

diet of the animal), (5) Fungivory (i .e. fungi are the main nutritional source) . 

Material studied 

I included 1 1  species of modem rodents from six different families of rodents 

spanning phylogenetic as well as ecological diversity. All were museum specimens and 

adults with fully erupted dentition. Both males and females were sampled and individuals 

covered as much of the geographic range of the species as possible to account for 

variations in diet (and therefore microwear signature) across the landscape. 
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Similarly, seasonal variations are critical, I was careful to include in our datasets 

specimens collected during different seasons throughout the year when available. Only 

taxa with a well-known diet were used. Because microwear studies require large data sets 

(i.e. numerous individuals sampled per taxon) to be reliable, I sampled 89 specimens for 

the extant taxa with an average of approximately 8 specimens per taxon. Details of the 

sample size for each taxon are provided in Table 1 .  Detai ls about the provenance and 

season of death of each specimen are available online for all University of Washington 

Burke Museum specimens (at 

http://biology.burke.washington.edu/mammalogy/database/search.php) and are 

unavailable for University of Oregon Museum of Natural and Cultural History specimens. 

I also investigated the diets of specimens of six species of fossil rodents in two 

families : the Mylagaulidae and the Geomyidae. I included 2 1  specimens from 4 different 

species of mylagaulids from the Hemingfordian through Hemphillian of the northern 

Great Basin (parts of Oregon, Nevada, and Idaho, second chapter ofthis thesis) : ( 1 )  

Alphagaulus vetus, (2) Hesperogaulus gazini, (3) Hesperogaulus wilsoni, ( 4) and a new 

species within the genus Hesperogaulus (see second chapter of this thesis) . The sample 

size for these taxa varies considerably as dictated by the fossil record (Table 2). In 

addition to mylagaulids, I also examined the microwear of two species of geomyids from 

the same area (Mojavemys mascallensis and Pliosaccomys magnus). The familial 

assignment of M mascallensis has been the subject of some controversy (Korth and 

Chaney 1 999, Feranec et al . 2005,  Flynn et al. 2008) and I follow Feranec et al. (2005) in 
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this paper. Nevertheless, the results of this paper will not be invalidated if the suggestion 

that M mascallensis is a dipodomyine (Flynn et al. 2008) is confirmed. Because of the 

challenges inherent to casting very small, isolated geomyid teeth and the lack of complete 

tooth rows to study, the sample size for each of those species is l imited to three 

spectmens. 

TABLE 2: Summary of the data for the fossil species included in this study. 
Abbreviations for subdivisions of North American Land Mammal Ages (NALMA): 
LHMF, Late Hemingfordian; EBAR, Early Barstovian; LBAR, Late Barstovian; LCLA, 
Late Clarendonian; LEHP, Late Early Hemphillian. References: 1 ,  Matthew 1 924; 2,  
Munthe 1 988; 3,  Korth 2000; 4, Chapter two of this thesis; 5 ,  Korth 1 999; 6, Feranec et al. 
2005; 7, Shotwell 1 967b. 

Family Binomial Name Formation 
NALMA 

References 
subdivision 

Massacre 
Lake 

LHMF, 
Mylagaulidae Alphagaulus vetus Fauna, 1 ,  2, 3 ,  4 

Virgin 
EBAR 

Valley 
Beatty 

Mylagaulidae 
H esperogaulus Butte, 

EBAR 4, 5 
gazini Sucker 

Creek 

Mylagaulidae 
Hesperogaulus Juntura, LCLA, 

4 
species A Drewsey LEHP 

Mylagaulidae 
Hesperogaulus 

Drewsey LEHP 4,5 
wilsoni 

Geomyidae 
Mojavemys 

Deer Butte LBAR 6 
mascallensis 

Geomyidae 
Pliosaccomys 

Drewsey LEHP 7 
ma nus 
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There is a great diversity of occlusal patterns and tooth morphology in our dataset. 

Some rodents, such as geomyids, Aplodontia rufa and mylagaulids, are hypsodont and 

wear down their teeth to expose enamel bands of varying complexity. Others, such as 

squirrels and marmots (Sciuridae), exhibit a generalized pattern in their upper molars with 

an easily distinguishable protocone. To provide consistency, I collected microwear data 

from the upper second molar (M2) for all extant taxa. Because the microwear signal is 

consistent across associated maxillae and mandibles (Semprebon et al. 2004), when the 

upper tooth was not avai lable, I selected its counterpart in the lower tooth row. More 

specifically, the data were gathered from the protocone or the analogous lingual enamel 

band. The same procedure was followed for fossil geomyids. Collecting microwear data 

from the second (upper or lower) molar has become the norm for microwear studies (e.g . ,  

Townsend and Croft 2008, Semprebon et al .  2004) and allows comparisons to be made 

across studies. Because much (if not all, as in Hesperogaulus wilsoni) of the chewing 

surface in mylagaulids is provided by the 4th premolars, and the 4th premolars constitute 

much of the fossil record of the Mylagaulidae, mylagaulid specimens were studied using 

the 4th premolars rather than the M2. This may induce a bias with differences in 

microwear signature across the tooth row. Several microwear studies have used different 

teeth in a single analysis as a consequence of fossil material available (e.g., Nelson et al. 

2005).0ther studies (e.g., Mahoney 2006) have shown that microwear may vary across 

the tooth row. This may be a consequence of differences in bite force across the tooth 

row, or in amount of dirt that contacts the different teeth. Further work comparing 
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microwear in mylagaulids' fourth premolars and second molars may provide a better 

understanding of the potential pitfalls of the choice of teeth made here. Casts of 

specimens with obvious taphonomic damage (e.g., microwear-like features on both 

enamel and dentine) were rejected from the dataset and no features were counted on the 

casts. This was the case for most specimens of Alphagaulus vetus from the Virgin Valley 

Formation. Casts without any microwear visible (i .e. smooth enamel) were also rejected, a 

different taphonomic phenomenon (King et al. 1 999) mostly observed in Hesperogaulus 

wilsoni in our sample.  

Specimen preparation and stereomicroscopic observations 

For, all specimens, I made clear, high-definition epoxy casts of the tooth of interest. 

Because of its optical properties, enamel cannot be directly observed under the 

stereomicroscope (Solounias and Semprebon 2002). Therefore, I molded specimens in the 

collections visited (see Appendix D) and later made casts following the method of 

Solounias and Semprebon (2002) . 

Casts were examined at 75x magnification using a Leica S8APO stereomicroscope. I 

examined a 0 .3  mm x 0.3 mm area on the protocone (or analogous enamel band) of each 

specimen. On each tooth, I counted the number of pits and the number of scratches, 

subdivided by size and shape following Solounias and Semprebon (2002) . Pits were 

identified as large pits, small pits, large puncture pits, and small puncture pits (Fig. 1 ) .  
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Scratches were identified as fine scratches, coarse scratches, hypercoarse scratches, and 

gouges (Fig. 1 ) .  I scored all specimens for four different species of extant rodents (out of 

eleven) twice to assess intra-observer variation. 

Intra-observer error and repeatability of counts 

Low-magnification microwear analysis is a recently-developed method (Solounias 

and Semprebon 2002) whose reproducibility has been the subject of controversy (e.g. ,  

Teaford et al. 2008). Semprebon et al. (2004) provided support for the potential of this 

method to reconstruct diet and distinguish between broad dietary categories. They found 

that the method is subject to little intra-observer and inter-observer error. The common 

technique used to limit intra-observer error is to perform several (usually two) scorings of 

each specimen, average those data to obtain an average microwear signature for the 

specimen, and then later average the averages of all specimens of a given taxon to get the 

average microwear signature for the species (or genus) studied (e.g. , Townsend and Croft 

2008, Solounias and Semprebon 2002). This method, although yielding the central 

tendency of the microwear signature for a given cast, has the problem of pseudo-

replication. 
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cs 

lp 

hs 

FIGURE 1 :  Scanning Electron Microscopy (SEM) photomicrographs of extant rodent 
taxa illustrating microwear features . A. Aplodontia rufa, B .  Sciurus griseus, C. Thomomys 
bottae, D. Tamias senex. Abbreviations :  crs, cross scratch; cs, coarse scratch; fs, fine 
scratch; g, gouge; hs, hypercoarse scratch; lp, large pits; sp, small pits. 

The averaged data for the specimen are not an actual count of anything biologically real, 

and hence may increase the type II error rate unnecessarily (i .e. accepting the null 

hypothesis when the alternative is correct). I therefore did not score all specimens twice. 

Instead, I counted all specimens for a subset of the extant specimens twice and contrasted 
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the two independent counts to assess the intra-observer error rate. The analyses are 

performed on actual counts from the specimens. The taxa used to assess intra-observer 

error rate are Aplodontia rufa, Erethizon dorsatum, Sciurus carolinensis, and Marmota 

monax. This set includes three of the five dietary categories considered in this study as 

well as various degrees of fossoriality. The intra-observer error was calculated using a 

linear regression of the first count of all pits against the second count for all pits. 

Similarly, a regression was run for all scratches. Because most of the pits are small and 

most of the scratches fine, I also ran regressions of the first count of the small pits versus 

the second and a regression of the first count all fine scratches versus the second. 

Diet and burrowing behavior of rodents in relation to microwear signature 

As a first attempt at differentiating the diets of extant and fossil rodents on the 

basis of microwear, I plotted the species means for the total number of scratches versus 

the total number of pits to look for the partitioning of dietary categories commonly 

reported in the microwear literature (e.g. , Townsend and Croft 2008, fig. 4; Solounias and 

Semprebon 2002, fig. 8). I plotted these variables for each specimen to look for clustering 

of microwear signatures of animals with similar diets. These plots were then used to 

determine the magnitude of intraspecific variation in individual diets and to correlate the 

microwear signature of fossil taxa with those of extant ones of known diets. Outliers and 

clusters on the plots were checked against the specimen data to find potential links 
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between microwear signature and specimen variables. All relationships uncovered from 

the plots were tested for significance using Chi-square tests. The commonly accepted 

convention is that the Chi-square test cannot be used when any of the cell counts is below 

five. However, this is only true of the expected count cell .  Moreover, Bradley et al. ( 1 979) 

have shown that small expected frequencies do not impair the test results. Hence, Chi

Square tests should be valid for these analyses in spite of the small sample sizes. I used 

two degrees of freedom for each of the tests (corresponding to the number of categories). 

In order to test that the low-magnification microwear count of scratches and pits 

on the enamel surface of rodent teeth can accurately represent the ecology of the animals, 

I used several linear discriminant function analyses (DF A). I tested for the ability of the 

microwear features to differentiate the dietary category of each species on the basis of 

species mean values. Similarly, to test for a possible microwear signal from the 

exogenous grit ingested during burrowing by some taxa, I performed a linear discriminant 

function analysis comparing the various life habits (i .e .  subterranean, fossorial, semi

fossorial, non-fossorial) of the taxa and differentiating this signal from their microwear. 

Finally, I ran a third DFA using the family-level identification of each species. This test 

was intended to determine whether phylogenetic differences were significant in 

generating the patterns of dental wear. I used the discriminant analysis developed from the 

extant taxa to determine the diet and burrowing behavior of the fossil taxa. The fossil taxa 

were treated as unknowns. I ran both non-jackknifed and jackknifed DF As. All 

discriminant function analyses were run in JMP 8.0 (SAS). 
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I also used cluster analyses to find the extant species with the most similar di�ts to the 

six fossil taxa considered in this study. Those analyses were run using the average for the 

species considering all specimens counted. I ran analyses taking into account all of the 

detailed microwear feature categories excluding the total number of pits and the total 

number of scratches. This decision was made because these sums are not independent sets 

of variables and do not bring additional information to the dataset. I also ran analyses 

considering only the total number of pits and the total number of scratches. All cluster 

analyses were run in R 2 . 1  0. 1 (2009). For each analysis, two clustering methods were 

used: Ward and average linkage. Both used euclidean distances. 

Additionally, I used a principal component analysis (PCA) on the covariances of 

microwear feature distributions to find the features that explain most of the variance 

between taxa and to facilitate their visualization. This analysis was run excluding the total 

number of pits and scratches as explained above for the cluster analysis. The analysis was 

run in R 2 . 1 0. 1 (2009) and the results were further investigated in JMP 8 .0 (SAS) to 

determine the loadings of the different features on the principal components. 

Finally, the data analysis was completed with two one way ANOVAs of the 

microwear features . This analysis is important to check for significant differences in 

microwear features within the dataset. The first ANOV As were run on the total number of 

pits and scratches whereas the others considered all categories of microwear features. 

These ANOV As were complemented by a Tukey-Kramer Honestly Significant Difference 

(HSD). This test is not as sensitive as the ANOV A and was only run when the null 
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hypothesis of the ANOVA is rejected. It has the advantage of providing a comparison of 

the means for the feature studied across all taxa. The Tukey test assumes a parametric 

normal distribution of the data, an assumption violated by the microwear data. Rather, 

microwear data are distributed more like the nonparametric Poisson distribution. This 

only slightly violates the assumption of the Tukey test. A Wilcoxon test was also run to 

confirm the results of the ANOV A. 

RESULTS 

Intra-observer error 

Results of the linear regressions are presented in Table 3 and shown in Fig. 2. The 

average R2 (similarity between the two counts) for all pits is 0 .74.  It is largest (0. 8 1 )  for 

Sciurus carolinensis and the smallest (0.63) for Erethizon dorsatum.  When considering all 

scratches, the largest R2 is for Marmota monax and smallest for Erethizon dorsatum. The 

average R2 for all scratches is 0 .73 .  There is no consistent trend in the relationship 

between the R 2 for all scratches or all pits and that of fine scratches and small pits 

respectively. 

/ 
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FIGURE 2 :  Linear regressions of counts of microwear features in four different taxa. 

1 33 

Dark diamonds indicate total number of features (pits or scratches), grey squares counts of 
small pits or fine scratches. The R2 above the regression line is for the total. A summary 
of the R2 and p values is provided in Table 3 .  A. pits of Sciurus carolinensis, B .  scratches 
of S. carolinensis, C. pits of Aplodontia rufa, D. scratches of A. rufa, E. pits of Erethizon 
dorsatum, F .  scratches of E. dorsatum, G.,  pits of Marmota monax, H.  scratches of M 
monax. 
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TABLE 3 :  Results of the linear regressions for the intra-operator error. 

Taxon Variable Rz p 

small pits 0.6968 2 .66E-03 

Sciurus carolinensis 
all pits 0 .8098 3 .89E-04 

fine scratches 0 .8384 2.00E-04 
all scratches 0.7349 0.00 1 523 

small pits 0 .88 1 2  5 . 74E-05 

Aplodontia rufa 
all pits 0.8036 0.0004438 

fine scratches 0.8094 3 .92E-04 
all scratches 0 .7575 0.00 1 054 

small pits 0 .8794 5 .75E-04 

Erethizon dorsatum 
all pits 0 .6336 0 .0 1 8 1 2  

fine scratches 0.6986 9 .75E-03 
all scratches 0.62 1 2  0.020 1 5  

small pits 0.6692 2 .45E-02 

Marmota monax 
all pits 0.729 0.0 1 448 

fine scratches 0 .52 1 6.70E-02 
all scratches 0.7998 0.00658  

Some taxa (e.g., scratches in  Marmota monax) display a high R2 for the total 

counts of features (either scratches or pits) despite a low one for the most common finer 

feature (fine scratches or small pits respectively). Others (e.g. , pits in Erethizon dorsatum) 

show a high R2 for the fine scratches or small pits but a poor R2 for the total of all 
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features . The variation in microwear thus comes from either the main source of data (i .e. 

small pits/fine scratches) or the additional categories (larger and puncture pits, coarser 

scratches) depending on the taxon. Because I looked for significant relationships for both 

all pits and small pits as well as all scratches and fine scratches, I corrected the p value 

with the Bonferonni correction (p= 0.05/Number of tests, Shaffer 1 995) .  Thus the 

threshold for significance is p=0.025 for each test. All relationships between the counts 

are significant. 

Patterns of microwear features in relation to diet and burrowing behavior: graphical 

correlations 

Fig. 3 shows the average number of scratches for the species plotted against the 

average number of pits. A summary of the counts for all taxa is provided in Table 4. All 

specimen counts are provided in Appendix D. The upper right comer of the graph shows 

species with high counts of both pits and scratches, including Thomomys talpoides, an 

extant gopher feeding above ground on abrasive food. 
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TABLE 4: Summary of the average microwear feature counts for all species included in 
the study. StD stands for Standard Deviation. 
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TABLE 4 (continued). 
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FIGURE 3 :  Bivariate plot of the counts of scratches versus pits averaged for each species 
included in this analysis. Symbols correspond to the following categories : empty, mixed 
feeders; black, underground feeders; dark gray, fungivores; dark gray with black lines, 
hard object feeders; light gray, abrasive food eaters; crosses, fossil geomyids; black with 
white lines, mylagaulids. 

This species is above the one-to-one line and therefore exhibits more pits than scratches. 

Farther down the line but remaining above it, are other subterranean taxa, Thomomys 

bottae and Heterocephalus glaber, which both feed on the underground storage organs of 

plants (roots, tubers, corms, etc .) . On the upper left comer of the graph with a low count 

of scratches but many pits is Dipodomys ingens, a hard-object-feeding semi-fossorial 
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heteromyid. In the lower left corner on the graph with roughly equal numbers of scratches 

and pits is Erethizon dorsatum, a non-fossorial mixed feeder. To the right of the graph 

with more scratches than pits are the two fungivorous taxa included in this study: Tamias 

senex and Sciurus griseus. A cluster of four different species is  located on the left of the 

graph and displays high counts of pits relative to the number of scratches. This group 

include, with the fewest scratches relative to pits Aplodontia rufa, a fossorial animal 

feeding on ferns and other above ground abrasive plants. Two taxa ofhard-object-feeding 

rodents cluster together with the semi-fossorial Tamias striatus located just above Sciurus 

carolinensis. Located in between the abrasive food eating A. rufa and the hard object 

feeding squirrels i s  Marmota monax, a fossorial mixed feeder. 

The microwear signature of fossil taxa can be qualified using counts of scratches 

and pits and visually compared to the distributions of extant taxa (Fig. 4) . In order to 

obtain a first approximation of the diet of the fossil taxa studied, I first looked at where 

they plot in relation to modern taxa on a plot of scratches versus pits (Fig. 3) .  When 

considering the average for the species, the two species of fossil geomyids plot very close 

to one another in the upper right corner of the graph above Thomomys talpa ides. The 

Mylagaulidae, however, display a very different microwear signature with much lower 

counts of both scratches and pits. Hesperogaulus wilsoni plots close to the fungivorous 

squirrels although it exhibits a few more scratches than Tamias senex or Sciurus griseus. 

Hesperogaulus sp. A is located in the lower left corner of the graph quite close to 

Erethizon dorsatum but again with a few more scratches. 
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FIGURE 4:  Views of the counting areas and microwear features of several species of 
rodents included in this study. All photos were taken at 37 .5x magnification. A.  
Dipodomys ingens, B.  Erethizon dorsatum, C. Heterocephalus glaber, D. Sciurus 
carolinensis, E. Thomomys talpoides, F, Alphagulus vetus, G, Hesperogaulus sp. A, H.  
Hesperogaulus gazini. 



1 42 

Alphagau!us vetus is closest to Aplodontia rufa but with fewer pits. The last species of 

mylagaulids, Hesperogaulus gazini, is plotting close to the cluster of Sciurus carolinensis, 

Tamias striatus, and Marmota monax, with fewer pits than S. carolinensis. 

To get a better idea of the spread of the microwear signatures in fossil burrowing 

rodents, and their overlap with modem taxa, we can look at the specimen data shown in 

Fig. 5 .  Fossil Geomyidae cluster together and both overlap with Thomomys talpoides. The 

single specimen of Hesperogaulus wilsoni plots where a specimen of Tamias striatus 

plots and exhibits a few more scratches than fungivores. Hesperogaulus sp. A overlaps 

heavily with Erethizon dorsatum. It also spans the fields of Aplodontia rufa, Sciurus 

griseus, Sciurus carolinensis and slightly overlaps with Tamias striatus and Marmota 

monax. All specimens of Alphagaulus vetus but two are included in the field of 

Aplodontia rufa. One of the specimens excluded is on the very edge of the field and the 

last specimen is also very close to the limit of the range of A. rufa's microwear signature. 

Hesperogaulus gazini overlaps with A. rufa, Marmota monax, or the two seed-eating 

sciurids. Hesperogaulus wilsoni does not overlap with any other mylagaulid. A. vetus and 

Hesperogaulus sp. A do overlap in the upper part of the field of H. sp. A and the lower left 

one of A. vetus. Hesperogaulus gazini overlaps with both H. sp. A and A. vetus. 
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Variations in microwear signature within taxa 

Rather than looking at the average for the species which includes possible outliers 

and may not reflect finer clusterings, consequences of seasonal or geographic variations, 

we can also plot the average number of scratches and pits for all specimens of modem 

taxa (Fig. 6). 
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FIGURE 6: Bivariate plot of the counts of scratches versus pits for all specimens of all 
species included in this analysis. Black lines indicate underground feeders, dark gray lines 
indicate fungus eaters, medium gray indicates hard object feeders, light gray indicates 
abrasive food eating rodents, pale gray indicates mixed feeders. 
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All specimens of Thomomys talpa ides cluster rather close to one another. There is no 

overlap with any other specimen of a different species. There is, however, some overlap 

between the two underground feeding rodents since some specimens of Thomomys bottae 

are very close to or even overlap with the field of Heterocephalus glaber. This latter 

species exhibits a very small overlap with the Tamias senex whose field overlaps heavily 

with that of Sciurus griseus. On the upper left comer of the graph, with numerous 

scratches and pits, are the specimens of the seed -specialist Dipodomys ingens. There is a 

lot of variation in the total number of pits and scratches of this species but it does not 

overlap with any other species. The lower left comer of the plot exhibits a lot of overlap 

between five species in three different dietary groups. Towards the bottom of this cluster, 

Erethizon dorsatum, is rather well constrained and occupies a field with low counts of 

pits. It is a mixed-feeder and overlaps with both an abrasive food eating species (A. rufa) 

and a seed-eating squirrel (Sciurus carolinensis) . The first of these species spans counts of 

scratches from about 25 to 45 and pits from 30 to 50, thus occupying much of the space in 

this comer of the graph. All species with microwear signatures located in this comer of 

the plot overlap with A. rufa. The two species of seed eaters : T. striatus and S. 

carolinensis overlap almost entirely as well as with the mixed feeding Marmota monax 

which in turns also falls within the field of A. rufa. The lower left comer of the field of the 

seed eaters and the upper left one of the fungus-eaters overlap as well .  

This general pattern of species ' numbers of scratches vs. pits shows the diversity 

of microwear signatures within taxa. Numerous species such as Thomomys bottae, 



1 46 

Heterocephalus glaber, and Dipodomys ingens span a wide range of microwear signatures 

along both axes. There is also a substantial overlap of the microwear signatures of four 

species in the lower left comer of the graph. Nevertheless, the diversity in microwear 

signatures within taxa can be understood by integrating geographic, seasonal, or sexual 

data from collection records (Fig. 7). These relationships are expected because microwear 

reflects the last meal of the individual and therefore (because it is not averaged) should 

represent variation in diet associated to season or foraging area. Linking microwear 

signatures to seasonal, geographic, and sexual data on specimens, has recently been 

undertaken in a quantitative manner by Merceron et al. (201 0). It will only be approached 

qualitatively here. 

There are five taxa for which it is possible to observe some variation introduced by 

seasonal, geographic, and other ecological differences. These relationships are not 

straightforward and should be further tested with larger sample sizes. In Thomomys 

bottae, four specimens from California, with high counts of pits (around 70) and lower 

counts of scratches (around 50), cluster together. There is another cluster with two 

specimens from Utah and one from California with higher counts of scratches (between 

60 and 80) at lower pit counts (below 50). Similarly, in Aplodontia rufa, it seems that 

geographic origin (as a proxy for differences in regional environment) of the specimen 

may account for some of the discrepancies in micro wear between the single specimen 

from Oregon (that exhibits the l argest number of scratches) and the specimens from 

Washington. There is also a convergence between season of death and microwear. 
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FIGURE 7 :  Variation among specimens of rodent taxa. A.  Thomomys bottae: full line 
indicates Californian specimens, dashed line specimens from Utah: B .  Black lines : Tamias 
striatus, solid line corresponds to male specimens, dashed line to female ones; dark gray 
lines : Sciurus carolinensis, dashed line unites spring and summer specimens, solid line 
fall and winter ones; light gray lines : Aplodontia rufa, dashed line indicates specimens 
from Washington, solid line the specimen from Oregon. 
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In Marmot a monax, the specimen with the least number of pits and scratches died and was 

collected in winter, while the other specimens collected spring and summer cluster 

together in a tight window of scratches and pits. There is also a relationship between 

season and microwear signature in Sciurus carolinensis with the single specimen 

collected in fal l  or winter exhibiting few scratches and a cluster of specimens with higher 

counts of scratches including specimens collected in spring or summer (except for one 

specimen collected in February that has the highest number of pits recorded for the 

species). In Tamias striatus, a group of three specimens includes only males ranging 

widely in the number of scratches with very little variation in the number of pits. Another 

group includes four specimens with very tightly clustered microwear patterns (range of 

scratches: 36-38, range of pits : 45-48). This group includes mostly females; there is only 

one male specimen. This could represent differences in nutrition in relation to gestation or 

lactation. Those qualitative relationships can be checked for significance using a Chi

square test. The results are summarized in Table 5. As a consequences of looking for 

clusterings in different species, I corrected the p value with the Bonferonni correction (p= 

0.05/Number of tests, Shaffer 1 995). Thus the threshold for significance is p=O.O 1 for 

each test. None of the results are found to be significant. There is no particular clustering 

of the specimens' micro wear for fossil taxa. 

Two extant species show a very wide range of observed microwear patterns that 

does not relate to any obvious seasonal, geographic, or sexual data. All specimens of 

Dipodomys ingens were collected on the same day in the same place and yet display a 
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very wide range of pit and scratch counts. Similarly, all specimens of Heterocephalus 

glaber were collected in the same place over the course of a few months and do not show 

any pattern consistent with the col lection records. This suggests that a wide variety of 

food resources were consumed by the different individuals collected. 

TABLE 5 :  Summary of the Chi-square tests for significance of intra-specific clusterings. 

Taxon Specimen data 
Composition of Composition of 

X2 p 
cluster 1 Cluster 2 

Sciurus Spring/Summer 0 5 
6 .8 0.043 

carolinensis Fall/Winter 4 1 
Thomomys Utah 0 2 

3 . 8  0. 1 496 
bottae California 4 1 

Tamias striatus 
Males 3 1 

4 0. 1 3 5  
Females 0 3 

Marmota Winter 1 0 
7 0.0302 

monax Spring/Summer 0 6 
Aplodontia Oregon 1 0 

1 0  0 .0674 
rufa Washington 0 9 

Cluster analyses of microwear 

In order to better constrain the diet of fossil burrowing rodents, I used cluster 

analyses to group the fossil taxa with the extant rodents with the most similar microwear 

signatures (Fig. 8-1 1 ) . There are very few differences between the four analyses. All 

analyses agree on the clustering of the fossil geomyids with Thomomys talpoides as well 

as the position of Hesperogaulus sp. A, which clusters with Erethizon dorsatum. 
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Alphagaulus vetus groups consistently with Aplodontia rufa, and Hesperogaulus wilsoni 

is found to cluster with Tamias senex and Sciurus griseus. The grouping of species within 

clusters differs depending on the data used. Using all microwear features excluding totals, 

S. griseus and T. senex are found to be closer to each other with H. wilsoni fal ling outside, 

not clustered with any living taxon. However, when running the analyses with only the 

total number of scratches and pits, H. wilsoni is grouped with T. senex and S. griseus fal ls 

out of this cluster. Using Ward's  method or average linkage did not make a difference. 

The two remaining clusters are less robust since some discrepancies are found across the 

analyses. All analyses but the one of all microwear features using average linkage find a 

cluster including Heterocephalus glaber, Thomomys bottae, and Dipodomys ingens with 

the first two grouping together. There are also differences in the clustering of 

Hesperogaulus gazini. Both analyses using only the total number of pits and scratches 

find H. gazini to cluster with Sciurus carolinens is. This cluster groups with another 

cluster including Marmota monax and Tamias striatus. Using all microwear features 

without totals, two very different topologies are found, both different from that found 

using totals only. The average linkage method yields clusters involving the same taxa as 

in the other analyses but in a different configuration. T. striatus and S. carolinensis cluster 

together with M monax outside of this group and H. gazini outside of the cluster formed 

by the three Sciuridae. Finally, if i run the analysis using Ward's method on all microwear 

features, H. gazini clusters with other species since it fal ls outside of the group formed by 

A. rufa and A. vetus. 
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FIGURE 8 :  Cluster analysis of the microwear features using Ward' s  method on all 
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FIGURE 9 :  Cluster analysis of the microwear features using the average linkage method 
on all microwear features. 
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FIGURE 1 0 :  Cluster analysis of the microwear features using Ward' s  method on the total 
pits and scratches. 
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FIGURE 1 1 :  Cluster analysis of the microwear features using the average linkage method 
on the total pits and scratches. 
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Discriminant function analyses of microwear signatures: can various diets and 

burrowing behaviors be differentiated? 

1 55 

I ran several DF As to test for the potential of microwear to reflect dietary 

categories, burrowing behavior, and phylogenetic affinity. The non-jackknifed DF As 

categorized all extant taxa correctly according to their degree of fossoriality, dietary 

category, or family identification. The D FA obtained from the dataset of extant rodents 

can be applied on fossil ones to attempt to better understand their ecology from their 

microwear. The first DF A run, including extant and extinct rodents, discriminated taxa on 

the basis of the counts of micro wear features on their enamel and their degree of 

fossoriality. The results of this analysis are provided in Table 6. The two geomyids were 

assigned high degrees of fossoriality (fossorial and subterranean) whereas the mylagaulids 

were mostly assigned low degrees of fossoriality. Alphagaulus vetus was classified as 

fossorial whereas all species of the genus Hesperogaulus were classified as non-fossorial . 

This puzzling result is further discussed in the discussion. The categorization of fossil 

species in dietary categories by the DF A is similarly giving a uniform signal across 

geomyids of an abrasive diet whereas within the mylagaulids much diversity i s  observed. 

Almost all categories of diets are represented within the family. Alphagaulus vetus is 

interpreted as a hard object feeder (i .e.  nuts and seeds). Within the genus Hesperogaulus, 

H. gazini is associated to a mixed food diet, H. wilsoni to a diet of underground storage 

organs, and H. sp. A to a diet of fungi. The final analysis, concerned with taxonomic 
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identification, properly classified all extant and fossil taxa in their respective families, 

indicating the presence of phylogenetic signal in the microwear, a troubling result. 

TABLE 6: Summary of the proposed diet and fossoriality results for fossil species. 

Graphical Graphical 
Cluster Cluster 

correlation correlation 
analyses analyses DFA treated 

Taxon using usmg 
using totals using all as unknowns 

Pliosaccomys 
Abrasive- Abrasive- Abrasive- Abrasive-

Abrasive-
Subterrane Subterranea Subterranea Subterranea 

magnus Subterranean 
an n n n 

Mojavemys 
Abrasive- Abrasive- Abrasive- Abrasive-

Abrasive-
Sub terrane Subterranea Subterranea Subterranea 

mascallensis Fossorial 
an n n n 

Alphagaulus Abrasive- Abrasive- Abrasive- Abrasive- Hard food-
vetus Fossorial Fossorial Fossorial Fossorial Fossorial 

Mixed- Hard food-
Abrasive-

Fungivory-
Hesperogaulus Mixed- Fossorial 

Non- Non- Non-
gazini Fossorial 

fossorial fossorial 
Mixed-

fossorial 
Fossorial 

Mixed- Mixed- Mixed- Mixed- Mixed-
H. species A Non- Non- Non- Non- Non-

fossorial fossorial fossorial fossorial fossorial 

Hard food- Fungivory- Fungivory- Fungivory-
Underground 

H. wilsoni Semi- Non- Non- Non-
Non-

fossorial fossorial fossorial fossorial 
fossorial 

I also ran DF As jackknifing the data to check for the stability of the results 

obtained without withholding taxa from the OF A. A summary of the results for the 

jackknifed DF As on dietary categories and burrowing behavior are provided in Table 7 

and 8 .  
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TABLE 7 :  Actual (rows) versus predicted (columns) dietary category results for extant 
taxa. 

Abrasive Hard Underground Fungivory Mixed 

Abrasive 0 1 1 0 0 

Hard 0 0 I 1 

Underground 1 0 1 0 0 

Fungivory 0 1 0 1 0 

Mixed 0 0 1 0 

TABLE 8 :  Actual (rows) versus predicted (columns) burrowing category results for extant 
taxa. 

Non 
Fossorial 

Non 1 

Fossorial 
Semi- 1 

fossorial 
Fossorial 0 

Subterranean 0 

Semi
fossorial 

2 

0 

0 

Fossorial Subterranean 

1 

1 

2 

0 

0 

0 

For dietary categories, only 1 8% of the taxa (i .e. Sciurus griseus, Heterocephalus glaber) 

were properly categorized a posteriori. The DF A for burrowing behavior properly 

classified only 27% of the taxa in their burrowing behavior category (i.e. Marmota 

monax, Sciurus griseus, Thomomys bottae). It was not possible to run jackknifed analyses 

on the family identifications since numerous families are represented by a single taxon. 

In addition to poor results with extant taxa, I observed important variations in the 

results for fossil taxa from the jackknifed DF As. A summary of the results for the fossil 

taxa is provided in Tables 9 and 1 0 . 
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TABLE 9 :  Results of the jackknifed Discriminant Function Analyses for dietary 

categories. The first row indicates the taxon witheld from the analysis. Diet 

Abbreviations: A, Abrasive; M, Mixed; H, Hard; U, Underground; F, Fungivory. Taxa 

Abbreviations: A, Aplodontia rufa; Av, A lphagaulus vetus; D, Dipodomys ingens; E, 

Erethizon dorsatum; H,  Heterocephalus glaber; Hg, Hesperogaulus gazini; Hs, 

Hesperogaulus species A; Hw, Hesperogaulus wilsoni; M, Marmota monax; Mm, 

Mojavemys mascallensis; Sc, Sciurus carolinensis; P, Pliosaccomys magnus; Sg, Sciurus 

griseus; Tb, Thomomys bottae; Te, Tamias senex; Ts, Tamias striatus; Tt, Thomomys 

talpoides. 

A D E H M Sc Sg Tb Te Ts Tt 

Hs M M H F M F M F M F M 
Hg F u u F M M M F M M F 
Hw F u u u M F u F u F F 
Av M M H M H H M M M F M 

Mm A A M A A H M u M A u 
Pm A u H F M A M F M A u 
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TABLE 1 0 : Results of the jackknifed discriminant function analyses for burrowing 

behavior categories. The first row indicates the taxon witheld from the analysis. 

Fossoriality Abbreviations: N, Non-fossorial; SF, Semi-fossorial ; F, Fossorial; SU, 

Subterranean. Taxa Abbreviations: A, Aplodontia rufa; A v, A lphagaulus vetus; D, 

Dipodomys ingens; E, Erethizon dorsatum; H, Heterocephalus glaber; Hg, Hesperogaulus 

gazini; Hs, Hesperogaulus species A; Hw, Hesperogaulus wilsoni; M, Marmota monax; 

Mm, Mojavemys mascallensis; Sc, Sciurus carolinensis; P, Pliosaccomys magnus; Sg, 

Sciurus griseus; Tb, Thomomys bottae; Te, Tamias senex; Ts, Tamias striatus; Tt, 

Thomomys talpoides. 

A D E H M Sc Sg Tb Te Ts Tt 

N SF SF N N N N N SF N N 

Hs N F SF N N N N N N SF N 

Hg N SF SF N N N su SF su N su 

Hw SF F SF SF F SF F F N F F 

A v  su F su su su su su su su F F 

Mm su F su su su SF F su N SF F 

Most taxa are categorized into three or more (up to all) categories at least once. For the 

analysis bearing on the dietary categories, the best result is optained for Alphagaulus vetus 

which is categorized in 64% of the analyses as a mixed feeder. Hesperogaulus sp. A is 

categorized 5 5% of the time in this category. Pliosaccomys magnus is categorized in any 

one of the dietary groups depending on the analysis. The analysis concerned with 

burrowing behavior yields slightly better results. H gazini is categorized in 82% of the 
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analyses as a non fossorial animal. H. sp. A and Mojavemys mascallensis are categorized 

respectively as non fossorial or subterranean in 73% of the analyses. Overall ,  these 

analyses give very equivocal results. In addition to not being statistically reliable, some 

burrowing behavior results may not be plausible in light of additional data. In particular, 

the fossorial to subterranean mylagaulids are often categorized as non-fossorial animals. 

Principal component analysis of microwear 

The results ofthe PCA are summarized in Table 1 1  and Fig. 1 2. Two ofthe eleven 

components explain much of the variation in the dataset. PC I in particular explains 90% 

of the variation in microwear. PC 2 explains 8% and the fol lowing components less than 

2% altogether. 

TABLE 1 1 : Summary of the results of the principal component analysis. 

Principle 
Component 

Variance 
explained (%) 

PC 1 

90.23 

PC 2 PC 3 PC 4 

8 .056 0.65 0.438 

PC 5 PC 6 PC 7 

0.275 0. 1 90 0. 1 1 8 

PC 8 PC 9 

0.026 0.0 1 6  
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A summary of the eigenvectors for the first two principal components is provided in Table 

1 2. The loadings on the first component are most heavily relying on the number of small 

pits and the number of fine scratches. All loadings for PC 1 are positive with the 

exception of the small puncture pits. The loadings seem to reflect the proportion of each 

feature in an average microwear pattern. The loadings of PC 2, however, although 

strongly influenced by the small pits and the fine scratches alike PC 1 ,  displays numerous 

negative loadings including the most important l oading, "fine scratches." Large puncture 

pits also appear to be contributing to PC 2. The values of PC I and PC 2 for all taxa are 

summarized in Table 1 3 .  The values of PC 1 are of particular interest. Indeed, all positive 

values for PC 1 belong to subterranean taxa. All negative ones belong to non-fossorial, 

semi-fossorial, or fossorial taxa. No clear link between ecology and PC 2 can be drawn. 

TABLE 1 2: Summary ofthe eigenvectors for PCI and PC2. Abbreviations: SP. small 
puncture pits; LP. large pits; LPP. large puncture pits; SPP. small puncture pits; CRS . 
cross scratches; G. gouges; FS .  fine scratches; CS.  coarse scratches; HS. hypercoarse 
scratches. 

Variables 

SP 
LP 

LPP 
SPP 
CRS 

G 
FS 
cs 
HS 

Loadings PC 1 
0.72023 
0.03962 
0.05279 
-0.0 1 056 
0.0346 1 
0.00093 
0.689 1 3  
0.0265 1 
0.000 1 1 

Loadings PC 2 

0.67769 
-0.07295 
0. 1 2 1 67 
0.07487 
0.0 1 477 
-0.04585 
-0.7 1 4 1 7  
0.03 1 96 
0.04028 



30 ' 

20 l 

� 

() 10 . 

0.. 

0 

II • 

• 
·!0 ' 

• 

.;w , 
·20 ·!S ·10 ·S 

PC 2 

X 
)!:: 

• 

I f>  
•• 
•• 

0 
0 

• 

:fp 
Ill 

10 !S 

"' A. rufa 

• D. ingens 

o E. clorsatum 

& H.glaber 

1 62 

/:!. M. monax 

a S .  carolinensis 
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FIGURE 1 2 : Plot of PC2 versus PC 1 for all rodent species (fossil and extant) . Symbols 
correspond to the following categories: empty, mixed feeders; black, underground 
feeders; dark gray, fungivores; dark gray with black lines, hard object feeders; light gray, 
abrasive food eaters; crosses, fossil geomyids; black with white lines, mylagaulids. 



TABLE 1 3 :  Summary of the Principal Components value for all taxa. 

Taxon 
Aplodontia rufa 

Dipodomys ingens 
Erethizon dorsatum 

Heterocephalus glaber 
Marmota monax 

Sciurus carolinensis 
Sciurus griseus 

Thomomys bottae 
Tamias senex 

Tamias striatus 
Thomomys talpoldes 
Hesperogaulus sp. A 
Hesperogaulus gazini 

Hesperogaulus wilsoni 
Alphagaulus vetus 

Mojavemys mascallensis 
Pliosaccomys magnus 

PC 1 
- 1 1 . 1 4204 

-3 .0469607 
- 1 7 .834 1 08 
3 .9063423 7 
-8.7498997 
-8 .625 9 1 97 
-7.25609 1 1  
1 2.8334623 
-3 .2867776 
-7 .5375044 
28 .30325 1 3  
- 1 5 .055 792 
- 1 1 .662 1 7  

-3 . 808789 1 
- 1 3 . 345285 
3 1 .5640576 
34.7442244 

PC 2 
4.84664246 
1 0.524 1 505 
1 .59943705 
- 1 . 89903 1 5  
2.0084 1 649 
0 .83400 1 86 
-7.8445843 
2. 54784562 
-6.4500868 
0.72635327 
-0.3660256 
-2.5 8858 14 
1 .0534733 

- 10 .705663 
4.42803265 
0 .39089678 
0.89472243 

Analysis of variance of microwear and significant differences across taxa 

The one way ANOVA analyses of the total number of scratches and the total 

1 63 

number of pits both yielded highly significant results (p<O.OOO 1 ), indicating that species 

had significantly different numbers of scratches and pits. The species were grouped into 

six and five different groups respectively on the basis of these ANOVAs. The Wilcoxon 

tests for both analyses confirmed the ANOVA results (p<O.OOO l ). 

The Tukey test for each of those comparisons yielded the results summarized in 

Table 1 4. 
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When considering only the ANOV A performed on the total number of scratches, 

Pliosaccomys magnus, Mojavemys mascallensis, and Thomomys talpoides do not 

significantly differ from one another. In addition, Hesperogaulus wilsoni is not 

statistically different from any of the taxa, most likely as a consequence of the very small 

sample size for this species. The two species of the genus Thomomys are not statistically 

different from each other either. Thomomys bottae and Heterocephalus glaber, the two 

underground feeders, are not statistically different from the fungi eaters Sciurus griseus 

and Tamias senex. Similarly, all members of the family Sciuridae along with the 

mylagaulids Hesperogaulus sp. A, and H. gazini cannot be considered significantly 

different. It is not possible to significantly differentiate taxa from the abrasive food 

(except Thomomys talpoides), mixed food, and hard food dietary categories. Another 

cluster of taxa that do not statistically differ from one another includes S. griseus, Tamias 

striatus, S. carolinensis, H. gazini, Marmota monax, H. sp. A, Dipodomys ingens, and 

Alphagaulus vetus. 

The Tukey test performed on the ANOVA of the total number of pits yielded 

mostly different results. Pliosaccomys magnus, Mojavemys mascallensis, and Thomomys 

talpoides are not statistically different from each other, nor are M mascallensis, T. 

talpoides, Dipodomys ingens, and T. bottae. Another group of taxa not statistically 

different from each other includes the two underground feeders, T. bottae and 

Heterocephalus glaber, along with D. ingens and Hesperogaulus wilsoni. As for the 

previous Tukey test, H. wilsoni does not significantly differ from many taxa. Along with 
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the mylagaulids H wilsoni and A. vetus, Aplodontia rufa, H glaber, T striatus, M 

monax, and T senex are not significantly different from one another. Nor are the taxa of 

the abrasive food, mixed food, hard food (with the exception of Dipodomys ingens), and 

fungivory dietary categories. 

Among the one way ANOV As run for each category of microwear features, the 

one based on hypercoarse scratches is not significant. The Wilcoxon tests confirm the 

non-significance of this analysis. All other ANOV As are found to be significant and the 

Wilcoxon tests confirmed these (Table 1 5). 

TABLE 1 5 : Summary of the significance of the ANOVAs and Wilcoxon tests on all 

microwear feature categories. Abbreviations as in Table 1 2. 

Feature SP LP LPP SPP CRS G FS c s  HS 

ANOVA <0.00 0.03 <0.000 0.006 0 .008 <0.000 <0.000 0.000 0.56 
p > F  0 1  3 1 8 6 1 1 7 4 

Wilcoxon 
<0.00 0.00 <0.000 0.43 

p > Chi-
0 1  4 

0.002 0.044 0.04 1 0.005 
1 

0.0 1 9  
3 

s uare 

The first grouping of species significantly different from all other taxa suggested 

by the first ANOVA, based on small pits, includes all species of the family Geomyidae. 

Hesperogaulus wilsoni is not statistically different from any species of the data set except 

for Pliosaccomys magnus, Mojavemys mascallensis, and Thomomys talpoides. The second 
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group of taxa comprises underground feeders and Dipodomys ingens. There are three 

other groups suggested by this Tukey test. A first one includes D. ingens, Heterocephalus 

glaber, Aplodontia rufa, Tamias striatus, Marmota monax, Sciurus carolinensis, 

Alphagaulus vetus, and T. senex. A second group includes H. glaber, A. rufa, T. striatus, 

M monax, S. carolinensis, A .  vetus, T. senex, and H. gazini. The last group includes A. 

rufa, T. striatus, M monax, S. carolinensis, A .  vetus, T. senex, and H. gazini, S. griseus, E. 

dorsatum, and H. sp. A. The second Tukey test based on large pits does not allow any 

species to be significantly differentiated from any other in the dataset. The third test 

relying on large puncture pits yields four different groups. In this test, H. wilsoni cannot 

be differentiated from many species in the dataset. A first group of taxa consists of the 

two fossil geomyids, Alphagaulus vetus, Dipodomys ingens, Marmota monax, and Tamias 

senex. A second group includes M mascallensis, P. magnus, A. vetus, M monax, T. 

senex, H. glaber, and S. griseus. A third group includes all taxa but D. ingens; M 

mascallensis, and E. dorsatum. A last group includes all species but M mascallensis, D. 

ingens, and P. rna gnus. A fourth Tukey test, based on small puncture pits, yields two 

different groups .  The first one includes all taxa except Sciurus carolinensis, Erethizon 

dorsatum, Thomomys talpoides, Hesperogaulus sp. A, and Mojavemys mascallensis . The 

second group includes all taxa but Dipodomys in gens. The Tukey test based on cross 

scratches is not very informative and very close in its results to that based on small 

puncture pits . The first group includes all taxa but four (H. glaber, D. ingens, S. 

carolinensis, and A. rufa). The second group only excludes P. magnus. Another test based 



1 68 

on gouges finds T. bottae and H. wilsoni to not be statistically different from each other. 

The second group of taxa includes all subterranean taxa, M monax, D. ingens, and A. 

vetus. The last group of taxa comprises all species but those of the first group. In the 

following Tukey test, H. wilsoni cannot be differentiated from any group. In addition, one 

group of taxa includes the subterranean abrasive feeders. Another group consists of 

fungivores and subterranean rodents. A third group comprises all Sciuridae. One last 

group of taxa includes mixed feeders, hard object feeders, fossorial abrasive food eating 

rodents, in addition to H. gazini and H. sp. A. The last Tukey test, based on coarse 

scratches, yields two different groups of taxa. The first one comprises all extant 

subterranean rodents, and the fossil geomyids, in addition to E. dorsatum and H. wilsoni. 

The other group includes all taxa except Heterocephalus glaber. 

DISCUSSION 

The goal of this study is to further address the use of micro wear analysis in 

determining the diet of extinct rodents with an emphasis on the consequence of fossorial 

behavior on microwear. To apply microwear analysis to fossil burrowing rodents, the 

validity of the method already investigated by Townsend and Croft (2008) and Nelson et 

al. (2005) must be further evaluated focusing on burrowing taxa. The results from the 

assessment of the intra-operator error suggest that counts of microwear features at low

magnification are, for the most part, reliable with almost 80% of the variance explained 
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by the regressions of the second count against the first one. Some of this difference can be 

explained by inconsistency in counting, but some is also a result of variation across the 

tooth surface, because the two counts did not necessarily cover the exact same area on the 

tooth. With the l imits of the repeatability of the technique in mind, we can now appreciate 

the validity of the method and its links to diet, burrowing behaviors, as well as potential 

evolutionary baggage. 

The results of the non-jackknifed DFAs may suggest that microwear features recorded 

on the enamel surface of the protocone or lingual band of enamel of rodents can 

accurately predict broad dietary categories to which the species belong. However, it seems 

that this doesn 't hold up when taxa are successively withheld from the analysis, an 

important test of the validity of the result, especially given the small number of different 

taxa (REF). The results of the jackknifed DF As presented here provide better information 

on how likely an unknown is to be misclassified. The jackknifed results obtained suggest 

a very poor ability of the DF A in discriminating between diets or burrowing behaviors on 

the basis of micro wear. The predicted results for extant taxa are not coherent with actual 

ones, suggesting that the performance with additional unknowns, such as the fossil taxa, 

may be poor. In addition, fossil taxa are not assigned to dietary or burrowing behavior 

categories in a consistent way. This suggests that the non-jackknifed DF A results are not 

reliable. This may be a consequence of the small number of taxa and specimens included 

in this study or of the use of averages in the analyses. It is common in the microwear 

literature to use DFAs on species averages (e.g., Townsend and Croft 2008). This takes 
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some of the variation in the dataset out of the analysis, increases differences due to sample 

size (i.e. a fossil species represented by a single individual is compared to an extant one 

represented by 1 0+ specimens), and changes the distribution of the data. Moreover, as 

mentioned above for the intra-operator error, those values are not actual counts for any 

specimen in the dataset. Working with species-level averages may be obscuring the 

pattern. It is a reliable method when working on animals with tightly constrained diets 

(such as some ungulates, Solounias and Semprebon 2002). However, when used on small 

mammals with a high diversity of diet within taxa (because of the more opportunistic 

feeding behavior of small highly active animals), it appears that microwear analysis is  not 

as reliable in giving a sense of the central tendency for the species. Specimen-level data 

are reliable and give a sense of the within species variation in food resources. 

Further work improving the sample size of this study may more accurately determine 

the link between microwear signature and diet or fossoriality in rodents by considering all 

of the variation within taxa. In addition to the results of the DF A, plots of scratches versus 

pits suggest an overlap of microwear signatures in taxa of similar diets. Furthermore, taxa 

of intermediate diet (e.g., mixed feeders) do partially overlap with abrasive feeders and 

hard object eaters. High counts of pits, in particular puncture pits, associated with low 

counts of scratches seem to be typical of taxa with a high intake of seeds in their diet (e.g., 

Dipodomys ingens) as suggested in previous studies (Townsend and Croft 208). 

Fungivores seem to be characterized by high counts of fine scratches and low counts of 

pits. Unlike Townsend and Croft (2008), I do not find abrasive food eaters to have very 
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high counts of pits (unless they are highly fossorial). The two fungivorous taxa partially 

overlap with the two seed-eating squirrels. This is most l ikely a consequence of the diet of 

the fungivorous animals included in this dataset. Although fungi are a very important part 

of their diet, they do not feed exclusively on fungi and both include some amounts of hard 

fruits (e.g. ,  acorns) in their diet. Abrasive food eating rodents, mixed feeders and hard 

object feeding squirrels heavily overlap. The mixed feeding taxa are expected to overlap 

with both hard object eaters and abrasive food eaters. When looking at the plot of the 

averages for the species, Marmota monax plots between Aplodontia rufa and Tamias 

striatus. Erethizon dorsatum, the North American porcupine, is an arboreal animal that 

mostly feeds in trees. Unlike the porcupine, the woodchuck, M monax, is a fossorial 

animal that digs and l ives in burrows. The exogenous grit induced by such behavior may 

account for the higher counts of pits in the marmot than in the porcupine. The two seed 

eaters plot on top of each other as well as sharing some of their scratches vs. pits field 

with Aplodontia rufa. The mountain beaver is a fossorial animal that may exhibit as many 

pits on its enamel as hard-object-feeding animals as a consequence of its fossoriality. It 

otherwise mostly feeds on a variety of aboveground abrasive foliage and green vegetation. 

There is no overlap between the hard-object-eating squirrels and D. ingens. The 

heteromyid has a much coarser diet than any of the other hard-feeding taxa. The 

proportion of each food in the overall diet of the animal as well  as the availability of these 

food resources at the time the animal died may explain why it does not cluster with other 

animals whose diet is mainly based on seeds, nuts, or acorns but may include larger 
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amounts of fungi and vegetation in their diet. The three subterranean taxa included in this 

study plot in the upper right comer of the graph. The presence of a large number of pits 

associated with the absence of a large number of puncture pits is probably a consequence 

of the subterranean lifestyle of these rodents and the resulting exogenous grit. The high 

counts of scratches reflect the abrasive diet of these animals (due to grasses for Thomomys 

talpoides and underground storage units for T. bottae and H. glaber) . The diet of 

Thomomys talpoides, although including roots and tubers, consists mostly of aboveground 

abrasive grasses and forbs. This may explain the higher counts of scratches observed in 

this taxon compared to Thomomys bottae. 

From the dataset available to us, it seems that microwear features may not accurately 

predict the degree of fossoriality of taxa. It also seems that micro wear features allow for 

family identifications of the rodent taxa to be predicted. This suggests a substantial 

taxonomic and/or phylogenetic signal to microwear. Shared evolutionary history can, 

either directly, or indirectly through ecological baggage inherited from a common 

ancestor, be reflected in microwear. 

In addition, these general trends in microwear and their relationship to diet and 

burrowing behaviors need to be considered with reservation because of the small sample 

size of the present analysis. This is particularly concerning since microwear has been 

shown to reflect the "last supper" of the animal therefore yielding data on a snapshot in 

the dietary habits of an individual rather than an average diet over longer time spans 

(Grine 1 9 86). 
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Some of the overlap described above and pictured in Figure 6 may be explained when 

specimen data from collection records are integrated in the analysis. Nevertheless, this 

variation may obscure the link between microwear and diet, in particular because we do 

not have the necessary data for fossils. There is a very strong seasonal control on 

availabil ity of food and therefore on diet. This is turns creates variation in the microwear 

of individuals as shown here in the case of Marmot a monax and Sciurus carolinensis. 

Marmota monax is reported to easily switch food preferences on the basis of availability 

dictated by season (Kwiecinski 1 998). The diet of Sciurus carolinensis also varies with 

seasons. Fungi and insects are eaten in summer, com and wheat in winter, gravel and soil 

are ingested by females in winter and spring (Koprowski 1 994). In addition, S. 

carolinensis feeds on a very wide variety of plants (as many as 97 species, Koprowski 

1 994) whose availability may vary with seasons. The diet of Erethizon dorsatum i s  

reported as  being highly seasonally influenced. Because of  the lack of data on the 

specimens, it is not possible to test the hypothesis that the two specimens located in the 

lower right comer of the species field (high counts of scratches, low counts of pits) died in 

a different season than those located in the left part of the field displaying low counts of 

scratches and higher ones of pits . Sciurus griseus is expected to show seasonal differences 

in feeding that should be observable in the microwear of the specimens (Caraway and 

Verts 1 994). The range in specimen data presented in Figure 6 does not match the 

expected clustering of diets due to seasons. Specimens from fall/winter and 

spring/summer do not clearly cluster together. This suggests that it remains chal lenging to 
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link specimen data to microwear because, again, of the diversity of foods individuals of a 

same species forage on, even within a season where limited food supplies (in nature rather 

than quantity) are available. Constraining the diet of fossil species may be challenging and 

requires large sample size to span the diversity of microwear signatures within the species 

in addition to providing statistical power. One species of mylagaulids is represented in 

this dataset by a single specimen and will require further study to be confidently 

categorized in a dietary group. 

Numerous analyses (graphical, cluster analyses, DFAs, and AVOVAs) have yielded 

various results concerning the potential diet of the fossil species considered in this study 

(Tables 6,  and 9). This diversity of results suggests that it may be difficult to reconstruct 

the diet of fossil small mammals because ( 1 )  there is a large variation in diet within small 

mammal taxa, (2) some of the dietary signal may be overprinted by phylogenetic 

constraint on ecology, (3) a larger dataset spanning more taxa and including more 

specimens is needed. With these limitations in mind, we can attempt to draw broad 

conclusions on the diet of the fossil mylagaulids and geomyids included in this study. We 

can use graphical correlation of the specimen data of the fossil species with specimen data 

for extant taxa to approach the ecology of the mylagaulids and fossil geomyids. Thus, 

both Pliosaccomys magnus and Mojavemys mascallensis plot where Thomomys talpoides 

plots. This modem rodent is subterranean and feeds mostly above ground on forbs, 

dandelions or grasses in addition to supplementing its diet with roots and tubers. This may 

suggest that M mascallensis and P. magnus were subterranean and ate aboveground 
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vegetation. Similarly, Hesperogaulus wilson! plots where a specimen of Tamias striatus 

plots, suggesting a similar habit of eating seeds, nuts, and acorns as a main source of food. 

Alphagaulus vetus is close to Aplodontia rufa, Hesperogaulus sp. A to Erethizon 

dorsatum, and Hesperogaulus gazini covers much of the taxa from abrasive food feeders 

to hard-object-eating rodents through mixed feeders. It therefore most l ikely is a mixed 

feeder feeding on a variety of food resources as dictated by availability. Overall, within 

the family Mylagaulidae, there is a wide variety of feeding behaviors. I also compared 

fossil species to extant ones qualitatively on a diagram of scratches vs. pits diagram using 

species averages. Using this technique, the results change only for two taxa. 

Hesperogaulus wilsoni is now recognized as being closest to non-fossorial fungivores 

while Hesperogaulus gazini falls next to Sciurus carolinensis. 

The results of the cluster analyses also reflect dietary categories. Extant taxa with 

similar ecologies group together (e.g. ,  Thomomys bottae with Heterocephalus glaber). 

Some clusters reflect similarities in microwear despite differences in diet. For example, 

Dipodomys ingens clusters with the underground feeding subterranean animals because of 

the high number of pits in its micro wear. Subterranean rodents have a high number of pits 

in their diet as a consequence of fossoriality as discussed for Chinchilla lanigera by 

Townsend and Croft (2008). It is possible to differentiate a dietary signal from a 

burrowing signal in the number of pits with the number of puncture pits. D. ingens 

exhibits the highest counts of puncture pits of the dataset (as expected for an animal 

feeding heavily on seeds and nuts) whereas the extant subterranean rodents feeding on 
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underground organs have lower counts of puncture pits, closer to those of sciurids . 

Cluster analyses only show the pattern of the microwear and do not provide clues to the 

process by which it is acquired (i .e .  diet, burrowing behavior, or phylogenetic 

constraints). The two fossil geomyids cluster with Thomomys talpoides, H. wilsoni with 

fungivores, A.  vetus with A. rufa, H. sp. A with E. dorsatum. Only H. gazini seems to be 

more unstable and groups with hard-feeding animals, mixed feeding ones, or abrasive

food-eating rodents . This may be a consequence of a larger sample size for this taxon 

associated to opportunistic feeding. 

The results of the jackknifed analyses do not support a particular conclusion regarding 

the diet or burrowing behavior of the fossil taxa. However we can observe some general 

trends. Hesperogaulus sp. A and H. gazini are more often categorized as mixed feeders or 

fungi eaters. H. wilsoni is either interpreted as a fungi eater or an underground storage 

unit eating rodent. Alphagaulus vetus is more often categorized as a mixed feeder 

although it sometimes is also categorized as a hard object feeder. Although abrasive food 

dominates the categorization of Mojavemys mascallensis, mixed food is also a dietary 

category this geomyids is assigned to. The results for Pliosaccomys magnus are very 

equivocal. 

The Tukey tests also suggest some clusters of taxa that are not significantly different 

from one another. Throughout the Tukey tests, Hesperogaulus wilsoni, because of its very 

small sample size, cannot be statistically differentiated from most or all categories 

therefore precluding its categorization. It seems as though the total number of scratches 



groups together the fossil geomyids with Thomomys talpoides . This is consistent with 

their convergent ecologies suggested by other analyses and other tests confirm this 
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cluster. These three geomyids seem to be more different from everything else than any 

other signal in the data. The two species of Thomomys are also found to not be 

significantly different. This may be a taxonomic signal. Underground feeders and fungus 

eaters aren't different may be because of their similar diet of high calorie, unabrasive 

terrestrial food. Another taxonomic signal may be found in the grouping of the Sciuridae. 

Other groupings that do not seem to relate to ecological or taxonomic signals emphasize 

the poor discriminatory power of this analysis on the data and the noise of the overlapping 

abrasive, mixed, and hard food diets. Evolutionary history affects the ecology of species 

by not allowing for all ecological niches to be explored. It also affects jaw mechanics, and 

hence the likelihood that a given food wil l  generate microwear features. This in turns 

impacts the diet and burrowing behavior and therefore the microwear signature. The 

issues encountered with the Tukey tests may be similar to those of the jackknifed DF As in 

which noise obscures the signals. 

The grouping of the fossil geomyids with Thomomys talpa ides is supported by 

numerous other Tukey tests based on different microwear features. The test based on the 

total number of pits also groups together the underground feeders reflecting the 

relationship between pitting and burrowing ecology. This group is associated with 

Dipodomys ingens, a hard-object feeder whose microwear converges on that of 

subterranean rodents because of diet. A similar situation is  observed in the grouping of the 



two extant geomyids, the fossil M mascallensis and D. ingens. As for the test based on 

scratches, that based on pits cannot differentiate between the taxa with low counts of 

scratches and pits overlapping in the scratches to pits graph. 
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Another taxonomic signal is obtained from the Tukey test based on small pits that 

finds no significant difference between geomyids. Underground feeders and Dipodomys 

ingens are once again clustered together. Overall the results of this test are very similar to 

that based on all pits because small pits make up most of the pits counted for any given 

taxon. Similarly for the fine scratches, subterranean abrasive food eaters are grouped 

together. Fungivores and subterranean rodents are also not significantly different from 

each other. All sciurids fall together in a third group suggesting a taxonomic signal again. 

Hesperogaulus gazini, H. sp. A and the extant taxa grouping in the lower left corner of the 

scratches to pits plot also appear to not be significantly different from one another. The 

other Tukey tests for rarer, coarser features of both scratches and pits are do not support 

any particular pattern. 

Overall, it seems like the Tukey tests support the already heavily-supported 

association of the fossil geomyids with Thomomys talpoides. In addition, they suggest a 

taxonomic or phylogenetic signal for the sciurids and geomyids. Subterranean animals can 

be confused with hard object feeders when considering pits or with fungivores when 

considering scratches. It is challenging to differentiate mixed feeders from abrasive food 

eaters or hard object feeders. 
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The results ofthe PCA, DFAs and cluster analyses, in conjunction with those of the 

graphical correlations, can also be used to approach the degree of fossoriality of the fossil 

taxa. The first principal component (PC 1) of the PCA suggests a grouping of the two 

fossil geomyids with Heterocephalus glaber, Thomomys bottae, and Thomomys talpa ides. 

This clustering of subterranean rodents with different diets (abrasive food or subterranean 

food) hints at the subterranean lifestyle expected for those geomyids and suggested by 

some of the other analyses (Table 9). Although, a few of the jackknifed DF As suggest that 

Mojavemys mascallensis is  a fossorial taxon, most analyses converge in classifying or 

associating the fossil geomyids to a subterranean ecology. However, the results for the 

mylagaulids are much more diverse. Alphagaulus vetus is often interpreted as a fossorial 

taxon. Hesperogaulus sp. A is often classified as non-fossorial. The results for the other 

species of the genus Hesperogaulus are more equivocal . H. gazini and H. wilsoni are 

either interpreted as non-fossorial or semi-fossorial. Cranial (e.g. , Korth 2000, Hopkins 

2005), postcranial (e.g., Fagan 1 960), and ichnological evidence (Gobetz 2006) suggest 

that mylagaulids are fossorial to subterranean animals digging complex branching 

burrows. Hesperogaulus sp. A is fossorial and although very similar in microwear to the 

porcupine, Erethizon dorsatum, according to these analyses would be expected (for a 

similar diet) to be closer in ecology (and therefore in microwear signature) to Marmota 

monax. Microwear is not convergent with other lines of evidence when it comes to 

fossoriality. Further research including larger sample sizes and a more diverse dataset of 

modern rodents may provide clues as to how this issue can be resolved but it may be that 



some diets erase the microwear signature of burrowing thus leaving no evidence of the 

effect of exogenous grit. 
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Most of the interest of microwear analysis of fossil taxa has focused on determining 

the diet of extinct animals. In this study, I show that integrating collection records with 

microwear data in modem rodents may shed light on some of the variation displayed 

within species. No similar patterns of outliers and diversity in microwear signature in 

fossil species could be understood by differences in locality or time interval origin of the 

specimens. The diverse microwear observed in mylagaulids does not appear to relate to 

specimen information, suggesting diverse diets within taxa. 

CONCLUSIONS 

Cautious interpretation of the data obtained in this study suggests some possible 

feeding habits in fossil burrowing rodents . Comparisons between the microwear of extant 

rodents and two species of fossil geomyids, Pliosaccomys magnus and Mojavemys 

mascallensis, suggest that these two species of Miocene rodents had ecologies very 

similar to each other in addition to being similar to that of Thomomys talpoides, the 

northern pocket gopher. They were most likely subterranean rodents that fed mostly 

above ground with additional feeding on roots and tubers. The microwear of mylagaulids, 

however, displays a wide range of variation in the number of pits and scratches across 

species. This suggests a diversity of diets and ecologies within and across taxa. 
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Alphagaulus vetus appears to have been very similar in its feeding and burrowing 

behaviors to its closest modern relative, Aplodontia rufa, feeding on an abrasive diet of 

above ground plants although it may have included significant amounts of hard obj ects in 

its diet closing in on a mixed feeding behavior. Hesperogaulus sp. A displays a microwear 

pattern closest to that of the North American porcupine therefore hinting at a mixed feeder 

diet. Hesperogaulus gazini overlaps with numerous species ranging in diet from abrasive 

food to hard object feeding and may have been an opportunistic feeder. Data for 

Hesperogaulus wilsoni are scarce, but initial results suggest that it could have fed on a 

· diet of fungi and fruits similar to that of modern chipmunks. 

Burrowing does not seem to consistently affect microwear. King et al ( 1 999) have 

shown that taphonomy is readily observable in dental microwear and that, rather than 

modifying microscopic features, taphonomy obliterates them. Taphonomy therefore does 

not explain why some mylagaulid taxa expected to be fossorial fal l  out near non-fossorial 

animals (no taphonomy signature can be observed for those specimens). However, some 

diets may be over-imprinting the signal from burrowing, erasing evidence for an 

underground way of life .  This may explain the discrepancies between the degree of 

fossoriality of mylagaulids as suggested by microwear and that demonstrated by cranial 

and skeletal evidence. 

Those new dietary information for fossil burrowing herbivores provide additional 

data to address the question of fossorial herbivore paleoecology in the Miocene. The 

conclusions on the likely diets of mylagaulids and geomyids do not reject nor confirm the 
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habitat partitioning proposed in the third chapter of this thesis. However, it is further 

evidence that competition, at least over diet, may not have been an important factor in 

determining the paleoecology and evolution of mylagaulids and geomyids in the Miocene 

of the Great Basin. The two fossil geomyids studied seem to be ecologically similar to 

Thomomys talpoides. Mylagaulids exhibit very diverse diets both across and within 

species. They seem to be more opportunistic in their feeding behavior. Further research 

involving larger sample sizes and additional taxa for both extant and extinct rodents is  

needed to improve our understanding of fossorial herbivore paleoecology. This study does 

not support the use of low magnification microwear analysis on small mammals as 

strongly as previous studies did (Townsend and Croft 2008, Nelson et al . 2005) .  It appears 

that the possibi lity to link microwear signature to ecological variables (i.e. diet and 

fossoriality) is challenged by the conflict between those two signals, the variability in diet 

in opportunistically feeding small mammals, and a possible evolutionary baggage. This 

last issue suggests the need for a more careful examination ofthe influence of phylogeny 

on microwear signature using an extended dataset thus providing clues to how 

phylogenetic signal may be removed from paleodiet studies using microwear. Such study 

should include more extant taxa with closely related species of  similar and different diets 

in addition to distantly related species with similar diets. The taxa selected should be 

carefully sampled across the rodent phylogeny. 



CHAPTER V 

CONCLUSIONS ON THE SYSTEMATICS AND 

PALEOECOLOGY OF GREAT BASIN MYLAGAULIDS 
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The mylagaulid fauna from the Great Basin includes, in addition to rare large 

mylagaulids of uncertain taxonomic affinity, four species of mylagaulids distributed 

throughout Oregon and Nevada from the late Hemingfordian through the early late 

Hemphillian: Alphagaulus vetus, Hesperogaulus gazini, Hesperogaulus wilsoni, and a 

new species from the genus Hesperogaulus . This new species ranges from the middle 

Clarendon ian through the late early Hemphillian of Oregon and Nevada. It is intermediate 

in morphology between the early Barstovian H. gazini and the Hemphillian H. wilsoni 

from Oregon. A phylogenetic analysis of the family including the newly described 

material calls for further work on the phylogenetic relationships within the family 

Mylagaulidae. Reviews of the mylagaulid material such as this study may help build a 

character matrix that focuses on distinguishing the dentition of different derived 

mylagaulid species. The addition of more cranial and postcranial characters will also 

supplement the set of characters and allow a better understanding of the relationships 

within the Mylagaulinae. 



1 84 

In this study, I demonstrate that one can use large sample sizes of premolars to 

understand changes in occlusal morphology with different wear stages. As noted before 

by Shotwell ( 1 958a), Korth (2000), and others, tooth wear through time triggers a change 

in tooth size, tooth shape, number of lakes on the occlusal surface of the tooth, and shape 

of these lakes. The number and length of the lakes increases through development 

whereas the width and complexity decreases. There is very little change in the orientation 

of the lakes throughout ontogeny. Rectangular premolars in juvenile specimens tend to 

become more oval with wear. A number of teeth have a wear surface that is concave 

rather than flat. This occlusal curvature affects the morphology of the lakes both in their 

shapes and their dimensions by elongating the fossettes and fossettids antero-posteriorly. 

There is also a slight difference between individuals in the angle of the wear of the tooth. 

This tilting of the wear surface is very l imited, but may be responsible for some inter

individual differences in fossette morphology. All of these wear patterns are tightly 

constrained by jaw mechanics; however, the hypsodonty of the tooth crown allows 

imprecise occlusion of the teeth, explaining some of the variability in the occlusal surface 

morphology of mylagaulids. In order to avoid such issues, numerous teeth must be 

examined with a focus on the adult wear stage. Intraspecific variation in mylagaulids 

includes variation in both tooth size and number of lakes, driven by tooth wear, but the 

orientation of the lakes and the shape and complexity of the lakes is consistent across 

individuals of the same wear stage. Between species, accounting for wear stage, the tooth 
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size and the number of lakes differ, as do lake orientation and the shape and complexity of 

the lakes. 

This new taxonomic framework allows a better understanding of the paleoecology 

of the fossorial herbivore guild, of which mylagaulids are members, in the mid to late 

Miocene of the Great Basin. The hypothesis of competitive interactions between 

mylagaulids and geomyids is not supported. Changes in the fossorial herbivore guild as a 

whole do not seem to be a gradual change in the composition of the guild but rather stasis 

in the early part of the record followed by a succession of turnover events. This result is 

inconsistent with the hypothesis of competitive interactions between members of the 

fossorial herbivore guild. Those changes in faunal composition do not seem to be the 

consequence of global climate change. Environmental changes around turnover events in 

burrowing rodent fauna may have driven the changes in their relative abundances. 

I present a new hypothesis for the decline of mylagaulids in which local to regional 

scale climatic changes triggered dramatic fluctuations in the dominant habitat, thus 

mediating taxonomic dominance by shifting the proportion of the landscape covered in 

habitats that favor one taxon or another. The observed pattern suggests that the Miocene 

burrowing herbivore guild was partitioned according to preferences in microhabitats at the 

local to regional scale. 

In addition to better understanding their diversity dynamics, I also investigated the 

likely diet of geomyids and mylagaulids. Cautious interpretation of the data obtained in 

this study suggests some possible feeding habits. Comparisons between the microwear 
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signatures of extant rodents and two species of fossil geomyids, Pliosaccomys magnus 

and Mojavemys mascallensis, suggest that these two species of Miocene rodents had 

ecologies very similar to each other in addition to being similar to that of Thomomys 

talpoides, the northern pocket gopher. They were most likely subterranean rodents that 

fed mostly above ground with some dietary input from roots and tubers. 

The microwear signature of mylagaulids, however, displays a wide range of 

variation in the number of pits and scratches across species. This suggests a diversity of 

diets and ecologies within and across taxa. Alphagaulus vetus appears to have been very 

similar in its feeding behavior to its closest modern relative, Aplodontia rufa, feeding on 

an abrasive diet of above ground plants although it may have included significant amounts 

of hard objects in its diet closing in on a mixed feeding behavior. Hesperogaulus species 

A displays a microwear signature closest to that of the North American porcupine 

therefore hinting at a mixed feeder diet. Hesperogaulus gazini overlaps with numerous 

species ranging in diet from abrasive food to hard object feeding and may have been an 

opportunistic feeder. Data for Hesperogaulus wilsoni are scarce, but initial results suggest 

that it could have fed on a diet of fungi and fruits similar to that of modern chipmunks. 

Additionally, we find that some diets may be over-imprinting the signal from 

burrowing, erasing evidence for an underground way of life. This may explain the 

discrepancies between the degree of fossoriality of mylagaulids as suggested by 

microwear and that demonstrated by cranial and skeletal evidence. 
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Those new dietary information for fossil burrowing herbivores do not reject nor 

confirm the habitat partitioning proposed in this thesis.  However, it is further evidence 

that competition, at least over diet, may not have been an important factor in determining 

the paleoecology and evolution of mylagaulids and geomyids in the Miocene of the Great 

Basin. This study does not support the use of low magnification microwear analysis on 

small mammals as strongly as previous studies did (Townsend and Croft 2008, Nelson et 

al. 2005). It appears that the effort to link dental microwear to ecological variables (i.e. 

diet and fossoriality) is challenged by the conflict between those two signals, the 

variability in diet in opportunistically feeding small mammals, and possibly by 

evolutionary baggage. This last issue suggests the need for a more careful examination of 

the influence of phylogeny on microwear using a larger dataset thus providing clues to 

how phylogenetic signal may be removed from paleodiet studies using microwear. 



APPENDIX A 

CHARACTER MATRIX USED IN THE PHYLOGENETIC 

ANALYSIS OF GREAT BASIN MYLAGAULIDS 

Modified and completed after Hopkins 2008a 
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Taxa 

Meniscomys uhtojfi 

Aplodontia rufa 

A lphagaulus douglass! 

A lphagaulus pristinus 

Alphagaulus pristinus 
from Deep River Formation 

A lphagaulus tedfordi 

A lphagaulus vetus 

A lphagaulus vetus 
from Massacre Lake Fauna 

Ceratogaulus anecdotus 

Ceratogaulus hatcher! 

Ceratogaulus minor 

Ceratogaulus rhinocerus 
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Galbreathia novel/us 

Hesperogaulus gazini 

Hesperogaulus wilson! 

Hesperogaulus species A 

Mesogaulus ballensis 

Mesogaulus paniensis 

Mylagaulodon angulatus 

Mylagaulus kinseyi 

Mylagaulus elassos 

Mylagaulus sesquipedalis 

Promylagaulus riggsi 

Pterogaulus barbarellae 

Pterogaulus cambridgensis 

Pterogaulus laevis 

Trilaccogaulus lemhiensis 

Trilaccogaulus montanensis 

Trilaccogaulus ovatus 

Umbogaulus galushai 

Umbogaulus monodon 
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Appendix A (extended) 

Taxa 

Meniscomys uhtojji 

Aplodontia nifa 

Alphagaulus douglassi 

Alphagaulus pristinus 
Alphagaulus pristinus 

From Deep River Formation 

Alphagaulus tedfordi 

Alphagaulus vetus 
Alphagaulus vetus 

from M assacre Lake Fauna 

Ceratogaulus anecdotus 

Ceratogaulus hatcher! 

Ceratogaulus minor 

Ceratogaulus rhinocerus 

Galbreathia bettae 

Galbreathia novel/us 

Hesperogaulus gazinf 

Hesperogaulus wilson! 

Hesperogaulus species A 
Mesogaulus ballensis 

Mesogaulus paniensis 

Mylagaulodon angulatus 

Mylagaulus kinsey! 

Mylagaulus elassos 

Mylagaulus sesquipedalis 

Promylagaulus riggs! 

Pterogaulus barbarellae 

Pterogaulus cambridgensis 

Pterogaulus !aevis 

Trilaccogaulus lemhiensis 

Trilaccogaulus montanensis 

Trilaccogaulus ovatus 

Umbogaulus galushai 

Umbogaulus monodon 

1 7  1 8  

0 
0 
0 
? 

1 9  20 2 1  

0 0 
0 

? 0 0 
? ? ? 

22 

0 
0 
0 
? 

23 

0 
0 
? 
? 

0 0 0 0 0 

0 ? ? ? 0 ? 
0 0 0 0 

Characters 

24 

0 
0 
0 
? 

0 

? 
0 

25 26 27 

0 0 0 
0 0 011 
0 0 
? 0 

0 0 

? 0 
0 0 

0 0 0 0 0 0/1 0 0 

? 
? 
0 

? ? ? ? 
'? '? ? ? 
0 0 0 ? 

0 0 0 0 ? 
? ? ? ? ? ? 
0 
0 
0 

0 0 I 0 
0 0 0 '? 
? ? 0 ? 

0 0 0 0 
? ? ? '? ? ? ?  

0 
0 

? 
? 
0 
0 
? 
0 
0 

? ? 
0 
? 
0 

0 0 
0 ? ? ? 
? ? ? ? 
? ? ? 0 
? ? ? ? 
0 0 0 ? 
0 0 0 0 
? ? ? ? 
0 0 0 0 
0 ? 0 ? 

? ? ? ? ? 
0 ? ? ? 
? ? ? ? 
0 0 0 0 

? 
? 
? 
0 
? 
0 
0 
? 
0 
? 
0 
? 
? 
? 
? 
0 
? 
? 
0 
0 
? 
0 
? 
0 

? 0 
? 0 
0 0 
0 0 
? 0 
0 0 
0 0 
0 0 
0 0 
? ? 
0 0 
0 0 
? 0 
? 0 
? 0 
0 0 
0 0 
? 0 
0 0 
0 0 
? ? 
0 0 
? 0 
0 0 

? 

? 

28 29 

0 0 
0 0 
0 0 
? '? 

30 3 1  

0 0 
0 0 
0 0 
? '? 

1 90 

32 

2 
2 
2 
2 

0 0 0 0 2 

? 0 ? 2 
0 0 0 0 2 

0 0 0 0 2 

? 0 ? ? 
? 0 ? ? 
0 0 0 2 
0 0 0 2 
? 0 0 ? 
0 0 0 2 
0 0 0 2 
? 0 ? ? 
0 0 0 2 

'? ? ? ? ? 
0 0 0 2 

I 0 0 0 2 
0 ? 0 '? ? 
0 ? 0 ? ? 
I ? 0 ? ? 
0 ? 0 0 ? 

0 0 0 2 
? 0 ? ? 
0 0 0 2 

? ? 0 ? 
? ? ? ? ? 
0 0 l 0 2 

? 0 ? ? 
0 0 0 2 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 

Taxa 
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A.  pristinus 

DR A. pristinus 
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C. hatcheri 
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G. novellus 
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H. species A 
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T lemhiensis 

T. montanensis 

T. ovatus 

U. galushai 

U. monodon 

? 
? 

? 
? 

? 
? 

? 
? 

? 

? 

? 

? 

0 
0 
? 
? 
? 
? 
0 
0 
? 
? 
? 
? 
0 
? 
? 
? 

? 

0 
? 

? 

? 
0 
0 
0 
0 
0 

1 4  1 4  

7 8 

0 0 
0 
? ? 
? 
? 
? 
0 
0 
? 
? 
? 
? 
? 
0 
? 
? 
? 
? 
? 
? 
? 
? 

? 

0 
? 

? 

? 
0 
0 
0 
0 
? 

0 
? 
? 
0 
0 
? 
? 
? 
? 
0 
0 
? 
? 
? 
? 
? 
? 
? 
? 

? 

0 
? 

? 

? 
0 
0 
0 
? 
? 

Characters 

14 1 5  1 5  1 5  1 5  1 5  1 5  1 5  

9 0 1 2 3 4 5 6 

0 0 0 2 1 
0 0 2 2 2 0 
? ? ? ? ? ? ? ? 
0 
? 
? 
0 
0 
? 
? 
? 
? 
0 
0 
? 
? 
? 
? 
? 
? 
? 
? 

? 

0 
? 

? 

? 
0 
0 
0 
0 
? 

? 
0 
0 
? 
? 
? 
? 
? 
0 

0 
? 
0 

? 
? 

? 

? 

? 

? 

? 
? 
I 
0 

2 
2 
? 
2 
2 
? 
? 
? 
? 
? 
2 
? 
? 
2 
2 
2 
2 
? 
? 

? 

2 
? 

? 

? 
2 
2 
? 
2 
2 

0 
0 
? 
0 
2 
? 
? 
? 
? 
0 

? 
? 
0 
? 

0 
? 
0 

? 

? 

? 

2 
0 

? 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 

2 
2 

2 

2 
2 
2 
2 
2 
2 

1 5  1 5  

7 8 

0 0 
0 0 
? ? 
0 
0 
0 

I 
0 
0 

0 
0 
0 

0 

0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

15 

9 

? 

? 

? 
? 
? 
? 

? 
? 

? 

? 

? 

? 

? 

1 98 

1 6  

0 

0 
0 
? 



1 99 

Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 
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Appendix A (extended) 

Taxa 

M uhtoffi 

A. rufa 

A. douglassi 

A.  pristinus 

DR A. pristinus 

A. tedfordi 

A. vetus 

ML A. vetus 

C. anecdotus 

C. hatcheri 

C. minor 

C. rhinocerus 

G. bettae 

G. novellus 

H. gazini 

H. wilsoni 

H. species A 
M ballensis 

M paniensis 

M angulatus 

M kinseyi 

M elassos 

M 
sesquipedalis 

P. riggsi 

P. barbarellae 

P. 
cambridgensis 

P. laevis 

T lemhiensis 

T montanensis 

T ovatus 

U. galushai 

U. monodon 

22 22 22 
5 6 7 
0 ? 0 

0 0 0 

? ? ? 

? 

0 

I 

0 

0 

0 

0 

0 

0 

0 

0 

? 

? 

0 

? 

? 

0 

? 

0 

0 

? 

0 

0 

0 

0 

? 

I 

0 

? 

? 

0 

0 

? 

? 

? 

? 

? 

? 

0 

? 

? 

0 

0 

0 

22 22 
8 9 
0 0 

0 0 

? 0 

0 

0 

? 

0 

0 

? 

? 

? 

? 

? 

0 

? 

? 

0 

? 

0 

0 

? 

? 

? 

0 

? 

? 

? 

0 

? 

? 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Characters 
23 23 23 
0 1 2 
0 0 0 

1 

? 0 ? 

0/1 0 

? 0 0 

? 0 0 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

2 

2 

2 

2 

2 

0 

0 

0 

2 

2 

0 

0 

0 

2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

23 23 
3 4 
1 0 

0 

? ? 

0 

? 

0 

0 

? 

? 

? 

? 

? 

? 

0 

? 

? 

? 

? 

0 

0 

0 

0 

0 

0 

? 

? 

? 

? 

0 

0 

? 

0 

0 

0 

0 

0 

? 

0 

? 

0 

0 

? 

? 

0 

0 

0 

0 

0 

23 
5 

0 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

23 23 23 23 
6 7 8 9 

1 

0 

? ? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

203 

24 
0 
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Appendix A (extended) 

Taxa Characters 

241  242 243 244 245 246 247 248 249 250 

M uhtoffi 2 ? ? 0 0 0 0 0 

A. rufa 2 ? ? 0 I 0 0 

A. douglassi 2 ? ? 0 0 ? 0 0 

A. pristinus 2 ? ? 0 ? 0 0 

DR A. pristinus 2 ? ? 0 0 0 I 0 

A. tedfordi 2 ? ? 0 0 0 0 0 

A. vetus 2 ? ? 0 0 0 0 

ML A. vetus 2 ? ? 0 0 0 0 

C. anecdotus 2 ? ? 0 0 0 0 0 

C. hatcheri 2 ? ? 0 0 0 0 0 

C. minor 2 ? ? 0 0 0 0 0 

C. rhinocerus 2 ? ? 0 0 0 0 0 

G. bettae 2 ? ? 0 0 0 0 

G. novellus 2 ? ? 0 0 0 0 

H. gazini 2 ? ? 0 0 0 0 

H. wilsoni 2 ? ? 0 0 0 0 

H. species A 2 ? ? 0 0 0 0 

M ballensis 2 ? ? 0 ? 0 ? 0 

M paniensis 2 ? ? 0 0 0 0 0 

M angulatus 2 ? ? 0 0 0 0 0 

M kinseyi 2 ? ? 0 0 0 0 0 

M elassos 2 ? ? 0 0 0 0 0 

M sesquipedalis 2 ? ? 0 0 0 0 0 

P. riggsi 2 ? ? 0 0 0 0 0 

P. barbarellae 2 ? ? 0 0 0 

P. cambridgensis 2 ? ? 0 0 0 

P. laevis 2 ? ? 0 0 0 

T lemhiensis 2 ? ? 0 0 0 0 0 

T montanensis 2 ? ? 0 ? 0 0 0 

T ovatus 2 ? ? 0 0 0 0 0 

U. galushai 2 ? ? 0 0 0 0 

U. monodon 2 ? ? 0 0 0 0 
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APPENDIX B 

NUMBER OF IDENTIFIED SPECIMENS, MINIMUM NUMBER 

OF INDIVIDUALS, AND NUMBER OF LOCALITIES OF 

FOSSORIAL HERBIVORES USED IN CHAPTER III 

Abbreviation: MNI, Minimum Number of lndividuals ;  N, Number; NISP, number of 

Identified Specimens. 

Abbreviations of North American Land Mammal Ages (NALMAs): LHMF, Late 

Hemingfordian; EBAR, Early Barstovian; LBAR, Late Barstovian; BARS, Barstovian; 

LCLA, Late Clarendonian; EEHP, Early early Hemphillian; LEHP, Late early 

Hemphill ian; ELHP, Early late Hemphillian. 
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Data for fossorial rodents 

Collecting Area NALMA subdivision Family NISP MNI 

Massacre Lake LHMF Aplodontidae 34 1 4  

Massacre Lake LHMF Geomyidae 0 0 

Massacre Lake LHMF Marmotini 2 1  1 2  

Massacre Lake LHMF Mylagaulidae 46 1 7  

Massacre Lake LHMF All F ossorial rodents 1 0 1  43 

Beatty Bu tte EBAR Aplodontidae 1 03 1 7  

Beatty Butte EBAR Geomyidae 0 0 

Beatty Butte EBAR Marmotini 23 1 0  

Beatty Butte EBAR Mylagaulidae 3 3  1 2  

Beatty Butte EBAR All F ossorial rodents 1 59 3 9  

Sucker Creek EBAR Aplodontidae 0 0 

Sucker Creek EBAR Geomyidae 0 0 

Sucker Creek EBAR Marmotini 0 0 

Sucker Creek EBAR Mylagaulidae 2 

Sucker Creek EBAR All Fossorial rodents 2 

Virgin Valley EBAR Aplodontidae I I 

Virgin Valley EBAR Geomyidae 0 0 

Virgin Valley EBAR Marmotini 0 0 

Virgin Valley EBAR Mylagaulidae 3 2  1 5  

Virgin Valley EBAR All Fossorial rodents 3 3  1 6  

Butte Creek Vole sst LBAR Aplodontidae 26 1 4  

Butte Creek Vole sst LBAR Geomyidae 0 0 

Butte Creek Vole sst LBAR Marmotini 86 1 9  

Butte Creek Vole sst LBAR Mylagaulidae 60 1 6  

Butte Creek Vole sst LBAR All Fossorial rodents 1 72 49 

Deer Butte LBAR Aplodontidae 0 0 

Deer Butte LBAR Geomyidae 1 7  4 

Deer Butte LBAR Marmotini 3 1 

Deer Butte LBAR Mylagaulidae 0 0 

Deer Butte LBAR All Fossorial rodents 20 5 

Juntura LCLA Aplodontidae 3 

Juntura LCLA Geomyidae 4 4 

Juntura LCLA Marmotini 1 4  7 

Juntura LCLA Mylagaulidae 1 5  1 1  

l . • 
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Appendix B (continued) 

Data for fossorial rodents 

Collecting Area Family NISP MNI 

Juntura LCLA All Fossorial rodents 3 6  23 

Thousand Creek EEHP Aplodontidae 5 4 

Thousand Creek EEHP Geomyidae 94 1 9  

Thousand Creek EEHP Marmotini 3 3 

Thousand Creek EEHP Mylagaulidae 3 3 

Thousand Creek EEHP All Fossorial rodents 1 05 29 

Drewsey LEHP Aplodontidae 50 l O  

Drewsey LEHP Geomyidae 9 4 

Drewsey LEHP Marmotini 29 4 

Drewsey LEHP Mylagaulidae 1 6  1 0  

D rewsey LEHP All F ossorial rodents 1 04 28 

Grassy Mountain LEHP Aplodontidae 0 0 

Grassy Mountain LEHP Geomyidae 0 0 

Grassy Mountain LEHP Marmotini 3 

Grassy Mountain LEHP Mylagaulidae 0 0 

Grassy Mountain LEHP All Fossorial rodents 3 1 

Chalk Butte ELHP Aplodontidae 0 0 

Chalk Butte ELHP Geomyidae 2 

Chalk Butte ELHP Marmotini 22 4 

Chalk Butte ELHP Mylagaulidae 0 0 

Chalk Butte ELHP All Fossorial rodents 24 5 

Piute Creek BARS Aplodontidae 

Piute Creek BARS Geomyidae 1 

Piute Creek BARS Marmotini 0 0 

Piute Creek BARS Mylagaulidae 5 4 

Piute Creek BARS All Fossorial rodents 7 6 

Rattlesnake Butte BARS Aplodontidae 7 2 

Rattlesnake Butte BARS Geomyidae 2 1 

Rattlesnake Butte BARS Marmotini 0 0 

Rattlesnake Butte BARS Mylagaulidae 1 1  6 

Rattlesnake Butte BARS All Fossorial rodents 20 9 
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Appendix B (continued) 

Data for all small mammals 

Collecting Area 
NALMA 

NISP MNI 
subdivision 

Massacre Lake LHMF 1 06 47 
Beatty Butte EBAR 796 1 20 

Sucker Creek EBAR 3 2 
Virgin Valley EBAR 42 2 1  

Butte Creek Vole 
LBAR 279 80 

sst 

Deer Butte LBAR 440 85 
Juntura LCLA 4 1 9  98 

Thousand Creek EEHP 1 62 48 
Drewsey LEHP 446 90 

Grassy Mountain LEHP 1 9  6 
Chalk Butte ELHP 472 58  
Piute Creek BARS 9 8 

Rattlesnake Butte BARS 3 1  1 3  
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Appendix B (continued) 

Data for fossorial rodents 

Collecting Area NALMA subdivision Family Relative abundance (MNI) 

Massacre Lake LHMF Aplodontidae 29.79 

Massacre Lake LHMF Geomyidac 0.00 

Massacre Lake LHMF Mannotini 25.53 

Massacre Lake LHMF Mylagaulidae 36. 1 7  

Massacre Lake LHMF All Fossorial rodents 9 1 .49 

Beatty Butte EBAR Aplodontidae 1 4. 1 7  

Beatty Butte EBAR Geomyidae 0.00 

Beatty Butte EBAR Mannotini 8 .33  

Beatty Butte EBAR Mylagaulidae 1 0.00 

Beatty Butte EBAR All Fossorial rodents 32.50 

Sucker Creek EBAR Aplodontidae 0.00 

Sucker Creek EBAR Geomyidae 0.00 

Sucker Creek EBAR Mannotini 0.00 

Sucker Creek EBAR Mylagaulidae 50.00 

Sucker Creek EBAR All Fossorial rodents 5 0.00 

Virgin Valley EBAR Ap1odontidae 4.76 

Virgin Valley EBAR Geomyidae 0.00 

Virgin Valley EBAR Mannotini 0.00 

Virgin Valley EBAR Mylagaulidae 7 1 .43 

Virgin Valley EBAR All  Fossorial rodents 76. 1 9  

Butte Creek Vole sst LBAR Aplodontidae 1 7.50 

Butte Creek Vole sst LBAR Geomyidae 0.00 

Butte Creek Vole sst LBAR Mannotini 23.75 

B u tte Creek Vole sst LBAR Mylagaulidae 20.00 

Butte Creek Vole sst LBAR All Fossorial rodents 6 1 .25 

Deer Butte LBAR Aplodontidae 0.00 

Deer Butte LBAR Geomyidae 4.7 1 

Deer Butte LBAR Mannotini 1 . 1 8  

Deer Butte LBAR Mylagaulidae 0.00 

Deer Butte LBAR A l l  Fossorial rodents 5.88 

l . • 
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Appendix B (continued) 

Data for fossorial rodents 

Collecting Area NALMA subdivision Family 

Juntura LCLA Aplodontidae 

Juntura LCLA Geomyidae 

Juntura LCLA M armotini 

Juntura LCLA Mylagaulidae 

Juntura LCLA All Fossorial rodents 

Thousand Creek EEHP Aplodontidae 

Thousand Creek EEHP Geomyidae 

Thousand Creek EEHP Marmotini 

Thousand Creek EEHP Mylagaulidae 

Thousand Creek EEHP All F ossorial rodents 

Drewsey LEHP Aplodontidae 

Drewsey LEHP Geomyidae 

Drewsey LEHP Marmotini 

Drewsey LEHP Mylagaulidae 

Drewsey LEHP All F ossorial rodents 

Grassy Mountain LEHP Aplodontidae 

Grassy Mountain LEHP Geomyidae 

Grassy Mountain LEHP Marmotini 

Grassy Mountain LEHP Mylagaulidae 

Grassy Mountain LEHP All F ossorial rodents 

Chalk Butte ELHP Aplodontidae 

Chalk Butte ELHP Geomyidae 

Chalk Butte ELHP Marmotini 

Chalk Butte ELHP Mylagaulidae 

Chalk Butte ELHP All Fossorial rodents 

Piute Creek BARS Aplodontidae 

Piute Creek BARS Geomyidae 

Piute Creek BARS Marmotini 

Piute Creek BARS Mylagaulidae 

Piute Creek BARS All Fossorial rodents 

2 1 0  

Relative abundance (MNI) 

1 .02 

4.08 

7 . 1 4  

1 1 .22 

23 .47 

8.33 

39.58 

6.25 

6.25 

60.42 

1 1 . 1 1  

4.44 

4.44 

1 1 . 1 1 

3 1 . 1 1 

0.00 

0.00 

1 6.67 

0.00 

1 6.67 

0.00 

1 .72 

6.90 

0.00 

8 .62 

1 2.50 

1 2.50 

0.00 

50.00 

75 .00 
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Appendix B (continued) 

Data for fossorial rodents 

Area NALMA subdivision Relative abundance (MNI) 

Rattlesnake Butte BARS Aplodontidae 1 5 .38 
Rattlesnake Butte BARS Geomyidae 7.69 
Rattlesnake Butte BARS Marmotini 0.00 

Rattlesnake Butte BARS Mylagaulidae 46. 1 5  

Rattlesnake Butte BARS All F ossorial rodents 69.23 

Data for fossorial rodents 

Collecting Area NALMA subdivision Family N localities 

Rattlesnake Butte BARS 

Rattlesnake Butte BARS Geomyidae l 

Rattlesnake Butte BARS Marmotini 0 
Rattlesnake Butte BARS Mylagaulidae 

Rattlesnake Butte BARS All Fossorial rodents 
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Appendix B (continued) 

Data for fossorial rodents 

Collecting Area NALMA subdivision Family N localities 

Massacre Lake LHMF Aplodontidae 4 
Massacre Lake LHMF Geomyidae 0 
Massacre Lake LHMF Mannotini 4 
Massacre Lake LHMF Mylagaulidae 3 
Massacre Lake LHMF All Fossorial rodents 4 

Beatty Butte EBAR Aplodontidae 8 
Beatty Butte EBAR Geomyidae 0 
Beatty Butte EBAR Mannotini 3 
Beatty Butte EBAR Mylagaulidae 9 
Beatty Butte EBAR All  Fossorial rodents 1 1  

Sucker Creek EBAR Aplodontidae 0 
Sucker Creek EBAR Geomyidae 0 
Sucker Creek EBAR Mannotini 0 
Sucker Creek EBAR Mylagaulidae I 
Sucker Creek EBAR All  Fossorial rodents 

Virgin Valley EBAR Aplodontidae 

Virgin Valley EBAR Geomyidae 0 
Virgin Valley EBAR Mannotini 0 
Virgin Valley EBAR Mylagaulidae 6 
Virgin Valley EBAR All Fossorial rodents 7 

Butte Creek Vole sst LBAR Aplodontidae 3 
Butte Creek Vole sst LBAR Geomyidae 0 
Butte Creek Vole sst LBAR Mannotini 2 
Butte Creek Vole sst LBAR Mylagaulidae 3 
Butte Creek Vole sst LBAR All F ossorial rodents 3 

Deer Butte LBAR Aplodontidae 0 
Deer Butte LBAR Geomyidae 

Deer Butte LBAR Mannotini 

Deer Butte LBAR Mylagaulidae 0 
Deer Butte LBAR All  Fossorial rodents 

Juntura LCLA Aplodontidae 

Juntura LCLA Geomyidae 2 
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Appendix B (continued) 

Data for fossorial rodents 

Collecting Area NALMA subdivision Family N localities 

Juntura 

Juntura LCLA Mylagaulidae 7 

Juntura LCLA All F ossorial rodents 1 0  

Thousand Creek EEHP Aplodontidae 3 

Thousand Creek EEHP Geomyidae 6 

Thousand Creek EEHP Marmotini 2 

Thousand Creek EEHP Mylagaulidae 3 

Thousand Creek EEHP All Fossorial rodents 1 3  

D rewsey LEHP Aplodontidae 4 

Drewsey LEHP Geomyidae 2 

Drewsey LEHP Marmotini 2 

Drewsey LEHP Mylagaulidae 4 

Drewsey LEHP All Fossorial rodents 5 

Grassy Mountain LEHP Aplodontidae 0 

Grassy Mountain LEHP Geomyidae 0 

Grassy Mountain LEHP Marmotini 1 

Grassy Mountain LEHP Mylagaulidae 0 

Grassy Mountain LEHP All Fossorial rodents 

Chalk Butte ELHP Aplodontidae 0 

Chalk Butte ELHP Geomyidae 

Chalk Butte ELHP Marmotini 

Chalk Butte ELHP Mylagaulidae 0 

Chalk Butte ELHP All Fossorial rodents 

Piute Creek BARS Aplodontidae 

Piute Creek BARS Geomyidae 

Piute Creek BARS Marmotini 0 

Piute Creek BARS Mylagaulidae 2 

Piute Creek BARS All Fossorial rodents 3 
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APPENDIX C 

PRESENCE/ABSENCE DATA OF MAMMALIAN TAXA FOR 

THE LOCALITIES IN THE NORTHERN GREAT BASIN 

INCLUDED IN THE CLUSTER ANALYSIS OF CHAPTER III 



2 1 5  

Achlyoscapter Acritohippus Adjidaumo Aelurodon Alluvisorex Amebelodon 

1 065 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 
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Appendix C (extended) 

Ammospermophilus Amphicyon Amphicyonidae Anchitherium Anouroneomys 

1 065 0 0 0 0 0 

1 083 0 0 0 0 0 

1 090 0 0 0 0 0 

1 095 0 0 0 0 0 

1 098 0 0 0 0 0 

1 1 00 0 0 0 0 0 

1 1 03 0 0 0 0 0 

1 1 04 0 0 0 0 0 

1 1 05 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 

V6 1 60 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 

RV7043 0 I 0 

RV73 1 7  0 0 0 I 0 

RV73 1 9  0 0 0 0 0 

RV7322 0 0 0 0 0 

RV7324 0 0 0 0 0 

V65593 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 

V73056 0 0 0 0 0 

V78080 0 0 0 0 0 

V84 1 00 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 

V84 1 02 0 0 0 0 0 

V84 1 03 0 0 0 0 0 

V84 1 04 0 0 0 0 0 

V84 1 05 0 0 0 0 0 

V84 1 06 0 0 0 0 0 
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Appendix (extended) 

Antecalomys Anti locapridae Aphelops Aplodontidae Archaeohippus Arctomys Acritohippus 

1 065 0 0 0 0 0 0 I 

1 083 0 0 0 0 0 I 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 I 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 I 0 

3 3 5 1 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 I 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 3 6  0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Balantiomys Barbouromeryx Bassaricyonoides Bassariscus Blastomeryx 

1 065 0 0 0 0 I 

1 083 0 0 0 0 0 

1 090 0 0 0 0 

1 095 0 0 0 0 0 

1 09 8  0 0 0 0 0 

1 1 00 0 0 0 0 0 

1 1 03 0 0 0 0 0 

1 1 04 0 0 0 0 0 

1 1 05 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 

V6 1 60 0 0 0 0 0 

V6 1 6 1  0 0 0 0 I 

RV7043 0 I 0 0 

RV73 1 7  0 0 0 0 0 

RV73 1 9  0 0 0 0 0 

RV7322 0 0 0 0 0 

RV7324 0 0 0 0 0 

V65593 0 0 0 0 0 

RV68 ! 3 6  0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 

V73056 0 0 0 0 0 

V78080 0 0 0 0 0 

V84 ! 00 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 

V84 1 02 0 0 0 0 0 

V84 1 03 0 0 0 0 0 

V84 1 04 0 0 0 0 0 

V84 1 05 0 0 0 0 0 

V84 1 06 0 0 0 0 0 
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Appendix C (extended) 

Bouromeryx Brachypsalis Camelidae Canidae Canis Castor Castoridae Chalicomys 

1 065 0 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 I 0 0 0 

1 1 03 0 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 0 

3 3 5 1 0 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 0 

RV7043 0 0 0 0 0 I 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Chalicotheriidae Copemys Cosoryx Cranioceras Cricetidae Cupidinimus Cynorca Desmathyus 

1 065 0 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 1 0 0 

1 1 04 0 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 1 0 0 0 

RV7043 0 0 0 0 0 1 

RV73 1 7  0 0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 1 

RV7324 0 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 1 0 0 0 

V73056 0 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 0 



22 1 

Appendix C (extended) 

Diceratherium Didelphis Dinohippus Dipoides Diprionomys Domnina 

1 065 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 

1 1 03 0 0 0 I I 0 

1 1 04 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  I 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 

V65 593 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 I 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

t V84 1 04 0 0 0 0 0 0 

i V84 1 05 0 0 0 0 0 0 

I 
V84 1 06 0 0 0 0 0 0 

I 

I I 
I 

l I 
f l 
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Appendix C (extended) 

Domninoides Dromomeryx Eomyidae Epicyon Equidae Erinaceidae Eucastor Eucyon 

1 065 0 I 0 0 I 0 0 0 

1 08 3  0 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 I 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 0 

RV7324 0 0 0 0 I 0 0 0 

V65593 0 0 0 0 0 0 0 0 

RV68 1 3 6  0 I 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 I 0 0 0 

V84 1 02 0 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 I 0 0 

V84 1 04 0 0 0 0 0 I 0 0 

V84 1 05 0 0 0 0 I 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Euoplocyon Eutamias Felidae Gomphotheri idae Goniodontomys Hemicyon Hesperhys 

1 065 0 0 0 0 0 0 0 

1 08 3  0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Hesperolagomys Hesperosorex Heteromyidae Heterosorex Hypo hippus Hypolagus Hystricops 

1 065 0 0 0 0 I I 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 

I I  03 0 0 0 0 0 1 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 I 0 0 

RV7043 0 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 1 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 

V84 1 05 0 0 0 0 1 0 

V84 1 06 0 0 0 0 0 0 



225 

Appendix C (extended) 

llingoceros Indarctos Jngentisorex Lantanotherium Leporidae Leptodontomys 

1 065 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 

3 3 5 1 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 

RV7322 0 0 0 0 - 0 0 

RV7324 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 1 0 

V84 1 05 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 
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Appendix C (extended) 

Limnoecus Liodontia Macrognathomys Mammut Mammutidae Marmota 

1 065 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 

1 1 03 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 I 

3 3 5 1  0 0 I 0 0 

V6 1 60 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 

RV7043 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 

RV68 1 3 6  0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 

V84 1 04 0 0 0 0 0 

V84 1 05 0 0 0 0 0 

V84 1 06 0 0 0 0 0 
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Appendix C (extended) 

Martes Megalonychidae Megapeomys Megatylopus Merychippus Merychyus Merycodus 

1 065 0 0 0 0 I 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 1 

1 095 0 0 0 0 I 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

335 1 0 0 0 0 1 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 I 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 1 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Merycoidodontidae Metalopex Metatomarctus Meterix Miospermophilus Monos au/ax Moropus 

1 065 0 0 0 0 0 I 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 I 0 

1 095 0 0 0 0 0 0 I 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

335 1 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 

RV7043 0 0 0 0 I 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 I 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Mus tela Muste1idae Mystipterus Neohipparion Nothodipoides Oreodon Oreodontidae 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1 0 0 0 0 0 0 0 

V6 1 60 0 I 0 0 0 0 0 

V6 1 6 1  0 I 0 0 0 0 0 

RV7043 0 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Oreolagus Palaeomerycidae Paracosoryx Paracynarctus Paradomnina Parahippus Parapliohippus 

1 065 0 0 0 I 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 

1 095 0 0 0 0 0 I 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 

RV7043 0 0 0 I 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 I 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1 0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 
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Appendix C (extended) 

Paratomarctus Perchoerus Peridomys Perognathus Peromyscus Petauristodon Platygonus 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 3 6  0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 I 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Plesiadjidaumo Plesiosminthus Plesiosorex Pliocyon Plio gale Plio hippus Pliotaxidea 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 I 0 

1 1 03 0 0 0 0 I 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Probassariscus Procamelus Prodipodomys Prosthennops Proto hippus Protospermophilus Pseudaelurus 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 I 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 I 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 
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Appendix C (extended) 

Pseudotheridomys Pseudotrimylus Rakomeryx Rhinocerotidae Satherium Scalopoides Scapanoscapter 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 I 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 I 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 0 

V84 1 05 0 0 0 I 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Scapanus Sciuridae Sciurus Soricidae Spermophilus Sphenophalos Sthenictis 

1 065 0 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  I 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 I 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 
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Appendix C (extended) 

Talpidae Tapiridae Tardontia Tayassuidae Teleoceras Tephrocyon Ticholeptus 

1 065 0 0 0 0 0 0 I 

1 08 3  0 0 0 0 0 0 0 

1 090 0 0 0 0 0 I I 

1 095 0 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 0 

335 1 0 0 0 0 0 0 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 0 

RV7043 0 0 0 0 0 0 

RV73 1 7  0 0 0 0 0 0 I 

RV73 1 9  0 0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 0 

V73056 0 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 0 

V84 1 04 I 0 0 0 0 0 0 

V84 1 05 0 0 0 0 0 0 0 

V84 1 06 0 0 0 0 0 0 0 
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Appendix C (extended) 

Tomarctus Trimylus Ursavus Ursidae Vulpes Zapodidae 

1 065 0 0 0 0 0 0 

1 083 0 0 0 0 0 0 

1 090 0 0 0 0 0 0 

1 095 0 0 0 0 0 0 

1 098 0 0 0 0 0 0 

1 1 00 0 0 0 0 0 0 

1 1 03 0 0 0 0 0 0 

1 1 04 0 0 0 0 0 0 

1 1 05 0 0 0 0 0 0 

3 3 5 1  0 0 0 0 I 0 

V6 1 60 0 0 0 0 0 0 

V6 1 6 1  0 0 0 0 0 

RV7043 I 0 I 0 0 0 

RV73 1 7  0 0 0 0 0 0 

RV73 1 9  0 0 0 0 0 0 

RV7322 0 0 0 0 0 0 

RV7324 0 0 0 0 0 0 

V65593 0 0 0 0 0 0 

RV68 1 36 0 0 0 0 0 0 

V69 1 1 4  0 0 0 0 0 0 

V73056 0 0 0 0 0 0 

V78080 0 0 0 0 0 0 

V84 1 00 0 0 0 0 0 0 

V84 1 0 1  0 0 0 0 0 0 

V84 1 02 0 0 0 0 0 0 

V84 1 03 0 0 0 0 0 0 

V84 1 04 0 0 0 0 0 0 

V84 1 05 0 I 0 0 0 0 

V84 1 06 0 0 0 0 0 0 
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Appendix C (continued) 

Achlyoscapter Acritohippus Adjidaumo Aelurodon A lluvisorex Amebelodon 
V85 1 00 0 0 0 0 0 0 
V85 1 05 0 0 0 0 0 0 
V86028 0 0 0 0 0 0 
V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 
CIT 5 7  0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 

2500 0 0 0 0 0 0 

2239 0 0 0 0 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 

2337 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 

2465 0 I I 0 

2495 I 0 0 0 

2338 0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 

2343 0 0 0 0 0 

2344 0 0 0 I 0 0 

2347 0 0 0 0 0 0 

2356 0 0 0 0 0 0 

2357 0 0 0 0 0 

2358 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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Appendix C (extended) 

Ammospermophilus Amphicyon Amphicyonidae Anchitherium Anouroneomys 

V85 1 00 0 0 0 0 0 

V85 1 05 0 0 0 0 0 

V86028 0 0 0 0 0 

V90052 0 0 0 0 0 

LACM44 0 0 0 0 0 

CIT 5 7  0 I 0 0 0 

CIT62 0 0 0 0 0 

CIT3 7 1  0 I 0 0 0 

2500 I 0 0 0 I 

2239 0 0 0 0 0 

2334 0 0 0 0 

2335 0 0 0 0 0 

2337 0 0 0 0 

25 1 6  I 0 0 0 0 

2465 0 0 0 0 0 

2495 0 0 0 0 

2338 I 0 0 0 0 

2339 0 0 0 0 0 

2340 0 0 0 0 0 

234 1 0 0 0 0 

2343 0 0 0 0 0 

2344 0 0 0 0 0 

2347 0 0 0 0 0 

2356 0 0 0 0 0 

2357 0 0 0 0 0 

2358 0 0 0 0 0 

24 1 7  0 0 0 0 0 

24 1 8  0 0 0 0 0 

2469 0 0 0 0 0 
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Appendix C (extended) 

Antecalomys Antilocapridae Aphelops Aplodontidae Archaeohippus Arctomys Acritohippus 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 

CIT 5 7  0 0 0 0 0 0 0 

CJT62 0 0 0 0 0 0 0 

CIT3 7 1  0 0 I 0 I 0 0 

2500 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 

2334 0 I 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  I 0 0 0 0 0 0 

2465 0 0 0 0 0 0 

2495 0 0 I 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

2341  0 0 0 0 0 0 0 

2343 0 I 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 I 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Balantiomys Barbouromeryx Bassaricyonoides Bassariscus Blastomeryx 

V85 1 00 0 0 0 0 0 

V85 1 05 0 0 0 0 0 

V86028 0 0 0 0 0 

V90052 0 0 0 0 0 

LACM44 0 0 0 0 0 

CIT 5 7  0 0 0 0 I 

CIT62 0 0 0 0 0 

CIT37 1  0 0 0 0 0 

2500 0 0 0 0 0 

2239 0 0 0 0 0 

2334 0 0 0 0 0 

2335 0 0 0 0 0 

2337 0 0 0 0 0 

25 1 6  0 0 0 0 0 

2465 0 0 1 0 

2495 I 0 0 0 0 

2338 0 0 0 0 0 

2339 0 0 0 0 0 

2340 0 0 0 0 0 

234 1 0 0 0 0 0 

2343 0 0 0 0 0 

2344 0 0 0 0 0 

2347 0 0 0 0 0 

2356 0 0 0 0 0 

2357 0 0 0 0 0 

2358 0 0 0 0 0 

24 1 7  0 0 0 0 0 

24 1 8  0 0 0 0 0 

2469 0 0 0 0 0 
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Appendix C (extended) 

Bouromeryx Brachypsalis Camelidae Canidae Canis Castor Castoridae Chalicomys 

V85 ! 00 0 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 I 0 0 0 I 

CIT 5 7  0 0 0 0 0 0 0 

CJT62 0 0 I 0 I 0 0 

CIT37 1  0 0 0 I 0 0 0 0 

2500 0 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 0 

2334 0 0 0 I 0 0 0 0 

2335 0 0 I 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 0 

2465 0 0 0 0 0 0 

2495 0 I 0 0 0 0 

2338 0 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 0 

2 3 4 1  0 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 I 0 

24 1 7  0 0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 0 
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Appendix C (extended) 

Chalicotheri idae Copemys Cosoryx Cranioceras Cricetidae Cupidinimus Cynorca Desmathyus 

V85 1 00 0 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 0 

CIT 57 0 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 0 0 

CIT37 1  0 0 0 0 0 0 0 0 

2500 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 0 0 0 0 0 

2495 0 0 0 0 0 0 

2338 0 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 0 
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Appendix C (extended) 

Diceratherium Didelphis Dina hippus Dipoides Diprionomys Domnina 

V85 1 00 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 0 0 0 0 0 

CIT62 0 0 0 0 0 

CIT37 1 0 0 0 0 0 0 

2500 0 0 0 0 0 
2239 0 0 0 0 I 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 

2337 0 0 0 0 0 0 

25 1 6  0 0 0 I 0 

2465 0 I 0 0 0 0 

2495 0 0 0 0 0 I 

2338 0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 

2343 0 0 0 0 0 0 

2344 0 0 0 0 0 0 

2347 0 0 0 0 0 

2356 0 0 0 0 0 

2357 0 0 0 0 0 0 

2358 0 0 0 I 0 0 

24 1 7  0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 
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Appendix C (extended) 

Domninoides Dromomeryx Eomyidae Epicyon Equidae Erinaceidae Eucastor Eucyon 

V85 1 00 0 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 I 0 0 0 0 0 

CIT62 0 0 0 I 0 0 0 0 

CIT37 1  0 0 0 I I 0 0 

2500 0 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 I 0 0 0 

2337 0 0 0 0 I 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 0 0 0 0 0 

2495 0 I 0 0 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

2341  0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 I 0 0 

2347 0 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 I 0 0 0 

24 1 8  0 0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Euoplocyon Eutamias Felidae Gomphotheriidae Goniodontomys Hemicyon Hesperhys 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 

CIT 5 7  I 0 0 0 0 

CIT62 0 0 0 I 0 0 

CIT3 7 1  0 0 0 0 0 0 0 

2500 0 0 0 0 0 

2239 0 I 0 0 1 0 0 

2334 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 0 0 0 0 0 

2495 0 0 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 0 

2343 0 0 I 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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Appendix C (extended) 

Hesperolagomys Hesperosorex Heteromyidae Heterosorex Hypo hippus Hypolagus Hystricops 

V85 1 00 0 0 0 0 0 0 0 

V85 I 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 0 0 0 0 

CIT62 0 0 0 0 0 I 0 

CIT37 I  0 0 0 0 0 0 

2500 I I 0 0 0 

2239 0 0 I 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 

2 5 I 6  0 0 0 0 0 

2465 0 0 I 0 0 0 

2495 0 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 I 

234 I 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 I 7  0 0 0 0 I 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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Appendix C (extended) 

llingoceros lndarctos lngentisorex Lantanotherium Leporidae Leptodontomys 

V85 1 00 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT57 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 I 0 

2500 0 0 0 0 0 

2239 0 0 0 0 0 I 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 

2337 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 

2465 0 0 0 0 

2495 0 0 0 0 0 

2338 0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 

2343 0 0 0 0 0 0 

2344 0 0 0 0 I 0 

2347 0 0 0 0 0 0 

2356 0 0 0 0 0 0 

2357 0 0 0 0 0 0 

2358 0 0 0 0 I 0 

24 1 7  0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 0 
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Appendix C (extended) 

Limnoecus Liodontia Macrognathomys Mammut Mammutidae Marmot a 

V85 1 00 0 0 0 0 0 

V85 1 05 0 0 0 0 0 

V86028 0 I 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 5 7  0 I 0 0 0 0 

CIT62 0 0 0 0 0 0 

CIT37 1 0 I 0 0 0 0 

2500 0 0 I 0 0 0 

2239 0 0 I 0 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 

2337 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 

2465 0 0 I 0 0 0 

2495 0 0 0 0 

2338 0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 

2343 0 0 0 I 0 0 

2344 0 0 0 0 0 0 

2347 0 0 I 0 0 

2356 0 0 0 0 0 0 

2357 0 0 0 0 0 0 

2358 0 0 0 I 0 

24 1 7  0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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Appendix C (extended) 

Martes Megalonychidae Megapeomys Megatylopus Merychippus Merychyus Merycodus 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 0 0 0 0 I 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 I I 

CIT 5 7  0 0 0 I 0 I 

CIT62 0 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 I 0 

2500 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  I 0 0 0 0 0 0 

2465 0 0 0 0 0 I 

2495 0 0 0 0 0 0 

2338 0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 

234 1 0 0 0 0 0 I 0 

2343 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 I 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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Appendix C (extended) 

Mus tela Mustelidae Mystipterus Neohipparion Nothodipoides Oreodon Oreodontidae 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 I 0 0 0 I 0 

CIT 5 7  0 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 0 

2500 0 I I 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 I 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 I 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 I 0 0 0 0 I 

2495 0 0 I 0 0 0 0 

2338 0 0 0 I 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 I 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Oreolagus Palaeomerycidae Paracosoryx Paracynarctus .Paradomnina Parahippus Parapliohippus 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 I 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 0 

CIT3 7 1  I 0 0 0 0 1 0 

2500 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 0 0 0 0 

2495 0 0 I 0 1 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Paratomarctus Perchoerus Peridomys Perognathus Peromyscus Petauristodon Platygonus 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 

CIT 5 7  I 0 0 0 0 0 

CIT62 0 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 
v 

0 

2500 0 0 0 0 0 

2239 0 0 0 0 0 

2334 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 

2465 0 0 0 0 0 0 

2495 0 0 0 I 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

2 3 4 1  0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 I 0 0 
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Appendix C (extended) 

Plesiadjidaumo Plesiosminthus Plesiosorex Pliocyon Plio gale Pliohippus Pliotaxidea 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 

CIT 5 7  0 0 0 0 0 0 

CIT62 0 0 0 0 I I 0 

CIT3 7 1  0 0 0 0 0 0 0 

2500 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 I 

2334 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 I 0 0 0 0 

2495 0 I 0 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

2341  0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 I 

2347 0 0 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Probassariscus Procamelus Prodipodomys Prosthennops Proto hippus Protospermophilus Pseudaelurus 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 5 7  0 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 

2500 0 0 0 0 0 0 0 

2239 0 0 0 0 0 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 I 

2337 0 0 0 I 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 I 0 0 0 

2495 0 0 0 0 0 I 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 I 

234 1 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 I 

2344 0 0 0 0 0 0 0 

2347 0 I 0 0 0 0 0 

2356 0 0 0 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Pseudotheridomys Pseudotrimylus Rakomeryx Rhinocerotidae Satherium Scalopoides Scapanoscapter 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 0 I 0 0 0 

CIT62 0 0 0 0 I 0 0 

CIT3 7 1  0 0 0 I 0 0 0 

2500 0 0 0 0 0 0 

2239 0 0 0 0 0 I 0 

2334 0 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 0 

2465 0 0 0 0 0 

2495 I 0 I 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 0 0 0 0 

2356 0 0 0 I 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Scapanus Sciuridae Sciurus Soricidae Spermophilus Sphenophalos Sthenic tis 

V85 1 00 0 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 0 

V86028 0 0 I 0 0 0 

V90052 0 I 0 0 0 0 0 

LACM44 0 0 0 0 0 0 0 

CIT 5 7  0 0 0 0 I 0 0 

CIT62 0 0 0 0 0 I 0 

CIT37 I  0 0 0 0 0 

2500 0 0 0 I 

2239 I 0 0 I 0 0 

2334 0 I 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 

25 1 6  I 0 0 0 0 

2465 0 0 0 0 0 

2495 0 0 0 0 0 0 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

234I 0 0 0 0 0 0 0 

2343 0 0 0 0 0 0 0 

2344 0 0 0 0 0 0 

2347 I 0 0 0 0 0 

2356 0 0 0 0 0 0 

2357 I 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 I 7  0 0 0 0 0 0 0 

24 I 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 
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Appendix C (extended) 

Talpidae Tapiridae Tardontia Tayassuidae Teleoceras Tephrocyon Ticholeptus 

V85 I OO 0 0 0 0 0 0 0 

V85 I 05 0 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 5 7  0 0 I 0 0 I 

CIT62 0 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 0 

2500 0 0 0 0 0 

2239 0 I 0 I 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 0 

2337 0 0 0 0 0 0 0 

25 I 6  0 0 0 0 0 0 

2465 0 0 0 0 0 

2495 0 0 0 0 I I 

2338 0 0 0 0 0 0 0 

2339 0 0 0 0 0 0 0 

2340 0 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 0 

2343 0 I 0 0 0 0 0 

2344 0 0 0 0 0 0 0 

2347 0 0 0 I 0 0 

2356 0 0 I 0 0 0 0 

2357 0 0 0 0 0 0 0 

2358 0 0 0 0 0 0 0 

24 I 7  0 0 0 0 0 0 0 

24 I 8  0 0 0 0 0 0 0 

2469 0 0 0 0 0 0 0 
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Appendix C (extended) 

Tomarctus Trimylus Ursavus Ursidae Vulpes Zapodidae 

V85 1 00 0 0 0 0 0 0 

V85 1 05 0 0 0 0 0 0 

V86028 0 0 0 0 0 0 

V90052 0 0 0 0 0 0 

LACM44 0 0 0 0 0 0 

CIT 57 0 0 0 0 0 0 

CIT62 0 0 0 0 0 0 

CIT3 7 1  0 0 0 0 0 0 

2500 0 0 0 0 0 

2239 0 0 0 0 0 

2334 0 0 0 0 0 0 

2335 0 0 0 0 0 0 

2337 0 0 0 0 0 

25 1 6  0 0 0 0 0 0 

2465 0 0 0 1 0 0 

2495 0 0 0 0 

2 3 3 8  0 0 0 0 0 0 

2339 0 0 0 0 0 0 

2340 0 0 0 0 0 0 

234 1 0 0 0 0 0 0 

2343 0 0 0 0 0 0 

2344 0 0 0 0 0 0 

2347 0 0 0 0 0 0 

2356 0 0 0 0 0 0 

2357 0 0 0 0 0 0 

2358 0 0 0 0 0 0 

24 1 7  0 0 0 0 0 0 

24 1 8  0 0 0 0 0 0 

2469 0 0 0 0 0 0 
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APPENDIX D 

MICRO WEAR DATA FOR ALL SPECIMENS INCLUDED IN 

CHAPTER IV 

For specimens scored twice, both counts are included. 

Abbrevaitions: Ap, all pits; As, all scratches; sp, small puncture pits; lp, large pits; lpp, 

large puncture pits; spp, small puncture pits; crs, cross scratches; g, gouges; fs, fine 

scratches; cs, coarse scratches; hs, hypercoarse scratches. 

Taxonomic Abbreviation: S. carol. , Sciurus carolinensis. 

Museum Abbreviations: CIT , Los Angeles County Museum, CA; UCMP, University of 

California Museum of Paleontology, Berkeley, CA; UO-F, University of Oregon Museum 

ofNatural and Cultural history Condon Fossil Collections, Eugene ,OR; UWBM, 

University of Washington Burke Museum., Seattle, W A.  



Taxon 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

M monax 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. glaber 

H. wilsoni 

H. species A 

H. species A 

H. species A 

H. species A 

H. species A 

H. species A 

H. species A 

H. species A 
H. gazini 

Museum Number sp lp lpp spp Ap crs 

UWBM 39792 36 0 2 3 4 1  0 
UWBM 42 1 67 36 1 3 1 4 1  1 
UWBM 42 1 64 3 7  3 1 3 44 1 
UWBM 42 1 6 5  4 1  3 2 3 49 0 
UWBM 42 1 66 40 1 1 3 45 0 
UWBM 1 295 1 3 6  0 2 2 40 0 
UWBM 42 1 54 3 8  1 3 5 47 0 
UWBM 39792 35  0 3 2 40 2 
UWBM 42 1 67 34 1 3 1 39 2 
UWBM 42 1 64 39 2 2 4 47 1 
UWBM 42 1 65 4 1  2 2 2 47 0 
UWBM 42 1 66 3 8  1 3 2 44 2 
UWBM 1 295 1 3 5  0 2 3 8  0 
UWBM 42 1 54 3 6  2 2 4 44 2 
UWBM 36428 3 5  5 0 2 42 0 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 

CIT 
UO-F 
UO-F 
UO-F 
UO-F 
UO-F 
UO-F 
UO-F 
UO-F 
CIT 

36443 
36460 
3 6464 
3 6427 
36466 
3646 1 
36435 
36465 
36434 
3 6462 
1 95 6  
5 7 7 1  
1 569 1 
5 772 
5443 
5425 
1 7508 
1 0977 
6 I 1 5  
527 

4 1  4 
5 8  1 
37  5 
54 2 
3 7  6 
4 1  6 
3 6  4 
53  1 
40 4 
44 2 
32 6 
3 0  2 
23 6 
26 5 
27 3 
3 5  
28 
36 0 
29 0 
3 3  2 

1 
4 
3 
4 
0 
1 
2 
1 
5 
2 
0 

1 
0 
2 
0 
3 
2 
0 

1 
3 
0 
3 
0 
2 
2 
0 
4 
3 
2 
0 
0 
0 
2 
0 
2 
2 
0 

47 
66 
45 
63 
43 
50 
44 
5 5  
5 3  
5 1  
40 
3 3  
30  
3 1  
34  
36 
34 
40 
29 

6 42 

0 
2 
0 
4 
0 
0 
1 
0 
0 
0 
I 
0 
0 
1 
4 
4 
5 
2 
0 

g fs cs 

0 3 7  1 
2 3 5  2 
0 36  4 
0 3 3  1 
0 4 1  2 
0 29 0 
0 30 4 
0 3 5  2 
2 3 1  2 
0 3 3  4 
0 3 6  0 
0 3 9  1 
0 3 0  1 
0 3 3  2 

262 

hs As 

1 39  
0 40 
0 4 1  
0 34 
0 43 
0 29 
1 3 5  
1 40 
0 3 7  
0 3 8  
0 3 6  
1 43 
0 3 1  
0 3 7  

0 50  9 0 5 9  
0 3 7  1 0  1 48 
0 44 6 0 52  
0 3 7  8 0 45 
0 44 5 2 5 5  
1 4 6  5 1 5 3  
1 48  1 0 5 0  
0 4 6  4 
0 44 6 
0 47 3 
0 5 5  5 
2 46 2 
0 22 2 
0 26 2 
0 3 3  2 
0 29 3 
0 3 1  0 
0 39  0 

0 5 1  
0 50  
3 53  
4 64 
0 5 1  
I 25 
1 29 
I 3 7  
0 3 6  
1 36 
0 44 

0 36  0 0 3 8  
0 45 4 
0 3 3  5 

0 49 
40 
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Taxon 

H. gazini 

H. gazini 

H. gazini 

H. gazini 

H. gazini 

H. gazini 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

E. dorsatum 

dorsatum 

E. dorsatum 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

D. ingens 

A. rufa 

A.  rufa 

Museum Number sp lp 

CIT 525 45 0 
CIT 528 30  1 
CIT 70 3 1  0 
CIT 

LACM 
UCMP 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 
UO-R 

UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 
UWBM 

5 1 7 
4987 

1 3 03 3 1  
8662 
925 I 
85 1 9  
85 1 3  
8408 
85 1 1  
4023 
1 998 
8662 
925 1 
85 I 9  
85 1 3  
8408 
85 1 1  
4023 
1 998 

469 1 1 
4692 1 
46902 
469 1 2  
469 1 4  
4690 1 
46920 
46925 
469 I O  
3 5 998  
3 5 966 

35 2 
3 6  3 
29 6 
36 1 
27 2 
34  1 
25 0 
24 2 
3 3  0 
25 3 
22 2 
3 8  0 
30  
33  
28  2 
28  3 
32 1 
26 
26 
48 4 
3 8  5 
47 3 
47 3 
5 3  5 
42 3 
46 5 
45 5 
54 6 
3 5  1 
28  3 

lpp 

3 
0 
0 
0 
2 
2 
0 

I 
1 
4 
0 
1 
0 
0 
2 
1 
2 
0 
0 
0 
1 
6 
4 
4 
7 
4 
5 
2 
4 
6 
2 
2 

spp Ap crs 

3 5 1  3 
0 3 1  1 
4 3 5  1 
3 40 3 

g fs cs 

0 3 1  1 
0 3 8  1 
0 34  4 
0 3 3  1 

2 43 0 0 3 3  2 
0 3 7  1 0  0 25 1 
0 37  0 0 32  3 
3 33  0 0 29 2 
0 36 4 0 27 2 
3 29 0 0 29 5 
3 
2 
0 
0 
1 
2 
1 
3 
2 
0 
1 
0 
I O  
1 

4 
3 
5 
2 
6 
5 
3 
3 

3 3  
3 5  
29 
24 
39  
3 5  
36  
3 5  
3 3  
3 3  
28  
28 
68 
48  
55  
6 1  
65  
55  
55  
60  
7 1  
4 1  
3 6  

0 
1 
0 
0 
1 
0 
6 
2 
1 
0 
4 
1 
2 
0 
0 
0 
0 
0 
0 
2 
1 
0 
0 

0 23 6 
0 26 4 
0 28  3 
0 33  2 
0 29 3 
0 3 0  2 
0 25 1 
0 28  3 
0 24 3 
0 23 4 
0 3 0  0 
0 3 3  3 
0 30 3 
0 26 2 
0 29 2 
0 3 6  0 
0 27 2 
0 3 8  2 
0 25 5 
1 36  I 
0 3 7  3 
0 23 6 
0 25  2 

263 

hs As 

1 36  
1 4 1  
0 39  
0 3 7  
0 3 5  
1 37  
0 35  
1 32  
0 3 3  
0 34 
3 
0 
2 
0 
1 
1 
1 
0 
0 

1 
3 
0 
0 
1 
0 
3 
1 

2 
1 
0 
0 

3 2  
3 1  
3 3  
3 5  
34 
3 3  
3 3  
3 3  
2 8  
2 8  
3 5  
40 

3 5  
28 
32 
3 6  
3 2  
4 1  
3 1  
42 
42 
29 
27 
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Appendix D (continued) 

Taxon Museum Number sp lp lpp spp Ap crs g fs cs hs As 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A.  rufa 

A. rufa 

A. rufa 

A. rufa 

A. rufa 

A.  rufa 

A. rufa 

UWBM 9643 33  6 0 0 3 9  0 0 28 3 0 3 1  
UWBM 3 1 867 49 2 2 0 53  1 0 34  2 2 39  
UWBM 9638 36  8 0 
UWBM 79564 3 9  1 2 
UWBM 20207 39  2 0 
UWBM 34065 3 8  1 0 
UWBM 423 1 7  40 1 2 
UWBM 957 1  4 1  4 0 
UWBM 3 5 998 3 2  2 I 
UWBM 3 5 966 26 0 2 
UWBM 9643 34  2 3 
UWBM 3 1 867 47 2 2 
UWBM 9638 3 7  4 2 
UWBM 79564 3 8  0 2 
UWBM 20207 39  2 0 
UWBM 34065 4 1  1 0 
UWBM 423 1 7  40 1 2 
UWBM 957 1 3 8  2 0 

A. vetus UCMP 
A. vetus UCMP 
A. vetus UCMP 
A. vetus UCMP 
A. vetus UCMP 

T. talpoides UWBM 

T. talpoides UWBM 

T. talpoides UWBM 

T. talpoides UWBM 

T. talpoides UWBM 

T. talpoides UWBM 
T. bottae UWBM 
T. bottae UWBM 
T. bottae UWBM 
T. bottae UWBM 

3 1 5685 42 2 I 
1 30246 28  4 5 
1 30239 3 7  3 3 
1 30240 36  0 1 
3 1 9237 3 3  0 2 
3 8493 56 4 0 
45 1 1 8 75  4 I 
36483 56 3 4 
525 1 4  6 3  2 I 
5 8264 64 6 0 
44956  60 4 3 
44627 34 1 4  3 
44802 67 0 2 
44628 39 3 1 
44697 64 1 0 

1 45 0 
I 43 0 

42 0 
1 40 0 
2 45 0 
0 45 2 
2 3 7  0 
3 3 1  1 
1 40 0 
2 5 3  0 
5 48  0 
2 42 0 
2 43 0 
2 44 1 
2 45 1 
5 45 1 

0 26 4 1 3 1  
0 23 1 0 24 
0 3 5  2 1 3 8  
0 3 0  1 0 3 1  
0 34  2 0 36 
0 28 2 1 33  
0 25  5 1 3 1  
0 24 0 26 
0 3 1  2 0 3 3  
0 3 6  1 2 3 9  
0 2 9  4 1 3 4  
0 2 6  0 0 26 
0 40 2 3 45 
0 30 2 2 3 5  
0 3 2  0 0 3 3  
0 28  6 2 3 7  

0 
I 
1 
2 
2 
0 
0 
1 
1 
2 
1 
0 
0 
2 
5 

45 1 0 3 1  1 0 3 3  
3 8  2 0 2 6  1 1 3 0  
4 4  2 0 25 3 0 3 0  
3 9  4 0 32  1 2 3 9  
3 7  4 0 30  2 2 3 8  
6 0  0 0 65 4 0 69 
80 5 0 6 1  5 0 7 1  
64 0 6 0  4 0 65 
67 0 0 63 I 0 64 
72 0 0 6 1  2 0 63 
68 3 I 5 5  2 0 6 1  
5 1  4 2 5 6  1 4  0 76 
69 0 39 5 0 45 
45 0 0 57  1 59 
70 0 0 48  5 0 53 



Appendix D (continued) 

Taxon 

T. bottae 

T. bottae 

T. bottae 

T. striatus 

T. striatus 

T. striatus 

T. striatus 

T. striatus 

T. striatus 

T. striatus 

T senex 

T senex 

T. senex 

T. senex 

T. senex 

T. senex 

S. griseus 

S. griseus 

S. griseus 

S. griseus 

S. griseus 

S. griseus 

S. griseus 

S. griseus 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

S. carol. 

Museum Number sp lp lpp spp Ap crs 

UWBM 44644 44 0 3 1 48 
UWBM 44698 6 1  0 2 4 67 3 

UWBM 44643 62 5 0 1 68 0 

UWBM 43395 43 1 0 45 3 

UWBM 43390 4 1  2 1 2 46 3 

UWBM 60304 3 5  4 1 0 40 0 

UWBM 434 1 1  35  3 0 39 0 

UWBM 43404 40 4 1 3 48 0 

UWBM 60305 3 8  3 1 3 45 0 

UWBM 433 9 1  27 3 4 2 36 0 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

UWBM 

43339  
43357 

43354 

43355  

43342 

80625 

52456 

7574 1 

76898 

76909 

74094 

74093 

73385 

42266 

43900 
42256 

809 1 2  

43899 

42245 
42229 

42232 

39505 

39796 

25 5 
3 5  2 

3 5  2 

40 0 

3 5  5 

40 3 

25 2 

37 2 

26 3 

32 1 

28 3 

35  1 

33  3 

3 3  2 

45 1 

37 4 

28 0 
32 3 

32  4 
48 2 

40 6 
33  7 

33  3 

2 

2 

3 

3 

2 

4 
3 

1 

3 
I 
0 

1 

3 

1 

4 

1 
3 

0 

2 

0 

3 

4 

1 

0 

3 
3 

0 
3 

0 
0 

0 

4 

1 

0 

0 

0 

0 

2 

2 
4 
2 

34 

39 

43 

47 

42 

45 
34 

45 

30 

39 
32 

36 

37 

42 

48 

42 

32 

36 

37 
55 

48 
45 

39 

2 

0 

0 
2 

0 

0 
1 

0 
3 

1 

0 

1 

3 

0 

0 
2 

0 

1 

0 
0 

0 

2 

g fs cs 

0 59  1 

1 37  2 

2 4 1  

0 3 4  0 

0 3 1  2 

0 46 3 

0 3 3  2 
0 34 3 

0 34 1 

0 36  4 

0 45 4 

0 45 1 

0 42 0 

0 43 

0 4 1  1 

0 46 1 

0 43 3 
0 40 2 

0 46 0 

0 39 1 

0 40 1 

0 47 2 

0 40 0 
0 4 1  0 

0 40 1 

0 35  3 

0 3 0  5 
0 43 4 

0 28 4 

0 42 0 
0 32  1 

0 3 5  
0 3 3  1 

265 

hs As 

3 64 

2 45 

1 45 

0 37 

2 38  

2 5 1  

1 36 

0 37 

1 36 

1 4 1  

0 50 
0 48 

0 42 

0 44 

1 45 

2 49 

47 

44 

1 47 

0 43 

0 42 

50 

42 

1 45 

2 43 
1 39 

1 3 8  
2 49 

2 35  
1 43 

0 33 
0 36 

37 
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Appendix D (continued) 

Taxon Museum Number sp lp lpp spp Ap crs g fs cs hs As 

S. carol. UWBM 42234 34 4 0 0 3 8  2 0 37  3 1 43 

S. carol. UWBM 43900 42 0 3 46 0 0 4 1  1 43 

S. carol. UWBM 42256 32 2 1 2 3 7  0 0 36  2 2 40 

S. carol. UWBM 809 1 2  28 0 1 4 3 3  0 0 30  5 1 36 

S. carol. UWBM 43899 3 8  1 0 0 39 2 0 43 2 0 47 

S. carol. UWBM 42245 34 4 0 1 39  0 0 24 3 0 27 

S. carol. UWBM 42229 43 1 1 4 49 0 0 4 1  1 1 43 

S. carol. UWBM 42232 40 3 0 2 45 0 0 32  2 0 34 

S. carol. UWBM 39505 36 4 1 1 42 0 0 3 8  1 0 39 

S. carol. UWBM 39796 34 1 4 0 39  4 0 27 1 1 33  

S. carol. UWBM 42234 36  1 2 3 42 0 0 40 3 0 43 

P. magnus UO-F 26067 62 6 8 4 80 2 0 70 2 0 74 

P. magnus UO-F 26068 70 2 0 0 72 6 0 68 0 2 76 

P. magnus UO-F 26062 70 2 6 4 82 6 0 56  2 2 66 
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