
A∞-STRUCTURES, GENERALIZED KOSZUL PROPERTIES,

AND COMBINATORIAL TOPOLOGY

by

ANDREW BRONDOS CONNER

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2011



DISSERTATION APPROVAL PAGE

Student: Andrew Brondos Conner

Title: A∞-Structures, Generalized Koszul Properties, and Combinatorial Topology

This dissertation has been accepted and approved in partial fulfillment of the requirements for the
Doctor of Philosophy degree in the Department of Mathematics by:

Dr. Brad Shelton Chair
Dr. Victor Ostrik Member
Dr. Nicholas Proudfoot Member
Dr. Arkady Vaintrob Member
Dr. David Boush Outside Member

and

Richard Linton Vice President for Research and Graduate Studies/Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2011

ii



c© 2011 Andrew Brondos Conner

iii



DISSERTATION ABSTRACT

Andrew Brondos Conner

Doctor of Philosophy

Department of Mathematics

June 2011

Title: A∞-Structures, Generalized Koszul Properties, and Combinatorial Topology

Approved:
Dr. Brad Shelton

Motivated by the Adams spectral sequence for computing stable homotopy groups, Priddy

defined a class of algebras called Koszul algebras with nice homological properties. Many important

algebras arising naturally in mathematics are Koszul, and the Koszul property is often tied to

important structure in the settings which produced the algebras. However, the strong defining

conditions for a Koszul algebra imply that such algebras must be quadratic.

A very natural generalization of Koszul algebras called K2 algebras was recently introduced

by Cassidy and Shelton. Unlike other generalizations of the Koszul property, the class of K2

algebras is closed under many standard operations in ring theory. The class of K2 algebras includes

Artin-Schelter regular algebras of global dimension 4 on three linear generators as well as graded

complete intersections.

Our work comprises two distinct projects. Each project was motivated by an aspect of

the theory of Koszul algebras which we regard as sufficiently powerful or fundamental to warrant

an interpretation for K2 algebras.

A very useful theorem due to Backelin and Fröberg states that if A is a Koszul algebra

and I is a quadratic ideal of A which is Koszul as a left A-module, then the factor algebra A/I is

a Koszul algebra. We prove that if A is Koszul algebra and AI is a K2 module, then A/I is a K2

algebra provided A/I acts trivially on ExtA(A/I, k). As an application of our theorem, we show

that the class of sequentially Cohen-Macaulay Stanley-Reisner rings are K2 algebras and we give

examples that suggest the class of K2 Stanley-Reisner rings is actually much larger.

Another important recent development in ring theory is the use of A∞-algebras. One can

characterize Koszul algebras as those graded algebras whose Yoneda algebra admits only trivial

A∞-structure. We show that, in contrast to the situation for Koszul algebras, vanishing of higher
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A∞-structure on the Yoneda algebra of a K2 algebra need not be determined in any obvious way by

the degrees of defining relations. We also demonstrate that obvious patterns of vanishing among

higher multiplications cannot detect the K2 property.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

In this dissertation, we employ techniques from noncommutative ring theory to explore

connections between homological algebra, differential homological algebra, and simplicial topology.

The central theme of our work is the remarkable notion of Koszul algebra introduced by Priddy in

[29]. Motivated by the Adams spectral sequence for computing stable homotopy groups, Priddy

defined a class of algebras including the Steenrod algebra and universal enveloping algebras with

nice homological properties. A nonnegatively graded, locally finite-dimensional algebra A over

a field k with A/A+ = k is Koszul if the bigraded Yoneda algebra ExtA(k, k) is generated by

Ext1,1
A (k, k). This strong condition implies that Koszul algebras must have only quadratic relations.

One of the most important aspects of the theory of Koszul algebras is the notion of Koszul

duality. Every quadratic algebra A has a corresponding quadratic dual algebra A! which can be

described explicitly in terms of the generators and relations of A. If A is Koszul, ExtA(k, k) ∼= A!.

Moreover, A! determines a canonical minimal resolution of the trivial A-module k. The book [27] is

an excellent reference for the basic theory of Koszul algebras. Many important quadratic algebras

arising naturally in mathematics are Koszul, and the Koszul property is often tied to important

structure in the settings which produced the algebras (see, for example [2, 5, 26, 28, 32, 36]).

Due to the limiting requirement that Koszul algebras be quadratic, several generalizations

of the notion of Koszul algebra appear in the literature. A very natural generalization is the notion

of K2 algebra introduced recently by Cassidy and Shelton in [7]. They define a graded algebra

A to be K2 if ExtA(k, k) is generated algebraically by Ext1,1
A (k, k) and Ext2,∗

A (k, k). This is the

next most restrictive homological condition one can make while allowing the algebra A to have

homogeneous relations of various degrees.
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By contrast, most other generalizations of the Koszul property rely to some extent on

homological purity. Purity conditions, such as Berger’s N -Koszul property (see [3]) facilitate the

generalization of Koszul duality. However, these classes of algebras are not closed under standard

operations such as tensor products and graded Ore extensions. Furthermore, most generalizations

based on purity do not allow for commutative or skew-commutative algebras. Cassidy and Shelton

[7] prove the class of K2 algebras is closed under many standard operations in ring theory: tensor

products, regular normal extensions, and graded Ore extensions. The class of K2 algebras includes

Artin-Schelter regular algebras of global dimension 4 on three linear generators as well as graded

complete intersections. While there is not yet a K2 analog of the canonical minimal graded free

resolution provided by A! for Koszul algebras, that problem is not unreasonable. The K2 hypothesis

guarantees that ExtnA(k, k) is finite dimensional.

This work represents the combined results of two distinct projects. Each project was

motivated by an aspect of the theory of Koszul algebras which we regard as sufficiently powerful

or fundamental to warrant an interpretation for K2 algebras. The first project, chronologically,

sought to understand the structure of “higher-order operations” on the Yoneda algebra of a K2

algebra. The results of this project are presented in Chapter IV. The second project sought

to establish Koszul-type connections between homological algebra and combinatorics through the

study of face rings. The results of our noncommutative approach to a problem of commutative

algebra are presented in Chapter III.

Here is a more detailed outline of the contents of this dissertaion.

In Chapter II, we present the relevant background on Yoneda algebras, Koszul algebras

and K2 algebras needed for our study. Homological properties of graded modules play an important

role in later chapters, so we also review the notions of Koszul module and K2 module. Chapter

II concludes with some new results on componentwise-linear (CL) modules over Koszul algebras.

In this setting, CL modules may be thought of as the class of K2 modules which are “as close to

Koszul as possible.”

Chapter III examines the K2 property for factor algebras. Backelin and Fröberg [1] proved

that if A is a Koszul algebra and I is a quadratic ideal of A which is Koszul as a left A-module,

then the factor algebra B = A/I is a Koszul algebra. We prove that if A is Koszul algebra and

AI is a K2 module, then B is a K2 algebra provided B acts trivially on ExtA(B, k). We also show

2



the statement is false if the hypothesis that B acts trivially is removed. This result generalizes

the Backelin-Fröberg theorem, since B necessarily acts trivially on ExtA(B, k) when AI is Koszul.

Though we have not yet proven an analogous theorem when A is a K2 algebra, we believe the

approach of Chapter III may be adapted to establish results in that direction.

As an application of our theorem on factor algebras, we consider a class of commutative

algebras arising in combinatorial topology. To any simplicial complex ∆ on n vertices there is an

associated monomial ideal I∆ in the polynomial ring k[x1, . . . , xn] known as the Stanley-Reisner

ideal. The monomial generators of I∆ correspond to minimal non-faces of ∆. For this reason,

the algebra k[∆] = k[x1, . . . , xn]/I∆ is sometimes called a face ring. Fröberg [11] proved that

all quadratic face rings are Koszul. A large number of face rings are not quadratic, yet have

nice homological and ring-theoretic properties. By combining the main theorems of Chapters II

and III, we show that the class of sequentially Cohen-Macaulay face rings are K2 algebras and

we give examples that suggest the class of K2 face rings is actually much larger. When k[∆]

is sequentially Cohen-Macaulay, it is known that the homological properties of I∆ are governed

by the combinatorial geometry of a related simplicial complex ∆∗. This suggests that the K2

module property for I∆ can also be expressed in terms of the geometry of ∆∗. The problem of

combinatorially determining when k[∆] is a K2 algebra seems considerably more difficult.

Another important recent development in ring theory is the use of A∞-algebras (cf. [15],

[20], [21]). The notion of A∞-algebra was introduced by Stasheff in [35] to study associativity from

the point of view of homotopy theory. Later, Kadeishvili [17] showed the data of an A∞-algebra

is precisely what is needed to recover a differential graded algebra from its cohomology, up to A∞

quasi-isomorphism. The Yoneda algebra ExtA(k, k) of a graded k-algebra A is the cohomology

algebra of a differential graded algebra. Therefore Kadeishvili’s theorem implies that ExtA(k, k)

admits a canonical A∞-algebra structure. The goal of Chapter IV is to provide some partial

answers to two natural questions.

• What restrictions does the K2 condition place on a canonical A∞-structure on the Yoneda

algebra?

• Do certain A∞-structures on the Yoneda algebra guarantee the original algebra is K2?
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One can characterize Koszul algebras as those graded algebras whose Yoneda algebra

admits only trivial A∞-structure. We give a constructive proof of this fact, as we have not found

it explicitly proven in the literature. Though several papers prove, in varying degrees of detail,

the existence of an A∞-algebra structure on the cohomology ring of a differential graded algebra,

we provide an account which we hope will appeal to readers familiar with the details of Yoneda

product calculations. We submit our proof of the triviality of A∞-structure for Koszul algebras as

evidence for the value of our perspective.

The analogues of the natural questions above for N -Koszul algebras with N ≥ 3 were

considered by He and Lu in [15], where they obtain a result similar to the characterization of

Koszul algebras. Their result is aided by the fact that for an N -Koszul algebra, ExtpA(k, k) is

concentrated in a single internal degree. As we have mentioned, the Yoneda algebra of a K2

algebra does not generally satisfy such a strong purity condition. Indeed, the main result of

Chapter IV shows, in contrast to the cases of Koszul and N -Koszul algebras, that vanishing of

A∞-structure on the Yoneda algebra of a K2 algebra need not be determined in any obvious way by

the degrees of defining relations. We also demonstrate that obvious patterns of vanishing among

higher multiplications cannot detect the K2 property. Despite the somewhat negative conclusions

drawn from these examples, we believe that, as in the case of the theorem on factor algebras, there

will be positive results in many interesting cases.

Chapter IV contains material which was co-authored.
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CHAPTER II

YONEDA ALGEBRAS AND GENERALIZED KOSZUL PROPERTIES

II.1 Introduction

In this chapter, we set up the notation and the definitions we will use throughout the

dissertation. We begin by reviewing some standard facts and techniques from homological algebra

in Section II.2.

In Section II.3, we define notions of Koszul algebra and Koszul module that are central to

our work. We also define the related notions of K2 algebra and K2 module and discuss efforts to

generalize the notion of Koszul algebra.

Recent progress in the study of monomial commutative algebras highlights the importance

of “componentwise linear ideals.” Section II.4 introduces the notion of componentwise linear

module and establishes relationships between this notion, Koszulity, and the K2 property for

modules over Koszul algebras. The results of Section II.4 are applied in the discussion of face rings

in Chapter III.

II.2 Graded Homological Algebra and Ext

Throughout, let k denote any field. The term graded k-algebra will mean an N-graded,

locally finite dimensional, connected k-algebra generated in degree 1. If A is a graded k-algebra,

we denote the category of locally finite dimensional, Z-graded left (resp. right) A-modules with

degree 0 homomorphisms by Gr-A-modf (resp. Gr-mod-Af ). The term graded left (resp. right)

A-module will refer to an object of the appropriate module category. We do not assume that

graded modules are finitely generated or bounded unless we explicitly state otherwise. The trivial

A-module is k = A/A+ where A+ =
⊕

i>0Ai.
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If M is a graded A-module, we write M(d) for the shifted graded module with M(d)n =

Mn+d for all n ∈ Z. When it will cause no confusion, we denote HomGr-A-modf (M,N) and

HomGr-mod-Af (M,N) by homA(M,N). For n ∈ Z, we define Homn
A(M,N) = homA(M,N(−n)).

One can think of Homn
A(M,N) as the space of graded homomorphisms f : M → N which lower

every homogeneous element’s degree by n. Our primary homological tools are the graded Hom

functor Hom∗A(M,N) =
⊕

n∈Z Homn
A(M,N) and its right derived functors.

The categories Gr-A-modf and Gr-mod-Af have both enough projectives and enough

injectives. The former is immediate because these categories have graded free objects. We note

that if a graded module M is bounded below, M has a graded projective resolution by bounded

below modules. It is less obvious that these categories have enough injectives. See Lemma III.2.1

for a proof that the trivial A-module has a graded injective resolution. This is not generally true

if one works in the subcategory of bounded below modules.

The i-th right derived functors of Hom∗A(M,−) and Hom∗A(−, N) respectively will be

denoted by ExtiA(M,−) and ExtiA(−, N). Recall that ExtiA(M,N) may be computed by applying

the functor Hom∗A(M,−) to a graded injective resolution of N or by applying Hom∗A(−, N) to a

graded projective resolution of M . We will employ both methods; however, for given A, M , and

N we will always fix a “model” for ExtiA(M,N). A third approach - using graded endomorphisms

of a graded projective resolution to compute ExtiA(k, k) - will be considered in Chapter IV.

The radical of a graded left (resp. right) A-module P is the submodule A+P (resp. PA+).

The socle of a graded A-module I is the unique maximal semisimple submodule of I, denoted

soc(I). Equivalently, soc(I) is the submodule of I annihilated by A+. We call a graded projective

resolution P • →M → 0 of a graded A-module M minimal if im ∂iP ⊂ rad(P i−1). We call a graded

injective resolution 0 → N → I• of a graded A-module N minimal if soc(Ij) ⊂ im ∂Ij . If P• is a

minimal graded projective resolution of M , then ExtiA(M,k) = HomA(P i, k). Similarly, If I• is a

minimal graded injective resolution of N , then ExtjA(k,N) = HomA(k, Ij). Minimal resolutions

exist for bounded below modules by a graded version of Nakayama’s Lemma (see Lemma 1.4.1 of

[27]).

For each i ∈ N, the k-vector space ExtiA(M,N) inherits a Z-grading from the graded

Hom functor. We call this the internal grading. The homogeneous (internal) degree j component

of ExtiA(M,N) is denoted Exti,jA (M,N). The vector space ExtA(M,N) =
⊕

i∈N ExtiA(M,N) is
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therefore bigraded. If L, M , and N are graded left A-modules, the Yoneda composition product

gives a bilinear, associative pairing

? : Exti,jA (M,N)⊗ Extk,lA (L,M)→ Exti+k,j+lA (L,N)

If P • → L and Q• → M are respective graded projective resolutions of L and M , the Yoneda

product is computed as follows. If f : P k →M represents a class in Extk,lA (L,M) and g : Qi → N

represents a class in Exti,jA (M,N), the product [g] ? [f ] is the class [gfi] ∈ Exti+k,j+lA (L,N) where

fi is determined by successively lifting f through the projective resolution P • as depicted in the

following diagram.

P i+k - · · · - P k+1 - P k

Qi

fi

?
- · · · - Q1

f1

?
- Q0

f0

?
- M

f

-

N

g

?

The obvious dual formulation computes the Yoneda product using injective resolutions.

The Yoneda product gives the bigraded vector space ExtA(M,M) the structure of a graded

k-algebra. If M = k, we call this algebra the Yoneda algebra of A, denoted E(A). We denote

Ep,q(A) = Extp,qA (k, k) and let Ep(A) =
⊕

q E
p,q(A). The Yoneda product then makes ExtA(L, k)

into a graded left E(A)-module. Similarly, ExtA(k,N) is a graded right E(A)-module.

II.3 Koszul and Generalized Koszul Properties

The notion of Koszul algebra was introduced by Priddy in [29], and it has since appeared

in varying degrees of generality (see, for example, [2], [25], [27]). At this time, the book [27] is the

most (really, the only) comprehensive exposition of the theory of Koszul algebras we have found.

There, the authors establish many useful, equivalent formulations of Koszulity for both algebras
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and modules. For these reasons, we adopt the setting of [27], with a few minor exceptions which

we note.

Definition II.3.1. A graded k-algebra A is called Koszul if the following equivalent conditions

hold.

1. Exti,jA (k, k) = 0 for i 6= j

2. The algebra E(A) is generated by E1(A).

Following [7], we refer to condition 1 as diagonal purity and condition 2 as low-degree

generation. These equivalent conditions are very strong. In particular, Definition II.3.1 implies

that the defining relations of the algebra A must be quadratic (see Corollary I.5.3 of [27]). Berger

[3], motivated by the study of Artin-Schelter regular algebras, introduced the notion of N -Koszul

algebra in an effort to extend the Koszul theory to algebras with non-quadratic relations. Berger’s

definition generalizes diagonal purity. While N -Koszul algebras and Koszul algebras have similarly

powerful homological properties, the class of N -Koszul algebras (for N > 2) differs notably in that

the class is not closed under many standard ring-theoretic operations such as tensor products and

graded Ore extensions. Furthermore, if N > 2, the class of N -Koszul algebras does not include

any commutative or graded-commutative algebras; the defining relations of an N -Koszul algebra

must have degree N .

Recently, Cassidy and Shelton [7] introduced a generalization of Koszul algebras that

includes N -Koszul algebras and is closed under tensor products, graded Ore extensions, and regular

central extensions. Cassidy and Shelton’s defintion generalizes low-degree generation.

Definition II.3.2. A graded k-algebra A is called a K2 algebra if it is finitely related and if the

algebra E(A) is generated by E1(A) and E2(A).

From Corollary I.5.3 of [27], it is clear that this is the next most restrictive definition

one can make while allowing relations of more than one homogeneous degree. In [7], the authors

show that, in addition to Koszul and N -Koszul algebras, the class of K2 algebras includes graded

complete intersections and global dimension four Artin-Schelter regular algebras on three linear

generators. We will be concerned primarily with the Koszul and K2 properties of algebras and will

not separately consider N -Koszul algebras.
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It will be useful to have analogous notions of Koszul and K2 for graded modules. Here we

depart slightly from [27].

Definition II.3.3. Let A be a graded k-algebra and let M be a graded left A-module. Let D1(A)

be the subalgebra of E(A) generated by E1(A) and let D2(A) be the subalgebra of E(A) generated

by E1(A) + E2(A). For n = 1, 2 we call M a Kn A-module if ExtA(M,k) is generated as a left

Dn(A)-module by Ext0
A(M,k). We call M a Koszul A-module if M is K1 and there exists d ∈ Z

such that M = AMd.

We note that A is a K2 algebra if and only if Ak is a K2 A-module and that A is a K1

algebra in the sense of [25] if and only if Ak is a K1 A-module. We also note that M is a Koszul

module if and only if there exists a d ∈ Z such that M(d) is a Koszul module in the sense of [27].

(Obviously, one could define the notion of a Kn algebra or module for any n > 2, however we see

no motivation for doing so at this time.)

If M is a graded A-module, we say M has a linear free resolution if M = AMd for some

d ∈ Z and M admits a resolution · · · → P 2 → P 1 → P 0 →M → 0 by graded free A-modules such

that P i is generated in degree i+ d for all i ≥ 0. Graded projective modules are graded free (see

[3]), thus M is a Koszul A-module if and only if M has a linear free resolution. Furthermore, A is

a Koszul algebra if and only if the trivial module Ak has a linear free resolution.

We now establish a few facts about extensions of K2 modules, followed by their Koszul

analogs.

Lemma II.3.4. Let 0→ L→M → N → 0 be a graded exact sequence of graded left A-modules.

1. If L and N are K2 A-modules and the natural homomorphism Ext0A(M,k)→ Ext0A(L, k) is

surjective, then M is a K2 A-module.

2. If L and M are K2 A-modules and N is generated in degrees strictly greater than the degrees

in which L is generated, then N is a K2 A-module.

Proof. Let D(A) = D2(A). If N is generated in homogeneous degrees strictly greater than the

degrees in which L is generated, then the natural map g0 : Ext0
A(M,k)→ Ext0

A(L, k) is surjective.

Thus for both (1) and (2), the long exact sequence in cohomology has the form
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0→ Ext0
A(N, k)

f0−→ Ext0
A(M,k)

g0−→ Ext0
A(L, k) 0−→ Ext1

A(N, k)→ · · ·

→ ExtiA(M,k)→ ExtiA(L, k)→ Exti+1
A (N, k)→ · · ·

This is a complex of left E(A)-modules. Since L is aK2 module, ExtiA(L, k) = Di(A)?Ext0
A(L, k)→

Di(A) ? Ext1
A(N, k) = Exti+1

A (N, k) is zero for all i. We therefore obtain a short exact sequence

0→ ExtA(N, k)→ ExtA(M,k)→ ExtA(L, k)→ 0

of left E(A)-modules. Statement (1) now follows.

To prove (2), let h0 : Ext0
A(L, k) → Ext0

A(M,k) be a graded vector space splitting of g0.

Consideration of internal degrees shows that im f0∩im h0 = 0, so the map h0 extends to a splitting

of the E(A)-module homomorphism ExtA(M,k)→ ExtA(L, k), and (2) follows.

The strictness in (2) cannot be weakened. See Example III.4.2. The following Lemma

should be well known.

Lemma II.3.5. Let 0→ L→M → N → 0 be a graded exact sequence of graded left A-modules.

1. If L and N are Koszul A-modules and the natural homomorphism Ext0A(M,k)→ Ext0A(L, k)

is surjective, then M is a Koszul A-module.

2. If L and M are Koszul A-modules and the natural homomorphism Ext0A(M,k)→ Ext0A(L, k)

is surjective, then N is a Koszul A-module.

3. If M and N are Koszul A-modules and the natural monomorphism Ext0A(N, k) ↪→ Ext0A(M,k)

is an isomorphism, then L is a Koszul A-module.

Proof. Since Koszul modules are K1 modules, the proof of Lemma II.3.4 shows that in (1) and (2),

the long exact sequence in cohomology breaks into short exact sequences. Each conclusion follows

immediately by considering degrees.
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For (3), suppose N and M are generated in homogeneous degree d and consider the long

exact sequence in cohomology

0→ Ext0
A(N, k)

∼=−→ Ext0
A(M,k) 0−→ Ext0

A(L, k)→ Ext1
A(N, k)→ · · ·

→ ExtiA(M,k)→ ExtiA(L, k)→ Exti+1
A (N, k)→ · · ·

Since Ext0
A(L, k) ↪→ Ext1

A(N, k) andN is a Koszul A-module, Ext0
A(L, k) is concentrated in internal

degree d+ 1. Since M is a Koszul A-module, ExtiA(M,k) is concentrated in internal degree d+ i,

so the map ExtiA(M,k) → ExtiA(L, k) is zero. Thus ExtiA(L, k) ↪→ Exti+1
A (N, k) for all i. Since

Exti+1
A (N, k) is concentrated in internal degree d+ i+ 1, the same is true for ExtiA(L, k), hence L

is a Koszul A-module.

We note that the surjectivity condition in (1) and (2) is satisfied for arbitrary graded

modules when N is generated in homogeneous degrees greater than or equal to the degrees in

which L is generated. We do not expect an analog of Lemma II.3.5(3) for K1 or K2 modules.

For example, submodules of K1 modules need not be K1, even with the hypothesis on Ext0. See

Example III.4.1 below.

Next we recall the matrix criterion of [7] for a left A-module M to be a K2 module and

state the analogous result for K1 modules. We need to introduce some notation. Let V be a

finite dimensional vector space, A = T (V )/I a graded algebra and M a graded left A-module. Let

Q• →M be a minimal resolution of M by graded projective left A-modules. Choose homogeneous

bases for each Qi and let Mi be the matrix of di : Qi → Qi−1 with respect to these bases. Let

fi be a lift of Mi to a matrix over T (V )+ with homogeneous entries. Let L(fi) denote fi mod

T (V )≥2. For i ≥ 0, let (fi+1fi)ess denote the product fi+1fi mod I ′ where I ′ = V ⊗ I + I ⊗ V .

Note that f0 = 0.

Lemma II.3.6 ([7]). An A-module M is a K2 A-module if and only if for all 0 ≤ i < pdA(M),

the matrix [(fi+1fi)ess L(fi+1)] has linearly independent rows.

The following Proposition is proven by arguing as in Lemma 4.3 and Theorem 4.4 of [7],

replacing the trivial A-module with M .
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Proposition II.3.7. Let A be an N-graded, connected algebra, and let M be a graded A-module.

For 0 ≤ i ≤ pdA(M) let fi be as above. Then ExtiA(M,k) = E1(A) ? Exti−1
A (M,k) if and only if

L(fi) has linearly independent rows. Thus M is a K1 A-module if and only if L(fi) has linearly

independent rows for all 1 ≤ i ≤ pdA(M).

The following characterization of Koszul modules over quadratic algebras will be useful in

Section II.4.

Corollary II.3.8. If A is a quadratic algebra and M is a graded left A-module, then M is a

K2 A-module if and only if M is a K1 A-module. Furthermore, if M is generated in a single

homogeneous degree, then M is a K2 A-module if and only if M is a Koszul A-module.

Proof. It suffices to prove thatM is aK2 A-module only ifM is aK1 A-module. If L(fi) has linearly

dependent rows for some 1 ≤ i ≤ pdA(M), then after changing basis we may assume the first row

of fi contains no linear entries. This implies that the nonzero entries of the corresponding row of

fifi−1 have degree at least 3. As A is quadratic, I>2 = I ′. So the first row of [(fifi−1)ess L(fi)] is

zero, and M is not a K2 A-module by Proposition II.3.7.

II.4 Componentwise Linear Modules

Let M be a graded left A-module. Throughout this section, we additionally assume that

M is bounded below and let b ∈ Z denote the smallest integer such that Mb 6= 0. If the submodule

AMi is a Koszul A-module for all i, we say that M is a componentwise linear A-module. Our

definition is motivated by the notion of componentwise linear ideal introduced in [16] and studied

further in [30]. In this section, we prove that all componentwise linear modules over Koszul algebras

are K2 (equivalently, K1) modules. We also characterize which K2 modules over Koszul algebras

are componentwise linear. Following the notation of [30], let M〈j〉 = AMj and for i ≤ j, let

M〈i,j〉 =
∑j
t=iAMt.

Lemma II.4.1. If A is a Koszul algebra and M〈j〉 is a Koszul A-module for some j ∈ Z, then

1. M〈j〉 ∩M〈j+1〉 is a Koszul A-module, and

2. M〈j+1〉 is a Koszul A-module if and only if M〈j,j+1〉/M〈j〉 is.
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Proof. For j ∈ Z we have the exact sequence 0 → M〈j〉 ∩ M〈j+1〉 → M〈j〉 → T → 0 where

T = M〈j〉/M〈j〉∩M〈j+1〉 is a trivial A-module. Hence T is a Koszul A-module. Since M〈j〉∩M〈j+1〉

is concentrated in degrees ≥ j + 1, Ext0
A(T, k) ∼= Ext0

A(M〈j〉, k). Since M〈j〉 is a Koszul A-module,

Lemma II.3.5(3) implies M〈j〉 ∩M〈j+1〉 is a Koszul A-module.

To prove (2), we consider the exact sequence

0→M〈j〉 ∩M〈j+1〉 →M〈j+1〉 →M〈j,j+1〉/M〈j〉 → 0

Since all three modules are generated in homogeneous degree j + 1, the map Ext0
A(M〈j+1〉, k) →

Ext0
A(M〈j〉 ∩M〈j+1〉, k) is surjective. The result follows by Lemma II.3.5(1),(2).

Remark II.4.2. In our applications of Lemma II.4.1, we require the slightly modified statements

that M〈d,j〉 ∩M〈j+1〉 is a Koszul A-module for all d < j and M〈j+1〉 is a Koszul A-module if and

only if M〈d,j+1〉/M〈d,j〉 is a Koszul A-module. These are obviously equivalent to (1) and (2) above.

Lemma II.4.3. If A is a Koszul algebra and M is a componentwise linear A-module, then M〈d,j〉

is a K2 A-module for all d, j ∈ Z such that d ≤ j.

Proof. By Lemma II.4.1(2), M〈d,j〉/M〈d,j−1〉 is a Koszul A-module for all j ∈ Z and all d < j. We

consider the exact sequence

0→M〈d,j−1〉 →M〈d,j〉 →M〈d,j〉/M〈d,j−1〉 → 0

and prove the result by induction on j − d. If j = d, M〈d,j〉 is a Koszul A-module by assumption.

For the induction step, we assume M〈d,j−1〉 is a K2 A-module. Since M〈d,j〉/M〈d,j−1〉 is a Koszul

A-module, Lemma II.3.4(1) implies that M〈d,j〉 is a K2 A-module. The result follows by induction.

Proposition II.4.4. Let A be a Koszul algebra and let M be a componentwise linear A-module.

If b ∈ Z is minimal such that Mb 6= 0, then M〈b,j〉 is a K2 A-module for all j ≥ b. In particular,

M is a K2 A-module.

Proof. The first statement follows immediately from Lemma II.4.3. To prove that M is K2, we

show that Extp,b+qA (M,k) is E(A)-generated by Ext0,b+q−p
A (M,k) by considering the long exact
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sequence in cohomology associated to the exact sequence 0 → M〈b,b+q−p〉 → M → F → 0. Since

F is generated in degrees ≥ b+q−p+1, ExtpA(F, k) is concentrated in internal degrees ≥ b+q+1.

Thus the natural map Ext0
A(M,k)→ Ext0

A(M〈b,b+q−p〉, k) is surjective in internal degrees ≤ b+q−p

and Extp,b+qA (M,k) ↪→ Extp,b+qA (M〈b,b+q−p〉, k). Since the morphisms in the long exact sequence

respect the left E(A)-module structure, the result follows from the assumption that M〈b,b+q−p〉 is

a K2 A-module.

Let M be a bounded below graded left A-module and recall we let b be the smallest integer

such that Mb 6= 0. We say M is a strongly K2 A-module if M〈b,j〉 is a K2 A-module for all j ≥ b.

We note that if M is strongly K2 and A is a quadratic algebra, then M〈b〉 is a Koszul A-module

by Corollary II.3.8. For an example of a K2 module over a Koszul algebra that is not strongly K2,

see Example III.4.2.

Lemma II.4.5. Let A be a Koszul algebra and M a strongly K2 A-module. Let b be the smallest

integer such that Mb 6= 0. Then F = M〈b,j〉/M〈b,j−1〉 is a Koszul A-module for all j > b.

Proof. Let j > b. Applying Lemma II.3.4(2) to the exact sequence

0→M〈b,j−1〉 →M〈b,j〉 → F → 0

where F = M〈b,j〉/M〈b,j−1〉 shows that F is a K2 A-module. Since F is generated in homogeneous

degree j, Corollary II.3.8 implies that F is a Koszul A-module.

We now prove the converse of Proposition II.4.4.

Proposition II.4.6. If A is a Koszul algebra and if M is a strongly K2 A-module, then M is

componentwise linear.

Proof. Let b be the smallest integer such that Mb 6= 0. Since A is quadratic, M〈b〉 is a Koszul

A-module by Corollary II.3.8. Assume inductively that M〈b+t〉 is a Koszul A-module for t ≥ 0 and

consider the exact sequence

0→M〈b,b+t〉 ∩M〈b+t+1〉 →M〈b+t+1〉 →M〈b,b+t+1〉/M〈b,b+t〉 → 0
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By the induction hypothesis and by Lemma II.4.1(1), M〈b,b+t〉 ∩M〈b+t+1〉 is a Koszul A-module.

Lemma II.4.5 implies that M〈b,b+t+1〉/M〈b,b+t〉 is a Koszul A-module. As all three modules are

generated in homogeneous degree b+ t+ 1, the result follows by Lemma II.3.5(1).

Combining Propositions II.4.4 and II.4.6, we obtain a characterization of componentwise

linear modules for Koszul algebras.

Corollary II.4.7. If A is a Koszul algebra, then M is a componentwise linear A-module if and

only if M is a strongly K2 A-module.
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CHAPTER III

K2 FACTOR ALGEBRAS OF KOSZUL ALGEBRAS

III.1 Introduction

The first part of this chapter is devoted to proving a change-of-rings theorem for K2

algebras. Our main result, Theorem III.2.14 may be viewed as both a generalization of a theorem

on Koszul algebras and a companion to the change-of-rings theorems of [7].

In [1], Backelin and Fröberg establish the following useful change-of-rings result.

Theorem III.1.1. Let A be a Koszul algebra and let I ⊂ A be a two-sided ideal generated in

degree 2 such that AI is a Koszul left A-module. Then the algebra B = A/I is also Koszul.

In Section III.2 we extend Theorem III.1.1 to ideals which are K2 modules. Our theorem

requires the additional hypothesis that the natural action of B on ExtA(B, k) is trivial. This

hypothesis is redundant if AI is Koszul. However, the hypothesis cannot be removed, as we show

at the end of the section.

Section III.3 discusses applications of Theorem III.2.14 and the results of Section II.4 to

the study of Stanley-Reisner rings. In particular, we show that the class of K2 Stanley-Reisner rings

includes all sequentially Cohen-Macaulay Stanley-Reisner rings. We also describe the connections

between combinatorial geometry and the homological properties of Stanley-Reisner ideals.

The chapter concludes with a collection of illustrative examples referred to throughout

Chapters II and III. Of particular interest is Example III.4.3, which refutes a conjecture of Cassidy

and Shelton.
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III.2 K2 Factors of Koszul Algebras

Recall that the socle of an A-module M , denoted soc(M) is the unique maximal semisimple

submodule of M . If A is a graded k-algebra, a simple module in Gr-A-modf is isomorphic to k(d)

for some d ∈ Z. Thus we have soc(M) = MA+ = {m ∈ M : am = 0,∀a ∈ A+}. More generally,

we define M I = {m ∈M : am = 0,∀a ∈ I} for any ideal I in A.

Let k be a field and let V be a finite dimensional k-vector space on basis X = {x1, . . . , xn}.

Let A = T (V )/R be a graded k-algebra generated by V . We identify xi with its image in A. We

give the algebra A the usual N-grading by tensor degree with deg(xi) = 1 for i = 1, . . . , n. Let

I ⊂ A≥2 be a homogeneous ideal and let B = A/I. The algebra B inherits the N-grading of A.

Let (P •, ∂P ) be a minimal resolution of the trivial right A-modue kA by graded projective

right A-modules with degree 0 differential. The augmentation map is denoted ε : P 0 → k. We

denote the graded dual Hom functor Homk(−, k) by −∗.

Lemma III.2.1. The complex I• = (P •)∗ is a resolution of Ak ∼= (kA)∗ by graded injective left

A-modules. The coaugmentation ε∨ : k → I0 is given by 1 7→ ε.

Proof. Since k is semisimple, the functor −∗ is exact, hence I• is an A-linear resolution of k∗ with

the stated coaugmentation. That Ij is injective for each j follows easily from the exactness of −∗

and the fact that P j is locally finite-dimensional.

We denote the induced differential on I• by ∂I . We assume that P 0 = A, that P 1 =

A(−1)⊕n, and that homogeneous A-bases are chosen for P 1 and P 0 such that the matrix of the

differential P 1 → P 0 is given by left multiplication by (x1 · · · xn).

We take H∗(HomA(k, I•)) as our model for the bigraded Yoneda Ext-algebra E(A) =⊕
En,m(A) =

⊕
Extn,mA (k, k). We note that soc(Ij) is generated by the graded k-linear duals of

an A-basis for P j and thus soc(Ij) ⊂ im ∂Ij . Identifying HomA(k, Ij) with soc(Ij), we conclude

that the differential on HomA(k, I•) is zero and Ej(A) = HomA(k, Ij) ∼= soc(Ij).

We let J• = HomA(B, I•) and we take H∗(J•) as our model for ExtA(B, k). We denote

by ∂J the differential on J• induced by ∂I . Clearly, g ∈ soc(Jp) if and only if g(1) ∈ soc(Ip).

Let (Q•, ∂Q) be a minimal resolution of the trivial B-module Bk by graded projective left

B-modules. We take H∗(HomB(Q•, k)) = HomB(Q•, k) as our model for E(B).
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The Cartan-Eilenberg change-of-rings spectral sequence

Ep,q2 = ExtpB(k,ExtqA(B, k))⇒ Extp+qA (k, k)

is the spectral sequence associated with the first-quadrant double cocomplex

Ap,q = HomB(Qp,HomA(B, Iq)).

This is a spectral sequence of bigraded E(A) − E(B) bimodules (see Lemmas 6.1 and 6.2 of [7]).

The horizontal differential dh is precomposition with ∂Q. The vertical differential dv is composition

with ∂J . The left E(A) action on Ep,q2 is induced by the Yoneda product ExtmA (k, k)⊗ExtnA(B, k)→

Extm+n
A (B, k). The right E(B) action is given by the Yoneda product

ExtmB (k,ExtA(B, k))⊗ ExtnB(k, k)→ Extm+n
B (k,ExtA(B, k))

We will make these module actions more explicit below.

We recall the standard “staircase argument” for double cocomplexes. Let (Ap,q, dh, dv)

be a first-quadrant double cocomplex. For N > 1 and for p, q ≥ 0 let Sp,qN denote the subset of

ΠN−1
i=0 Ap+i,q−i consisting of N -tuples (a1, . . . , aN ) such that dva1 = 0 and dhai + dvai+1 = 0 for

all 1 ≤ i ≤ N − 1.

Lemma III.2.2. If (a1, . . . , aN ) ∈ Sp,qN , then a1 survives to Ep,qN and dN ([a1]) = [dhaN ]. Every

class in Ep,qN can be represented by an element of Sp,qN , and the representation is unique modulo

elements in Sp,qN of the form

• (dhα, 0, . . . , 0) where α ∈ Ap−1,q,

• (0, . . . , 0, dvβ, dhβ, 0, . . . 0) where β ∈ Ap+i−1,q−i and dvβ is in position i for 1 ≤ i ≤ n− 1,

and

• (0, . . . , 0, δ) where δ ∈ Ap+N−1,q−N+1.
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By applying Lemma III.2.2 to the double complex Ap,q = HomB(Qp,HomA(B, Iq)), we

can represent equivalence classes of elements in Ep,qN by diagrams

Qp+N−1
∂p+N−1
Q - · · · - Qp+2

∂p+2
Q - Qp+1

∂p+1
Q - Qp

· · ·

Jq−N+1

aN

? ∂Jq−N+2- · · · - Jq−2

? ∂Jq−1- Jq−1

a2

? ∂Jq - Jq

a1

?

where the squares anticommute and ∂Jq+1a1 = 0. If (a1, a2, . . . , aN ) and (b1, b2, . . . , bN ) represent

the same class in Ep,qN , we will write (a1, a2, . . . , aN ) ∼ (b1, b2, . . . , bN ).

As in Section 6 of [7], we can describe the E(A)−E(B) bimodule structure on the spectral

sequence at the staircase level by composing diagrams. A class [ζ] ∈ Ek(B) is represented by a

B-linear homomorphism ζ : Qk → k. Lifting this map through the complex Q• by projectivity, we

obtain a commutative diagram of the form

Qk+p+N−1 - · · · - Qk+p · · · - Qk

Qp+N−1

ζp+N−1

?
- · · · - Qp

ζp

?
· · · - Q0

ζ0

?
- k

ζ

-

Pre-composing with a representative of a class in Ep,qN , we obtain

Qk+p+N−1 - · · · - Qk+p+1 - Qk+p

Qp+N−1

ζp+N−1

?
- · · · - Qp+1

ζp+1

?
- Qp

ζp

?

Jq−N+1

aN

?
- · · · - Jq−1

a2

?
- Jq

a1

?

If we define [(a1, . . . , aN )] ? [ζ] = [(a1ζp, . . . , aNζp+N−1)] for all p, q, and k ≥ 0, then ? gives E∗,qN a

well-defined right E(B)-module structure. For fixed p, q, k, we denote the set of all such products

by Ep,qN ? Ek(B).
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Similarly, a class in Em(A) is represented by an A-linear homomorphism γ : k → Im which

can be lifted through the complex I• by injectivity to obtain a commutative diagram

k - I0 - · · · - Iq−N+1 · · · - Iq

Im

γ0

?
-

γ
-

· · · - Im+q−N+1

γq−N+1

?
· · · - Im+q

γq

?

Applying the functor HomA(B,−) to the last N terms in this diagram, we obtain the commutative

diagram

Jq+N−1
- · · · - Jq−1

- Jq

Jm+q−N+1

γ̃0

?
- · · · - Jm+q−1

γ̃q−1

?
- Jm+q

γ̃q

?

Post-composing with a representative of Ep,qN , we get

Qp+N−1 - · · · - Qp+1 - Qp

Jq−N+1

aN

?
- · · · - Jq−1

a2

?
- Jq

a1

?

Jm+q−N+1

γ̃0

?
- · · · - Jm+q−1

γ̃q−1

?
- Jm+q

γ̃q

?

If we define [γ] ? [(a1, . . . , aN )] = [(γ̃qa1, . . . , γ̃0aN )] for all p, q and m ≥ 0, then ? gives Ep,∗N a

well-defined left E(A)-module structure. For fixed p, q,m, we denote the set of all such products

by Em(A) ? Ep,qN . As E(A) always acts on the left of EN and E(B) always acts on the right, the

meaning of the symbol ? should always be clear from context.
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Lemma III.2.3. If the natural left B-module structure on ExtA(B, k) is trivial, there results an

isomorphism of bigraded bimodules

⊕
p,q

Ep,q2
∼=
⊕
p,q

ExtqA(B, k)⊗ Ep(B)

Proof. Because we work with locally finite-dimensional modules, for every p, q ≥ 0 we have an

isomorphism

ExtqA(B, k)⊗Homk(Qp, k)→ Homk(Qp,ExtqA(B, k))

given by [ζ] ⊗ f 7→ f[ζ] where f[ζ](q) = f(q)[ζ]. Since ExtA(B, k) is a trivial B-module, this

isomorphism restricts to an isomorphism

Λpq : ExtqA(B, k)⊗HomB(Qp, k)→ HomB(Qp,ExtqA(B, k))

Indeed, if b ∈ B+,

f[ζ](bq) = f(bq)[ζ] = (bf(q))[ζ] = 0[ζ] = 0 = b(f[ζ](q))

so the restricted map is well-defined. Let ∂̃Q denote the differential induced on the graded vector

space HomB(Q•,ExtqA(B, k)) by ∂Q. By the minimality of Q•, im ∂p+1
Q ⊂ B+Q

p so ∂̃Q(f[ζ]) =

f[ζ]∂Q = 0. Thus we have ExtB(Qp,ExtqA(B, k)) = HomB(Qp,ExtqA(B, k)) and Λ =
⊕

Λpq yields

the desired isomorphism.

Remark III.2.4. It is important to note that the induced E(A) − E(B) bimodule structure on

ExtA(B, k)⊗ E(B) that results from the isomorphism of Lemma III.2.3 is precisely the structure

determined by the usual Yoneda product on each tensor component. Our use of the notation ?

for the spectral sequence module structure is therefore consistent with its prior use to indicate the

Yoneda products on ExtA(B, k) and E(B).

We also note that the hypothesis that ExtA(B, k) is a trivial left B-module is satisfied in

many important cases, including when A is commutative or graded-commutative.

We prove two lemmas relating to representatives in Sp,qN .
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Lemma III.2.5. Let [γ] ∈ E1(A) and let γ̃0 : J0 → J1 be induced by γ. Let φ : Qp → J0 be a

homomorphism of B-modules. If the composition Qp
φ−→ J0

∂J
1−−→ J1 is zero, then φ factors through

Bk and im γ̃0φ ⊂ soc(J1).

Proof. If φ∂J1 = 0, then im φ ⊂ ker ∂J1 = im ε̃∨ where ε̃∨ : Bk → J0 is induced by ε∨. Thus φ

factors through Bk and im φ ⊂ soc(J0). Since im γ0ε
∨ = im γ ⊂ soc(I1), we have im γ̃0φ ⊂ soc(J1).

Recall that we fixed an A-basis for P 1 such that P 1 → P 0 is given by left multiplication

by (x1 x2 · · · xn). Denote the elements of this A-basis by ε1, . . . , εn. Denote the k-linear graded

duals of these basis elements by ε∗1, . . . , ε
∗
n. Then soc(I1) is the trivial A-module generated by

{ε∗1, . . . , ε∗n}.

Lemma III.2.6. Let [γ] ∈ E1(A) and let (f, g) ∈ Sp,12 . Let γ̃0 : J0 → J1 and γ̃1 : J1 → J2 be

induced by γ. Then there exists h ∈ Ap+2,0 such that (γ̃1f, γ̃0g, h) ∈ Sp,23 . Furthermore, h can be

chosen such that, for any vector e in a B-basis for Qp+2, h(e)(1) ∈ IA≥2
0 .

Proof. Let φ = dhg = g∂p+2
Q . We have ∂J1 φ = dvdhg = −dhdvg = d2

hf = 0. It suffices to

define h on an arbitrary element e of a B-basis for Qp+2. By Lemma III.2.5, γ̃0φ(e) ∈ soc(J1)

so γ̃0φ(e)(1) ∈ soc(I1) ⊂ im ∂I1 . Let u ∈ I0 such that ∂I1(u) = γ̃0φ(e)(1). Since ∂I1(u) = u∂1
P is

annihilated by A+ and since ∂1
P is multiplication by (x1, . . . , xn), we can choose u ∈ IA≥2

0 . We

define an A-module homomorphism h(e) : AB → I0 by h(e)(1) = u. This is well-defined since

I ⊂ A≥2. Finally, we have

(dvh)(e) = ∂J1 (h(e)) = ∂I1h(e) = γ̃0φ(e) = γ̃0dhg(e) = dh(γ̃0g)(e)

so (γ̃1f, γ̃0g, h) ∈ Sp,23 .

Lemma III.2.7. Let A be a graded algebra. Let I be an ideal of A and let B = A/I. Assume B

acts trivially on ExtA(B, k). If ExtA(I, k) is generated as a left E(A)-module by Ext0A(I, k), then

for any p and for q ≥ 2, the spectral sequence differential dp,q2 is zero.

Proof. If ExtA(I, k) is E(A)-generated by Ext0
A(I, k), then

⊕
q>0 ExtqA(B, k) is generated as a left

E(A)-module by Ext1
A(B, k). By Lemma III.2.3, we have Ep,q2

∼= ExtqA(B, k)⊗Ep(B). By Remark
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III.2.4, we have Ep,q2 = Eq−1(A) ? E0,1
2 ? Ep(B) for q ≥ 1. Thus any element of Ep,q2 can be

represented as a sum of diagrams of the form

Qp+1
∂p+1
Q - Qp

Q1
? ∂1

Q - Q0
?

J0

a2

? ∂J1 - J1

a1

?

Jq−1

? ∂Jq - Jq
?

which represent Yoneda products in Eq−1(A) ? E0,1
2 ? Ep(B).

Since the spectral sequence differential respects the bimodule structure, it suffices to show

Eq−1(A)? im(d0,1
2 ) = 0. Given a pair (a1, a2) ∈ S0,1

2 representing a class in E0,1
2 , we have d0,1

2 [a1] =

[dha2]. Let φ = a2∂
2
Q and [γ] ∈ Eq−1(A). Since dvdh(γ̃0a2) = −dh(∂Jq γ̃0a2) = −dh(γ̃1dva2) =

dh(γ̃1dha1) = γ̃1a1∂
1
Q∂

2
Q = 0, we have (γ̃0φ, 0) ∈ S2,q−1

2 . But γ̃0φ = dh(γ̃0a2) and γ̃0a2 ∈ A1,q−1.

By Lemma III.2.2, (γ̃0φ, 0) represents 0 in E2,q−1
2 . Hence [γ] ? [φ] = 0 for all [γ] ∈ Eq−1(A) and

all [φ] ∈ im d0,1
2 , so dp,q2 = 0.

Though the differential dp,q2 vanishes for q ≥ 2, the differential d0,1
2 is likely nonzero. Thus

the decomposition Ep,q2 = Eq−1(A) ? E0,1
2 ? Ep(B) does not immediately translate to the E3 page.

However, if AI is a K1 A-module, we obtain a similar result. Recall that D1(A) is the subalgebra

of E(A) generated by E1(A).

Lemma III.2.8. Let A be a graded k-algebra and let I be a graded ideal such that AI is a K1

A-module and B = A/I acts trivially on ExtA(B, k). Then for any p and for q ≥ 2, we have

Ep,q2 = Ep,q3 and Ep,q3 = Dq−2
1 (A) ? E0,2

3 ? Ep(B).
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Proof. By Lemma III.2.7, dp,q2 and dp−2,q+1
2 are both zero for q ≥ 2, so Ep,q2 = Ep,q3 for any p and

for q ≥ 2. Since AI is a K1 module, ExtqA(I, k) = E1(A) ? Extq−1
A (I, k) for all q > 0. Thus by

induction,

Ep,q3 = Ep,q2 = Dq−2
1 (A) ? E0,2

2 ? Ep(B) = Dq−2
1 (A) ? E0,2

3 ? Ep(B).

The following technical lemma and its analog for the EN page (Lemma III.2.10) show that

if AI is a K1 A-module, the staircase representations of Lemma III.2.2 have a particularly nice

form.

Lemma III.2.9. Let A and B be graded k-algebras as in Lemma III.2.8. Then every class in Ep,q3

can be represented as a sum of diagrams of the form

Qp+2
∂p+2
Q - Qp+1

∂p+1
Q - Qp

Q2

ζp+2

? ∂2
Q - Q1

ζp+1

? ∂1
Q - Q0

ζp

?

J0

g

? ∂J1 - J1

f

?

J0

h

? ∂J1 - J1

γ̃0

? ∂J2 - J2

γ̃1

?

Jq−2

γ̃′0

? ∂Jq−1- Jq−1

γ̃′1

? ∂Jq - Jq

γ̃′2

?

where the maps ζi are induced by some [ζ] ∈ Ep(B) and the maps γ̃′k are induced by some [γ′] ∈

Eq−2(A). Furthermore, the map h may be chosen so that, for any basis vector e ∈ Q2, hi(e)(1) ∈

I
A≥2
0 .
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Proof. By Lemma III.2.8, it suffices to prove the statement for E0,2
3 . If (a1, a2, a3) represents a class

in E0,2
3 , then (a1, a2) represents a class in E0,2

2 . Since E0,2
2 = E1(A) ? E0,1

2 , the class [a1] ∈ E0,2
2

can be represented as a sum of diagrams of the form

Q1
∂1
Q - Q0

J0

g

? ∂J1 - J1

f

?

J1

γ̃0

? ∂J2 - J2

γ̃1

?

where (f, g) represents a class in E0,1
2 and γ represents a class in E1(A). Let α, β, and δ be as in

Lemma III.2.2 such that (a1, a2) =
∑
i((̃γi)1fi, (̃γi)0gi) + (dhα, 0) + (dvβ, dhβ) + (0, δ).

By Lemma III.2.6, there exist maps hi such that dh((̃γi)0gi)+dvhi = 0. Since dha2+dva3 =

0, we have

−dva3 = dha2 = dh

(∑
i

(̃γi)0gi + dhβ + δ

)

= −
∑
i

dvhi + dhδ

so dv(a3−
∑
i hi)+dhδ = 0. Since dvδ = 0, Lemma III.2.2 implies that (0, δ, a3−

∑
i hi) represents

a class in E0,2
3 . Evidently, it represents 0, as do (dhα, 0, 0) and (dvβ, dhβ, 0). Thus we have

∑
i

((̃γi)1fi, (̃γi)0gi, hi) + (dhα, 0, 0) + (dvβ, dhβ, 0) +

(
0, δ, a3 −

∑
i

hi

)

=

(
a1, a2 − δ,

∑
i

hi

)
+

(
0, δ, a3 −

∑
i

hi

)

= (a1, a2, a3)

and (a1, a2, a3) ∼
∑
i((̃γi)1fi, (̃γi)0gi, hi) as desired. By Lemma III.2.6, we may assume the hi

have the property that hi(e)(1) ∈ IA≥2
0 for each basis vector e ∈ Q2.
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We now state a version of Lemmas III.2.7-III.2.9 for the EN page. The proof, which we

omit, is by induction using the same arguments as in those lemmas, which generalize in the obvious

way if we assume that AI is a K1 module.

Lemma III.2.10. Let A be a graded algebra. Let I be an ideal of A. Assume AI is a K1 A-module

and B = A/I acts trivially on ExtA(B, k). Let N ≥ 2. For any p ≥ 0 and for q ≥ N − 1, any

element of Ep,qN can be represented by a sum of diagrams of the form

Qp+N - · · · - Qp+2 - Qp+1 - Qp

QN−1

ζp+N

?
- · · · - Q2

ζp+2

?
- Q1

ζp+1

?
- Q0

ζp

?

J0

b2

?
- J1

b1

?

J0

b3

?
- J1

(̃γ1)0

?
- J2

(̃γ1)1

?

...

(̃γ2)0
?

...

(̃γ2)1
?

...

(̃γ2)2
?

J0

bN

?
- · · · - JN−3

?
- JN−2

?
- JN−1

?

Jq−N+1

γ̃0

?
- · · · - Jq−2

γ̃N−3

?
- Jq−1

γ̃N−2

?
- Jq

γ̃N−1

?

where the maps ζi are defined by the action of some [ζ] ∈ Ep(B) on E0,q
N , the maps γ̃k are defined

by the action of some [γ] ∈ Eq−N+1(A) on E0,N−1
N , and for each 1 ≤ j ≤ N −2 the maps (̃γj)k are

defined by the action of some [γj ] ∈ E1(A) on E0,j
j+1. Furthermore, for j > 2, the bj can be chosen
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such that, for any vector e in a basis for Qj−1, bj(e)(1) is a linear form. The differential dp,qN = 0

for all q ≥ N . We have Ep,qN = Ep,qN+1 and Ep,qN+1 = Dq−N
1 (A) ?E0,N

N+1 ?E
p(B) for all p ≥ 0 and all

q ≥ N .

We recall the following standard facts. See [6] for details.

Lemma III.2.11. Let F be a filtered cocomplex and let E• be the spectral sequence associated

with the filtration converging to H∗(F ). If Eu,n−u∞ = 0 for u < p, there results an epimorphism

Hn(F ) → Ep,n−p∞ . If the filtration is convergent and Eu,n−u∞ = 0 for u > p, there results a

monomorphism Ep,n−p∞ → Hn(F ).

We will apply this result in the cases p = 0 and p = n to obtain results about E0,n
∞ and

En,0∞ in the case where A is a Koszul algebra.

Proposition III.2.12. If A is a quadratic algebra, the differential d0,1
2 : E0,1

2 → E2,0
2 is an

isomorphism in internal degrees greater than 2. If, additionally, A and B are as in Lemma III.2.10,

then for p ≥ 1 and in internal degrees greater than p+ 2, the image of dp,12 consists of elements of

Ep+2,0
2 which can be represented as sums in E2(B) ? Ep(B).

Proof. Setting p = 0 and n = 1 in Lemma III.2.11 implies that E1(A) = E1,1(A) maps onto E0,1
∞ ,

so E0,1
∞ is concentrated in internal degree 1. For N > 2, the differentials d0,1

N are zero, so cocycles

of d0,1
2 are permanent, unbounded cocycles and E0,1

3 = E0,1
∞ . Since E0,1

3 ⊂ E0,1
2
∼= Ext0

A(I, k) and

we assume that I contains no elements of degree less than 2, ker d0,1
2 = E0,1

3 = 0.

Setting p = n = 2 in Lemma III.2.11 implies there is a monomorphism E2,0
∞ ↪→ E2(A) =

E2,2(A). For N > 2, the differential d2−N,N−1
N is zero. Since we also have d2,0

N = 0 for all N > 1,

E2,0
3 = E2,0

∞ . We conclude that E2,0
3 = E2,0

2 /im d0,1
2 is concentrated in internal degree 2. It follows

that d0,1
2 is surjective, hence is an isomorphism, in internal degrees greater than 2.

For the second statement, we have Ep,12
∼= E0,1

2 ?Ep(B) and Ep+2,0
2

∼= E2,0
2 ?Ep(B). Since

d0,1
2 is surjective in internal degrees ≥ 2 and since the spectral sequence differential respects the

left E(B)-module structure, the result follows.

We now prove that the images of the spectral sequence differentials landing in Er,0r are

contained in a submodule corresponding to a subalgebra of D2(B). The key is that, as a result of

27



Lemma III.2.6, we can transform the left action of E1(A) on E0,r−2
r−1 into a left action of E1(B) on

Er−1(B) using Proposition II.3.7.

Proposition III.2.13. Let A be a graded k-algebra and let B = A/I be a graded factor algebra

such that AI is a K1 A-module. Assume B acts trivially on ExtA(B, k). If N > 2 and 2 < r ≤ N ,

then im dN−r,r−1
r ⊂ E1,0

2 ? EN−1(B).

Proof. For each 2 ≤ r ≤ N , let {eri } be a homogeneous basis for Qr. Let Mr be the matrix of ∂rQ

with respect to these bases. Without loss of generality, we may assume the {eri } are chosen such

that the nonzero rows of L(Mr) are linearly independent.

Let (a1, a2, . . . , ar) ∈ S0,r−1
r represent a class in E0,r−1

r as in Lemma III.2.2. By Lemma

III.2.10, we may assume that for any basis element e = eri of Qr, ar(e)(1) ∈ I
A≥2
0 . Since ar is

B-linear, the minimality of the resolution Q• implies that dhar(e) = 0 unless the i-th row of Mr

contains a linear element. By Proposition II.3.7 and our assumption on the nonzero rows of L(Mr),

the i-th row of Mr contains a linear element if and only if [(eri )
∗] ∈ Er(B) is in the subalgebra

generated by E1(B) ? Er−1(B).

Therefore, the image of d0,r−1
r consists of those classes in Er,0r whose Er,02 representatives,

under the isomorphism of Lemma III.2.3 above, are in the subalgebra of Er(B) generated by

E1(B) ? Er−1(B).

Since E1,0
2 = E1,0

∞ , we have

E1(B) ? Er−1(B) ∼= E1,0
2 ? Er−1(B) = E1,0

r ? Er−1(B)

Thus classes in im d0,r−1
r are equal to their Er,02 representatives and the result holds for r = N . The

spectral sequence differential respects the right E(B)-module structure on E∗,r−1
r , so by Lemma

III.2.10, im dN−r,r−1
r = im d0,r−1

r ? EN−r(B) ⊂ E1,0
r ? EN−1(B) as desired.

We are now able to prove our main theorem.

Theorem III.2.14. Let A be a Koszul algebra and I ⊂ A an ideal. Assume B = A/I acts trivially

on ExtA(B, k). If AI is a K2 A-module, then B = A/I is a K2 algebra.
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Proof. Since A is quadratic, AI is a K1 A-module by Corollary II.3.8. Let N be minimal such that

a class [ζ] ∈ EN (B) is not generated by E1(B) and E2(B). Without loss of generality, we may

assume [ζ] is homogeneous in the bigrading on E(B). Then N > 2 and the internal degree of [ζ]

is at least N + 1. The corresponding class α ∈ EN,02
∼= EN (B) is a permanent cocycle.

By Proposition III.2.12, α /∈ im dN−2,1
2 , so α survives to a nonzero class [α] ∈ EN,03 . By

Proposition III.2.13, [α] survives to a nonzero class α∞ ∈ EN,0∞ . By Lemma III.2.11, EN,0∞ ↪→

EN (A), so EN (A) is not concentrated in internal degree N . This contradicts the Koszulity of A.

We remark that if I is a Koszul A-module, then B acts trivially on ExtA(B, k) by degree

considerations. If we further assume that I is generated in degree 2, then B is a Koszul algebra.

This special case of Theorem III.2.14 was proved by Backelin and Froberg in [1].

We also note that Example 9.3 of [7] shows Theorem III.2.14 is false if A is only assumed

to be a K2 algebra. The following example shows that the hypothesis that B acts trivially on

ExtA(B, k) cannot be removed from Theorem III.2.14.

Example III.2.15. Let A = k〈x, y〉/〈x2−xy〉, and let I = 〈yx〉 be a two-sided ideal. The algebra

A is isomorphic to the monomial quadratic algebra k〈X,Y 〉/〈XY 〉, hence A is a Koszul algebra

(see Corollary 4.3 of [27]). As a left A-module, AI = Ayx+Ayx2 and

0→ A(−4)

 
x2 −x

!
−−−−−−−−→ A(−2)⊕A(−3)

 
yx yx2

!T

−−−−−−−−−−→ I→ 0

is a graded free resolution of AI. The matrix criterion of Proposition II.3.7 shows that AI is a K1

A-module. The Hilbert series of B = A/I is easily seen to be 1 + 2t+ 2t2 + t3/(1− t). Therefore,

the Poincaré series of Bk begins 1− 2t+ 2t2 − t3 − t4 + · · · . The negative coefficient of t4 implies

dim Exti,4B (k, k) 6= 0 for some i 6= 4. Thus the quadratic algebra B is not a Koszul algebra, so B

is not a K2 algebra. One can check that the image of x in B acts nontrivially on ExtA(B, k) by

sending the class in Ext0
A(B, k) corresponding to the generator yx to the class corresponding to

the generator yx2.
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III.3 Face Rings

For any n ∈ N, there is a well-known (see Theorem 1.7 of [23]) correspondence between

abstract simplicial complexes on the set [n] = {1, . . . , n} and ideals of the commutative polynomial

algebra k[x1, . . . , xn] generated by squarefree monomials. The correspondence associates to a

simplicial complex ∆ the Stanley-Reisner ideal I∆ generated by the monomials Πi∈τxi for τ ⊂ [n],

τ /∈ ∆. The factor algebra k[∆] = k[x1, . . . , xn]/I∆ is called the Stanley-Reisner ring, or face ring,

of the simplicial complex ∆. For simplicity, we assume that I∆ contains no linear monomials.

The combinatorics of ∆ play an important role in determining both the homological and

ring-theoretic properties of k[∆], and vice versa. The study of these connections is an active and

deep area of research. However, relatively little seems to be known about the structure of the

Yoneda Ext-algebra of k[∆]. A significant result is due to Fröberg.

Theorem III.3.1 ([11]). If I∆ can be generated by quadratic monomials, then k[∆] is a Koszul

algebra.

Since Koszul algebras must be quadratic, this theorem completely characterizes Koszul

face rings. A major obstacle to proving analogous structural results for the Yoneda algebras of

non-quadratic face rings is that these algebras must have defining relations of different homogeneous

degrees. Until the recent introduction of K2 algebras, most generalized Koszul properties required

an algebra to have defining relations of a single homogeneous degree. Determining which face rings

are K2 algebras is therefore an important and natural problem. In the course of proving some

sufficient conditions for a face ring to be a K2 algebra, we will show that problem is considerably

more subtle than the Koszul case. Our main tool is the following special case of Theorem III.2.14.

Theorem III.3.2. If I is a squarefree monomial ideal in S = k[x1, . . . , xn] and if I is a K2

S-module, then S/I is a K2 algebra.

Let ∆ be an abstract simplicial complex on [n]. If τ ∈ ∆, the link of τ in ∆ is link∆τ =

{σ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}. The Alexander dual complex of ∆ is the simplicial complex

∆∗ = {[n] − τ | τ /∈ ∆}. We denote the subcomplex of ∆ whose maximal faces are the q-faces of

∆ by ∆(q). If all maximal faces of ∆ have the same dimension, we say that ∆ is pure. We call

∆ Cohen-Macaulay over k if ∆ is pure and if for all faces τ ∈ ∆ and all i < dim link∆τ we have

H̃i(link∆τ, k) = 0. This definition is motivated by the fundamental result of Reisner (see [31])
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that ∆ is a Cohen-Macaulay complex over k if and only if k[∆] is a Cohen-Macaulay ring. In [10],

Eagon and Reiner characterized the Cohen-Macaulay property in terms of resolutions of I∆.

Theorem III.3.3 ([10]). The simplicial complex ∆∗ is Cohen-Macaulay if and only if the square-

free monomial ideal I∆ has a linear free resolution as a k[x1, . . . , xn]-module.

In [33], Stanley introduced the more general notion of a sequentially Cohen-Macaulay

complex. We call ∆ sequentially Cohen-Macaulay over k if ∆(q) is Cohen-Macaulay for all q ∈ N.

In [9], Duval proved that this definition is equivalent to Stanley’s. We note that if ∆ is pure, then

∆ is sequentially Cohen-Macaulay if and only if ∆ is Cohen-Macaulay. Herzog and Hibi proved

the analog of Theorem III.3.3 for sequentially Cohen-Macaulay complexes.

Theorem III.3.4 ([16]). The simplicial complex ∆∗ is sequentially Cohen-Macaulay if and only

if I∆ has a componentwise linear free resolution as a k[x1, . . . , xn]-module.

In light of Proposition II.4.4 we obtain the following sufficient condition for k[∆] to be a

K2 algebra.

Corollary III.3.5. If ∆∗ is sequentially Cohen-Macaulay, then k[∆] is a K2 algebra.

Proof. Since commutative factor algebras always act trivially on the appropriate Ext gorup, the

statement follows immediately from Theorem III.3.4, Proposition II.4.4, and Theorem III.3.2.

Example III.4.2 below shows the sufficient condition of Corollary III.3.5 is not necessary.

For an example where k[∆] is a K2 algebra and I∆ is not even a K2 module, see Example III.4.3.

However, we do not know of an example in which ∆∗ is pure and connected, I∆ is generated by

squarefree monomials of degree > 2, and I∆ is not a K2 module but k[∆] is a K2 algebra. Indeed,

we conjecture that there is no such counterexample.

Since Cohen-Macaulay and sequentially Cohen-Macaulay complexes can be characterized

in terms of their combinatorial topology, we hope to establish geometric criteria on ∆∗ under which

I∆ is a K2 module.
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III.4 Examples

Example III.4.1. Let S = k[a, b, c, d, e, f ] and I = 〈abc, cde, ae〉. The complex ∆∗ is shown in

Figure 1. It is easy to check that ∆∗(q) is Cohen-Macaulay for q = 0, 1, 2, 3. By Theorem 2.1 of

[16], I is a componentwise linear S-module, hence is a K2 S-module by Proposition II.4.4. The

subideal J = 〈abc, cde〉 is not a K2 S-module. Indeed the following complex is a minimal projective

S-module resolution of SJ .

0→ S(−5)

 
de −ab

!
−−−−−−−−−→ S(−3,−3)

0BBB@abc
cde

1CCCA
−−−−−→ J → 0

We see that the matrix criterion of Lemma II.3.6 is not satisfied by this resolution.

Figure 1: The complex ∆∗ for I in Example III.4.1.

Example III.4.2. Let S = k[a, b, c, d, e, f ] and let I = 〈abc, def, abef〉. The complex ∆∗ and

the subcomplex ∆∗(2) are shown in Figure 2. Since ∆∗(2) is two-dimensional and disconnected,

it is not Cohen-Macaulay. By Theorem III.3.4, I is not a componentwise linear S-module. The

following complex is a minimal projective S-module resolution of SI.

0→ S(−5,−5)

0BBB@ef 0 −c

0 ab −d

1CCCA
−−−−−−−−−−−−→ S(−3,−3,−4)

0BBBBBBBB@

abc

def

abef

1CCCCCCCCA
−−−−−−→ I → 0

32



Figure 2: The complex ∆∗ for I in Example III.4.2 and ∆∗(2).

By Proposition II.3.7, SI is a K2 S-module. Thus S/I is a K2 algebra by Theorem III.3.2.

The subideal J = 〈abc, abef〉 is easily seen to be a K2 S-module. However, the factor module I/J

is not. The complex

0→ S(−5)

 
ab

!
−−−−→ S(−3)

 
def

!
−−−−−→ I/J → 0

is a minimal free S-module resolution of I/J , and it fails the matrix condition of Lemma II.3.6.

Example III.4.3. Let S = k[a, b, c, d, e] and let I = 〈abc, cde, abde〉. Let A = S/I and let

B = A/〈c〉. Observe that B ∼= k[a, b, d, e]/〈abde〉. By Corollary 9.2 of [7], B is a K2 algebra.

The following sequence is the beginning of a minimal projective A-module resolution of AB. The

resolution is clearly periodic.

· · ·

0BBBBBBBBBBBB@

α 0 0

0 α 0

0 0 γ

0 0 β

1CCCCCCCCCCCCA
−−−−−−−−−→ A(−42,−52)

0BBB@ γ
β′

1CCCA
−−−−→ A(−3)2

α
−→ A(−1)

 
c

!
−−−→ A→ B

where

α =

ab
de

 β =

ab 0

0 de

 β′ =

de 0

0 ab

 γ =

c 0

0 c


By the matrix criterion of Lemma II.3.6, B is a K2 A-module. By Theorem 7.4 of [7], A is a K2

algebra.
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The following is a minimal projective S-module resolution of the defining ideal I of A.

0→ S(−52)

0BBB@de 0 −c

0 ab −c

1CCCA
−−−−−−−−−−−−→ S(−32,−4)

0BBBBBBBB@

abc

cde

abde

1CCCCCCCCA
−−−−−−→ I → 0

As the linearization of the matrix on the left has dependent rows, I is not a K2 S-module.

Thus the converse of Theorem III.2.14 is false.

The algebra A is a noteworthy example in another regard. Let J be a componentwise linear

ideal in a commutative Koszul algebra S. By Theorem III.2.14, S/J is a K2 algebra. The subideal

J〈0,d〉 is componentwise linear for all d ≥ 0, so S/J〈0,d〉 is a K2 algebra for all d ≥ 0. Cassidy

and Shelton conjectured that such a “tower” theorem holds more generally for K2 algebras. The

algebra A resolves that conjecture negatively, as we now show.

Let C = k[a, b, c, d, e]/〈abc, cde〉 be the algebra obtained by discarding the highest degree

generator of I.

Proposition III.4.4. The algebra C is not K2.

Proof. By the usual identifications of E1(C) and E2(C) respectively with the k-linear duals of the

vector spaces of generators and minimal defining relations of C, we have E1(C) = Ext1,1
C (k, k) and

E2(C) = Ext2,2
C (k, k)⊕ Ext2,3

C (k, k). We prove the proposition by showing that Ext3,5
C (k, k) 6= 0.

The Hilbert series of the defining ideal J = 〈abc, cde〉 is easily seen to be 2t3 + 10t4 +

29t5 + · · · thus the Hilbert series of C is

1
(1− t)5

− (2t3 + 10t4 + 29t5 + · · · ) = 1 + 5t+ 15t2 + 33t3 + 60t4 + 97t5 + · · ·

Inverting the formal power series, we find the Poincare series of C is

1− 5t+ 10t2 − 8t3 − 5t4 + 18t5 + · · ·

Since J2 = 0, the diagonal subalgebra
⊕

Exti,iC (k, k) of E(C) is isomorphic to E(S), which is

the exterior algebra on a 5-dimensional vector space (see Proposition 3.1 of [27]). In particular,
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dim Ext2,2
C (k, k) = 10 and dim Ext5,5

C (k, k) = 1. From the minimal S-module resolution of J given

in Example III.4.1, we see that

Ext1
S(C, k) ∼= Ext0

S(J, k) = k(−3)⊕ k(−3), Ext2
S(C, k) ∼= Ext1

S(J, k) = k(−5)

and ExtqS(C, k) = 0 for q > 2.

Consider the first quadrant spectral sequence ExtpC(k,ExtqS(C, k)) ⇒ Extp+qS (k, k). By

Lemma III.2.3, Ep,q2
∼= Ep(C)⊗ExtqS(C, k). Every element in Ext4,5

C (k, k) represents a permanent

cocycle in E4,0
2 . Since the target of the spectral sequence is the Yoneda algebra of a Koszul

algebra, each of these cocycles must be eventually bounded. The differentials which could bound

these cocycles are

E2,1
2 → E4,0

2 E1,2
3 → E4,0

3 and E0,3
4 → E4,0

4

Since Ext3
S(C, k) = 0, E0,3

4 = 0. Since E1,2
3 ⊂ E1,2

2
∼= E1(C) ⊗ Ext2

S(C, k), the vector space

E1,2
3 is concentrated in internal degree 6, so it cannot bound a cocycle with internal degree 5.

Thus E4,0
2
∼= E2,1

2
∼= E2(C) ⊗ Ext1

S(C, k) in internal degree 5. From the calculations above, we

have dim Ext4,5
C (k, k) = 20. Since dim Ext5,5

C (k, k) = 1, it follows from the Poincare series that

dim Ext3,5
C (k, k) = 1.
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CHAPTER IV

A∞-ALGEBRA STRUCTURES ASSOCIATED WITH K2 ALGEBRAS

IV.1 Introduction

In this chapter, we explore another important recent development in ring theory: the use

of A∞-algebras (cf. [15], [20], [21]). The material in this chapter was first developed and authored

jointly with Pete Goetz in the manuscript [8], accepted for publication. A preprint of the paper is

available on the arXiv preprint server.

The notion of an A∞-algebra was first defined by Stasheff in [35].

Definition IV.1.1. An A∞-algebra over a field k is a Z-graded vector space E = ⊕p∈ZE
p together

with graded k-linear maps

mn : E⊗n → E, n ≥ 1

of degree 2− n which satisfy the Stasheff identities

SI(n)
∑

(−1)r+stmu(1⊗r ⊗ms ⊗ 1⊗t) = 0.

where the sum runs over all decompositions n = r+s+t such that r, t ≥ 0, s ≥ 1, and u = r+1+t.

The linear maps mn for n ≥ 3 are called higher multiplications. The A∞-structure {mi}

on a graded k-vector space E determines a k-linear map ⊕mi : T (E)+ → E. This map induces

the structure of a differential coalgebra on T (E) (see [17]).

We note that the identity SI(1) is m1m1 = 0 and the degree of m1 is 1 so m1 is a differential

on E. The identity SI(2) can be written as

m1m2 = m2(m1 ⊗ 1 + 1⊗m1).
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Thus the differential m1 is a graded derivation with respect to m2. Hence a differential graded

algebra is an A∞-algebra with mn = 0 for all n ≥ 3. The map m2 plays the role of multiplication

in an A∞-algebra, but in general m2 is not associative. However, it is clear from SI(3) that m2 is

associative if m1 or m3 is zero.

An important result in the theory of A∞-algebras is the following theorem of Kadeishvili.

Theorem IV.1.2 ([17]). Let (E, {mE
i }) be an A∞-algebra. The cohomology H∗E with respect to

mE
1 admits an A∞-algebra structure {mi} such that

1. m1 = 0 and m2 is induced by mE
2 , and

2. there is a quasi-isomorphism of A∞-algebras H∗E → E lifting the identity of H∗E.

Moreover, this structure is unique up to (non unique) isomorphism of A∞-algebras.

We refer the interested reader to [18] for definitions of morphism, quasi-isomorphism, and

isomorphism of A∞-algebras. We will not use these notions in this paper. We call an A∞-algebra

structure on H∗E canonical if it belongs to the A∞-isomorphism class of structures provided by

the theorem.

Let A be a k-algebra. We recall that the Yoneda algebra of A, E(A), is the cohomology

algebra of a differential graded algebra (see Section IV.4). Therefore Kadeishvili’s theorem implies

that E(A) admits a canonical A∞-algebra structure. We remark that E(A) is bigraded. The

grading on the maps mn refers to the cohomological degree. By the construction described in

Section IV.4, we may assume the internal degree of mn is 0 for all n.

The following theorem was the main motivation for this chapter.

Theorem IV.1.3. Let A be a k-algebra which is finitely generated in degree 1. Let E(A) be

the Yoneda algebra of A. Then A is a Koszul algebra if and only if every canonical A∞-algebra

structure on E(A) has mn = 0 for all n 6= 2.

One direction of this theorem is clear. Suppose that A is a Koszul algebra. Then the

Yoneda algebra is concentrated on the diagonal ⊕Ep,p(A). It follows, purely for degree reasons,

that all multiplications other than m2 are zero.

The converse is implied by work of May and Gugenheim [14] and Stasheff [34]. It can also

be proved using the fact that E(A) is A∞-generated by E1(A). This fact appears in Keller’s paper
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[19] without proof. We give a constructive proof that E(A) is A∞-generated by E1(A) in Chapter

V.

The goal of this chapter is to provide some partial answers to the following questions.

• What restrictions does the K2 condition place on a canonical A∞-structure on the Yoneda

algebra?

• Do certain A∞-structures on the Yoneda algebra guarantee the original algebra is K2?

The analogues of these questions for N -Koszul algebras with N ≥ 3 were considered by He and

Lu in [15], where they obtain a result similar to Theorem IV.1.3. They prove an algebra A is

N -Koszul if and only if E(A) is a reduced (2, N) A∞-algebra and is A∞- generated by E1. In a

(2, N) A∞-algebra, all multiplications other than m2 and mN are zero. Their result is aided by the

fact that for an N -Koszul algebra, Ep(A) is concentrated in a single internal degree. We remark

yet again that the Yoneda algebra of a K2 algebra does not generally satisfy such a strong purity

condition.

Our main results are the following.

Theorem IV.1.4. For each n ∈ N there exists a K2 algebra B such that

1. The defining relations of B are quadratic and cubic, and

2. E(B) has a canonical A∞-algebra structure such that mi is nonzero for all 3 ≤ i ≤ n+ 3.

This shows, in contrast to the cases of Koszul and N -Koszul algebras, that vanishing of

higher multiplications on the Yoneda algebra of a K2 algebra need not be determined in any obvious

way by the degrees of defining relations. Recently, Green and Marcos [12] defined the notion of

2-d-Koszul algebras. We remark that the algebra B of Theorem IV.1.4 is a 2-d-Koszul algebra.

Theorem IV.1.5. There exist k-algebras A1 and A2 such that

1. A1 is K2 and A2 is not K2,

2. A1 and A2 have the same Poincaré series, and

3. E(A1) and E(A2) admit canonical A∞-structures which are not distinguished by mn for

n ≥ 3.
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These examples demonstrate that obvious vanishing patterns among higher multiplications

cannot detect the K2 property.

We are now ready to outline the chapter. In Section IV.2 we introduce the k-algebra B

and prove some basic facts about a canonical graded k-basis for B. Section IV.3 is the technical

heart of the chapter. We describe a minimal projective resolution of the trivial B-module and

prove that B is a K2 algebra. In Section IV.4 we prove some general results on using a minimal

resolution of the trivial module to compute A∞-algebra structures on Yoneda algebras. In Section

IV.5 we compute part of an A∞-algebra structure on E(B) and finish the proof of Theorem IV.1.4.

Finally in Section IV.6 we prove Theorem IV.1.5.

IV.2 The Algebra B

We begin this section by defining an algebra B. We exhibit a canonical k-basis for B and

use it to compute left annihilator ideals of certain elements of B.

Let k be a field and fix n ∈ N. Let k∗ denote the set of nonzero elements of k. Let V be

a k-vector space with basis X = {ai, bi, ci}0≤i≤n. It will be convenient to define elements bs of V

to be 0 for s > n. Likewise we define ct to be 0 in V for t < 0. Let T (V ) be the tensor algebra on

V , graded by tensor degree. Let R ⊂ V ⊗2 ⊕ V ⊗3 be the set of tensors

{anbncn, c0a0} ∪ {aibici + ci+1ai+1bi+1, bi+1ci+1ai+1, cici+1, bi+1ai}0≤i<n.

We define B to be the k-algebra T (V )/I where I is the ideal of T (V ) generated by R. The

ideal I is homogeneous, so B inherits a grading from T (V ). We have the canonical quotient map

πB : T (V )→ B of graded k-algebras.

The basis X generates a free semigroup 〈X〉 with 1 under the multiplication in T (V ). We

call elements of 〈X〉 pure tensors. Let 〈X〉d denote the set of pure tensors of degree d. We call an

element x ∈ B+ a monomial if π−1
B (x) contains a pure tensor.

We need a monomial k-basis for B. Let R′ ⊂ 〈X〉 be the set

{anbncn, c0a0} ∪ {ci+1ai+1bi+1, bi+1ci+1ai+1, cici+1, bi+1ai}0≤i<n
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and let

〈R′〉 = {AWB | A,B ∈ 〈X〉,W ∈ R′}.

The following proposition is a straightforward application of Bergman’s Diamond Lemma [4]. We

order pure tensors by degree-lexicographic order with the basis elements ordered ai < bi < ci <

ai+1 < bi+1 < ci+1 for 0 ≤ i ≤ n− 1.

Proposition IV.2.1. The image under πB of 〈X〉− 〈R′〉, the set of tensors which do not contain

any element of R′, gives a monomial k-basis for B.

Remark IV.2.2. In Section 5 of [7], Cassidy and Shelton give a simple algorithm for determining

if a monomial algebra is K2. The algorithm can be used to show the algebra T (V )/〈R′〉 is K2.

Proposition IV.2.1 implies that R is an essential Gröbner basis for I (see [24]). By Theorem 3.13

in [24], the fact that T (V )/〈R′〉 is K2 implies B is K2. Though this method of proving B is K2

is quite easy, we do not present the details here. A minimal resolution of the trivial module is

central to our calculation of A∞-structure, so we prove that B is K2 using the matrix criterion of

Theorem IV.3.9.

The basis provided by Proposition IV.2.1 determines a vector space splitting ρB : B →

T (V ) such that T (V ) = ρB(B)⊕ I by mapping a basis element to its pre-image in 〈X〉 − 〈R′〉. If

x ∈ B, we write x̂ for the image of x under ρB . If w ∈ T (V ), there exist unique wc ∈ ρB(B) and

wr ∈ I such that w = wc +wr. We call wc the canonical form of w, and if w = wc we say w is in

canonical form. We say w is reducible if it is not in canonical form.

As a consequence of Proposition IV.2.1, we show that left annihilators of monomials are

monomial left ideals.

Proposition IV.2.3. Let x ∈ B be a nonzero monomial of degree d′ and let w ∈ l.annB(x) be

homogeneous of degree d. If ŵ =
∑k
t=1 αtwt where the wt ∈ 〈X〉d are distinct and αt ∈ k∗, then

πB(wtx̂) = 0 for 1 ≤ t ≤ k.

Proof. Let x̂ = x1 · · ·xd′ ∈ 〈X〉d′ and wt = wt,1 · · ·wt,d ∈ 〈X〉d. It suffices to consider the case

where πB(wtx̂) is nonzero for every t. Since ŵx̂ ∈ I, wtx̂ is reducible for some t. Reordering if

necessary, there is an index j such that wtx̂ is reducible for 1 ≤ t ≤ j and in canonical form for

j < t ≤ k.
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Fix an index t such that 1 ≤ t ≤ j. Since πB(wtx̂) 6= 0, Proposition IV.2.1 implies that wtx̂

must contain ciaibi for some 1 ≤ i ≤ n. Since ŵ and x̂ are in canonical form, either wt,d−1wt,dx1 =

ciaibi or wt,dx1x2 = ciaibi. In the first case, define yt = αtwt,1 · · ·wt,d−2(ai−1bi−1ci−1)x2 · · ·xd′

and in the second case, yt = αtwt,1 · · ·wt,d−1(ai−1bi−1ci−1)x3 · · ·xd′ .

Clearly, αtwtx̂ + yt ∈ I so z =
∑j
t=1−yt +

∑k
t=j+1 αtwtx̂ ∈ I. We claim that z is in

canonical form, and for this it suffices to check that yt is in canonical form. In the case x1 = bi,

Proposition IV.2.1 implies yt is reducible only if wt,d−2 = ci−1 or wt,d−2 = bi or x2 = ai−1 or

x2 = ci. If x2 = ci, then πB(yt) = 0 which implies πB(wtx̂) = πB(wtx̂+ yt) = 0, a contradiction.

The other three cases all lead to the contradiction that ŵ or x̂ is reducible. The case x1x2 = aibi

is the same as the case x1 = bi, with a shift in index. We conclude z is in canonical form.

Since z ∈ I we know z = 0 in T (V ). We note that all of the pure tensors appearing in z =∑j
t=1−yt+

∑k
t=j+1 αtwtx̂ are distinct. Therefore αt = 0 for all 1 ≤ t ≤ k, which is a contradiction.

Henceforth, we identify the basis vectors ai, bi, ci with their images in B. The following

lemma is immediate from Proposition IV.2.3 and the presentation of the algebra.

Lemma IV.2.4. For 0 ≤ i ≤ n, the element bi ∈ B is left regular. For 1 ≤ i ≤ n− 1,

l.annB(bici) = Bciai, l.annB(ai) = Bbici +Bbi+1, and

l.annB(ciai) = Bbi +Bci−1.

Furthermore

l.annB(bncn) = Ban, l.annB(cn) = Banbn +Bcn−1, and

l.annB(a0) = l.annB(a0b0) = Bb1 +Bc0.

IV.3 A Minimal Resolution of Bk

In this section we construct a minimal resolution of the trivial B-module Bk. We then use

a criterion of Cassidy and Shelton to prove B is a K2 algebra.
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For d ∈ Z let B(d) denote the B-module B with grading shifted by d, that is B(d)k = Bk+d.

If d̄ = (d1, . . . , dr) ∈ Zr we define

B(d̄) = B(d1, d2, . . . , dr) = B(d1)⊕B(d2)⊕ · · · ⊕B(dr).

If Q = B(d1, . . . , dr) and Q′ = B(D1, . . . , Dr′) are graded free left B-modules and M =

(mi,j) is an r × r′ matrix of homogeneous elements of B such that degmi,j = Dj − di, then right

multiplication by M defines a degree 0 homomorphism f : Q→ Q′. We denote this homomorphism

Q
M−→ Q′, and for convenience refer to both the matrix and the homomorphism it defines as M .

A graded free resolution

· · · → Qn
Mn−−→ Qn−1 → · · · → Q0

of the B-module N is minimal if im(Mn) ⊆ B+Qn−1 for every n ≥ 1. Equivalently, each entry of

the matrix representation of Mn is an element of B+.

Lemma IV.3.1. For 1 ≤ i ≤ n− 1 the sequence

B(−6,−5)

0BBB@bici
bi+1

1CCCA
−−−−−−→ B(−4)

 
ai ci+1ai+1

!
−−−−−−−−−−−−→ B(−3,−2)

0BBB@bici
bi+1

1CCCA
−−−−−−→ B(−1)

of graded free B-modules is exact at B(−4) and B(−3,−2).

Proof. The sequence is clearly a complex. Exactness at B(−4) is clear from Lemma IV.2.4. To

prove exactness at B(−3,−2), let w, x ∈ B and suppose πB(ŵbici + x̂bi+1) = 0. Let ŵ = w1 +w2

and x̂ = x1 +x2 where w1, w2, x1, and x2 ∈ T (V ) (all in canonical form) are such that w1bici and

x1bi+1 are in canonical form, and all pure tensors in w2bici and x2bi+1 are reducible.

By Proposition IV.2.1, w2 = w′ciai and x2 = x′ci+1ai+1 for some w′, x′ ∈ T (V ). So

πB(w2bici) = πB(w′ciaibici) = πB(−w′ai−1bi−1ci−1ci) = 0. Since x2 is in canonical form, no pure

tensor in x′ can end in bi+1 or ci. Now consider

0 = πB(w1bici + x1bi+1 + x2bi+1)

= πB(w1bici + x1bi+1 − x′aibici).
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Thus z = w1bici + x1bi+1 − x′aibici is in I. Since z is also in canonical form we know z = 0.

Therefore x1bi+1 = x′aibici − w1bici in T (V ) and it follows that x1 = 0.

We have πB(ŵbici − x′aibici) = 0, thus πB(ŵ − x′ai) ∈ l.annB(bici). By Lemma IV.2.4,

w − πB(x′)ai ∈ Bciai, so there exists z ∈ B such that w = zciai + πB(x′)ai. Therefore

(w x) = (zciai + πB(x′)ai πB(x′)ci+1ai+1)

= (zci + πB(x′))(ai ci+1ai+1).

This proves exactness at B(−3,−2).

Lemma IV.3.2. The periodic complex

· · ·B(−6)
(bncn)−−−−→ B(−4)

(an)−−−→ B(−3)
(bncn)−−−−→ B(−1)

is a minimal graded free resolution of Ban.

If 1 ≤ i ≤ n− 1, the periodic complex

· · · → B(−3t− 4)

 
ai ci+1ai+1

!
−−−−−−−−−−−−→ B(−3t− 3,−3t− 2)

0BBB@bici
bi+1

1CCCA
−−−−−−→

· · · → B(−4)

 
ai ci+1ai+1

!
−−−−−−−−−−−−→ B(−3,−2)

0BBB@bici
bi+1

1CCCA
−−−−−−→ B(−1)

of free left B-modules is a minimal graded free resolution of Bai.

Proof. The resolution of Ban is immediate from Lemma IV.2.4.

Let 1 ≤ i ≤ n − 1. By Lemma IV.2.4, bici and bi+1 generate the left annihilator of ai.

Exactness in higher degrees follows from Lemma IV.3.1 and a degree shift.

The complexes of Lemma IV.3.2 will be direct summands of our minimal resolution of Bk.

We denote these complexes by P i• where P i1 = B(−1) for 1 ≤ i ≤ n. The other summands of our

resolution are built inductively. The following lemma provides the base cases for induction.
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Lemma IV.3.3.

1. If w, x ∈ B and wciaibi + xci−1 = 0 for some 1 ≤ i ≤ n, then there exist w′, w′′, x′ ∈ B

such that

w = w′ + w′′ci−1 and x = w′ai−1bi−1 + x′ci−2.

2. The complexes

B(−4,−3)

0BBB@ciai ai−1bi−1

0 ci−2

1CCCA
−−−−−−−−−−−−−−→ B(−2,−2)

0BBB@ bi

ci−1

1CCCA
−−−−−−→ B(−1)

are exact at B(−2,−2) for 1 ≤ i ≤ n.

3. The complex

B(−4,−3)

0BBB@cn an−1bn−1

0 cn−2

1CCCA
−−−−−−−−−−−−−→ B(−3,−2)

0BBB@anbn
cn−1

1CCCA
−−−−−−→ B(−1)

is exact at B(−3,−2).

Proof. For (1), we assume w, x ∈ B and wciaibi + xci−1 = 0 for some i, 1 ≤ i ≤ n. Since

ciaibi = −ai−1bi−1ci−1, we have

πB(x̂ci−1 − ŵai−1bi−1ci−1) = 0.

Let ŵ = w1 +w2 and x̂ = x1 + x2 where w1, w2, x1, and x2 ∈ T (V ) are such that w1ai−1bi−1ci−1

and x1ci−1 are in canonical form, and all pure tensors in w2ai−1bi−1ci−1 and x2ci−1 are reducible.

By Proposition IV.2.1, there exist y′, y′′, and z′ ∈ T (V ) so that w2 = y′bi + y′′ci−1

and x2 = z′ci−2. (If i = 1, then z′ = 0.) Therefore we have πB(w2ai−1bi−1ci−1) = 0 and

πB(x2ci−1) = 0.

We have πB(x1ci−1 − w1ai−1bi−1ci−1) = 0, and since all terms are in canonical form,

x1 = w1ai−1bi−1. Since biai−1 = 0, we may write x1 = (w1 + y′bi)ai−1bi−1. The result follows by

setting w′ = πB(w1 + y′bi), w′′ = πB(y′′), and x′ = πB(z′).
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For (2), suppose w, x ∈ B such that wbi + xci−1 = 0. Consider x̂ci−1 and notice that

no pure tensor in its canonical form can end in bi. So every pure tensor in ŵbi is reducible. By

Proposition IV.2.1, there exists w′ ∈ B such that w = w′ciai. By (1), there exist w′′, w′′′, x′ ∈ B

such that

w′ = w′′ + w′′′ci−1 and x = w′′ai−1bi−1 + x′ci−2.

Now note that x = w′ai−1bi−1 + (x′ + w′′′ai−2bi−2)ci−2. The result follows.

For (3), suppose w, x ∈ B such that wanbn + xcn−1 = 0. Part (2) implies wan = w′cnan

and x = w′an−1bn−1 +x′cn−2 for some w′, x′ ∈ B. From the proof of (2), ŵ′cnan may be assumed

to be in canonical form. Let ŵ = w1 + w2 where w1an is in canonical form and all pure tensors

of w2an are reducible. By Proposition IV.2.1, there exists y′ ∈ Bn such that w2 = y′bncn. Thus

πB(w2an) = 0 and we have πB(w1an − ŵ′cnan) = 0. Since both terms are in canonical form,

w1 = ŵ′cn. So

w = πB(ŵ′ + y′bn)cn and x = πB(ŵ′ + y′bn)an−1bn−1 + πB(x′)cn−2.

The result follows.

The following lemma is clear by combining Lemma IV.2.4 with Lemma IV.3.3(2).

Lemma IV.3.4. The periodic complex

· · · → B(−3t− 4)

 
a0b0 c1a1

!
−−−−−−−−−−−→ B(−3t− 2,−3t− 2)

0BBB@c0
b1

1CCCA
−−−−→

· · · → B(−4)

 
a0b0 c1a1

!
−−−−−−−−−−−→ B(−2,−2)

0BBB@c0
b1

1CCCA
−−−−→ B(−1)

of free left B-modules is a minimal graded free resolution of Ba0.

We denote the complex of Lemma IV.3.4 by P 0
• where P 0

1 = B(−1).
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To simplify the exposition from this point, we introduce an operation which we use to

inductively build matrices in our minimal resolution of Bk. If M = (mi,j) is an a× b matrix and

N = (ni,j) is a c×d matrix, we define the star product M ?N to be the (a+ c−1)× (b+d) matrix



m1,1 · · · m1,b

...
... 0

ma,1 · · · ma,b n1,1 · · · n1,d

0
...

...

nc,1 · · · nc,d


.

We note that this product is associative and we define

M ?pj=1 Nj = M ?N1 ? · · · ? Np.

For 1 ≤ i ≤ n let Γi =

aibi
ci−1

 and let Ti =

 bi

ci−1

. Let Γ0 = (a0b0). It will be

convenient to define M ? Γi = M for i < 0 and ( ) ? Γi = Γi, where ( ) denotes the empty matrix.

The next lemma is the key to making inductive arguments in later proofs.

Lemma IV.3.5. Let r1, r2, r3 be positive integers and d̄1 ∈ Zr1 , d̄2 ∈ Zr2 , d̄3 ∈ Zr3 . Let dj,k be the

kth component of d̄j. Let i be a positive integer. Let M and N be matrices of homogeneous elements

of B such that B(d̄3) N?Γi−−−→ B(d̄2) M−→ B(d̄1) is an exact sequence of degree zero homomorphisms.

1. If i = 1, then the sequence

B(d̄3) N?Γ1−−−→ B(d̄2) M?Γ0−−−−→ B(d̄1)⊕B(d2,r2 + 2)

is exact at B(d̄2).

2. If i = 2, then the sequence

B(d̄3) N?Γ2?Γ0−−−−−−→ B(d̄2)⊕B(d3,r3 + 2) M?Γ1−−−−→ B(d̄1)⊕B(d3,r3 + 3)

is exact at B(d̄2)⊕B(d3,r3).
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3. If i > 2, then for all t ∈ Z the sequence

B(d̄3)⊕B(t− 2)
N?Γi?Γi−2−−−−−−−→ B(d̄2)⊕B(t− 1)

M?Γi−1−−−−−→ B(d̄1)⊕B(t)

is exact at B(d̄2)⊕B(t− 1).

4. If i > 2 and

B(d̄3) N?Ti−−−→ B(d̄2) M−→ B(d̄1)

is exact at B(d̄2), then the sequence

B(d̄3)⊕B(t− 2)
N?Ti?Γi−2−−−−−−−→ B(d̄2)⊕B(t− 1)

M?Γi−1−−−−−→ B(d̄1)⊕B(t)

is exact at B(d̄2)⊕B(t− 1).

Proof. The statements (1) and (2) follow immediately from Lemma IV.2.4. So we assume i > 2.

For (3), the hypothesis implies that the rows of N ′ = N ? Γi ?

0

1

 generate the kernel

of

M
0

. To compute the kernel of M ? Γi−1, it suffices to determine which elements of the

submodule generated by the rows of N ′ also left annihilate the last column of M ? Γi−1.

Since biai−1 = 0, the last two rows of N ′ are the only rows not in the kernel of M ? Γi−1.

A row ( 0 · · · 0 wci−1 x ) is in the kernel of M ? Γi−1 if and only if wci−1ai−1bi−1 + xci−2 = 0.

By Lemma IV.3.3(1), this occurs if and only if ( 0 · · · 0 wci−1 x ) is a B-linear combination of

( 0 · · · 0 ci−1 ai−2bi−2 ) and ( 0 · · · 0 0 ci−3 ), which are the last two rows of N ? Γi ? Γi−2.

Since all other rows of N ′ and N ? Γi ? Γi−2 are equal, the proof of (3) is complete.

The proof of (4) is the same as the proof of (3).

To help keep track of the ranks and degree shifts of free modules which appear in later

resolutions we introduce the following notations. If i, j ∈ Z and i ≤ j, we denote (i, i+1, . . . , j−1, j)
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by [i, j]. If i is even, for j ∈ N, let

d̄i(j) =


[−b3j/2c,−j] j ≤ i

[−b3j/2c,−d3j/2e+ i/2] j > i

.

If i is odd, for j ∈ N, let

d̄i(j) =


[−b3j/2c,−j] j ≤ i

[−b3j/2c,−b3j/2c+ bi/2c] j > i

.

Figure 3 illustrates the combinatorics of the vector d̄i(j).

Figure 3: The degree vector d̄i(j) consists of negatives of values above the line in column j. In
this figure i = 7.

We need a bit more notation. Let 0 ≤ p ≤ n such that n ≡ p (mod 2). Let

Rp = Γn ?
(n−p)/2
j=1 Γn−2j and Up−1 =

(
cn

)
?

(n−p)/2
j=0 Γn−2j−1.

Lemma IV.3.6.

1. If n is even, the eventually periodic sequence

· · · U1−−→ B(d̄n+1(n+ 2)) R0−−→ B(d̄n+1(n+ 1)) U1−−→ B(d̄n+1(n)) R2−−→ · · ·

Un−3−−−→ B(d̄n+1(4))
Rn−2−−−→ B(d̄n+1(3))

Un−1−−−→ B(d̄n+1(2)) Rn−−→ B(d̄n+1(1))

is a minimal graded free resolution of Bcn.
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2. If n is odd, the eventually periodic sequence

· · · R1−−→ B(d̄n+1(n+ 2)) U0−−→ B(d̄n+1(n+ 1)) R1−−→ B(d̄n+1(n)) U2−−→ · · ·

Un−3−−−→ B(d̄n+1(4))
Rn−2−−−→ B(d̄n+1(3))

Un−1−−−→ B(d̄n+1(2)) Rn−−→ B(d̄n+1(1))

is a minimal graded free resolution of Bcn.

Proof. It is clear that the homomorphisms are degree zero by inspecting the degrees of entries in

Up−1 and Rp. We note that Rn = Γn. Since l.annB(cn) = Banbn + Bcn−1 we see the resolutions

have the correct first terms to be minimal resolutions of Bcn.

We will prove (1). If n = 0, the result follows from Lemma 2.3. So we assume n > 0 and n

is even. Exactness at B(d̄n+1(2)) is Lemma 3.3 (3). For exactness at B(d̄n+1(3)), we apply Lemma

3.5 with i = n, M =
(
cn

)
and N the empty matrix. Similarly, exactness at B(d̄n+1(4)) follows

from exactness at B(d̄n+1(2)) by applying Lemma 3.5 with i = n−1, M = Rn, and N = (cn). We

remark that exactness at B(d̄n+1(n + 1)) follows from exactness at B(d̄n+1(n − 1)) by applying

Lemma 3.5 (2). Exactness at B(d̄n+1(n + 2)) follows from exactness at B(d̄n+1(n)) by applying

Lemma 3.5 (1). By induction, we conclude the sequence in (1) is exact.

The proof of (2) is similar and is omitted.

The resolution of Lemma IV.3.6 is the second piece of our resolution of Bk. We denote

this complex by C• where C1 = B(−1).

For integers i, p, n such that 1 ≤ i ≤ n, 0 ≤ p ≤ i, and i ≡ p (mod 2), define

Si,p−1 =
(
ciai

)
?

(i−p)/2
j=0 Γi−2j−1 and Ti,p = Ti ?

(i−p)/2
j=1 Γi−2j ,

where Ti =

 bi

ci−1

.

Lemma IV.3.7.

1. If 1 ≤ i ≤ n and i is even, then the eventually periodic sequence
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· · · Si,1−−→ B(−3i/2− 1, d̄i(i+ 1))
Ti,0−−→ B(d̄i(i))

Si,1−−→

· · · Si,i−3−−−−→ B(−4, d̄i(3))
Ti,i−2−−−−→ B(d̄i(2))

Si,i−1−−−−→ B(−1, d̄i(1))

is a minimal graded free resolution of Bbi +Bci−1.

2. If 1 ≤ i ≤ n and i is odd, the eventually periodic sequence

· · · Ti,1−−→ B(d̄i(i+ 1))
Si,0−−→ B(−(3i− 1)/2, d̄i(i))

Ti,1−−→ B(d̄i(i− 1))
Si,2−−→

· · · Si,i−3−−−−→ B(−4, d̄i(3))
Ti,i−2−−−−→ B(d̄i(2))

Si,i−1−−−−→ B(−1, d̄i(1))

is a minimal graded free resolution of Bbi +Bci−1.

Proof. We will prove (2). The case i = 1 follows immediately from Lemma 3.4. Suppose that

i > 2 and i is odd. Lemma 3.3 (2) shows the first map Si,i−1 is the start of a minimal resolution

of Bbi +Bci−1. Exactness in higher degrees follows by induction and the remark in the paragraph

following the proof of Lemma 3.5.

The proof of (1) is similar and is omitted.

For 1 ≤ i ≤ n, we denote the complexes of Lemma IV.3.7 by Qi• with Qi1 = B(−1,−1).

Denote by Q0
• the complex 0→ B(−1) which is a minimal graded free resolution of Bb0 by Lemma

IV.2.4. We take Q0
1 = B(−1).

Define the chain complex Q̃• by

Q̃• = P 0
• ⊕ P 1

• ⊕ · · · ⊕ Pn• ⊕ C• ⊕Qn• ⊕ · · · ⊕Q1
• ⊕Q0

•.

Let M1 = ( a0 a1 · · · an cn bn · · · c0 b0 )T . Let Md be the matrix of Q̃d → Q̃d−1. Denote by

M̂d the matrix with entries in T (V ) such that (M̂d)i,j = ρB((Md)i,j).

Theorem IV.3.8. The complex Q̃•
M1−−→ B is a minimal graded free resolution of the trivial left

B-module Bk
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Proof. By Lemmas IV.3.2, IV.3.4, IV.3.6, and IV.3.7, it is enough to check exactness at B and at

Q̃1. The image of M1 in B is clearly the augmentation ideal B+. The complex is exact at Q̃1 since

the entries of M̂2M̂1 give the set R of relations of B.

Next we show the algebra B is a K2 algebra using the criterion established by Cassidy

and Shelton in [7]. Put I ′ = V ⊗ I + I ⊗ V . An element in I is an essential relation if its image is

nonzero in I/I ′. For each d ≥ 2, let Ld be the image of M̂d modulo the ideal T (V )≥2. Let Ed be

the image of M̂dM̂d−1 modulo I ′. Finally, let [Ld : Ed] be the matrix obtained by concatenating

Ld and Ed.

Theorem IV.3.9 ([7]). The algebra B is a K2 algebra if and only if for all d > 2, Q̃d is a finitely

generated B-module and the rows of [Ld : Ed] are independent over k.

Theorem IV.3.10. For any n ∈ N, B is a K2 algebra.

Proof. Let d > 2. It is clear that Q̃d is finitely generated. To see that the rows of [Ld : Ed] are

independent, it suffices to check the condition on the blocks of M̂d and M̂d−1. The blocks Up and

Ti,p have exactly one linear term in each row and no two are in the same column except for the

upper left corner of Ti,p which is
(
bi ci−1

)T
and bi, ci−1 are independent over k. So the condition

holds for these blocks.

The blocks ( an ), ( ai ci+1ai+1 ), and ( b1 c0 )T contain linear terms in each row and the

rows are independent, so they satisfy the condition. The block ( c1a1 a0b0 ) does not contain a

linear term, but the corresponding block of Ed is the essential relation c1a1b1 +a0b0c0. The blocks

( bici bi+1 )T have a linear term in the second row, and the first row of the corresponding block

of Ed contains the essential relation biciai.

The blocks Si,p and Rp have one linear term in each row except the first, and no two are

in the same column, so it is enough to check that the first row of the corresponding block of Ed

is nonzero. A direct calculation shows that respectively the rows contain the essential relations

ciaibi + ai−1bi−1ci−1 and anbncn.
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IV.4 A∞-Algebra Structures from Resolutions

Let A be a k-algebra and let (Q•, d•) be a minimal graded projective resolution of Ak

by A-modules with Q0 = A. For n ∈ Z, a degree n endomorphism of (Q•, d•) is a collection of

degree zero homomorphisms of graded A-modules {fj : Qj → Qj+n | j ∈ Z}. Note that fj = 0 for

j < max{0,−n}.

Let U = EndA(Q•) be the differential graded endomorphism algebra of (Q•, d•) with

multiplication given by composition. We denote the maps in U of degree −n by Un for all n ∈ Z.

The differential ∂ on U is given on homogeneous elements by ∂(f) = df − (−1)|f |fd, where |f |

denotes the degree of f . With respect to the endomorphism degree, deg(∂) = 1. We let Bn and

Zn respectively denote the set of coboundaries and the set of cocycles in Un.

Lemma IV.4.1. Let g ∈ Zn. If im(gn) ⊂ (Q0)+, then there exists f ∈ Un−1 with fj = 0 for all

j < n such that ∂(f) = g.

Proof. We define f inductively. Put fj = 0 for all j < n. Since Q• is a resolution, im(d1) = (Q0)+.

Hence im(gn) ⊂ im(d1). By graded projectivity of Qn, there exists a degree zero homomorphism

of graded A-modules fn : Qn → Q1 such that gn = d1fn = d1fn − (−1)n−1fn−1dn.

Fix j > n and assume that for all k < j, fk is defined and dfk = (−1)n−1fk−1d+gk. Then

d[(−1)n−1fj−1d+ gj ] = (−1)n−1(dfj−1d) + dgj

= (−1)n−1((−1)n−1fj−2d+ gj−1)d+ dgj

= (−1)n−1gj−1d+ dgj

= ∂(g)j

= 0.

Since Q• is a resolution, im((−1)n−1fj−1d + gj) ⊆ im(dj+1−n). Thus, by graded projectivity of

Qj , there exists a degree zero homomorphism of graded A-modules fj : Qj → Qj+1−n such that

dfj = (−1)n−1fj−1d+ gj .

By induction, there exists f ∈ Un−1 such that ∂(f) = g.
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The minimality of the resolution implies that HomA(Q•, k) is equal to its cohomology.

We take H∗(HomA(Q•, k)) = HomA(Q•, k) as our model for the Yoneda algebra E(A). We

abuse notation slightly and write E(A) = HomA(Q•, k). It will be convenient to view E(A) as a

differential graded algebra with trivial differential.

Let ε : Q0 → k be the augmentation homomorphism. For every n ∈ Z define a map

φn : Un → Homn
A(Q•, k) by φn(f) = εfn. We remark that the map φ = ⊕nφn induces a surjective

homomorphism Φ : H∗(U) → E(A). Using Lemma IV.4.1, it is easy to prove that Φ is also

injective.

We compute the structure of an A∞-algebra on E(A) by specifying the data of a strong

deformation retraction (SDR-data) from U to E(A). More precisely, we choose maps i : E(A)→ U ,

p : U → E(A), and G : U → U such that i and p are degree 0 morphisms of complexes and G is a

homogeneous k-linear map of degree −1 such that pi = 1E(A) and 1U − ip = ∂G−G∂.

We define a family of homogenous k-linear maps {λj : U⊗j → U}j≥2 with deg(λj) = 2− j

as follows. There is no map λ1, but we define the formal symbol Gλ1 to mean −1U . The map λ2

is the multiplication on U . For n ≥ 3, the map λj is defined recursively by

λj = λ2

∑
s+t=j
s,t≥1

(−1)s+1(Gλs ⊗Gλt).

The following theorem due to Merkulov provides an A∞-structure on E(A). Merkulov’s

theorem applies to the subcomplex i(E(A)) of U and gives structure maps mj = ipλj . Since

pi = 1E(A), we may restate the theorem for E(A) as follows.

Theorem IV.4.2 ([22]). Let m1 = 0 and for j ≥ 2, let mj = pλji. Then (E(A),m1,m2,m3, . . .)

is an A∞-algebra satisfying the conditions of Theorem IV.1.2.

There are many choices for i and G. We describe a method for defining i and G based on

a minimal projective resolution (Q•, d•) of the trivial module Ak. Our G will additionally satisfy

the side conditions G2 = 0, Gi = 0, and pG = 0. As observed in [13], initial SDR-data can always

be altered to satisfy these conditions, but they are corollaries of our construction. We define p = φ.

Next, we define the inclusion map i. Assume that a homogeneous A-basis {u`n} has been

fixed for each Qn and let {µ`n} be the graded dual basis for En(A).
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We choose i : E(A) → U as follows. For n ≥ 0 let µ ∈ En(A) be a dual basis vector. By

graded projectivity, there exists a sequence of degree zero A-module homomorphisms {i(µ)k}k≥n

so that the diagram

Qn+1
- Qn

· · ·

Q1

i(µ)n+1

?
- Q0

i(µ)n

?

ε
- k

µ

-

has commuting squares when n is even and anticommuting squares when n is odd. This ensures

that i(µ) is contained in Zn. We choose the map i(µ)n to be represented by a matrix with scalar

entries in the given A-basis. We extend i to E(A) by k-linearity, and we note that pi = 1E(A).

For each integer n define the k-vector space Hn by Hn = i(En(A)) if n ≥ 0 and Hn = 0

if n < 0.

Proposition IV.4.3. For every n ∈ Z, Zn = Bn ⊕Hn.

Proof. Let n ∈ Z and let g ∈ Bn. Then there exists f ∈ Un−1 such that ∂(f) = g. The minimality

condition ensures that im(gn) = im(∂(f)n) is contained in A+Q0 = (Q0)+. Thus, gn cannot be

represented by a matrix with nonzero scalar entries. We conclude that Bn ∩Hn = 0.

Now, let f ∈ Zn. By definition, ip(f) ∈ Hn. To prove Zn = Bn ⊕Hn, it suffices to show

there exists g ∈ Un−1 such that ∂(g) = f − ip(f). This follows from Lemma IV.4.1.

Finally, we define a homogeneous k-linear map G : U → U of degree −1. There will

be many choices of G, but the main properties we want G to satisfy are ∂G|Bn = 1Bn and

G(Bn) ∩ Zn−1 = 0.

We start by defining G on the k-linear space Bn. Let b denote a basis element of Bn.

The hypotheses of Lemma IV.4.1 hold for the map b so there exists a map f ∈ Un−1 such that

∂(f) = b. Define G(b) = f . Extending by k-linearity, we have the desired G defined on Bn.

For each integer n, let Ln denote the k-vector space G(Bn+1).
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Proposition IV.4.4. For every n ∈ Z, Un = Ln ⊕ Zn.

Proof. Let n ∈ Z. First suppose h ∈ Ln ∩ Zn. Then ∂h = 0 and h = G(h′) for some h′ ∈ Bn+1.

So h′ = ∂G(h′) = ∂h = 0. Hence h = G(h′) = G(0) = 0.

Now let f ∈ Un. By definition G∂(f) ∈ Ln. Furthermore we have ∂(f − G∂(f)) =

∂(f) − ∂G∂(f) = ∂(f) − ∂(f) = 0. So f − G∂(f) ∈ Zn. Since f = G∂(f) + (f − G∂(f)), we

conclude that Un = Ln ⊕ Zn.

Proposition IV.4.3 and Proposition IV.4.4 allow us to extend G to a k-linear map on all

of U by defining G to be zero on Hn ⊕Ln. It is straightforward to check that 1U − ip = ∂G+G∂

and the side conditions hold.

IV.5 A∞-Algebra Structure on E(B)

We return to the setting of Sections 2 and 3. We wish to compute only a few nonzero

multiplications of an A∞-structure on E(B), not the entire structure. Therefore, we define i

explicitly only on certain linearly independent elements of E(B). Similarly, we explicitly define G

only on certain elements of U = EndB(Q̃•). We then apply the results of Section 4 to extend the

definition of i to all of E(B) and the definition of G to all of U .

It is standard to identify E1(B) with the k-linear graded dual space V ∗. For 0 ≤ ` ≤ n,

we denote the dual basis vectors of a`, b`, c` ∈ V by α`, β`, and γ`, respectively. We suppress the

m2 notation for products in E(B). For example, we denote m2(β1 ⊗ α0) by β1α0.

The diagrams below define i : E(B) → U on αn, β`α`−1, β0, and γ0 · · · γn. Recall that

we have chosen homogeneous A-bases and given the corresponding matrix representations for the

resolution (Q̃•, d•). We write ei,j for the standard matrix unit. We include just enough of the

endomorphism to see the general pattern. Finally, to make cleaner statements it will be useful to

define

j =


3n
2 + 1 if n is even

5n+3
2 if n is odd

and k =


5n
2 + 2 if n is even

3n+3
2 if n is odd

.

We note that the (j+ 1, k)-entry of Mn+1 is c0 and that this is the lower rightmost position in the

block U1 when n is even. When n is odd, the (j + 1, k)-entry is the lower rightmost position in
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R1. The upper leftmost entry of Up−1 or Rp is always the (n+ 2, 2n+ 2)-entry of Md when d ≥ 3

is odd. It is the (2n+ 2, n+ 2)-entry of Md when d is even.

i(a0)t = (−1)t+1e1,2 for all t > 1

i(αn) for n > 0 (see Lemma IV.3.2 and Lemma IV.3.6):

Q̃4
- Q̃3

- Q̃2
- Q̃1

· · ·

Q̃3

−bne2n+1,n+2

?
- Q̃2

en+1,2n+2

?
- Q̃1

−bne2n+1,n+2

?
- Q̃0

en+1,1

?

i(β`α`−1), 1 ≤ ` ≤ n (see Lemma IV.3.4 for ` = 1 and Lemma IV.3.2 for ` > 1):

Q̃5
- Q̃4

- Q̃3
- Q̃2

· · ·

Q̃3

c`e`,`+1

?
- Q̃2

e2`,2`+1

?
- Q̃1

c`e`,`+1

?
- Q̃0

e2`,1

?

i(β0):

Q̃3
- Q̃2

- Q̃1

· · ·

Q̃2

0

?
- Q̃1

0

?
- Q̃0

e3n+3,1

?

i(γ0 · · · γn) (see Lemma IV.3.6):

Q̃n+3
- Q̃n+2

- Q̃n+1

· · ·

Q̃2

0

?
- Q̃1

(−1)n+1a0ek,3n+3

?
- Q̃0

ej+1,1

?

We henceforth suppress the inclusion map i. From the definitions, it is easy to check that

λ2(β1α0 ⊗ β0) = 0 and λ2(β`α`−1 ⊗ β`−1α`−2) = 0 for 2 ≤ ` ≤ n. It is also easy to see that

λ2(β0 ⊗ γ0 · · · γn) = (−1)n+1a0ek,1.
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Next, we define values of the homotopy G on certain elements. It is important to observe

that the elements on which we defineG are linearly independent coboundaries in U . Each morphism

below is in a different graded component of U , so linear independence is clear. To check that G is

well-defined, it suffices to observe that ∂G = 1 on the element in question. Recall that we define

λ` = λ2

∑
s+t=`
s,t≥1

(−1)s+1(Gλs ⊗Gλt).

First, let Gλ2(β0 ⊗ γ0 · · · γn) =

Q̃n+4
- Q̃n+3

- Q̃n+2

· · ·

Q̃3

(−1)n+1ek,1

?
- Q̃2

a1ej,2

+ej+1,1?
- Q̃1

(−1)n+1ek,1

?

Next, since λ2(β1α0 ⊗ β0) = 0, we have

λ3(β1α0 ⊗ β0 ⊗ γ0 · · · γn) = −λ2(β1α0 ⊗Gλ2(β0 ⊗ γ0 · · · γn)).

We choose Gλ3(β1α0 ⊗ β0 ⊗ γ0 · · · γn) =

Q̃n+5
- Q̃n+4

- Q̃n+3

· · ·

Q̃3

−ej,2
?

- Q̃2

(−1)n+1a2ek−1,4

?
- Q̃1

−ej,2
?

For 2 ≤ ` ≤ n, since λ2(β`α`−1 ⊗ β`−1α`−2) = 0, we have by induction,

λ`+2(β`α`−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn) =

−λ2 (β`α`−1 ⊗Gλ`+1(β`−1α`−2 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn))

where Gλ`+2(β`α`−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn) is given by the following diagram.
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Q̃n+`+4
- Q̃n+`+3

- Q̃n+`+2

· · ·

Q̃3

X(`)ex(`),`+1

?
- Q̃2

Y (`)a`+1ey(`),2(`+1)

?
- Q̃1

X(`)ex(`),`+1

?

The matrix indices are x(`) = 1
2

(
k + j + (−1)`(k − j)

)
−
⌊
`

2

⌋
and y(`) = x(` + 1), and

the signs, which repeat with period 4, are determined by Y (`) = (−1)̂⌊2`+ 1 + (−1)n

4

⌋
and

X(`) = Y (`+ 1).

Theorem IV.5.1. The algebra E(B) admits a canonical A∞-structure for which mj+3 is nonzero

for all 0 ≤ j ≤ n.

Proof. By Proposition IV.4.2, mn+3 = pλn+3i. We will show that

mn+3(αn ⊗ βnαn−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn) 6= 0.

Since pG = 0, we have

pλn+3 = pλ2

∑
s+t=n+3
s,t≥1

(−1)s+1(Gλs ⊗Gλt)

= pλ2(Gλ1 ⊗Gλn+2)

= −pλ2(1⊗Gλn+2).

By the definitions of G above, we see that

−pλ2(αn ⊗Gλn+2(βnαn−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn))

= (−1)X(n)+1µ
x(n)
2n+2

where µx(n)
2n+2 is a graded dual basis element in E2n+2(A). Hence

mn+3(αn ⊗ βnαn−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn) 6= 0.
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By choosing a cocycle i(αj), it is straightforward to check that with the above definitions,

mj+3(αj ⊗ βjαj−1 ⊗ · · · ⊗ β1α0 ⊗ β0 ⊗ γ0 · · · γn) 6= 0 for all 0 ≤ j ≤ n.

IV.6 Detecting the K2 Condition

In this section we present two monomial k-algebras whose Yoneda algebras admit very

similar canonical A∞-structures. Only one of the algebras is K2. These examples illustrate that

the K2 property is not detected by any obvious vanishing patterns among higher multiplications.

Let V be the k-vector space spanned by {x, y, z, w}. Let W 1 ⊂ T (V ) be the subspace on

k-basis {y2zx, zx2, y2w}. Let W 2 ⊂ T (V ) be the k-linear subspace on basis {y2z, zx2, y2w2} . Let

A1 = T (V )/
〈
W 1
〉

and A2 = T (V )/
〈
W 2
〉
. The algebra A2 was studied in [7].

In Section 5 of [7], the authors give an algorithm for producing a minimal projective

resolution of the trivial module for a monomial k-algebra. Applying the algorithm, we obtain

minimal projective resolutions of A1k and A2k of the form

0→ At(−5)
Mt

3−−→ At(−3,−3,−4)
Mt

2−−→ At(−1)⊕4 Mt
1−−→ At → k → 0

for t ∈ {1, 2} where

M1
3 = M2

3 =
(

0 y2 0

)

M1
2 =


0 0 0 y2

zx 0 0 0

y2z 0 0 0

 M2
2 =


0 0 y2 0

zx 0 0 0

0 0 0 y2w


M1

1 = M2
1 =

(
x y z w

)T
.

Theorem IV.3.9 shows that A1 is a K2 algebra and A2 is not, because y2zx is an essential

relation in A1 but not in A2. We note that this implies all Yoneda products on E(A2) are zero.

We make the identifications E1(A1) = V ∗ = E1(A2), E2(A1) = (W 1)∗, and E2(A2) =

(W 2)∗. We choose k-bases for E(A1) and E(A2) as follows. Let X, Y , Z, and W denote the

k-linear duals of x, y, z, and w respectively. Let R1
1, R1

2, and R1
3 be the k-linear duals of the
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tensors y2w, zx2, y2zx ∈W 1, respectively. Let R2
1, R2

2, and R2
3 be the k-linear duals of the tensors

y2z, zx2, y2w2 ∈ W 2, respectively. For t ∈ {1, 2}, let αt be a nonzero vector in E3,5(Bt). We

denote the A∞-structure map on E(At)⊗i by mt
i.

A standard calculation in the Yoneda algebra E(A1) determines the Yoneda product

m1
2(R1

3 ⊗X) = cα1 for some c ∈ k∗. It is straightforward to check that Yoneda products of all

other pairs of our specified basis vectors are zero. We note that, for degree reasons, the only higher

multiplications on E = E(At) which could be nonzero are the following.

mt
4 : (E1)⊗4 → E2,4 mt

3 : (E1)⊗3 → E2,3

mt
3 : E1 ⊗ E1 ⊗ E2,3 → E3,5 mt

3 : E1 ⊗ E2,3 ⊗ E1 → E3,5

mt
3 : E2,3 ⊗ E1 ⊗ E1 → E3,5

We recall from the introduction that the A∞-structure {mi} on a graded k-vector space

E determines a k-linear map ⊕mi : T (E)+ → E.

Proposition IV.6.1. There exists a canonical A∞-structure on E(A1) such that the map ⊕m1
i

vanishes on all monomials of T (E(A1))+ except

{Y Y ZX, ZXX, Y YW, Y Y R1
2, R

1
3X}.

There exists a canonical A∞-structure on E(A2) such that the map ⊕m2
i vanishes on all monomials

of T (E(A2))+ except

{Y YWW, ZXX, Y Y Z, Y Y R2
2, R

2
1XX}.

We remark that these canonical structures are not the only canonical A∞-structures on

E(A1) and E(A2). However, it can be shown that the map ⊕mt
i associated to any other canonical

structure on E(At) is non-vanishing on the vectors listed in the proposition.

It is well known (see [20], [19]) that there is a canonical A∞-structure on the Yoneda

algebra of a graded algebra A = T (V )/I such that the restriction of mn to E1(A)⊗n is dual to the

natural inclusion of degree n essential relations (I/I ′)n ↪→ V ⊗n. If we choose such an A∞-structure

for E(A1), the Stasheff identity SI(5) determines the remaining structure on E(A1), giving the

first part of the proposition. We prove the proposition for E(A2).
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Proof. Let Q• be the minimal projective resolution of A2k given above, with Q0 = A2. Let

ei,j denote the (i, j) matrix unit. We define maps i and G as in Section 4. When defining

G, we suppress the inclusion maps i. We recall that λ2 is multiplication in EndA2(Q•) and

λ3 = λ2(Gλ2 ⊗ 1− 1⊗Gλ2). We define

i(X) =

Q2
- Q1

Q1

−ze2,1

?
- Q0

e1,1

?

i(Y ) =

Q1

Q0

e2,1

?

i(Z) =

Q2
- Q1

Q1

−ye1,2

?
- Q0

e3,1

?

i(W ) =

Q2
- Q1

Q1

−y2e3,4

?
- Q0

e4,1

?

i(R2
1) =

Q2

Q0

e1,1

?

i(R2
2) =

Q3
- Q2

Q1

ye1,2

?
- Q0

e2,1

?

i(R2
3) =

Q2

Q0

e3,1

?

Gλ2(XX) =

Q3
- Q2

Q2

e1,1

?
- Q1

−e2,3

?

Gλ2(Y Z) =

Q2

Q1

−e1,2

?

Gλ2(Y R2
2) =

Q3

Q1

e1,2

?

Gλ2(WW ) =

Q2

Q1

−ye3,2

?

Gλ3(YWW ) =

Q2

Q1

e3,2

?

We recall that mi = pλi. With the definitions above, it is straightforward to check that

m3(ZXX), m3(Y Y Z), m3(Y Y R2
2) and m3(R2

1XX) are nonzero. Recalling that pλ4(Y YWW ) =

−pλ2(Y Gλ3(YWW )), we see that m4(Y YWW ) is nonzero.

It remains to check that all other higher multiplications are zero. This is easily done by

inspection.
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CHAPTER V

A∞-ALGEBRA STRUCTURES ASSOCIATED WITH KOSZUL ALGEBRAS

In this chapter we prove that if the Yoneda algebra E(A) of a graded k-algebra of the form

A = T (V )/I is given the canonical A∞-algebra structure described in Chapter IV, then E(A) is

A∞-generated by E1(A). The characterization of Koszul algebras as those whose Yoneda algebra

admits only trivial A-infinity structures follows immediately. These results are known, but we were

unable to find a proof in the literature. Additionally, we feel that our approach nicely demonstrates

the computational advantages of the construction described in Section IV.4. See that section for

the relevant definitions. We prove the following.

Theorem V.0.2. For every n ≥ 1, En+1(A) ⊂
∑
imi+1(E1(A)⊗ · · · ⊗ E1(A)⊗ En(A)).

The following useful fact motivates our approach to proving the theorem. We omit the

straightforward proof.

Lemma V.0.3. If a1, . . . , at ∈ U1 and at+1 ∈ Un, then g = λ2(a1 ⊗ Gλt(a2 ⊗ · · · at+1)) ∈ Un+1

and gn+1 = ±λ2(a1 ⊗Gλ2(a2 ⊗Gλt−1(a3 ⊗ · · · ⊗ at+1)))n+1. Therefore, if a1, . . . , at+1 represent

classes in E(A),

mt+1([a1]⊗ · · · ⊗ [at+1])

= ±pλ2(a1 ⊗Gλ2(a2 ⊗Gλ2(· · · ⊗ at−1 ⊗Gλ2(at ⊗ at+1) · · · )))

Before proving the Theorem V.0.2, we fix some notation. Let V be a finite dimensional

k-vector space on basis X = {x1, . . . , xg}. Let T (V ) be the tensor algebra on V , graded by tensor

degree. Let I ⊂ T (V )≥2 be a graded ideal and let A = T (V )/I. Let π : T (V )→ A be the natural

quotient map.
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Let (Q•, ∂•) be a minimal graded projective resolution of Ak. As Ak is bounded below,

we assume the same is true of each Qi. For each i ≥ 0, let {eji} be a homogeneous A-basis for Qi.

Let Mi be the matrix of ∂i with respect to the fixed bases. We may further assume that bases

have been chosen so that M1 = (x1 · · ·xn)T . We note that the entries of Mi are homogeneous of

positive degree and that Mi is row-finite. Let M̂i be a lift of Mi to a matrix with homogeneous

entries in T (V )+. We require that 0 lift to 0 so that M̂i remains row-finite.

As Q• is minimal, En(A) = HomA(Qn, k) for all n. Let εjn be the dual basis vector to

ejn. For each εjn we define the matrix P (n, j) with homogeneous entries in A by the commutative

diagram

Qn+1
Mn+1- Qn

Q1

P (n, j)

? M1 - Q0

ej

?
- k

ε j
n

-

where ej is the matrix of the standard projection onto the j-th coordinate. Since M1 is linear,

there exists a unique homogeneous lift P̂ (n, j) of P (n, j) to a matrix with entries in T (V ) such

that P̂ (n, j)M̂1 = M̂n+1ej .

We define i(εjn)n and i(εjn)n+1 to be the A-module homomorphisms given respectively by

right multiplication by ej and P (n, j). The remaining component maps of i(εjn) may be defined by

the graded projectivity of the resolution as described in Chapter IV. We will not use any higher

components in our proof, so their explicit definitions do not concern us. Extending the definition

of i by k-linearity, we have defined i : E(A)→ U . Henceforth, we suppress i.

If M is a matrix with homogeneous entries in A, let s(M) be the image of M modulo

A+. We think of s(M) as the scalar part of M and, since the entries of M are homogeneous, we

canonically identify s(M) with a scalar matrix over A. We define r(M) = M − s(M) and note

that r̂(M) = r(M̂).

We now describe the homotopy G. Recall that by our construction, G is nonzero only

on coboundaries and that Zn = Bn ⊕Hn where Hn = i(En(A)). Thus r(P (n, j))ei is the n + 1

component of the “boundary part” of λ2(εi1 ⊗ εjn).
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We define G(n, j, i) with homogeneous entries in A by the commutative diagram

Qn+1
r(P (n, j))- Q1

Q1

G(n, j, i)

? M1 - Q0

ei

?

where G(n, j, i) is the matrix of Gλ2(εi1 ⊗ εjn). As above, since M1 is linear, there exists a unique

homogeneous lift ̂G(n, j, i) of G(n, j, i) to a matrix with entries in T (V ) such that ̂G(n, j, i)M̂1 =

r(P̂ (n, j))ei.

We have the following analog of Lemma 4.3 of [7].

Lemma V.0.4. Define scalars µl by m3(εi11 ⊗ ε
i2
1 ⊗ εjn) =

∑
µlε

l
n+1. Then µl 6= 0 if and only if

the (l, i1)-entry of G(n, j, i2) is a unit. Furthermore, there exist i1, i2, and j such that µl 6= 0 if

and only if some entry in row l of M̂n+1 is (nonzero) quadratic.

Proof. By Lemma V.0.3, m3(εi11 ⊗ ε
i2
1 ⊗ εjn) = ±pλ2(εi11 ⊗ Gλ2(εi21 ⊗ εjn)). The statements follow

from an easy diagram chase.

For all t > 2, define matrices G(n, j, it, . . . , i2) inductively by the above procedure, but

replace r(P (n, j)) with r(G(n, j, it, . . . , i3)). We state the general version of Lemma V.0.4 and

omit the proof.

Lemma V.0.5. Define scalars µl by mt+1(εi11 ⊗ · · · ⊗ ε
it
1 ⊗ εjn) =

∑
µlε

l
n+1. Then µl 6= 0 if and

only if the (l, i1)-entry of G(n, j, it, . . . , i2) is a unit. Furthermore, there exist i1, . . . , it, and j such

that µl 6= 0 if and only if some entry in row l of M̂n+1 is (nonzero) of degree t.

Now the proof of Theorem V.0.2 is straightforward.

Proof of Theorem V.0.2. Let W ⊂ En(A) be the subspace generated by
∑
imi+1(E1(A) ⊗ · · · ⊗

E1(A) ⊗ En(A)). Choose a homogeneous k-basis for W and extend to a basis for En(A). This

corresponds to a homogeneous basis for Qn. If we assume that the matrices in the resolution Q• are

calculated with respect to this basis, Lemma V.0.5 implies that the rows of Mn+1 corresponding

to basis elements not in W consist of all zeroes. Thus W = En(A).
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Corollary V.0.6. A graded k-algebra A is a Koszul algebra if and only if any A∞-algebra structure

on E(A) is trivial.

Proof. If A is Koszul, then En(A) = En,n(A) for all n ≥ 0. For i > 2, the higher multiplication

mi lowers cohomology degree by 2 − i, but preserves internal degree. Thus mi = 0 by degree

considerations for i > 2.

Conversely, if all higher multiplications vanish in any A∞-algebra structure on E(A), then

in particular they all vanish in the canonical structure described in Chapter IV. Thus by Theorem

V.0.2, En(A) is generated algebraically by E1(A) using only m2. It follows that En(A) = En,n(A)

and A is Koszul.
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[17] T. V. Kadeǐsvili, On the theory of homology of fiber spaces, Uspekhi Mat. Nauk 35 (1980),
no. 3(213), 183–188, International Topology Conference (Moscow State Univ., Moscow, 1979).
MR MR580645 (82a:57041a)

[18] Bernhard Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl.
3 (2001), no. 1, 1–35. MR MR1854636 (2004a:18008a)

[19] , A-infinity algebras in representation theory, Representations of algebra. Vol. I, II,
Beijing Norm. Univ. Press, Beijing, 2002, pp. 74–86. MR MR2067371 (2005b:16021)

[20] D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, Regular algebras of dimension 4 and their
A∞-Ext-algebras, Duke Math. J. 137 (2007), no. 3, 537–584. MR MR2309153 (2008d:16022)

[21] , A-infinity structure on Ext-algebras, J. Pure Appl. Algebra 213 (2009), no. 11, 2017–
2037. MR MR2533303

[22] S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Internat. Math. Res. Notices
(1999), no. 3, 153–164. MR MR1672242 (2000h:32026)

[23] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in
Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098 (2006d:13001)

[24] Christopher Phan, Generalized Koszul properties for augmented algebras, J. Algebra 321
(2009), no. 5, 1522–1537. MR MR2494406 (2010a:16017)

[25] , Koszul and generalized koszul properties for noncommutative graded algebras, Ph.D.
Thesis, University of Oregon (2009).

[26] A. Polishchuk, Koszul configurations of points in projective spaces, J. Algebra 298 (2006),
no. 1, 273–283. MR MR2215128

[27] Alexander Polishchuk and Leonid Positselski, Quadratic algebras, University Lecture Series,
vol. 37, American Mathematical Society, Providence, RI, 2005. MR MR2177131

[28] Leonid Positselski and Alexander Vishik, Koszul duality and Galois cohomology, Math. Res.
Lett. 2 (1995), no. 6, 771–781. MR 1362968 (97b:12008)

[29] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR
MR0265437 (42 #346)

[30] Victor Reiner and Dumitru Ioan Stamate, Koszul incidence algebras, affine semigroups, and
Stanley-Reisner ideals, Adv. Math. 224 (2010), no. 6, 2312–2345. MR 2652208

[31] Gerald Allen Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21
(1976), no. 1, 30–49. MR 0407036 (53 #10819)

[32] Brad Shelton and Sergey Yuzvinsky, Koszul algebras from graphs and hyperplane arrange-
ments, J. London Math. Soc. (2) 56 (1997), no. 3, 477–490. MR 1610447 (99c:16044)

[33] Richard P. Stanley, Combinatorics and commutative algebra, second ed., Progress in Mathe-
matics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1453579 (98h:05001)

[34] James Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol.
161, Springer-Verlag, Berlin, 1970. MR MR0270372 (42 #5261)

67



[35] James Dillon Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc.
108 (1963), 275-292; ibid. 108 (1963), 293–312. MR MR0158400 (28 #1623)

[36] John Tate and Michel van den Bergh, Homological properties of Sklyanin algebras, Invent.
Math. 124 (1996), no. 1-3, 619–647. MR 1369430 (98c:16057)

68




