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DISSERTATION ABSTRACT

John Jasper

Doctor of Philosophy

Department of Mathematics

June 2011

Title: Infinite Dimensional Versions of the Schur-Horn Theorem

Approved:
Dr. Marcin Bownik

We characterize the diagonals of four classes of self-adjoint operators on

infinite dimensional Hilbert spaces. These results are motivated by the classical

Schur-Horn theorem, which characterizes the diagonals of self-adjoint matrices on

finite dimensional Hilbert spaces.

In Chapters II and III we present some known results. First, we generalize

the Schur-Horn theorem to finite rank operators. Next, we state Kadison’s

theorem, which gives a simple necessary and sufficient condition for a sequence to

be the diagonal of a projection. We present a new constructive proof of the

sufficiency direction of Kadison’s theorem, which is referred to as the Carpenter’s

Theorem.

Our first original Schur-Horn type theorem is presented in Chapter IV. We

look at operators with three points in the spectrum and obtain a characterization

of the diagonals analogous to Kadison’s result.

In the final two chapters we investigate a Schur-Horn type problem

motivated by a problem in frame theory. In Chapter V we look at the connection

between frames and diagonals of locally invertible operators. Finally, in Chapter

VI we give a characterization of the diagonals of locally invertible operators, which
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in turn gives a characterization of the sequences which arise as the norms of frames

with specified frame bounds.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

The classical Schur-Horn Theorem gives a necessary and sufficient condition in

terms of linear inequalities for a sequence {di}Ni=1 to be the diagonal of a self-adjoint

matrix with eigenvalues {λi}Ni=1 counting multiplicity. More precisely, if we let U

be the set of unitary operators on H and let {ei}Ni=1 be a fixed orthonormal basis,

then the Schur-Horn Theorem gives a characterization of the set of diagonals of the

unitary orbit of E, which is denoted

(I.0.1) D(E) := {{〈UEU∗ei, ei〉}Ni=1 : U ∈ U}.

In this dissertation we will give a complete characterization of the set D(E) for four

distinct classes of operators.

Chapters II and III present previously known results. In Chapter II we present

a proof of the Schur-Horn Theorem for finite rank operators, including a proof of

the classical finite dimensional case. Though the proofs in this section are new, the

results are contained in work of Gohberg and Markus [13] and Arveson and Kadison

[5].

Chapter III deals with projections on infinite dimensional, not necessarily sepa-

rable spaces. In 2002 Kadison [16, 17] gave a complete characterization of the set
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of diagonals of projections. This amazing theorem gives a simple condition on a

sequence that is necessary and sufficient for it to be the diagonal of a projection. In

the original paper Kadison refers to the necessity of this theorem as the Pythagorean

theorem and the sufficiency as the Carpenter’s Theorem. Chapter III is devoted to

a complete proof of the Carpenter’s Theorem. Our proof uses new techniques and

yields the real case, which the original does not.

In Chapter IV we give an analogous characterization of the diagonals of self-

adjoint operators on separable Hilbert spaces with three eigenvalues. By first scal-

ing and shifting, Kadison’s theorem gives a complete characterization of self-adjoint

operators with at most two eigenvalues. Thus, it is a natural next step to consider

the case of three eigenvalues. The full characterization is quite complex, requiring

eight distinct cases depending on the configuration of the multiplicities of the eigen-

values. However, we also present a condensed version where the multiplicities of

the eigenvalues are not specified. At the end of Chapter IV we give some examples

to demonstrate the use of our characterization. We consider several examples of

fixed diagonal sequences and find all possible sets of three points that arise as the

spectrum of a self-adjoint operator with the given diagonal.

Several researchers have been motivated by problems in frame theory to look at

the Schur-Horn Theorem and problems related to it. In Chapter V we give an

example of the connection between frames and diagonals of self-adjoint operators.

Specifically, given a frame {fi}i∈I with optimal frame bounds A and B, we consider

the problem of characterizing the sequence {‖fi‖}i∈I . The purpose of this chap-

ter is to reformulate this problem into the problem of characterizing the diagonals

of positive locally invertible operators, that is, self-adjoint operators E such that

{A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B]. Chapter VI gives the characterization of the diago-

nals of such operators, which in turn gives an answer to the problem in frame theory.

Distinct from the previous cases, in this chapter we do not characterize D(E) for

2



each locally invertible operator E. Instead, we give a characterization of D(E) for

all self-adjoint operators E with {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B] for fixed A and B.

Chapters III, V and VI contain co-authored material, which has been accepted for

publication and will appear in Journal für die reine und angewandte Mathematik.
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CHAPTER II

FINITE RANK OPERATORS

II.1. Finite dimensional Hilbert spaces

The classical Schur-Horn Theorem gives a characterization of the set of diagonals

of self-adjoint operators with prescribed eigenvalues and multiplicities. This charac-

terization comes in the form of a set of linear inequalities (II.1.1) which are known

as majorization.

Theorem II.1.1 (Schur-Horn Theorem). Let {λi}Ni=1 and {di}Ni=1 be real sequences

with nonincreasing order. If

n∑
i=1

di ≤
n∑
i=1

λi for n = 1, . . . , N,

N∑
i=1

λi =
N∑
i=1

di,

(II.1.1)

then there is a self-adjoint operator E : RN → RN with eigenvalues {λi} and diago-

nal {di}.

Conversely, if E : CN → CN is a self-adjoint operator with eigenvalues {λi} and

diagonal {di}, then (II.1.1) holds.
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The theorem states that a sequence is the diagonal of a self-adjoint matrix if and

only if it is majorized by the eigenvalue sequence. The necessity of (II.1.1) was

shown by Schur in 1923 [21], while sufficiency was shown by Horn in 1955 [15].

The following is a new proof of Horn’s direction of the finite dimensional Schur-

Horn Theorem.

Theorem II.1.2 (Finite Horn’s Theorem). Let {λi}Ni=1 and {di}Ni=1 be real sequences

in nonincreasing order. If (II.1.1) holds then there is a self-adjoint operator S :

RN → RN with eigenvalues {λi} and diagonal {di}.

Proof. We will show by induction on N that S exists. The case of N = 1 is trivial,

so assume the claim is proved for all integers less than N . Define the number

δ = min

{ n∑
i=1

λi −
n∑
i=1

di : n < N

}
.

If δ = 0, then there is some m < N such that (II.1.1) holds for the sequences {di}mi=1

and {λi}mi=1. Clearly, (II.1.1) also holds for {di}Ni=m+1 and {λi}Ni=m+1. We use the

inductive assumption to find self-adjoint operators S1 : Rm → Rm with eigenvalues

{λi}mi=1 and diagonal {di}mi=1, and S2 : RN−m → RN−m with eigenvalues {λi}Ni=m+1

and diagonal {di}Ni=m+1. Then S = S1 ⊕ S2 is the desired operator.

If δ > 0 then there is some m < N such that

m∑
i=1

λi −
m∑
i=1

di = δ.

Note that

δ ≤
N−1∑
i=1

λi −
N−1∑
i=1

di = dN − λN ,

and

δ ≤ λ1 − d1.

5



Now, define the sequence

d̃i =


d1 + δ i = 1

di i = 2, . . . , N − 1

dN − δ i = N.

By the minimality of δ the sequences {d̃i}Ni=1 and {λi}Ni=1 still satisfy (II.1.1). Now,

the sequences {d̃i}mi=1 and {λi}mi=1 satisfy (II.1.1). Similarly the sequences {d̃i}Ni=m+1

and {λi}Ni=m+1 still satisfy (II.1.1). Since these pairs of sequences have length less

than N we can apply the inductive assumption to obtain S1 : Rm → Rm with

eigenvalues {λi}mi=1 and diagonal {d̃i}mi=1, and S2 : RN−m → RN−m with eigenvalues

{λi}Ni=m+1 and diagonal {d̃i}Ni=m+1. As before, we consider the operator S = S1⊕S2.

Let α ∈ [0, 1] be such that that α(d1 + δ) + (1−α)(dN − δ) = d1. Define the unitary

operator U on the standard orthonormal basis {ei}Ni=1 by

U(ei) =



√
αe1 −

√
1− αeN i = 1

√
1− αei +

√
αeN i = N

ei otherwise

It is a simple calculation to see that U∗SU has the desired diagonal by noting that

〈Se1, eN〉 = 0. �

Next, we present a simple proof of Schur’s direction of the Schur-Horn Theorem.

The proof also covers the case of positive compact operators.

Theorem II.1.3 (Schur). If S : H → H is a positive compact operator with eigen-

value list {λi}∞i=1 in nonincreasing order, then for any orthonormal basis {ei}∞i=1 of

H we have

(II.1.2)
n∑
i=1

〈Sei, ei〉 ≤
n∑
i=1

λi for all n ∈ N

6



Proof. Let {fi}∞i=1 be an orthonormal basis for H of eigenvectors with Sfi = λifi

and let {ei}∞i=1 be any orthonormal basis. Now we calculate

n∑
i=1

〈Sei, ei〉 =
n∑
i=1

〈
S

( ∞∑
j=1

〈ei, fj〉fj
)
, ei

〉
=

n∑
i=1

〈 ∞∑
j=1

〈ei, fj〉Sfj, ei
〉

=
n∑
i=1

∞∑
j=1

λj〈ei, fj〉〈fj, ei〉 =
∞∑
j=1

λj

n∑
i=1

|〈ei, fj〉|2 =
∞∑
j=1

λjaj,

(II.1.3)

where aj =
∑n

i=1 |〈ei, fj〉|2. Note that
∑∞

j=1 aj = n and 0 ≤ aj ≤ 1 for all j,

independent of choice of basis {ei}∞i=1. Since {λi}∞i=1 is in nonincreasing order,

the choice of sequence {aj}∞j=1 with
∑∞

j=1 aj = n and 0 ≤ aj ≤ 1 for all i, that

maximizes the last quantity of (II.1.3) consists of n ones followed by zeros. This

yields (II.1.2). �

II.2. Positive finite rank operators

The analogue of the Schur-Horn Theorem for trace class operators was proved

by Arveson and Kadison in [5]. It was further generalized to compact operators by

Kaftal and Weiss in [18]. The following is a special case of Arveson-Kadison theorem

[5, Theorem 4.1] for finite rank operators. Theorem II.2.1 can also be deduced from

the Kaftal and Weiss infinite dimensional extension of the Schur-Horn Theorem [18,

Theorem 6.1].

Theorem II.2.1 (Kadison, Arveson). Let {λi}Ni=1 be strictly positive and nonin-

creasing and let {di}∞i=1 be nonnegative nonincreasing. There is a positive rank N

operator with positive eigenvalues {λi} and diagonal {di} if and only if

n∑
i=1

di ≤
n∑
i=1

λi for all n ≤ N

∞∑
i=1

di =
N∑
i=1

λi.

(II.2.4)
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We need only prove that (II.2.4) is sufficient, since Theorem II.1.3 implies that

(II.2.4) is necessary. First, we will handle the case of rank one operators with the

following lemma.

Lemma II.2.2. If {di}∞i=1 is a nonnegative sequence with

∞∑
i=1

di = λ <∞

then there is a positive rank 1 (or rank 0 is λ = 0) operator S with eigenvalue λ and

diagonal {di}.

Proof. Let {ei}∞i=1 be an orthonormal basis for the Hilbert space H. Set

v =
∞∑
i=1

√
diei,

and define S : H → H by Sf = 〈f, v〉v for each f ∈ H. Clearly S is rank 1, and

since ‖v‖2 = λ the vector v is an eigenvector with eigenvalue λ. Finally, it is simple

to check that S has the desired diagonal. �

Theorem II.2.3 (Finite Rank Horn’s Theorem). Let {λi}Ni=1 be a strictly positive

nonincreasing sequence and let {di}∞i=1 be a nonnegative nonincreasing sequences. If

n∑
i=1

di ≤
n∑
i=1

λi for all n ≤ N

∞∑
i=1

di =
N∑
i=1

λi

(II.2.5)

Then there is a positive rank N operator S on a real Hilbert space H with eigenvalues

{λi}Ni=1 and diagonal {di}∞i=1.

Proof. Define

m0 = max

{
m :

∞∑
i=m

di ≥ λN

}
8



and

δ =

( ∞∑
i=m0

di

)
− λN .

Note that m0 ≥ N and define {λ̃i}m0−1
i=1 by

λ̃i =

 λi i = 1, 2, . . . , N − 1

0 i = N, . . . ,m0 − 1.

Note that dm0 > δ, and define the sequence {d̃i}∞i=m0
by

d̃i =

 dm0 − δ i = m0

di i > m0.

Since
∞∑

i=m0

d̃i = λN ,

we can apply Lemma II.2.2 to get a positive, rank 1 operator S̃2 with eigenvalue λN

and diagonal {d̃i}∞i=m0
. Now define {d̃i}m0−1

i=1 by

d̃i =

 di i < m0 − 1

dm0−1 + δ i = m0 − 1.

Note that
m0−1∑
i=1

d̃i =

m0−1∑
i=1

λ̃i

and clearly we have
n∑
i=1

d̃i ≤
n∑
i=1

λ̃i

for all n = 1, . . . ,m0−2. Thus, by Theorem II.1.2 there is a positive operator S̃1 with

diagonal {d̃i}m0−1
i=1 and eigenvalues {λ̃i}m0−1

i=1 . Now, the operator S̃ = S̃1⊕ S̃2 has the

desired eigenvalues, but diagonal {d̃i}∞i=1. However, {d̃i} only differs from {di} at

i = m0−1 and m0. Let α ∈ [0, 1] such that α(dm0−1 +δ)+(1−α)(dm0−δ) = dm0−1.

9



Define the unitary operator U on the standard orthonormal basis {ei}∞i=1 by

U(ei) =



√
αem0−1 −

√
1− αem0 i = m0 − 1

√
1− αem0−1 +

√
αem0 i = m0

ei otherwise.

It is a simple calculation to see that U∗S̃U has the desired diagonal. This gives an

operator with the desired diagonal. �
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CHAPTER III

PROJECTIONS

III.1. Statement of Kadison’s theorem

In [16] and [17] Kadison gave a complete characterization of the diagonals of

projections which are self-adjoint operators with only 0 and 1 as eigenvalues. The

goal of this chapter is to prove one direction of Kadison’s theorem, namely that the

condition (III.1.1) is sufficient. This direction is known as the Carpenter’s Theorem.

While the theorem is known, our proof is new and has several advantages over the

original. First, the original proof does not yield the real case, which ours does.

Second, our proof is not existential in that it gives a concrete process for finding the

desired projection. The material in Section III.2 is contained in a paper co-authored

with Marcin Bownik [7] which has been accepted for publication in Journal für die

reine und angewandte Mathematik.

We begin with the statement of Kadison’s Theorem.

Theorem III.1.1 (Kadison). Let {di}i∈I be a sequence in [0, 1] and α ∈ (0, 1).

Define

a =
∑
di<α

di and b =
∑
di≥α

(1− di).

11



There is a projection with diagonal {di}i∈I if and only if

(III.1.1) a− b ∈ Z ∪ {±∞},

with the convention that ∞−∞ = 0.

Remark III.1.2. Observe that in Theorem III.1.1, if there exists a partition I = I1∪I2

such that

∑
i∈I1

di,
∑
i∈I2

(1− di) <∞ and
∑
i∈I1

di −
∑
i∈I2

(1− di) ∈ Z,

then we have a− b ∈ Z for all α ∈ (0, 1). Thus, the existence of such a partition is

also a sufficient condition for a sequence to the be the diagonal of a projection. We

will find use for these more general partitions in the sequel.

Remark III.1.3. Note that the indexing set I is not assumed to be countable. In

[16, 17] the possibility that I is an uncountable set is addressed in all but the most

difficult case where {di} and {B−di} are nonsummable [17, Theorem 15]. However,

the case where I is uncountable is a simple extension of the countable case, as we

will now explain.

Proof of reduction of Theorem III.1.1 to countable case. First, we consider a pro-

jection P with diagonal {di}i∈I with respect to some orthonormal basis {ei}. If

a or b is infinite then there is nothing to show, so we may assume a, b < ∞. Set

J = {i ∈ I : di = 0} ∪ {i ∈ I : di = 1}, and let P ′ be the operator P acting

on span{ei}i∈I\J . Since ei is an eigenvector for each i ∈ J , P ′ is a projection with

diagonal {di}i∈I\J . The assumption that a, b < ∞ implies I \ J is at most count-

able. Thus, the countable case of Theorem VI.3.3 applied to the operator P ′ yields

a− b ∈ Z. This shows that (III.1.1) is necessary.

To show that (III.1.1) is sufficient, we claim that it is enough to assume that all of

the di are in (0, 1). If we can find a projection P with only these di, then we take I

12



to be the identity and 0 the zero operator on Hilbert spaces with dimensions chosen

so that P ⊕I⊕0 has diagonal {di}. Since a and b do not change when we restrict to

(0, 1), we may assume that {di}i∈I has uncountably many terms and is contained in

(0, 1). There is some n ∈ N such that J = {i ∈ I : 1/n < di < 1−1/n} has the same

cardinality as I. Thus, we can partition I into a collection of countable infinite sets

{Ik}k∈K such that Ik ∩ J is infinite for each k ∈ K. Each sequence {di}i∈Ik contains

infinitely many terms bounded away from 0 and 1, thus (III.1.1) holds with a or b

infinite. Again, by the countable case of Theorem VI.3.3, for each k ∈ K there is a

projection Pk with diagonal {di}i∈Ik . Thus,
⊕

k∈K Pk is a projection with diagonal

{di}i∈I . �

Theorem III.1.1 gives a characterization of the set of diagonals of all projections

without reference to the multiplicities of the eigenvalues. However, given the di-

agonal {di} of a projection P , we can recover the multiplicities from the following

formulas:

dim kerP =
∑

(1− di) dim ranP =
∑

di.

Thus, Kadison’s theorem gives a complete characterization of the set of diagonals

of the unitary orbit of any single orthogonal projection, and can be considered the

Schur-Horn Theorem for operators with two points in the spectrum.

In [16, 17] Kadison refers to the necessity of (III.1.1) as the Pythagorean theorem

and the sufficiency as the Carpenter’s Theorem. Thus, in the case of projections

Horn’s theorem is called the Carpenter’s Theorem and Schur’s theorem is called the

Pythagorean theorem. We will adopt this terminology.

The goal of the rest of this chapter is give a new proof of the Carpenter’s Theorem.
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Theorem III.1.4 (The Carpenter’s Theorem). Let {di}i∈I be a sequence in [0, 1]

and α ∈ (0, 1). Define

a =
∑
di<α

di and b =
∑
di≥α

(1− di).

If one of the following holds

(i) a =∞,

(ii) b =∞,

(iii) a, b <∞ and a− b ∈ Z,

then there is a projection P with diagonal {di}.

Though there are many cases to consider, in each case we give an explicit con-

struction of a projection with the desired diagonal. This is distinct from Kadison’s

original proof, which is more existential. Note that our proof also yields the real

case, which the original proof does not.

III.2. The 0− 1 Lemma

The following lemma, along with Theorem III.1.1, is the main tool we will use to

construct operators with the desired diagonal in this and the remaining chapters.

This lemma first appeared in [7].

Lemma III.2.1. Let {ai}Ni=1 and {bi}Mi=1 be sequences in [0, B] with max{ai} ≤

min{bi}. Let η0 ≥ 0 and

η0 ≤ min

{ N∑
i=1

ai,

M∑
i=1

(B − bi)
}
.
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(i) There exist sequences {ãi}Ni=1 and {b̃i}Mi=1 in [0, B] satisfying

ãi ≤ ai i = 1, . . . , N, and bi ≤ b̃i i = 1, . . . ,M,(III.2.2)

η0 +
N∑
i=1

ãi =
N∑
i=1

ai and η0 +
M∑
i=1

(B − b̃i) =
M∑
i=1

(B − bi),(III.2.3)

(ii) Given any sequences {ãi} and {b̃i} as in (i) and any finite or infinite bounded

sequence of real numbers {ci}, if there is a self-adjoint operator Ẽ on H with diagonal

{ã1, . . . , ãN , b̃1, . . . , b̃M , c1, c2, . . .},

there exists an operator E on H unitarily equivalent to Ẽ with diagonal

{a1, . . . , aN , b1, . . . , bM , c1, c2, . . .}.

Proof. By scaling the sequences, we can reduce Lemma III.2.1 to the case B = 1.

Set

{a(0)
i }Ni=1 = {ai}Ni=1 and {b(0)

i }Mi=1 = {bi}Mi=1.

Define a series of new sequences by applying the following algorithm:

Step i: If ηi−1 = 0 then we are done. Otherwise set

a(i−1)
ni

= max{a(i−1)
n } and b(i−1)

mi
= min{b(i−1)

m }.

Then define

δi = min{a(i−1)
ni

, 1− b(i−1)
mi

, ηi−1}.

Now define the sequences {a(i)
n } and {b(i)

m } by

a(i)
n =

 a
(i−1)
ni − δi n = ni

a
(i−1)
n otherwise

, b(i)
m =

 b
(i−1)
mi + δi m = mi

b
(i−1)
m otherwise
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Define

ηi = ηi−1 − δi

and proceed to step i+ 1.

We claim that the above algorithm will stop after K ≤ N +M − 1 steps. Notice

that if δi = ηi−1, then ηi = 0 and the algorithm stops. So, assume that for each

i either δi = ani or δi = 1 − bmi . If δi = ani , then the sequence {a(i)
n } will have

one more zero than {a(i−1)
n }. If δi = 1− bmi , then the sequence {b(i)

m } will have one

more 1 than {b(i−1)
m }. If {a(i)

n } is a sequence of zeros then the algorithm must have

stopped, since ηi ≤
∑N

n=1 a
(i)
n . Similarly, if {b(i)

m } is a sequence of ones, then the

algorithm must have stopped, since ηi ≤
∑M

m=1(1 − b(i)
m ). Thus, the algorithm can

continue for at most N +M − 1 steps. Finally, set ãi = a
(K)
i and b̃j = b

(K)
j for all i

and j. This completes the proof of (i).

Let {ei} be the orthonormal basis with respect to which Ẽ has diagonal

{b̃1, . . . , b̃M , ã1, . . . , ãN , c1, c2, . . .}.

We may assume {b̃1, . . . , b̃M , ã1, . . . , ãN} is written in nonincreasing order. Let

P be the orthogonal projection onto the finite dimensional Hilbert space H0 =

span{ei}N+M
i=1 , and let Ẽ0 : H0 → H0 be the operator PẼ restricted to H0. In other

words, Ẽ0 is the (N+M)×(N+M) corner of Ẽ with diagonal {b̃1, . . . , b̃M , ã1, . . . , ãN}.

Let {λi}N+M
i=1 be the eigenvalues of Ẽ0, written in nonincreasing order. By The-

orem II.1.2 we have the majorization property (II.1.1) for the diagonal of Ẽ0 and

{λi}. Using (III.2.2) and (III.2.3) yields

k∑
i=1

bi ≤
k∑
i=1

b̃i for k = 1, . . . ,M,

M∑
i=1

bi +
k∑
i=1

ai =
M∑
i=1

b̃i − η0 +
k∑
i=1

ai ≤
M∑
i=1

b̃i +
k∑
i=1

ãi for k = 1, . . . , N.
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This shows that the majorization property also holds for {b1, . . . , bM , a1, . . . , aN}

and {λi}. By Theorem II.1.2 there is an operator E0 : H0 → H0 with diagonal

{b1, . . . , bM , a1, . . . , aN} and eigenvalues {λi}, and thus there is a unitary U0 : H0 →

H0 such that E0 = U∗0 Ẽ0U0.

Define the unitary U = U0⊕I, where I is the identity operator on span{ei}i>N+M .

Hence, the operator E = U∗ẼU has diagonal

{a1, . . . , aN , b1, . . . , bM , c1, c2, . . .}.

�

III.3. The Carpenter’s Theorem part i

The goal of this section is to give a proof of the case of the Carpenter’s Theorem

where a <∞, b <∞ and a− b ∈ Z.

As a corollary of Theorem II.2.3 we have the summable versions of the Pythagorean

and Carpenter’s Theorem.

Theorem III.3.1. Let M ∈ N ∪ {∞} and {di}Mi=1 a summable sequence in [0, 1].

There is a projection P with diagonal {di} if and only if
∑M

i=1 di ∈ N.

Proof. First, assume {di} is the diagonal of a projection P . We know that

dim ranP =
M∑
i=1

di.

Since {di} is summable, this implies that P has finite dimensional range, and thus∑
di ∈ N.

Next, assume
∑
di = N ∈ N. Define the sequence {λi}Mi=1 by

λi =


1 i = 1, . . . , N

0 i > N.
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Since {di} is summable, by reindexing we may assume {di}Ni=1 consists of the N

largest terms of {di} in nonincreasing order. Since di ≤ 1 for all i we have

(III.3.4)
n∑
i=1

di ≤
n∑
i=1

λi for n = 1, 2, . . . , N.

We also have
M∑
i=1

di = N =
M∑
i=1

λi,

which implies (III.3.4) holds for all n ∈ N. By Theorem II.2.3 (or Theorem II.1.2

if M <∞) there is a self-adjoint operator P with eigenvalues {λi}Mi=1 and diagonal

{di}Mi=1. Since λi = 0 or 1 the operator P is a projection. �

Corollary III.3.2. Let M ∈ N ∪ {∞} and {di}Mi=1 be a sequence in [0, 1] such that

{1 − di} is summable. There is a projection P with diagonal {di} if and only if∑M
i=1(1− di) ∈ N.

Proof. This follows immediately from the observation that a projection P has diag-

onal {di} if and only if I − P is a projection with diagonal {1− di}. �

Next, we handle the case that

a =
∑
di<1/2

di, b =
∑
di≥1/2

(1− di) <∞.

Proposition III.3.3. Let {di}i∈I be a sequence in [0, 1]. If a, b <∞ and

(III.3.5)
∑
di<1/2

di −
∑
di≥1/2

(1− di) = k ∈ Z

then there exists a projection P with diagonal {di}.

Proof. First, note that if {di} or {1− di} summable then from (III.3.5) we see that

the sum is in N and thus we can appeal to Theorem III.3.1 or Corollary III.3.2 to
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see that the desired projection exists. Thus, we may assume both 0 and 1 are limit

points of the sequence {di}.

Next, we claim that it is enough to prove the theorem under the assumption that

di ∈ (0, 1) for all i. Indeed, if P is a projection with diagonal {di}di∈(0,1), I is the

identity operator on a space of dimension |{i : di = 1}| and 0 is the zero operator

on a space of dimension |{i : di = 0}| then P ⊕ I ⊕ 0 is a projection with diagonal

{di}.

Define I1 = {i ∈ I : di < 1/2} and I2 = {i ∈ I : di ≥ 1/2}. Choose i2 ∈ I2 such

that di2 ≤ di for all i ∈ I2. Choose J1 ⊆ I1 such that I1 \ J1 is finite and

∑
i∈J1

di < 1− di2 .

Let i1 ∈ I2 be such that di1 > di2 and

di1 +
∑
i∈J1

di ≥ 1.

Set

η0 = di1 +
∑
i∈J1

di − 1 <
∑
i∈J1

di.

Let F1 ⊂ J1 be a finite set such that

∑
i∈F1

di > η0.

Also, note that 1− di2 > η0, so that we may apply Lemma III.2.1 to the sequences

{di}i∈F1 and {di}i=i2 to obtain sequences {d̃i}i∈F1 and {d̃i}i=i2 such that

∑
i∈F1

d̃i =
∑
i∈F1

di − η0 and 1− d̃i2 = 1− di2 − η0.
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Set d̃i = di for i ∈ I \ (F1 ∪ {i2}). Note that

∑
i∈J1∪{i1}

d̃i = di1 +
∑

i∈J1\F1

di +
∑
i∈F1

d̃i = di1 +
∑

i∈J1\F1

di +
∑
i∈F1

di − η0 = 1.

By Theorem III.3.1 there is a projection P1 with diagonal {d̃i}i∈J1∪{i1}.

Next, we note that

∑
i∈I1\J1

(1− d̃i) +
∑

i∈I2\{i1}

(1− d̃i) = |I1 \ J1| −
∑

i∈I1\J1

di +
∑

i∈I2\{i1}

(1− di)− η0

= |I1 \ J1| −
∑
i∈I1

di +
∑
i∈I2

(1− di) = |I1 \ J1| − k ∈ N.

By Corollary III.3.2 there is a projection P2 with diagonal {d̃i}i∈I\(J1∪{i1}).

The projection P1 ⊕ P2 has diagonal {d̃i}i∈N. By Lemma III.2.1 part (ii) there

is an operator P with diagonal {di} which is unitarily equivalent to P1 ⊕ P2 and is

thus a projection. �

III.4. The algorithm

In this section we introduce a new technique for finding a projection with pre-

scribed diagonal. The main result of this section (Theorem III.4.3) may be thought

of as a generalization of Lemma II.2.2. As in that lemma, given a sequence {di}

we produce an orthonormal set {vi} such that the projection onto span{vi} is an

orthogonal projection with the desired diagonal.

In order to find the vectors {vi} we must make a technical assumption on the se-

quence {di} involving the order of the terms of the sequence. Not every sequence will

satisfy this condition. However, in Lemma III.4.2 we show that some subsequence

will. Fortunately, we can arrange it so that the subsequence contains a prescribed
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term of the original sequence. In the next section we apply Theorem III.4.3 count-

ably many times to obtain a projection with diagonal consisting of the full sequence

{di}.

Lemma III.4.1. Let σ, d1, d2 ∈ [0, 1]. If max{d1, d2} ≤ σ and σ ≤ d1 + d2 then

there exists a number a ∈ [0, 1] such that the matrix

(III.4.6)

 a σ − a

d1 − a d2 − σ + a


has entries in [0, 1] and

(III.4.7) a(d1 − a) = (σ − a)(d2 − σ + a).

Moreover, if d1 + d2 < 2σ then a is unique and given by

(III.4.8) a =
σ(σ − d2)

2σ − d1 − d2

.

Proof. First, assume max{d1, d2} ≤ σ and σ ≤ d1 + d2. If d1 = d2 = σ then any

a ∈ [0, σ] will satisfy (III.4.7) and the matrix (III.4.6) will have entries in [0,1]. Thus,

we may additionally assume d1 + d2 < 2σ. Since the quadratic terms in (III.4.7)

cancel out, the equation is linear and the unique solution is given by (III.4.8). It

remains to show that the entries of the matrix in (III.4.6) are in [0, 1]. It is clear

that a ≥ 0. Next, we calculate

(III.4.9) σ − a = σ

(
1− σ − d2

2σ − d1 − d2

)
=

σ(σ − d1)

2σ − d1 − d2

,

which implies that σ− a ≥ 0 or σ ≥ a. Since σ ≤ 1 we clearly have a, σ− a ∈ [0, 1].

Since d1 + d2 ∈ [σ, 2σ) we have

(d1 − a) + (d2 − σ + a) = d1 + d2 − σ ∈ [0, σ).
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If d1− a = d2−σ+ a = 0 then the proof is complete. If one of d1− a and d2−σ+ a

is negative then the other must be strictly positive. From (III.4.7) we see that

a = σ − a = 0 and thus σ = 0. Since 2σ > d1 + d2 ≥ 0 it is clear that σ 6= 0. Thus,

neither of d1 − a and d2 − σ + a is negative. �

Lemma III.4.2. Let {di}i∈N be a sequence such that d1 ∈ [0, 1), di ∈ [0, 1
2
] for i ≥ 2

and
∑∞

i=1 di =∞. There is an injection π : N→ N such that π(1) = 1 and for each

n ∈ N we have

(III.4.10) dπ(kn−1) ≥ dπ(kn) where kn = min

{
k :

k∑
i=1

dπ(i) ≥ n

}
.

Proof. First, we will define a sequence of bijections πn : N→ N.

Set

(III.4.11) m1 = min

{
k :

k∑
j=1

dj ≥ 1

}

and let π1 : {1, . . . ,m1} → {1, . . . ,m1} be a bijection such that π1(1) = 1 and

{dπ(i)}m1
i=2 is in nonincreasing order. Extend π1 to a bijection of N by defining

π1(i) = i for i /∈ {1, . . . ,m1}.

Now, define

d
(1)
i = dπ1(i) for all i ∈ N

and

k1 = min

{
k :

k∑
i=1

d
(1)
i ≥ 1

}
.

For n ≥ 2 define the bijection πn as follows. Set

(III.4.12) mn = min

{
k :

k∑
j=1

d
(n−1)
j ≥ n

}
.
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Let πn : {kn−1 + 1, . . . ,mn} → {kn−1 + 1, . . . ,mn} be a bijection such that

{d(n−1)
i }mni=kn−1+1 is in nonincreasing order. Extend πn to all of N by defining πn(i) = i

for i /∈ {kn−1 + 1, . . . ,mn}.

Set

d
(n)
i = d

(n−1)
πn(i) for all i ∈ N

and

(III.4.13) kn = min

{
k :

k∑
i=1

d
(n)
i ≥ n

}
.

Set m0 = k0 = 0. From (III.4.11) we see m1 ≥ 2 since d1 < 1. Using (III.4.12),

that d
(n)
i = d

(n−1)
i for i ≤ kn−1, and the assumption that di ≤ 1/2 for i ≥ 2 we see

that

kn−1+1∑
i=1

d
(n)
i =

kn−1−1∑
i=1

d
(n−1)
i +d

(n)
kn−1

+d
(n)
kn−1+1 < n−1+d

(n)
kn−1

+d
(n)
kn−1+1 ≤ n−1+

1

2
+

1

2
= n,

which implies that kn ≥ kn−1 + 2.

For i = kn−1 + 1, . . . , kn we define

π(i) = π1 ◦ π2 ◦ · · · ◦ πn(i).

We claim that π is an injection. Assume π(i) = π(j). Without loss of generality we

have n,m ∈ N with m ≥ n such that kn−1 + 1 ≤ i ≤ kn and km−1 + 1 ≤ j ≤ km,

and thus

π1 ◦ π2 ◦ · · · ◦ πn(i) = π1 ◦ π2 ◦ · · · ◦ πm(j).

For each ` ∈ N the map π` is a bijection. This implies that

(III.4.14) i = πn+1 ◦ · · · ◦ πm(j).
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Since i ≤ kn, for any ` > n we have π`(i) = i = π−1
` (i). Applying π−1

` to both sides

of (III.4.14) for ` = n+ 1, . . . ,m we obtain i = j. This shows that π is an injection.

It is clear that π(1) = 1 since π1(1) = 1.

Next, note that for j = kn−1 + 1, . . . , kn we have

d
(n)
j = d

(n−1)
πn(j) = d

(n−2)
πn−1(πn(j)) = · · · = dπ(j).

Thus, for n ≥ 2 the sequences {dπ(i)}kni=kn−1+1 are nonincreasing. For n = 1 we notice

that if k1 = 2 then d1 > 1/2, which implies dπ(k1−1) ≥ dπ(k1). If k1 ≥ 3 then we also

have dπ(k1−1) ≥ dπ(k1) since {dπ(i)}k1i=2 is nonincreasing. Thus, for all n we have

(III.4.15) dπ(kn−1) ≥ dπ(kn).

�

Theorem III.4.3. Let i0 ∈ I and let {di}i∈I be a sequence such that di0 ∈ [0, 1),

di ∈ [0, 1
2
] for i 6= i0 and

∑
i∈I dj =∞. There exists a subset J ⊂ I with i0 ∈ J and

an orthogonal projection P with diagonal {di}i∈J .

Proof. Since I is a countable set and
∑
dj = ∞ we may assume without loss of

generality that I = N and i0 = 1. By Lemma III.4.2 there is an injection π : N→ N

such that π(1) = 1 and (III.4.10) holds.

For each n set

(III.4.16) σn = n−
kn−2∑
i=1

dπ(i).

From the definition of kn we see that

(III.4.17) σn = n−
kn∑
i=1

dπ(i) + dπ(kn−1) + dπ(kn) ≤ dπ(kn−1) + dπ(kn).
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From the minimality of kn and (III.4.10) we see that

σn = n−
kn−1∑
i=1

dπ(i) + dπ(kn−1) ≥ dπ(kn−1) ≥ dπ(kn),

which implies that

(III.4.18) σn ≥ max{dπ(kn−1), dπ(kn)}.

From Lemma III.4.1 for each n there exists an ∈ [0, 1] such that the matrix an σn − an

dπ(kn−1) − an dπ(kn) − σn + an


has non-negative entries and

(III.4.19) an(dπ(kn−1) − an) = (σn − an)(dπ(kn) − σn + an).

Let {ei}i∈N be an orthonormal basis for a Hilbert space H. Set

v1 =

k1−2∑
i=1

d
1/2
π(i)ei + a

1/2
1 ek1−1 − (σ1 − a1)1/2ek1 ,

and for n ≥ 2 define

vn = (dπ(kn−1−1) − an−1)1/2ekn−1−1 + (dπ(kn−1) − σn−1 + an−1)1/2ekn−1

+
kn−2∑

i=kn−1+1

d
1/2
π(i)ei + a1/2

n ekn−1 − (σn − an)1/2ekn .
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It is a simple calculation using (III.4.19) to check that the {vi} is an orthogonal

set. From (III.4.16) we see that for n ≥ 2

‖vn‖2 = dπ(kn−1−1) − an−1 + dπ(kn−1) − σn−1 + an−1 +
kn−2∑

i=kn−1+1

dπ(i) + an + σn − an

=
kn−2∑

i=kn−1−1

dπ(i) + σn − σn−1

=
kn−2∑

i=kn−1−1

dπ(i) +

(
n−

kn−2∑
i=1

dπ(i)

)
−

(
n− 1−

kn−1−2∑
i=1

dπ(i)

)
= 1.

A similar calculation shows that ‖v1‖ = 1. Define the projection P by

Pf =
∑
〈f, vi〉vi.

We see from the definition of vn that 〈Pei, ei〉 = dπ(i) for each i ∈ N. Finally, we set

J = π(N). �

III.5. The Carpenter’s Theorem part ii

In this section we will finish the proof of the Carpenter’s Theorem by proving the

final case where one of the quantities a and b defined in Theorem III.1.1 is infinite.

Proposition III.5.1. If {di}i∈N is a sequence in [0, 1] such that

a =
∑
di<1/2

di =∞ or b =
∑
di≥1/2

(1− di) =∞

then there is a projection P with diagonal {di}.

Proof. Set

I0 = {i : di ≤ 1/2} and I1 = {i : di > 1/2}.

It is clear that either

a′ =
∑
i∈I0

di =∞
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or b =∞.

Case 1: Assume a′ = ∞ and |I1| ≤ 1. If I1 6= ∅, then after reordering we can

assume 1 ∈ I1.

We will show by induction that for each n ∈ N there is a set Ln ⊂ N and a

projection Pn with the following four properties:

(III.5.20) Lj ∩ Lk = ∅ for j 6= k

(III.5.21) Pn has diagonal {di}i∈Ln

(III.5.22) {1, 2, . . . , n} ⊂
n⋃
j=1

Lj

(III.5.23)
∑

i∈N\
⋃n
j=1 Lj

di =∞.

First, we will show that L1 exists. Partition I into two sets J1 and K1 such that

∑
i∈J1

di =
∑
i∈K1

di =∞,

and 1 ∈ J1. Theorem III.4.3 implies that there is a subset L1 ⊂ J1 with 1 ∈ L1 and

a projection P1 with diagonal {di}i∈L1 . Note that

∑
i∈N\L1

di =
∑

i∈J1\L1

di +
∑
i∈K1

di =∞.

Next, assume we have the sets L1, . . . , Ln−1 and projections P1, P2, . . . , Pn−1 such

that (III.5.20), (III.5.21), (III.5.22) and (III.5.23) hold. Let i0 be the smallest num-

ber in N \
⋃n−1
j=1 Lj. From (III.5.22) we see that i0 ≥ n. Partition N \

⋃n−1
j=1 Lj into
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two sets Jn and Kn such that

∑
i∈Jn

di =
∑
i∈Kn

di =∞,

and i0 ∈ Jn. Theorem III.4.3 implies that there is a subset Ln ⊂ Jn with i0 ∈ Ln

and a projection Pn with diagonal {di}i∈Ln . Finally, note that

∑
i∈N\

⋃n
j=1 Lj

di =
∑

i∈Jn\Ln

di +
∑
i∈Kn

di =∞.

This completes the induction and shows the existence of the sets {Ln}∞n=1 and the

projctions {Pn}∞n=1 satisfying (III.5.20)–(III.5.23).

From (III.5.20) and (III.5.22) we see that {Lj}∞j=1 is a partition of N. Thus by

(III.5.21)

P =
∞⊕
j=1

Pj

has diagonal {di}i∈N. This completes the proof of the first case.

Case 2: Assume a′ =∞ and |I1| > 1. We can partition I0 into |I1| sets {Jj}j∈I1
such that ∑

i∈Jj

di =∞ for all j ∈ I1.

For each j ∈ I1 set Kj = Jj ∪ {j}. Each sequence {di}i∈Kj has exactly one term in

[1/2, 1) and infinite sum. By Case 1, for each j ∈ I1 there is a projection Pj with

diagonal {di}i∈Kj . Since I =
⋃
j∈I1 Kj the projection

P =
⊕
j∈I1

Pj

has the desired diagonal. This completes the proof of Case 2.

Case 3: Assume b =∞. Since

b =
∑

1−di≤1/2

(1− di).
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by the above argument there is a projection P ′ with diagonal {1− di}, and I − P ′

is a projection with diagonal {di}. �
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CHAPTER IV

OPERATORS WITH THREE POINT SPECTRUM

IV.1. Statements of the main theorems

The goal of this chapter is to establish an analogue of the Schur-Horn Theorem

for operators with three points in the spectrum. That is, we will give necessary and

sufficient conditions for a sequence {di} to be the diagonal of a self-adjoint operator

with eigenvalues {0, A,B} with specified (possibly infinite) multiplicities.

This result gives a Schur-Horn Theorem for operators with three points in the

spectrum analogous to Kadison’s result for orthogonal projections (Theorem III.1.1).

However, we would like to emphasize two significant qualitative differences between

Kadison’s Theorem and our extension to operators with three point spectrum. The

necessary and sufficient condition for a sequence to be the diagonal of a projection is

a single trace condition, that is, an equation involving sums of diagonal terms. The

requirements for a sequence to be the diagonal of an operator with a three point

spectrum involve both a trace condition and a majorization inequality.

Also distinct from the case of operators with two point spectrum, it is possible

for two non-unitarily equivalent operators with three point spectrum to have the

same diagonal. For projections the dimension of the kernel and range (i.e. the

multiplicities of 0 and 1) can be recovered from the diagonal. Indeed, if {di} is the
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diagonal of a projection P , then

dim ranP =
∑

di and dim kerP =
∑

(1− di).

However, for operators with three point spectrum the multiplicities cannot in general

be determined from the diagonal, see Remark IV.4.4.

This leads to two distinct extensions of the Schur-Horn Theorem for operators

with three point spectrum. In the case where the multiplicities of eigenvalues are

not given we have the following general theorem characterizing diagonals of operators

with three point spectrum.

Theorem IV.1.1. Let 0 < A < B < ∞ and {di}i∈I be a sequence in [0, B] with∑
di =

∑
(B − di) =∞. Define

C =
∑
di<A

di and D =
∑
di≥A

(B − di).

There is a self-adjoint operator E with diagonal {di}i∈I and σ(E) = {0, A,B} if and

only if one of the following holds: (i) C = ∞, (ii) D = ∞, or (iii) C,D < ∞ and

there exist N ∈ N and k ∈ Z such that

(IV.1.1) C −D = NA+ kB

(IV.1.2) C ≥ (N + k)A.

The assumption that
∑
di =

∑
(B − di) = ∞ is not a true limitation. Indeed,

the summable case
∑
di < ∞ requires more restrictive conditions which can be

deduced from parts (a) and (b) of Theorem IV.1.3. Theorem IV.1.3 is our second

extension of the Schur-Horn Theorem which gives a complete list of characterization

conditions of diagonals of operators with prescribed multiplicities. Before we state

the full theorem, we need one convenient definition.
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Definition IV.1.2. Let E be a bounded operator on a Hilbert space. For λ ∈ C

define

mE(λ) = dim ker(E − λ).

Theorem IV.1.3. Let 0 < A < B <∞ and {di}i∈I in [0, B]. Define the sets

I1 = {i ∈ I : di < A}, I2 = {i ∈ I : di ≥ A},

J2 = {i ∈ I2 : di < (A+B)/2}, J3 = I2 \ J2

and the constants (each possibly infinite)

C =
∑
i∈I1

di, D =
∑
i∈I2

(B − di),

C1 =
∑
i∈I1

(A− di), C2 =
∑
i∈J2

(di − A), C3 =
∑
i∈J3

(B − di).

The following table gives the necessary and sufficient condition for {di} to be the

diagonal of a self-adjoint operator E with σ(E) = {0, A,B} and the specified multi-

plicities.

32



mE(0) mE(A) mE(B) Condition

(a) Z N K |I| = Z +N +K∑
i∈I

di = NA+KB, C ≥ (N +K − |I2|)A

(b) ∞ N K |I1| =∞,∑
i∈I

di = NA+KB, C ≥ (N +K − |I2|)A

(c) ∞ N ∞ C +D =∞
or

C,D <∞, |I1| = |I2| =∞,
∃ k ∈ Z C −D = NA+ kB, C ≥ A(N + k)

(d) Z ∞ K |I| =∞, C1 ≤ AZ∑
i∈I

(di − A) = K(B − A)− ZA

(e) Z ∞ ∞ C1 ≤ AZ, C2 + C3 =∞
or

|I1 ∪ J2| = |J3| =∞, C1 ≤ AZ, C2, C3 <∞
∃ k ∈ Z, C1 − C2 + C3 = (Z − k)A+ kB

(f) ∞ ∞ ∞ C +D =∞

Note that in the preceding theorem we left out the case where only B has infinite

multiplicity and the case where only B has finite multiplicity. However, these two

remaining cases follow easily using symmetry arguments by applying parts (b) and

(e) to the operator BI − E and the sequence {B − di}. Also, observe that case

(a) corresponds to the finite dimensional case and hence it is the classical Schur-

Horn Theorem (for operators with three eigenvalues), albeit written in a new form.

Finally, in this chapter we only consider the case of separable Hilbert spaces, and

thus the indexing set I is always taken to be a countable (possibly finite) set.

The proof of Theorem IV.1.3 breaks into 4 distinct parts. The summable cases

(a) and (b) do not require many new techniques since they reduce to the study
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of trace class operators. In section IV.2 they are relatively easily deduced from

Theorem II.2.1. The remaining 3 parts rely heavily on a technique, which was

introduced in [7], of “moving” diagonal entries to more favorable configurations,

where it is possible to construct required operators. In section IV.3 we deal with

the case (f) involving three (or more) eigenvalues of infinite multiplicity. Much more

involved combinatorial arguments are needed in section IV.4 to deal with case (c)

involving two outer eigenvalues with infinite multiplicities. Finally, in section IV.5

we analyze the cases (d) and (e) where at least one of outer eigenvalues has finite

multiplicity. The proofs of the necessity and the sufficiency in these last two cases

require even more subtle combinatorial arguments which is partially evidenced by

the complicated nature of the characterization conditions.

We finish the chapter by illustrating Theorem IV.1.3 in section IV.6. Given a

sequence {di} in [0, 1] we are interested in determining the set of inner eigenvalues

A for which there exists a positive operator with spectrum {0, A, 1} and diagonal

{di}. We show that this set is either finite or the full open interval (0, 1). Finally,

we exhibit a few specific examples of sequences where this set has respectively 0, 1,

3, and 17 elements.

IV.2. Finite rank operators

The following is an application of Theorems II.1.1 and II.2.1, which establishes

parts (a) and (b) of Theorem IV.1.3.

Theorem IV.2.1. Let 0 < A < B < ∞, let M ∈ N ∪ {∞} and let {di}Mi=1 be a

sequence in [0, B]. There is a self-adjoint operator E with diagonal {di}, σ(E) =

{0, A,B}, mE(A) = N < ∞, mE(B) = K < ∞ and mE(0) = M − N −K if and

only if

(IV.2.3)
M∑
i=1

di = NA+KB
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amd

(IV.2.4)
∑
di<A

di ≥ (N +K − n0)A,

where n0 = |{i : di ≥ A}|.

Proof. To prove that (IV.2.3) and (IV.2.4) are necessary, assume E is a self-adjoint

operator with diagonal {di}Mi=1, σ(E) = {0, A,B}, mE(A) = N , mE(B) = K and

mE(0) = M − N − K. Since E has finite rank it has well defined trace equal to

NA+KB; this is (IV.2.3). The eigenvalues sequence of E written in nonincreasing

order is given by

λi =


B i = 1, 2, . . . , K

A i = K + 1, . . . , K +N

0 i > K +N

.

Thus, using Theorem II.1.1 (or Theorem II.2.1 if M =∞) we see that

∑
di<A

di = NA+KB −
∑
di≥A

di ≥ NA+KB − (KB + (n0−K)A) = A(N +K − n0),

which is (IV.2.4).

Next, we will show that (IV.2.3) and (IV.2.4) are sufficient for {di} to be the

diagonal of an operator of the specified type. Assume {di}Mi=1 is a sequence such

that (IV.2.3) and (IV.2.4) hold for some N,K ∈ N.

Note that we cannot directly apply Theorems II.1.1 and II.2.1, since not every

sequence {di} can be written in nonincreasing order (e.g. if the sequence has an

infinite number of positive terms and some zero terms). However, this does not

cause real difficulty as the following argument shows. Assume that (IV.2.3) and

(IV.2.4) are sufficient for positive nonincreasing sequences. Let {d′i}M
′

i=1 be the strictly

positive terms of {di}Mi=1 in nonincreasing order. Note that {d′i}M
′

i=1 satisfies (IV.2.3)

and (IV.2.4). There is a positive operator E ′ with diagonal {d′i}, σ(E) ⊆ {0, A,B},
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mE′(A) = N,mE′(B) = K and mE′(A) = M ′−N−K. Let 0 be the zero operator on

a separable Hilbert space with dimension M−M ′ if M <∞ and infinite dimensional

if M =∞. Then E = E ′ ⊕ 0 is the desired operator.

To complete the proof, we will show (IV.2.3) and (IV.2.4) are sufficient with the

assumption that {di} is a positive sequence written in nonincreasing order. Define

the sequence {λi}Mi=1 as above. By Theorem II.1.1 or Theorem II.2.1 it is enough to

show that

(IV.2.5)
m∑
i=1

di ≤
m∑
i=1

λi

for all m ≤ M , since the trace condition is obvious. Note that (IV.2.5) holds for

m ≤ K. For m > K +N we have

m∑
i=1

di ≤
M∑
i=1

di =
M∑
i=1

λi,

so (IV.2.5) holds for m > K +N .

First, we wish to show that (IV.2.5) holds for m = n0. From the above we may

assume K < n0 ≤ K +N . Using (IV.2.4) we have

n0∑
i=1

di = NA+KB−
∑
di<A

di ≤ NA+KB−A(N+K−n0) = KB+(n0−K)A =

n0∑
i=1

λi.

Now, if K < m < n0 then we have

m∑
i=1

di =

n0∑
i=1

di −
n0∑

i=m+1

di ≤
n0∑
i=1

λi − (n0 −m)A =
m∑
i=1

λi.

Finally, if n0 < m ≤ K +N then

m∑
i=1

di =

n0∑
i=1

di +
m∑

i=n0+1

di ≤
n0∑
i=1

λi + (m− n0)A =
m∑
i=1

λi.

�
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IV.3. Three or more eigenvalues with infinite multiplicity

In this section we will classify the diagonals of operators with exactly three eigen-

values, each with infinite multiplicity. This will yield part (f) of Theorem IV.1.3.

We will also show that a sequence with C+D =∞ is the diagonal of a very general

class of operators.

Theorem IV.3.1 shows C,D < ∞ implies that only 0 and B can have infinite

multiplicity. Thus, C + D = ∞ is a necessary condition for a sequence to be the

diagonal of a self-adjoint operator with at least three infinite multiplicities.

Theorem IV.3.1. Let 0 < A < B < ∞ and let E be a self-adjoint operator on a

Hilbert space H with σ(E) = {0, A,B}. Let {ei}i∈I be an orthonormal basis for H

and set di = 〈Eei, ei〉. Define

C =
∑
di<A

di, D =
∑
di≥A

(B − di).

If C,D <∞ then N = mE(A) <∞ and there is some k ∈ Z such that

(IV.3.6) C −D = NA+ kB,

(IV.3.7) C ≥ (N + k)A.

Proof. Define the sets I1 = {i : di < A} and I2 = {i : di ≥ A}. Let P be the

orthogonal projection onto ker(E−A) and let Q be the projection onto ker(E−B).

Define pi = 〈Pei, ei〉 and qi = 〈Qei, ei〉, so that di = Api+Bqi. Note that pi+qi ≤ 1,

and thus

(B − A)pi = (B − A)pi + Api +Bqi − di = B(pi + qi)− di ≤ B − di.
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Using this we obtain

(IV.3.8)
∑
i∈I2

pi ≤
1

B − A
∑
i∈I2

(B − di) =
D

B − A
<∞.

Next, we have

(IV.3.9)
∑
i∈I1

pi =
1

A

∑
i∈I1

Api ≤
1

A

∑
i∈I1

di =
C

A
<∞.

Together (IV.3.8) and (IV.3.9) show that P has finite trace, and thus

N = mE(A) =
∑
i∈I

pi <∞.

Define

a =
∑
i∈I1

qi =
1

B

∑
i∈I1

(di − Api) ≤
1

B

∑
i∈I1

di =
C

B
<∞,

and

b =
∑
i∈I2

(1− qi) =
1

B

∑
i∈I2

(B − di + Api) ≤
D

B
+
A

B

∑
i∈I2

pi.

Using (IV.3.8) we see that b <∞. By Theorem III.1.1 there exists k ∈ Z such that

a− b = k.

Now, we calculate

C −D =
∑
i∈I1

(Api +Bqi)−
∑
i∈I2

(B − Api −Bqi)

=
∑
i∈I

Api +B

(∑
i∈I1

qi −
∑
i∈I2

(1− qi)

)
= NA+ kB,

which shows (IV.3.6).
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Finally, we calculate

k(B − A) +D = (a− b)(B − A) +
∑
i∈I2

(B −Bqi − Api) ≥ bA− bB + bB −
∑
i∈I2

Api

= bA−
∑
i∈I2

Api = A
∑
i∈I2

(1− pi − qi).

Together with the fact that pi+qi ≤ 1, this shows k(B−A)+D ≥ 0, or kB+D ≥ kA.

Combining this with (IV.3.6) gives (IV.3.7). �

Next, we will show that the condition C + D = ∞ is sufficient to be the diag-

onal of any diagonalizable self-adjoint operator with the property that the largest

and smallest eigenvalues have infinite multiplicity. In particular, we will prove the

following theorem, which will complete the proof of part (f) of Theorem IV.1.3.

Theorem IV.3.2. Let λ ⊂ [0, B] a countable set with 0, B ∈ Λ. Set n0 = nB =∞,

and for each λ ∈ Λ∩ (0, B) let nλ ∈ N∪{∞}. If {di}i∈I is a sequence in [0, B] such

that for some (and hence all) α ∈ (0, B) we have

∑
di<α

di +
∑
di≥α

(B − di) =∞,

then there is a positive diagonalizable operator E with eigenvalues Λ and mE(λ) = nλ

for each λ ∈ Λ.

The following lemma will serve as a building block for constructing the operators

in Theorem IV.3.2.

Lemma IV.3.3. Let 0 < A < B <∞ and let {di}i∈I be a sequence in [0, B]. Define

C =
∑
di<A

di and D =
∑
di≥B

(B − di).

If C + D = ∞ then there is a self-adjoint operator E with σ(E) = {0, A,B},

mE(0) = mE(B) =∞, mE(A) = 1, and diagonal {di}.

39



Proof. Let I1 = {i ∈ I : di < A}. Assume C =∞. There exists i0 ∈ I1 such that

∑
di≤di0

di > A.

This implies that ∑
di≤di0
i 6=i0

di > A− di0 .

Let K1 be a finite subset of {i ∈ I1 \ {i0} : di ≤ di0} such that

∑
i∈K1

di > A− di0 .

Apply Lemma III.2.1 (i) to the sequences {di}i∈K1 and {di}i=i0 with η0 = A − di0
to obtain sequences {d̃i}i∈K1 and {d̃i}i=i0 . Note that d̃i0 = A. Define d̃i = di for

i /∈ K1 ∪ {i0}. Note that ∑
i∈I1\{i0}

d̃i =∞,

and Theorem III.1.1 implies there is a projection Q with infinite dimensional kernel

and range such that BQ has diagonal {d̃i}i∈I\{i0}. Let P be the identity on a

one-dimensional Hilbert space. The operator Ẽ = BQ ⊕ AP has diagonal {d̃i}i∈I .

Finally, by Lemma III.2.1 (ii) we obtain an operator E, unitarily equivalent to E,

with diagonal {di}i∈I . This completes the proof of the theorem when C =∞.

Assume D =∞. Define d′i = B − di for each i ∈ I. We have

∑
d′i≤B−A

d′i =
∑
di≥A

(B − di) = D =∞.

By the previous argument, there is a positive operator E ′ with diagonal {d′i} and

σ(E ′) = {0, B −A,B}, with 0 and B having infinite multiplicity and B −A having

multiplicity 1. Clearly E = B − E ′ has the desired properties. �
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Proof of Theorem IV.3.2. If Λ = {0, B} then Theorem III.1.1 gives the desired oper-

ator. Thus we may assume |Λ| ≥ 3. Set I1 = {i ∈ I : di < α} and I2 = {i : di ≥ α}.

Partition I1 and I2 into sets {Iλ1 }λ∈Λ and {Iλ2 }λ∈Λ respectively, such that for each

λ ∈ Λ ∑
i∈Iλ1

di +
∑
i∈Iλ2

(B − di) =∞.

For each λ ∈ Λ ∩ (0, B) partition Iλ1 and Iλ2 into nλ sets {Iλ,n1 }
nλ
n=1 and {Iλ,n2 }

nλ
n=1

such that for each n = 1, 2, . . . , nλ we have

∑
i∈Iλ,n1

di +
∑
i∈Iλ,n2

(B − di) =∞.

By Lemma IV.3.3, for each λ ∈ Λ ∩ (0, B) and each n = 1, 2, . . . , nλ there is an

self-adjoint operator Eλ,n with diagonal {di}i∈Iλ,n1 ∪Iλ,n2
and σ(Eλ,n) = {0, λ, B} with

infinite multiplicity at 0 and B and multiplicity 1 at λ. Finally, set

E =
⊕
λ∈Λ

nλ⊕
n=1

Eλ,n,

and it is clear that E has the desired diagonal and eigenvalues. �

In Theorem IV.3.2 the spectrum of E is the closure of X. To end this section we

note that C +D =∞ is a sufficient condition on a sequence to be the diagonal of a

self-adjoint operator E with σ(E) = K for any compact set K ⊆ [0, B]. Simply let Λ

be a countable dense subset of K and apply Theorem IV.3.2 with any multiplicities

{nλ}λ∈Λ. This gives us the following corollary.

Corollary IV.3.4. Let K ⊂ [0, B] be a compact set with 0, B ∈ K. If {di}i∈I is a

sequence in [0, B] such that for some (and hence all) α ∈ (0, B) we have

∑
di<α

di +
∑
di≥α

(B − di) =∞

then there is a positive diagonalizable operator E with σ(E) = K.
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IV.4. Outer eigenvalues with infinite multiplicity

The following theorem is part (c) of Theorem IV.1.3, and it is the main result of

this section.

Theorem IV.4.1. Let 0 < A < B < ∞ and let {di}i∈I be a sequence in [0, B].

Define

C =
∑
di<A

di and D =
∑
di≥A

(B − di).

There is a self-adjoint operator E with σ(E) = {0, A,B}, mE(0) = mE(B) = ∞,

N = mE(A) <∞ and diagonal {di}i∈I if and only if one of the following holds:

(i) C +D =∞

(ii) C,D <∞,
∑
di =

∑
(B − di) =∞, and there exists k ∈ Z such that

C −D = NA+ kB(IV.4.10)

C ≥ A(N + k).(IV.4.11)

Proof. First, we note that the necessity direction is immediate. Indeed, if (i) fails

then we have C,D < ∞ and we use Theorem IV.3.1 to deduce (IV.4.10) and

(IV.4.11). Moreover, {di} and {B − di} are not summable since both E and B −E

are positive operators with infinite dimensional range and finite spectrum, and thus

they both have infinite trace.

Next, note that Theorem IV.3.2 implies that (i) is sufficient. All that is left to

prove is that (ii) is sufficient.

Define I1 = {i : di < A} and I2 = {i : di ≥ A}. Since C,D < ∞ and
∑
di =∑

(B − di) =∞ it must be the case that |I1| = |I2| =∞.

First, assume B is not a limit point of {di}i∈I . Since D < ∞ the set I0
2 = {i ∈

I2 : di < B} is finite, so assume it has M elements. Let L ⊆ I2 \ I0
2 be a set with

|k| + 1 elements and define K2 = I0
2 ∪ L. If we consider the sequence {di}i∈I1∪K2 ,
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then we have

∑
i∈I1∪K2

di = C + (M + |k|+ 1)B −
∑
i∈K2

(B − di)

= C + (M + |k|+ 1)B −D = NA+ (M + |k|+ k + 1)B

and ∑
i∈I1∪K2
di<A

di = C ≥ (N + k)A = (N +M + |k|+ k + 1− |K2|).

By Theorem IV.2.1, there is a self-adjoint operator E ′ with diagonal {di}i∈I1∪K2 ,

σ(E ′) = {0, A,B}, mE′(0) =∞, mE′(A) = N and mE′(B) = M + |k|+ k+ 1. Let I

be the identity operator on an infinite dimensional Hilbert space. Then E = E ′⊕BI

is the desired operator.

If 0 is not a limit point, then we can use the above argument on the sequence

{B − di} to obtain an operator F with diagonal {B − di} and eigenvalues 0, B −A

and B which have multiplicities ∞, N and ∞, respectively. Then B − F is the

desired operator. Thus, for the rest of the proof we may assume that 0 and B are

limit points of {di}.

Case 1: Assume k ≥ 0. We have C = NA+kB+D, and since B is a limit point

of {di} we have D > 0 and thus C > NA + kB. There is a finite set K1 ⊆ I1 such

that

C ′ :=
∑
i∈K1

di > NA+ kB.

Since 0 is a limit point of {di}i∈I1 and K1 is finite we have C ′ < C. Define

η := C ′ −NA− kB < C −NA− kB = D.

There is a finite set K2 ⊂ I2 such that

∑
i∈K2

(B − di) > η.
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The sequences {di}i∈K1 and {di}i∈K2 are in [0, B] and satisfy max{di}i∈K1 ≤ min{di}i∈K2 ,

and

η ≤ max

{∑
i∈K1

di,
∑
i∈K2

(B − di)

}
.

Lemma III.2.1 (i) implies there are sequences {d̃i}i∈K1 and {d̃i}i∈K2 such that d̃i ≤ di

for all i ∈ K1 and d̃i ≥ di for all i ∈ K2, and

∑
i∈K1

d̃i =

(∑
i∈K1

di

)
− η = NA+ kB.

Since d̃i < A for all i ∈ K1 it is clear that (IV.2.4) holds. By Theorem IV.2.1 there

is a positive operator Ẽ0 with diagonal {d̃i}i∈K1 , σ(Ẽ0) = {0, A,B}, mẼ0
(B) = k,

mẼ0
(A) = N and mẼ0

(0) = |K1| − k −N . Define d̃i = di for i /∈ K1 ∪K2, and note

∑
i∈I1\K1

d̃i =
∑

i∈I1\K1

di = C − C ′ = D − η

and ∑
i∈I2

(B − d̃i) = D − η.

By Theorem III.1.1 there is a projectionQ such thatBQ has diagonal {d̃i}i∈(I1\K1)∪I2 .

Since |I1 \ K1| = |K2| = ∞ we have mQ(1) = mQ(0) = ∞. Thus, the operator

Ẽ = E0 ⊕ BQ has the desired eigenvalues and multiplicities and diagonal {d̃i}i∈I .

Finally, use the second part of Lemma III.2.1 to obtain an operator E, unitarily

equivalent to Ẽ, with diagonal {di}i∈I . This completes the proof of the first case.

Case 2: Assume k ≤ −N . We obtain this case by applying Case 1 to the sequence

{B − di}, to obtain the operator E0 with σ(E0) = {0, B − A,B}, dim ker(E0) =

dim ker(B −E0) =∞ and dim ker((B −A)−E0) = N . Then B −E0 is the desired

operator.
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Case 3: Assume −N < k < 0 and C = A(N + k). Theorem III.1.1 implies there

is a projection P with N+k dimensional range, such that AP has diagonal {di}i∈I1 .

Since |I1| =∞ we also see that P has infinite dimensional kernel.

Next, note that

∑
i∈I2

(B − di) = D = C −NA− kB = NA+ kA−NA− kB = −k(B − A).

Theorem III.1.1 implies that there is a projection Q with −k dimensional range,

and thus (B − A)Q has diagonal {B − di}i∈I2 . Since |I2| = ∞ we see that Q has

infinite dimensional kernel. Finally, the operator E = AP ⊕ (B − (B − A)Q) has

the desired diagonal and eigenvalues with the desired multiplicities.

Case 4: Assume −N < k < 0 and C > A(N + k). Set η = C − (N + k)A < C.

There is a finite set K1 ⊂ I1 such that

C ′ =
∑
i∈K1

di > η.

Next, note that

η = C − (N + k)A = NA+ kB +D −NA− kA = D + k(B − A) < D.

Thus, there is a finite set K2 ⊂ I2 such that

∑
i∈K2

(B − di) > η.

The sequences {di}i∈K1 and {di}i∈K2 are in [0, B] and satisfy max{di}i∈K1 ≤ min{di}i∈K2 ,

and

η ≤ max

{∑
i∈K1

di,
∑
i∈K2

(B − di)

}
.
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Lemma III.2.1 implies there are sequences {d̃i}i∈K1 and {d̃i}i∈K2 such that d̃i ≤ di

for all i ∈ K1 and d̃i ≥ di for all i ∈ K2,

∑
i∈K1

d̃i =
∑
i∈K1

di − η and
∑
i∈K2

(B − d̃i) =
∑
i∈K2

(B − di)− η.

Set d̃i = di for i ∈ I \ (K1 ∪K2). Then

∑
i∈I1

d̃i =
∑

i∈I1\K1

di +
∑
i∈K1

d̃i =
∑

i∈I1\K1

di +
∑
i∈K1

di − η = C − η = (N + k)A

and

∑
i∈I2

(B − d̃i) =
∑

i∈I2\K2

(B − di) +
∑
i∈K2

(B − di)− η = D − η = −k(B − A).

Thus, the sequence {d̃i}i∈I satisfies the conditions of Case 3, so there is an operator

Ẽ with the desired eigenvalues and multiplicities but with diagonal {d̃i}i∈I . The

second part of Lemma III.2.1 implies there is an operator E, unitarily equivalent to

Ẽ, but with diagonal {di}i∈I . This completes the final case. �

We are now in a position to prove Theorem IV.1.1. In fact we will prove the

following more general theorem.

Theorem IV.4.2. Let 0 < A < B < ∞ and let {di}i∈I be a sequence in [0, B]. If

there is a self-adjoint operator E with diagonal {di}i∈I and σ(E) = {0, A,B} then

one of the following holds:

(i) C =∞

(ii) D =∞

(iii) C,D <∞ and there exist N ∈ N and k ∈ Z such that (IV.1.1) and (IV.1.2)

hold.

If (i),(ii), or (iii) holds and
∑
di =

∑
(B − di) = ∞ then there is a self-adjoint

operator E with diagonal {di}i∈I and σ(E) = {0, A,B}.
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Proof. First, assume that E is a self-adjoint operator with spectrum {0, A,B} and

diagonal {di}. If either C = ∞ or D = ∞ then we are done since this is exactly

(i) or (ii). If C,D <∞ then Theorem IV.4.1 shows that (IV.1.1) and (IV.1.2) hold

and thus (iii) holds.

Next, assume {di} is a sequence in [0, B]. If (i) or (ii) holds then Theorem IV.3.2

shows that there is a self-adjoint operator E with spectrum {0, A,B} and diagonal

{di}. Finally, if (iii) holds and
∑
di =

∑
(B − di) = ∞ then Theorem IV.4.1

shows that there is a self-adjoint operator E with spectrum {0, A,B} and diagonal

{di}. �

Remark IV.4.3. In Theorem IV.1.1 (and Theorem IV.4.2) the assumption that∑
di =

∑
(B − di) = ∞ is necessary. Consider the sequence {A, 0, 0, . . .}. This

is clearly not the diagonal of any operator with spectrum {0, A,B} since the oper-

ator would be trace class with trace A, and thus B > A cannot be an eigenvalue.

However, we have C = 0 and D = B − A so that (IV.1.1) and (IV.1.2) hold with

N = 1 and k = −1.

Remark IV.4.4. There exist two non-unitarily equivalent operators with three point

spectrum and the same diagonal. Let 0 < A < B and let In be the identity operator

of an n dimensional Hilbert space. From Theorem III.1.1, there is a projection P

with infinite dimensional kernel and range such that the diagonal of BP consists of a

countable infinite sequence of A’s. The operator BP ⊕AIn has a diagonal consisting

of a countable number of A’s, however the multiplicity of the eigenvalue A is n.

IV.5. Outer eigenvalue with finite multiplicity

In the last two remaining cases ((d) and (e)) of Theorem IV.1.3 we consider

operators with finite dimensional kernel. In these cases, where there is an “outer”

eigenvalue with finite multiplicity, we have the following necessary condition.
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Theorem IV.5.1. Let 0 < A < B < ∞ and let E be a self-adjoint operator

on a Hilbert space H with σ(E) = {0, A,B} and mE(0) < ∞. Let {ei}i∈I be an

orthonormal basis for H and set di = 〈Eei, ei〉. We have

(IV.5.12)
∑
di<A

(A− di) ≤ AmE(0).

Proof. There exist mutually orthogonal projections P and Q such that E = AP +

BQ. Note that I − P −Q is a finite rank projection and thus finite trace equal to

mE(0). Set J1 = {i ∈ I : di < A}. Then we have

∑
i∈J1

(A− di) =
∑
i∈J1

(
A− A〈Pei, ei〉 −B〈Qei, ei〉

)
≤
∑
i∈J1

(
A− A〈Pei, ei〉 − A〈Qei, ei〉

)
= A

(∑
i∈J1

(
1− 〈Pei, ei〉 − 〈Qei, ei〉

))

≤ A

(∑
i∈I

(
1− 〈Pei, ei〉 − 〈Qei, ei〉

))
= AmE(0).

�

Next, we look at two examples which demonstrate that for operators with finite

dimensional kernel the constants C and D do not capture enough information about

a sequence in order to tell if it is the diagonal of an operator of the specified type.

Example IV.5.2. Consider the sequence {di} consisting of {1− i−1}∞i=1 and a count-

able infinite number of 2’s. If A = 1 and B = 2 then we have C = ∞ and D = 0.

By Theorem IV.5.1 this is not the diagonal of any self-adjoint operator E with

σ(E) = {0, 1, 2} and finite dimensional kernel, since

∑
di<A

(A− di) =
∞∑
i=1

1

i
=∞.
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Example IV.5.3. Consider the sequence {ci} consisting of {1− 2−i}∞i=1 and a count-

able infinite number of 2’s. If A = 1 and B = 2 then we have C = ∞ and D = 0.

By Theorem III.1.1 there is a projection P with diagonal {1−2−i}∞i=1, which clearly

has finite dimensional kernel. Let I be the identity operator on an infinite dimen-

sional Hilbert space and set E = P ⊕2I. This operator has diagonal {ci}, spectrum

{0, 1, 2} and finite dimensional kernel. Note that {ci} and {di} have the same values

for C and D, but only {ci} is the diagonal of an operator with spectrum {0, 1, 2}

and finite dimensional kernel.

Instead of C and D we will use the following terminology from Theorem IV.1.3

in the rest of the section:

J1 = {i : di < A}, J2 =

{
i : di ∈

[
A,
A+B

2

)}
, J3 =

{
i : di ≥

A+B

2

}

C1 =
∑
i∈J1

(A− di), C2 =
∑
i∈J2

(di − A), C3 =
∑
i∈J3

(B − di).

Note that for symmetry we use the notation J1 instead of I1.

The next theorem shows the necessity of the conditions in part (e) of Theorem

IV.1.3.

Theorem IV.5.4. Let 0 < A < B < ∞ and let E be a self-adjoint operator with

σ(E) = {0, A,B}. If mE(0) < ∞ and C2, C3 < ∞, then C1 < ∞ and there exist

n, k ∈ Z such that n+ k = mE(0),

(IV.5.13) C1 − C2 + C3 = nA+ kB

and

(IV.5.14) C1 ≤ A(n+ k).
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Moreover, if mE(A) =∞ then |J1 ∪ J2| =∞, and if mE(B) =∞ then |J3| =∞.

Proof. There exist mutually orthogonal projections P and Q such that E = AP +

BQ. Let {ei}i∈I be the orthonormal basis such that di = 〈Eei, ei〉, and define

pi = 〈Pei, ei〉 and qi = 〈Qei, ei〉 for each i ∈ I. Since mE(0) < ∞, Theorem IV.5.1

implies that C1 <∞. Next, we note that

(IV.5.15)
∑
i∈I

(1− pi − qi) = mP+Q(0) = mE(0) <∞.

Using (IV.5.15) we have

∑
i∈J1∪J2

qi

=
1

B − A

( ∑
i∈J1∪J2

(A− Api − Aqi)−
∑
i∈J1

(A− Api −Bqi) +
∑
i∈J2

(Bqi + Api − A)

)

=
1

B − A

( ∑
i∈J1∪J2

(A− Api − Aqi)− C1 + C2

)
≤ AmE(0)− C1 + C2

B − A
<∞.

Together with (IV.5.15) this also shows that
∑

i∈J1∪J2(1 − pi) < ∞. A similar

calculation shows that ∑
i∈J3

(1− qi),
∑
i∈J3

pi <∞.

By Theorem III.1.1 there exist n, k ∈ Z such that

n =
∑

i∈J1∪J2

(1− pi)−
∑
i∈J3

pi

k =
∑
i∈J3

(1− qi)−
∑

i∈J1∪J2

qi.

(IV.5.16)
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Now, we calculate

C1 − C2 + C3 =
∑
i∈J1

(A− Api −Bqi)−
∑
i∈J2

(Api +Bqi − A) +
∑
i∈J3

(B − Api −Bqi)

= A
∑

i∈J1∪J2

(1− pi)− A
∑
i∈J3

pi +B
∑
i∈J3

(1− qi)−B
∑

i∈J1∪J2

qi

= nA+ kB,

which shows (IV.5.13) holds.

From (IV.5.16) we have

n+ k =
∑
i∈I

(1− pi − qi) = mE(0),

and

C1 =
∑
i∈J1

(A− Api −Bqi) ≤
∑
i∈J1

(A− Api − Aqi) = A
∑
i∈I

(1− pi − qi) = A(n+ k).

This shows (IV.5.14) holds.

Finally, assume mE(A) =∞. This implies P has infinite dimensional range, and

thus ∑
i∈I

pi = mE(A) =∞.

Since
∑

i∈J3 pi <∞, it must be the case that
∑

i∈J1∪J2 pi =∞ and thus |J1∪J2| =∞.

Similarly, assuming Q has infinite dimensional range, we have
∑

i∈I qi = ∞. Since∑
i∈J1∪J2 qi <∞ it must be the case that

∑
i∈J3 qi =∞, and thus |J3| =∞. �

The next theorem shows that the conditions in part (e) of Theorem IV.1.3 are

sufficient to construct the desired operator.
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Theorem IV.5.5. Let 0 < A < B < ∞, let {di}i∈I be a sequence in [0, B] with

|J1 ∪ J2| =∞ and let Z ∈ N. If

(IV.5.17) C1 ≤ AZ

and either of the following holds:

(i) C2 + C3 =∞

(ii) C2, C3 <∞ and there exists n, k ∈ Z such that Z = n+ k and

(IV.5.18) C1 − C2 + C3 = nA+ kB,

then there is a positive operator E with σ(E) = {0, A,B}, mE(0) = Z, mE(A) =∞,

and diagonal {di}. Moreover, if (i) holds then mE(B) = ∞, and if (ii) holds then

mE(B) = |J3| − k.

Proof. Set

η = AZ − C1.

Case 1: Assume ∑
i∈J1

di,
∑

i∈J2∪J3

(B − di) > η.

There are finite subsets K1 ⊂ J1 and K2 ⊂ J2 ∪ J3 such that

η ≤ min

{∑
i∈K1

di,
∑
i∈K2

(B − di)

}
.

We can apply Lemma III.2.1 to the sequences {di}i∈K1 and {di}i∈K2 , with η0 = η,

to obtain two sequences {d̃i}i∈K1 and {d̃i}i∈K2 such that

∑
i∈K1

d̃i + η =
∑
i∈K1

di and
∑
i∈K2

(B − d̃i) + η =
∑
i∈K2

(B − di).
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Setting d̃i = di for i /∈ K1 ∪K2 we have

∑
i∈J1

(A− d̃i) =
∑
i∈K1

(A− d̃i) +
∑

i∈J1\K1

(A− di) = |K1|A−
∑
i∈K1

d̃i +
∑

i∈J1\K1

(A− di)

= |K1|A+ η −
∑
i∈K1

di +
∑

i∈J1\K1

(A− di) = η +
∑
i∈J1

(A− di)

= η + C1 = AZ.

Theorem III.1.1 implies there is a projection P with Z dimensional kernel such that

AP has diagonal {d̃i}i∈J1 . It is clear that if |J1| =∞ then mP (1) =∞.

If (i) holds, that is C2+C3 =∞, then Theorem III.1.1 implies there is a projection

Q1 such that (B − A)Q1 has diagonal {d̃i − A}i∈J2∪J3 . Since

∑
i∈J2∪J3

(d̃i − A) =
∑

i∈J2∪J3

(
(B − A)− (d̃i − A)

)
=∞,

we also see that mQ1(0) = mQ1(1) =∞. Set Ẽ = AP ⊕
(
(B−A)Q1 +A

)
. It is clear

that mẼ(0) = Z, σ(Ẽ) = {0, A,B}, and mẼ(A) = mẼ(B) =∞. By the second part

of Lemma III.2.1 there is an operator E, unitarily equivalent to Ẽ, with diagonal

{di}i∈I .

If (ii) holds, then using (IV.5.18) we have

∑
i∈J2

(d̃i − A)−
∑
i∈J3

(B − d̃i) = η +
∑
i∈J2

(di − A)−
∑
i∈J3

(B − di) = η + C2 − C3

= AZ − C1 + C1 − An−Bk = −k(B − A).

Theorem III.1.1 implies there is a projection Q2 such that (B −A)Q2 has diagonal

{d̃i − A}i∈J2∪J3 . The operator Ẽ = AP ⊕
(
(B − A)Q2 + A

)
has diagonal {d̃i}i∈I ,

and it is clear that mẼ(0) = Z and σ(Ẽ) = {0, A,B}. Note that if |J2| = ∞ then

mQ2(0) =∞ and we already noted that |J1| =∞ implies mP (1) =∞; in either case

mẼ(A) =∞. If |J3| =∞ we have mQ2(1) =∞ and thus mẼ(B) =∞. If |J3| <∞
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then we have

∑
i∈J2∪J3

(d̃i − A) =
∑
i∈J2

(d̃i − A)−
∑
i∈J3

(B − d̃i) +B|J3| = B(|J3| − k),

which implies mQ2(1) = |J3| − k, and thus mẼ(B) = |J3| − k. By the second part

of Lemma III.2.1 there is an operator E, unitarily equivalent to Ẽ, with diagonal

{di}. This completes the proof of Case 1.

Case 2: Assume ∑
i∈J1

di ≤ η.

This implies J1 is a finite set and that |J1| ≤ Z. Since |J1 ∪ J2| = ∞ this implies

|J2| =∞, and thus ∑
i∈J2

(B − di) =∞.

Let L1, K2 ⊂ J2 ∪ J3 be disjoint finite sets which satisfy three conditions:

∑
i∈K2

(B − di) > BZ,

|L1| = Z − |J1|, and max{di}i∈L1 ≤ min{di}i∈K2 . Set K1 = J1 ∪ L1. Apply Lemma

III.2.1 to the sequences {di}i∈K1 and {di}i∈K2 with

η0 =
∑
i∈K1

di < BZ

to obtain two sequences {d̃i}i∈K1 and {d̃i}i∈K2 . The choice of η0 implies that {d̃i}i∈K1

is a sequence of Z zeroes. Set d̃i = di for i /∈ K1 ∪K2.

If (i) holds, then we still have

∑
i∈J2

(d̃i − A) +
∑
i∈J3

(B − d̃i) =∞.

Theorem III.1.1 implies that there is a projection Q1 such that (B − A)Q1 has

diagonal {d̃i − A}i∈J2∪J3 . We also have |J2 ∪ J3| = ∞ and mQ1(0) = mQ1(1) = ∞.
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Let 0Z be the zero operator on a Z dimensional Hilbert space, and set Ẽ = 0Z⊕
(
(B−

A)Q1 +A
)
. It is clear that Ẽ has diagonal {d̃i}, mẼ(0) = Z, σ(Ẽ) = {0, A,B}, and

mẼ(A) = mẼ(B) = ∞. By the second part of Lemma III.2.1 there is an operator

E, unitarily equivalent to Ẽ, with diagonal {di}i∈I .

If (ii) holds then by (IV.5.18) we have

∑
i∈J2\L1

(d̃i − A)−
∑
i∈J3

(B − d̃i) = η0 +
∑

i∈J2\L1

(di − A)−
∑
i∈J3

(B − di)

=
∑
i∈J1

di +
∑
i∈L1

di +
∑

i∈J2\L1

(di − A)− C3

= −C1 + C2 − C3 + (|J1|+ |L1|)A

= −nA− kB + ZA = −k(B − A).

Theorem III.1.1 implies there is a projection Q2 such that (B −A)Q2 has diagonal

{d̃i − A}i∈(J2∪J3)\L1 . Since J2 is infinite we have mQ2(0) = ∞. If J3 is infinite then

we also have mQ2(1) =∞. If |J3| <∞ then

∑
i∈(J2∪J3)\L1

(d̃i−A) =
∑

i∈J2\L1

(d̃i−A)−
∑
i∈J3

(B− d̃i)+ |J3|(B−A) = (|J3|−k)(B−A),

which implies mQ2(1) = |J3| − k. The operator Ẽ = 0Z ⊕
(
(B −A)Q2 +A

)
has the

desired eigenvalues and multiplicities and diagonal {d̃i}. The second part of Lemma

III.2.1 implies there is an operator E, unitarily equivalent to Ẽ, with diagonal {di}.

This completes the proof of this case.

Case 3: Assume ∑
i∈J2∪J3

(B − di) ≤ η.

This implies J2 is finite, since di < (B+A)/2 for all i ∈ J2. By hypothesis |J1∪J2| =

∞, and thus J1 must be infinite. Moreover, A is a limit point of {di}i∈J1 , since
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∑
i∈J1(A− di) <∞ and di < A for all i ∈ J1. There is some N0 ∈ N such that

(B − A)N0 > η.

Choose α ∈ (0, A) such that ∑
di<α

di > AN0.

Set K1 = {i ∈ J1 : di < α}. Since A is a limit point of {di}i∈J1 , we can find a set

K2 ⊆ {i ∈ J1 : di ≥ α} with N0 elements, and clearly

∑
i∈K2

(A− di) < AN0.

We apply Lemma III.2.1 to the sequences {di}i∈K1 and {di}i∈K2 on the interval [0, A]

with

η0 =
∑
i∈K2

(A− di)

to obtain two sequences {d̃i}i∈K1 and {d̃i}i∈K2 . Using (III.2.3) we see that {d̃i}i∈K2

is a sequence of N0 terms equal to A. We also have

∑
i∈K1

(A− d̃i) = |K1|A−
∑
i∈K1

d̃i = |J1|A−
∑
i∈K1

di −
∑
i∈K2

(A− di) =
∑

i∈K1∪K2

(A− di).

Set d̃i = di for i ∈ I \ (K1 ∪K2). Define the sets

J̃1 = {i : d̃i < A}, J̃2 =

{
i : d̃i ∈

[
A,
A+B

2

)}
, J̃3 =

{
i : d̃i ≥

A+B

2

}
.

We have

∑
i∈J̃1

(A− d̃i) =
∑

i∈J1\(K1∪K2)

(A− di) +
∑
i∈K1

(A− d̃i)

=
∑

i∈J1\(K1∪K2)

(A− di) +
∑

i∈K1∪K2

(A− di) =
∑
i∈J1

(A− di) = C1.
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Since d̃i = A for all i ∈ K2 we have

∑
i∈J̃2

(d̃i − A) =
∑
i∈J2

(di − A) +
∑
i∈K2

(d̃i − A) =
∑
i∈J2

(di − A) = C2.

Lastly, d̃i = di for all i ∈ J3, and thus

∑
i∈J̃3

(B − d̃i) = C3.

However, ∑
i∈J̃2∪J̃3

(B − d̃i) =
∑

i∈J2∪J3

(B − di) + (B − A)N0 > η.

This implies that {d̃i}i∈I satisfies the conditions of Case 1, and thus there is an

operator Ẽ with the desired eigenvalues and multiplicities and diagonal {d̃i}i∈I . By

the second part of Lemma III.2.1, there is an operator E, unitarily equivalent to Ẽ,

with diagonal {di}i∈I . This completes the proof of this case and the proof of the

theorem. �

As a corollary of Theorems IV.5.4 and IV.5.5 we deduce part (d) of Theorem

IV.1.3. This will complete the proof of Theorem IV.1.3.

Corollary IV.5.6. Let 0 < A < B <∞ and let {di}i∈I be a sequence in [0, B]. Let

Z,K ∈ N. There exists a self-adjoint operator E with σ(E) = {0, A,B}, mE(0) = Z,

mE(A) =∞, mE(B) = K and diagonal {di} if and only if |I| =∞, C1 ≤ ZA and

(IV.5.19)
∑
i∈I

(di − A) = K(B − A)− ZA.

Proof. First, assume that |I| = ∞, C1 ≤ ZA and (IV.5.19) holds. It is clear that

|J3| <∞ and thus |J1 ∪ J2| = |I| − |J3| =∞. We have

C1 − C2 + C3 = −
∑
i∈I

(di − A) + |J3|(B − A) = (Z +K − |J3|)A+ (|J3| −K)B.
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By Theorem IV.5.5 the desired operator exists.

Next, assume the operator E exists. Note that E − A is a finite rank operator,

and thus it has a well defined trace. In particular

∑
i∈I

(di − A) = K(B − A)− AZ.

This implies C2 < ∞ and |J3| < ∞, which clearly implies C3 < ∞. By Theorem

IV.5.4 we have C1 ≤ ZA and |J1∪J2| =∞, which immediately implies |I| =∞. �

IV.6. Examples

To demonstrate the use of Theorem IV.1.1 we will consider the following problem:

Given a sequence {di} in [0, 1], for what values of A is there a positive operator E

with σ(E) = {0, A, 1} and diagonal {di}? First, we will prove the following general

theorem.

Theorem IV.6.1. Let {di}i∈N be a sequence in [0, 1] and set

A =
{
A ∈ (0, 1) : there exists E ≥ 0 with σ(E) = {0, A, 1} and diagonal {di}

}
.

Either A = (0, 1) or A is a finite (possibly empty) set.

Proof. For each A ∈ (0, 1) define

C(A) =
∑
di<A

di and D(A) =
∑
di≥A

(1− di).

Note that if C(A) + D(A) = ∞ for some A ∈ (0, 1) then C(A) + D(A) = ∞ for

all A ∈ (0, 1). By Theorem IV.4.2 we have A = (0, 1). Thus, we will assume

C(A), D(A) <∞ for all A ∈ (0, 1).

First, we wish to show that supA < 1. Assume to the contrary that supA = 1.

Note that there exists η ∈ [0, 1) such that η = C(A)−D(A)− bC(A)−D(A)c for

all A ∈ (0, 1), where b·c is the greatest integer function. Thus, for each A ∈ (0, 1)
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there exists m(A) ∈ Z such that

C(A)−D(A) = m(A) + η.

By Theorem IV.4.2, for each A ∈ A there exists N(A) ∈ N and k(A) ∈ Z such that

(IV.6.20)

m(A) + η = C(A)−D(A) = N(A)A+ k(A) and C(A) ≥ (N(A) + k(A))A.

Using (IV.6.20) we have

(IV.6.21) m(A) + η = N(A)A+ k(A) < N(A) + k(A) ≤ C(A)

A
.

Since η ≥ 0 and m(A), N(A), k(A) ∈ Z, we can improve the left inequality to

(IV.6.22) m(A) + 1 ≤ N(A) + k(A).

Thus, for each A ∈ A we must have

(IV.6.23) A(m(A) + 1) ≤ C(A).

Next, note that for A,A′ ∈ A with A′ > A we have

m(A′)−m(A) = C(A′)− C(A) +D(A)−D(A′) =
∑

A≤di<A′
di +

∑
A≤di<A′

(1− di)

= |{i ∈ N : A ≤ di < A′}|.

Using this gives

(IV.6.24) C(A′)− C(A) =
∑
di<A′

di −
∑
di<A

di =
∑

A≤di<A′
di < A′(m(A′)−m(A)).

Putting together (IV.6.23) and (IV.6.24) we have

A′(m(A′) + 1)− C(A) ≤ C(A′)− C(A) < A′(m(A′)−m(A)).
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Rearranging this inequality gives

A′(m(A) + 1) < C(A).

Since supA = 1 we can let A′ → 1 and we have

m(A) + 1 ≤ C(A).

Finally, since D(A) → 0 as A → 1, for large enough A we have D(A) < 1 − η and

thus

C(A) < C(A)−D(A)− η + 1 = m(A) + 1

which gives a contradiction, and shows that Asup = supA < 1. A symmetric

argument shows that Ainf = infA > 0.

Since C(A) and m(A) are nondecreasing as A → 1, for each A ∈ A we have

C(Ainf) ≤ C(A) ≤ C(Asup) and m(Ainf) ≤ m(A) ≤ m(Asup). Using (IV.6.21) and

(IV.6.22), for A ∈ A we have

m(Ainf) + 1 ≤ m(A) + 1 ≤ N(A) + k(A) ≤ C(A)

A
≤ C(Asup)

Ainf

.

This shows that {N(A) + k(A) : A ∈ A} and {m(A) : A ∈ A} are finite sets of

integers. Next, we note that for A ∈ A we have

N(A)Asup ≥ N(A)A = m(A) + η − k(A) ≥ m(Ainf) + η +N(A)− C(Asup)

Ainf

.

Rearranging this inequality gives

N(A) ≤
C(Asup)

Ainf
−m(Ainf)− η

1− Asup

,

which implies that {N(A) : A ∈ A} ⊆ N is finite. Since {N(A) + k(A) : A ∈ A} is

finite, we also see that {k(A) : A ∈ A} is finite. Finally, we note that for A ∈ A we
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have

A =
m(A) + η − k(A)

N(A)
,

which clearly implies that A is finite. �

Next, we will find the set A from Theorem IV.6.1 for a few specific sequences.

Example IV.6.2. Let β ∈ (0, 1/2) and define the sequence {di}i∈Z\{0} by

di =


1− βi i > 0

β−i i < 0.

Define the set

Aβ =
{
A ∈ (0, 1) : ∃E ≥ 0 with σ(E) = {0, A, 1} and diagonal {di}

}
.

We will show that

Aβ =


{1

3
, 1

2
, 2

3
} −1+

√
13

6
≤ β < 1/2

{1
2
} 1/3 ≤ β < −1+

√
13

6

∅ 0 < β < 1/3.

First, assume A ∈ Aβ ∩ (β, 1− β], and thus

C =
∑
di<A

di =
∞∑
i=1

βi =
β

1− β
and D =

∑
di≥A

(1− di) =
∞∑
i=1

βi =
β

1− β
.

From Theorem IV.4.2 there exists N ∈ N and k ∈ Z such that

(IV.6.25) 0 = C −D = NA+ k

and

(IV.6.26)
β

1− β
= C ≥ (N + k)A.
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Using (IV.6.25) and A ≤ 1− β we have

0 < βN = NA+ k + βN ≤ N(1− β) + k + βN = N + k,

and thus N + k > 0. Now, we use (IV.6.26), β < A, then β < 1/2 to see

N + k < (N + k)
A

β
≤ β−1 β

1− β
=

1

1− β
< 2.

Since N + k ∈ Z we see that N + k = 1. Solving for A in (IV.6.25) we have

A =
−k
N

=
N − 1

N
= 1− 1

N
.

Since A = 1 − N−1 ∈ (β, 1 − β], this shows that 1 < (1 − β)−1 < N ≤ β−1. If

β > 1/3, then N ≤ β−1 < 3, and thus N = 2. A simple check will show that N = 2,

k = −1 and A = 1/2 satisfy (IV.1.1) and (IV.1.2) if and only if β ≥ 1/3. Thus,

Aβ ∩ (β, 1−β] = {1/2} for β > 1/3 and Aβ ∩ (β, 1−β] = ∅ for β < 1/3. If β = 1/3

then we see 1 < N ≤ 3, and thus N = 2 or N = 3. We have already seen that

N = 2, k = −1 and A = 1/2 satisfy (IV.1.1) and (IV.1.2). It is simple to check

that N = 3, k = −2 and A = 2/3 do not satisfy (IV.1.1) and (IV.1.2), and thus

A1/3 ∩ (β, 1− β] = {1/2}.

Next, assume A ∈ Aβ ∩ (1− βm, 1− βm+1] for some m ∈ N. We have

C =
β

1− β
+

m∑
i=1

(1− βi) = m+
βm+1

1− β
and D =

∞∑
i=m+1

βi =
βm+1

1− β

By Theorem IV.4.2 there exist N ∈ N and k ∈ Z such that

(IV.6.27) m = C −D = NA+ k

and

(IV.6.28) m+
βm+1

1− β
= C ≥ (N + k)A.
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Using (IV.6.27) and A ≤ 1− βm+1 we have

(IV.6.29) m < m+Nβm+1 ≤ NA+k+Nβm+1 ≤ N(1−βm+1)+k+Nβm+1 = N+k.

Using (IV.6.28) and A > 1− βm we have

m+
βm+1

1− β
≥ (N + k)A > (N + k)(1− βm).

Rearranging, and using β < 1/2 we have

(IV.6.30) N + k <

(
m+

βm+1

1− β

)
1

1− βm
<

(
m+

1

2m

)
2m

2m − 1
= m+

1 +m

2m − 1
.

A simple calculation shows that 1+m
2m−1

≤ 1 for all m ≥ 2. Combining this with

(IV.6.29) shows that m < N + k < m + 1 for m ≥ 2. Since N + k ∈ Z this shows

that Aβ ∩ (1− β2, 1) = ∅.

Now, restrict to A ∈ (1 − β, 1 − β2]. In this case (IV.6.29) and (IV.6.30) imply

1 < N+k < 3, which implies N+k = 2. Solving (IV.6.27) for A and using N+k = 2

we have

A =
1− k
N

= 1− 1

N
.

Since A > 1− β > 1/2 this implies N > 1/β > 2. From (IV.6.28) we see

1 +
β2

1− β
≥ 2A = 2− 2

N
.

Rearranging this we have

N ≤ 2− 2β

1− β − β2
.

For β < −1+
√

13
6

we have 2−2β
1−β−β2 < 3 and thus N < 3. Combined with the fact

that N > 2, we see A ∩ (1 − β, 1 − β2] = ∅ for β < −1+
√

13
6

. Finally, assume

−1+
√

13
6
≤ β < 1/2. Then 2−2β

1−β−β2 < 4 and we must have N = 3, A = 2
3

and k = −1.

63



It is clear that (IV.1.1) holds. For (IV.1.2), we use the fact that β ≥ −1+
√

13
6

to see

C = 1 +
β2

1− β
≥ 4

3
= (N + k)A.

Thus, by Theorem IV.4.2, for β ≥ −1+
√

13
6

we have 2/3 ∈ Aβ.

Finally, since {di} is symmetric about 1/2, if A ∈ Aβ then 1 − A ∈ Aβ. Thus

Aβ ∩ (0, β] = {1/3} for −1+
√

13
6
≤ β < 1/2 and the set is empty for β < −1+

√
13

6
. �

In the above example, note that for any choice of β, we have C −D ∈ Z for any

choice of A ∈ (0, 1). Thus, Theorem III.1.1 implies that there is a projection with

diagonal {di}. However, if β < 1/3 then there is no A ∈ (0, 1) so that {di} is the

diagonal of a self-adjoint operator E with σ(E) = {0, A, 1}. The next example is

not the diagonal of any projection, but we will show that it is the diagonal of many

different operators with three point spectrum.

Example IV.6.3. Let {di}i∈Z be given by

di =


2i−1 i ≤ 0

1− 2−i−1 i > 0.

Let

A =
{
A ∈ (0, 1) : there exists E ≥ 0 with σ(E) = {0, A, 1} and diagonal {di}

}
.

We claim that

A =

{
1

2n
: n = 1, 2, . . . , 8

}
∪
{

2n− 1

2n
: n = 1, 2, . . . , 8

}
.

The sequence {di} is symmetric about 1/2, and thus A ∈ A implies 1 − A ∈ A.

Hence, it is enough to show that

A ∩
[

1
2
, 1
)

=

{
2n− 1

2n
: n = 1, 2, . . . , 8

}
.
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Assume A ∈ A ∩ (1− 2−m, 1− 2−m−1] for some m ≥ 1. We have

C = m− 1

2
+

1

2m
and D =

1

2m
.

Since A ∈ A, Theorem IV.4.2 implies that there exist N ∈ N and k ∈ Z such that

(IV.6.31) C −D = m− 1

2
= NA+ k

(IV.6.32) C = m− 1

2
+ 2−m ≥ (N + k)A.

Using (IV.6.31) and A ≤ 1− 2−m−1 we have

(IV.6.33)

m−1 < m−1

2
+N2−m−1 = NA+k+N2−m−1 ≤ N(1−2−m−1)+k+N2−m−1 = N+k.

From (IV.6.32) and A > 1− 2−m we have

m− 1

2
+ 2−m ≥ (N + k)A > (N + k)(1− 2−m).

Rearranging gives

(IV.6.34) N + k <

(
m− 1

2
+ 2−m

)
2m

2m − 1
= m+

m− 2m−1 + 1

2m − 1
.

For m ≥ 4, a simple calculation shows m−2m−1+1
2m−1

< 0 and thus N+k < m. However,

from (IV.6.33) we have N + k > m− 1. Since N + k ∈ Z this is a contradiction and

shows that A ∩ (1− 2−m, 1− 2−m−1] = ∅ for m ≥ 4.

One can easily check that A = 1/2 satisfies (IV.1.1) and (IV.1.2) with N = 1 and

k = −1 (or N = 3 and k = −2). All that is left is to find A ∩ (1− 2−m, 1− 2−m−1]

for m = 1, 2 and 3. The calculation for each m is similar, so the cases of m = 2 and

3 will be left to the reader.
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Assume A ∈ A ∩ (1/2, 3/4]. In this case we have C = 1 and D = 1/2. From

(IV.6.33) and (IV.6.34) we have 0 < N + k < 2 and thus N + k = 1. Using this and

solving (IV.6.31) for A we have

A =
1
2
− k
N

=
N − 1

2

N
= 1− 1

2N
.

From the inequalities 1/2 < A = 1 − 1/(2N) ≤ 3/4 we obtain 1 < N ≤ 2. Thus

N = 2, A = 3/4 and k = −1. One can easily check that (IV.1.1) and (IV.1.2) are

satisfied for these values of A,N and k. �
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CHAPTER V

THE SCHUR-HORN PROBLEM IN FRAME THEORY

V.1. Frames

In this chapter we exhibit a connection between diagonals of self-adjoint operators

and frames. The material in this chapter is contained in a paper co-authored with

Marcin Bownik [7] which has been accepted for publication in Journal für die reine

und angewandte Mathematik.

First, we need to introduce some basic notions from frame theory.

Definition V.1.1. A sequence {fi}i∈I in a Hilbert space H is called a frame if there

exist 0 < A ≤ B <∞ such that

(V.1.1) A‖f‖2 ≤
∑
|〈f, fi〉|2 ≤ B‖f‖2 for all f ∈ H.

The numbers A and B are called the frame bounds. The supremum over all A and

infimum over all B which satisfy (V.1.1) are called the optimal frame bounds. If

A = B, then {fi} is said to be a tight frame. In addition, if A = B = 1, then {fi}

is called a Parseval frame.

The basic connection between frame theory and operator theory is via the follow-

ing operators.
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Definition V.1.2. If {fi}i∈I is a frame we call the operator T : H → `2(I), given

by

(V.1.2) Tf = {〈f, fi〉}i∈I ,

the analysis operator. The adjoint T ∗ : `2(I)→ H given by

(V.1.3) T ∗
(
{ai}i∈I

)
=
∑
i∈I

aifi

is called the synthesis operator. The operator S = T ∗T given by

(V.1.4) Sf =
∑
i∈I

〈f, fi〉fi

is called the frame operator.

Many standard facts about frames can be found in [11]. We will find use for the

following proposition in the next section.

Proposition V.1.3. If {fi}i∈I is a frame for H and S is the frame operator, then

{S−1/2fi}i∈I is a Parseval frame for H.

V.2. Frame norms and diagonals

In this section we reformulate the problem of characterizing norms of frames to an

equivalent problem of characterizing diagonals of positive operators with prescribed

lower and upper bounds. We start with the following basic fact.

Proposition V.2.1. Let H be a Hilbert space with an orthonormal basis {ei}i∈I

and let 0 < A ≤ B <∞. If E is a positive operator with σ(E) ⊆ {0} ∪ [A,B], then

{Eei} is a frame for the Hilbert space E(H) with frame bounds A2 and B2.
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Proof. Let f ∈ E(H). We have

∑
i∈I

|〈f, Eei〉|2 =
∑
i∈I

|〈Ef, ei〉|2 = ‖Ef‖2.

This clearly implies that B2 is an upper frame bound. Since f ∈ E(H) we have

‖Ef‖ ≥ A‖f‖, which shows that A2 is a lower frame bound. �

Our goal is to establish the converse statement. That is, any frame in H is an

image of an orthonormal basis of a larger Hilbert space K ⊃ H under a positive

operator. This generalizes the classical dilation theorem for Parseval frames due to

Han and Larson [14, Proposition 1.1], which says that Parseval frames are images

of orthonormal bases under orthogonal projections. Proposition V.2.2 is essentially

contained in the work of Antezana, Massey, Ruiz, and Stojanoff [1, Proposition 4.5].

In particular, the authors of [1] established the relationship of our problem with the

Schur-Horn Theorem of majorization theory which we state in a convenient form in

Theorem V.2.3.

Proposition V.2.2. Let {fi}i∈I be a frame for H with optimal frame bounds A2

and B2. Then there exists an isometry Φ : H → `2(I) and a positive operator

E : `2(I) → Φ(H) such that {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B] and Eei = Φfi, where

{ei}i∈I is the coordinate basis of `2(I). If S is the frame operator of {fi}i∈I and 0e

is the zero operator on Φ(H)⊥, then E2 is unitarily equivalent to S ⊕ 0e.

Proof. Let S be the frame operator of {fi}. By Proposition V.1.3, {S−1/2fi} is a

Parseval frame. Set pi = S−1/2fi, and let Φ be the analysis operator of {pi}. Since

{pi} is a Parseval frame, Φ is an isometry. Let P be the orthogonal projection onto

Φ(H). As a consequence of the Han-Larson dilation theorem for Parseval frames

[14, Proposition 1.1] we have Pei = Φpi for all i ∈ I. Hence, we also have Φ∗ei = pi.

Define the operator E = ΦS1/2Φ∗. Clearly, E is a self-adjoint operator on `2(I).
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Observe that

Eei = ΦS1/2Φ∗ei = ΦS1/2pi = ΦS1/2S−1/2fi = Φfi.

Thus,

‖Ef‖2 =
∑
i∈I

|〈Ef, ei〉|2 =
∑
i∈I

|〈f, Eei〉|2 =
∑
i∈I

|〈f,Φfi〉|2.

Since Φ is an isometry, {Φfi}i∈I is a frame for Φ(H) with optimal frame bounds

A2 and B2. The frame property now implies A2‖f‖2 ≤ ‖Ef‖2 ≤ B2‖f‖2, which in

turn implies that {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B].

Finally, define U : H⊕ Φ(H)⊥ → `2(I) by

Uf =


Φf f ∈ H,

f f ∈ Φ(H)⊥.

It is clear that U is unitary, since Φ : H → Φ(H) is an isometric isomorphism. Note

that Φ∗Φ is the identity on H, thus

E2 = ΦS1/2Φ∗ΦS1/2Φ∗ = ΦSΦ∗.

Finally, for f ∈ H,

E2Uf = E2Φf = ΦSf = USf,

and for f ∈ Φ(H)⊥,

E2Uf = E2f = ΦSΦ∗f = 0 = U0ef.

This proves the last part of Proposition V.2.2. �

One should remark that Han and Larson [14] gave a different extension of their

frame dilation result than Proposition V.2.2. In [14, Proposition 1.6] it is shown
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that any frame is an image of a Riesz basis under an orthogonal projection, and the

frame and Riesz bounds are the same.

Next, we show that the problem of characterizing the sequence of norms of a

frame can be reformulated into the problem of characterizing the diagonals of a

certain set of self-adjoint operators. The characterization of this set of operators

is the content of the next chapter. This reformulation is due to Antezana, Massey,

Ruiz, and Stojanoff [1], who established the relationship of the frame norm problem

with the Schur-Horn Theorem. Consequently, a characterization of norms of finite

frames follows from the Schur-Horn Theorem. The special tight case A = B is a

celebrated theorem of Kadison [16, 17], which gives a complete characterization of

diagonals of projections.

Theorem V.2.3. Suppose 0 < A ≤ B < ∞, H is a Hilbert space, and {ei}i∈I is

the coordinate basis of `2(I). The following sets are equal:

N =
{
{‖fi‖2}i∈I

∣∣∣ {fi}i∈I is a frame for H with optimal bounds A and B
}
,

D =
{
{〈Eei, ei〉}i∈I

∣∣∣ E is self-adjoint on `2(I) with rank = dimH

and {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B]
}
.

Proof. First we show D ⊆ N . Let {di}i∈I ∈ D be the diagonal of E. Since E ≥ 0,

it has a positive square root E1/2 with {
√
A,
√
B} ⊆ σ(E1/2) ⊆ {0} ∪ [

√
A,
√
B].

By Proposition V.2.1 the sequence {E1/2ei}i∈I is a frame for the Hilbert space

E1/2(`2(I)) with frame bounds A and B. Since {
√
A,
√
B} ⊆ σ(E1/2) it is clear that

the bounds A and B are optimal. Since

‖E1/2ei‖2 = 〈E1/2ei, E
1/2ei〉 = 〈Eei, ei〉 = di,

this shows that {di} ∈ N .
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Next, we will show that N ⊆ D. Let {fi}i∈I be a frame for H with optimal frame

bounds A and B. By Proposition V.2.2 there is a isometry Φ : H → `2(I) and a

positive operator E : `2(I) → Φ(H) with {
√
A,
√
B} ⊆ σ(E) ⊆ {0} ∪ [

√
A,
√
B]

such that Eei = Φfi. Since {A,B} ⊆ σ(E2) ⊆ {0} ∪ [A,B], and

〈E2ei, ei〉 = 〈Eei, Eei〉 = ‖Eei‖2 = ‖Φfi‖2 = ‖fi‖2,

this shows that {‖fi‖2}i∈I ∈ D. �

A similar results holds for Riesz bases.

Definition V.2.4. A sequence {fi}i∈I in a Hilbert space H is called a Riesz basis

if it is complete and there exist 0 < A ≤ B <∞ such that

(V.2.5) A
∑
|ai|2 ≤

∥∥∥∥∑ aifi

∥∥∥∥2

≤ B
∑
|ai|2

for all finitely supported sequences {ai}i∈I . The numbers A and B are called the

Riesz bounds. The supremum over all A and infimum over all B which satisfy (V.2.5)

are called the optimal Riesz bounds.

Equivalently, a Riesz basis is a frame such that its synthesis operator T ∗, and

thus its analysis operator T , is an isomorphism. Moreover, optimal Riesz and frame

bounds are the same. Therefore, an analogue of Proposition V.2.2 for Riesz bases

involves operators E without zero in the spectrum. Consequently, we have the

following analogue of Theorem V.2.3.

Theorem V.2.5. Suppose 0 < A ≤ B < ∞, H is a Hilbert space, and {ei}i∈I is

the coordinate basis of `2(I). The following sets are equal:

N =
{
{‖fi‖2}i∈I

∣∣∣ {fi}i∈I is a Riesz basis for H with optimal bounds A and B
}
,

D =
{
{〈Eei, ei〉}i∈I

∣∣∣ E is self-adjoint on `2(I) and {A,B} ⊆ σ(E) ⊆ [A,B]
}
.
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CHAPTER VI

LOCALLY INVERTIBLE OPERATORS

VI.1. Statement of the main theorem

The goal of this chapter is to characterize the diagonals of self-adjoint operators

E with spectrum σ(E) such that A,B ∈ σ(E) ⊆ {0} ∪ [A,B]. Using Theorem

V.2.3 this gives a characterization of all possible sequences of norms of a frame with

prescribed optimal bounds A and B. The material in this chapter is contained in a

paper co-authored with Marcin Bownik [7] which has been accepted for publication

in Journal für die reine und angewandte Mathematik.

The problem of characterizing norms of frames with prescribed frame operator has

attracted a significant number of researchers. Casazza and Leon [8, 9] gave explicit

and algorithmic construction of finite tight frames with prescribed norms. Moreover,

Casazza, Fickus, Kovačević, Leon, and Tremain [10] characterized norms of finite

tight frames in terms of their “fundamental frame inequality” using frame potential

methods of Benedetto and Fickus [6]. An alternative approach using projection de-

composition was undertaken by Kornelson and Larson [12, 19], which yields some

necessary and some sufficient conditions for infinite dimensional Hilbert spaces. An-

tezana, Massey, Ruiz, and Stojanoff [1] established the connection of this problem
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with the infinite dimensional Schur-Horn problem and gave refined necessary condi-

tions and sufficient conditions. Finally, Kadison [16, 17] gave the complete answer

for Parseval frames, which easily extends to tight frames by scaling.

Our main result can be thought as infinite Schur-Horn Theorem for positive lo-

cally invertible operators. Note that the assumption of {di} being nonsummable in

Theorem VI.1.1 is not a true limitation. Indeed, the summable case requires more

restrictive conditions reflected in Theorem VI.2.1.

Theorem VI.1.1. Let 0 < A < B <∞ and {di}i∈I be a nonsummable sequence in

[0, B]. Define

(VI.1.1) C =
∑
di<A

di and D =
∑
di≥A

(
B − di).

Then there is a positive operator E on a Hilbert space H with {A,B} ⊆ σ(E) ⊆

{0} ∪ [A,B] and diagonal {di} if and only if one of the following holds:

(i) C =∞

(ii) D =∞

(iii) C,D <∞ and

(VI.1.2) there exists n ∈ N ∪ {0} nA ≤ C ≤ A+B(n− 1) +D.

As a corollary of Theorem VI.1.1 and Theorem V.2.3 we obtain the characteriza-

tion of sequences of frame norms.

Corollary VI.1.2. Let 0 < A < B < ∞ and {di} be a nonsummable sequence in

[0, B]. There exists a frame {fi} for some Hilbert space with optimal frame bounds

A and B and di = ||fi||2 if and only if (i), (ii), or (iii) from Theorem VI.1.1 hold.
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We would like to emphasize that the non-tight case is not a mere generalization

of the tight case A = B established by Kadison [16, 17], see Theorem III.1.1. In-

deed, the non-tight case is qualitatively different from the tight case, since by setting

A = B in Theorem VI.1.1 we do not get the correct necessary and sufficient con-

dition (III.1.1) previously discovered by Kadison, see Remark VI.3.4. Furthermore,

the non-tight summable and nonsummable cases require different characterization

conditions. This is again unlike the tight case, where the same condition (III.1.1)

works in either case.

The proof of Theorem VI.1.1 breaks into 3 distinctive parts. The summable case

does not require many new techniques since it reduces to the study of trace class

operators, and thus it can be deduced from the work of Arveson-Kadison [5] and

Kaftal-Weiss [18]. However, the nonsummable case is much more involved. The

sufficiency part of Theorem VI.1.1 requires special techniques of “moving” diagonal

entries to more favorable configurations, where it is possible to construct required

operators. This is done in Section 4 by considering a variety of cases, some of

which are tight in the sense that the required operator has a three point spectrum.

It is worth adding that our construction is quite explicit and algorithmic, always

leading to diagonalizable operators. Finally, Section 5 contains the necessity proof of

Theorem VI.1.1. This part is shown using arguments involving trace class operators

and Kadison’s Theorem III.1.1.

Theorem VI.1.1 has an analogue for operators without zero in the spectrum, see

Theorem VI.5.3. This result is much easier to prove and it leads to a characterization

of norms of Riesz bases with prescribed bounds. Finally, in the last section we

illustrate how our main theorem can be applied to determine the set A of possible

lower bounds of positive operators with fixed diagonal {di}. While we show that

it is always closed, A can take distinct configurations depending on the choice of

diagonal.
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VI.2. The summable case

The goal of this section is to establish the summable case of our main Theorem

VI.1.1. This special case can be deduced from a finite rank version of the Schur-Horn

Theorem (Theorem II.2.3).

Theorem VI.2.1. Suppose 0 < A ≤ B < ∞ and M ∈ N ∪ {∞}. Let {di}Mi=1 be

a summable sequence in [0, B]. There is a positive, rank N + 1 operator E on a

Hilbert space H with diagonal {di} and {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B] if and only if

(VI.2.3)
M∑
i=1

di ∈ [AN +B,A+BN ]

and

(VI.2.4)
∑
di<A

di ≥ A(N −m0 + 1), with m0 = |{i : di ≥ A}|.

Proof. Assume an operator E is as in Theorem VI.2.1. Because each of the N + 1

nonzero eigenvalues of E is at most B, and A is an eigenvalue, we have
∑
di =

tr(E) ≤ A+ BN . Similarly, since each of the N + 1 nonzero eigenvalues of E is at

least A, and B is an eigenvalue, we have
∑
di = tr(E) ≥ AN+B. After rearranging

{di} in non-increasing order, Theorem II.1.3 yields

∑
di<A

di =
M∑

i=m0+1

di ≥
M∑

i=m0+1

λi =
N+1∑

i=m0+1

λi ≥ A(N −m0 + 1),

where {λi} are the eigenvalues of E in non-increasing order (with multiplicity). This

shows that (VI.2.3) and (VI.2.4) are necessary.

Conversely, assume we have a sequence {di}Mi=1 which satisfies (VI.2.3) and (VI.2.4).

If
∑
di < A+ BN then there exists unique n0 ∈ {1, 2, . . . , N} and x ∈ [A,B) such
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that

(VI.2.5)
M∑
i=1

di = A(N − n0) + x+Bn0.

We set

λi =


B i ∈ {1, . . . , n0}

x i = n0 + 1

A i ∈ {n0 + 2, . . . , N + 1}.

If
∑
di = A+BN , simply let n0 = N − 1 and x = B. By Theorem II.2.3, we need

only check that the majoriztion property (II.2.5) holds for {di} and {λi}.

Combining (VI.2.4) and (VI.2.5), we have

(VI.2.6)

m0∑
i=1

di ≤ Bn0 + x+ A(m0 − n0 − 1).

For m ≤ m0, we have

m∑
i=1

di =

m0∑
i=1

di −
m0∑

i=m+1

di ≤
m0∑
i=1

di + A(m−m0).

For m0 < m ≤ N + 1, we have

m∑
i=1

di =

m0∑
i=1

di +
m∑

i=m0+1

di ≤
m0∑
i=1

di + A(m−m0).

In either case, combining these with (VI.2.6) yields

m∑
i=1

di ≤ Bn0 + x+ A(m− n0 − 1) ≤
m∑
i=1

λi for n0 + 1 ≤ m ≤ N + 1.

Finally, for m > N + 1 and m < n0 + 1 the majorization property is trivial. �

As a corollary of Theorems V.2.3 and VI.2.1 we have the following.

Corollary VI.2.2. Suppose 0 < A ≤ B <∞ and M ∈ N ∪ {∞}. Let {di}Mi=1 be a

summable sequence in [0, B]. There exists a frame {fi} for an (N + 1)-dimensional
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space with optimal frame bounds A and B and di = ||fi||2 if and only if (VI.2.3)

and (VI.2.4) hold.

In the nonsummable case the condition (VI.2.3) makes no sense. However, we

can give an alternate set of conditions which will generalize.

Theorem VI.2.3. Suppose 0 < A ≤ B < ∞ and M ∈ N ∪ {∞}. Let {di}Mi=1 be a

summable sequence in [0, B]. Define the numbers

C =
∑
di<A

di and D =
∑
di≥A

(
B − di).

There is a positive, rank N + 1 operator E on a Hilbert space H with diagonal {di}

and {A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B] if and only if

(VI.2.7) C ∈ [A(N −m0 + 1), A+B(N −m0) +D], with m0 = |{i : di ≥ A}|

and

(VI.2.8)
M∑
i=1

di ≥ AN +B.

Proof. Assuming (VI.2.3) and (VI.2.4) we have

C −D =
∑
di<A

di −
∑
di≥A

(B − di) =
M∑
i=1

di −m0B ≤ A+BN −m0B,

which shows C ≤ A+B(N −m0) +D. The other parts of (VI.2.7) and (VI.2.8) are

obvious. Similarly, assuming (VI.2.7) and (VI.2.8) we see

M∑
i=1

di = C −D +m0B ≤ A+B(N −m0) +D −D +m0B = A+BN,

and the other parts of (VI.2.3) and (VI.2.4) are obvious. �
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Note that if {di} is not summable, then (VI.2.8) is trivially satisfied. Thus it is a

reasonable and correct guess that a variant of (VI.2.7) is the necessary and sufficient

condition.

VI.3. The nonsummable case of the Carpenter’s Theorem

The goal of this section is to prove the sufficiency part of our main theorem. In

the terminology of Kadison [16, 17], this is a non-tight version of the Carpenter’s

Theorem.

Theorem VI.3.1. Suppose 0 < A < B < ∞. Let {di}i∈I be a nonsummable

sequence in [0, B] and

C =
∑
di<A

di, D =
∑
di≥A

(B − di).

If

(VI.3.9) C ∈
∞⋃
n=0

[An,A+B(n− 1) +D] ∪ {∞},

then there is a positive diagonalizable operator E on a Hilbert space H with {A,B} ⊆

σ(E) ⊆ {0} ∪ [A,B] and diagonal {di}i∈I .

Remark VI.3.2. In Theorem VI.3.1, the index set I may or may not be countable

and H may or may not be separable. The case of H being non-separable can be

reduced to the separable case. We will use the convention that a “sequence” {di}i∈I

can have an indexing set of any cardinality. Note that, if D = ∞, then the first

interval in the union is [0,∞] so (VI.3.9) is always satisfied. Similarly, if C = ∞,

then (VI.3.9) is always satisfied. Moreover, if A−B+D < 0, then we interpret the

interval [0, A − B + D] to be ∅. Thus, if D < B − A then C = 0 does not satisfy

(VI.3.9). Finally, note that the set in (VI.3.9) reduces to a finite union of intervals

since it always contains an infinite interval [(n+ 1)A,∞], where n = dA/(B −A)e.
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In the tight case A = B, the condition (VI.3.9) is necessary but not sufficient.

The correct condition was discovered by Kadison [16, 17], see Theorem III.1.1. We

state it in a rescaled form that is convenient for our purposes in this chapter.

Theorem VI.3.3 (Kadison). Let {di}i∈I be a sequence in [0, B]. For α ∈ (0, B)

define

a =
∑
di<α

di, b =
∑
di≥α

(B − di).

Then, there is an orthogonal projection P such that BP has a diagonal {di}i∈I if

and only if

(VI.3.10) a− b ∈ BZ ∪ {±∞}

with the convention that ∞−∞ = 0.

Remark VI.3.4. Note that the condition (VI.3.10) is independent of the choice of

α ∈ (0, B). That is, if (III.1.1) holds for some α, then it must hold for all α ∈ (0, B).

To see that conditions (VI.3.9) and (VI.3.10) are different in the tight case, consider

the sequence {di} which contains the terms {n−2}∞n=2 and {1− 2−n}∞n=1. For B = 1

and α = 1/2 we have a−b = π2−6
6
−1 /∈ Z. By Theorem VI.3.3 there is no projection

with diagonal {di}, although (VI.3.9) is satisfied since C =∞.

We are ready to give the proof of Theorem VI.3.1, which breaks into several cases.

Proof of Theorem VI.3.1. Throughout this proof let {ai} and {bi} be the subse-

quences of {di} in [0, A) and [A,B], respectively.

Case 1. Assume C =∞.

Partition {ai} into a countable number of sequences {a(k)
i } for each k ∈ N, each

with infinite sum. For each k ∈ N we apply Theorem VI.3.3 on [0, A + B−A
k

] with
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α = A. Since ∑
a
(k)
i <α

a
(k)
i =∞,

there is a projection Pk 6= I on a Hilbert space Hk such that the diagonal of (A +

B−A
k

)Pk is {a(k)
i }. Let S be the diagonal operator with the diagonal {bi} on a Hilbert

space H0. Then, the operator

E = S ⊕
∞⊕
k=1

(
A+

B − A
k

)
Pk

on the Hilbert space H =
⊕∞

k=0Hk has diagonal {di}. By construction σ(E) is the

closure of {0}∪{A+B−A
k

: k ∈ N}∪{bi}. This implies {A,B} ⊆ σ(E) ⊆ {0}∪[A,B].

Case 2. Assume D =∞.

First, suppose that A is not an accumulation point of {bi}. Partition {bi} into

two sequences {b(1)
i } and {b(2)

i } such that

(VI.3.11)
∞∑
i=1

(B − b(k)
i ) =∞ for k = 1, 2.

Let {ci} be the sequence consisting of {ai} and {b(1)
i }. By Theorem VI.3.3 on [0, B]

with α = A and ∑
ci≥α

(B − ci) =∞,

there is a projection P1 on a Hilbert space H1 such that BP1 has diagonal {ci}.

Define

ki =
b

(2)
i − A
B − A

.

The sequence {ki} is in [0, 1] and 0 is not an accumulation point. Thus, there exists

α ∈ (0, 1) such that ∑
ki≥α

(1− ki) =∞.
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By Theorem VI.3.3 there is a projection P2 on a Hilbert space H2 with diagonal

{ki}. The operator S = (B − A)P2 + AI is diagonalizable with eigenvalues A and

B, and diagonal {b(2)
i }. Thus, the operator E = BP1 ⊕ S on H1 ⊕H2 has diagonal

{di} and σ(E) = {0, A,B}.

Finally, suppose that A is an accumulation point of {bi}. Partition {bi} into two

infinite sequences {b(1)
i } and {b(2)

i } each with infimum A. Then (VI.3.11) holds. Let

P1 be a projection on H1 as before. Let S be the diagonal operator on a Hilbert

space H2 with {b(2)
i } on the diagonal. The operator E = BP1⊕S has diagonal {di}.

Clearly, σ(S) ⊆ [A,B], and since inf{b(2)
i } = A we have A ∈ σ(S). We also have

{0, B} = σ(BP1). This implies {A,B} ⊆ σ(E) = σ(BP1) ∪ σ(S) ⊆ {0} ∪ [A,B] as

desired.

Case 3. Assume C,D <∞ and C ∈ [An,A+B(n− 1) +D] for some n ∈ N.

We claim that it is enough to prove Case 3 when {di} is countable. The fact that

C,D < ∞ implies that the sequence {di} contains at most countably many terms

in (0, B). Assume that there exists an operator E with the desired spectrum and

diagonal consisting of only the terms of {di} in (0, B). Let I be the identity operator

on a Hilbert space of dimension |{i : di = B}|, and let 0 be the zero operator on a

Hilbert space of dimension |{i : di = 0}|. The operator E ⊕ BI ⊕ 0 has the same

spectrum as E and diagonal {di}. However, it may happen that the sequence of

terms contained in (0, B) is summable. This would imply that {di} must contain

infinitely many terms equal to B (since {di} is assumed to be nonsummable). In this

case we consider the sequence of terms in (0, B) together with a countable infinite

sequence with each term equal to B. If we can find an operator E with this diagonal

sequence and the desired spectrum, then E ⊕BI ⊕ 0 is again the desired operator.

This proves our claim.

Let n ∈ N be the largest integer such that C ∈ [An,A + B(n − 1) + D]. Since

{di} is not summable, {bi} is an infinite sequence. First, assume C = An. By
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Theorem VI.3.3 on [0, A] there is a projection P on a Hilbert space H1 such that

AP has diagonal {ai}. Let H2 be an infinite dimensional Hilbert space, and let S

be a diagonal operator with {bi} on the diagonal. Since {bi} is an infinite sequence

in [A,B] and D <∞ we clearly have B ∈ σ(S) and thus E = AP ⊕S is the desired

operator.

Next, assume C ∈ (An,A + B(n − 1)] and set x = C − An. Since sup{bi} = B,

there is some i0 ∈ N such that bi0 + x ≥ B. Define the sequence {ãi} to be the

sequence consisting of {ai} and bi0 . This sequence is summable and∑
ãi = C + bi0 = An+ x+ bi0 ≥ An+B,∑
ãi = C + bi0 ≤ A+B(n− 1) + bi0 ≤ A+Bn.

Since ∑
ãi<A

ãi = C ≥ nA,

and there is exactly one term in {ãi} in [A,∞), the sequence meets the conditions

of Theorem VI.2.1. Thus there is an operator S1 with A and B as eigenvalues,

σ(S1) ⊆ {0}∪ [A,B] and diagonal {ãi}. Define {b̃i} to be the sequence {bi}i 6=i0 . Let

S2 be the diagonal operator with {b̃i} on the diagonal. The operator E = S1 ⊕ S2

is the desired operator.

Next, assume C ∈ (A+B(n−1), A+B(n−1)+D) and set x = C−A−B(n−1).

Since x < D and x < C, there are N,M ∈ N such that

N∑
i=1

ai ≥ x and
M∑
i=1

(B − bi) ≥ x.

Apply Lemma III.2.1 part (i) to the sequences {ai}Ni=1 and {bi}Mi=1 with η0 = x to

get new sequences {ãi}Ni=1 and {b̃i}Mi=1 satisfying (III.2.2) and (III.2.3). Let {b̃i}∞i=1

be the sequence consisting of {b̃i}Ni=1 and {bi}∞i=N+1 and similarly define {ãi}. We

purposely omit indexing for {ãi} since the original sequence {ai} might be either
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finite or infinite. Set

(VI.3.12) C̃ =
∑

ãi and D̃ =
∑

(B − b̃i).

We have C̃ = A+ B(n− 1) and we can apply the previous case to get an operator

Ẽ with {A,B} ⊆ σ(Ẽ) ⊆ {0} ∪ [A,B] with diagonal consisting of {ãi} and {b̃i}.

Then, Lemma III.2.1 part (ii) yields an operator E with the same spectrum as Ẽ

and diagonal {ai} ∪ {bi}.

Finally, assume C = A+B(n− 1) +D. First, we look at the case where C = A.

This implies n = 1 and D = 0. Thus, {bi} is an infinite sequence with each term

equal to B. By Theorem VI.3.3 there is a projection P such that AP has diagonal

{ai}. Let F be the diagonal operator with {bi} on the diagonal. Then AP ⊕ F has

the desired spectrum and diagonal. Now, we may assume C > A.

Arrange the sequence {ai} in nonincreasing order and define

M0 = max

{
m :

m∑
i=1

ai ≤ A

}
and x = A−

M0∑
i=1

ai.

Observe that M0 ≥ 1 and there is N ≥M0 + 1 such that

N∑
i=M0+1

ai ≥ x.

It is also clear that
M0∑
i=1

(A− ai) ≥ x.

Apply Lemma III.2.1 part (i) to the sequences {ai}Ni=M0+1 and {ai}M0
i=1 on the interval

[0, A] with η0 = x to get new sequences {ãi}Ni=M0+1 and {ãi}M0
i=1 satisfying (III.2.2)

and (III.2.3). Let {ãi} be the sequence consisting of {ãi}Ni=1 and {ai}i≥N+1. By
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(III.2.3) observe that

M0∑
i=1

ãi =

M0∑
i=1

ai + x = A, and
∑

i≥M0+1

ãi =
∑

i≥M0+1

ai − x = C − A.

Thus, by Theorem VI.3.3 we can construct a rank one projection P such that the

operator AP has diagonal {ãi}M0
i=1. Define

a =
∑

i≥M0+1

ãi and b =
∞∑
i=1

(B − bi),

and note that a − b = C − A − D = (n − 1)B. Thus, by Theorem VI.3.3 there is

a projection Q such that BQ has diagonal consisting of {ãi}i≥M0+1 and {bi}. Now,

Ẽ = AP ⊕ BQ has diagonal consisting of {ãi} and {bi} and σ(Ẽ) = {0, A,B}.

Then, Lemma III.2.1 part (ii) yields an operator E with the same spectrum as Ẽ

and diagonal {ai} ∪ {bi}.

Case 4. Assume C ∈ [0, A−B +D].

Using the same argument as in Case 3, it suffices to consider only countable

sequences {di}. Note that it is implicitly assumed that D ≥ B − A > 0. First,

assume D = B−A. This implies C = 0 and ai = 0 for all i. Since
∑

(B−bi) = B−A,

by Theorem VI.3.3, there exists a projection P such that (B − A)P has diagonal

{B − bi}. Thus, E = BI − (B − A)P has the desired spectrum and diagonal {bi}.

For the rest of Case 4 we may assume D > B − A.

Now, assume C = 0. Reorder {bi} so that b1 = min{bi} and set η0 = b1 − A. We

have
∞∑
i=2

(B − bi) = D − (B − b1) > B − A−B + b1 = η0.

So there is some N such that

N∑
i=2

(B − bi) ≥ η0.
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Apply Lemma III.2.1 part (i) to {b1} and {bi}Ni=2 on the interval [0, B] to obtain

new sequences {b̃1} and {b̃i}Ni=2. Let {b̃i}∞i=1 be the sequence consisting of {b̃i}Ni=1

and {bi}∞i=N+1. Let Ẽ be the operator with {b̃i} on the diagonal (recall all of the ai

are 0). Clearly, {A,B} ⊆ σ(Ẽ) ⊆ [A,B]. Using Lemma III.2.1 part (ii) there exists

an operator E with the desired diagonal and spectrum.

Finally, we assume C > 0. Again, assume b1 = min{bi}. Fix any ε > 0 with

ε < min(A,C). Since

ε+B − A < C +B − A ≤ D =
∞∑
i=2

(B − bi) + (B − b1),

by subtracting (B − b1) from both sides we have

ε+ b1 − A <
∞∑
i=2

(B − bi).

Thus, there exists M ≥ 2 such that

M∑
i=2

(B − bi) > ε+ b1 − A.

Apply Lemma III.2.1 part (i) to the sequences {b1} and {bi}Mi=2 on the interval [0, B],

with η0 = ε+ b1 −A, to obtain sequences {b̃1} and {b̃i}Mi=2. By Lemma III.2.1 part

(i) we have

b̃1 = b1 − (ε+ b1 − A) = A− ε,

and
M∑
i=2

(B − b̃i) =
M∑
i=2

(B − bi)− (ε+ b1 − A).

Let {d̃i} be the sequence consisting of {ai}, {b̃i}Mi=1, and {bi}∞i=M+1. Set

C̃ =
∑
d̃i<A

d̃i = C + A− ε,

86



and

D̃ =
∑
d̃i≥A

(B − d̃i) =
M∑
i=2

(B − b̃i) +
∞∑

i=M+1

(B − bi)

= D − (B − b1)− (ε+ b1 − A) = D −B + A− ε.

Observe that C̃ > A. We also have

C̃ = A+ ε = D̃ −D +B + C ≤ D̃ −D +B + A−B +D = D̃ + A,

so that C̃ ∈ [A,A + D̃]. By the argument in Case 3, there is an operator Ẽ with

diagonal {d̃i} and the desired spectrum. By Lemma III.2.1 part (ii) there is an

operator E unitarily equivalent to E with diagonal {di}. This completes the proof

of Theorem VI.3.1. �

VI.4. The nonsummable case of the Pythagorean theorem

The goal of this section is to prove the necessity part of our main theorem. The

summable case was already shown in Section VI.2. The nonsummable case requires

special arguments involving trace-class operators and Kadison’s Theorem VI.3.3. In

the terminology of Kadison [16, 17], this is a non-tight version of the Pythagorean

theorem.

Theorem VI.4.1. Suppose 0 < A < B < ∞. Let E be a positive operator with

{A,B} ⊆ σ(E) ⊆ {0} ∪ [A,B]. Let {ei}i∈I be an orthonormal basis for H and let

di = 〈Eei, ei〉. If

(VI.4.13) C =
∑
di<A

di <∞ and D =
∑
di≥A

(B − di) <∞,

then

C ∈
∞⋃
n=0

[nA,A+B(n− 1) +D].
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Furthermore, K = B(I − P ) − E is a positive trace class operator on H, where P

is the orthogonal projection onto ker(E) ⊆ ker(K).

Observe that Theorem VI.4.1 does not require the assumption that {di} is non-

summable. However, if {di} is summable, Theorem VI.4.1 gives only a necessary,

but not sufficient, condition, see Theorem VI.2.3.

Proof of Theorem VI.4.1. We claim that it is sufficient to consider the case where

{di} is at most countable. The condition (VI.4.13) implies that the sequence {di}

contains at most countably many terms in (0, B). Thus, we need only consider

sequences {di} which contain an uncountable number of terms equal to 0 or B. Let

{ei}i∈I be the orthonormal basis with respect to which E has diagonal {di}i∈I . Let

J = {i : di = 0} ∪ {i : di = B}. Since E is a positive operator with ‖E‖ = B, for

each i ∈ J , ei is an eigenvector of E. Let E ′ be E acting on span{ei}i∈I\J . Note

that E acting on span{ei}i∈J is B times some projection Q. Thus, we have the

orthogonal decomposition E = E ′ ⊕ BQ. The operator E ′ has countable (possibly

finite) diagonal consisting of the terms of {di} contained in (0, B). Thus, E ′ has the

same values of C and D as E. If the conclusions of the theorem hold for E ′, then

because E = E ′ ⊕BQ, they also hold for E.

By the above, we can take indexing set to be I = Z \ {0}. For convenience, we

reorder the basis so that di ∈ [A,B] for i > 0 and di ∈ [0, A) for i < 0. The case

when there are only finitely many di ∈ [A,B], or di ∈ [0, A), does not cause any

extra difficulties, and it is left to the reader.

Let ki = 〈Kei, ei〉 and ni = 〈Pei, ei〉 be the diagonal entries of K and P , respec-

tively. Observe that K is a positive operator and thus

(VI.4.14) B(1− ni)− di = ki ≥ 0 for all i ∈ Z \ {0}.
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Since Bni ≤ B − di, we have

∞∑
i=1

Bni ≤
∞∑
i=1

(B − di) ≤ D <∞.

Hence,

(VI.4.15)
∞∑
i=1

ki =
∞∑
i=1

(B − di)−B
∞∑
i=1

ni ≤ D <∞.

Since σ(E) ⊆ {0} ∪ [A,B], we have A(I − P ) ≤ E. Thus, B − Bni ≤ B
A
di, which

immediately shows

∞∑
i=1

(B −Bn−i) ≤
B

A

∞∑
i=1

d−i =
BC

A
<∞.

Using (VI.4.14),

(VI.4.16)
∞∑
i=1

k−i =
∞∑
i=1

(B(1− n−i)− d−i) ≤
BC

A
− C <∞.

Since K is a positive operator, (VI.4.15) and (VI.4.16) show that K is trace class.

Observe that the diagonal entries of P satisfy

a =
∞∑
i=1

ni <∞ and b =
∞∑
i=1

(1− n−i) <∞.

Despite the fact that the above splitting of {ni} may not be the same as in Theorem

VI.3.3, for any α ∈ (0, 1) it differs only by a finite number of terms from the standard

splitting such that ni < α for i < 0 and ni ≥ α for i > 0. And this change does not

affect the property of a − b being an integer. Thus, by Theorem VI.3.3 applied to

the projection P we have n0 := b− a ∈ Z. Using (VI.4.15), and (VI.4.16) again we

have

(VI.4.17) tr(K) =
∑

i∈Z\{0}

ki = D − C +Bn0 ≤ D +
BC

A
− C.
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This immediately yields the lower bound for C:

(VI.4.18) An0 ≤ C.

Since A ∈ σ(E) we know that B−A is an eigenvalue of K and thus B−A ≤ tr(K).

Again using (VI.4.17) we see that

B − A ≤ D − C +Bn0.

This yields the upper bound

(VI.4.19) C ≤ A+B(n0 − 1) +D.

If n0 ≥ 0 then (VI.4.18) and (VI.4.19) show that C ∈ [n0A,A + B(n0 − 1) + D]

as desired. If n0 ≤ −1 then B(n0 − 1) ≤ −B and thus (VI.4.19) and the fact that

C ≥ 0 shows C ∈ [0, A − B + D] as desired. This completes the proof of Theorem

VI.4.1. �

As a corollary of Theorems V.2.3, VI.3.1, and VI.4.1 we obtain the following

result.

Corollary VI.4.2. Let 0 < A < B <∞ and let {di}i∈I be a nonsummable sequence

in [0, B]. The following are equivalent:

(i) {di}i∈I satisfies (VI.3.9),

(ii) there is a positive operator E on a Hilbert space `2(I) with {A,B} ⊆ σ(E) ⊆

{0} ∪ [A,B] and diagonal {di}i∈I ,

(iii) there exists a frame {fi}i∈I for some infinite dimensional Hilbert space H

with optimal frame bounds A and B and di = ||fi||2.

Proof. The equivalence (i) ⇐⇒ (ii) follows directly from Theorems VI.3.1 and

VI.4.1. Assume (ii). By Theorem V.2.3, there exists a frame {fi}i∈I with optimal
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frame bounds A and B and di = ||fi||2. This frame lives on a Hilbert space H

with dimH equal to rank of E. Since E is positive with infinite trace, H is infinite

dimensional, which shows (iii). The implication (iii) =⇒ (ii) similarly follows from

Theorem V.2.3. �

VI.5. Without zero in the spectrum

The goal of this section is to establish an analogue of Theorem VI.1.1 for positive

operators without zero in the spectrum. This result turns out to be less involved

than our main theorem. As a consequence, we obtain a characterization of norms of

Riesz bases with optimal bounds A and B. In the finite case, we obtain this result

immediately from the Schur-Horn Theorem.

Theorem VI.5.1. Let 0 < A ≤ B < ∞. Let {di}N+1
i=1 be a sequence in [A,B].

There is a positive operator E : RN+1 → RN+1 with {A,B} ⊆ σ(E) ⊆ [A,B] with

diagonal {di} if an only if

(VI.5.20)
N+1∑
i=1

di ∈ [AN +B,A+BN ].

Without zero in the spectrum the diagonal must be in [A,B], and thus there is

no summable infinite dimensional case. We can reformulate the condition (VI.5.20)

to something that generalizes to the infinite dimensional case.

Corollary VI.5.2. Let 0 < A ≤ B < ∞. Let {di}N+1
i=1 be a sequence in [A,B].

Define the numbers

(VI.5.21) C =
N+1∑
i=1

(di − A), D =
N+1∑
i=1

(B − di).
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There is a positive operator E : RN+1 → RN+1 with {A,B} ⊆ σ(E) ⊆ [A,B] with

diagonal {di} if and only if

(VI.5.22) C,D ≥ B − A.

Proof. The condition (VI.5.20) implies

C =
N+1∑
i=1

di − (N + 1)A ≥ AN +B −NA− A = B − A

and

D = (N + 1)B −
N+1∑
i=1

di ≥ NB +B − A−NB = B − A.

Conversely, it is also clear that these inequalities imply (VI.5.20). �

We can now state the infinite dimensional case.

Theorem VI.5.3. Let 0 < A ≤ B <∞. Let {di}i∈I be a sequence in [A,B]. Define

(VI.5.23) C =
∑
i∈I

(di − A), D =
∑
i∈I

(B − di).

There is a positive operator E with {A,B} ⊆ σ(E) ⊆ [A,B] with diagonal {di} if

an only if

(VI.5.24) C,D ≥ B − A.

Proof. We can assume that I is countable, since the non-separable case follows from

simple modifications as in the proof of Theorem VI.3.1. Suppose that E is a positive

operator as in Theorem VI.5.3. First, we assume D <∞. The operator BI−E is a

positive trace class operator with trace D. This implies that D =
∑

(B− λ), where

the sum runs over all eigenvalues λ of E, repeated according to multiplicity. We

also see that each x ∈ σ(E) \ {B} is an eigenvalue of E. Thus, A is an eigenvalue

of E and D ≥ B−A. Next, we assume C <∞. The operator E −AI is trace class
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with trace C. Since B is in the spectrum of E, it is an eigenvalue of E, and thus

C ≥ B − A. Finally, if C = D =∞, then (VI.5.24) trivially holds.

Conversely, suppose that {di} is a sequence in [A,B] satisfying (VI.5.24). If we

assume C,D > B − A, then we can find some N ∈ N such that both

N+1∑
i=1

(B − di) ≥ B − A and
N+1∑
i=1

(di − A) ≥ B − A.

By Corollary VI.5.2, there is an operator E1 on an N + 1-dimensional Hilbert space

HN+1 such that {A,B} ⊆ σ(E1) ⊆ [A,B] and diagonal {di}N+1
i=1 . Let E2 be the

diagonal operator on the infinite dimensional Hilbert space H∞ with {di}∞i=N+2 on

the diagonal. Now, E = E1 ⊕ E2 on HN+1 ⊕H∞ is the desired operator. Next, we

assume D = B−A. By Theorem VI.3.3 there is a rank 1 operator K with eigenvalue

B−A and diagonal {B−di}∞i=1. Then E = BI−K is the desired operator. Finally,

assume C = B−A. By Theorem VI.3.3 there is a rank 1 operator K with eigenvalue

B − A and diagonal {di − A}∞i=1. Then E = K + AI is the desired operator. �

As a corollary of Theorem V.2.5 we have the following result.

Corollary VI.5.4. Let 0 < A ≤ B <∞ and let {di} be a sequence in [A,B]. There

exists a Riesz basis {fi} with optimal bounds A and B and di = ||fi||2 if and only if

(VI.5.24) holds.

VI.6. Examples

The goal of this section is to illustrate our main theorem. We start with the

definition of the set of possible lower bounds of positive operators with a fixed

diagonal.

Definition VI.6.1. Let {di}i∈N be a given nonsummable sequence in [0, 1]. Define

A =

{
A ∈ (0, 1] :

there exists E ≥ 0 with diagonal {di}i∈N

and A ∈ σ(E) ⊆ {0} ∪ [A, 1]

}
.
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Without loss of generality we can assume that sup di = 1. Indeed, if sup di < 1,

then by Theorem VI.1.1 there exists a positive operator E with diagonal {di} and

{A, 1} ⊆ σ(E) ⊆ {0}∪ [A, 1] for any 0 < A ≤ 1. This fact can also be deduced from

a result of Kornelson and Larson [19, Theorem 6]. Thus, we have always A = (0, 1]

and this case is not interesting.

Example VI.6.2. Take any 0 < β < 1 and define di = 1 − βi for i ∈ N. First, we

determine the set A near 0. We claim that

(VI.6.25)
(0, 1− β] ⊆ A for 1/2 ≤ β < 1,

A ∩ (0, 1− β] = [(1− 2β)/(1− β), 1− β] for 0 < β < 1/2.

Indeed, if A ∈ (0, 1 − β], we have C = 0 and D =
∑∞

i=1 β
i = β/(1 − β). The

condition (VI.3.9) holds if and only if A−1 +D ≥ 0 and thus A ≥ (1−2β)/(1−β).

This shows the first claim. Next, we claim there exists

(VI.6.26) δ = δ(β) > 0 (1− δ, 1) ∩ A = ∅.

Moreover, 1 ∈ A if and only if β is of the form β = N/(N + 1) for some N ∈ N by

a simple application of Theorem VI.3.3.

Indeed, assume that A ∈ (1− βi, 1− βi+1] for some i ∈ N. Then

C = i+
βi+1 − β

1− β
, D =

βi+1

1− β
.

Suppose that C ∈ [nA,A+ n− 1 +D] for some n ∈ N. Then

(1− βi)n ≤ An ≤ C ≤ A+ n− 1 +D ≤ n+
βi+2

1− β
.
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The upper bound on C yields i ≤ n + β
1−β − β

i+1 and thus i ≤ n + b β
1−β c. On the

other hand, the lower bound (1− βi)(i− b β
1−β c) ≤ C yields

(VI.6.27) i ≥
{

β

1− β

}
(β−i − 1),

where {·} is the fractional part. Obviously, (VI.6.27) must fail for sufficiently large i

provided that β 6= N/(N+1) for some N ∈ N. In the special case of β = N/(N+1),

the upper bound on C actually yields i ≤ n+ β
1−β −1. A similar argument as before

shows that the lower bound for C must fail for sufficiently large i (depending on β).

Therefore, in either case we have (VI.6.26).

Finally, we claim that

(VI.6.28) A = [(1− 2β)/(1− β), 1− β] for 0 < β < 1/2.

By (VI.6.25), it suffices to consider A > 1− β. Since (VI.6.27) fails for 0 < β < 1/2

and i ≥ 2, we have (1 − β2, 1) ∩ A = ∅. Moreover, 1 6∈ A by Theorem VI.3.3.

Finally, if A ∈ (1 − β, 1 − β2] then C = 1 − β and D = β2

1−β . It is easy to see that

A− 1 +D < C < A. Thus, A ∩ (1− β, 1− β2] = ∅, which shows (VI.6.28).

Example VI.6.3. Let β ≈ 0.57 be the real root of β3 − (1 − β)2 = 0, and take

di = 1− βi for i ∈ N. We will show that

(VI.6.29) A = (0, 1− β] ∪
[
1− β2,

1

3
(2 + 2β − β2)

]
.

By previous consideration we have (0, 1 − β] ⊆ A. Moreover, a simple numerical

calculation shows that the inequality (VI.6.27) fails for i ≥ 5. Thus, (1−β5, 1]∩A =

∅.

Assume that A ∈ (1 − β, 1 − β2). We have C = 1 − β and D = β2

1−β . Note that

C < A, but

A− 1 +D <
β2

1− β
− β2 =

β3

1− β
= 1− β = C
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and thus A∩ (1− β, 1− β2) = ∅. But, if A = 1− β2 then we have A− 1 +D = C,

so that 1− β2 ∈ A.

Next, assume that A ∈ (1− β2, 1− β3]. We have C = 2− β − β2 and D = β3

1−β =

1− β. Since β < 3
5

we see that 2β < 2− β and

A ≤ 1− β3 = 2β − β2 < 2− β − β2 = C.

Now,

A+D ≥ 1− β2 + 1− β = C

so that C ∈ [A,A + D] and (1− β2, 1− β3] ⊆ A. A similar calculation shows that

(1− β3, 1− β4] ⊆ A.

Now, assume that A ∈ (1− β4, 1
3
(2 + 2β − β2)], we have C = 2 + 2β − β2, so that

3A ≤ C. We have D = 2β − 1, and using the fact that β > 1
2

we easily see that

A+ 2 +D ≥ 1− β4 + 2 + 2β − 1 = 1 + 3β + β2 ≥ 2 + 2β − β2 = C.

Thus C ∈ [3A,A + 2B + D] and (1 − β4, 1
3
(2 + 2β − β2)] ⊆ A. Finally, assume

A ∈ (1
3
(2 + 2β − β2), 1 − β5]. Again, we have C = 2 + 2β − β2, so that 3A > C.

Using the numerical estimates β ∈ (1
2
, 3

5
) we easily obtain 2A ≤ C. However,

A+ 1 +D ≤ 1− β5 + 1 + 2β − 1 = 2− β + 2β2 < 2 + 2β − β2 = C,

which shows that C ∈ (A+ 1 +D, 3A) and thus (1
3
(2 + 2β − β2), 1− β5] ∩ A = ∅.

This shows (VI.6.29).

In general, determining the set A for sequences satisfying (VI.4.13) is not an

easy task since it boils down to checking condition (VI.3.9) for all possible values of

0 < A < 1. This often leads to computing countably many infinite series (VI.1.1) and

verifying whether (VI.3.9) holds or not. In the above examples involving geometric

series this task actually reduces to checking a finite number of conditions using
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properties (VI.6.25) and (VI.6.26). Nevertheless, we have the following general fact

about A.

Theorem VI.6.4. Let {di}i∈N be a sequence in [0, 1] with sup di = 1. The set

A ∪ {0, 1} is closed.

Proof. For any A ∈ (0, 1] define the numbers

C(A) =
∑
di<A

di and D(A) =
∑
di≥A

(1− di).

By Theorem VI.1.1 A 6∈ A if and only if C(A), D(A) <∞ and there exists n ∈ N

(VI.6.30) A+ n− 2 +D(A) < C(A) < An.

Let A0 ∈ (0, 1) \ A. First, assume A0 6= di for all i ∈ N. This implies there is

some ε > 0 such that for all A ∈ (A0 − ε, A0 + ε) we have C(A) = C(A0) and

D(A) = D(A0). By continuity, there exists δ > 0 such that (VI.6.30) holds for

|A− A0| < δ. Thus, (A0 − δ, A0 + δ) ∩ A = ∅.

Now, assume A0 = di for some i ∈ N, and let k ∈ N be the number of terms

in the sequence {di} equal to A0. There is some ε > 0 such that (A0 − ε, A0 + ε)

contains no di 6= A0. Note that for A ∈ (A − ε, A0] we have C(A) = C(A0) and

D(A) = D(A0). The same argument as above shows that there is some δ > 0 such

that (A0 − δ, A0] ∩ A = ∅. Finally, for each A ∈ (A0, A0 + ε) we have C(A) =

C(A0) + kA0 and D(A) = D(A0) − k + kA0, and (VI.6.30) is equivalent to the

existence of n ∈ N such that

A+ n− k − 2 +D(A0) < C(A0) < A(n− k) + (A− A0)k.

Since (VI.6.30) holds for A = A0 with n = n0, the above holds with n = n0 + k and

A ∈ (A0, A0 + δ) for some δ > 0. This shows that (A0, A0 + δ) ∩ A = ∅. �
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