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 Falls are a significant source of physical, social, and psychological suffering 

among elderly adults.  Falls lead to morbidity and even mortality.  Over one-third of 

adults over the age of 65 years will fall within a calendar year, with almost 10,000 deaths 

per year attributed to falls.  The direct cost of falls exceeds $10 billion a year in the 

United States.  Fall incidents have been linked to multiple risk factors, including 

cognitive function, muscle strength, and balance control.  The ability to properly identify 

balance impairment is a tremendous challenge to the medical community, with accurate 

assessment of fall risk lacking.  Therefore, the purpose of this study was to assess balance 

control during gait among young adults, elderly adults, and elderly fallers; determine 

which biomechanical measures can best identify fallers retrospectively; demonstrate 

longitudinal changes in elderly adults and prospectively assess fall risk; and provide a 

method for mapping clinical variables to sensitive balance control measures using 

artificial neural networks.  
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 The interaction of the whole body center of mass (CoM) in relation to the base of 

support (BoS) assessed static and dynamic balance control throughout gait.  Elderly 

fallers demonstrated reduced balance control ability, specifically a decreased time to 

contact with the boundary of the BoS, when compared to young adults at heel strike.  

This decreased time might predispose older adults to additional falls due to an inability to 

properly respond to perturbations or slips. 

 Inclusion of these balance control measures along with the Berg Balance Scale 

and spatiotemporal measures demonstrated sensitivity and specificity values of up to 90% 

when identifying 98 elderly fallers and non-fallers, respectively.  Additionally, 27 older 

adults were followed longitudinally over a period of one year, with only the interaction of 

the CoM with the BoS demonstrating an ability to differentiate fallers and non-fallers 

prospectively. 

 As the collection and analysis of these biomechanics measures can be time 

consuming and expensive, an artificial neural network demonstrated that clinical 

measures can accurately predict balance control during ambulation.  This model 

approached a solution quickly and provides a means for assessing longitudinal changes, 

intervention effects, and future fall risk. 

 

 This dissertation includes both previously published and unpublished co-authored 

material. 
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CHAPTER I 

 

INTRODUCTION 

 

With increasing age, risk of falling among elderly adults becomes a major health 

concern. A fall, which is often defined as unintentionally coming to the ground or some 

lower level as the consequence of something other than the impact of a violent blow, loss 

of consciousness, or sudden onset of paralysis (as in stroke or an epileptic seizure), can 

lead to fracture, reduced level of activity, fear of future falls and even death.
1
  Although 

falls are often considered accidents, researchers now believe that falls occur due to causal 

events and are not just due to random chance. 

Studies have shown that almost one-third of adults 65 years or older have 

experienced one or more falls.
2-4

  Incidence of falling increases with age, as 40% of 

adults over the age of 80 report a fall event.
5-7  

Falling can occur at any time or place for 

elderly persons, as studies have shown that 50% of falls occur within the home or in the 

immediate vicinity of the home.  A small number of falls occur in the bathroom or on 

stairs, while the most common location is on level surfaces in commonly used rooms.
1
  

Not only are falls common, but they have often been associated with mortality 

and serious morbidity.
6, 8

  Falls may lead to further complications and injuries, resulting 

in immobility, restrictions in life style and a decrease in the quality of life of an elderly 

person.  After suffering a fall, elderly persons have demonstrated a likelihood of falling 

again, impacting their physical, psychological and social lifestyle, due to a correlated 

reduction in activity that frequent fallers tend to exhibit.
1, 2, 9

 Among adults 65 years of 

age or older, almost 9500 deaths per year can be attributed to falling, with hip injuries 
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being the leading cause of mortality.
1, 9

  The direct cost of falling exceeds $10 billion a 

year in the United States, with treatment of hip fractures accounting for $35,000 per 

patient.
1, 3

  

Falls are a complicated phenomenon comprising both intrinsic and extrinsic risk 

factors.  Intrinsic factors, or those related to the individual, include a decreased 

performance in the balance control system, with loss of mobility being a strong indicator 

for increasing fall risk.
10

  In order to maintain stability, adequate levels of vision, 

vestibular function, musculoskeletal function and proprioception are all required.  Prior 

studies have shown that decreased lower-extremity muscle strength and cognitive 

function are significant predictors of falls among older adults.
10-12

 Extrinsic factors, or 

those pertaining to environmental hazards, contribute to the majority of falls and can 

include objects to trip over, poor lighting, slippery surfaces or inappropriate furniture.
9
 

Often, the frailty of the individual can determine the susceptibility of falls occurring over 

even the most minor of hazards, with older frail adults encountering serious hazards from 

long pant legs or ill-fitting shoes.  In addition, experience with an environmental factor 

can modify the risk of falling among the elderly (i.e. practiced stair climbing).
9
 

Among these factors, musculoskeletal weakness, gait and balance deficits, 

depression, history of falls, number of medications and several other risk factors have all 

been shown to play a major role in fall related incidents.
5, 13

  Due to the high incidence of 

falls among the elderly population, as well as subsequent dangers and costs, it is 

important to develop models that might detect the likelihood of falls among older adults.  

With earlier detection and intervention, clinicians might be able to reduce the incidence 

of falls and/or reduce the impact of any fall events.  
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Age-related Changes 

 

Several models have been proposed for the decline in sensory and motor function 

through aging.  These include the accumulation of significant genetic errors through the 

duplication of DNA, aging being part of specific genetic programming and the hypothesis 

that cells have a limited number of divisions.
14

   Of the two main aging models, the first 

proposes that aging is due to internal causes such that all systems experience neuronal 

decline across time until failure.  The second model proposes that neuronal activity 

remains at optimal levels throughout aging until an external stimulus affects the neuronal 

function.
15, 16

  Agreement in both models pertain to age-related changes in adults.   

 The musculoskeletal system undergoes change during aging, with decreases 

noticed for maximum strength for lower extremity muscles.  In a 7-year longitudinal 

study older men aged 73 years and over, while body weight was reduced by 2% and body 

cell mass by 6%, the maximum muscle strength of the vastus lateralis decreased by 10-

22%.
17

  In addition, both men and women demonstrate age-related reductions in isometric, 

concentric and eccentric knee extensor peak torque, with age accounting for 11-30% of 

the variance in peak torque in both genders.
18

 

Among nursing home residents with a history of falls, the peak torque and power 

for the knee extensors, knee flexors, ankle plantarflexors and ankle dorsiflexors were 

significantly less than those of age-matched controls.
19

  This weakness in ankle 

musculature is of particular importance during falls, because of their critical importance 

in balance recovery during perturbations to stance.  Though there is a lack of consistency 

in the data, older adults and adults with a history of falls have also demonstrated a 
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reduced step width during gait when compared to young adults.  It was hypothesized that 

older adults modified their base of support in order to reduce the gravitational moment of 

the center of mass in the medio-lateral direction and also might reflect a decreased 

control ability of the hip abductors.
20

   

 Much of the variability seen in musculoskeletal function in the elderly has also 

been attributed to changes in the neuromuscular system, which has a role of integrating 

sensory information and maintaining postural control. The musculoskeletal system is 

considered the effector system which maintains posture and controls movement, with the 

nervous system planning and setting posture based on sensory input.
21

  Impairments to 

the sensory systems can affect the way our central nervous system is able to integrate 

information about our environment. 

 The somatosensory, vision and vestibular systems all provide information about 

the environment.  Somatosensory input provides the CNS with information relating the 

position and motion of the body with respect to the supporting surfaces and relationships 

between body segments.  Vision provides the position and motion of the head with 

respect to surrounding objects as well as a reference to verticality.  Vestibular input 

provides position and movement of the head with respect to gravity and inertial forces. 

Proprioception is particularly important during changes in position, walking on 

uneven surfaces, and when other senses are impaired.  Though changes in peripheral 

nerves have not been confirmed, peripheral neuropathies associated with diabetes and 

vitamin B12 deficiency are common among the elderly.
9
  With such neuropathy, muscle 

response to perturbation can be significantly delayed.   
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Older adults and children rely on input from their visual system more than young 

adults, with unstable older adults showing an even greater reliance on visual input.
16

  

Nashner and Berthoz (1978) showed that enhancing the visual input reduced the sway 

amplitude, while reducing vision increased the final amplitude.
22

  Thus, the structural 

changes in the aging eye and the decline in visual field, acuity and contrast sensitivity 

might lead to additional postural imbalance. 

The vestibular system has also been shown to decline with age, with an 

approximately 40% reduction in vestibular system sensory cells for adults over the age of 

70.
23

  Age-related changes to balance also occur as a result of the accumulation of minute 

calciferous granules within the inner ear.
7
  With vestibular deficits, many older adults 

will experience symptoms of dizziness, which can also play a significant role in 

imbalance.  In addition to these factors, other risks such as neurological conditions, bone 

loss, cardiovascular disease, number of medications and many others have been linked 

with falling in the elderly, with multiple risk factors increasing the risk.   

 

 

Balance Control during Gait in Older Adults 

 

Epidemiological studies have shown that 30-70% of all falls occur while walking 

and thus remains an important area for balance control studies.
20

  The basic motor control 

of stepping is mediated by the spinal cord via signals from the mesencephalic region. 

Refinements to this walking pattern are made at the cerebellum through the brain stem 

nuclei via comparison of the afferent signals from the muscles, indicating their position in 
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space, and the central pattern generator, which indicates the intended movement.  The 

motor cortex also controls precise stepping motions via guidance from visual input.
14, 16

  

Integration of all these signals allows the central nervous system to properly place the 

feet and establish the base of support during gait in order to capture the moving center of 

mass (CoM).  Any deficiencies in one of more of the pathways may lead to a reduced 

ability to control the CoM or Center of Pressure (CoP).  Past studies have investigated the 

end-point control of the CoM and CoP among several populations. 

 Balance during gait is maintained by regulation of the CoM about the supporting 

foot,
24

 with a safe trajectory of the swing foot providing precise end-point control.
25

  In 

addition, stable gait is achieved as a function of both the CoM position and velocity.
26

  

The motion of the whole body CoM has been shown to identify elderly people who are at 

a higher risk of falling,
24, 27

 with results showing that a greater medio-lateral motion of 

the CoM distinguished elderly patients with balance impairment from healthy older 

adults.  When combined with the CoP, a better assessment of balance control during gait 

could be ascertained.
28, 29

  The antero-posterior CoM-CoP distance demonstrated a 

decreased separation in healthy elderly while obstacle crossing than in young adults.
30

  In 

addition, anterior CoM velocities were reduced among the elderly during this gait 

condition.  It was hypothesized that the elderly demonstrated this conservative strategy 

due to reduced muscle strength.  

 Responding to trips and slips also is critical for older adults, as approximately 

65% of falls occur in this manner.  In responding to a trip, older adults displayed lower 

magnitudes and a slower rate of muscle activity in the hamstrings and ankle 

plantarflexors, when compared to young adults.
16

  Similar muscle activation patterns 
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were noticed during slips, with older adults demonstrating greater trunk hyperextension, 

higher arm elevation and longer co-activation on the perturbed limb.
31

  Older adults also 

slip faster, longer, and with greater incidence than young adults, due, perhaps to reduced 

muscle response capacity at heel strike. 

 

 

Variability and Stability 

 

 Another measure of balance control commonly used during locomotion is gait 

variability.  Variability, which is often calculated as the coefficient of variation or 

standard deviation, indicates a measure’s fluctuation over time, across individuals or 

raters.
32

  During gait, an increased step-to-step variability could indicate an inability to 

compensate for instability and a predisposition to falling.
33

  An increase in variability has 

also been associated with an increased risk of falls in the elderly.
34

  In a one-year 

prospective study of elderly individuals, stride time variability was significantly greater 

in subjects who consequently fell (106 ± 30 ms), when compared to those who did not 

fall (49 ± 4ms).
35

   

 In addition to discriminating fallers from non-fallers, several studies have 

investigated the age-related differences in gait variability.
33, 36-39

  Among these studies, 

most find that older adults exhibit greater stride-to-stride variability than young adults.  In 

two studies of treadmill locomotion, older adults demonstrated 0.4 cm greater step width 

variability than young adults, with step width demonstrating 70 % larger variability than 

step length.
39

  Increased step width variability might reflect an accommodation or 



 

8 

adaptation to the aging of the neuromuscular system and decreased motor skill.  Even 

older adults that had been categorized as having optimal gait and mobility for their age 

displayed higher step time variability than healthy young adults did when measured 

during both over-ground walking and walking with a perturbation of an irregular 

surface.
37

   

In contrast to these studies, Gabell and Nayak (1984) showed that older adults did 

not demonstrate greater variability during locomotion for any temporal-distance measure, 

explaining variability to be indicative of pathological causes.
33

  Such differences in the 

data could be due to methodology differences but also confounding results such as 

reduced muscle strength and poor vision among the elderly.
36, 37

   

 

 

Purpose of the Study 

 

 While studies have investigated the role of muscle strength and postural control in 

the elderly, with gait studies demonstrating differences in the aging populations, few have 

identified ways in which prospective fall risk can be assessed.  This project aims to fill 

this gap by developing a model than can be used in a clinical setting to diagnose elderly 

individuals as fallers or non-fallers.  To this end, we propose a method for measuring 

balance control during gait; we examine methods for identifying fallers retrospectively 

and assessing the relative risk of falls longitudinally; and we establish a model for 

estimating balance control during gait in the elderly from clinical evaluations.  
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Bridge 

 

The studies described in Chapters II-V include co-authored material.  Dr. Victor 

Lin, Dr. Arthur Farley and Dr. Li-Shan Chou contributed substantially to the work by 

providing critique, data analysis, and development of methodologies.  I was the primary 

contributor to the data collections, data analysis, implementation of the procedure, and did 

all the writing. 

The goal of the first study (Chapter II) was to develop a robust means for 

measuring balance control among adults during ambulation.  This was accomplished by 

defining the base of support throughout the gait cycle as well as by determining the 

position and velocity of the whole body center of mass.  By examining the interaction of 

the center of mass with the base of support, a thorough understanding of foot placement 

and postural control during dynamic motion could be determined and possible underlying 

mechanisms of balance impairment investigated. 
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CHAPTER II 

 

CENTER OF MASS AND BASE OF SUPPORT INTERACTION DURING GAIT 

 

Reproduced with permission from Lugade, V.; Lin, V.; Chou, L-S. Gait and Posture, 

2011, 33, 406-411.  Copyright 2011, Elsevier.  

 

 

Introduction 

 

Most falls occur during locomotion,
20, 40, 41

 with age-related gait dysfunction being 

a common risk factor.
2, 7

  During ambulation, the body is in a continuous state of 

imbalance, with each subsequent foot strike preventing a fall.
42

  Ability to place the foot 

properly in order to control the center of mass (CoM) motion and regulate the body’s 

momentum might decline in individuals with gait imbalance.
42, 43

  To better understand 

the underlying mechanisms of gait imbalance and assess the risk of falls in the elderly, a 

precise analysis of foot placement and CoM movement during locomotion is required. 

Stable gait is achieved as a function of the CoM position and velocity at the 

moment of foot placement.
25, 44

  The feasible stability region, defined by the allowable 

ranges of the CoM position and velocity in relation to the base of support (BoS), was 

proposed to examine whether a fall might occur.
26

  This work was extended by deriving 

the extrapolated center of mass (XcoM) to quantify gait stability.  The condition for 

stability is described as when the XcoM is confined within the BoS.
45

  These model-
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based studies demonstrated the importance of the CoM velocity to assess balance control 

during gait.      

 The stability margin, defined as the shortest distance from the center of gravity to 

the support polygon, was used as a measure of balance.
45, 46

  While such studies have 

investigated the CoM and CoM velocity in relation to the center of pressure or BoS 

during quiet stance, no studies, have investigated this relationship throughout a gait cycle.  

The instantaneous location of the CoM and CoM velocity vector in relation to the BoS 

could provide further insights on how static and dynamic balance is maintained during 

gait.  This analysis might elucidate the underlying mechanisms of balance impairment 

and proper foot placement in order to recover from perturbations and prevent falls. 

The purpose of this study was to examine the trajectory of the CoM in relation to 

the dynamically changing BoS during gait in healthy young adults, healthy elderly adults 

and elderly patients who reported gait imbalance.  In addition to the XcoM and center of 

pressure (CoP) relationship,
47, 48

 the CoM–BoS interaction was quantified in three ways: 

1) The shortest distance from the CoM to the boundary of the BoS; 2) The distance from 

the CoM to the centroid of the BoS polygon; and 3) The distance from the CoM to the 

BoS boundary along the direction of the CoM velocity. 

 



 

12 

Methods 

 

Subjects 

This study included 20 healthy young adults (HY; mean age (SD): 23.6 (3.7) 

years, mean BMI (SD): 23.2 (2.8) kg/m
2
), 10 healthy elderly adults (HE; mean age (SD): 

75.4 (7.0) years, mean BMI (SD): 24.3 (2.5) kg/m
2
), and 10 elderly fallers (EF; mean age 

(SD): 78.9 (4.9) years, mean BMI (SD): 24.5 (2.7) kg/m
2
) recruited from the surrounding 

community.  Subjects reported no history of head trauma, neurological or heart diseases, 

muscle, joint, or orthopedic disorder, visual impairment that was uncorrected by glasses, 

persistent vertigo, or lightheadedness.  Subjects were evaluated using the Berg Balance 

Scale (BBS) and questioned about their history of falls.  The EF scored 52 or less on the 

BBS and reported one or more falls in the year previous to the testing date.
10

  The study 

was approved by the university’s institutional review board.  Subjects were instructed 

about the procedures and written consent was obtained prior to testing.   

 

Experimental Protocol 

All subjects walked barefoot at a self-selected comfortable pace along a 10-meter 

unobstructed walkway.  In addition, ten healthy young adults were asked to walk at a 

self-selected slower walking speed.  Walking trials were recorded after each subject had 

become familiar with the laboratory setting by performing a few practice trials.  Whole 

body motion was recorded using an 8-camera motion analysis system (Santa Rosa, CA) 

at 60Hz and low-pass filtered using a fourth-order Butterworth filter with cutoff 
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frequency set at 8Hz.  A total of 29 reflective markers were placed on subjects’ bony 

landmarks to define a 13-segment model.
27

     

 

Data Processing 

Whole body CoM position was calculated as the weighted sum of the 13-segment 

model.
27

  Linear CoM velocity was calculated using Woltring’s cross validated spline 

algorithm from the CoM positions.
49

  The CoP was calculated from the ground reaction 

forces and moments of two force plates (Advanced Mechanical Technologies Inc., 

Watertown, MA) placed in series along the walkway. The two-dimensional BoS area was 

instantaneously defined based on the configurations of both feet; whether at heel strike, 

foot flat, heel off, or toe off (Figure 2.1).  During single limb support, the boundaries of 

the BoS were defined by the supporting limb’s foot width, ankle width and foot length.  

The heel marker (taking into account the radius of the marker, marker wand and base) 

was the demarcation for the posterior boundary.  The anterior boundary was defined as 

the distal end of the toes using the measured foot length along the vector defined by the 

metatarsal-phalangeal and heel markers.  The medial and lateral boundaries were defined 

using the measured ankle and foot widths at the location of the ankle marker and 

metatarsal-phalangeal joint marker, respectively.   

During double limb support, the BoS was defined similarly to single limb support, 

while including portions of each foot in contact with the ground as well as the area 

between the feet (Figure 2.1).  At heel strike, only the posterior boundary of the 

contacting limb was included in the BoS.  At foot flat the entire foot was part of the BoS.  

During heel off, the metatarsal-phalangeal joint became the posterior boundary.  At toe 
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off, the swing limb no longer was included in the BoS and the contralateral limb was in 

single limb support.  The BoS area was calculated throughout the gait cycle. 

 

Figure 2.1.  The base of support throughout one gait cycle (A) for heel strike (i), heel off 

(ii), foot flat (iii), toe off (iv) and heel strike (v).  The shaded regions of the foot and the 

dashed lines represent the foot contact area and the boundary of the base of support, 

respectively.  The base of support is determined based on foot positions (B) of heel strike 

(HS), toe off (TO), foot flat (FF) and heel off (HO) for both limbs. 

 

Toe off and heel strike were detected based on the vertical velocity of the midfoot 

(Figure 1B).
50

  Foot flat was determined based on the anterior velocity of the toe marker 

dropping below 100 mm/sec.
51

  Heel off was determined at the point at which the heel 

marker exceeded the threshold of 40 mm above its position during foot flat.
52

   

The shortest distance from the CoM to the boundary of the BoS was identified 

and calculated throughout gait (Figure 2.2). When the CoM is within the BoS, the 

distance is referred to as the stability margin. A smaller stability margin could indicate a 
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less stable configuration.  When the CoM is located outside the BoS, the distance is 

referred to as the CoM separation. This CoM separation is used as an indicator to 

evaluate the individual’s ability in dynamic balance maintenance, with a greater distance 

indicating a better capability to displace and recapture the CoM outside the BoS.  

Alternatively, it is possible that individuals with poor balance might extend their CoM a 

greater distance outside the BoS due to an inability to control movement. The centroid of 

the BoS polygon was calculated based on an equal density distribution across the entire 

BoS surface.  A smaller distance from the CoM to the centroid demonstrates close 

proximity to the center of the BoS and greater static balance control. 

Dynamic balance was determined utilizing the instantaneous direction of the CoM 

velocity vector.  The displacement of the CoM to the boundary of the BoS along the 

direction of the velocity vector is referred to as the CoMv distance, and is representative 

of the dynamic distance to the border of the BoS, regardless of whether the CoM is inside 

or outside the BoS.  The time to contact was determined by dividing the CoMv distance 

by the CoM velocity.  This variable described the amount of time needed for the CoM to 

cross the border of the BoS.  In addition, the XcoM was calculated as x
x x

o

v
XcoM p


  , 

where o = /   gravity vertical CoM position , p is the CoM position and v is the CoM 

velocity.
45

  Lateral and anterior separations between the XcoM and CoP were calculated 

at heel strike.
48
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Figure 2.2. Center of mass and base of support interaction during double limb support 

(A) and single limb (B) support phases. 

 

 

Custom MATLAB (Mathworks, Natick, MA, USA) programs were used to 

calculate the BoS, XcoM and the corresponding CoM-BoS and XcoM-CoP interactions.  

Statistical analyses were performed with SPSS 14.0 (SPSS Inc., Chicago, IL, USA) using 

a one-way analysis of variance to detect differences among groups for CoM-BoS 

distances, time to contact and XcoM-CoP distances.  Between-group analysis was 

performed at the transition phases of gait, specifically heel strike and toe off.  A 

Bonferroni correction was used to adjust the alpha level to P= .0167.  A student T-test 

with alpha level set at P= .05 was used when comparing young adults walking at a slow 

speed and elderly fallers.  Pearson correlations were performed between BBS scores and 

CoM-BoS interactions for all elderly adults, with alpha level set at P= .05. 
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Results 

 

The CoM-BoS interaction is indicative of both static and dynamic balance control 

ability (Figure 2.3).  During double limb support, the CoM and CoP remains within the 

boundary of the BoS for all subjects.  In contrast, during single limb support, while the 

CoP remains within the boundary of the BoS, the CoM travels outside of the BoS, with 

the CoMv vector initially directed towards the medial border of the foot at contralateral 

toe off and directed away from the boundary from midstance till the subsequent heel 

strike.  When the CoMv vector is directed away from the BoS, the CoMv distance to the 

border is not calculated.  Greatest separation between all CoM variables and the BoS is 

found at the instant of toe off and prior to heel strike. 

EF walked at a slower self-selected gait velocity than both HY (P< .001) and HE 

(P=.048; Table 2.1).  At heel strike, while the stability margin and distance to centroid 

was similar for all groups, HY demonstrated a greater CoMv distance to the border than 

both HE and EF (Table 2.1; Figure 2.3).  At toe off, a greater CoM separation and 

distance to the BoS centroid was demonstrated by HY when compared to both HE and 

EF (Table 2.1; Figure 2.3). In addition, a larger CoMv distance to the border was shown 

by HY compared to EF.  Throughout gait, HE showed a similar pattern to that seen 

among HY, while EF maintained their CoM closer to the BoS when compared to the 

other two groups (Figure 2.3).  The CoM was contained within the BoS for all groups 

when both feet were on the ground. 
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Figure 2.3. Ensemble average of gait cycles for HY, HE, and EF.  Positive values occur 

when the CoM is inside the base of support, and negative values are found when the CoM 

is outside of the base of support.  The instant of heel strike are represented with HS and 

TO, respectively.  The empty sections of (C) represents points when the CoM is outside 

the BoS and the CoM velocity is directed away from the BoS. 
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Young adults who were asked to walk at a slower than comfortable speed 

demonstrated a similar gait velocity to elderly fallers (Table 2.2) (P= .754).  While no 

differences were seen in the BoS area, the elderly fallers demonstrated a 5 cm smaller 

distance to the BoS along the CoM velocity vector (P= .007) and 45ms shorter time to 

contact with the border (P= .003) at heel strike, when compared to HY.  No differences 

were seen among the static CoM-BoS measures at heel strike or during toe off.   

No significant group differences were detected for the XcoM-CoP distance in the 

lateral direction (P = .764; Table 2.3).  In the anterior direction, the XcoM-CoP distance 

at heel strike was approximately 11cm greater in HE than EF (P = .049) and 20cm greater 

in HY than EF (P < .001).  Across all elderly subjects, no significant correlations were 

found between the BBS and any of the CoM-BoS interactions at either heel strike or toe 

off (P> .05).  
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Table 2.1.  Group averages (SD) for the CoM and the BoS interaction at heel strike and 

toe off. 

 

Gait Variable HY HE EF 

Gait Velocity (m/s) 
1.38 

(0.14) 

1.26 

(0.20) 

1.02 * 
†
 

(0.10) 

At Heel Strike (CoM inside BoS)    

 
CoM Stability Margin (cm) 

3.5 

(0.4) 

3.5 

(0.6) 

3.9 

(0.8) 

 
Distance to Centroid (cm) 

2.2 

(0.7) 

2.2 

(0.4) 

2.5 

(0.4) 

 
CoMv Distance to Border (cm) 

23.0 

(4.1) 

18.7 * 

(4.0) 

17.5 * 

(2.6) 

 
Time to Contact (ms) 

157.4 

(30.9) 

146.0 

(39.4) 

165.3 

(25.9) 

 BoS Area (cm
2
) 

475.0 

(59.8) 

435.4 

(57.2) 

401.9 * 

(71.7) 

At Toe Off (CoM outside BoS)    

 
CoM Separation (cm) 

12.4 

(2.5) 

10.4 

(2.4) 

8.3 * 

(2.4) 

 
Distance to Centroid (cm) 

25.5 

(2.6) 

23.4 

(3.0) 

21.4 * 

(2.4) 

 
CoMv Distance to Border (cm) 

17.2 

(3.7) 

15.3 

(6.7) 

11.3 * 

(4.0) 

 
Time to Contact (ms) 

117.2 

(25.3) 

111.0 

(39.9) 

114.9 

(38.9) 

 
BoS Area (cm

2
) 

218.0 

(34.2) 

219.8 

(35.7) 

227.7 

(40.0) 

* Significant difference from HY (P < .0167).   
†
 Significant difference from HE (P < .0167).  
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Table 2.2. Group averages (SD) for the CoM and the BoS interaction at heel strike and 

toe off when HY are controlled for speed. 

 

Gait Variable HY - Slow EF P-Value 

Gait Velocity (m/s) 
1.00 

(0.13) 

1.02 

(0.10) 
.754 

At Heel Strike (CoM inside BoS)    

 
CoM Stability Margin (cm) 

3.7 

(0.7) 

3.9 

(0.8) 
.590 

 
Distance to Centroid (cm) 

2.6 

(1.1) 

2.5 

(0.4) 
.750 

 
CoMv Distance to Border (cm) 

22.5 

(4.5) 

17.5 

(2.6) 
.007 * 

 
Time to Contact (ms) 

210.0 

(31.9) 

165.3 

(25.9) 
.003 * 

 BoS Area (cm
2
) 

434.7 

(97.7) 

401.9 

(71.7) 
.404 

At Toe Off (CoM outside BoS)    

 
CoM Separation (cm) 

8.9 

(2.9) 

8.3 

(2.4) 
.638 

 
Distance to Centroid (cm) 

21.8 

(2.5) 

21.4 

(2.4) 
.727 

 
CoMv Distance to Border (cm) 

12.0 

(3.6) 

11.3 

(4.0) 
.683 

 
Time to Contact (ms) 

112.9 

(36.5) 

114.9 

(38.9) 
.909 

 
BoS Area (cm

2
) 

212.9 

(27.10 

227.7 

(40.0) 
.346 

* Significant difference between EF and HY slow speed (P < .05) 
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Table 2.3.  Group averages (SD) of the XcoM-CoP interaction in the anterior and lateral 

directions at heel strike. 

 

Variable HY HE EF 

Anterior Separation (cm) 60.9 (7.6) 52.4 (8.6) 41.6 (6.6)* 
†
 

Lateral Separation (cm) 6.4 (2.3) 7.3 (2.3) 6.6 (3.3) 

* Significant difference from HY (P < .0167).   
†
 Significant difference from HE (P < .0167). 

 

  

 

Discussion 

 

The purpose of this study was to propose a method for identifying the 

dynamically changing BoS during gait, as well as provide static and dynamic balance 

measures for the interaction of the CoM and BoS.  When applied to our subjects, elderly 

fallers demonstrated a reduced ability to control their CoM in relation to the BoS due to 

poor balance and possible fear of falling.  

By maintaining a shorter separation of the CoM outside the BoS, elderly fallers 

demonstrated a conservative gait pattern. At toe off, the CoM is medial and posterior to 

the BoS, with the CoM velocity directed towards the medial border of the supporting 

limb.  At heel strike, EF had a significantly smaller anterior XoM-CoP separation than 

both HE and HY. These results support prior studies, which demonstrated reduced CoM-

CoP separation and CoM anterior velocity among the elderly during level walking.
30

  

Smaller distances to the border among elderly fallers could be indicative of a fear of a 

sideways or backwards fall, as well as reduced muscle strength.  Adaptations to fear of 
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sideways falls, which are a factor for hip fractures,
53

 could be accomplished by 

maintaining the CoM closer to the medial boundary before toe off of the swing foot. 

Differences in gait velocities between subjects might be a limitation of this study, 

as velocity affects foot placement and CoM movement in the sagittal and frontal planes.  

Elderly fallers, who walked slower, demonstrated a larger BoS in the frontal plane, with a 

reduced BoS in the sagittal plane.  Therefore, the effect of speed was tested among young 

adults. When HY were asked to walk at slower speeds, they demonstrated larger balance 

control capacities than EF.  At heel strike, young adults had a similar BoS area as the 

elderly fallers, yet controlled their CoM such that the distance to the BoS along the 

direction of the CoM velocity vector and time to contact with the border was significantly 

greater than EF.  This might be indicative of an elderly faller’s inability to properly 

control the CoM momentum while landing the swing foot.  Smaller time to contact will 

result in a reduced ability to compensate for any perturbations or obstacles that are 

encountered at foot strike, including slips.  Slips have been highly associated with falls in 

the elderly, with greater hamstring activation and greater ability to reduce heel contact 

velocity found among young adults when compared to older adults.
54

  Such velocity 

modifications and muscle activation might not be present in our elderly fallers, which 

might predispose them to greater risk of falling.  According to the dynamic walking 

model, the step-to-step transition may require 60-70% of the overall metabolic energy 

spent during ambulation, and is responsible for re-directing the CoM velocity.
55

  It is 

possible that weaker musculature and a poorer strategy among elder has resulted in a 

walking strategy that is redirecting the CoM velocity in a less efficient manner than 

healthy adults.   
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Based on the XcoM concept, a perturbation which causes a change in the CoM 

velocity will induce a change in foot placement of the subsequent step (or CoP) by 

∆v/o.
47

  This “offset-plus-proportional control” of balance was not seen in this study, 

with similar XcoM-CoP distances observed in the lateral direction among all subjects, 

while a reduced XcoM-CoP distance was demonstrated in the anterior direction at heel 

strike among EF.  Greater differences in foot placement and the lateral stability margin 

might be witnessed among the EF if a perturbation is placed during gait.
47

 

Defining the base of support during gait further demonstrates foot placement 

strategies used to capture the dynamically changing center of mass during locomotion, 

where 50% of all falls occur.
56

  A quantitative definition of the BoS was determined 

previously,
57

 however, only double-limb support of a lifting exercise was investigated 

and dynamic changes to the BoS and its interaction to the CoM during gait were not 

investigated.  Past work has also shown that the CoM-BoS stability margin may be a 

useful measure during dynamic situations,
45

 with the projection of the CoM to the 

supporting boundary being used as a measure of stability among walking machines.
46, 58

  

Utilizing the technique presented, it is possible to determine the relative position of the 

CoM to the border and centroid of the base of support as well as the CoM’s distance to 

the boundary along the direction of velocity.  These variables might provide a greater 

understanding of a person’s static and dynamic balance control.   

No correlations were found between CoM-BoS measures and the BBS.  While 

most HE scored a maximum of 56 on the BBS, some demonstrated similar CoM-BoS 

interactions as the EF.  Conversely, HY who scored a 56 did not demonstrate similar gait 

measures to the EF.  The BBS, which has a ceiling effect and is a static test of balance, 



 

25 

might not detect an individual’s deficiency in dynamic balance control.
59, 60

  The CoM-

BoS interactions, CoMv-BoS in particular, could be more sensitive in distinguishing 

deviations in balance control and gait adaptations in the elderly. 

In conclusion, we have proposed a method for calculating the base of support and 

its interaction with the CoM throughout gait.  Elderly fallers positioned their CoM and 

controlled their CoM velocity in a different manner than healthy adults at toe off and heel 

strike.  When young adults walked at a similar gait velocity, they demonstrated greater 

dynamic stability than the elderly fallers.  Knowledge of foot placement and the CoM 

trajectory could help identify rehabilitation practices for patients with balance disorders.
61

  

Proper foot placement and BoS changes might elucidate a safer and more efficient gait 

pattern among elderly fallers. 

 

 

Bridge 

 

 Chapter II demonstrated a novel method for assessing balance control 

dynamically throughout gait.  Additionally, it investigated differences in foot placement 

and center of mass control among young adults, healthy older adults, and elderly fallers at 

the moment of heel strike and toe off. 

Chapter III investigated the ability of these newly defined balance control 

measures as well as gait spatiotemporal measures and commonly used clinical tests in 

assessing the retrospective fall risk in elderly adults.  Specifically, clustering algorithms 

designed to differentiate non-fallers from fallers were assessed based on proper 
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retrospective classification.  Gait and clinical measures that best identified older adults 

were identified. 
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CHAPTER III 

 

IMPROVING FALL RISK CLASSIFICATION WITH A COMBINATION OF 

CLINICAL AND GAIT BALANCE MEASURES 

 

 The study described in this chapter was developed by a number of individuals, 

including Dr. Arthur Farley and Dr. Li-Shan Chou.  Dr. Farley and Dr. Chou contributed 

substantially to this work by providing critique, data analysis, and development of 

methodologies.  I was the primary contributor to the data collections, data analysis, 

implementation of the procedure, and did all the writing. 

 

 

Introduction 

 

Falls are a major health concern among the elderly.  Approximately one third of 

adults over the age of 65 will fall each year.
5
  Falls lead to severe injuries, a decrease in 

activity, loss of confidence, and even death.
2
  While past studies have investigated 

individual factors that best discriminate between healthy older adults and adults who 

sustain a fall,
62, 63

 few studies have considered combinations of biomechanical and 

clinical factors in assessing and predicting the risk of falls.  Among these factors, 

musculoskeletal weakness, gait and balance deficits, history of falls, cognitive 

impairment, and several other risk factors have all been shown to play a major role in fall 

related incidents.
5, 13

  Therefore, a thorough analysis of clinical and biomechanical 

measures might elucidate those combinations of measures that can best identify fallers. 
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Since most falls occur during dynamic locomotion,
40, 41

 level walking tasks are an 

appropriate paradigm to assess differences in healthy older adults and fallers.  Prior 

studies have demonstrated the ability to discriminate elderly fallers from healthy young 

and older adults,
27, 29, 64

 though the sensitivity of this classification is unknown.  Studies 

have also indicated that clinical examinations are capable of discriminating older adults 

and adults with a fall history.
10, 65

  Shumway-Cook and colleagues demonstrated that the 

Berg Balance Scale, Timed Up and Go Test as well as self reported balance ability could 

properly categorize fallers and non-fallers with sensitivity up to 91% and specificity up to 

87%.   

To reduce the risk of falls, greater understanding of the underlying biomechanical 

mechanisms and clinical factors is required.  Treatment and intervention options for older 

adults first require proper identification of at risk older adults.  While falls have been 

shown to be a multifactorial problem, with intrinsic and extrinsic factors playing 

significant role in fall related incidents,
63

 it is unknown which variables can best identify 

fallers. 

Therefore, the purpose of this study was twofold: 1) to determine which 

combinations of balance control, spatiotemporal and clinical balance examinations can 

best distinguish between fallers and non-fallers retrospectively; and 2) to determine the 

probability distribution for older adults to be either a faller or a non-faller.  Since gait and 

clinical measures provide differing analysis of an elderly person’s balance ability, we 

hypothesized that a combination of the Berg Balance scale, gait spatiotemporal and 

balance control measures would better identify elderly fallers, compared to any single 

measure. 
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Methods 

 

This study included a retrospective analysis on data collected from several studies 

conducted in the Motion Analysis Laboratory at the University of Oregon between 2005 

and 2010. Among the 98 older adults who participated in this study, 32 reported one or 

more falls in the previous year [23 females/9 males; average (SD) age = 76.7 (6.3) years; 

body mass index (BMI) = 26.7 (5.1) kg/m
2
; fall history = 2.2 (1.2) falls]. The remaining 

66 older adults reported no accidental falls [41 females/25 males; average (SD) age = 

74.2 (5.9) years; BMI = 26.4 (4.1) kg/m
2
].  Prior to testing, all subjects provided written 

consent to the study procedures which were approved by the institutional review board. 

Subjects were screened using the Berg balance scale (BBS).
66

 The BBS is scored 

on a scale of 0-56, with subjects asked to perform several static balance tests.  The BBS 

was included in the clustering and classification analysis as a measure of clinical balance 

performance. 

Gait parameters were obtained during over-ground level walking trials.  During 

biomechanical gait testing, all adults were asked to walk at a self-selected comfortable 

pace across a 10-meter walkway.  Reflective markers were placed on 29 bony landmarks 

of the body, with three dimensional marker trajectories captured using an 8-camera 

motion analysis system (Motion Analysis Corp, Santa Rosa, CA, USA) at 60Hz.
27

  Data 

were filtered using a fourth-order low pass Butterworth filter with an 8-Hz cutoff 

frequency.   

Gait characteristics were assessed using spatiotemporal and balance control 

measures.  Spatiotemporal measures included gait velocity, cadence, single support time, 
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stride length and step width.
70

  Balance control measures included the interaction of the 

CoM with the base of support (BoS) at heel strike.
64

  The shortest distance of the CoM to 

the BoS boundary (CoM-BoS distance) represents the static balance control ability.  The 

displacement of the CoM along the direction of the CoM velocity vector to the BoS 

(CoMv-BoS distance) represents dynamic balance control ability.  Time to contact with 

the BoS, which describes the amount of time the CoM can remain within the base of 

support before contacting the border, was calculated as the CoMv-BoS distance divided 

by the instantaneous CoM velocity.  The BoS area was also calculated.  

K-means clustering was utilized to determine which combinations of the above 

relevant measures were particularly effective at discriminating between fallers and non-

fallers among the 98 older adults.
71

  Heuristic methods for 2-means clustering searches 

for the best separation of the input parameter values into two sets, based upon the 

Euclidean distance from each instance to the mean values of the two corresponding 

clusters.  A heuristic method starts with two arbitrary means and assigns each instance to 

the cluster associated with the nearest mean.  As an iterative method, the mean of each 

cluster is then updated based on its associated instances.  The assignment and update 

cycle is repeated until no change in cluster membership occurs (Figure 3.1).  This process 

does not guarantee the optimum clustering of instances, as the procedure is sensitive to 

the randomly chosen initial means.  Therefore, the process is repeated five times with 

each dataset to determine a most accurate cluster, as quantified by the minimum within 
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Figure 3.1.  Example classification of each of the 98 subjects into two clusters using k-means clustering.  Each axis represents 

the use of z-scored measures to discriminate groups (in this case two).  Circles represent each individual, while the squares 

represent the calculated centroid of the clusters through iterations of the algorithm (in this case 1 through 4). 
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cluster sum of squared distances to the mean.  The procedure is implemented in Matlab 

(Mathworks, Natick, MA, USA).   

After clustering is complete, we assign the cluster with the preponderance of 

fallers to be the faller cluster.  The second cluster is assigned to be the non-faller cluster.  

Sensitivity and specificity of the resultant classification is determined based on the 

membership of the resultant two clusters.  The means of the two clusters can be 

considered to be a model of fallers and non-fallers, respectively, for the given data.  The 

gold standard used was a self-report of prior falls. 

A total of 5 gait spatiotemporal measures, 4 gait balance control measures, and 

the BBS were normalized using a z-score reflecting the number of standard deviations of 

an instance value from the mean.  All combinations of these measures were explored 

during k-means clustering, with 31 combinations of gait spatiotemporal measures and 10 

combinations of the CoM-BoS utilized as grouping variables to assess the sensitivity and 

specificity of group assignment.  Furthermore, sampling all 10 possible measures 

provided 1023 combinations of measures to investigate the ability for all groupings to 

properly identify fallers and non-fallers.   

While k-means clustering provides a binary classification of fallers and non-

fallers, the use of Gaussian mixture models (GMM) can describe the probability that an 

individual is a member of either cluster.  Similar to k-means, two clusters are specified a 

priori, with the expectation maximization algorithm used to estimate the maximum 

likelihood of individuals belong to either the faller cluster or non-faller cluster.  Once 

again, this iterative algorithm is repeated until convergence reaches local optima, based 

on best fit likelihood of two Gaussian distributions.  All 1023 combinations of measures 
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were investigated using GMM, with the probability of each subject belonging to the 

falling group derived.  This process was implemented in Matlab.  The results allowed us 

to provide a graded estimate of fall risk.  Those subjects who had a probability score of 

greater than 70% were considered high risk fallers; those between 30 and 70% medium 

risk; and those less than 30% low risk fallers. 

An independent samples t-test was used to detect differences in group (fallers vs 

non-fallers) on anthropometric, clinical, and gait parameters.  Analysis was performed 

using SPSS 14.0 (SPSS Inc., Chicago, IL, USA).  Significance was set at alpha levels of 

P < .05. 

 

 

Results 

 

Several of the clinical and gait measures showed group differences in value 

between fallers and non-fallers.  Fallers were approximately 2 years older (P = .052) than 

non-fallers with similar BMI for both groups (Table 3.1).  Subjects who reported a prior 

fall demonstrated significantly lower BBS (P <.001) scores when compared to older 

adults without a prior fall.  In addition, fallers demonstrated slower gait velocity (P 

<.001), with a reduced base of support area and separation distance of the CoM to the 

BoS along the direction of the CoMv vector at heel strike (P < .001)  

Utilizing the k-means clustering algorithm and prior fall history as the gold standard 

for categorizing non-fallers and fallers, most of the individual variables showed only a 

poor to moderate ability to categorize older adults (Table 3.2).  Nevertheless, the BBS, 
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normalized stride length and CoMv-BoS distance at heel strike all demonstrated 

sensitivity and specificity scores greater than 0.70. 

Utilizing different combinations of spatiotemporal gait measures, CoM-BoS 

interactions at heel strike, or the BBS, the ability to predict group membership of healthy 

adults and fallers demonstrated good sensitivity and specificity (Figure 3.2).  When 

considering subsets out of the 10 possible measures, the best performing combinations 

determined by the k-means algorithm provided specificity and sensitivity scores greater 

than 0.85 (Table 3.3).  The BBS, stride length, and balance control measures at heel strike 

were most commonly associated with high sensitivity and specificity clusters.   

Through the GMM algorithm, the ability for a single variable to have a high 

probability of falling among those who actually reported a fall was greater than 80% for 

only the BBS, normalized stride length, and BoS Area (Table 3.2).  Among those 

combinations with the best binary classification, the fall risk approached 90% for 

measures that included the BBS (Table 3.3).  Selected measures that included a 

combination of the BBS, gait spatiotemporal, and balance control measures also 

demonstrated the ability to classify fallers at a high risk of falling (Figure 3.3).  Even so, 

several adults who are classified as low risk individuals did report a fall in the prior 12 

months and several adults categorized as high risk adults did not report a fall. 
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Table 3.1.  Clinical, spatiotemporal and balance control measures of older adults 

Variable 
Non-Fallers 

(n = 66) 

Fallers 

(n = 32) 
 P-value 

Age (yrs) 74.2 (5.9) 76.7 (6.3 .052 

BMI (kg/m
2
) 26.4 (4.1) 26.7 (5.1) .743 

BBS (/56) 54.2 (3.2) 47.7 (4.7) <.001 

TUG (sec) 9.3 (2.0) 9.8 (3.5) .500 

ABC (%) 92.2 (10.5) 77.2 (17.9) .001 

TMT (sec) 56.5 (26.1) 66.8 (42.1) .403 

Spatiotemporal Measures   

 Gait Velocity (m/s) 1.21 (0.19) 0.99 (0.18) <.001 

 Cadence (steps/min) 119.0 (10.9) 112.7 (12.9) .013 

 Single Support (%) 38.9 (1.9) 37.5 (1.9) .001 

 Stride Length 
a
 0.75 (0.07) 0.65 (0.08) <.001 

 Step Width 
b
 0.32 (0.10) 0.32 (0.08) .917 

CoM-BoS At Heel Strike   

 CoM-BoS distance (cm) 3.52 (0.59) 3.24 (0.56) .030 

 CoMv-BoS distance (cm) 20.3 (4.8) 15.7 (3.9) <.001 

 BoS Area (cm
2
) 424.3 (76.8) 337.7 (51.8) <.001 

 Time to Contact (ms) 160.2 (31.5) 157.2 (33.9) .667 

a
 Normalized to body height; 

b
 Normalized to ASIS width 
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Table 3.2.  Ability of single variables to predict prior falls. 

Variable Sensitivity 
a
 Specificity 

a
 Fall Risk 

b
 

Age (years) 62.5 50.0 76.0 

BMI (kg/m
2
) 28.1 78.8 37.1 

BBS (/56) 71.9 90.9 89.9 

Spatiotemporal    

 Gait Velocity (m/s) 68.8 76.9 31.2 

 Cadence (step/min) 84.4 36.9 39.8 

 Single limb support (%) 59.4 69.2 17.9 

 Stride Length 
c
 71.9 78.5 87.6 

 Step Width
 d
 53.1 58.5 71.4 

CoM-BoS At Heel Strike    

 CoM-BoS distance (cm) 71.9 45.3 7.2 

 CoMv-BoS distance (cm) 71.9 73.4 22.7 

 BoS Area (cm
2
) 46.9 67.2 27.3 

 Time to Contact (ms) 87.5 40.6 80.0 
a
 Sensitivity and Specificity refer to correct identification of fallers and non-fallers, 

respectively, using K-means clustering.  
b
 Fall Risk refers to the probability of being 

categorized as a faller using GMM clustering for those subjects who reported a fall; 
c 

Normalized to body height; 
d 

Normalized to ASIS width. 

 

 

Table 3.3.  Combination of variables which best categorizes prior fallers and non-fallers. 

 

Variables Sensitivity 
a
 Specificity 

a
 Fall Risk 

b
 

Stride Length 
c
, Step Width 

d
, BBS 87.5 86.2 90.4 

CoMv-BoS, BoS Area, BBS 90.6 82.8 89.7 

a
 Sensitivity and Specificity refer to correct identification of fallers and non-fallers, 

respectively, using K-means clustering; 
b
 Fall Risk refers to the probability of being 

categorized as a faller using GMM clustering for those subjects who reported a fall; 
c 

Normalized to body height; 
d 

Normalized to ASIS width. 
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Figure 3.2.  Ability to categorize adults as non fallers or fallers based on gait characteristics, using individual k-means clusters 

(A) and the average (SD) of the sensitivity and specificity for each grouping type (B). 
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Figure 3.3.  Probability of being in the falling group among all elderly adults, utilizing the Stride Length, Step Width, and 

BBS (A), as well as the CoM-BoS distance, CoMv-BoS distance, BoS Area, and BBS (B). 
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Discussion 

 

The purpose of this study was to determine subsets of clinical and laboratory 

measures that could distinguish between fallers and non-fallers retrospectively.  The 

ability to accurately categorize, determine the probability, and predict those older adults 

at risk of falling could significantly improve treatment options, medical costs, and quality 

of life.  We found that a combination of clinical, gait spatiotemporal, and balance control 

measures better discriminated elderly fallers, with the BBS, stride length, and step width 

as well as the BBS, BoS area, and CoMv-BoS distance providing the best sensitivity, 

specificity, and fall risk probability. 

In our study, using a single measure to categorize adults performed poorly, though 

the BBS did demonstrate sensitivity and specificity values greater than 70%.   Results of 

the BBS classification were similar to those reported by Shumway Cook and colleagues 

who demonstrated 77 and 86% sensitivity and specificity, respectively.
10

  While the BBS 

demonstrated high results using both the k-means clustering and GMM methods, it does 

not identify specific impairment, has a ceiling effect on healthier adults and is often 

dichotomous in how it differentiates older adults.
59

  Thus, when using the GMM method, 

adults were often categorized as either 0 or 100% faller. 

Additional clinical evaluations were performed on some elderly subjects with 

classification results for these variables also examined.  Among the 98 elderly subjects, 

only 46 subjects completed the Timed Up and Go (TUG), Trail Making Test (TMT) and 

Activities Specific Balance Confidence Scale (ABC). Unlike the BBS, the TUG, TMT 

and ABC demonstrated low sensitivity (52%, 82.6% and 43.5%, respectively) and 
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specificity (69.6%, 17.4 % and 78.3%, respectively).  The TMT difference score reflects 

a person’s inability to perform multiple tasks and a decrement in executive function.  It 

has been hypothesized that slower scores on the TMT might be due to an impaired ability 

to modify plans of action or to maintain two thoughts simultaneously.
72

  The ability to 

perform gait and perform a secondary task is often cited as a cause of distraction and 

falls.
13

  Clinical tests such as the TUG have demonstrated good sensitivity and specificity 

when identifying fallers.
65

  Among our subjects only a smaller proportion of elderly 

adults completed the TMT and TUG tests, thereby reducing the strengths of these clinical 

tests.  Among active elderly adults, a battery of tests, including clinical balance 

examinations was not capable of predicting fall risk.
73

  Laessoe and colleagues 

hypothesized that due to the multifactorial mechanisms of falls, the influence of 

environmental factors, difficulty of daily tasks performed, along with individual 

physiological factors must be considered in order to predict fall risk.  Measures of 

physical performance, based on their study, could not predict fall risk in the elderly. 

Among the gait spatiotemporal and balance control measures, only the normalized 

stride length and CoMv-BoS distance were capable of categorizing both fallers and non-

fallers at a high sensitivity and specificity.  When combining balance and clinical tests in 

this study, the ability to identify past fallers (Figure 3.2B; Table 3.3) was significantly 

improved.  By including measures of balance control during gait, impairment to the 

underlying balance mechanisms among older adults can be evaluated.  An inability to 

properly maintain the CoM position and velocity as well as an appropriate placement of 

the foot to create a safe base of support, might predispose older adults to further fall risk.   
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The CoM distance to boundary of the base of support along the direction of the 

CoM velocity at heel strike was a common measure among well performing 

combinations.  The distance to the border is indicative of a person’s ability to respond to 

possible perturbations and maintain the CoM within the boundaries of the base of support.  

If the distance is reduced, it is possible that imbalance and falls might occur in the 

presence of a smaller disturbance.  By modifying other balance control measures such as 

the position and velocity of the CoM within the base of support as well as the BoS area, it 

might be possible to avoid possible falls.  Therefore, understanding the manner in which 

these measures are controlled among elderly adults along with their clinical history can 

provide a better understanding of fall risk. 

By investigating numerous combinations of balance control and clinical measures, 

a few combinations performed much better than others in identifying retrospective fallers.  

Nevertheless, this study had a few limitations.  While a large cohort of elderly adults has 

been tested, many did not have all of the clinical examinations performed.  Additionally, 

older adults were classified for fall risk based on retrospective results, though research 

needs to investigate the ability to identify future fallers.  Current findings can offer 

encouragement for further studies which investigate falls among older adults 

longitudinally using a combination of variables.  Scott and colleagues (2007) have stated 

that few studies assess the predictive validity of fall-risk tools, with no single tool 

demonstrating strong predictive values across multiple settings or an ability to generalize 

the findings.
74

  Therefore, a tool that can accurately and repeatedly assess and reduce the 

risk of falling in the elderly is needed. 
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The use of GMM and k-means clustering with two means are just two algorithms 

by which categorization and identification of fallers can be performed.  While both 

methodologies require that the number of clusters be specified a priori,
71

 the algorithms 

are robust and readily implemented through Matlab.  Other techniques such as 

hierarchical clustering or fuzzy clustering as well as statistical techniques such as 

regression analysis might also provide means for discriminating fallers from non-fallers.  

The strength of this study though, is through the combination of multiple clinical, 

anthropometric, and balance control measures in discriminating older adults. 

In conclusion, combinations of relevant measures should be utilized when 

attempting to identify fallers among a group of older adults.  While a single variable 

might indicate that an older adult is healthy or not, additional measures might elucidate 

reasons for fall incidents.  In this study, we found that selected combinations of tests, 

particularly the CoM-BoS interaction, gait performance and the BBS can be strong 

indicators of past fall history.  Knowing which variables can properly identify fallers can 

help us eventually reduce health care costs, improve quality of life for the elderly and 

allow for individualized treatment and intervention. 

 

 

Bridge 

 

 Chapter III demonstrated the ability of clustering models in discriminating older 

adults as fallers and non-fallers, while also providing the fall risk of individuals.  This 
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methodology utilized a combination of gait balance control, spatiotemporal, and clinical 

measures in generating two clusters retrospectively. 

 Chapter IV investigated the ability to classify older adults prospectively utilizing 

the cluster means generated previously.  Additionally, elderly adults were followed 

longitudinally in order to investigate age-related changes in gait balance control and 

clinical performance. 
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CHAPTER IV 

 

A COMBINATION OF GAIT MEASURES BETTER IDENTIFIES ELDERLY 

FALLERS:  LONGITUDINAL CHANGES IN CLINICAL AND GAIT MEASURES 

 

 

The study described in this chapter was developed by number of individuals, 

including Dr. Arthur Farley, Dr. Victor Lin, and Dr. Li-Shan Chou.  Dr. Farley and Dr. 

Chou contributed substantially to this work by providing critique, data analysis and 

development of methodologies.  Dr. Lin performed clinical evaluations and provided 

interpretation of clinical results.  I was the primary contributor to the data collections, 

data analysis, implementation of the procedure, and did all the writing. 

 

 

Introduction 

 

One-third of adults over the age of 65 will experience one or more falls.
2
  While 

50% of falls occur within the home or in the immediate vicinity of the home,
1
 the most 

common location is on level surfaces in commonly used rooms.  Falls lead to immobility, 

decrease the quality of life, and impact the physical, psychological, and social lifestyle of 

an elderly person.
1, 9

  Over 9500 deaths and $10 billion in direct costs a year can be 

attributed to falls.
1, 3

 

Musculoskeletal weakness, gait and balance deficits, depression, history of falls, 

number of medications, and several other risk factors have all been shown to play a major 
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role in fall related incidents.
5, 13

  Due to the high incidence of falls among the elderly 

population, as well as subsequent dangers and costs, it is important to follow adults 

longitudinally in order to investigate cognitive, musculoskeletal, and balance control 

changes. 

Aging studies have demonstrated decreased muscle strength, loss in bone density, 

and reduced sensory integration via the somatosensory, vision, and vestibular systems.
16

  

Often, detrimental changes can increase frailty in elderly adults, making them more 

susceptible to fall events.  The musculoskeletal system is considered the effector system 

which maintains posture and controls movement, with the nervous system planning and 

setting posture based on sensory input.
21

  Impairments to the sensory systems can affect 

the way our central nervous system is able to integrate information about our 

environment.  Reduced capacity in either system can contribute to increased balance 

impairment and fall risk, therefore understanding longitudinal changes in the elderly via 

clinical and gait examinations can provide further ways to evaluate the underlying 

mechanisms of falling. 

While gait and balance studies have shown the ability to discriminate healthy 

adults from fallers, few studies have investigated longitudinal gait and clinical changes in 

the elderly, in particular as it related to the risk of prospective falls.  Risk assessment of 

falls using clinical examinations such as the trail-walking test
75

 or a 15-predictor model
76

 

have been shown to discriminate participants who fell during follow-up visits, though 

generalizability of these tests and understanding the mechanisms of a fall event are 

unknown.  Among gait studies, in a one-year prospective study of elderly adults, 

Hausdorff and colleagues demonstrated that stride time variability was 50ms greater in 
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subjects who consequently fell, when compared to those who did not fall.
35

  The one-leg 

stance test, limits of stability test and a self-report of balance problems have also been 

shown to be associated with an increased fall risk among community dwelling older 

adults.
77

 

 By performing a full gait and clinical analysis of elderly adults, we hope to 

provide information in regards to the longitudinal changes with aging.  In this study, we 

investigated changes in sensory input, clinical examination, balance control and stability 

as well as number of fall incidents across a 12 month period.  In addition, we investigated 

the ability of a combination of clinical and gait variables to discriminate prospective 

fallers and non-fallers.  To that purpose, this study had 3 main hypotheses.  First, we 

hypothesized that older adults would demonstrate reductions longitudinally in clinical 

and gait balance control performance over a one year period. Second, we hypothesized 

that individuals who sustained future falls would demonstrate a reduced ability to 

maintain balance and stability during gait at baseline testing.  Third, we hypothesized that 

a combination of clinical balance control measures and gait measures would better 

differentiate prospective fallers from non-fallers than any single clinical or gait 

measurement. 

 

 



 

47 

4
7
 

Methods 

 

Subjects 

This study included 27 older adults (9 males; mean age (SD): 74.6 (7.7) years; 

mean BMI (SD): 29.5 (7.6) kg/m
2
) recruited from the surrounding community.  Subjects 

were evaluated for clinical and gait performance during three visits six months apart 

across a year.  Clinical evaluations were performed by a physician or physical therapist, 

while gait performance was quantified in a motion analysis laboratory.  Throughout a one 

year period following baseline testing, the number of prospective falls was recorded for 

all subjects.  Falls were recorded by providing subjects with self-addressed fall postcards 

and by phone interview each month.  A fall was defined as an unintentional coming to 

rest on the ground or lower level with or without the loss of consciousness.
78

  

Furthermore, the fall could not be due to sudden onset of paralysis, epileptic seizure, 

excess alcohol intake or overwhelming external force. This study was approved by the 

university’s institutional review board.  Subjects instructed about the procedures and 

experiment length, with written consent obtained prior to testing. 

 

Clinical Evaluation 

 Subjects were evaluated using the Berg balance scale (BBS) and Timed up and go 

(TUG) to estimate static and dynamic balance control, respectively.  Each subject’s self 

confidence in balance ability was scored using the Activities-specific Balance Confidence 

Scale (ABC). Cognitive ability was evaluated through the use of the Saint Louis 

University Mental Status (SLUMS) and the Trail Making Task (TMT).  Subjects were 
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also evaluated for vision and hearing ability using a Snellen chart and 128Hz tuning fork, 

respectively. 

 

Biomechanics Evaluation 

 Following clinical evaluations, all subjects walked barefoot continuously around 

an approximately 30-meter circular walkway at a self-selected comfortable pace for up to 

10 minutes.  A total of 29 reflective markers were placed on subjects’ bony landmarks to 

define a 13-segment model.  When subjects were within the 10-meter long capture 

volume, whole body motion was recorded using an 8 camera motion analysis system 

(Santa Rosa, CA).  The three dimensional marker trajectories were collected at 60 Hz and 

low-pass filtered using a fourth order Butterworth filter at a cutoff frequency of 8 Hz.  

Whole body CoM position was calculated as the weighted sum of the 13-segment 

model.
27

  Linear CoM velocity was calculated using Woltring’s cross validated spline 

algorithm.
49

   

 Gait balance control was examined using the interaction of the CoM and the base 

of support (BoS) at heel strike.
64

  As previously described, the interaction is based on the 

distance from the CoM to the closest border of the BoS (CoM-BoS distance), the distance 

from the CoM to the border of the BoS along the instantaneous CoM velocity (CoMv-

BoS distance), the time to contact with the BoS border as well as the BoS area.  Gait 

spatiotemporal measures of gait velocity, cadence, single support time, step width and 

stride length were also calculated.
70

  The stride length and step width were normalized to 

the body height and ASIS width, respectively. 
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 A tri-axial MSR accelerometer (Henggart, Switzerland) with data logger, 

collecting at 50 Hz, was placed on the L4-L5 junction in order to estimate center of mass 

(CoM) acceleration throughout walking.  The Lyapunov exponent was calculated as 

previously described
79

 using the accelerations in the anterior-posterior, superior-inferior 

and medial-lateral directions.  These values are indicative of a person’s stability, with 

exponential divergence seen when the Lyapunov exponent  > 1, a stable limit cycle 

when  = 0 and a stable fixed point when  < 0. 

 Lower extremity muscle strength was evaluated using a BIODEX System 3 

Dynamometer (Shirley, NY).  Bilateral maximum torque of the ankle platarflexors, knee 

extensors and hip abductors were measured isometrically.  Values were normalized to the 

subject’s body mass.  Hip abductor strength was measured with the subject in the neutral 

position while standing.  Knee extensors strength was determined with the subject in the 

seated position at 60 degrees of knee flexion.  Ankle plantarflexor strength was measured 

in the seated position with the ankle at a neutral position and the knee flexed to 20 

degrees. 

Older adults were categorized as either 1) healthy non-fallers or 2) at-risk fallers 

based on their associated Euclidean distance to the centroid of the two k-means clusters 

that were previously derived.
80

  These clusters were iterative determined based on the 

Euclidean distance from each normalized subset of measures to the nearest cluster mean.  

Utilizing retrospective fall data from 98 elderly subjects, the method begins by randomly 

selecting two means and assigning each instance to the corresponding closest cluster.  

The mean of each cluster is then updated based upon assigned instances, and the process 
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repeated until there is no change in cluster membership.  The means of the two clusters 

were considered to be suitable models for predicting fallers and non-fallers. 

Among the current 27 older adults, subjects were assigned as fallers or non-fallers 

based on the shortest Euclidean distance to either cluster mean. Sensitivity, specificity 

and relative risk (RR) were assessed using self-reported prospective falls.  Sensitivity and 

specificity refers to properly identifying prospective fallers and non-fallers, respectively.  

RR was calculated as the probability of falling among those categorized as “at-risk 

fallers” versus the probability of falling among adults categorized as “healthy non-

fallers” as defined by Equation (1): 

 
faller

non faller

p
RR

p 

  (4.1) 

with  

 
fallers

faller

fallers

k
p

n
  (4.2) 

and 

 
non fallers

non faller

non fallers

k
p

n







  (4.3) 

where p indicates the probability of falling, k indicates the number of subjects in either 

group that reported a fall, and n indicates the number of subjects categorized as a faller or 

non-faller.  A RR value of 1 would indicate that the risk classification is not better than 

randomly guessing, while values larger than 1 indicate that the subjects categorized in the 

at-risk group demonstrated a much greater risk of falling than the adults who were 

categorized as healthy. 
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Statistical Analysis 

 Differences in muscle strength, gait measures and clinical evaluations were 

examined across visits (baseline, 6 months and 12 months) using a mixed model repeated 

measures ANOVA.  Differences between prospective fallers and non-fallers were 

evaluated at baseline testing using an independent samples t-test.  All analysis was 

performed in SPSS 14.0 (Chicago, IL).  

 

 

Results 

 

 Out of the 27 subjects, 11 reported a fall, with 4 reporting multiple falls 6 months 

after baseline testing (Figure 4.1).  By one year, 16 of the adults had experienced a fall, 

with 8 being recurrent fallers.  Out of the 40 total events reported during phone 

interviews of postcard submission, 8 were not considered falls due to the incident 

occurring following changes in medication, dizziness, during a recreational activity and 

in one case, a large external force perturbing the individual.  Of the 32 non-accidental 

falls during daily activity, most were due to unknown imbalance reasons, trips or slips, 

often while performing a secondary task, in the bathtub or while gardening and walking 

outdoors.   

 Across a one year period, older adults demonstrated an increase in cognitive 

ability, as indicated by a 3 point average increase in the SLUMS (Table 4.1).  Older 

adults did not demonstrate differences in any other clinical or muscle strength measure.   
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Similarly, no differences were seen across time for gait spatiotemporal, balance control 

and stability measures (Table 4.2). 

 At baseline testing, only the CoMv-BOS showed significant differences between 

prospective fallers and non-fallers (P = .015).  Across the 16 fallers, an approximately 

3cm greater distance was demonstrated for this distance, when compared to the non-

fallers.  No other balance control or clinical measure, including prior fall history (P = 

0.189) demonstrated differences between future fallers and non-fallers.  On average, 

among all subjects, older adults demonstrated 20/40 vision, with unimpaired hearing in 

both ears, an average intake of 5 medications and reported 1 fall in the prior year.   

 
Figure 4.1. Among all 27 subjects the amount of time from baseline testing until a fall 

incident was reported.  During a year, 16 adults reported a fall, with recurrent falls 

occurring in 8 individuals. 
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Table 4.1. Clinical and muscle strength performance (SD) for older adults. 

 Variable Baseline 6 months 12 months P Value * 

Clinical Examinations     

 TUG (sec) 8.8 (2.1) 9.5 (1.9) 8.5 (0.9) .203 

 ABC (%) 79.5 (16.9) 83.7 (17.3) 77.7 (15.6) .635 

 BBS (/56) 53.3 (3.2) 53.6 (2.3) 53.8 (1.8) .809 

 TMT (sec) 55.7 (57.1) 65.0 (56.3) 42.1 (43.9) .499 

 SLUMS 25.5 (3.9) 27.5 (3.7) 28.3 (1.8) .019 

Muscle Strength (Nm/kg)     

 Hip Abductor 0.61 (0.21) 0.52 (0.14) 0.53 (0.14) .229 

 Knee Extensor 1.07 (0.29) 1.05 (0.27) 1.12 (0.27) .806 

 Ankle Plantarflexor 0.88 (0.27) 1.11 (0.36) 0.98 (0.38) .100 

* Visit main effect 

 

 The ability to predict prospective falls up to 6 months and 12 months post 

baseline testing was poor when using a single variable, as demonstrated by sensitivity, 

specificity and relative risk values (Table 4.3).  Through the use of k-means clustering, 

categorization of at-risk fallers and healthy adults using a combination of variables was 

able to predict prospective fallers by 6 months and 12 months with up to 80% and 70% 

sensitivity and specificity, respectively (Table 4.4).  The favorable combination of 

variables included measures of clinical balance, gait spatiotemporal performance and 

balance control during ambulation.  Specifically, the distance from the CoM to the 

boundary of the BoS, age and self reported balance ability demonstrated favorable results, 

with relative risk values of those classified as fallers approaching 4.0.  
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Table 4.2. Gait performance (SD) across one year for older adults. 

 Gait Performance Baseline 6 months 12 months P value * 

Spatiotemporal     

 Gait Velocity (m/s) 0.97 (0.20) 1.04 (0.18) 1.07 (0.18) .332 

 Cadence (steps/min) 107 (11) 113 (12) 115 (11) .114 

 Single Support Time (%) 37.1 (2.5) 37.5 (1.9) 38.0 (2.0) .492 

 Stride Length 0.66 (0.09) 0.67 (0.07) 0.68 (0.07) .684 

 Step Width 0.36 (0.10) 0.34 (0.10) 0.33 (0.12) .682 

Balance Control     

 CoM-BoS (cm) 4.0 (1.3) 3.6 (1.4) 3.6 (0.9) .504 

 CoMv-BoS (cm) 18.4 (3.8) 17.3 (3.2) 18.3 (3.8) .540 

 Time to Contact (ms) 189 (43) 167 (35) 174 (44) .167 

 BoS Area (cm
2
) 447 (103) 438 (107) 433 (69) .896 

Lyapunov exponents     

 Medio-Lateral 0.07 (0.04) 0.06 (0.03) 0.05 (0.02) .085 

 Superior-Inferior 0.08 (0.04) 0.08 (0.03) 0.08 (0.03) .994 

 Anterior-Posterior 0.09 (0.03) 0.09 (0.03) 0.09 (0.02) .844 

* Visit effect 
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Table 4.3. Ability of variables to predict future falls. 

Variable 

6 Months  12 Months 

Sensitivity Specificity 
Relative 

Risk 

 
Sensitivity Specificity 

Relative 

Risk 

 Age 27.3 43.8 0.47  31.3 36.4 0.57 

 BMI 54.6 56.3 1.29  50.0 54.6 1.08 

 BBS 0 75.0 0  0 63.6 0 

 TUG 20.0 69.2 0.71  15.4 60.0 0.52 

 TMT 9.1 75.0 0.44  6.3 63.6 0.29 

 ABC 27.3 66.7 0.84  26.7 63.6 0.82 

Spatiotemporal        

 GV 72.7 18.8 0.76  81.3 27.3 1.24 

 Cadence 100 12.5 Inf*  93.8 9.1 1.20 

 SS 63.6 43.8 1.20  56.3 36.4 0.88 

 SL 
a
 63.6 25.0 0.74  68.8 27.3 0.93 

 SW 
b
 63.6 25.0 0.74  62.5 18.2 0.70 

Balance 

Control 
   

 
   

 CoM-BoS 36.4 50.0 0.71  50.0 63.6 1.25 

 CoMv-BoS 36.4 43.8 0.62  43.8 45.5 0.84 

 Time to 

Contact 
0 68.8 0  12.5 72.7 0.63 

 BoS Area 45.5 37.5 0.67  56.3 45.5 1.03 

* Relative risk of infinity indicates that the probability of falling among those categorized 

as non-fallers was zero; 
a 
Normalized to body height; 

b
 Normalized to ASIS width 

 

Table 4.4. Using k-means clusters to determine prospective fallers.  

Variables 

6 Months  12 Months 

Sensitivi

ty 

Specifici

ty 

Relative 

Risk 

 Sensitivit

y 

Specificit

y 

Relative 

Risk 

CoM-BoS, 

Age, ABC 
72.7 50.0 1.83 

 
75.0 63.6 2.06 

CoMv-BoS, 

SS, Age, BBS, 

ABC 

81.8 68.8 4.18 

 

62.5 63.6 1.55 
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Discussion 

 

 Loss of balance and subsequent falls are a major source of morbidity and 

mortality in older adults.  The ability to longitudinally test older adults for changes in 

clinical and gait measures might reveal factors that best identify risk of falling.  Contrary 

to our first hypothesis, no longitudinal changes were demonstrated by elderly adults, with 

no significant changes in individual clinical measures, gait spatiotemporal, or balance 

control and stability measures found during a one-year follow-up.  Similarly, for our 

second hypothesis, only a single baseline balance control measure was able to 

differentiate prospective fallers from non-fallers during the one year follow-up period.  

While only a one-year longitudinal study was conducted, a longer period might 

demonstrate different results.   

 A combination of clinical, gait spatiotemporal and balance control measures was 

able to separate prospective fallers and non-fallers with high sensitivity and specificity.  

These results are in support of the hypothesis that a combination of measures could better 

differentiate fallers than any single clinical or gait measure.  As falls have been shown to 

be a multi-factorial problem,
5
 these results strengthen the case for thorough evaluations 

of elderly adults based on multiple performance measures. 

 Approximately 60% of our community-dwelling elderly subjects suffered a fall 

during a 1-year period, with 30% suffering recurrent falls.  This falling rate is higher than 

those previously reported, where only one-third of elderly adults suffered a fall in a one 

year period.
7, 75

  The results reported here however are similar to those reported by Maki 

and colleagues who investigated ambulatory and independent elderly adults for 1 year.
81
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As this cohort of elderly remained active throughout the study and reported no injurious 

falls, it is possible that increased environmental exposure could explain the higher fall 

rate. 

Age-related neurological changes have been demonstrated in the elderly, 

including increased reaction times with decreased acuity of the auditory, vestibular, 

visual and somatosensory systems.
82

  In this study, no such differences were seen among 

the elderly subjects, with similar corrected vision, hearing and TMT scores demonstrated 

across visits. Interestingly, the SLUMS test was the only examination that showed 

differences over time, though an increase in performance was demonstrated by the 

elderly from baseline to 12 months follow up.  Such improvement might be due to 

familiarization with the task.  Other clinical examinations, such as the TUG and BBS, 

have previously been shown to identify retrospective fallers and non-fallers with high 

sensitivity and specificity.
10, 65

  When utilized in this study for prospective analysis, no 

such ability was demonstrated.  As the BBS has a ceiling effect and evaluates static 

balance, it is possible that the ability to categorize moderate risk elderly and the lack of 

locomotion with the test does not allow for proper classification.
83

  Similarly, while the 

TUG includes locomotion, it might not be appropriate for community dwelling adults.
83

 

Gait adaptations among the elderly have also been hypothesized to be due to a 

decrease in muscle strength, muscle fibers and range of motion.
82

  In this study, while 

subjects did demonstrate consistently strong ankle, knee and hip isometric strength, many 

fall events were still reported.   

Similarly, while no differences were observed over the year in gait balance 

control and stability among the elderly, the only measure that differentiated the non-
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fallers from fallers at baseline was the CoMv-BoS distance.  Maintaining a greater 

distance might be a conservative strategy adopted by these patients with a greater fall risk 

due to underlying balance impairment.  An inability to quickly respond to perturbations 

might compel individuals to generate a greater distance at heel strike and therefore 

increase the response time before the CoM reaches the border of the base of support.  

Values for the CoM-BoS interaction were similar to those reported previously for elderly 

fallers,
64

 as elderly adults maintained a CoMv distance and time to contact of 

approximately 18cm and 170ms, respectively, across all visits. 

When considering all combinations of clinical, gait spatiotemporal and balance 

control measures, the best performing combinations of measures for identifying elderly 

fallers and non-fallers all included the CoM-BoS interactions.  When combined with a 

subject’s age and self report of balance ability, sensitivity values approached 75%.  

Further including single support time and the BBS resulted in similarly high scores in 

sensitivity, with specificity values approaching 70% and relative risk approaching 4.2.  It 

is possible that inclusion of CoM-BoS variables with clinical variables provides more 

thorough information in regards to the underlying mechanism of falls, as the interaction 

of the CoM-BoS has previously been shown to indicate an inability to respond quickly to 

perturbations at heel strike.
64

  Additionally, older adults have previously demonstrated a 

conservative gait pattern at toe off, as demonstrated by the CoM distance to the base of 

support.  This adaptation might be due to self-perceived balance impairment, with a 

conservative distance adopted in order to maintain the center of mass in manageable 

proximity to the base of support.  The inclusion of ABC scores in the high performing 
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combinations also demonstrates an elderly individual’s fear of falling and possible reason 

for adapting a conservative gait pattern. 

 While the use of several variables was able to discriminate fallers from non-fallers, 

there are still limitations to this study.  First, we have only followed 27 older adults living 

in the community so far.  The ability to generalize results to a larger group of elderly 

adults from a greater spectrum of activity levels and lifestyles will allow for a more 

robust categorization of fall risk.  Secondly, the participants in this study are likely to be 

more motivated and interested in fall risk than the general population of older adults.  

Investigating subjects at risk for injurious falls and those less active might allow for more 

generalizability of results.  Longitudinal testing of elderly adults remain a major strength 

of this study, with prospective evaluations of fall risk providing additional information on 

which gait variables best identify fallers. 

 While investigations into age-related decreases in gait performance and functional 

ability might reveal differences in fall risk among the elderly, the inherent variability 

among individuals and the heterogeneous nature of aging between subjects might not 

allow for single variable analysis of longitudinal change and fall risk.
84

  Among a cohort 

of 70-year-olds, physical performance was found to both decline among some subjects 

and maintained or improved among other subjects.
84

    

 In this study, while no significant changes in selected clinical and gait measures 

over a one-year follow-up were seen among elderly adults, the ability to identify 

prospective falls could be enhanced when using a combination of variables.  In order to 

properly evaluate and provide intervention for elderly adults, it is recommended that 
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clinicians perform dynamic evaluations along with clinical evaluations in order to reveal 

the underlying mechanisms of balance impairment.  

 

Bridge 

 

 Chapter IV investigated one year longitudinal changes in clinical and gait 

measures for older adults.  Additionally, the ability of a combined group of balance 

control and clinical measures to identify prospective fallers was demonstrated, with the 

relative risk of falls quantified. 

 Chapter V established a model for mapping clinical measures obtained by 

physicians to biomechanical balance control measures.  Specifically, the ability of an 

artificial neural network to learn the interactions between input and output measures 

based on different model architecture parameters was examined. 
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CHAPTER V 

 

DETERMINATION OF GAIT BALANCE CONTROL IN THE ELDERLY USING 

CLINICAL EVALUATIONS AND AN ARTIFICIAL NEURAL NETWORK 

 

The study described in this chapter was developed by number of individuals, 

including Dr. Arthur Farley and Dr. Li-Shan Chou.  Dr. Farley and Dr. Chou contributed 

substantially to this work by providing critique, data analysis and development of 

methodologies.  I was the primary contributor to the data collections, data analysis, 

implementation of the procedure, and did all the writing. 

 

 

Introduction 

 

While past research has found ways to identify those adults who are more 

susceptible to falling than a matching group of elderly individuals, the equipment 

necessary to make such predictions can be both expensive and time inefficient for 

clinicians.  Models that characterize gait balance and stability might be a useful and 

efficient tool in providing physicians with identification and interventions for elderly 

individuals who are at risk of falling.  Having a model that could predict the fall risk of 

elderly individuals based on calculated gait balance control and stability parameters 

would be a clinically viable and inexpensive solution.  In order to achieve this, models 

are needed which can find a link between clinical and biomechanical measures. 



 

62 

6
2
 

 Previous models have used logistic regression models that utilized static posture 

variables and clinical measures to determine fall risk.  These included predictions based 

on Berg balance scores, timed up-and-go tests and self reported history of imbalance and 

history of falls to determine the risk of falling among a group of elderly individuals.
10, 65

  

Such models require that input predictors explain a high degree of variability and make 

the assumption that linear relationships exist between variables. Another approach which 

would allow for non-linear relationships and include a number of input variables is an 

artificial neural network (ANN).
85

  An advantage of ANN models is that they can be built 

to infer a function simply from observation or training.  By exposing the model to set of 

elderly adult data, with known input and output values, the ANN can be trained to an 

appropriate level.  

Artificial neurons, or nodes, are the basic units in the ANN.  Similar to biological 

nervous systems, connections (or synapses) are established through a learned iterative 

process.  Upon receiving one or more inputs (or dendrites), a node is able to compute a 

weighted sum and pass a value through a non-linear transfer function to establish an 

output function.  Training, or learning and the establishment of synapses, occurs by using 

a set of data, and solving for the inputs and outputs in an optimal manner.  Inferring the 

mapping implied by the data and finding the solution that has the smallest possible cost 

allows the ANN to arrive at a satisfactory weighting level.  Once an ANN model has 

been trained, it can then be used to predict outputs for a new set of inputs.   

Though several others researchers have used ANN models to estimate joint 

kinetics and kinematics, Hahn and Chou have used such ANN models to investigate the 

interactions between temporal-distance gait measures and dynamic gait stability.
85, 86
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Their studies have shown that an ANN model can predict certain gait variables among 

elderly adults.  Since complete and highly accurate measurement of temporal distance 

gait variables is not possible in the clinical environment, we propose a study to test the 

feasibility of such a model in mapping clinical measures to lab measures. 

The purpose of this study is to demonstrate that given clinical measures, an 

artificial neural network can eventually predict the risk of falling, as demonstrated in a 

previous study among elderly individuals,
80

 by determining balance control during gait.  

Clinical measures that will be utilized come from a complete medical history and subject 

examination.  These include a history of falls, deficits in sensory motor function, visual 

and hearing impairment, presence of chronic disease or depression, number of 

medications and clinical balance examinations.  We hypothesize that an ANN model can 

determine the balance control of elderly individuals given easily assessable clinical 

measures. 

 

 

Methods 

 

Subjects 

 A total of 27 elderly subjects (age (SD) = 74.6 (7.7) years; 9 males) were 

recruited for this study.  Volunteers were recruited from the community with a phone 

screen performed prior to recruitment.  All subjects reported no history of head trauma, 

neurological disease, heart disease or visual impairment that was uncorrected by glasses.  

In addition, subjects confirmed that they were able to ambulate for up to 10 minutes 
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without the use of an assistive device.  A clinical and biomechanical evaluation was then 

performed on all subjects by a physician and trained researchers, respectively.  Each 

subject signed an informed consent statement, in accordance with ethics approval granted 

from the university’s institutional review board, prior to participation in the study.   

 

Clinical Evaluation 

 The body mass index (BMI) was computed for each subject along with a full 

medical history of prior fall history, the number of medications taken and co-morbidities.  

In addition, physicians evaluated proprioceptive ability, vision and hearing.  The 

Geriatric Depression Scale (GDS) was used to evaluate depression.
87

  The Activities 

Specific Balance Confidence Scale (ABC) provided information on a person’s self 

perception of balance ability.
68

  Static balance was evaluated using the Berg Balance 

Scale (BBS).
66

  Dynamic balance was recorded through the Timed Up and Go test 

(TUG).
67

  Cognitive ability was estimated using the Trail Making Test (TMT) A and B, 

as well as the Saint Louis University Mental Status (SLUMS).  The TMT test was 

evaluated based on the difference in scores on the B and A test.
69

  This difference has 

been shown to demonstrate the task switching cost. 

 

Muscle Strength 

 Bilateral isometric muscle strength of the hip abductors, knee extensors and ankle 

plantarflexors was tested using a Biodex System 3 dynamometer (Biodex Medical 

Systems, NY).  For hip strength, the subject was instructed to abduct while standing in 

the neutral position.  Knee extensor strength was evaluated in the seated position at 60 
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degrees of knee flexion.  Ankle plantorflexor strength was tested in the seated at 20 

degrees of knee flexion and in a neutral ankle position.  The peak torque value for each 

joint was recorded and normalized to a person’s body mass. 

 

Gait Assessment 

 Subjects were asked to walk at a self-selected comfortable speed across a 10-

meter walkway.  During ambulation 29 retro reflective markers were placed on bony 

landmarks of the body,
27

 with three dimensional marker trajectories captured with an 8-

camera motion analysis system (Motion Analysis Corp, Santa Rosa, CA).  Data were 

filtered using a fourth-order low pass Burtterworth filter with an 8-Hz cutoff frequency.  

Ground reaction forces and moments were captured from three floor-embedded force 

plates (Advanced Mechanical Technologies Inc., Watertown, MA).  Marker and force 

plate data were collected at 60Hz and 960Hz, respectively. 

 Balance control during gait was assessed using the position and velocity of the 

center of mass (CoM) in relation to the base of support (BoS) at heel strike.
64

  The 

distance from the CoM position to the closest border of the BoS (CoM-BoS) represents 

static balance control.  The displacement of the CoM along the direction of the CoM 

velocity to the boundary of the BoS (CoMv-BoS) represents dynamic balance control.  

The BoS area was calculated based on foot anthropometrics and configuration.   

 

ANN Development 

The ANN used in this study was designed to calculate the balance control 

measures of each subject.  Input data sets included subject characteristics (age, BMI, 
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gender, fall history, medications, vision, hearing), clinical evaluations (BBS, TUG, TMT, 

ABC, GDS, SLUMS) and muscle strength (ankle, knee, hip).  Selected combinations of 

these 4 input data sets were also evaluated.   

 A three-layer, feed-forward back-propagation ANN was constructed in Matlab 

(Mathworks Inc., Natick, MA; Figure 5.1).  The first layer of the network consisted of 

different combinations of normalized clinical inputs.  The second layer included a 5, 10 

or 20 hidden neurons.  The third or output layer included the three balance control 

variables.  Out of the 27 subjects, 24 were randomly selected for training, with testing 

performed on the other 3 subjects.  This process was repeated 9 times in order to test the 

network on all 27 subjects, with training stopped when the mean squared error (MSE) 

error reached 0.1, 0.01 or 0.001.  Error correction during training was conducted with the 

Levenberg-Marquardt algorithm.  Weighted incoming signals were summed at the hidden 

and output units, with a tangential sigmoid transfer function and pure linear transfer 

function used at each layer, respectively.  Details of the network architecture have been 

described previously by Hahn and colleagues.
86

   

 After successful training, all data was converted back to real world units of cm 

and cm
2
, for the distance and area measures, respectively.  The ability of the ANN model 

to accurately calculate CoM-BoS balance control measures to actual measurements was 

assessed via correlation analysis.  Differences in accuracy in the correlation coefficient 

(R) between the number of hidden units (5, 10 or 20), between the error goal (0.1, 0.01 

and 0.001) and across grouping type were assessed with a 3 way ANOVA in SPSS 14.0. 
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Figure 5.1.  Neural network architecture representing the three layers as well as the tangential sigmoid and pure linear transfer 

functions in the hidden and output layers, respectively.  All nodes are not represented in this diagram, though a weighted sum 

of all inputs and the bias is performed at each node in the hidden and output layers.  
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Results 

  

The ability to calculate CoM-BoS balance control using three different variable 

input types as well as a combination of all clinical variables were investigated.  In 

addition, 3 different hidden node sizes and 3 MSE error goals were assessed for a total of 

36 network iterations.  Minimal processing time was required for network training on all 

these combinations.  When 5 hidden nodes were used, much greater time was needed for 

the solution to converge to an MSE error of less than 0.01 or 0.001, with much of the 

samples reaching the maximum limit of 500 epochs before failing to reach the goal 

(Table 5.1).  The use of 10 or 20 hidden was much more efficient in training the data sets 

at all error goals. 

The input type by error goal by hidden nodes interaction was not detected for the 

CoM-BoS (P = .526), CoMv-BoS (P = .580) or BoS Area (P = .154) correlations.  

Alternatively, an error goal by hidden nodes interaction was detected for all three balance 

control dependent variables (P < .001; Table 5.2).  For all three output variables, at the 

error goals of 0.01 and 0.001, as the number of hidden nodes increased from 5 to 10 or 

from 5 to 20, there was an increase in the correlation coefficient (P < .029).   In addition, 

for the CoMv-BoS distance at the 0.001 error goal, there was approximately a 0.14 

increase in the R value when the number of hidden nodes was increased from 10 to 20 (P 

=.011).   
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Table 5.1.  Number of epochs (SD) for the neural network to learn the data set. 

 

Variables Error Goal 

 Training Convergence 

(epochs) 

 5 Hidden 10 Hidden 20 Hidden 

Subject Characteristics 

 0.1  
17.4 

(18.7) 

7.7 

(1.5) 

5.0 

(0.7) 

 0.01  
500 

(0.0) 

14.1 

(5.5) 

6.0 

(1.0) 

 0.001  
500 

(0.0) 

21.9 

(8.7) 

6.4 

(0.53) 

Clinical Evaluation 

 0.1  
61.6 

(129.3) 

8.3 

(1.9) 

6.4 

(1.0) 

 0.01  
500 

(0.0) 

18.6 

(18.7) 

6.4 

(0.7) 

 0.001  
500 

(0.0) 

31.0 

(10.3) 

8.3 

(1.6) 

Muscle Strength 

 0.1  
42.8 

(66.6) 

7.4 

(1.9) 

4.6 

(0.5) 

 0.01  
500 

(0.0) 

11.1 

(2.8) 

5.7 

(1.0) 

 0.001  
500 

(0.0) 

22.9 

(12.9) 

6.3 

(0.5) 

All Variables 

 0.1 
 76.4 

(163.6) 

4.7 

(0.5) 

3.3 

(0.5) 

 0.01 
 151.4 

(204.8) 

6.1 

(0.8) 

4.1 

(0.3) 

 0.001 
 203.9 

(193.9) 

7.7 

(3.0) 

4.3 

(0.5) 
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Table 5.2.  Correlation values for balance control measures based on the number of 

hidden units and the error goal. 

Variables 
 

CoM-BoS Distance  
CoMv-BoS 

Distance 
 BoS Area 

 
Error 

Goal 

 
10 

Hidden 

Unites 

20 

Hidden 

Units 

 

10 

Hidden 

Units 

20 

Hidden 

Units 

 

10 

Hidden 

Units 

20 

Hidden 

Units 

Subject Characteristics 

 0.1  
0.33 

(0.23) 

0.54 

(0.21) 
 

0.72 

(0.17) 

0.67 

(0.14) 
 

0.51 

(0.16) 

0.76 

(0.20) 

 0.01  
0.62 

(0.32) 

0.47 

(0.22) 
 

0.68 

(0.18) 

0.69 

(0.21) 
 

0.71 

(0.22) 

0.58 

(0.19) 

 0.001  
0.33 

(0.19) 

0.54 

(0.22) 
 

0.60 

(0.24) 

0.71 

(0.13) 
 

0.57 

(0.12) 

0.66 

(0.16) 

Clinical Evaluation 

 0.1  
0.77 

(0.14) 

0.63 

(0.19) 
 

0.63 

(0.24) 

0.48 

(0.28) 
 

0.69 

(0.17) 

0.55 

(0.16) 

 0.01  
0.71 

(0.14) 

0.60 

(0.41) 
 

0.53 

(0.25) 

0.61 

(0.30) 
 

0.63 

(0.19) 

0.68 

(0.25) 

 0.001  
0.61 

(0.21) 

0.75 

(0.14) 
 

0.52 

(0.28) 

0.59 

(0.15) 
 

0.59 

(0.25) 

0.64 

(0.15) 

Muscle Strength 

 0.1  
0.48 

(0.16) 

0.56 

(0.16) 
 

0.54 

(0.22) 

0.60 

(0.32) 
 

0.46 

(0.13) 

0.76 

(0.13) 

 0.01  
0.54 

(0.20) 

0.61 

(0.22) 
 

0.62 

(0.29) 

0.60 

(0.23) 
 

0.63 

(0.16) 

0.68 

(0.17) 

 0.001  
0.60 

(0.29) 

0.57 

(0.22) 
 

0.40 

(0.31) 

0.70 

(0.21) 
 

0.50 

(0.25) 

0.70 

(0.22) 

All Variables 

 0.1 
 0.80 

(0.13) 

0.70 

(0.13) 
 

0.63 

(0.15) 

0.69 

(0.10) 
 

0.64 

(0.19) 

0.63 

(0.23) 

 0.01 
 0.72 

(0.10) 

0.75 

(0.20) 
 

0.68 

(0.15) 

0.77 

(0.10) 
 

0.60 

(0.17) 

0.71 

(0.16) 

 0.001 
 0.66 

(0.14) 

0.61 

(0.23) 
 

0.64 

(0.19) 

0.73 

(0.20) 
 

0.69 

(0.19) 

0.66 

(0.24) 
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Input variable differences were also demonstrated, as greater correlations were 

demonstrated by using all variables or the clinical examinations, when compared to the 

subject information input variables or muscle strength tests for the CoM-BoS distance 

and CoMv-BoS distance (P < .008).  No differences were found in the assessment of the 

BoS Area between input variables.  In addition, on average a 0.12 greater correlation was 

found when using all input variables to determine the CoMv-BoS distance, when 

compared to the clinical examinations (P = .001).  No differences in performance were 

detected between the clinical measures and all input types for the CoM-BoS distance (P 

= .189) or BoS area (P = .128). 

The combination of all input variables, with 20 hidden nodes and a 0.01 error goal 

resulted in the best training across all three dependent variables (Table 5.2). The use of 

these parameters provided convergence within an average of 4 epochs to finish training 

the network and provided R values between 0.71 and 0.77 for the CoM-BoS distance, 

CoMv-BoS distance and the BoS Area.  On average, using the MSE, the ANN was able 

to calculate the CoMv-BoS distance to within 1cm and the BoS Area to within 75 cm
2
 for 

all elderly adults (Figure 5.2). 

Utilizing all input variables, variability in input weights were demonstrated across 

all learning iterations of the neural network.  While the predictive nature of the input 

weights is unknown, nonetheless, the largest weights in the input layer were found for the 

ABC test, vision performance and hip abductor strength.  
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Figure 5.2.  Representative data for the CoMv-BoS distance (A) and the BoS Area (B), as calculated by a neural network 

(triangles) with 20 hidden nodes and an error goal of 0.01.  All input variables were included in this training set, with the actual 

values for these balance control measures represented by the open circles. 
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Discussion 

 

The purpose of this study was to demonstrate that given clinical measures 

collected by a physician, an artificial neural network can determine gait balance control 

among elderly adults, as normally calculated by biomechanical assessment.  In support of 

our hypothesis, by investigating subject characteristics, medical information, clinical 

evaluations and muscle strength, we were able to demonstrate that ANN model could 

determine the balance control of elderly individuals. 

Improvement in the ability to properly determine balance control measures were 

demonstrated with an increased number of hidden units.  The use of additional hidden 

nodes has previously been hypothesized to be an indicator of enhanced generality, with 

greater plasticity and pathways to a solution.
86

  Similar network architecture has been 

successful in gait research.  The ability to characterize lower extremity joint kinematics 

and kinetics based on electromyographic muscle activity was shown to confirm with 

physiological expectations.
88

  Prior studies have also utilized two hidden layer 

architectures and shown an ability to correctly identify gait conditions using fast Fourier 

transform of lower extremity kinematics as inputs, with up 83% accuracy.
89

  In the 

current study, single hidden layer architecture was utilized as this has been shown to be 

computationally faster and sufficient for learning functional relationships.
90

   

The use of clinical evaluations resulted in greater balance control predictions than 

the use of subject information such as age, gender and BMI or lower extremity muscle 

strength alone.  With all three input types, the ability to learn and calculate balance 

control parameters in elderly subjects improved significantly.  While neural network 
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weights are variable and the predictive strengths unknown, the ABC score, vision and hip 

abductor strength demonstrated the greatest weighting when all three groupings were 

included as network inputs.  The ABC, which is sometimes used as an indicator of fear of 

falling, has also been shown previously to be sensitive in discriminating fallers from non-

fallers.
91

  Similarly, the ability to maintain balance is a function of adequate visual 

information, with Nashner and Berthoz (1978) demonstrating that reduction in vision 

increased sway amplitude among older adults.
22

  Furthermore, the hip abductor has been 

shown to be important in maintaining lateral stability, with changes in the base of support 

adapted by older adults in order to control the CoM and compensate for decreased hip 

abductor strength.
20

   

The use of biomechanics laboratory equipment to assess gait performance can be 

time consuming and expensive.  In addition to the approximately two hours spent within 

the laboratory by the subjects, much time is expended in data analysis by trained 

investigators.  While such data is essential for determining the underlying mechanisms of 

balance impairment and possible fall incidents,
83

 the ability to categorize and identify 

community dwelling elderly fallers at risk of falls in a quick and inexpensive manner is 

needed.  As clinical examinations for this study took approximately 30 minutes with 

interpretation and analysis of the data quickly performed, the ability to use such data and 

correlate the findings to biomechanical measures for those adults unable to be evaluated 

in the laboratory setting is essential. 

 Limitations of this study included the small sample size.  Though only 27 adults 

have thus far been fully screened by a physician, the use of a neural network still 

demonstrated the ability to quickly be trained and showed high correlation values of up to 
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0.80.   This provides further evidence that an ANN can successfully be used to assess a 

person’s gait balance control, without the need for full assessment within a laboratory 

setting.  Future research can investigate the ability for a neural network to predict 

changes in balance control ability and eventually fall risk in the elderly based on different 

interventions.  The ability for the network to provide differences in output conditions 

based on improvements at the input layer, such as in muscle strength gains or losses, 

alterations in medication or due to changes in cognitive ability will provide older adults 

and physicians with a quick and useful way to assess gait performance, where the 

majority of falls occur in the elderly population. 

 In conclusion, results from this study demonstrated that an artificial neural 

network could be trained to map clinical variables to biomechanical measures of gait 

balance control.  While further studies should investigate the generalizability of the 

network to a larger group of subjects, these initial findings suggest that an ANN can be 

used to assess balance impairment and fall risk in the elderly.  Investigating a 

combination of muscle strength, clinical examinations and subject medical history, this 

network approached a solution quickly and accurately.  Following training, the ability to 

predict balance control measures among our subjects reached correlation values of R = 

0.80.  These findings demonstrate that ANN models can be used to assess longitudinal 

changes, understand the effects of personalized intervention and predict future fall risk in 

the elderly. 
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Bridge 

 

 Chapter V investigated the ability of artificial neural networks to learn mappings 

from clinical evaluations to gait balance control measures.  Utilizing multiple input types 

and investigating various network settings, recommendations were made for setting up a 

model that can estimate the interaction of the center of mass with the base of support 

during gait.  The ability for a neural network to predict balance control measures reached 

correlation values of R = 0.80 when utilizing a combination of muscle strength, clinical 

evaluations and medical history.  Chapter VI summarizes the findings and provides a 

general discussion and conclusion from all the studies in this dissertation. 
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CHAPTER VI 

 

DISCUSSION AND CONCLUSION 

 

 Falls remain a serious medical concern among the elderly, with incidence of falls 

leading to morbidity and mortality.  As falls have been correlated to changes in cognitive 

function, muscle strength, balance control, as well as several other intrinsic and extrinsic 

factors, there remains a need to properly identify balance impairment and fall risk.  

Therefore, the aim of this study was to develop a model that could be used in a clinical 

setting to diagnose elderly individuals as fallers or non-fallers.  To that end, this study 

investigated a method for measuring balance control during gait among young and older 

adults; examined methods for identifying fallers retrospectively using a combination of 

clinical and gait measures; assessed the longitudinal changes in older adults and 

estimated the relative risk of falls prospectively; and established a model for estimating 

balance control during gait in the elderly from clinical evaluations.  

 

 

Main Findings 

 

In the first study, the interaction of the whole body center of mass position and 

velocity in relation to the base of support assessed static and dynamic balance control 

throughout gait.  Elderly fallers demonstrated reduced balance control ability, specifically 

a decreased time to contact with the boundary of the BoS, when compared to young 
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adults at heel strike.  This decreased time might predispose older adults to additional falls 

due to an inability to properly respond to perturbations or slips.  When young adults 

walked at a similar gait velocity, they demonstrated greater dynamic balance control than 

the elderly fallers.  Proper foot placement and understanding BoS changes might 

elucidate a safer and more efficient gait pattern among elderly fallers. 

In the second study, clustering algorithms demonstrated that a combination of gait 

and clinical measures should be utilized when attempting to identify retrospective fallers.  

Inclusion of CoM-BoS balance control measures, along with the Berg Balance Scale and 

spatiotemporal measures, such as stride length and single support time, demonstrated 

sensitivity and specificity values of up to 90% when identifying 98 elderly fallers and 

non-fallers, respectively.  Knowing which variables can properly identify fallers can 

allow for individualized treatment and intervention. 

In the third study, a longitudinal analysis of 27 older adults demonstrated few 

changes in clinical and gait measures across a one year period.  Among those adults who 

reported a prospective fall, only the CoM displacement to the boundary of the BoS along 

the CoM velocity vector demonstrated an ability to differentiate fallers from non-fallers.  

Similar to the previous study, a combination of balance control measures, the ABC, BBS, 

age and single support time demonstrated almost 80% sensitivity and 70% specificity in 

identifying older adults who fell in the following 6 months.   

As the collection and analysis of these biomechanics measures can be time 

consuming and expensive, the final study investigated the ability of artificial neural 

networks to map clinical variables to balance control measures.  The use of three layer 

feed-forward ANN with back propagation demonstrated that clinical measures can 
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accurately predict balance control during ambulation.  Utilizing 20 nodes in the hidden 

layer, a combination of muscle strength, clinical examinations and subject medical 

history, this network approached a solution quickly and accurately.  The ability to predict 

balance control measures reached correlation values of R = 0.80, and demonstrates that 

ANN architecture can be a powerful tool in providing a means for assessing longitudinal 

changes, intervention effects and future fall risk in the elderly.  

 

 

Limitations of the Study 

 

 Although this study provided interesting findings regarding balance control and 

fall risk in the elderly, several limitations do exist.  First, the number of subjects in the 

study may have limited the statistical power to detect group and time differences in the 

elderly.  While differences were detected between groups and the ability to identify 

individuals remained strong, a larger number of subjects would have provided greater 

training to the artificial neural network model and allowed for additional testing and 

generalizability.  Second, many of the subjects who volunteered for the study were active 

in the community and/or interested in examining their own balance ability.   The ability 

to generalize to all elderly adults still needs to be investigated.  Further work should also 

be conducted to quantify activity level among the elderly, and across a wide spectrum of 

individuals based on age, gender, body composition, race and activity level. 

A one year longitudinal assessment of balance control and changes due to aging 

did not demonstrate across time differences.  While physiological tests have 



 

80 

demonstrated age-related musculoskeletal and neurological change, longer periods of 

testing is possibly required to demonstrate similar changes among our population.  

Controlling for a vast number of external factors is a confounding issue in such a 

longitudinal study as well.  Additionally, even though the primary outcome measures of 

the neural network have been shown to distinguish young adults, older healthy adults and 

elderly fallers, additional data is needed to validate the accuracy and assess the 

repeatability of these measures across a spectrum of adults. 

 During human movement analysis there is also the potential for error in 

estimating body motion.  While the markers are placed on bony landmarks of the body, 

estimations and assumptions are made in order to quantify body segment parameters.  

Additionally, elderly adults who are obese will commonly have greater adipose tissue, 

thereby making accurate placement of markers difficult, particularly those on the lower 

extremity and pelvis.  While skin motion artifact is a limitation to any marker based 

system, this technology has been validated and tested in the researcher community. 

 Finally, anthropometric data was utilized in this study to estimate center of mass 

locations of subjects.  While these data sets represent a small group of individuals, they 

have been used extensively in the literature and been commonly accepted due to a lack of 

robust anthropometric information.  The ability to calculate body segment parameters 

based on gender, age, body composition will validate human movement studies further. 
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Future Research 

 

Balance control and stability in the elderly remains a critical medical concern.  

While balance control has been accepted as the ability to maintain the center of mass 

within the base of support, there is still disagreement on proper quantification of 

variability or stability.  In a traditional view of CoM motion, greater variability was an 

indicator of a degenerative system of posture control and increased risk of falling.  

However, Hamill and colleagues propose that variability can also be healthy and 

exploratory.  A tradeoff between stability and variability might exist such that once a 

stable posture can be achieved or recovered, the system may utilize variability as an 

exploratory tool.
92

  

Stability refers to the system’s ability to recover (or diverge for instability) from 

perturbations or inherent variability in order to maintain posture.
93

  To date, there remains 

disagreement on the physiological interpretation of non-linear measures of stability, 

including the Lyapunov exponent.  The ability to demonstrate its usefulness can allow for 

further improvement in understanding human movement. 

The ability to quantify age-related changes in balance control needs to be 

investigated further.  While most studies have remained retrospective in nature, the 

ability to accurately assess fall risk should continue to demonstrate its effectiveness 

prospectively.  Therefore, research that follows older adults for greater than one year 

needs to continue. 

The effectiveness of using a neural network to assess gait balance control needs 

further study.  The findings from this study demonstrate that this model is suitable for 
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mapping clinical to biomechanical measures in a small subset of individuals, but its 

ability to correctly map a new and larger set of data is still unknown.  While results are 

favorable, a greater variability of subjects will provide a more robust model. 

Finally, the ability to provide individualized intervention and treatment based on 

clinical examinations should allow for models to predict biomechanical changes in 

balance control, stability and fall risk in the elderly.  Development of such models that 

allow for targeted intervention should be investigated. 
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APPENDIX A 

 

INFORMED CONSENT FORM 

 

Research Project Title: Detecting and Simulating Falls Risk in the Elderly 

 

You are invited to participate in a research study conducted by Dr. Li-Shan Chou, of the 

University of Oregon, Department of Human Physiology.  We hope to gain a better 

understanding of the mechanisms underlying the increased incidences of falls in the 

elderly and factors that are important for the maintenance of balance during walking.   

 

If you decide to participate, you will be tested in the Motion Analysis Laboratory (Room 

B52, Gerlinger Annex).  You will be invited to engage in the research activities 

(laboratory testing described below) every 6 months over the course of two years (5 visits 

– baseline, 6 months, 12 months, 18 months, 24 months).   

 

In the first part of this study, a clinical evaluation will be performed at the Senior Health 

and Wellness Center with Richard Brunader, MD or in the Motion Analysis Lab by 

Victor Lin, MD.  You will be asked about your current health condition, and evaluated 

for neurological and sensory-motor function.  We expect the clinical visit will take 

approximately 45 minutes.   

 

Any information that is obtained in connection with this clinical visit will remain 

confidential and will be disclosed only when you are qualified as a study subject and with 

your permission as granted in this consent form and its attachment.  In order to do this 

research, you must also authorize us to access and use the above health information.  An 

authorization form to allow Drs. Brunader or Lin to release that health information is 

attached for you to review and sign as an addendum to this consent form.  The purpose of 

the form entitled “Authorization Form for Research Disclosure of Personal Health 

Information” is to allow Drs. Brunader and Lin to share medical history and exam results 

with Dr. Chou. 

 

The laboratory testing will include three sections.  Body movement will be recorded by 

our motion capture cameras (or maybe video cameras with your approval) while you are 

1) walking barefoot around an approximately 40-meter walkway, 2) while walking 

barefoot on a treadmill set to your comfortable walking speed and 3) while standing up 

from, walking 6 meters and sitting back on the chair. Reflective markers will be placed 

on your skin at selected bony landmarks to record the motion of each individual body 

segment. An acceleration sensor will also be placed at the sacrum to record accelerations 

of the body.  Surface electrodes will be placed on muscle surfaces to record activity of 

three muscles from one leg. 
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Before any walking trials, electromyographic (EMG) data and muscle strength of each 

selected muscle group (medial gastrocnemius, vastus lateralis, and gluteus medius) will 

be recorded on a strength testing device.  Strength of your hip abductor will be measured 

in a standing position using a frame with a padded adjustable height board with arm 

supports that allow subjects to stand with support for testing.  You will be instructed to 

abduct the hip against the application pad without rotating the lower extremity or moving 

the trunk.  Strength of the knee extensor will be measured in a seated position at 60 

degrees of knee flexion, and strength of the ankle plantarflexor will be measured in a 

seated position at 20 degrees of knee flexion and neutral ankle position.  To stabilize the 

trunk during testing, Velcro straps will be tightened across your chest and waist, in 

addition to tilting of the chair 10 degrees backward from the vertical.  You will be 

instructed to push as hard as you can for a period of 5 seconds for 3 contractions.  A rest 

period of 5 seconds will be given between these 3 repetitions.  

 

You will be asked to wear a pair of paper physical therapy shorts and sleeveless shirt 

(tank top) during testing.  It will take approximately 2 hours to perform all of the above-

mentioned tests. 

 

We expect that there will be no more risk for you during testing than there normally is for 

you when outside of the laboratory.  However, you may feel fatigue during or after 

muscle strength testing.  Our staff members will check with you frequently and provide 

any required assistance.  You will be given frequent breaks as requested.  There is also 

possibility of discomfort involved in removing adhesive tape (used for marker placement) 

from skin at the end of the experiment.  Although you personally may not receive any 

benefits from this research, based on results of this study, more effective therapies, 

rehabilitation programs, or balance assistive devices for the prevention of falls in the 

elderly may be designed and implemented. 

 

Any information that is obtained in connection with this study and that can be identified 

with you will remain confidential and will be disclosed only with your permission.  

Subject identities will be kept confidential by coding the data with the study, subject 

pseudonyms, and collection date.  The code list will be kept separate and secure from the 

actual data files.  Furthermore, all videotaped data (collected upon your approval) will be 

kept confidential and will be reported in anonymous fashion (with face masked).  The 

videotapes will be erased after an appropriate period of time after the completion of the 

study. 

 

You will be reimbursed with $20 for your laboratory visit to compensate for the time 

spent.  Your participation is voluntary.  Your decision whether or not to participate will 

not affect your relationship with the Department of Human Physiology or the University 

of Oregon.  If you decide to participate, you are free to withdraw your consent and 

discontinue participation at any time without penalty. 

 

If you have any questions, please feel free to contact Dr. Li-Shan Chou, (541) 346-3391, 

Department of Human Physiology, 112C Esslinger Hall, University of Oregon, Eugene, 

OR, 97403-1240.  If you have questions regarding your rights as a research subject, 
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contact Human Subjects Compliance, University of Oregon, Eugene, OR 97403, (541) 

346-2510.  You will be given a copy of this form to keep.  Your signature indicates that 

you have read and understand the information provided above, understand the procedures 

that you will be experiencing, and willingly agree to participate, that you may withdraw 

your consent at any time and discontinue participation without penalty, that you will 

receive a copy of this form, and that you are not waiving any legal claims, rights or 

remedies. 

 

 

 

 

 

Name: _______________________________________________ 

 

 

Signature: ____________________________________________ 

 

 

Date: ________________________________________________ 
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APPENDIX B 

 

DIRECTIONS 
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From 18
th

 St: 

 Turn onto University St. towards McArthur Court. 

 Take the first left turn after Pioneer Cemetery 

 

 

From Franklin Blvd: 

 Turn onto Agate St towards Hayward Field. 

 Take a right turn onto 15
th

 St. 

 Take a left turn onto University St. 

 Take the first right turnA green University of Oregon sign will be visible for parking 

lot 26.  Someone will be waiting for you at the end of this fire lane/parking lot.  

Testing will occur in Gerlinger Annex B52.  If further directions are needed, feel free 

to contact us at 541-346-1033. 

 

We are excited to meet you and for you to be a part of our project. 

Sincerely, 

Vipul Lugade & Betty Chen 
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APPENDIX C 

 

BROCHURE 
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90 

APPENDIX D 

 

ACTIVITIES SPECIFIC BALANCE CONFIDENCE SCALE 

 

 

For each of the following activities, please indicate your level of self-confidence by 

choosing a corresponding number from the following rating scale: 

 

 

0% 10 20 30 40 50 60 70 80 90 100% 

No Confidence       Completely Confident 

 

 

“How confident are you that you will not lose your balance or become unsteady when 

you …” 

 

1.  … walk around the house? _____% 

 

2.  … walk up and down stairs? _____% 

 

3.  … bend over and pick up a slipper from the front of a closet floor? _____% 

 

4.  … reach for a small can off a shelf at eye level? _____% 

 

5.  … stand on your tip toes and reach for something above your head? _____% 

 

6.  … stand on a chair and reach for something? _____% 

 

7.  … sweep the floor? _____% 

 

8.  … walk outside the house to a car parked in the driveway? _____% 

 

9.  … get into or out of a car? _____% 

 

10.  … walk across a parking lot to the mall? _____% 

 

11.  … walk up or down a ramp? _____% 

 

12.  … walk in a crowded mall where people rapidly walk past you? _____% 

 

13.  … are bumped into by people as you walk through the mall? _____% 

 

14.  … step onto or off of an escalator while you are holding on to a railing? _____% 
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15. … step onto or off an escalator while holding onto parcels such that you  

            cannot hold onto the railing? _____% 

 

16.  … walk outside on icy sidewalks? _____% 
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APPENDIX E 

 

BERG BALANCE SCALE 

 

Name _________________________________          Date: ______________________ 

Grading: Please mark the lowest category that applies. 

1. Sitting to standing  

    Instruction:  Ask the patient to please stand up. Try not to use hands for support. 

    (4) able to stand, no hands and stabilize independently 

    (3) able to stand independently using hands 

    (2) able to stand using hands after several tries 

    (1) needs minimal assist to stand or to stabilize 

    (0) needs moderate or maximal assist to stand                                                  ________                                                             

 

2. Standing unsupported 

    Instruction: Stand for 2 minutes without holding on to any external support. 

    (4) able to stand safely 2 minutes 

    (3) able to stand 2 minutes with supervision 

    (2) able to stand 30 seconds unsupported 

    (1) needs several tries to stand 30 seconds unsupported 

    (0) unable to stand 30 seconds unassisted                                                          ________                       

 

 

IF SUBJECT IS ABLE TO STAND 2 MINUTES SAFELY, SCORE FULL MARKS 

FOR SITTING UNSUPPORTED.  PROCEED TO POSITION CHANGE STANDING 

TO SITTING. 

 

3. Sitting unsupported feet on floor 

    Instruction: Sit with arms folded for 2 minutes. 

    (4) able to sit safely and securely 2 minutes 

    (3) able to sit 2 minutes under supervision 

    (2) able to sit 30 seconds 

    (1) able to sit 10 seconds 

    (0) unable to sit without support 10 seconds                                                     ________                          

                      

4. Standing to sitting 

    Instruction: Please sit down. 

    (4) sits safely with minimal use of hands 

    (3) controls descent by using hands 

    (2) uses back of legs against chair to control descent 

    (1) sits independently but has uncontrolled descent 

    (0) needs assistance to sit                              _______       
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5. Transfers 

    Instruction: Please move from a chair with arm rests to a chair without arm rests  

    and back again. 

    (4) able to transfer safely with only minor use of hands 

    (3) able to transfer safely with definite need of hands 

    (2) able to transfer with verbal cueing and/or supervision 

    (1) needs one person to assist 

    (0) needs two people to assist or supervise to be safe                      ________

                   

6. Standing unsupported with eyes closed 

    Instruction: Close your eyes and stand still for 10 seconds. 

    (4) able to stand 10 seconds safely 

    (3) able to stand 10 seconds with supervision 

    (2) able to stand 3 seconds 

    (1) unable to keep eyes closed 3 seconds but stays steady 

    (0) needs help to keep from falling                         ________

                               

7. Standing unsupported with feet together 

    Instruction: Place your feet together and stand without holding on to any external          

support. 

    (4) able to place feet together independently and stand 1 minute safely 

    (3) able to place feet together independently and stand 1 minute with supervision 

    (2) able to place feet together independently but unable to hold for 30 seconds 

    (1) needs help to attain position but able to stand 15 seconds with feet together 

    (0) needs help to attain position and unable to hold for 15 seconds                  ________                                                 

 

 

THE FOLLOWING ITEMS ARE TO BE PERFORMED WHILE STANDING 

UNSUPPORTED 

 

 

8. Reaching forward with outstretched arm 

    Instruction: Lift arm to 90 degrees.  Stretch out your fingers and reach forward as far 

as you can. Examiner places a ruler at end of fingertips when arm is at 90 degrees.  

Fingers should not touch the ruler while reaching forward.  The recorded measure is the 

distance forward that the fingers reach while the subject is in the most forward leaning 

position. 

    (4) can reach forward confidently >10 inches 

    (3) can reach forward >5 inches safely 

    (2) can reach forward >2 inches safely 

    (1) reaches forward but needs supervision 

    (0) needs help to keep from falling              ________
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9. Pick up object from the floor 

    Instruction: Pick up the shoe/slipper that is placed in front of your feet 

    (4) able to pick up slipper safely and easily 

    (3) able to pick up slipper but need supervision 

    (2) unable to pick up but reaches 1-2 inches from slipper and keeps balance 

independently 

    (1) unable to pick up and needs supervision while trying 

    (0) unable to try - needs assist to keep from falling                      ________

     

10. Turning to look behind over left and right shoulders 

      Instruction: Turn to look behind you over your left shoulder.  Repeat to the right. 

      (4) looks behind from both sides and weight shifts well 

      (3) looks behind one side only, other side shows less weight shift 

      (2) turns sideways only but maintains balance 

      (1) need supervision when turning 

      (0) needs assist to keep from falling                        ________ 

 

11. Turn 360 degrees 

       Instruction: Turn around in a full circle, then turn a full circle in the other direction. 

       (4) able to turn 360 safely in <4 seconds each side 

       (3) able to turn 360 safely one side only in <4 seconds 

       (2) able to turn 360 safely but slowly 

       (1) needs close supervision or verbal cueing 

       (0) needs assistance while turning             ________

   

12. Count number of times step stool is touched 

       Instruction: Place each foot alternately on the stool.  Continue until each foot has 

touched the stool  

       four times for a total of eight steps. 

       (4) able to stand independently and safely and complete 8 steps in 20 seconds 

       (3) able to stand independently and complete 8 steps in >20 seconds 

       (2) able to complete 4 steps without aid with supervision 

       (1) able to complete < 2 steps, needs minimal assist 

       (0) needs assistance to keep from falling/ unable to try           ________

   

13. Standing unsupported, one foot in front 

      Instruction: (Demonstrate) Place one foot directly in front of the other. If you feel 

that you can’t place your foot directly in front, try to step far enough ahead that the heel 

of your forward foot is ahead of the toes of the other foot. 

      (4) able to place foot tandem independently and hold 30 seconds 

      (3) able to place foot ahead of other independently and hold 30 seconds 

      (2) able to take small step independently and hold 30 seconds 

      (1) needs help to step but can hold 15 seconds 

      (0) loses balance while stepping or standing                       ________
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14. Standing on one leg 

      Instruction: Stand on one leg as long as you can without holding on to an external 

support. 

      (4) able to lift leg independently and hold >10 seconds 

      (3) able to lift leg independently and hold 5-10 seconds 

      (2) able to lift leg independently and hold up to 3 seconds 

      (1) tries to lift leg, unable to hold 3 seconds, but remains standing independently 

      (0) unable to try or needs assist to prevent fall            ________

   

 

                                                                                                                                               

TOTAL SCORE          _______/56 
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APPENDEX F 

 

GERIATRIC DEPRESSION SCALE 

 

Name ____________________________________  Date___________________ 

 

 

1. Are you basically satisfied with your life? Yes 
 

No 
 

2. Have you dropped many of your activities and interests? Yes 
 

No 
 

3. Do you feel that your life is empty? Yes 
 

No 
 

4. Do you often get bored? Yes 
 

No 
 

5. Are you in good spirits most of the time? Yes 
 

No 
 

6. Are you afraid that something bad is going to happen to you? Yes 
 

No 
 

7. Do you feel happy most of the time? Yes 
 

No 
 

8. Do you often feel helpless? Yes 
 

No 
 

9. Do you prefer to stay at home, rather than going out and doing things? Yes 
 

No 
 

10. Do you feel you have more problems with memory than most? Yes 
 

No 
 

11. Do you think it is wonderful to be alive now?  Yes 
 

No 
 

12. Do you feel pretty worthless the way you are now? Yes 
 

No 
 

13. Do you feel full of energy? Yes 
 

No 
 

14. Do you feel that your situation is hopeless? Yes 
 

No 
 

15. Do you think that most people are better off than you? Yes 
 

No 
 

TOTAL SCORE Yes 
 

No 
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APPENDIX G 

 

TRAIL MAKING TEST A 
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APPENDIX H 

 

TRAIL MAKING TEST B 
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APPENDIX I 

 

SAINT LOUIS UNIVERSITY MENTAL STATUS 
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APPENDIX J 

 

CLINICAL INTAKE FORM 
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