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the 9°-10°N Region of the East Pacific Rise 
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Douglas R. Toomey 
 

Results from a recent mid-ocean ridge tomography study along the fast-spreading, 

northern East Pacific Rise (EPR) reveal that the axis of mantle upwelling beneath the 

ridge is skewed with respect to the spreading axis, giving rise to regions of both rise-

centered and off-axis mantle melt accumulation.  Here, we investigate the effects of off-

axis melt accumulation on the architecture of overlying crust as well as off-axis melt 

delivery on crustal construction along the ridge axis.  We first present evidence for off-

axis magmatism 20 km from the spreading center in 300-ka-old crust overlying a region 

of off-axis melt supply.  Seismic data reveal an intrusive complex ~2 km beneath the 

seafloor that is limited in lateral extent (<5 km) and comprises a melt lens underlain by 

low-velocity, high-attenuation crust, which provides the necessary conditions to drive 

off-axis volcanic and hydrothermal activity.  We next present results from 

thermodynamic modeling that show systematic, along-axis variations in the depth of 

crystallization and degree of differentiation of magma produce crustal density variations 

of ~0.1 g/cm3.  These density anomalies are on the order inferred from a recent study that 

shows increasing axial depth along the northern EPR correlates with an increase in 
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crustal density and offset of mantle upwelling with respect to the ridge axis.  Our results, 

along with geophysical and geochemical data from the 9°-10°N region of the EPR, 

suggest that along-axis deeps correspond with magmatic systems that have significant 

near-Moho (i.e., crust-mantle transition) crystallization, which we attribute to off-axis 

delivery of mantle melt.  As this investigation is motivated by the EPR tomography 

results, we conclude with a numerical study that examines the travel time sensitivity of 

Pn, a sub-crustal head wave commonly used in local travel time tomography, to crustal 

and mantle heterogeneity.  Our results indicate that Pn travel times and Fresnel zones are 

insensitive to normal sub-axial crustal thickness anomalies, mantle velocity gradients and 

crust-mantle velocity contrast variations and that mantle low-velocity zones must be at 

least 3 km thick to produce significant, near-constant Pn delay times.  Our data support 

the validity and interpretation of the EPR tomography results.   

This dissertation includes both previously published and unpublished co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

 

 Oceanic crust covers ~70% of the Earth’s surface and forms as a result of tectonic 

plates spreading at constructional or divergent plate margins along the seafloor (i.e., mid-

ocean ridges).  As plates diverge, the underlying mantle adiabatically flows upward to fill 

the potential gap.  Upon reaching the solidus, the upwelling mantle undergoes partial 

melting, and the resulting melt flows upward and toward the spreading center.  This melt 

eventually crystallizes atop the trailing edges of the diverging plates to form gabbroic and 

basaltic oceanic crust.   

 

 Over the past several decades, models of oceanic crustal formation and its 

associated geophysical and geochemical processes (e.g., magmatic differentiation, 

volcanism, hydrothermal circulation, tectonic faulting) along fast-spreading mid-ocean 

ridges, like the East Pacific Rise (EPR), have been predicated on the hypothesis that the 

axis of mantle upwelling beneath the ridge is parallel to the spreading axis and mantle 

melt delivery and accumulation is rise-centered (e.g., Langmuir et al., 1986; Phipps 

Morgan, 1987; Macdonald et al., 1988, 1991; Buck and Su, 1989; Haymon et al., 1991; 

Carbotte and Macdonald, 1992; Batiza and Niu, 1992; Phipps Morgan and Chen, 1993; 

Scheirer and Macdonald, 1993; Perfit et al., 1994; Smith et al., 2001).  Recent travel time 

tomography results from the UNDERSHOOT experiment (Toomey et al., 2007), 

however, reveal that the axis of mantle divergence and melt delivery beneath the northern 
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EPR between the Clipperton and Siqueiros transform faults trends obliquely to the axis of 

plate spreading (Fig. 1.1; modified from Toomey et al. (2007)). 

 

 Figure 1.1b shows that the flow direction of the shallow mantle, constrained by 

the azimuth of seismic anisotropy (green arrows), is rotated nearly 10° anticlockwise 

from the direction of plate spreading (Fig.1.1b, black arrows).  The geometry of the 

imaged mantle low-velocity zone, inferred to be regions of melt accumulation beneath 

the base of the crust, results from the misalignment between the axes of mantle upwelling 

and plate spreading, indicating that mantle melt accumulation occurs both beneath the 

rise axis as well as off-axis.  We expect that off-axis melt accumulation will affect the 

architecture of the overlying crust and that off-axis melt delivery will have an impact on 

crustal construction along the ridge axis.  

 

In this dissertation, I present results from three separate studies, which examine 

the geologic consequences associated with off-axis mantle melt accumulation and its 

subsequent delivery to the rise axis as well as potential factors affecting the tomography 

results.  These studies, along with their associated conclusions, are presented as follows:  

 

1) Formation of oceanic crust along the EPR is thought to be complete within 

a few kilometers of the rise axis.  In Chapter II, however, we present evidence for 

magmatism 20 km from the rise axis in crust that is over 300 ka.  The crustal magma 

body overlies a region of off-axis delivery of mantle melt (Fig.1.1b, red star).  We use a 

combination of seismic refraction data from the UNDERSHOOT experiment and finite  
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Figure 1.1. Location and geometry of the UNDERSHOOT seismic experiment and 
tomographic results. (a) The Clipperton and Siqueiros transform faults bound the study 
area. Dashed lines show the location of the plate boundary. Four-component seismometer 
and ocean-bottom hydrophone locations are shown by open squares and circles, 
respectively; shooting tracks indicated by solid black lines. (b) Tomographic image of 
mantle P wave velocity; contour interval is 0.1 km s-1 and depth of section is 9 km 
beneath the sea floor. Green lines with arrowheads indicate azimuth of seismic 
anisotropy; black lines with arrowheads indicate plate-spreading direction (Gripp and 
Gordan, 2002). Green lines without arrowheads are perpendicular to seismic anisotropy 
and indicate locations of en echelon segments of the mantle low-velocity zone.  Red star 
indicates location of crustal magmatism discussed in Chapter II. Figure modified from 
Toomey et al. (2007). 
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difference waveform modeling to constrain the intrusive complex’s location, size and 

physical properties.  This chapter is co-authored by Douglas R. Toomey and is published 

in Earth and Planetary Science Letters as Durant and Toomey (2009).   

 

2) Segment-scale axial depth variations along fast-spreading mid-ocean 

ridges like the EPR have traditionally been associated with magma supply and/or mantle 

temperature, yet geophysical observations along the northern EPR preclude these 

hypotheses.  Recent studies show instead that increasing axial depth correlates with an 

increase in both crustal density (~0.1 g/cm3) and offset of mantle upwelling with respect 

to the ridge axis.  In Chapter III, we use thermodynamic modeling to show that 

systematic variations in the depth of crystallization and degree of differentiation produce 

crustal density variations on the order inferred along the northern EPR.  This chapter is 

co-authored by Douglas R. Toomey and Paul J. Wallace and is currently being submitted 

for publication in the Journal of Geophysical Research. 

 

3) Sub-crustal head waves, known as Pn, are commonly used in local travel 

time tomography for determining topmost mantle structure.  In Chapter IV, we examine 

the sensitivity of Pn travel time data to marine crustal and mantle heterogeneity.  We 

conduct numerical studies of Pn propagation through a 60-km-wide, cross-axis, mid-

ocean ridge model and evaluate the effects of crustal and mantle low-velocity zone 

thickness variations, mantle velocity gradients and crust-mantle velocity contrast 

variations on Pn travel times and Fresnel zones.  This chapter is co-authored by Douglas 

R. Toomey and is in preparation for publication.   
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4) In Chapter V, I summarize the conclusions and inferences from all three 

studies.  
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CHAPTER II 

EVIDENCE AND IMPLICATIONS OF CRUSTAL MAGMATISM ON THE 

FLANKS OF THE EAST PACIFIC RISE 

 

 This chapter is co-authored by Douglas R. Toomey and is published as follows: 

 Durant, D. T., Toomey, D. R., 2009. Evidence and implications of crustal 

magmatism on the flanks of the East Pacific Rise. Earth Planet. Sci. Lett. 287, 130-136. 

 

2.1. Introduction 

 Crustal accretion along the fast-spreading East Pacific Rise (EPR) occurs 

primarily within a narrow cross-axis window centered on the axis of plate spreading.  

Seafloor mapping shows that the eruptive fissures defining the neovolcanic zone occur 

within a kilometer-wide region centered on the axial high (Fornari et al., 1998; Haymon 

et al., 1991; Macdonald and Fox, 1988).  Geophysical studies further reveal that directly 

beneath the axial high lies a narrow, steep-sided, crustal magma chamber and a 

seismically detectable crust-mantle transition zone or Moho (Detrick et al., 1987; Dunn et 

al., 2000; Kent et al., 1990).  These observations have been used to infer that mantle melt 

is efficiently focused beneath the rise axis and that the emplacement of crust is effectively 

complete at zero age (e.g., Korenaga and Kelemen, 1997).  Yet there is evidence that 

magmatic and hydrothermal activity do occur off-axis.  Seafloor mapping reveals venting 

of hydrothermal fluids at off-axis locales (Haymon et al., 2005) and the ages of some off-

axis lavas are anomalously young (Sims et al., 2003; Zou et al., 2002).  
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Here we present evidence of off-axis crustal magmatism from seismic refraction 

data (Fig. 2.1) that constrain the intrusive complex’s location, size and physical 

properties.  The seismic experiment used 28 four-component ocean-bottom seismometers 

(OBSs) and 29 ocean-bottom hydrophones (OBHs) to record rise parallel and 

perpendicular shooting lines; the source was the 20-gun, 8420 in3 R/V Ewing airgun 

array.  Previous analyses of the data constrain regional scale variations in crustal 

thickness (Canales et al., 2003) and the structure of a mantle-low velocity zone (MLVZ) 

that is skewed beneath the spreading axis (Toomey et al., 2007).  

 

2.2. Seismic observations 

The off-axis magmatic complex is defined by the following three observations 

(Fig. 2.1): (i) P waveforms that diffract around a low-velocity body in the mid-crust, (ii) 

an abrupt attenuation of energy that propagates through the anomalous region and (iii) a 

large amplitude P-to-S wave conversion that requires a solid-liquid interface.  We first 

describe each of these waveform anomalies and then present forward modeling results to 

show that they are consistent with a pronounced low-velocity, high-attenuation crustal 

anomaly located ~2 km beneath the seafloor.  

 

Anomalous P waveforms are observed in data from two instruments, one located 

north (OBH 16) and the other south (ORB 2) of the crustal magma body (Fig. 2.1a and b, 

Fig. 2.2).  The record sections in Figures 2.1b and 2.2 are aligned by shot number in order 

to illustrate that the anomalous waveforms occur within a limited geographic region.  The 

character of the observed waveforms is similar to that of diffracted arrivals  
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Figure 2.1. Map of experimental geometry and seismic record sections. (a) Map of the 
9°20′N region of the EPR, showing locations of instruments that recorded P wave 
diffractions (orange circles) and PmeltS arrivals (red circle), shown in record sections (b) 
and (c), respectively.  Other instruments in the region are shown as small, brown circles.  
Shot locations (yellow circles) associated with record sections are labeled.  The red arrow 
points to the center of the magmatic complex’s location.  Inset shows regional location of 
study area. (b) Record sections for hydrophones OBH 16 (top) and ORB 2 (bottom), 
which show diffracted P wave arrivals and an abrupt decrease in waveform amplitudes.  
Record sections are aligned by shot number (bottom axis), ranges are shown in yellow 
ovals (top axis); amplitudes are fixed scaled.  Diffracted P wave arrivals are shown by 
green bar. (c) Radial record section for OBS 51, which shows PmeltS (red line).  Pg (blue 
line) and Pw (water wave; orange line) phases are also shown; amplitudes are fixed 
scaled.  Note the large amplitude of PmeltS arrivals out to ranges of 30 km.  All record 
sections are plotted with a velocity reduction of 7 km s-1 and are band-pass filtered 
between 5 and 30 Hz. 
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Figure 2.2. Vertical record sections showing diffracted P wave arrivals.  Same as Figure 
2.1b except data are plotted with increased amplitude and are range scaled so that dPb 
arrivals can be more easily seen (red line). A characteristic gap preceding dPb arrivals is 
observed in the data from both receivers where first arrival amplitudes are very small 
(green bracket). Ranges between where the gap begins and the receiving station constrain 
the depth of the crustal anomaly causing the P wave diffractions, and the gap’s width 
constrains the length of the anomaly as noted in the main article. The record sections are 
plotted with a velocity reduction of 7 km s-1 and are band-pass filtered between 5 and 30 
Hz. 
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predicted by waveform modeling of the axial magma chamber (Wilcock et al., 1993).  

Diffractions occur when a P wave turning in the crust encounters a pronounced low-

velocity anomaly whose vertical dimension is less than the seismic wavelength, which 

gives rise to energy that propagates above (dPa) and below (dPb) the anomalous feature 

(Fig. 2.3).  Figure 2.1b also shows that, at longer ranges, the first-arriving energy (dPb) is 

strongly attenuated.  This energy propagates at mid-crustal depths, which indicates that 

the anomaly causing the P wave diffractions may be underlain by high attenuation crust.   

 

  
Figure 2.3. Source-receiver locations and examples of seismic ray paths. Illustration 
shows rise-parallel cross-sectional view of crust from south (left) to north (right). 
Geometry of the LVV with respect to instruments ORB 2, OBS 51 and OBH 16 is 
roughly to scale.  Shot locations along with the region of low velocity and high 
attenuation below the melt sill are shown. Example ray paths for Pg, dPa and dPb are 
shown for instruments ORB 2 (dashed line) and OBH 16 (dot-dashed line); PmeltS is 
shown for OBS 51 (dotted line).  

 

 

The third observation that defines the crustal magma body is a large amplitude 

secondary arrival on the radial channel of a seismometer (OBS 51) positioned ~1 km 

south of the anomaly (Fig. 2.1a and c).  The OBS orientation was obtained by conducting 

a particle motion analysis of the direct water wave on horizontal channels; data were 
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subsequently rotated to radial and transverse components.  The polarization of the 

secondary arrival indicates that it is a shear wave, and the character of the phase is 

consistent with a P-to-S conversion at a melt lens (PmeltS) (Garmany, 1989; Singh et al., 

1998).  The converted phase (Fig. 2.1c, red line) arrives ~0.7 seconds after the primary 

phase Pg (Fig. 2.1c, blue line), and the high-amplitude arrivals are easily observable 

between 10 and 35 km range north of the receiver.  A PmeltS phase, however, is not 

observed south of the receiver (Fig. 2.4, bottom), constraining the reflecting interface to 

the northern side of OBS 51 in the same region where the P wave anomalies are 

generated. 

 

The pronounced asymmetry observed in the OBS 51 data (Fig. 2.4, bottom) is a 

unique phenomenon among all of the radial data from the region.  A typical radial record 

section from an OBS (OBS 64), located 20 km east of the rise axis and ~60 km north of 

OBS 51, is shown in Figure 2.4 (top) for comparison.  We considered the possibility that 

the high-energy secondary phase observed on the north side is Ps, a P-to-S wave 

conversion at the base of the upper-most basaltic layer (layer 2A) of the crust (Christeson 

et al., 1997).  This possibility, however, is unlikely for several reasons.  In the absence of 

an abrupt velocity change, the difference in Ps arrival times between the north and south 

sides of OBS 51 would require an increase of 300 m in layer 2A thickness over a lateral 

distance of less than 1 km.  The 0.7-second time difference between Pg and P-to-S wave 

arrivals on the north side would require a layer 2A thickness of ~800 m as well, which is 

inconsistent with previous studies of this region (Bazin et al., 2001).  Moreover, the T-X 

curve (arrival time with respect to range) for Ps parallels that of Pg, but the T-X curve for 
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Figure 2.4. Radial record sections showing Ps and PmeltS arrivals. Waveform data from 
OBS 51 (bottom) show PmeltS arrivals (red line) only to the north of the receiver.  Ps 
arrivals (green line) are observed south of the receiver, and some low-amplitude Ps 
arrivals can be seen north of the receiver as well (dashed green line).  Pg (blue line) and 
Pw (water wave; orange line) phases are also shown.  Data from OBS 64 (top) represent 
typical radial OBS data from the region.  In each data set, T-X curves for Ps parallel 
those of Pg, whereas the T-X curve for PmeltS diverges from Pg with decreasing range 
and is characteristic of a reflected phase.  The record sections are range scaled, plotted 
with a velocity reduction of 7 km s-1 and are band-pass filtered between 5 and 30 Hz. 
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the high-amplitude phase on the north side of OBS 51 diverges from Pg at close range 

(Fig. 2.4, bottom).  As range decreases below 10 km, the T-X curve for the high-

amplitude phase monotonically increases in a hyperbolic manner, which is characteristic 

of a reflected phase.  There is also subtle evidence of low-amplitude Ps arrivals observed 

on the north side of OBS 51 with similar arrival times as those to the south, which 

suggests that the crustal anomaly may be affecting the generation of Ps to the north of the 

OBS. 

 

2.3. Seismic modeling 

We use travel time (Toomey et al., 1994), and finite difference waveform (Larsen 

and Harris, 1993; Levander, 1988) modeling to determine the geometry and physical 

properties of the crustal anomaly.  Two-dimensional finite difference models consist of a 

50-km-long, rise-parallel cross-section that includes a 3-km-deep water layer, 7-km-thick 

crust, 1-km-thick Moho transition zone (MTZ) and 3-km-thick upper mantle region.  

Embedded in the crust is a low-velocity volume (LVV) that includes a 100-m-thick sill 

with low shear modulus atop a low-velocity region extending to the base of the crust (Fig. 

2.5a, see Appendix A).  We perform over 50 separate forward modeling experiments 

where we vary the length, depth and physical properties of the LVV in order to find a 

model whose resultant waveform anomalies are comparable to the actual data.  Synthetic 

data from stations S1, S2 and S3 (Fig. 2.5) are selected for comparison with ORB 2, OBS 

51 and OBH 16 data (Fig. 2.1), respectively.  Waveform data from a model without an 

LVV are shown for comparison (Fig. 2.5b and c, bottom). 
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Figure 2.5. Finite difference model and synthetic record sections. (a) P wave velocity 
model with embedded LVV beginning 2 km below the seafloor.  Yellow circles show 
synthetic station locations (S1-S3) associated with record sections shown in (b) and (c). 
(b) Synthetic vertical record sections for stations S1 (middle) and S3 (top) showing P 
wave diffractions and attenuated arrivals. Diffracted P wave arrivals are shown by green 
bar.  A synthetic vertical record section for station S1 (bottom) from a model without an 
LVV is shown for comparison. PP and PmP phases are also shown in each record 
section.  Orange bar along bottom axes of record sections indicates LVV’s position in the 
model space; red bar shows the sill location. (c) Synthetic radial record sections for 
station S2 from models with (top) and without (bottom) an embedded LVV. High-
amplitude PmeltS arrivals (red line) are observed at ranges of ~5 to more than 30 km when 
a sill is present. All record sections are plotted with a velocity reduction of 7 km s-1 and 
are band-pass filtered between 5 and 30 Hz. 
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2.4. Modeling results  

The observed P wave diffractions fix the location, length and average velocity of 

the LVV.  Modeling results show that as the depth of the LVV increases, the range 

between the receiving station and the observed split in Pg energy increases, and 

waveform diffractions become more difficult to identify.  No P wave diffractions are 

observed when the LVV is modeled at depths of 4 km or more.  Modeling results further 

show that the time difference between Pg and dPb arrivals is sensitive to the velocity 

beneath the melt sill (i.e., the underlying LVV).  Synthetic vertical record sections for S1 

and S3 (Fig. 2.5b), aligned by shot number, show evidence for P wave diffractions 

similar to those observed in ORB 2 and OBH 16 data when we use a 4.5-km-long LVV 

that begins 2 km below the seafloor (Fig. 2.5a).  

 

 We presume in our model that the sudden decrease in waveform amplitude that is 

observed in ORB 2 and OBH 16 data (Fig. 2.1b) is a result of increased crustal 

attenuation.  We estimate the degree of attenuation by comparing synthetic and observed 

waveform amplitudes.  ORB 2 and OBH 16 data consistently show a smaller average for 

first-arrival amplitudes at post-anomaly ranges compared to similar ranged arrivals on the 

opposite side of each receiver.  Waveform modeling confirms that an LVV with an 

attenuation anomaly in the mid- to lower-crust decreases the amplitude of both first and 

secondary arrivals.  Synthetic data (Fig. 2.5b) are comparable to ORB 2 and OBH 16 data 

when the attenuating region is modeled with quality factor (Q) values between 30 and 70, 

which is an order of magnitude less than Q values for normal, off-axis oceanic crust at 

similar depths (Wilcock et al., 1992).   
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The high amplitude S wave arrival observed on the radial channel of OBS 51 

constrains the physical properties of a sill located at the top of the LVV.  The amplitude 

and observable range of P-to-S reflections are primarily sensitive to the shear modulus 

(µ) of the medium below the reflecting interface.  An energy coefficient versus incident 

angle analysis indicates efficient P-to-S wave conversion occurs at a solid-liquid interface 

(Fig. 2.6).  At wide angles (or large offsets), ~50% of the P wave’s energy is reflected as 

an S wave, since no S wave energy is transmitted into the liquid.  

 

Waveform modeling confirms that a finite-length sill also generates large 

amplitude P-to-S arrivals.  Figure 2.5c (top) shows high-amplitude P-to-S arrivals 

(labeled PmeltS) on the radial channel for synthetic station S2, which is located ~1 km 

from a fluid-filled sill (Fig. 2.5a).  We use the term "PmeltS " to include both specular and 

diffracted reflections.  The converted S wave appears at ranges of ~5 to more than 30 km; 

this is true for all of our models that contain a crustal melt lens, regardless of lens depth.  

When the lens is semi-rigid or mush-like, reflection amplitudes drop significantly.  We 

thus attribute the large amplitude arrival observed on the radial channel of OBS 51 to a P-

to-S conversion from a sill with zero or near-zero shear modulus.  Modeling results also 

show that the time difference between Pg and PmeltS, as well as the appearance of PmeltS at 

close range (< 5 km), constrain the depth to the top of the sill.  As sill depth increases, so 

does the Pg-PmeltS time difference, and PmeltS at close range becomes more visible as its 

energy separates from that of the water wave.  A comparable fit between S2 and OBS 51 

data occurs when we model a sill at 2 km depth.  
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Figure 2.6. Theoretical energy coefficient calculations for a P wave incident upon a half-
space interface. The upper layer in all three cases is solid (Vp = 6.7 km s-1, Vs = 3.6 km   
s-1, ρ = 2.96 Mg m-3), (a) liquid bottom layer (Vp = 3.0 km s-1, Vs = 0.0 km s-1, ρ = 2.60 
Mg m-3); efficient conversion to reflected S wave energy (solid red line) at wide angles, 
(b) semi-rigid bottom layer (Vp = 3.0 km s-1, Vs = 1.5 km s-1, ρ = 2.60 Mg m-3); 
conversion to reflected S wave energy drops considerably, (c) solid bottom layer (Vp = 
5.0 km s-1, Vs = 2.6 km s-1, ρ = 2.68 Mg m-3); conversion to reflected S wave energy is 
negligible.   
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We investigate layer 2A waveform effects, both with and without a melt sill, to 

determine if either Ps or any multiple phases (e.g., PP and PPs) appear similar to PmeltS 

(Fig. 2.7).  These phases are created when a velocity discontinuity between layers 2A and 

2B is added to our waveform models.  As noted above, PmeltS results when a melt sill is 

present, and Figure 2.7 (bottom) shows that its associated T-X curve hyperbolically 

increases while diverging from Pg as range decreases (<10 km).  The T-X curve for Ps, 

however, parallels that of Pg, and, in the melt sill model, Ps becomes highly attenuated at 

ranges beyond 10 km.  These results correlate well with the OBS 51 data.  When no melt 

sill is present, Ps is easily observed out to ranges beyond 30 km (Fig. 2.7, top).  The T-X 

curvature for P wave (PP) and converted P-to-S wave (PPs) multiples is similar to that of 

Pg and Ps, which distinguishes these phases from PmeltS as well.   

 

2.5. Discussion 

On the basis of our modeling, we conclude that a seismic velocity and attenuation 

anomaly located ~20 km east of the rise is the result of a crustal-level magmatic complex.  

The simplest structure consistent with our data is a 1-km-long (±0.5 km) melt sill located 

at a depth of 2 km beneath the seafloor that is underlain by a broader region (4.5-km-

long, ±1 km) of crust that is anomalously hot and perhaps partially molten.  The exact 

degree of attenuation within the LVV is difficult to resolve because of its limited spatial 

extent, nevertheless our Q estimates do indicate an order of magnitude increase in 

attenuation compared to normal, off-axis crustal values.  We note that the LVV was not 

detected in a previous two-dimensional tomographic study of the region (Canales et al., 

2003).  The limited spatial extent of the LVV allows for rapid, post-anomaly wavefront  
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Figure 2.7. Synthetic radial record sections showing layer 2A effects. Synthetic radial 
waveform data for station S2 with (bottom) and without (top) a melt sill. These models 
include a layer 2A-2B velocity discontinuity in order to determine its waveform effects.  
Note that when a melt sill is present (bottom), PmeltS is generated (red line), and Ps (green 
line) becomes highly attenuated at ranges beyond 10 km. When no melt sill is present 
(top) Ps is easily observed out to ranges beyond 30 km. In each data set, T-X curves for 
Ps parallel those of Pg (blue line). T-X curvature for multiple and converted multiple 
phases [PP (top, dashed blue line) and PPs (top, dashed green line), respectively] 
resembles that of Pg and Ps. The T-X curve for PmeltS, however, diverges from Pg with 
decreasing range and is characteristic of a reflected phase.  Both record sections are 
plotted with a velocity reduction of 7 km s-1 and are band-pass filtered between 5 and 30 
Hz. 
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healing, which results in a travel-time effect for first arrivals that is not large (<50 ms) 

and that is limited to a small number of shots.  This makes the anomaly difficult to 

resolve by delay-time tomographic methods.  Our results indicate that waveform data can 

better reveal crustal magma bodies such as the one we have found, particularly when 

compared to a two-dimensional tomographic study. 

 

The high-attenuation LVV we detect is consistent with the injection of a 

significant amount of heat into the ridge flank.  If the cross-axis width of the anomaly is 

only 1 km, we conservatively estimate ~1 x 1019 J of anomalous heat has been supplied to 

the crust compared to average off-axis mid- to lower-crustal reference temperatures 

between 400 and 800 °C (see Appendix B).  The latent heat of crystallization associated 

with a single melt sill like the one in our model accounts for less than 2% of the estimated 

heat.  We thus conclude that the high-attenuation LVV marks a site of repeated intrusive 

activity.  

 

We attribute the occurrence of repeated, off-axis magmatic activity to a long-lived 

skew between the axes of mantle upwelling and plate spreading (Toomey et al., 2007; 

Toomey and Hooft, 2008) (Fig. 2.8).  As a consequence of this skew the MLVZ – which 

defines the pattern of magma delivery from the mantle to the crust – is offset to the east 

of the rise, roughly underlying the high-attenuation, crustal-level LVV.  Analyses of 

bathymetry, seismic crustal thickness and gravity data indicate that a skewed pattern of 

mantle upwelling has persisted in this region for at least 1 Ma (Toomey and Hooft, 2008).   
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Figure 2.8. Crustal alteration due to the off-axis delivery of mantle melt. (a) Perspective 
view of study area (right side) with respect to the ridge axis (dotted red line); bathymetry 
is exaggerated. Diagram shows an area of thermally altered crust (tan region) associated 
with the off-axis delivery of mantle melt. Melt migration (solid red arrows) toward the 
rise axis likely occurs at sub-Moho depths within a mushy layer (orange region).           
(b) Close-up of the rise-parallel crustal face associated with the results of our study.  
Diagram shows a region of crust that has been thermally altered due to the release of heat 
from crystallizing sub-crustal melt (wavy red arrows) as well as solidifying crustal 
intrusions (gray ellipses). Blue arrows illustrate possible upper-crustal (solid) and deep-
crustal (dashed) penetration of seawater. High-temperature vents (black cloud) may be 
generated by focused hydrothermal flow near shallow magma bodies like the one we 
detect (red ellipse), but diffuse flow venting (wavy blue arrows) likely dominates the 
thermally altered region.   
 
 
 
 
In addition, where we have imaged a crustal magmatic intrusion, both the MTZ (Vera et 

al., 1990) and the crust (Canales et al., 2003) are anomalously thick and the average 

crustal density is elevated (Canales et al., 2003, Toomey and Hooft, 2008).  We thus infer 

that the off-axis delivery of mantle melt gives rise to magmatic underplating and intrusive 

activity that thickens both the MTZ and the crust, thereby fundamentally altering crustal 

architecture (Fig. 2.8).  Our discovery of off-axis magmatic activity may thus explain the 

large number of crosscutting dikes, sills and intrusions of ultra-mafic and mafic 
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composition in the crust as observed in the Oman ophiolite complex (Juteau et al., 1988; 

Nicolas et al., 1996).  In regions of the ophiolite complex where there is a thick Moho, 

wehrlitic intrusions are found in every level of the crustal section, and it is estimated that 

they can make up as much as 20 to 40% of the total volume of the crustal plutonic 

sequence (Juteau et al., 1988). 

 

Repeated intrusive activity may act as a source for off-axis lava flows and drive 

off-axis hydrothermal circulation (Fig. 2.8).  Although there are no currently known 

bathymetric or morphologic features that indicate extrusive volcanism immediately above 

the magma body we image, anomalously young lavas have been found nearby (Zou et al., 

2002).  Off-axis hydrothermal activity is likely dominated by diffuse flow venting, 

although focused, high-temperature vents (i.e., black smokers) near shallow-crustal 

magma bodies could be present.  Deep crustal penetration of seawater through fractures 

and microcracks (Nicolas and Mainprice, 2005) also provides a mechanism for driving 

off-axis wehrlite formation (Feig et al., 2006).  Hydrothermal venting, whether focused or 

diffuse, would produce a chemically life-sustainable environment for biological 

communities to thrive at off-axis locales.  Our results provide compelling motivation for 

expanding the search for seafloor hydrothermal activity and its associated ecosystems 

beyond the axis of seafloor spreading.   

 

 In this chapter, I have addressed the impact of off-axis mantle melt accumulation 

on the architecture of the overlying crust.  In the next chapter, I examine effects on 

crustal construction associated with the off-axis delivery of mantle melt to the ridge axis. 
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CHAPTER III 

THE EFFECTS OF CRYSTALLIZATION DEPTH AND RESIDENCE TIME ON 

CRUSTAL DENSITY AT FAST-SPREADING RIDGES 

 

 This chapter is co-authored by Douglas R. Toomey and Paul J. Wallace.  I 

conducted the thermodynamic modeling and analysis and wrote the chapter.  Douglas R. 

Toomey and Paul J. Wallace provided essential guidance with the research and edits to 

the chapter.  This chapter is currently being submitted for publication in the Journal of 

Geophysical Research. 

 

3.1. Introduction 

Since the ground-breaking work of Klein and Langmuir (1987), it has long been held 

that axial depth and crustal thickness variations along mid-ocean ridges (MORs) are 

primarily related to variations in melt supply from the mantle, with axial highs and 

thicker crust being associated with more melt.  This idea works well for slow-spreading 

ridges (<40 mm/a, full rate), where very large along-axis variations in axial depth, crustal 

thickness and gravity anomalies (e.g., Lin et al., 1990; Tolstoy et al., 1993; Detrick et al., 

1995; Hooft et al., 2000) suggest pronounced spatial and temporal variability in mantle 

melting and/or magma transport.  Fast-spreading ridges (>80 mm/a, full rate), however, 

have much more subtle and apparently inconsistent along-axis crustal thickness and 

gravity variations (e.g., Madsen et al., 1990; Barth and Mutter, 1996; Wang et al., 1996; 

Canales et al., 2003; Toomey and Hooft, 2008), which suggests axial depth is not related 

to melt supply.  What then explains axial depth variations at fast-spreading ridges?  
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The 9°-10°N segment of the fast-spreading East Pacific Rise (EPR) (~111 mm/a, full 

rate) (Carbotte and Macdonald, 1992), defined by the Clipperton transform fault to the 

north and a large overlapping spreading center (OSC) to the south (Fig. 3.1), has been the 

target of numerous studies over the past few decades (a Ridge 2000 Integrated Study 

Site).  These studies provide complementary data sets that constrain axial depth, crustal 

thickness, gravity anomalies, basalt chemistry and the distribution of mantle melt (e.g., 

Tighe et al., 1988; Batiza and Niu, 1992; Wang et al., 1996; Canales et al., 2003; Toomey 

et al., 2007), making this an ideal location for investigating the axial depth enigma.    

 

Axial depth variation observed along this segment of the EPR (Tighe et al., 1988; 

Carbotte et al., 2004) has traditionally been explained using the magma supply hypothesis 

(Macdonald et al., 1988, 1991).  In this view, the intrasegment axial high (~9°50′N) 

results from increased melt supply, so the axial high should either be underlain by thicker 

crust or there should be along-axis redistribution of magma.  Geophysical and 

geochemical studies (e.g., Langmuir et al., 1986; Kent et al., 1993; Toomey et al., 1990; 

Dunn et al., 2000; Canales et al., 2003; Toomey et al., 2007), however, preclude either of 

these scenarios.  Moreover, seismic studies (Barth and Mutter, 1996; Canales et al., 2003) 

show a systematic increase in crustal thickness from the axial high at 9°50′N toward the 

axial low near the 9°03′N OSC, and gravity studies (Madsen et al., 1990; Wang et al., 

1996) paradoxically show that axial gravity increases with crustal thickness.   
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Figure 3.1. Map of the northern East Pacific Rise. Bathymetric map showing changes in 
axial depth and seafloor morphology between 8°00′N and 11°30′N along the northern 
East Pacific Rise. Geophysical and geochemical data referenced in this study are 
collected between the Clipperton transform fault or fracture zone (FZ) and the 9°03′N 
overlapping spreading center (OSC). Inset shows regional location of study area.  
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A recent alternative hypothesis, however, links segment-scale axial depth variation at 

fast-spreading MORs with variations in crustal density (Toomey and Hooft, 2008).  

Results from a synthesis of geophysical and geochemical data show that increasing axial 

depth along the northern EPR correlates with an increase in crustal density, magmatic 

differentiation and offset of mantle upwelling with respect to the ridge axis, and that the 

observed increase in axial depth can be accounted for by a 0.1 g/cm3 increase in bulk 

crustal density (Toomey and Hooft, 2008).  In this view, crustal density increases with 

greater amounts of magmatic differentiation, which is associated with off-axis melt 

supply.  We refer to this hypothesis as the magma differentiation hypothesis. 

 

Here we demonstrate the viability of the magma differentiation hypothesis by using 

thermodynamic modeling to show that systematic variations in the depth of 

crystallization, as well as the degree of differentiation, produce crustal density variations 

on the order inferred from the geophysical and petrologic data collected along the 

northern EPR.  We confine our study to density variation in the mid- and lower crust, 

since upper-crustal density is highly influenced by the porosity of the extrusive layer 

(e.g., Carlson and Herrick, 1990).  For simplicity, we refer to both the mid- and lower 

crust as lower crust, meaning everything at or below axial magma chamber (AMC) depth 

(typically comprising ~70% of the crust).   

 

3.2. Thermodynamic modeling 

For our thermodynamic modeling we chose MELTS (Ghiorso and Sack, 1995; 

Asimow and Ghiorso, 1998), a software package designed for modeling magmatic phase 
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relations at low pressures (<20 kbar).  MELTS is best calibrated for mafic systems (see 

http://melts.ofm-research.org) and is well suited for the fast-spreading MOR 

environment.  To evaluate the feasibility of our models, we compared the liquid line of 

descent (LLD) from each model with major element data obtained from glass samples 

collected along the northern EPR between 9° and 10°N.  The glass data consist of over 

900 samples (Allan et al., 1989; Batiza and Niu, 1992; Perfit et al., 1994; Batiza et al., 

1995, 1996; Langmuir, 1999; Danyushevsky et al., 2000; Perfit, 2000; Melson and 

O'Hearn, 2003) collected within 5 km of the ridge axis and were obtained from the 

PetDB database (Lehnert et al., 2000; www.petdb.org).  We also filtered the glass data to 

samples collected within 1 km of the ridge axis (see Section 3.4) but found no significant 

differences in major element data trends.  Samples with very low MgO values (<5 weight 

percent (wt%)) collected near the 9°03′ overlapping spreading center (OSC) were 

removed to avoid samples that have undergone extensive fractional crystallization and 

that may have been formed by processes related to the complexity of the OSC itself (e.g., 

Combier et al., 2008; White et al., 2009).   

 

We computed ~170 models in order to optimize modeling parameters and 

evaluate effects of melt composition, H2O content and crystallization depth on cumulate 

density.  In each case, thermodynamic calculations were made for the geochemical 

system at 1°C increments from the liquidus until crystallization was more than 90% 

complete.  We compared equilibrium and fractional crystallization methods but chose 

fractional crystallization for our modeling because it most closely simulates what occurs 

in the MOR environment (e.g., Langmuir, 1989).  Although the type of crystallization 
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may affect the LLD for a particular starting composition, our modeling results indicate it 

has little effect on cumulate density.  We found that our melt compositions best matched 

the EPR data when we used an oxygen fugacity that was slightly reduced (fO2 = QFM-1).  

This is slightly more reduced than the average value for global MORB glasses of 0.4 ± 

0.4 log units below QFM reported by Bezos and Humler (2005). 

 

We used four different parental melt compositions to evaluate compositional 

effects on cumulate density, which include: (1) a primitive mid-ocean ridge basalt 

(MORB) composition (Ghiorso, 1997) that is representative of EPR glass samples from 

the Lamont seamount chain (Allan et al., 1989); (2) the previous MORB composition 

back-corrected for olivine fractionation to a melt in equilibrium with mantle olivine 

(constructed by adding 5.2% equilibrium olivine in 0.1% increments so that the final 

composition is in equilibrium with Fo91 olivine); (3) an average composition of primitive, 

high-Mg glass from the Siqueiros Transform zone (Perfit et al., 1996) and (4) the 

previous Siqueiros composition that has undergone a small amount (3%) of upper mantle 

crystallization (see Section 3.3.1).  For simplicity, we refer to these compositions as C1-

C4, respectively.  A small amount of Cr (~300-500 ppm) was included in each 

composition to allow for correct Cr-spinel crystallization, and 0.2 wt% H2O was included 

in compositions C3 and C4 (based on the values of H2O that have been found in MORB 

glasses (e.g., Danyushevsky et al., 2000; le Roux et al., 2006), since we found that no 

anhydrous composition produces an LLD that fits the EPR geochemical data trends well 

(see Section 3.3.2).  All compositions are listed in Table 3.1. 
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Table 3.1. Major element data (by weight %) for normalized melt compositions used in thermodynamic models. 
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We used composition C4 in our modeling to determine the effects of H2O content 

and depth of crystallization on cumulate density, because C4 is a primitive EPR 

composition and its calculated LLDs match the overall EPR data well (see Section 3.3.1).  

For determining H2O content effects, we varied the wt% of H2O in C4 from 0.0 

(anhydrous) to 0.4 (Table 1).  We continued to use C4 with 0.2 wt% H2O for evaluating 

depth (pressure) effects on cumulate density as this composition and H2O content best fit 

the EPR data (see Section 3.3.2).  To constrain pressure of crystallization analyses, we 

simulated AMC crystallization by using a pressure of 0.5 kbar (~1.5 km), crust-mantle 

transition zone or Moho crystallization using 2.0 kbar (~6 km) and upper mantle 

crystallization using 3.0 kbar (~9 km).   

 

Model sequences used to evaluate pressure effects on cumulate density during 

crystallization were set up to represent different methods of lower crustal formation.  We 

used a single-stage model to represent a “gabbro-glacier” system (e.g., Nicolas et al., 

1988; Henstock et al., 1993; Phipps Morgan and Chen, 1993; Quick and Denlinger, 

1993), where crystallization solely occurs in the AMC, and the lower crust forms by 

gravitational settling and subsidence of cumulates (Fig. 3.2a).  A two-stage model was 

used to represent lower crustal formation by a combination of Moho and AMC 

crystallization (e.g., Schouten and Denham, 1995) (Fig. 3.2b).  We did this by using melt 

compositions extracted after 10-50% crystallization (in 10% increments) at Moho depth 

and placing them at AMC depth for additional crystallization.  We also used this two-

stage method to investigate the effects of initial upper mantle crystallization on cumulate 

densities.  Here, however, we calculated cumulate densities resulting from additional  
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Figure 3.2. Depth of crystallization models. (a) Single-stage crustal construction model 
associated with a “gabbro-glacier” system (e.g., Nicolas et al., 1988; Henstock et al., 
1993; Phipps Morgan and Chen, 1993; Quick and Denlinger, 1993), where crystallization 
solely occurs in the axial magma chamber (AMC), and the lower crust forms by 
gravitational settling and subsidence of cumulates. (b) Two-stage crustal construction 
model representing lower crustal formation by a combination of crust-mantle transition 
(Moho) and AMC crystallization (e.g., Schouten and Denham, 1995).  Melt compositions 
are extracted at 10-50% Moho crystallization stages in 10% increments and are placed at 
AMC depth for additional crystallization. (c) Upper mantle to AMC crystallization. Same 
method as (b), but extracted melt compositions come from upper mantle crystallization. 
(d) Upper mantle to Moho crystallization. Melt compositions are extracted from up to 
23% upper mantle crystallization and are placed at Moho depth for additional 
crystallization. 
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(second-stage) crystallization at both AMC and Moho depths (Fig. 3.2c and 3.2d, 

respectively). 

 

3.3. Modeling results 

In the following subsections, we show our thermodynamic modeling results for 

the effects of melt composition, H2O content and crystallization depth on cumulate 

density.  Density data are plotted for cumulates and residual melt with crystallization 

markers placed along the data curves (Fig. 3.3).  The markers identify progressive stages 

of crystallization in 10% increments from the beginning of cumulate precipitation until 

MgO wt% decreases to a value of 5.5, which is below the lower limit of the referenced 

EPR geochemical data (see Fig. 3.4).  At each calculated increment, cumulate density 

values reflect total cumulate density, which is the weighted sum of all current and 

previously fractionated phases.  

 

3.3.1. Melt composition 

The calculated LLD for compositions C1-C4 crystallizing at AMC depth (0.5 

kbar) is plotted with EPR glass data (Fig. 3.4).  Data from all four models fit general 

trends for TiO2, Al2O3 and FeOT well and fit CaO data in the earlier stages of 

crystallization (>7.5 wt% MgO).  Later stages of crystallization (<7.5 wt% MgO) along 

each LLD bound the lower values of the CaO data.  Some of the higher CaO data in this 

range may partially be explained by small amounts of prior crystallization in the upper 

mantle (see Section 3.3.3.2), and remaining data may result from compositional 

variations in parental melts and/or magma mixing (e.g., Pan and Batiza, 2003).  Abrupt 
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changes in model data trends for Al2O3 and CaO occur when clinopyroxene begins to 

precipitate (see below).  Compositions C3 and C4 match FeOT data the best whereas 

compositions C1 and C2 trend on the higher side of the glass data.  Each of our models 

spans the full range of compositional evolution along the EPR (5.8-9.1 wt% MgO).    

 

 

 
Figure 3.3. Density calculations for the single-stage crustal construction model. 
Cumulate (solid line) and melt (dashed line) densities from thermodynamic modeling of 
AMC crystallization (single-stage crustal construction model, Fig. 3.2a) using melt 
composition C4. Diamond markers along density curves indicate progressive degrees of 
crystallization in 10% increments until reaching 5.5 wt% MgO, which is the lower limit 
of the referenced EPR glass data (see Fig. 3.4). These density curves are used for model 
comparisons in Figures 3.10 and 3.14; they are presented as dashed lines. 
 

 

Resultant cumulate and residual melt density data for each of our models are 

shown in Figure 3.5 (solid and dashed lines, respectively).  A significant amount of 

variation in cumulate density occurs during the early stages of crystallization (>8 wt% 

MgO), but density values converge as crystallization progresses.  The cause for the initial  
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Figure 3.4. Calculated liquid lines of descent for composition variation models. Liquid 
lines of descent for melt compositions C1-C4, calculated using MELTS (Ghiorso and 
Sack, 1995; Asimow and Ghiorso, 1998) at 0.5 kbar (AMC depth). Calculations are made 
assuming fractional crystallization with fO2 = QFM-1. Major element data are for glass 
samples collected from the 9°-10°N region of the EPR (see Section 3.2 for references) 
and are obtained from the PetDB database (Lehnert et al., 2000; www.petdb.org).  
 



 35 

density variation is due to the first mineral phases precipitating in each case (Fig. 3.6).  In 

all cases, plagioclase and olivine precipitate very early in the crystallization sequence 

(<5% crystallization).  With the more primitive compositions (C2 and C3), however, 

olivine precipitates first, which significantly increases initial cumulate density values.  

Models C2 and C3 also have a small amount (<5 wt%) of spinel precipitate early, which 

increases initial cumulate density values even more.  As clinopyroxene joins the cumulate 

assemblage (~8 wt% MgO), density values converge for all four models.  There is 

negligible variation in residual melt density in each of the models throughout the 

crystallization sequence.  Crystallization markers (Fig. 3.5, colored diamonds) along the 

density lines show variations in % crystallization for the different parental compositions 

used in the models and reflect variations in mineral-in temperatures for each composition. 

 

Figure 3.5. Density calculations for composition variation models. Cumulate (solid lines) 
and melt (dashed lines) densities for melt compositions C1-C4 at 0.5 kbar (AMC depth).  
Diamond markers along density curves indicate progressive degrees of crystallization in 
10% increments (see Fig. 3.3). Cumulate density curves are labeled by melt composition 
and line colors match corresponding melt density curves and calculated liquid lines of 
descent (shown in Fig. 3.4).    
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Figure 3.6. Mineral crystallization data for composition variation models. Plots of 
mineral crystallization data for melt compositions C1-C4 at 0.5 kbar (AMC depth).  
Mineral crystallization data curves indicate wt% of total cumulates between 0% and 50% 
crystallization. Lower, right-hand labels indentify the melt composition.  Markers 
identify where minerals first appear in the crystallization sequence.   

 

 

The effects on cumulate density by different parental melt compositions appear to 

be related to the extent of fractional crystallization of the parent melt.  Spinel and olivine 

precipitation associated with more primitive melts (C2 and C3) generates high density 
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cumulates in the earliest stages of crystallization with a rapid decrease in density as 

crystallization progresses to 10% and beyond.  Cumulate densities associated with 

slightly more evolved melts, on the other hand, begin at much lower values where only 

plagioclase and olivine precipitate.  Only a very small amount of crystallization in the 

upper mantle (<3%), however, removes the spinel component together with some olivine 

(see Section 3.3.3.2).  This small amount of crystallization results in melt compositions 

that produce similar cumulate densities, despite their remaining compositional differences 

(e.g., C1-C2, and C3-C4).  Because geochemical evidence suggests that some amount of 

upper mantle crystallization occurs in melts along the northern EPR (e.g., Goss et al., 

2010), we used the slightly more evolved parental melt composition for the remainder of 

our study, which is C4 as noted in Section 3.2.   

  

3.3.2. H2O content 

The results from our modeling with different H2O contents at AMC depth indicate 

that slight variations in H2O content within the parental melt can account for much of the 

variation we see in major element data from the EPR (Fig. 3.7).  The model with 0.2 wt% 

H2O matches the TiO2, Al2O3 and FeOT data trends the best with the anhydrous and 0.4 

wt% models bounding the variance in most of the data.  Again, CaO is the exception at 

less than ~7.5 wt% MgO.   

 

The effects of initial H2O content on both cumulate and residual melt densities are 

shown in Figure 3.8.  Variance in cumulate density mostly occurs in the earliest stages of 

crystallization, which is due to the suppression of plagioclase crystallization as H2O is  
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Figure 3.7. Calculated liquid lines of descent for H2O variation models. Liquid lines of 
descent for H2O variation models are calculated at 0.5 kbar (AMC depth). Modeling 
method, modeling parameters and major element data are the same as Figure 3.4. Starting 
H2O concentrations vary between 0.0 (anhydrous) and 0.4 wt% using the general melt 
composition for C4.   
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Figure 3.8. Density calculations for H2O variation models. Cumulate (solid lines) and 
melt (dashed lines) densities for H2O variation models at 0.5 kbar (AMC depth). 
Diamond markers along density curves indicate progressive degrees of crystallization in 
10% increments (see Fig. 3.3). Cumulate density curves are labeled by initial H2O 
content for the 0.0, 0.2 and 0.4 wt% models, and line shades match corresponding melt 
density curves. Arrows highlight cumulate and melt data trends at 10% crystallization.   
 

 

increased (Fig. 3.9).  Cumulate densities are initially much lower (~2.7 g/cm3) in the 0.0-

0.2 wt% models, where plagioclase is the first mineral to precipitate.  As H2O content 

increases to values above 0.2 wt%, olivine precipitates first, which results in much higher 

starting cumulate densities (>2.85 g/cm3).  Despite the significant density variation 

observed early on (>8.0 wt% MgO), density values converge for all models as 

clinopyroxene joins the mineral assemblage.  Arrows through the 10% crystallization 

markers (Fig. 3.8) for these models highlight density data trends due to the effect of 

increasing H2O on plagioclase precipitation (i.e., higher density cumulates) as well as 

suppression of liquidus temperatures as initial H2O content increases in the parent melt.   
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Figure 3.9. Mineral crystallization data for H2O variation models. Plots of mineral 
crystallization data for melt composition C4 with H2O contents varying from 0.0 to 0.4 
wt% at 0.5 kbar (AMC depth). Mineral crystallization data curves indicate wt% of total 
cumulates between 0% and 50% crystallization. Lower, right-hand labels indentify the 
initial H2O content. Markers identify where minerals first appear in the crystallization 
sequence.   
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Differences in melt density curves are directly related to the initial amount of H2O 

present in the system, where more H2O lowers melt density.  The divergence observed in 

the melt density data between the different models results from an increased 

concentration of incompatible H2O in the residual melt as crystallization progresses.   

 

Similar to melt composition, the effects of H2O content on cumulate density occur 

in the earliest stages of crystallization.  Despite initial differences, cumulate density 

curves converge when clinopyroxene joins the mineral assemblage (~8 wt% MgO).  We 

note here that variations in H2O concentration observed in glass samples from the 9°-

10°N region of the EPR may be the result of varying degrees of fractionation as opposed 

to variations in parental sources, especially between on- and off-axis samples (le Roux et 

al., 2006).  According to our results, however, a smaller range of initial H2O values 

primarily reduces the range of cumulate densities in the earliest stages of crystallization, 

since cumulate density curves are similar for all models once clinopyroxene is present.   

 

3.3.3. Crystallization depth 

Here we show modeling results from varying the depth of crystallization 

(pressure).  In the following subsections, all density plots include density curves from 

composition C4 calculated at AMC depth (Fig. 3.3) for reference as it represents our 

single-stage, AMC crystallization model (see Section 3.2).  The C4 density curves are 

displayed as dashed lines (Figs. 3.10 and 3.14).  Throughout the text, we refer to 

cumulate density and melt density differences between a specific model of interest and 
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C4 as Δρcumulate and Δρmelt respectively, and we consider Δρ values to be positive if 

densities from the model of interest are greater than those of our reference model.    

 

3.3.3.1. Moho crystallization effects 

We first compare Moho crystallization with AMC crystallization, which is 

described as Stage 1 in our two-stage model (see Section 3.2; Fig. 3.2b).  Density curves 

for Moho and AMC crystallization are shown in Figure 3.10a (solid and dashed lines, 

respectively).  Crystallization in each case begins at an MgO value of ~9.2 wt%, with 

plagioclase precipitating first and olivine joining the assemblage at ~2% crystallization 

(Fig. 3.11, a and b).  A significant change in cumulate density begins to occur, however, 

at ~14% crystallization, where density curves diverge, with Moho crystallization rapidly 

rising to higher density values.  At similar stages of crystallization, Δρcumulate reaches 

values of 0.04 g/cm3 at 20% and 40% crystallization with a maximum of 0.05 g/cm3 at 

30% crystallization.  The increase in Δρcumulate is due to earlier precipitation of 

clinopyroxene at Moho depth (Fig. 3.11b) compared with that at AMC depth (Fig 3.11a) 

in the crystallization sequence (14% vs. 27% crystallization, respectively).  Although the 

cumulate density curves begin to converge as crystallization progresses beyond 27%, 

density values remain higher for Moho crystallization compared with AMC 

crystallization.  Crystallization markers illustrate that melt at Moho depth also becomes 

more evolved than melt at AMC depth for a given % crystallization (Fig. 3.10).  The 

difference between the melt density curves for these two models is a result of their 

pressure differences and is inconsequential, since melt density differences between 

models disappear at AMC depth (second-stage crystallization, see below).   
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Figure 3.10. Density calculations for the two-stage crustal construction model. 
Comparisons of cumulate and melt densities (labeled) between the two-stage and single-
stage crustal construction models (solid and dashed lines, respectively; see Fig. 3.2b). (a) 
First stage of two-stage model. Density data comparison between Moho crystallization 
(2.0 kbar) and AMC crystallization (0.5 kbar) using composition C4. (b)-(e) Second stage 
of two-stage model. Density data comparisons between melt compositions extracted 
between 0% and 40% Moho crystallization and composition C4 at AMC depth (0.5 kbar). 
Diamond markers along density curves in all plots indicate progressive degrees of 
crystallization in 10% increments (see Fig. 3.3). Lower, left-hand labels identify the 
depth of crystallization for the two-stage models; lower, right-hand labels identify the 
melt composition for the two-stage models. Equivalent amounts of crystallization (20% 
& 30%) between the single-stage and two-stage models are labeled for comparison.   
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Figure 3.11. Mineral crystallization data for the two-stage crustal construction model.  
Plots of mineral crystallization data for melt compositions associated with the two-stage 
crystallization model (Fig. 3.2b). (a) Composition C4 calculated at 0.5 kbar (AMC depth; 
single-stage model) plotted for comparison. (b) Composition C4 calculated at 2.0 kbar 
(Moho depth; first stage of two-stage model). (c)-(f) Melt compositions extracted 
between 0% and 40% Moho crystallization calculated at 0.5 kbar (AMC depth; second 
stage of two-stage model). Mineral crystallization data curves indicate wt% of total 
cumulates between 0% and 50% crystallization. Lower, right-hand labels indentify melt 
composition and model depth. Markers identify where minerals first appear in the 
crystallization sequence.  
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Modeling results from the second stage of our two-stage model can account for 

some of the variation observed in the EPR glass data, especially for Al2O3 and CaO (Fig. 

3.12).  Calculated LLD data for melts that first undergo fractional crystallization at Moho 

depth (10-50% crystallization) and then are extracted and placed at AMC depth for the 

remainder of the crystallization sequence (see Section 3.2) help to constrain the amount 

of deep crystallization that occurs.  A comparison with Al2O3 and CaO data in particular 

sets an upper limit on Moho crystallization to ~40% before the LLD moves beyond the 

bulk of the data.  We note that the LLD for melt composition C4 crystallizing at AMC 

depth only compared to the LLD with 10% initial Moho crystallization are virtually 

indistinguishable from one another.   

 

Density curves for solid assemblages forming during 10-40% Moho 

crystallization (solid lines) compared with those of C4 crystallizing at AMC depths only 

(dashed lines) are shown in Figure 3.10 (b-e).  As with the LLD data, the difference 

between C4 and the 10% Moho crystallization model appears to be insignificant (Fig. 

3.10b), but the 10% Moho crystallization model produces melts that are slightly more 

evolved and, therefore, begin to crystallize later than C4 would at AMC depth only (8.9 

versus 9.2 wt% MgO, respectively).  Clinopyroxene also joins the existing plagioclase 

and olivine assemblage at 18% crystallization (Fig. 3.11c) versus 27% crystallization in 

C4 (Fig. 3.11a).  The earlier precipitation of clinopyroxene increases cumulate density 

sooner in the crystallization sequence, and the density curves between the two models 

begin to diverge.  Only a negligible increase occurs at 10% and 20% crystallization  
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Figure 3.12. Calculated liquid lines of descent for the two-stage crustal construction 
model. Liquid lines of descent for second stage melt compositions from the two-stage 
crystallization model calculated at 0.5 kbar (AMC depth). Modeling method, modeling 
parameters and major element data are the same as Figure 3.4. Starting melt compositions 
vary between 0% and 50% Moho crystallization starting with composition C4.     
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(Δρcumulate <= 0.01 g/cm3), but Δρcumulate quickly increases and reaches a maximum value 

of 0.04 g/cm3 at 30% crystallization.   

 

As our starting melt composition becomes more evolved (i.e., higher degree of 

crystallization at Moho depth), the plagioclase and olivine crystallization interval 

shortens and clinopyroxene precipitates earlier (Fig. 3.11).  This progression continues 

until Moho crystallization reaches ~20% (Fig. 3.11d), after which clinopyroxene begins 

to crystallize later in the sequence (Fig. 3.11e and f).  Marked increases in Δρcumulate for 

these models (Fig. 3.10), correlate with the timing of the addition of clinopyroxene in the 

cumulate assemblage.  Comparing equivalent stages of crystallization between the 20% 

Moho crystallization model and C4 (Fig. 3.10c), Δρcumulate increases to 0.03 and 0.04 

g/cm3 at 20% and 40% crystallization, respectively, and reaches a maximum of 0.05 

g/cm3 at 30% crystallization.  Beyond 30% crystallization, density curves begin to 

converge and Δρcumulate between the two models continues to diminish.  Other than the 

solidus shift, the density curve for the 30% Moho crystallization model is similar to that 

of the 20% model with the same Δρcumulate values between 20% and 40% crystallization 

(Fig. 3.10d).  Although clinopyroxene precipitates later in the crystallization sequence in 

the 40% model than the three previous models (~24% crystallization sequence), its wt% 

jumps to >80% (Fig. 3.11f) causing a rapid increase in density (Fig. 3.10e).  At 20% 

crystallization, Δρcumulate is virtually zero but jumps to 0.05 g/cm3 at 30% crystallization.  

Liquid density curves for all Moho crystallization models show no significant deviation 

from that of C4 (Δρmelt = 0 g/cm3).   
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 Our cumulate density comparisons between models have, thus far, been limited 

to equivalent amounts of crystallization.  Geochemical data, however, indicate varying 

degrees of fractionation occur within magmatic/volcanic systems along the northern EPR, 

where lower average MgO values appear to correlate with axial depth (e.g., Batiza and 

Niu, 1992; Toomey and Hooft, 2008).  We, therefore, also compare densities between 

models at different stages of crystallization to estimate effects from systems where 

increased % total crystallization, possibly associated with longer melt residence time, 

becomes a factor.  We consider, for example, systems where the % total crystallization is 

greater in a Moho crystallization model than C4.  Once again matching our 20% Moho 

crystallization model against C4, this time we compare 30% crystallization to 20% 

crystallization, respectively.  In this case, Δρcumulate increases to ~0.07 g/cm3 (Fig. 3.10c).  

Cumulate density differences continue to increase as crystallization progresses in the 

20% Moho crystallization model, and Δρcumulate reaches ~0.10 g/cm3 at 50% 

crystallization, which is within the range of the EPR data (>5.79 wt% MgO).  This 

comparison holds true for all Moho crystallization models, although the extent of 

crystallization in the more evolved models compared with C4 is constrained by the EPR 

data. 

 

Our Moho modeling results show that cumulates formed in the lower crust will 

have a higher density that those formed within the AMC by as much as 0.05 g/cm3 with 

equivalent amounts of crystallization.  If we consider melt that remains at Moho depth, 

(i.e., melt sills), cumulate density reaches values of ~2.93 and 2.95 g/cm3 at 80% and 

90% crystallization, respectively (Δρcumulate ~= 0.12 and 0.14 g/cm3, respectively, 
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compared with C4 at 20% crystallization).  Moreover, melt compositions that have 

experienced some degree of crystallization at Moho depth also generate higher density 

cumulates in the AMC than those with very little (<10%) or no prior Moho 

crystallization.  This paradox seems to result from initial Moho crystallization, which 

experiences an earlier initiation of clinopyroxene crystallization, producing more evolved 

melts that continue to precipitate clinopyroxene earlier in the crystallization sequence 

within the AMC compared with the AMC crystallization only model.  Cumulate density 

increases by as much as 0.05 g/cm3 with equivalent amounts of crystallization and 0.10 

g/cm3 when factoring in differences in total % fractional crystallization by amounts that 

are consistent with differences in basaltic glass compositional data.  Our modeling 

results, overall, indicate that a two-stage model with initial Moho crystallization can 

significantly increase average crustal density.  We note here also that the LLD for 

composition C4 crystallizing at Moho depth only (2.0 kbar), with no subsequent AMC 

crystallization, does not fit the EPR data (Fig. 3.13), which indicates that melts ascending 

from the Moho do not likely reach the seafloor without additional shallow crystallization.  

 

3.3.3.2. Upper mantle crystallization effects 

Here we show density variation resulting from some initial upper mantle 

crystallization (3 kbar or ~9 km) compared with AMC crystallization only using a two-

stage approach (see Section 3.2; Fig. 3.2c).  A significant cumulate density difference 

occurs at the very beginning of crystallization when comparing upper mantle 

crystallization with AMC crystallization (Fig. 3.14a; solid and dashed lines, respectively).   
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Figure 3.13. Calculated liquid lines of descent for pressure variation models. Liquid lines 
of descent for composition C4 calculated at 0.5 kbar (AMC), 2.0 kbar (Moho) and 3.0 
kbar (upper mantle). Modeling method, modeling parameters and major element data are 
the same as Figure 3.4.  
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This difference is due to the very early precipitation of clinopyroxene in the 

crystallization sequence (Fig. 3.15b).  At both 10% and 20% crystallization, Δρcumulate 

reaches a maximum value of 0.11 g/cm3 and then diminishes as cumulate density curves 

begin to converge when crystallization exceeds ~27% in the AMC crystallization model.   

 

As with our Moho crystallization modeling, we extract melt compositions at 10-

50% upper mantle crystallization in 10% increments and compare the models with C4 at 

AMC depth.  The LLD for each of these models is shown in Figure 3.16.  The Al2O3 data 

provide an upper bound on mantle crystallization of ~30%, whereas the bulk of the CaO 

data constrain mantle crystallization to ~20%.  Upper mantle crystallization between 10% 

and 20% may explain some of the higher CaO values observed between 6.5 and 7.5 wt% 

MgO as well.  LLD plots with TiO2 and FeOT data do little to provide any constraints 

because model data overlap and span the entire range of the glass data. 

 

No significant cumulate density differences occur between our 10% upper mantle 

crystallization model and C4 (Fig. 3.14b), as clinopyroxene precipitates at 27% 

crystallization in each case (Fig. 3.15, a and c).  Unlike Moho crystallization, however, 

the plagioclase and olivine only crystallization interval actually increases in the 20, 30 

and 40% mantle crystallization models, and clinopyroxene joins the assemblage later in 

the sequence at 38%, 36% and 30%, respectively (Fig. 3.15, d-f).  In each of these cases, 

no cumulate density difference occurs between mantle crystallization models and C4 

while crystallization remains below 27% in the C4 model (Δρcumulate = 0 g/cm3) (Fig. 3.14,  
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Figure 3.14. Density calculations for upper mantle versus AMC crystallization models.  
Comparisons of cumulate and melt densities (labeled) between upper mantle and AMC 
crystallization models (solid and dashed lines, respectively; see Fig. 3.2c). (a) Density 
data comparison between upper mantle (3.0 kbar) and AMC crystallization (0.5 kbar) 
using composition C4. (b)-(e) Density data comparisons between melt compositions 
extracted between 0% and 40% upper mantle crystallization and composition C4 at AMC 
depth (0.5 kbar). Diamond markers along density curves in all plots indicate progressive 
degrees of crystallization in 10% increments (see Fig. 3.3). Lower, left-hand labels 
identify the depth of crystallization for the upper mantle crystallization models; lower, 
right-hand labels identify the melt composition for the upper mantle crystallization 
models. Equivalent amounts of crystallization (20% & 30%) between the upper mantle 
and AMC crystallization models are labeled for comparison.  



 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.15. Mineral crystallization data for upper mantle versus AMC crystallization 
models. Plots of mineral crystallization data for melt compositions associated with the 
upper mantle (UM) crystallization model (Fig. 3.2c). (a) Composition C4 calculated at 
0.5 kbar (AMC depth) plotted for comparison. (b) Composition C4 calculated at 3.0 kbar 
(upper mantle depth). (c)-(f) Melt compositions extracted between 0% and 40% upper 
mantle crystallization calculated at 0.5 kbar (AMC depth). Mineral crystallization data 
curves indicate wt% of total cumulates between 0% and 50% crystallization.  Lower, 
right-hand labels indentify melt composition and model depth. Markers identify where 
minerals first appear in the crystallization sequence.  
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Figure 3.16. Calculated liquid lines of descent for upper mantle versus AMC 
crystallization models. Liquid lines of descent for melt compositions extracted from the 
upper mantle crystallization model calculated at 0.5 kbar (AMC depth). Modeling 
method, modeling parameters and major element data are the same as Figure 3.4. Starting 
melt compositions vary between 0% and 50% upper mantle crystallization starting with 
composition C4.   
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c-e).  Beyond 27%, Δρcumulate values are negative, likely resulting from the exhaustion of 

clinopyroxene at higher total % upper mantle crystallization. 

 

We also ascertain how upper mantle crystallization affects cumulate density when 

the melt continues to crystallize at the Moho (Fig. 3.2d).  Our results show no significant 

cumulate density variation occurs, and only the liquidus temperature shifts as the melt 

composition becomes more evolved (Fig. 3.17) once mantle crystallization reaches 3% 

(using composition C3; see Section 3.3.1).  An initial decrease in cumulate density 

between 0% and 3% crystallization comes from the removal of spinel and a small amount 

of olivine at the onset of crystallization.  Melt compositions with an additional 10% and 

20% upper mantle crystallization behave similarly when crystallizing at Moho depth.   

 

Our modeling results indicate that a significant increase in cumulate density 

(Δρcumulate > 0.1 g/cm3) does occur during upper mantle crystallization, although these 

cumulates are in the mantle and not the crust.  Slightly shallower crystallization within a 

thickened Moho transition zone (MTZ) (e.g., Kelemen et al., 1997; Korenaga and 

Kelemen, 1997), however, may produce cumulates of similar density that would 

contribute to higher average crustal density values.  Our results also show that 10% upper 

mantle crystallization has little impact on resultant cumulate densities in the AMC or at 

the Moho, and the EPR data constrain the extent of upper mantle crystallization to ~20%.  

As with Moho crystallization, the LLD for composition C4 crystallizing at upper mantle 

depth (3.0 kbar) does not fit the EPR data (Fig. 3.13), which indicates that melts 
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ascending from the upper mantle do not likely reach the seafloor without additional 

crystallization.     

 

 

 
Figure 3.17. Density calculations for upper mantle versus Moho crystallization models. 
Cumulate (solid lines) and melt (dashed lines) densities for melt compositions extracted 
during varying stages of upper mantle crystallization (0-23% crystallization starting with 
composition C3) calculated at Moho depth (2.0 kbar; see Fig. 3.2d). Diamond markers 
along density curves indicate progressive degrees of crystallization in 10% increments 
(see Fig. 3.3). Cumulate density curves are labeled by melt composition (i.e., % of upper 
mantle crystallization), and line shades match corresponding melt density curves. 
 

 

3.3.4. The significance of clinopyroxene 

Based on our modeling results and a comparison with existing glass geochemical 

data, we conclude that variations in parental melt major element composition or initial 

H2O content are not likely to be the primary factors in controlling lower crustal density 

variations along the northern EPR.  Our parental melt comparison shows that a significant 

amount of cumulate density variation occurs in the earliest stages of crystallization due to 
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the precipitation of spinel and olivine in the most primitive compositions.  Although 

some slight variations may occur in primary melt compositions (e.g., Perfit et al., 1996; 

Goss et al., 2010), our modeling results indicate that only a small degree of upper mantle 

crystallization (<3%) causes resultant cumulate densities associated with further AMC or 

Moho depth crystallization to be similar, regardless of compositional differences.   

 

Variations in initial H2O content similarly result in significant amounts of 

cumulate density variation in the earliest stages of crystallization, which is primarily 

attributed to the suppression of plagioclase in the crystallization sequence.  As previously 

mentioned, however, a smaller range of initial H2O content reduces the range of cumulate 

densities prior to clinopyroxene crystallization and has no significant impact on 

clinopyroxene precipitation itself.    

 

Our modeling results show that cumulate density curves for both the 

compositional and H2O variation models converge when clinopyroxene precipitates (~8 

wt% MgO at 0.5 kbar), which indicates that the addition of clinopyroxene to the cumulate 

assemblage is the common factor governing cumulate density variation.  Although it is 

well know that the clinopyroxene precipitation is pressure sensitive (e.g., Michael and 

Chase, 1987; Villiger et al., 2007), our modeling results suggest that even small pressure 

differences, such as that between AMC and Moho depths (~1.5 kbar), can significantly 

affect the onset of clinopyroxene precipitation in the crystallization sequence.  The 

presence or absence of clinopyroxene in the cumulate assemblage, in turn, generates 

higher or lower cumulate densities, respectively.  
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3.4. Discussion 

When we consider the relations between clinopyroxene precipitation, 

crystallization depth and cumulate density in the context of our crustal construction 

models (Fig. 3.2, a and b), we see that magmatic systems where the majority of crust is 

formed from shallow AMC crystallization (single-stage model) produce less dense crust 

than those where the crust has a significant contribution from deeper crustal 

crystallization (two-stage model), especially if the two-stage model includes an increased 

% total crystallization and formation of lower crustal sills (e.g., Boudier et al., 1996; 

Kelemen et al., 1997; Kelemen and Aharonov, 1998).  Moreover, when combining our 

modeling results with geophysical and geochemical data from the 9°-10°N region of the 

EPR, it is evident that magmatic systems associated with axial highs (less dense crust) 

appear to be similar to the single-stage model and progressively become more two-stage-

like towards axial lows. 

 

Axial variation in magmatic systems along the EPR is supported by plutonic rock 

data sampled at both Hess Deep and Pito Deep (Coogan et al., 2002; Perk et al., 2007; 

Natland and Dick, 2009).  Samples collected from these two locations indicate that 

significant differences in the amount of lower crustal crystallization do occur along 

sections of the EPR with similar spreading rates, evidenced by plutonic rocks exposed at 

Pito Deep (Perk et al., 2007) that are more primitive than those found at Hess Deep 

(Coogan et al., 2002).  Perk et al. (2007) attribute the differences between these two 

locations to temporal or spatial heterogeneities in the magma plumbing system, a 

phenomenon well observed along the 9°-10°N region of the EPR (e.g., Langmuir et al., 
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1986; Kent et al., 1993; Toomey et al., 1990; Smith et al., 2001; Canales et al., 2003; 

Toomey et al., 2007).  Perk et al. (2007) also present conceptual models similar to our 

single-stage and two-stage models, where they associate the more primitive Pito Deep 

crust with a “gabbro-glacier” like model and the more evolved Hess Deep crust with a 

hybrid accretion model (which includes in situ crystallization in the lower crust 

accompanied by cumulates subsiding from the AMC).   

 

Our modeling results also show that sills emplaced in the lower crust that undergo 

extensive amounts of crystallization (>80%) generate high-density cumulates.  In 

addition to the earlier precipitation of clinopyroxene at depth, significant amounts of melt 

fractionation will produce iron-titanium (Fe-Ti) enriched oxide gabbros (Grove et al., 

1992), which have higher density and lower seismic velocities than do olivine gabbros 

(Iturrino et al., 1991).  A systematic increase in lower crustal crystallization along the 

northern EPR from the axial high at 9°50′N toward the axial low at the OSC is consistent 

with seismic and gravity observations (e.g., Madsen et al., 1990; Barth and Mutter, 1996; 

Wang et al., 1996; Canales et al., 2003).  Moreover, evidence for the emplacement of 

lower crustal sills is found at Hess Deep (Perk et al., 2007; Natland and Dick, 2009) and 

in the Oman ophiolite complex (e.g., Boudier et al., 1996; Kelemen et al., 1997; Kelemen 

and Aharonov, 1998). 

 

In addition to crystallization depth, variation in the degree of AMC crystallization 

also plays a significant role in cumulate density variation.  Our modeling results indicate 

that in order to generate higher density crust on the order observed along the 9°-10°N 
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region of the EPR, there must be a systematic increase in the degree of AMC 

crystallization from the axial high to the axial low.  Geochemical and geophysical data 

from this region show that the chemistry of axial lavas does vary along axis, and the 

variations correlate roughly with axial depth (Detrick et al., 1987; Batiza and Niu, 1992; 

Toomey and Hooft, 2008).  Average MgO values decrease and FeO values increase 

systematically from the axial high near 9°50′N southward toward the 9°03′N OSC, and 

eruption temperatures also correlate with axial depth (Batiza and Niu, 1992).  We observe 

the continuity of the MgO trend in the more recent EPR data (see Section 3.2) used in our 

study.  Although the entire data set includes samples collected within 5 km of the rise 

axis, we eliminate any off-axis geochemical anomalies potentially affecting these results 

by filtering the data to samples collected within 1 km of the rise axis and find no 

significant change in the MgO trend.   

 

Because higher crustal density also correlates with regions of off-axis mantle 

upwelling (Toomey and Hooft, 2008), we suggest that lateral transport of melt to the rise 

axis, by up to 20 km or more (Toomey et al., 2007; Durant and Toomey, 2009) generates 

flow conditions favorable for deep crystallization.  Moho-depth crystallization is inferred 

to occur during and/or post-migration, likely thickening the MTZ (e.g., Kelemen et al., 

1997; Korenaga and Kelemen, 1997) and delivering a comparatively lower flux of cooler, 

more evolved melt to the AMC.  Axial melts associated with an off-axis melt source are, 

thereby, less likely to erupt, which results in longer magma chamber residence times and 

higher degrees of crystallization.  We also suggest that regions of rise-centered upwelling 

generate flow conditions favorable for shallow crystallization, where mantle melt ascends 
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more efficiently to the AMC before any significant fractionation can occur.  A higher 

flux of hotter and more primitive melts delivered to the AMC will likely drive more 

frequent eruptions (i.e., shorter magma chamber residence times) with lower degrees of 

crystallization.   

 

We agree with Perk et al. (2007) that variations in hydrothermal regimes likely 

also play a significant role in the amount of lower crustal crystallization that occurs along 

the northern EPR.  We infer that axial melts originating from an off-axis melt source will 

retard volcanic activity, thereby generating a tectonically dominated setting that allows 

for greater fissure density to develop in the shallow crust and deeper faulting to occur in 

the lower crust (e.g., Fornari et al., 1998).  Deep crustal faults, in turn, may allow for 

deeper penetration of seawater, which provides a source for heat extraction and lower 

crustal crystallization.  Additional crystallization in the lower crust would reduce melt 

flux to the AMC and potentially slow volcanic activity even further, creating a positive 

feedback loop.  We suggest that such deep hydrothermal systems are likely associated 

with more diffuse, low-temperature seafloor venting (e.g., Haymon et al., 1991).  

Conversely, we infer that axial melts associated with a rise-centered melt source will 

drive more frequent volcanic activity, which reduces fissure density (e.g., Fornari et al., 

1998) as well as the likelihood of deep crustal faulting.  Hydrothermal circulation is, 

therefore, confined to the shallow crust, which results in focused, high temperature 

venting (e.g., Haymon et al., 1991) and less lower crustal crystallization.     
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In summary, we illustrate our inferences from our modeling results and 

geophysical and geochemical observations we have discussed thus far by contrasting two 

conceptual axial magmatic/volcanic systems at: (1) an axial high, which overlies a region 

of rise-centered melt accumulation, and (2) an axial low that lies adjacent to a region of 

off-axis melt accumulation (Fig. 3.18).  We associate the system at the axial high with a 

single-stage or “gabbro-glacier” style model (Fig. 3.18a).  In this model, the majority of 

lower crust is formed from subsiding cumulates originating in the AMC with less than 

~25% average crystallization.  Small amounts of crystallization (up to ~10%) may occur 

in the upper mantle or at the Moho without having any significant effect on AMC or 

lower crustal cumulate densities.  Geologic conditions associated with this single-stage 

model include a shallow AMC, small eruption volumes with relatively short eruption 

intervals and high eruption temperatures, comparatively high average MgO values and 

younger lavas, lower fissure density and a shallow (upper crustal) hydrothermal system 

with focused, high-temperature seafloor venting.  Conversely, we associate the system at 

an axial low with a hybrid, two-stage model (Fig. 3.18b).  In this model, the lower crust is 

formed by a combination of Moho depth crystallization (~20-30%) and AMC 

crystallization of more evolved melts.  This model also includes crystallizing sills in the 

lower crust or upper mantle, which potentially thicken the MTZ.  Geologic conditions 

associated with the hybrid, two-stage model may include a relatively smaller and deeper 

AMC, larger eruption volumes with longer eruption intervals and lower eruption 

temperatures, comparatively low average MgO values and older lavas, higher fissure 

density with deep crustal faulting and a deep hydrothermal system with diffuse, low-

temperature seafloor venting. 
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Figure 3.18. Variation in axial magmatic systems due to rise-centered versus off-axis 
delivery of mantle melt. Conceptual illustration contrasting axial magmatic/volcanic 
systems associated with (a) rise-centered versus (b) off-axis melt supply. Geophysical 
and geochemical conditions associated with each system are listed for comparison.  
Geologic features are not to scale. Figure modified from Toomey et al. (2007). (a) Axial 
high associated with rise-centered melt supply. Lower crust is formed by subsiding 
cumulates originating within the AMC. Small amounts of crystallization may occur in the 
lower crust or upper mantle (~10%); question marks indicate uncertainty in the extent of 
lower crustal crystallization. (b) Axial low associated with the off-axis delivery of mantle 
melt. Lower crust is formed by a combination of Moho depth crystallization (~20-30%), 
subsiding cumulates from AMC crystallization and crystallizing melt sills in the lower 
crust and/or MTZ.   

 

 

Thus far, I have focused on the geological consequences of off-axis melt 

accumulation and subsequent melt delivery to the rise axis.  In the following chapter, I 

examine the sensitivity of Pn travel time data to marine crustal and mantle heterogeneity, 

which could potentially affect tomography results and associated interpretations. 
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CHAPTER IV 

THE SENSITIVITY OF Pn IN MARINE SEISMIC TOMOGRAPHY 

 

 This chapter is co-authored by Douglas R. Toomey.  I conducted the waveform 

modeling and analysis and wrote the chapter.  Douglas R. Toomey conducted the travel 

time modeling, provided essential guidance with the research and edits to the chapter.  

This chapter is currently in preparation for publication. 

 

4.1. Introduction 

Head waves are seismic waves that intersect an interface separating lower-to-

higher velocity media at or beyond the critical angle.  The energy of the head wave, also 

known as a refracted wave, propagates at the higher velocity and is continuously 

refracted back into the lower velocity medium at the critical angle (e.g., Aki and 

Richards, 2002; Stein and Wyssesion, 2003).  In the infinite frequency (ray path) 

approximation, head waves are often represented as traveling along the interface.  

However, when considering finite frequencies, head waves sample structure over a finite 

volume that is located at and below the interface.  Oceanic Pn is a sub-crustal arrival that 

is taken to be a head wave and is commonly used in local travel time tomography (e.g., 

Dunn et al., 2000; Toomey et al., 2007).  Even in the presence of a small vertical velocity 

gradient, Pn is typically treated as a true head wave at distances used in local seismic 

studies (<100 km) where Pn remains close to the crust-mantle boundary or Moho.  

Because Pn energy travels near the Moho, it is useful for resolving the topmost mantle 

velocity structure.    
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Here we present the results of a numerical study conducted to investigate the 

sensitivity of Pn travel time data to variations in structure near the Moho in a mid-ocean 

ridge environment.  We use a combination of ray tracing and waveform modeling to 

evaluate the effects of sub-axial crustal thickness variations, mantle low-velocity zone 

(MLVZ) thickness variations, a vertical velocity gradient in the mantle and crust-mantle 

velocity contrast variations on travel times and Fresnel zones associated with Pn energy 

propagating through a cross-axis, mid-ocean ridge model (Fig. 4.1).  We compare our 

results with a recent marine tomography study along the fast-spreading, northern East 

Pacific Rise (EPR) (Toomey et al., 2007), where the observed range of Pn travel time 

anomalies is ~350 ms.  We also demonstrate the ability of using Pn in local travel time 

tomography to resolve velocity structure a few kilometers beneath the Moho and show 

that smoothing constrains can be used to effectively approximate Pn wave behavior. 

 

4.2. Pn modeling 

 We use a combination of graph-theory-based ray tracing (Moser, 1994; Toomey 

et al., 1994) and 2-D finite difference waveform modeling to calculate Pn travel times.  

For our waveform modeling, we use E3D, which is an explicit 2D/3D elastic finite 

difference wave propagation code that is 4th-order accurate in space and 2nd-order 

accurate in time (Larsen and Harris, 1993; Levander, 1988).  Our model space is 60 km 

long by 15 km deep with a nodal spacing of 10 m in each direction (Fig. 4.1).  We use 

free-surface and absorbing boundary conditions along the top and sides of the model, 

respectively.  A 5-km-wide attenuation boundary is added to the sides and bottom of the 

model space to reduce reflected boundary energy that remains within the model, thereby 
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producing a total of 7001 x 2001 nodes.  The model space consists of a 1-km-thick water 

layer, 6-km-thick crust (0.5-km-thick extrusive layer (2A), 1.5-km-thick sheeted dike 

layer (2B) and 4-km-thick gabbroic layer (3)) and an 8-km-thick mantle section.  No 

topography is included in the models.  The source consists of a Ricker wavelet with a 

center frequency of 10 Hz placed at 5 km range (above station 1) and 10 m below sea 

level (Fig. 4.1, star).  Background velocity (Fig. 4.2a) and attenuation profiles as well as 

density calculations are similar to those used by Durant and Toomey (2009).   

 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure 4.1. Finite difference models for crustal thickness and MLVZ thickness variation. 
Cross-axis mid-ocean ridge model space that is 60 km wide x 15 km deep with a 5-km-
wide attenuation buffer added to the sides and bottom (dotted region) to improve 
boundary conditions. Center of the model represents the ridge axis. Source (solid star, 
left) and receiver (solid dome, right) locations are shown. (a) Finite-difference Models 1-
7. Model 1 is the reference model (flat Moho), and Models 2-7 contain a 10-km-wide 
sub-axial crustal root (solid lines) or anti-root (dashed lines). (b) Finite-difference Models 
8-12, which include a sub-axial MLVZ of varying thickness (see Table 4.1). 	
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Figure 4.2. Velocity-depth profiles for finite difference and ray tracing models. (a) P 
wave velocity depth functions for our finite difference reference model (Model 1, solid 
line), model with mantle vertical velocity gradient of ~0.015 s-1 (Model 13, dotted line) 
and models with crust-mantle velocity contrast variations of 7.1-7.6 km s-1 (Model 14, 
dashed line) and 7.1-7.4 km s-1 (Model 15, dot-dashed line). (b) P wave velocity depth 
function for ray tracing models. Mantle velocity is 7.6 km s-1 with 6% anisotropy (fast 
axis lies in the plane of Figs. 4.3 (top), 4.5 and 4.6).	
  

 

 

We run 15 separate finite difference models, which include a variety of crustal or 

mantle velocity anomalies.  Model 1 is laterally homogeneous and is used as our 

reference model (Fig. 4.2a).  The effects of sub-axial crustal thickness variations on Pn 

travel times are evaluated in Models 2-7 by adding a 10-km-wide crustal root with 

thickness values that range between -1 and 3 km at 500 m increments (Fig 4.1a).  Pn 

travel time sensitivity to a low-velocity anomaly (Δv = 0.4 km s-1) beneath the Moho is 

evaluated in Models 8-12 with a 10-km-wide MLVZ that begins at the Moho and varies 

in thickness by 0.5, 1, 2, 3 and 4 km, respectively (Fig. 4.1b).  We also test the effects of 
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a vertical velocity gradient (~0.015 s-1) in the mantle on Pn travel time in Model 13 (Fig. 

4.2a), and in Models 14 and 15 we investigate Pn travel time sensitivity to crust-mantle 

velocity contrast variations by lowering mantle velocities from 7.8 to 7.6 and 7.4 km s-1, 

respectively (Fig. 4.2a).  Travel time data are collected for a synthetic station located 50 

km from the source (Fig. 4.1, dome), and resultant Pn delays are determined by 

comparing Pn arrival times from our anomalous models (Models 2-15) with those from 

our reference model (Model 1).   

 

We also estimate the first Fresnel zone for a 10 Hz head wave by using the single-

scatterer Born approximation, where the Fresnel zone is determined by evaluating 

forward-propagating energy from the source and backward-propagating energy from the 

receiver to every single scatterer near the minimum travel time path (or ray path) (Dahlen 

et al., 2000; Nolet et al., 2005).  Arrival times and amplitudes for head waves are found to 

be influenced by the 3-D velocity structure surrounding the ray path in a pattern that is 

generally consistent with the Fresnel zones, and they are most sensitive to velocity 

perturbations within the first Fresnel zone (Zhang et al., 2007).  The Pn Fresnel zone for 

our reference model in shown in Figure 4.3, where the first Fresnel zone coincides with 

the 0.03 s contour.  Figure 4.3 (top) shows that once the head wave pierces the Moho (red 

dashed line), the Fresnel zone does not sample the crust.  Cross-sections through the head 

wave near to the piercing point and to the center of the Pn path (Fig. 4.3, top) reveal that 

the associated Fresnel zones are in the mantle in both locations, and their widths are 

identical (Fig. 4.3, bottom).  The vertical extent of the head wave is ~1.5 km near the 

piercing point and over 2 km near the center.  The minimum travel time path is indicated 
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by the black dot near the top of the Fresnel zone (Fig. 4.3, bottom).  The P wave velocity 

depth function used for minimum travel time path and Fresnel zone calculations is shown 

in Figure 4.2b.  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

 

Figure 4.3. Pn Fresnel zones and minimum travel time paths. P wave velocity depth 
function used for these models is shown in Fig. 4.2b. (top) Travel time field for first 
arriving P waves and contours of the time difference between non-minimum time paths 
and the Pn path. The first Fresnel zone for a 10 Hz wave coincides with the outer (0.03 s) 
contour. Red dashed line indicates base of crust. Cyan and green vertical lines show 
location of cross-sections for bottom plot. (bottom) Contour plot of the time difference 
between non-minimum time paths and the Pn path (black dot) from the cyan and green 
cross-sections above. The first Fresnel zone coincides with the outer (0.03 s) contour. 	
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4.3. Modeling results 

 Results from our finite difference waveform modeling (Table 4.1) indicate that 

sub-axial crustal thickness variations do not significantly affect Pn travel times when 

crustal thickness remains less than 2 km (Fig. 4.4a).  Negative crustal thickness values of 

1 km and 0.5 km (Models 2 and 3, respectively) generate Pn delay times that are less than 

our mean picking error (10 ms).  A positive root of 0.5 km (Model 4) likewise produces a 

Pn delay time (~10 ms) that is approximate to the typical arrival time uncertainty (Fig. 

4.4a).  The Pn delay time resulting from a 1-km-thick root (Model 5) is ~20 ms, and for a 

crustal thickness anomaly of 2 km (Model 6) the predicted Pn delay time is ~60 ms, 

which is a more significant signal.  Increasing the crustal thickness anomaly to 3 km 

(Model 7) or more increases the Pn delay to 120 ms.  Amplitude variations observed in 

the Pn coda for Models 2-7 are the result of waveform interference between reflected P 

wave energy generated along the crustal root and Pn energy.   

  

The effects of a ±1 km crustal thickness increase/decrease between Moho piercing 

points (i.e., beneath the ridge axis) on the minimum travel time path for Pn are illustrated 

in Figure 4.5.  In the case of a 1 km increase (Fig. 4.5, top), the ray path dips beneath the 

crustal anomaly, which generates a negligible delay time (Δt=25 ms) similar to our 

waveform modeling results.  In the case of a 1 km decrease (Fig. 4.5, bottom), the Pn ray 

path is virtually unaffected and no Pn delay time is observed (Δt=0 ms); this result also 

agrees with our waveform modeling results.  Black and blue contour lines show the travel 

time fields for the model that includes a flat Moho and the models that include the crustal 

thickness anomalies, respectively.     
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Table 4.1. Pn delay times for finite difference waveform models.  

 

	
  

The impact of crustal thickening on the Pn Fresnel zone is illustrated in Figure 

4.6, where a 1 km crustal thickness increase again occurs between Moho piercing points.  

As with the model with a flat Moho (Fig. 4.3), the Pn Fresnel zone does not sample the 

crust between Moho piercing points.  The top of the Fresnel zone, however, is depressed 

beneath the crustal anomaly (as observed with the minimum travel time path) while the 

bottom of the Fresnel zone is virtually unaffected.   
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Figure 4.4. Synthetic Pn arrival times from finite difference modeling. P wave velocity 
depth function used for these models is shown in Fig. 4.2a. (a) Pn arrival times for crustal 
thickness variation (Models 2-7) having thickness anomalies of -1, -0.5, 0.5, 1.0, 2.0 and 
3.0 km, respectively. (b) Pn arrival times for mantle low-velocity zone (Models 8-12) 
with MLVZ thicknesses of 0.5, 1.0, 2.0, 3.0 and 4.0 km, respectively. (c) Pn arrival times 
for a mantle vertical velocity gradient of ~0.015 s-1 (Model 13) and for crust-mantle 
velocity contrast variations of 7.1-7.6 and 7.1-7.4 km s-1 (Models 14 and 15, 
respectively). All arrival times are for a synthetic station located 50 km from the source.  
The Pn arrival time for the reference model (Model 1) is shown in each for comparison 
(dashed line).  	
  

 

 

The results from our waveform modeling (Table 4.1) associated with variations in 

MLZV thickness (Models 8-12) are similar to those for crustal thickness variation (Fig. 

4.4b).  When the MLZV is 1 km thick or less (Models 8 and 9), Pn delay times are 

negligible (<20 ms).  When the MLVZ is 2 km thick (Model 10), the delay time increases 

to 60 ms.  Pn delay times begin to stabilize around 80 ms, however, when the MLVZ 

reaches 3 km or more (Models 11 and 12).  Amplitude variations are also observed in the 

Pn coda associated with the MLVZ models for the same reason noted previously.      
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Figure 4.5. Effects of varying crustal thickness by ±1 km between Pn piercing points on 
the travel time field and the minimum time path. P wave velocity depth function used for 
these models is shown in Fig. 4.2b. For each figure, two travel time fields are contoured. 
Black contours are for a model with a flat Moho; blue contours are for a model that 
includes a 1 km change in crustal thickness. Green line is minimum time path at 50 km. 
Crustal thickness anomaly is 10 km wide in each case. (top) Crustal thickness is 
increased by 1 km. (bottom) Crustal thickness is decreased by 1 km. 	
  
 
  

 

Waveform modeling results (Table 4.1) show that a small, vertical velocity 

gradient (~0.015 s-1) in the mantle also has little effect on Pn travel times.  Model 13 

(Fig. 4.4c) data show the anomalous Pn arrives just ahead of Pn in the reference model 

but well within our picking error (<10 ms).  The slight decrease in Pn arrival time is a 

result of the higher velocity within the gradient.  Pn delay times are larger for models 

with velocity contrast variations (Fig. 4.4c, Models 14 and 15).  Pn delay times resulting 

from a lower crust to upper mantle velocity contrast of 7.1 to 7.6 km s-1 (Model 14) is 

~90 ms, which is doubled to 180 ms when the mantle velocity is lowered to 7.4 km s-1 

(Model 15).   
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Figure 4.6. Pn non-minimum travel time paths for crustal thickness variation. P wave 
velocity depth function used for these models is shown in Fig. 4.2b. Effect of changing 
crustal thickness by 1 km on the Fresnel zone of Pn. Travel time field for first arriving P 
waves and contours of the time difference between non-minimum time paths and the Pn 
path. The first Fresnel zone coincides with the outer (0.03 s) contour. Red dashed line 
indicates base of crust. 	
  

 

 

Although Pn delay times associated with crust-mantle contrast variations seem 

significant, they result only because of changes in lower mantle velocity.  This is 

illustrated by the fact that the Pn Fresnel zone does not sample the crust as shown in 

Figure 4.7.  The Pn Fresnel zones associated with mantle velocities of 7.6 and 7.2 km s-1 

are identical in shape and similar in size, and they remain in the mantle regardless of the 

increase in velocity contrast.   

 

4.4. Discussion 

4.4.1. Crustal thickness 

Uncertainty in crustal thickness near sources and/or receivers can have a 

significant impact on Pn travel times since Pn energy propagates at crustal velocities 

between sources/receivers and Moho piercing points (or Pn piercing points).  In the case 

of the Toomey et al. (2007) tomography study, however, crustal thickness beneath  



	
  
75 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 
Figure 4.7. Effect of changing the crust-mantle velocity contrast on the Pn Fresnel zone. 
P wave velocity depth function used for these models is shown in Fig. 4.2b.  Green 
contours are for a mantle velocity of 7.6 km s-1; blue contours are for a mantle velocity of 
7.2 km s-1. The outer contour in each case (0.03 s) approximates the first Fresnel zone. 
 
 
	
  

 

shooting lines and instrument locations has been measured (Barth and Mutter, 1996; 

Canales et al., 2003), and the off-axis crustal velocity structure is well constrained by 

inversions of Pg and PmP data with a common root-mean-square misfit of only 12 ms 

and 22 ms, respectively (Canales et al., 2003).  What is less well constrained is crustal 

thickness below the rise axis, which creates an uncertainty in Moho topography between 

Pn piercing points.  Zhang et al. (2007) show that a down-bending or up-bending of the 

interface between head wave piercing points compresses or stretches the travel time 

sensitivity kernels, which results in increased or decreased sensitivities beneath the 

interface topography, respectively.  The maximum vertical (10 km down, 5 km up) and 

horizontal (35 km) dimensions of their interface perturbations, however, are far greater 
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that what we find beneath the fast-spreading mid-ocean ridge axis, where vertical 

interface uncertainty is typically considered less than ± 1 km (e.g., Barth and Mutter, 

1996) over a maximum lateral distance of ~10 km (e.g., Detrick et al., 1987).  We also 

see a compression of the Pn Fresnel zone associated with a 1 km crustal thickness 

increase (Fig. 4.6).  Our travel time modeling results indicate that no significant delays 

are observed in Pn travel times until crustal thickness perturbations (i.e., changes in 

Moho topography) reach 2 km or more, which we consider unlikely.  Therefore, normal 

sub-axial crustal thickness variations do not significantly affect Pn travel times.    

 

4.4.2. Mantle low-velocity zone 

Accurately resolving the velocity structure of the topmost mantle beneath mid-

ocean ridges is critical for understanding the magma plumbing systems that drive the 

volcanic and hydrothermal systems observed along spreading axes.  However, because 

travel time tomography utilizes ray theory, a first-order approximation to wave behavior 

where infinitely thin rays define minimum travel time paths between source and receiver 

(e.g., Aki and Richards, 2002; Stein and Wyssesion, 2003), uncertainty arises in the 

ability of Pn to accurately resolve mantle structure beyond Moho depths (i.e., away from 

the minimum travel time path).  Because seismic waves do not behave like rays, some 

tomography methods (like that used in our referenced EPR study (Toomey et al., 2007)) 

compensate by integrating ray theory approximation with wave behavior using a vertical 

smoothing constraint that approximates the combined effects of wavefront healing and 

Fresnel zones (finite-frequency theory), which is argued to be a valid approximation (van 

der Hilst and de Hoop, 2005; de Hoop and van der Hilst, 2005).  Wavefront healing 
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theory (Wielandt, 1987; Nolet and Dahlen, 2000) requires structural anomalies to be 

sufficiently large to generate significant Pn travel time anomalies, and Finite-frequency 

theory (e.g., Dahlen et al., 2000; Nolet et al., 2005; Zhang et al., 2007) accounts for travel 

time and amplitude sensitivities to structure both along and away from the minimum 

travel time path.   

 

 MLVZs with vertical extents of several kilometers are indicative of an established 

system of magma transport, and determining the ability of Pn to resolve these anomalies 

is critical for accurate interpretation of tomographic data.  Our travel time calculations 

show that for a sub-axial MLZV with a vertical extent of 2 km or less, the shortest time 

path is below the anomaly and the predicted delay time is 5 or more times smaller than 

the observed range of Pn anomalies found in the EPR data (~350 ms).  It is only when the 

MLVZ is 3 km or greater that the shortest time path passes through and not below the 

MLVZ, and resulting Pn delay times stabilize to a near-constant value (~80 ms).  

Waveform healing also requires that a velocity anomaly be of sufficient vertical extent to 

significantly effect Pn travel time (Wielandt, 1987; Nolet and Dahlen, 2000).  Our 

modeling results, along with waveform healing theory, indicate that MLVZs must be of 

significant size in order to generate Pn delay times on the order observed in the EPR 

study.  We note that the difference between our modeling result (Δt=~80 ms) and the 

range of delay times observed in the EPR study (~350 ms) may be attributed to a variety 

of factors not addressed in this study such as mantle anisotropy, melt transport and 

storage processes and thermal structure of the uppermost mantle.    

 



	
  
78 

4.4.3. Mantle velocity gradient 

 A vertical velocity gradient in the upper mantle could affect Pn travel times, as a 

head wave will become a turning wave in the presence of a sufficiently large gradient.  

Our modeling results, however, show that mantle velocity gradients on the order 

observed in fast-spreading mid-ocean ridge environments have little effect on Pn travel 

times within the range of local seismic studies (<100 km).  Although using a slightly 

larger gradient than we use in our model (0.02 s-1 and 0.015 s-1, respectively), Zhang et 

al. (2007) show that the travel time sensitivity kernel associated with the velocity gradient 

is about an order of magnitude less than their reference kernel over a horizontal distance 

almost twice that of our model.  On the scale of our study, we determine that no 

significant Pn delay time occurs as a result of a mantle velocity gradient.  

 

4.4.4. Crust-mantle velocity contrast 

 The velocity contrast between the lower crust and upper mantle across the Moho 

can also have an impact on Pn travel times, since Pn is particularly sensitive near Moho 

piercing points (Zhang et al., 2007).  Off-axis crustal velocity structure near regions 

where Pn propagates through the crust, however, is well constrained in the EPR study (as 

noted above).  Although a change in the velocity contrast will change the geometric ray 

path, the apparent velocity and overall travel time of Pn (Fig. 4.4c, Models 14 and 15), 

there is little impact on Pn sensitivity as demonstrated by the lack of any significant 

changes to the Fresnel zone (Fig. 4.7).  We determine, therefore, that realistic velocity 

contrast variations across the Moho have little effect on Pn Fresnel zones or associated 

travel times. 
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This concludes the body of my work.  In the next chapter, I present conclusions 

and inferences from all three studies. 
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CHAPTER V 

CONCLUSIONS 

 

 Thus far, I have presented motivations, methods and outcomes for all three mid-

ocean ridge studies.  Here, I present the conclusions and inferences, which stem from our 

data and modeling results. 

 

5.1. Off-axis crustal magmatism 

On the basis of our travel time and waveform modeling, along with seismic 

refraction data from the UNDERSHOOT experiment (see Chapter II), we conclude or 

infer the following: 

 

1) A seismic velocity and attenuation anomaly is located ~20 km east of the 

spreading center in 300-ka-old crust.  The anomaly is the result of a crustal-level 

magmatic complex, which consists of a 1-km-long (±0.5 km) melt sill located at a depth 

of 2 km beneath the seafloor that is underlain by a broader region (4.5-km-long, ±1 km) 

of crust that is anomalously hot and perhaps partially molten.  Attenuation within the 

anomaly is an order of magnitude higher than normal, off-axis oceanic crust.   

 

2) Waveform data can better resolve relatively small crustal magma bodies 

like the one we detect when compared to two-dimensional travel time tomographic 

methods.  
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3) The high-attenuation LVV we detect is consistent with the injection of a 

significant amount of heat into the ridge flank and marks a site of repeated intrusive 

activity, which we attribute to underlying mantle melt accumulation.   

 

4) The off-axis delivery of mantle melt gives rise to magmatic underplating 

and intrusive activity that thickens both the MTZ and the crust, thereby fundamentally 

altering crustal architecture.  Repeated intrusive activity may act as a source for off-axis 

lava flows and drive off-axis hydrothermal circulation. 

 

5.2. Axial depth and crustal density variation 

On the bases of our thermodynamic modeling results, along with geochemical and 

geophysical observations along the 9°-10°N region of the EPR (see Chapter III), we 

conclude or infer the following: 

 

1) Crustal density variations on the order inferred along the northern EPR 

(~0.1 g/cm3) can result from differences in both crystallization depth and degree of 

fractionation (i.e., magma chamber residence time).   

 

2) Regions where lower crustal formation occurs by a combination of deep 

crystallization and longer AMC residence times have higher average crustal density than 

those where the lower crust is generated by subsiding cumulates originating within the 

AMC with shorter residence times.  
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3) Cumulate density variations are primarily attributed to differences in the 

crystallization sequence of major mineral phases at different pressures, especially that of 

clinopyroxene.  An increase in the percentage of clinopyroxene within the cumulate 

assemblage can sufficiently increase average cumulate density by as much as 0.1 g/cm3. 

 

4) Our modeling results support the magma differentiation hypothesis and 

quantitatively link segment-scale variations in axial depth and crustal density to segment-

scale variations in crystallization depth.  In this view, axial highs are associated with 

magmatic systems that crystallize melt preferentially within upper-crustal magma bodies.  

Conversely, along-axis deeps are associated with magmatic systems that have significant 

near-Moho crystallization, a condition that we attribute to off-axis delivery of mantle 

melt.   

 

5.3. Pn sensitivity in travel time tomography 

On the basis of our results from ray tracing, waveform modeling and Fresnel zone 

calculations (see Chapter IV), we conclude or infer the following: 

 

1) Sub-axial crustal thickness variations do not significantly effect Pn travel 

times until crustal thickness reaches 2 km or more, which is beyond realistic uncertainty.  

 

2) Mantle low-velocity anomalies must be at least 2 km thick to be detectable 

and at least 3 km thick in order to generate stabilized, near-constant Pn delay times that 

are significant.  



 83 

3) A vertical velocity gradient in the upper mantle, as well as crust-mantle 

velocity contrast variations across the Moho, prove to be inconsequential to Pn travel 

time uncertainties under the conditions found along the northern EPR.  

 

4) Vertical smoothing constrains utilized by Toomey et al. (2007) in their 

local travel time tomography method do an effective job at approximating Pn wave 

behavior, and our findings support the validity and interpretation of their tomographic 

results. 

 

5.4. Concluding thoughts 

 Since the mid-twentieth century, marine geoscientists have endeavored to unravel 

the complexities of mid-ocean ridge processes.  A great deal of progress has been made 

over the past couple of decades, mostly due to improvements in technology, yet many 

questions remain unanswered.  Although the discovery of off-axis melt accumulation 

along the northern EPR adds another level of complexity, the results of our first two 

studies show that it provides a logical means by which we can explain several enigmatic 

observations like off-axis volcanic and hydrothermal activity as well as axial depth 

variation along fast-spreading ridges.  The results of our work also indicate that mid-

ocean ridge research should be expanded to include more off-axis studies, especially in 

regions overlying mantle melt accumulation.  Other topics such as processes for lateral, 

sub-crustal melt flow or potential thickening of the MTZ associated with the off-axis 

delivery of mantle melt to the rise axis we leave for future study.   
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 As for our Pn study, our results eliminate several potential factors that could 

affect Pn travel times and resulting travel time tomography interpretations.  However, the 

question remains as to what may yet affect head waves and resulting travel times in the 

mid-ocean ridge environment.  Although we have suggested possible factors to explain 

the difference between the range of Pn delay times observed in the UNDERSHOOT data 

(~350 ms) and our modeling results (~80 ms), more work is required to fully answer this 

question.  The solution could prove to be consequential to our understanding of the 

thermal structure of the uppermost mantle as well as melt transport and storage processes 

beneath mid-ocean ridges.  We leave answering this question to future study as well.     
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APPENDIX A 

WAVEFORM MODEL PARAMETERIZATION 

 

We use E3D, an explicit 2D/3D elastic finite difference wave propagation code 

that is 4th-order accurate in space and 2nd-order accurate in time, for our finite difference 

modeling (Larsen and Harris, 1993; Levander, 1988).  The finite difference crustal model 

consists of a 5001 x 1401 nodal grid with a 10 m nodal spacing in the horizontal and 

vertical directions (50 x 14 km2).  Absorbing boundary conditions are used on the sides 

and bottom and a free surface boundary condition at the top.  Some reflecting energy, 

however, remains within the model space.  To further reduce boundary effects, we add 

additional nodes to the sides and bottom that make the overall model dimensions 7001 x 

2001 nodes (70 x 20 km2) (Fig. A.1a).  We place a 5-km-wide high attenuation (Q = 5) 

boundary along the sides and bottom as well (Fig. A.1b).  Topography is excluded from 

the model.  For most models, the layer 2A-2B velocity discontinuity is replaced by a 

continuous gradient in order to remove the many converted phases that are outside the 

scope of our study.  Crustal Vp/Vs ratios and Q values are slightly modified from Vera et 

al. (1990) and Wilcock et al. (1992), respectively (Fig. A.1), and crustal densities (ρ) are 

calculated using the density-velocity relationship ρ = 0.165Vp + 1.852 (Christensen and 

Shaw, 1970).  The source consists of a Ricker wavelet with a center frequency of 10 Hz.  

Shots (1 per run) are spaced at 1 km intervals and begin 10 m below sea level.  We 

perform 51 separate runs for each synthetic model (one for each shot position) in order to 

construct record sections that are comparable to data.  Synthetic data are band-pass 

filtered between 5 and 30 Hz. 
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Figure A.1. Preferred finite difference model. (a) velocity contours; P wave (top) and S 
wave (bottom), (b) attenuation contours; Qp (top) and Qs (bottom); Q contours show the 
side and bottom boundaries added to reduce model boundary effects, (c) velocity-depth 
functions outside the LVV region (left) and within the LVV region (right); a velocity-
depth profile from Vera et al. (1990) is shown for comparison. 
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APPENDIX B 

HEAT CALCULATIONS 

 

We estimate the amount of heat being injected into the ridge flank by calculating 

the amount of heat required to generate the velocity anomaly observed in our seismic 

data.  We use the velocity and attenuation results from our modeling and add a 1-km-

width to our LVV.  We begin with the temperature derivative of seismic velocity κ 

(Karato, 1993),  

 

(1) 

 

where V0 is a reference velocity corresponding to the unrelaxed state of the medium, Q-1 

is the reciprocal of the quality factor, ω is frequency, T is temperature, H* is activation 

enthalpy, R is the gas constant and F(α) = (πα/2)cot(πα/2) where α is the exponent of the 

power law dependence of Q on frequency (Q ~ ωα).  The first term in this equation 

represents anharmonic effects (no seismic energy loss), and the second term represents 

anelastic effects (entails seismic energy loss).  Anelasticity can significantly increase the 

temperature derivative, thereby reducing the thermal anomaly required to generate the 

observed velocity anomaly.  To obtain a minimum value for the thermal anomaly, we 

maximize the effects of anelasticity by setting F(α) = 1.  We use a value of -8.1 × 10-5 K-1 

for the anharmonic term (Christensen, 1979), and use the following values for the 

remaining variables: Q-1 = 0.02 (a viable estimate from our modeling results), H* = 276 

kJ mol-1 (Caristan, 1982)) and R = 8.314 J mol-1 K-1.  For T, we use 400, 600 and 800 °C, 

κ =
∂ lnV
∂T

=
∂ lnV0

∂T
− F(α ) Q-1(ω ,T )

π
⎛
⎝⎜

⎞
⎠⎟

H *

RT 2

⎛
⎝⎜

⎞
⎠⎟
.
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which is a range of average mid-crustal temperatures expected for normal off-axis crust 

(Dunn et al., 2000; Maclennan et al., 2005).  Using these values in Eqn. (1) gives us the 

following solutions for κn, where n = 400, 600 and 800: κ400 = -5.47 × 10-4 K-1, κ600 = -

3.58 × 10-4 K-1 and κ800 = -2.65 × 10-4 K-1.  Figure B.1a shows that the magnitude of κ 

decreases with increasing Q as anelastic effects diminish.   

 

To determine the temperature anomaly associated with each value of κ, we use 

the relation 

 

(2) 

 

We estimate the derivatives in Eqn. (2) by using Δ and rearrange the equation to get  

 

(3) 

 

ΔVp (ΔVp = -0.3 km s-1) is determined by taking the average of the velocity values within 

the modeled LVV (VpLVV = 6.7 km s-1) and comparing it to the average mid- to lower-

crustal velocity value near OBS 51 (Vpcrust = 7.0 km s-1) (Canales et al., 2003).  Using our 

values for κn and ΔVp, we get the following solutions for ΔTn: ΔT400 = 78 °C, ΔT600 = 120 

°C and ΔT800 = 162 °C.  These ΔT values assume a Q value of 50 everywhere, however 

Figure B.1b shows that as Q increases the thermal anomaly required to generate the 

observed velocity anomaly also increases.   

ΔTn =
ΔVp

κ nVpcrust

    (n = 400, 600, 800).

∂Vp =κVp ∂T.
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Figure B.1. Heat calculation variables and their relationships with the quality factor Q.  
Calculations for all three variables are made using crustal temperatures of 400, 600 and 
800 °C as shown, (a) temperature derivative of seismic velocity κ (Eqn. (1)) with respect 
to Q, (b) temperature anomaly ΔT (Eqn. (3)) with respect to Q, (c) heat (Eqn. (4)) with 
respect to Q.  Values in (b) and (c) are based upon a velocity anomaly of  -0.3 km s-1.  
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We calculate the amount of heat (Qheat) required to generate the temperature 

anomaly within the LVV using the standard heat equation, 

 

(4)                  

 

where mLVV is the mass of the rock within the LVV, Cpn is the specific heat capacity of 

the rock at constant pressure and ΔTn is change in temperature.  Using the density of 

gabbro (ρgabbro = 2970 kg m-3) (Waples and Waples, 2004) and an LVV volume of 22.5 

km3 (4.5 km L × 5 km H  × 1 km W), we get mLVV = 6.7 × 1013 kg.  Because specific heat 

capacity is temperature dependent, we use the method of Waples and Waples (2004) to 

calculate values for Cpn.  The regression equation  

 

(5) 

 

gives us a normalized heat capacity of a mineral or nonporous rock at any temperature T 

(°C).  As long as a measured value for the specific heat capacity (CpT1) is available for 

the rock or mineral at any given temperature T1, then Eqn. (6) can be used to calculate the 

theoretical specific heat capacity (CpT2) for the same rock or mineral at a new 

temperature T2: 

 

(6) 

 

Qheat (n) = mLVVCpnΔTn      (n = 400, 600, 800),

CpnT = 8.95 ×10−10T 3 − 2.13×10−6T 2 + 0.00172T + 0.716

CpT 2 = CpT 1
CpnT 2
CpnT 1

⎛
⎝⎜

⎞
⎠⎟
.
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We thus obtain the following values for the specific heat capacity of gabbro (Cpn), where 

the measured value for gabbro is 1000 J kg-1 K-1 at 20 °C (Waples and Waples, 2004): 

Cp400 = 1495 J kg-1 K-1, Cp600 = 1567 J kg-1 K-1 and Cp800 = 1584 J kg-1 K-1.  Using our 

values for mLVV, Cpn and ΔTn in Eqn. (4) gives us the following solutions for heat: 

Qheat(400) = 7.5 × 1018 J, Qheat(600) = 1.2 × 1019 J and Qheat(800) = 1.6 × 1019 J.  From 

these solutions, we use an estimate of 1 × 1019 J for the amount of heat being injected into 

the ridge flank at our study site.  Figure B.1c illustrates that the amount of heat required 

to generate a specific velocity anomaly increases with respect to increasing Q, thus our 

heat estimate via a Q value of 50 is rather conservative.  Similar analyses using velocity 

anomalies (ΔVp) of -0.2 and -0.1 km s-1 for comparison yield a reduction in heat values of 

33 and 66%, respectively. 

 

To estimate the heat contributed by a single melt sill, like the one in our model, 

we calculate the amount of heat given off during sill solidification.  We use a value of 5.0 

× 105 J kg-1 for the latent heat of crystallization for basaltic melts in the crust (Cannat et 

al., 2004).  A melt density of 2600 kg m-3 and a sill volume of 0.1 km3 (1 km L × 0.1 km 

H × 1 km W) yields a mass for the melt sill of 2.60 × 1011 kg.  If the sill were to totally 

crystallize, it would generate ~1.3 × 1017 J of heat (latent heat of crystallization × mass), 

which is less than 2% of the estimated heat required to generate the observed LVV. 
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