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I develop a model in which a representative consumer selects an affordable 

consumption bundle, not as a single choice, but as the end result of a series of smaller, 

incremental purchase decisions. If the array of such incremental choices facing the 

consumer is sufficiently complex relative to the consumer’s computational abilities, then 

the consumer may choose to employ a simplifying heuristic or rule-of-thumb to guide her 

behavior. I demonstrate the existence of a simple and well-defined example of such a 

strategy, based upon a satisficing decision rule. I further show that in the strategic setting 

defined by the interaction between consumers and firms that compete in prices, this 

satisficing strategy can form part of a Nash equilibrium, despite being ex ante only 

boundedly rational. 

 The use of this satisficing demand strategy fundamentally alters the nature of 

price competition between firms (relative to the standard Bertrand model), changing the 

shape of the firm best response functions. The use of a satisficing strategy alters the 

incentives of firms, and these altered firm incentives lead to pricing behavior which has 

the effect of rationalizing the satisficing consumption strategy, so that a truly novel class 
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of Nash equilibria in price-competing markets can be shown to exist under certain 

conditions. 

We explore the nature of this new class of equilibria, and find that equilibrium 

prices may be higher than those which would be obtained in the standard Bertrand case. 

In general, demand curves for each distinct good will have a kinked shape, similar to 

those found in 1939 papers by both Sweezy and Hall & Hitch. The Nash equilibrium 

profile will involve the kink in each demand curve coinciding with the equilibrium price 

for the corresponding good. The equilibrium price vector will therefore be robust to 

“small” fluctuations in cost (since marginal revenue is discontinuous at the equilibrium 

price), and under certain conditions, we find that prices may be upwardly flexible but 

downwardly rigid. We make an argument that the main results of the paper generalize 

from a representative agent setting to one with a population of heterogeneous consumers. 
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CHAPTER I  

 

INTRODUCTION 
 

 

 

There is a well-known economist joke: 

 

A police officer is walking his beat one night, when he comes across an 

economist who is stooping beneath a lamp post, searching around on the ground.  

“What are you doing?” asks the policeman.  

The economist replies, “I lost my keys over there in that dark alley, and I’m trying 

to find them.” 

The policeman, puzzled, then asks, “Well, if you lost your keys in the alley, then 

what are you doing looking all the way over here by the lamp post?” 

The economist answers, “Because it’s easier to look over here!” 

 

 

When modeling the behavior of actual human beings, economists have perhaps 

occasionally tended to make the mistake of the unfortunate economist from our joke. 

When modeling behavior, it is relatively easy to make the agents in a model behave as if 

they were very smart, and it is relatively easy to make agents behave as if they were very 

stupid. But it can be quite difficult to model agents as being only reasonably intelligent. 

Economists, therefore, have for the most part tended to build models for explaining 

behavior that are based on assumptions consistent with perfect rationality. This is despite 

the fact that we often have reason to believe that, in practice, realistic agents can be 

considerably less than fully rational. There is no doubt that this approach has proven 

tremendously fruitful. We are certainly able to make an impressive range of accurate 

predictions concerning general patterns of behavior, based on the economic models 

which assume full rationality of agents. Nonetheless, it would unwise to pretend that we 

do not face some sort of a trade-off between the tractability of our models and the validity 
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of their results, even if we can find general agreement on the notion that, so far, the costs 

have been worth the benefits. 

In the pages that follow, we shall attempt to build a model describing the behavior 

not of fully rational, but of merely “reasonably” rational agents. As we develop this 

model, it will no doubt be easy to convince the reader that the concepts and structures 

necessary to rigorously model these boundedly rational consumers are quite a good deal 

more cumbersome than those needed to model agents who are endowed with perfect 

rationality. We hope to make the case that the benefits of this modeling approach are also 

worth the costs, however. We believe that what we lose in easy tractability, we more than 

make up for with what is arguably a closer correspondence to actual human behavior. 

Along the way, we hope to illuminate a few novel insights into the behavior of markets 

and their participants. 

Economists interested in studying complicated real-world situations will often 

find it necessary to translate these real situations into simpler models, in the hopes of 

boiling the problem down to only represent its most important features. These models 

may be concisely described as well-defined mathematical problems, and will often 

feature solution algorithms which guarantee finding the set of optimal solutions to the 

problem of interest. 

However, economists always face the danger that, in transforming a real-world 

problem into its corresponding model, salient features of the real problem might be lost in 

translation. If this were to happen, economists who lose sight of the fact that the model 

and the real problem are not literally the same thing, may be lulled into a false sense of 

security by the fact that the model’s solution technique is often both perfect and unique. 
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Within the model, the logic justifying the use of a particular solution technique may often 

be totally unassailable. However, this does not necessarily mean that the solution 

algorithm in the model corresponds to the solution technique used by real agents, in their 

attempt to solve the real problem.  

In other words, while no one denies the power of modeling, whenever we find a 

set of keys under the lamp post, we must be careful to make sure that we reserve an 

appropriate level of skepticism towards the assumption that we have found the right set 

of keys. Models built on the assumption of fully rational solutions to simple problems 

risk missing important consequences and implications, if the real world involves 

imperfectly rational solutions to complicated problems; even small deviations from the 

truly optimal solution can have potentially large consequences. To continue with the lost-

key metaphor, the objective of this paper is to identify a second set of keys in the alley, 

and to begin to think about the process by which we will determine which set is the one 

we were looking for in the first place. 

It is in this spirit that we now wish to revisit a well-known problem which cannot 

currently be said to be the subject of any active debate among economists, the consumer 

budget problem (CBP). The problem itself is familiar to first-year economics undergrads: 

a consumer has a certain amount of financial resources at her disposal, she has certain 

preferences over the types of goods that she is able to purchase with those resources, and 

she faces a vector of prices which she must pay in order to acquire those goods. Her 

challenge is to allocate her scarce financial resources in such a way as to derive the 

greatest possible satisfaction from her consumption choices. The standard solution to this 

problem is also well-known. The available wealth and prevailing prices determine the set 
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of bundles of goods that the consumer is able to afford, and the consumer chooses a 

bundle from within that affordable set which she most prefers. 

It is clear that this model for describing the real-world struggle for consumers to 

get the most satisfaction from the wealth they have at their disposal does, in fact, abstract 

away from certain features of the problem which are present in the real problem. In 

particular, the obvious fact that we generally do not observe actual consumers directly 

choosing final bundles of goods, but rather, we tend to see them making a series of 

sequential decisions concerning what to purchase, and the aggregated outcomes of those 

decisions end up as the final bundle of goods that the consumer has chosen. The standard 

solution explicitly ignores this sequential and cumulative feature of the actual observed 

behavior on the part of consumers. This is not to say that the standard model is not 

extremely useful, nor to say that the standard solution is not deserving of its status as the 

fundamental construct of consumer theory and a workhorse of microeconomics in 

general. But, there may be reason to believe that the standard solution to the CBP is at 

least imperfect. Perhaps the correspondence between the real world and the standard 

solution breaks down in the absence of a fully rational consumer, or more specifically, in 

a setting where a boundedly rational consumer must make sequential purchase decisions 

over time. 

In order to investigate this issue, and to therefore hopefully take our small step 

away from the lamp post and towards the alley, we will begin investigating the 

implications of satisficing behavior on the part of consumers. Herbert Simon (1956), who 

coined the term “satisficing,” was the first to argue in its favor as a plausible explanation 

of the behavior of reasonably rational individuals who face complicated problems. 
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Hogarth (1975) found evidence consistent with Simon’s arguments when he tested 

subjects’ abilities to estimate probability distributions of low and high complexity. But 

within the specific context of consumer behavior, this is a topic that does not yet appear 

to have been extensively investigated by economists. In a clever empirical study, 

Kapteyn, et al. (1979) used a series of surveys to attempt to measure consumer 

preferences directly, and then compared actual consumption behavior with the 

predictions of a utility-maximizing consumption plan (assuming the surveys measured 

the underlying preferences) and a satisficing consumption plan. They found that 

consumer behavior (with respect to the purchase of consumer durable goods) was not 

consistent with the utility maximization hypothesis, and, under their model, were able to 

reject the null hypothesis of utility maximization in favor of the satisficing alternative 

hypothesis.  

Also, despite some limited work on making some operational assumptions for 

empirical models of satisficing behavior, there does not seem to have thus far been any 

attempt to develop a theoretical framework for deriving satisficing-based consumer 

demand, and investigating its implications and consequences. Doing precisely this is the 

primary aim of this paper. 

The investigation is potentially an important one. As Abreu and Rubinstein (1988) 

found, incorporating implementation costs of complicated strategies into the payoff 

function can lead to large and discontinuous changes in the set of Nash equilibria. Their 

paper did not consider satisficing behavior explicitly. Nonetheless, as Simon initially 

argued, allowing for implementation costs of optimizing strategies (and recognizing the 

relative simplicity of satisficing strategies) can form a main line of supporting argument 
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for satisficing as a plausible description of actual behavior. As a result, we have at least 

some reason to believe that our investigation of satisficing consumer behavior will have 

important implications for the set of Nash equilibria in market games. 

In the present paper, we will develop a model of consumer behavior which is 

based, not on the explicit optimization of a given objective function, but instead upon the 

serial application of a single satisficing rule of thumb. In the broadest sense, of course, 

this does not imply that the agents in our model do not maximize something. In principle, 

there will be some set of preferences, defined perhaps over strategies themselves instead 

of simply over consumption goods, and the behavior of our agents will be consistent with 

the maximization of that unspecified utility function. This is similar in flavor to optimal 

search models, for example, in which optimization of the objective function which 

includes search costs gives the result that, small deviations from the true maximum 

amount of utility obtainable through the direct consumption of goods can still be 

considered optimal, if those losses can be offset by the avoidance of the search costs 

necessary to identify the most favorable prices for each good. In this way, optimal search 

models give the impression that, relative to the direct utility from consumption only, 

there is a minimum acceptable level of satisfaction, and the consumer will select the first 

option she encounters which meets or exceeds this minimum level of direct utility.  

We will emphasize the differences between our satisficing model and existing 

optimal search models in greater detail in a later section of this paper (Chapter V: 

Identification), but for now we will stress one main difference. Here, we will allow 

consumers to employ a true satisficing strategy, which unlike the consumers in optimal 

search models, is not predicated upon any underlying optimization process for a pre-
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specified objective function. As a result, the behavior of our satisficing consumers will 

not be subgame perfect, and the possibility exists that our consumers might employ a 

strategy which is truly suboptimal for certain price vectors (this is never possible under 

the assumptions of optimal search models), while at the same time still being optimal for 

others. However, in our model, we will of course still specify a payoff function for our 

consumers. In the simplest version of this model, this payoff function will be equal to the 

direct utility function from consumption of goods. In this way, we still retain the ability 

to identify strategy profiles in which the consumers are playing a best response strategy 

to the strategies of the other players in the market game. As a result, even though our 

satisficing consumers are not explicitly acting in such a way as to guarantee the 

maximization of any particular objective function, it will still be possible to identify 

situations in which their behavior forms part of a true and complete Nash equilibrium in 

the market game. 

Recognizing that consumer behavior based upon a true satisficing rule-of-thumb, 

rather than upon an optimal search process, implies that we are endowing the consumers 

in our model with a strictly lower degree of rationality than we are accustomed to 

granting them. As we explore the consequences of this in our model, we ought to have 

two questions in the back of our minds: 

 

1) To what extent do the qualitative predictions and results of existing standard 

models still come through, even with the lower level of consumer rationality? 

(that is, to what extent are the standard results robust to the relaxation of full 

rationality assumptions?) 
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2) To what extent does the new model offer novel insight into the nature of 

consumer behavior, or of market outcomes? (to what extent does this model 

make plausible predictions not made by any single existing model?) 

 

Specifically with respect to question 2, we ought to be very clear that our 

expectation as we develop this model is that any additional insights that we may 

find are certainly to be taken as complements to the profound insights developed 

through standard models based on true utility maximization. We certainly do not 

wish to suggest that these previous results are invalid, but perhaps they are 

incomplete. Our posture throughout the exploration of the implications of 

satisficing consumer behavior is basically summarized by the observation that, a 

well-defined model of consumer demand based upon true satisficing behavior is 

something that we have never really considered before. And now that it has 

occurred to us, it is something we, as a discipline, ought to begin to consider. 
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CHAPTER II 

 

THOUGHTS ON SATISFICING AND BOUNDEDLY 

RATIONAL EQUILIBRIUM 

 

 

Microfoundations 
 

 

Any analysis which is based on the notion of satisficing behavior, rather than fully 

optimizing behavior, is going to require some defense against the charge that it rests on 

ad hoc assumptions, rather than on solid microeconomic foundations. Since satisficing, 

by definition, involves the selection of an alternative which is merely “good enough,” 

rather than the (a) best available option, the natural question to ask is, “If agents have an 

available option which is better than the one they have selected as ‘good enough,’ why 

wouldn’t they eventually wish to exercise that better option instead?” That is, why is it 

reasonable to model agents as measuring the satisfaction derived from any potential 

choice against some (possibly arbitrary) satisficing criterion, rather than against the best 

possible outcome (or equivalently, against every possible alternative outcome)?  

There are at least three lines of argument which can be articulated to address these 

concerns. The first is that, under certain conditions, satisficing behavior can indeed 

converge to the same outcome which would have prevailed had the agent employed 

optimizing behavior instead. Particularly, it is possible to find examples in which 

individuals do not optimize, per se, at the outset of a particular task, but satisfice instead, 

and yet over time the process of satisficing converges, through some form of learning, to 

the outcome which would have prevailed had that individual optimized in the first place. 
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For example, Day (1967) gives an example of a firm which does not know its own profit 

function, and so satisfices with respect to increases in its own profit through alterations in 

its output level. He shows that, over time, a firm following this satisficing process (in the 

face of a constant demand curve) will eventually learn to supply the correct profit-

maximizing quantity in its market, so that (eventually) there is no difference in the 

behavior of an optimizing firm and a satisficing one. Crain, et al. (1984) performed an 

empirical test of Day’s model, and found support for Day’s conclusions, using a sample 

of 107 Fortune 500 companies over a 10 year span.  

Secondly, there is a modeling consideration. There is arguably an attitude within 

economics which holds that, since we believe agents are generally rational, goal-oriented 

utility maximizers, then any microeconomic description of their behavior should be 

consistent with our standard concepts of optimizing behavior. Any model based upon full 

rationality is therefore well-supported on solid and acceptable microfoundations, while 

any model featuring less-than-full rationality is thought of as not compatible with 

standard results of microeconomics, and must therefore rest upon shaky foundations or ad 

hoc assumptions. 

I wish to take issue with this view. From my perspective, if our aim is to 

understand the way that markets actually function, then it is important to recognize that 

our main goal should be to describe behavior, rather than to prescribe behavior. More 

specifically, it is important to conduct our analyses of markets in a way that is consistent 

with that goal. In situations where we have good reason to suspect that consumers do not 

act in a manner consistent with full optimization, then we ought to develop models in 

which the underlying micro decision process is itself distinct from standard optimization.  
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That is, we should reserve the term “ad hoc” only for cases in which it is clear that 

we, as modelers, are employing some sort of clear trick or gimmick which was never 

intended to have any compelling correspondence to any aspect of the real world. If, on 

the other hand, we imagine a model which is intended to bear a correspondence to reality 

in its underlying mechanics and structure, then I argue that it is not appropriate to refer to 

these structures as resting on ad hoc assumptions. Of course, such a model will still be 

either true or false, correct or incorrect, etc. But it will not be, in the most complete sense 

of the term, ad hoc, to the extent that it attempts to build a description of the actual 

decision process.  

As an example, consider two similar models, and the extent to which the 

assumptions of each can be thought of as truly ad hoc. 

The Calvo pricing mechanism is perhaps the most well-known example of an ad 

hoc assumption; there is a population of firms in an economy, and at any point in time, 

each firm has a certain probability of being allowed to reset its price to that which would 

be optimal under then-current conditions (otherwise, each firm must retain its previously-

set price). This implies that, on average, a certain proportion of the total mass of firms is 

able to adjust their price at any point in time, while the remainder must keep their price 

fixed. Despite the usefulness of this construct in matching actual macro level data, clearly 

this is an ad hoc assumption. We do not seriously believe in the price fairy.  

And yet, in another setting, an idea which is very similar to the Calvo mechanism 

might not be so obviously ad hoc. Consider, for example, the mechanism by which 

technological progress occurs, as modeled by Eaton and Kortum (1999). In their setup, 

firms produce output by processing intermediate goods into final goods, but have the 
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option to invest in research and development which can potentially increase the 

efficiency with which they consumer intermediate goods. Research and development 

yields improved production technology in the following way. Each worker who is 

occupied in R and D will produce a fixed number of “ideas” in a given period of time. 

For the population of ideas which is produced by the collection of R and D workers at 

any point in time, there is a fixed probability that any one idea will be a “good” idea, 

which actually leads to improved productive efficiency. Otherwise, the ideas are bad, and 

are discarded. So, if a firm gets lucky, and experiences a favorable draw from the 

population of possible ideas, then they get to use that idea to improve their technology. 

But otherwise, they are forced to continue using their previously existing technology, in 

the same way that “unlucky” firms in the Calvo model must continue to charge their 

existing price. 

Despite the fact that one model features a “price fairy” and the other features a 

“good idea fairy,” I contend that not both of these modeling structures are deserving of 

the label ad hoc. In fact, as one who has from time to time “produced” extremely long 

successions of ideas without finding any of them to be favored by the “good idea fairy,” I 

can say that this structure described by Eaton and Kortum, in addition to being a quite 

elegant and creative means of formalizing a model of technological progress, also bears a 

striking resemblance to reality. It is this close correspondence with reality that is, in my 

view, the reason that this production model does not deserve the label of “ad hoc-ery.” 

Similarly, for the model which we develop in the subsequent pages, we very 

much do have in mind that the mathematical processes and structures are more or less 

isomorphic to the actual decision process employed by reasonably rational and realistic 
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consumers. As such, while we should remain quite open to the possibility that this model 

is incorrect, I do not feel as though it is appropriate to criticize the model on the grounds 

that descriptions of satisficing behavior are inherently ad hoc. They are merely different 

from standard models of consumer optimization. 

Finally, and most importantly, the distinction between static and strategic settings, 

and the resulting implications for the concept of microfoundations, needs to be 

emphasized. In static problems, where agents face an unchanging objective function, the 

argument that we ought to expect those agents to make the best choice they possibly can 

(i.e., optimize) can be quite compelling. But it is important that we remain mindful of the 

important distinctions between static problems and strategic ones. 

In a strategic setting, it is of fundamental importance that, instead of each 

individual actor having a single, unchanging objective function, we have interaction 

between the actions of one player and the objective function of others. That is, in a game, 

the action choice of any single player potentially impacts, not just the payoff of that 

player, and not just the payoff of other players, but also the relationship between other 

player’s actions and those player’s own payoffs. 

It is precisely this extra layer of interaction that makes game theory a distinct 

field, and it is precisely this extra layer of interaction that requires game theory to employ 

its own unique array of tools for analyzing problems of this type. Indeed, it is also 

precisely this extra layer of interaction that makes normal static analysis, and normal 

static notions of what constitutes solid microfoundations, inadequate. Since choices of 

one player effect more than just the payoff of that player, there is the possibility of 

strategic interaction amongst players which increases/reinforces the losses incurred by 
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satisficing rather than optimizing. But it is equally possible that this type of interaction 

can have the opposite effect; the strategic consequences of satisficing might attenuate or 

overturn completely the losses we would expect to find based upon a static concept of 

rationality. In particular, since ex ante irrational behavior on the part of one player has the 

potential to change the incentives, and therefore the behavior, of other players, it is 

possible that strategies which may seem less than fully rational in a static setting may end 

up being rationalized by the behavior of other players in a game-theoretic setting. There 

are, potentially, important implications and outcomes which static notions of optimization 

are not capable of identifying. 

It is for this reason that we wish to call special attention and emphasis to a fact 

that is widely agreed upon in economics in general: in strategic settings, the proper 

concept of microeconomic foundations of behavior is that of Nash equilibrium or its 

common refinements. That is, when we wish to assess the rationality of a particular 

strategy or of a particular strategy, it is meaningless to attempt to do so outside of the 

context of the game itself. Strategic behavior is rational relative to what else is happening 

in the game itself, and the Nash equilibrium concept allows us to identify important 

strategy profiles in which all players are acting rationally, relative to each other. 

This point requires elaboration, of course. In a market game, it is certainly 

possible to demonstrate the existence of a class of Nash equilibrium which is nonetheless 

clearly an ad hoc description of consumer behavior. In this setting, a consumption 

strategy is simply any mapping from the space of all possible price vectors onto the space 

of all affordable consumption bundles. Strictly speaking, any consumers complete 

strategy set is the set of all possible such mappings. By construction, we can demonstrate 
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that a particular strategy forms part of a Nash equilibrium, even though there is no 

possible way we would ever accept that strategy as a reasonable explanation of actual 

consumer behavior. 

Define D(P) as the usual, rational and optimizing demand function, which is 

consistent with the utility maximization algorithm. Let P1
 
be any arbitrary price vector for 

which each firm’s price is greater than or equal to its own marginal cost of production. 

Whatever the particulars of the vector P1, there exists a Nash equilibrium in which firms 

jointly price at the levels specified by P1. This is true because, technically, the consumer 

always has the option to play the following strategy: 

 

If the actual price vector in the market is P1, then buy the consumption bundle 

given by D(P1). 

If the actual price vector in the market is anything other than P1, then purchase 

nothing (the consumption bundle given by the zero vector). 

 

This strategy profile is clearly a Nash equilibrium (firms all earn less profit at any other 

price, and D(P1) is utility-maximizing under the price vector P1, by the definition of D, so 

the consumer experiences less utility from any other affordable bundle. Nonetheless, this 

is clearly a nonsensical description of consumer behavior. 

This “silly” example of market Nash equilibrium underscores the appeal of the 

restricting our attention in consumer theory to fully rational demand functions, as well as 

reinforces the justification for the standard presentations of Bertrand competition, in 

which consumers are assumed, either explicitly or implicitly, to formulate their demand 
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functions on the basis of the fully optimizing process D. In making this assumption, 

analysis of equilibria in the Bertrand game is restricted to cases of subgame perfection 

only, and we obtain the well-known result that Bertrand markets have a unique subgame 

perfect equilibrium. Again, the usefulness of subgame perfection here is, in part, that it 

allows us to dispense with the nonsensical Nash equilibria of the type described above. 

However, subgame perfection is perhaps a double-edged sword here, at least to a 

certain extent. From our perspective, it is important to emphasize that, subgame 

perfection is appealing because it refines away certain nonsensical equilibria which are 

not in any way compelling descriptions of actual behavior. Equally worthy of emphasis is 

the fact that this is not the same thing as saying that those undesirable equilibria are 

nonsensical because they are not subgame perfect. To be clear, we claim that whether or 

not a particular equilibrium is a reasonable description of behavior is something that 

ought to be judged on a case-by-case basis, and not with the blanket test of whether or not 

it is consistent with subgame perfection. 

We intend to demonstrate that there does exist a class of Nash equilibrium in 

market games which is not subgame perfect, but which nonetheless offers a reasonable 

and compelling description of consumer behavior. We will therefore argue that, by 

restricting attention to cases of subgame perfection, as is currently customary, we are 

improperly censoring our ability to describe the full set of reasonable outcomes in 

markets where firms compete in prices. 

As this pertains to our discussion of what is and what is not properly considered 

an “ad hoc” description of behavior, we argue that (examples of nonsensical equilibria 

notwithstanding) any Nash equilibrium which is based upon reasonable descriptions of 
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consumer behavior, in which the strategies and payoff functions for all players are 

continuous and have a natural correspondence to what we believe to be realistic behavior, 

and which are in some sense stable, and have a meaningful basin of attraction within the 

relevant strategy spaces, cannot be considered ad hoc in the usual sense of the term. 

 

 

Arbitrarily Inaccurate Information in Strategic Settings 
 

 

To further elaborate on this idea of stable Nash equilibrium as the most 

appropriate notion of microeconomic foundations, we now want to take our discussion of 

bounded rationality one step further. We now wish to demonstrate that, by imposing a 

small amount of additional structure to our analysis of strategic behavior, it is possible to 

show that even strikingly irrational behavior may potentially persist indefinitely as part of 

an equilibrium. In doing so, we hope to further strengthen our case that consumer 

behavior which is based upon the type of less-than-fully rational rule of thumb In 

particular, we would like to begin to imagine what sort of conclusions might reasonably 

be drawn about equilibrium in a strategic setting with a less restrictive set of assumptions 

considering player information and rationality. Rather than assuming that all players 

know each of the relevant facets of the game they are playing, we will allow that each 

player has some internal concept of that game, which we will call a model. Each player’s 

model may, in principle, be either correct or incorrect with respect to any of the defining 

characteristics of the game itself, and misconceptions about the nature of the game on the 

part of one player may affect the incentives and behavior of any of the other players. 
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To keep this as general as possible, we will assume that each player’s model has 

all the features that we normally ascribe to an entire game (set of players, strategy sets, 

payoff functions, etc.). 

In strategic settings, the actions of one player affect the payoff functions of other 

players. It is, in principle, plausible to suggest that a player’s internalized conception of a 

game is more directly responsible for determining their behavior than the objectively true 

game is. Players will make decisions based upon what they believe to be the nature of the 

game they play, even if those beliefs are mistaken. 

Since the behavior of one affects the payoffs of others, the possibility that any 

individual player may make decisions which are based upon incorrect beliefs may have 

real consequences in strategic settings. Here, we begin a rough sketch of what it might 

look like if we were to attempt to develop a conceptual framework for finding an 

equilibrium which allowed players to vary widely in their beliefs about the structure of 

the game itself, as well as to choose a strategy from amongst their available strategy set. 

We will refer to the equilibrium concept we are groping for here as “model equilibrium.” 

Model equilibrium is basically the idea of Nash equilibrium, with relaxation of 

the assumption that players actually understand the structure of the game. In model 

equilibrium, all players perceive that they are doing the best they can, given their own 

(possibly incorrect) perception of the parameters of the game. 
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The most general formulation of this idea probably looks something like the 

following: 

 

G: the true underlying game, the parameters of which are possibly not fully known 

to the players. It is fundamentally defined by the following standard functions and sets: 

I: the set of players 

S: the collection of individual strategy sets available to each of the players in I 

σ: the strategy profile describing the behavior of all players  

P: the payoff function, which maps from the set of strategy profiles to the set of 

payoff vectors 

S: extensive form game structure (redundant, since this is actually implied by S, 

but we will list it explicitly here) 

N: the set of Nash equilibria (also implied by S and P. Furthermore, we can 

redefine N in terms of any common Nash equilibrium refinements, as desired) 

 

If we relax the assumption that the players possess full and common knowledge 

of the above underlying game parameters, then we can begin to describe a new layer of 

information which is likely to be important in determining how actual play of the game 

will unfold. 

We may hypothesize a second layer of structure on top of the fundamental or 

“true” game structure. If the true underlying game G describes the manner in which 

strategy profiles map to payoff vectors, then the each individual’s game model Gi 

describes what player i believes would be    
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In addition, the manner in which the play of the true game G progresses will be 

determined in part by the set of the individual consumers’ internalizations, or models, of 

that true game G. 

Gi: the individual model for each player i. For each i e I, Gi is that player’s internal 

conception of the game. Gi will in turn be composed of Ii, Si, σi, Pi, and Si in a manner 

similar to G above. 

Gi need not necessarily be equal to G. If Gi and G are in fact equal, then we say that 

player i knows the game. Otherwise, player i simply models the game.  

G is the game that the players are actually playing, while Gi is the game each 

player i thinks they are playing (Or, at a minimum, that each player i acts as if they are 

playing Gi. It is entirely possible that the player i knows that Gi is not the true game, or 

possibly even that player i does know the full gameG, but chooses to use Gi as a 

simplifying heuristic to guide her play of G anyway). 

 

Hi
t
: the history of events, as of time “t”, which have been observed by player i.  

Li(Hi
t
 , Gi): the Gi updating function (Li: (Hi

t
 , Gi

t
) Ø Gi

t+1
). 

 

 

Model Equilibrium Defined 

 

 
There are at least two different senses in which we can describe a strategic 

situation such as this one as being in equilibrium. 

The first, which we may provisionally refer to as “weak model equilibrium” 

occurs when each player’s beliefs about the nature of the game induce a sequence of 
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actual play which never falsifies any player’s model Gi. That is, given each player’s 

updating function Li, we have  

for each player i e I, we have Li(Hi
t
 , Gi) = Gi 

In other words, if no realized history of play is ever sufficient to make any player 

alter her understanding of the game (as defined by her model Gi), then the vector of all 

models is stable, even if the actual action profile in each period that the game is played 

varies from period to period. 

We may therefore define what we will provisionally call a “strong model 

equilibrium.” A game is in strong model equilibrium if and only if for each player i e I, 

player i is playing a strategy that is a best response to σi in Gi, and Li(Hi
t
 , Gi) = Gi. 

That is, if all models are stable, and each player, based upon her own model, has 

no perceived incentive to alter her own behavior, then the game is in strong model 

equilibrium. 

The extent to which the Gi’s converge to G (if at all) depends in large measure 

upon the nature of the Li functions. The more sensitive the Li functions are to falsifying 

events in the sequence of observed events Hi
t
, the more quickly and more accurately Gi 

will approach G.   

As one example of how this might work in practice, consider the game of chess. 

Recalling Zermelo’s theorem, for any 2 player, zero-sum, finite game of perfect 

information, it must be the case that exactly one of the following is true: Either the first 

player has a strategy which can guarantee that she wins 100% of the time, OR the second 

player has such a strategy, OR each player has a strategy which can force no worse than a 

tie. 



 

22 

 

It is clear that the game of chess satisfies the hypotheses of the theorem, so it should be 

clear that so long as black wins some of the time and white wins some of the time, then it 

must be the case that at least one of the players is not playing a best-response strategy. 

Consequently, Nash equilibrium does not describe the actual play of the game. Instead, as 

we outlined in the introduction, it is likely that each player forms a model of the game 

and uses that model as a heuristic to guide her choice of moves as actual play unfolds. In 

this context, one way to describe what such a model might look like is to imagine some 

sort of preference ranking of potential board states. In the limit (as the players become 

“fully rational”) this preference ranking is consistent with backward induction, but short 

of common knowledge of full rationality, the ranking is, in general, distinct from the 

backward induction ranking. 

There is a widely held maxim amongst chess players that the only way to get 

better at chess is to regularly play against players who are better than you. The logically 

equivalent statement being that, if one only plays players who are equal to or worse than 

oneself, then one will not improve at the game. This second version of the statement is 

perhaps the more direct statement of the concept of model equilibrium. If we imagine two 

novice players who play only against each other, then we would not expect either player 

to improve quickly, because neither player is capable of conspicuously demonstrating the 

flaws in the other’s understanding of the game. Both players may go on for quite a long 

time playing the game at a low level of ability, despite the fact that there are, in the 

abstract, many different opportunities for either player to improve their game. That is, 

both novice players have several profitable deviations from their current chess 

strategy/model, but they are not able to easily identify those areas for improvement. 
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So, despite the fact that such play cannot be supported by the concept of Nash 

equilibrium, it can, in principle be supported by the concept of model equilibrium. That 

is, play which is sub-optimal, relative to the object idea of full-rationality, may 

nonetheless persists indefinitely if it only takes place within a narrow enough context so 

that its shortcomings are not exposed by the superior player. 

That is, two novice players, i and j, may find themselves in a situation where the 

sequences Hi and Hj never realize sufficient number of events that would case Li and Lj 

to update either player’s game model Gi or Gj. In other words, the two sub-optimal models 

(and the sequences of play which may result from them) may in principle persist 

indefinitely under certain circumstances. That is, the models and their resulting histories 

of play may be part of some relevant equilibrium, even if that equilibrium concept can be 

shown clearly not to be that of Nash equilibrium. 

In addition, if we consider an alternative situation, where two players of differing 

skill levels play repeatedly, we would expect the more skilled player to win the majority 

of the time. Through the series of losses, the less-skilled player will slowly be made to 

become aware of the flaws in her game model Gi
t
. Over time, Li will eventually furnish 

her with a new and better game model Gi
t+a

 (where a > 0). The regardless of the actual 

sequence of Gi
t
’s, we can assume that there will be some sort of selection process by 

which “worse” Gi
t
’s are eventually selected out, and “better” Gi

t
’s are eventually selected 

in, since “worse” game models are overturned by experience more easily and more 

frequently than “better” game models. The end result is that, over time, player i tends to 

have a “better” game model than she started with, assuming that she consistently plays 

against more skilled players than herself. Of course, in this context, saying that a given 
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player develops a “better” game model over time is precisely what it means to say that 

the player herself improves at the game of chess. The larger point, though, is that poor 

models, or poor understandings of the actual nature of a game, may persist indefinitely. It 

is not until something specific happens which shows the player that (or how)  her 

understanding of the game may be improved that these incorrect beliefs begin to be 

improved. 

This is an attempt to develop a conceptual framework for thinking about strategic 

situations in which relevant actors are not necessarily perfectly aware of the parameters 

of the strategic interaction among players. It is probable that there are wide variations in 

the histories which may be supported in equilibrium, and the specific sequence of 

outcomes depends to a large extent upon the nature of the updating function Li. Top the 

extent that these functions are “scientific,” which we can loosely take to mean very good 

at identifying observed events which are incompatible with the existing model, and both 

“valid” and “creative” by which we mean good at forming alternative models G which are 

consistent with all previously observed events, and in the simplest and most plausible 

way, then we would expect the model of the game to converge to the true game more 

quickly. But, to the extent that the L functions are irrational, animistic, superstitious, or 

biased towards emphasizing only those observations which reinforce the model, and 

towards understating or dismissing those observations which are incompatible with the 

model, then we would expect a much slower (or nonexistent) convergence of the model 

to the true game. In the same way that that some cultures have embraced science, and 

have advanced their knowledge and technology considerable enormously throughout 

history, other cultures have reached an incorrect, but stable, understanding of the world 
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which does not seem to undergo any revision or correction, despite being wrong. 

(examples abound) In any case, the preceding theory has far too many degrees of 

freedom to be considered predictive, but hopefully nonetheless serves as a convincing 

conceptual illustration of how irrational behavior may still persist indefinitely as part of 

an equilibrium, and therefore be worthy of consideration and study, even if we know that 

it is not truly optimal behavior. 

The following sections of the larger paper which deal with the derivation and the 

implications of the satisficing demand strategy are not precisely a concrete example of 

this equilibrium concept, although we will return to this concept more explicitly as we 

discuss a hypothetical business cycle in the final section. Instead, the following sections 

are inspired by the spirit of this model equilibrium concept. What follows is an attempt to 

explore the implications for economic theory when we relax the usual assumption that 

agents are fully rational, or that they have full knowledge of the game in which they are 

operating 

 

 

The “Garbage in, Garbage out Problem” 
 

 

In principle, this concept of model equilibrium can be used to justify or support 

literally any possible outcome in the face of any underlying game. For any arbitrary 

action profile a, there is a strategy profile s
a
 in which each player’s strategy is to play 

the specific action from the given action profile in all circumstances. For any strategy 

profile so constructed, there is some game G
sa

 for which that profile constitutes a Nash 

equilibrium (for example, construct a game for which each player’s payoff under the 

strategy profile is 1, but each player’s payoff would be 0 if they were to employ an 
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different strategy). Now if each player’s model Gi is the game G
sa

 which has been so 

constructed, then, regardless of the true underlying game G, the arbitrary action profile a 

is supported by a model equilibrium. Once again, the generality of this line of argument 

implies both that, if we start with a given outcome, we can support that outcome as a 

model equilibrium of literally any game, and if we instead start with a given game, then 

we can support literally outcome as a model equilibrium of that game. 

In light of this, we might ask ourselves whether this concept is at all useful. A 

model that predicts literally anything can in some sense be said to predict nothing. 

However, we should recognize that we can raise the same objection about any analysis 

based on the concept of preferences or utility maximization. Literally any type of 

behavior is consistent with some set of preferences, so we may use the concept of rational 

agents pursing their own preference maximization to also support an absurdly large set of 

possible outcomes to nearly any problem. That is, the idea of using preferences as a 

fundamental basis for the motivation or behavior of agents also, in principle, suffers from 

the “garbage in, garbage out problem.” 

Insert whatever wildly implausible or otherwise seemingly irrational action you 

like here, and that behavior can be justified by the simple assumption that the relevant 

agent’s preferences were such that her behavior was, in fact, completely rational and 

utility-maximizing. 

Of course, the GIGO problem does not derail our attempts to use preferences or 

utility functions to motivate very useful models or to draw insightful conclusions about 

agent behavior. This is true because, while we recognize on some level that strange 

preferences can certainly lead to strange outcomes, we tend to focus on what we believe 
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to be realistic description of preferences, and we build our models on what we believe to 

be plausible an well-behaved utility functions. Here, we will attempt to do the same thing 

with our Gi’s and our Li’s. If we can discover cases of particular complicated games 

where player modeling likely plays a non-trivial role in determining the outcome of the 

game, then we can show cases where the concept of model equilibrium adds to our 

understanding of strategic behavior by relaxing the assumptions of full knowledge or full 

rationality. 

As in formal logic, where an argument may be valid if the reasoning and 

inferences are each themselves valid and correct, we may here have in infinitude of 

model-profile-strategy-profile combinations which are model equilibria, so long as the 

combined effect of all Gi’s and the individual strategies are such that no player would 

choose to change either their strategy or their model. An argument’s validity does not 

depend on its premises actually being true, however, just as the existence of a model 

equilibrium does not depend upon the collection of models (Gi’s) being plausible and 

realistic internal representations of the actual game G. That is to say, that a valid 

argument may yield a conclusion which is in fact false, if one or more of the premises of 

that argument are themselves false. Model equilibrium may provide an unrealistic 

description of agent behavior and of the strategic outcome if one or more of the models in 

that equilibrium are themselves unrealistic or implausible. 

In formal logic, an argument is sound if it is valid, while at the same time it is the 

case that all of the argument’s premises are true. 

Returning to the issue of the relative usefulness of defining a concept such as 

model equilibrium, the mathematical question is whether or not these model equilibria 
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exist. The scientific question is which, if any, of these equilibria form a compelling basis 

for describing the behavior of actual agents. The first question is loosely analogous to the 

logical question of validity, while the second is loosely analogous to the logical question 

of soundness. Insofar as economics is a science, we are mainly concerned with questions 

of the second type. From this perspective, we do not have to accept or reject the merit of 

the model equilibrium concept as an all-or-nothing proposition. We may reject some 

instances of model equilibrium while retaining others, using our judgment and empirical 

evidence to suggest which should be kept and which should be discarded. 

If we have reason to believe that the only plausible assumptions concerning the 

players’ rationality and degree of knowledge of the underlying game is that of complete 

rationality and complete knowledge of the game, then the only plausible model equilibria 

describing that game are the set of appropriately defined Nash equilibria. However, if 

there are reasonable deviations from full rationality/full knowledge, then there may me 

additional compelling equilibria for a specific game beyond the set of refined Nash 

equilibria. 

It will later be our contention that, despite not being consistent with full 

rationality (ex ante), the satisficing consumer demand strategy can be thought of as a 

plausible means of describing the boundedly rational consumption behavior of actual 

human beings.  

 

 

The Consumer Budget Problem as a Complicated Problem 
 

 

We now return to our explicit examination of the consumption choice as an 

example of a complex decision, which by nature of its size and sequential nature, is 
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arguably sufficiently difficult a problem to tackle at once that it strains the cognitive 

resources of a realistic consumer. In order to explore the question concerning possible 

consequences of the sequential aspects of consumer decision-making, and of bounded 

consumer rationality, we shall attempt to re-cast the familiar consumer budget problem in 

a different context. Rather than specifying an n-dimensional consumption space, and 

defining a feasible consumption region as all n-tuples within that space, on or below the 

budget hyperplane corresponding to the consumer’s available wealth and the prevailing 

price vector
1
, we will reformat this problem into an equivalent, but richer structure which 

incorporates a sequential feature to the process of selecting a consumption bundle. We 

may begin by attempting to describe the consumer decision-making process as a tree. 

In principle, we can easily describe the activities of the consumer using a decision 

tree. The task of a consumer then becomes to make a series of small decisions which 

aggregate to the best possible terminal node (consumption bundle), rather than to select 

directly the best bundle from among the set of affordable bundles. The differences in the 

two formulations (a budget tree vs. a feasible consumption set) are subtle, but before we 

begin to explore them, we ought to consider the similarities (fig. 1). 

In principle, if we wish to describe the set of possible decisions that a consumer 

could possibly make concerning how to spend her income, there is no fundamental 

difference between using the construct of a decision tree, and using the construct of a 

budget set. One may be more suitable (or less suitable) for illustrating certain aspects of 

the decision-making process than another, but whatever conclusions one draws about 

                                                 
1
 This is consistent with the well-known formulation and solution algorithm of the Consumer Budget 

Problem, as seen in standard economics texts at every level, as in, for example, Krugman and Wells at the 

principles level, Varian at the intermediate micro level, and Mas-Colell, et. al. at the graduate level. 



 

30 

 

consumer behavior from using one construct ought to be equally as valid under the other 

as well. 

 

 

 

Drawing on this equivalence, we can begin to imagine what a boundedly rational 

consumer’s behavior might look like. It may be hard to imagine that a consumer would 

not be able to identify a most-preferred object from among a set of objects (in this case, 

that a consumer might be unable to identify at least one most-preferred point on the 

budget hyperplane), even in the case where set of candidate objects (the budget set) is 

very large. However, it is, perhaps, more plausible to think that a boundedly rational 

consumer might have trouble solving a large decision tree by backward induction. In 

order to do this, a consumer must know, at the time that she makes any individual 

purchase, whether or not that particular purchase is a part of the optimal final 

The Budget Set is a Tree 

Figure 1. Another Kind of Duality: We can think of the budget set itself as a sort of tree, 

with its root at the origin, and the budget hyperplane as the set of all terminal nodes. 

Each point in the interior of the budget set is an intermediate node, and the set of action 

choices available at each intermediate node can be thought of as the set of all (arbitrarily 

small) vectors in ℝ
L

+. The set of all possible histories in the tree is the set of all non-

decreasing paths from the origin to the budget line. 
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consumption bundle. In other words, if the consumer is truly behaving in a manner 

consistent with fully rational utility maximization, then by the time she decides whether 

or not to make her very first individual purchase in a particular period – no matter how 

small that purchase may be – then she must have already solved her entire budget 

problem, and have already identified the precise complete combination of items and 

quantities that she will purchase during that period.  

This implies that a truly rational consumer who solves her budget tree by 

backward induction (which is equivalent to employing the standard utility maximization 

algorithm, and finding the point of tangency of the budget hyperplane and the highest 

attainable indifference curve) would know on the first day of the month everything that 

she planned on buying throughout the course of that month. For example, such a 

consumer would never choose, on the first day of the month to buy, say, a ham sandwich, 

unless she had already decided whether or not she was going to pay for, say, an oil 

change for her car in the third week of the month. In optimizing, she would have already 

compared every margin of consumption against every other margin of consumption, and 

decided only to purchase a particular sequence of goods which yielded the truly 

maximum level of satisfaction. In this paper, we hypothesize that this is not a valid 

description of the way actual, realistic (and boundedly rational) consumers behave. 

Instead, we will posit that a more accurate description of consumer behavior would be 

something along the lines of:  

 

A reasonably rational consumer gets paid on the first of the month. At that time, 

she decides whether or not she wants to purchase a ham sandwich for lunch that 
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day. She makes this decision, not on the basis of an exhaustive comparison of all 

her affordable consumption bundles, but instead on some simplifying heuristic 

which roughly compares the costs and benefits of that sandwich. She buys the 

sandwich if she estimates, at the time of purchase, that the benefits outweigh the 

costs. When she gets to the third week of the month, she will buy the oil change if 

she estimates, at that time, that the benefits outweigh the costs, and if she still has 

money left over after all of the purchases she has made using the same heuristic 

over the previous three weeks. If she doesn’t still have enough money, she will 

put off buying the oil change until the next month, even if, in hindsight, she 

wishes she had bought less of some other good(s) so that she could afford the oil 

change in the current month. 

 

Clearly, if consumers behave in a way which is inconsistent with full rationality, then it 

will be very possible that they end up making decisions which lead to a strictly less-than-

optimal level of utility. However, it is not necessarily the case that these less-than-fully 

rational consumers will be any worse off than they would have been had they behaved 

rationally. The most important result of this paper is to demonstrate that, even if 

consumers do not behave in a manner consistent with full rationality/backward induction, 

it is still possible for that consumer to achieve the highest attainable level of utility from 

her available wealth, given her preferences and the price vector that she faces. That is, 

“full rationality,” in the usual sense, on the part of consumers is not a necessary condition 

for a Nash equilibrium in an overall market game. 
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To see why, consider the way in which we economists typically use the term 

“utility maximization.” Although we rarely have the need or the occasion to explicitly 

recognize the difference, it should be clear that, at times, economists use this term in at 

least two distinct ways: 

 

1. “Utility maximization” can refer to the utility maximization algorithm, 

or the process/strategy which guarantees that, for any possible price 

vector, the consumer will allocate her wealth in such a way as to realize 

the highest possible satisfaction. 

2. “Utility maximization” may also refer to the idea that the consumer’s 

actions/strategy constitute a best response to a particular strategy profile 

of other actors (such as firms and possibly other consumers) whose 

decisions and behavior have an effect upon the original consumer’s 

payoff. Usually, this means that the consumer’s strategy is such that the 

consumer is realizing the highest possible satisfaction, given some 

particular price vector. 

 

Obviously, these two uses are not, strictly speaking, equivalent to each other. When we 

are careful, we certainly realize this. But if we aren’t careful, we run the risk of punning 

on these two different meanings of the same term, and conflating the idea of global 

optimization, or of subgame perfection, with the weaker idea of a best response to one 

specific set of strategies. When we are mindful of the difference, we immediately 

recognize that condition 2 is all that is necessary for a particular consumer strategy to 
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constitute part of a Nash equilibrium, although condition 1 is necessary if we wish to 

require that Nash equilibrium to be subgame perfect. 

Our primary goal in this paper will be to demonstrate that there are consumer 

strategies which are both distinct from the utility maximization algorithm of sense 1, but 

which can nonetheless satisfy the utility maximization requirement of sense 2, when 

played against certain firm strategies. Moreover, we will demonstrate that the firm 

strategy profile (to which these boundedly rational consumer strategies are a best 

response) consists of precisely those firm strategies which are themselves a best response 

to the consumer and to all of the other firms. That is, we will demonstrate the existence of 

a class of Nash equilibria in an overall market game in which firms compete in prices, 

which has not yet been discussed. This new equilibrium is not at odds with the 

uniqueness proof for the Bertrand equilibrium, because it does not satisfy the conditions 

of that proof’s hypotheses. Here, we will be explicit about making the particular demand 

curve for each firm’s product an endogenous result of consumer strategy choice. The 

structure of the Bertrand model assumes a single demand curve. This single demand 

curve assumption is usually thought of as being itself the result of the assumption that 

consumers will employ the utility maximization algorithm (number 1, above) as their 

strategy choice. As we have pointed out, if we wish to characterize the full set of Nash 

equilibria in the market game, this assumption is not appropriate
2
, because this algorithm 

is not a necessary condition for equilibrium. 

In order to begin to describe this new equilibrium, we must first consider the 

justification for why we ought to consider it plausible that consumers would employ a 

                                                 
2
 Although, as we have also pointed out, that assumption is required if we wish to describe only the set of 

subgame perfect Nash equilibria. 
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boundedly rational demand strategy which is distinct from the utility maximization 

algorithm. We therefore return to the idea of the budget tree. 

For all but the most trivial of problems, the budget tree is likely to be a very large 

object. Clearly, if the entire structure of the tree were known by the consumer, and if the 

consumer had the computing power to fully assess the tree by comparing all the terminal 

nodes, the algorithm for obtaining an optimal solution is well-understood. But the 

question is, how realistic is it to believe that these assumptions are all true?  

As an analog to this problem, consider a different complicated problem, in which 

it is readily apparent that the true optimal sequence of choices is not known, literally by 

anyone: the game of chess. Although this is a more complicated scenario than the budget 

tree by nature of the fact that chess is a strategic situation involving the interaction of two 

players, the fact remains that we can appropriately conceptualize of the game as a tree, 

and the task of players is to find the best set of sequential choices to navigate their way 

down that tree towards an optimal outcome. 

In this setting of chess, it is not the least bit controversial or heretical to claim that 

even the very best players (both human and machine) are, the vast majority of the time, 

not playing optimally—or more specifically, are not playing in a manner consistent with 

subgame perfection. It is certainly not the case that any player, even today’s most 

powerful computer programs, are able to play the game of chess using backward 

induction, by meticulously calculating the value of every path and subtree, and then 

selecting the one optimal sequence of moves that will guarantee victory. Moreover, by 

virtue of the fact that chess is in fact a finite game of full information (there are a finite 

number of pieces, and, by rule, the game ends in a draw if 50 moves elapse without either 
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player capturing an opponent’s piece), we know in principle, by Zermelo’s theorem, that 

it must be the case that either white has a strategy which will ensure that white will never 

lose, or else black has such a strategy. However, in practice, we have obviously seen 

many games, even at the very highest levels of skill, were white wins (and black loses), 

and likewise very many games where black wins (and white loses) instead. This pair of 

observations is obviously inconsistent with the idea that the players are playing chess in a 

way that is consistent with what we would call “full rationality.” 

Now of course, this doesn’t imply that chess players are playing the best that they 

can, given the binding constraints on their rationality, or on their computational abilities. 

But this is the entire point of the current paper: these rationality constraints play a non-

trivial role in the way in which complicated strategic situations actually unfold. Though it 

has, essentially, been proven that a typical highly-skilled chess player is not using 

backward induction to solve their game tree, we will, for now, merely hypothesize that a 

typical boundedly rational consumer is not using backward induction to solve their 

budget tree. We will offer a candidate non-backward-induction strategy, and will begin to 

investigate the consequences of a consumer’s employment of that strategy. 

In order to do so, we will begin by attempting to draw some additional intuition 

from our chess example, and we will use one tree that is definitely too large to assess 

rationally (the game of chess) as a metaphor for what we think might be another such tree 

(the budget tree).  

Clearly, no one actually knows the set of Nash equilibria for a game as 

complicated as chess. Players do not know the optimal mapping from the set of possible 

board states to the set of possible moves. And yet, players play chess anyway. What does 
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this imply for us as economists, if our goal is to be able to describe and predict behavior? 

Are we lost in the “wilderness of irrationality”? Maybe not. Due to the structure of the 

game itself, we might be able to make some general observations concerning the way in 

which players make choices in a setting where the full game structure is too complex to 

be considered at once. 

Broadly speaking, we know that chess players are goal-oriented. Individual moves 

do not seem to be made with an eye towards whether those moves are located on some 

optimal path, fully enumerated from opening move to checkmate. Rather, moves seem to 

be dedicated towards achieving some intermediate goal (a hallmark of rational behavior, 

even despite the fact that real-world chess players are not “fully rational”). Intermediate 

goals may be things such as control of the center of the board, forking or skewering of 

opponents pieces to either capture material or at least limit the opponent’s plausible 

moves, etc.  

In pursuing these intermediate goals, players might plausibly consider different 

candidate moves, visualizing the state of the board that would result from the candidate 

move and the opponent’s likely response (possibly several moves into the future). When 

comparing the attractiveness of different potential moves, players probably use a limited 

version of backward induction, in the sense that they are essentially selecting, or 

attempting to select, the most favorable future state of the board when they select a best 

move at any point in the game. However, the values or rankings assigned to the different 

candidate states of the board are conspicuously not derived from the full enumeration and 

evaluation of all the possible sub-trees following the candidate state. In some way, 

players seem to assign directly an intrinsic value to each intermediate board state that 
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they consider. The preferences over potential future board states cannot be perfectly 

derived from the precise evaluation of the underlying structure of the game (or else 

players would be truly playing optimally). In some sense, preferences over future board 

states must be primitive, in that they are not derived directly from any other set of 

preferences (such as those over terminal nodes of the game, for instance). The player’s 

actual preference rankings of these intermediate states are the result of both the skill and 

the experience of the player, and the more “accurate” the player is in his rankings, the 

more successful he is likely to be in terms of winning chess games.  

However, this approach to playing complicated games does not seem to be 

modeled in any existing concept in game theory. When describing a game, we refer to the 

set of players, the strategy set of each of those players, the payoff matrix, etc. In essence, 

a player is defined by his available options and the final payoffs. There is no structure 

that accounts for the possibility of differences in skill or in rationality of the players, even 

though it is precisely these differences which account for why “good” players will 

consistently beat “bad” players, even if a game which is nearly symmetrical, such as 

chess. Differences among players in the “internal” representation of the actual game are 

likely a better tool for predicting actual outcomes of games than simply looking at the set 

of equilibria. In other words, in complicated strategic situations, player behavior is 

probably guided by relatively simple models of the actual game, rather than by a hyper-

rational evaluation of the actual game itself. 

On some level, we know that reasonably smart agents will form simplifying 

models of complicated situations to help guide their behavior, because that is, in fact, 

precisely what we do as economists and as scientists. If we wish to give ourselves an 
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accurate picture of actual consumer behavior when the consumer tries to make the best 

choice in a setting as complicated as a budget tree (complicated in the sense that a typical 

tree is likely to have a truly enormous number of nodes and branches), we should 

consider the possibility that these consumers do precisely what we would do: form a 

simplifying model to help guide their choices. 

Drawing intuition from the case of the chess player, we can now return to our 

budget tree, and hypothesize how a reasonably “smart” consumer might try to solve the 

tree with which he is faced. As described above, the tree represents a sequence of 

decisions to be made concerning the potential purchase of many goods. Two features (at 

least) of a rational agent ought to show up in this decision process. Firstly, the consumer 

should be goal-oriented, in the sense that he is attempting to make the sequence of 

purchase decisions which yield the highest possible satisfaction, given her income, 

preferences, prices, and, perhaps, her scarce computational power, as well. Secondly, in 

making any individual decision, she ought to, on some level, weigh the costs of a 

potential purchase against the benefits of that purchase, deciding to buy only when her 

estimate of the benefits are at least as great as her estimate of the costs. 

We can use the concept of a value function as a way of generating a decision rule 

which will satisfy both of the above. By construction, we shall assume that, at any node 

on the budget tree, the consumer selects a candidate bundle to consider purchasing. This 

candidate bundle, a vector in ℝ
L

+, essentially specifies the direction that her consumption 

path will follow through the consumption space, should she decide to purchase the 

candidate bundle. A decision must be made where the consumer will express a preference 

between two future states:  
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1) Where a “yes” decision has been made at that node: the consumer accrues 

some incremental utility from the consumption of the partial bundle of goods bought at 

that node, and then finds herself at the next node down the tree along the branch defined 

by the partial bundle she just purchased. Her available wealth at this next node has been 

reduced by the price of the purchase made. 

2) Where a “no” decision has been made: the consumer does not accrue any 

additional utility, but also expends no wealth, and then finds herself considering a 

different possible partial consumption bundle, but at the same node. 

 

Basically, the consumer does not purchase anything until she finds a partial 

consumption bundle which takes her to a place in the consumption space (augmented by 

her remaining wealth), which she prefers to her current location in her consumption-

wealth space. 

A reasonably rational agent will, like the chess player, make her decision in a way 

consistent with her preference ranking over those two subsequent states, but the manner 

in which she ranks those states is not necessarily consistent with the imputed ranking 

dictated by the fully rational assessment of her underlying preference function over 

goods. In the extreme case, a consumer’s value function for each state will be calculated 

by the full and correct summation of the incremental utility gained at all nodes, along the 

truly optimal path to the best terminal node, beginning at the root of each subtree. In this 

case, the consumer who uses this decision rule is guaranteed to select an accumulated 

final consumption bundle which is equal to a bundle which would have been selected by 
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backward induction. Again, with the assumption of full rationality, this approach is 

equivalent to the standard approach. 

However, what if our consumer is less than fully rational? What if she makes 

mistakes in calculating the value function for each sub-tree, or what if she lacks the 

computing power to perfectly calculate the true value of each sub-tree? Is it possible to 

still be able to make concrete predictions concerning the consumption behavior of an 

agent who is imperfectly, though still reasonably, rational? 

The consumer’s decision reduces to her answer to the following question: was the 

incremental utility from a “yes” decision worth the income which could have been saved 

by instead deciding “no”? At the time that the decision must be made, the concrete trade-

off is between the potential purchase of the good(s) in question, and the actual money 

necessary to make the purchase. The consequences of varying degrees of rationality come 

into play only when the consumer attempts to place a value on the money spent, in terms 

of the utility which could have been gained if that same amount of wealth had instead 

been spent on a different good. In other words, rationality plays a role only in 

determining how accurate the consumer is in weighing the incremental utility gained 

from a potential purchase, versus the true opportunity cost of making that purchase. To 

the extent that a consumer is not fully rational, there is a breakdown in the ability of that 

consumer to actually calculate a purchase’s true opportunity cost. 

In the absence of the computational ability necessary to perform the standard 

optimization algorithm on the budget tree, the consumer will have to do what any rational 

agent would do in a setting where she faces a complicated decision which he may not be 
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able to fully assess all of his options: she will use a model to simplify the problem, and to 

recommend her best guess as to what the best decision would be.  

One candidate solution technique for this type of tree, which might plausibly be 

employed by imperfectly rational consumers, would be to allow the purchase price of any 

good to, in some way, act as a stand-in for the actual fully accurate calculation of a 

good’s opportunity cost, in terms of the utility to be gained by consuming the next-best 

alternative forgone when making any purchase. In other words, if consumers behaved in 

such a way as to estimate the minimum amount of utility that one could expect to gain, at 

the margin, for each dollar spent, then the cost-benefit comparison made at each node 

becomes much simpler. This implies that the actual decision rule used by consumers is, 

essentially, “Is the good that I am considering buying worth the price I have to pay for 

it?” In this case the word “worth” refers to a more direct comparison between utility and 

money, rather than the more intricate comparison between the utility of the good, and that 

of its true opportunity cost (the other things that could have been bought with that 

money), as we have in the standard model. Again, the estimated “value,” in utility terms, 

of money, is intended by the consumer to serve as a stand-in for the fully rational 

calculation of the value of the relevant sub-trees that the consumer would make, if only 

they had the computational power to do so. 

Consider how consumers utilizing this type of simplification might solve the tree. 

Qualitatively, the decision rule used by these imperfectly rational consumers would 

operate in a manner quite similar to the fully rational consumer who is able to perfectly 

calculate the value function for each sub-tree. At each node, the incremental utility 

gained by a possible purchase is known, and agents simply compare that utility to the 
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estimate of the opportunity cost of that purchase. In this case, however, the estimate of a 

potential purchase’s opportunity cost is solely a function of the good’s price, and the 

consumer’s estimate of the utility value of a dollar. In the standard case, the opportunity 

cost of a purchase is a function of the consumer’s preferences over all goods, as well as 

the prices of all goods, and the set of all purchase opportunities remaining. To put it 

another way, the fully rational consumer uses the true (calculated) valuation of each 

node, while the less rational consumer uses only an estimated valuation of each node. 

For a given estimate of the utility value of a dollar (call this value µ, measured in 

utility/$), the decision rule will say to make a “yes” decision whenever the incremental 

utility gained is greater than or equal to the bundle’s price, multiplied by µ. In this case, 

the consumer judges that the purchase is “worth” its price, or that the purchase is a good 

deal, and so will choose to buy. Otherwise, if the incremental utility of the potential 

purchase is strictly less than µ times price, the consumer will opt not to buy. In either 

case, the consumer must choose not to buy if her available wealth is less than the 

bundle’s price. In the case that the consumer chooses not to buy a particular bundle at a 

particular intermediate node, she then considers purchasing a different bundle. She will 

continue considering different candidate bundles at the present node until she either finds 

one she can say yes to (in which case she moves on to the resulting next intermediate 

node and repeats the process), or until she has exhausted all of her options (at which point 

further consumption ceases altogether). 

It should be noted that, for a given price vector, and for an appropriately chosen 

value of µ, this decision rule will guarantee that an optimal bundle (from the standard 

version of the problem) will be chosen in the tree version of the problem. To see why this 
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is so, recall that one of the consequences of the standard solution to the CBP is that, at an 

optimal bundle, the marginal utility per dollar spent on each unit of each type of good 

must be equal for all goods, otherwise, total utility could be increased by spending a little 

less on the good with the lowest MU/$, and a little more on the good with the highest 

MU/$. So, it is correct to say that, for any optimal consumption bundle in the standard 

problem, there is exactly one number which describes the marginal utility per dollar of all 

goods which appear in that bundle with strictly positive quantity. If consumers utilizing 

the simplified decision rule described here to guide their choices on the budget tree were 

to calibrate their estimate of µ “correctly,” so that the value of µ were the same as the 

MU/$ of all goods in the optimal bundle under the standard solution, then they will 

choose “yes” only for partial bundles with marginal utility per dollar greater than or equal 

to those goods in the standard bundle, and choose “no” for any and all other goods. 

Therefore, by the time the decision process terminates (when the consumer has exhausted 

all or almost all of her wealth), the only goods which would have been selected into the 

final consumption bundle are the same goods which would have been selected into one of 

the optimal bundles in the standard problem. 

Therefore, this model used by the consumer (using “model” in the sense that this 

particular decision rule is intended to serve as a simplification for the actual value 

function used to preference-rank sub-trees) has the advantage of simplifying the 

complicated budget tree to the point that a decision may be reached at each node based 

not on any intricate calculations of the value function of a large sub-tree, but based solely 

on the two pieces of information which are available and directly observable at that node 

(the good’s price and its potential incremental utility/marginal utility). In other words, 
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this process is forward-looking, in the sense that it prescribes a decision at each and every 

node, without the necessity of any calculations of the value of anything further on down 

the tree than the present node. Furthermore, this has the additional attractive feature that 

it is also useful, in the sense that, for an appropriately chosen µ, this decision rule delivers 

a final bundle which is truly optimal under a given price vector. 

Despite these similarities between the two formulations of the consumer budget 

problem, we shall show that, in the case of agents who use the simplified “model” as their 

decision rule, the nature of the strategic interaction among firms competing in prices is 

fundamentally altered, with respect to the standard solution. Specifically, the utilization 

of the simplified model as a demand strategy by the consumer changes the shape of the 

firm best response functions for the pricing decisions of producers of the goods bought by 

the consumer. It is these resulting altered competitive incentives among firms which 

ultimately enable the otherwise less-than-fully rational demand strategy to constitute a 

best response by consumers in the final strategy profile. 

In the sections that follow, we hypothesize here that there may be a upper limit as 

to how large or complex a tree can be for a reasonably rational consumer to be able to 

solve it using backward induction. At some point, the number of distinct terminal nodes 

which must be compared (not to mention the number of distinct histories to each of those 

nodes) becomes too large for the consumer to practicably evaluate fully
3
. Conceptually, it 

is as if there is some horizon, beyond which the consumer simply cannot see. If the tree is 

small enough so as to not stretch to that horizon, then the consumer can employ backward 

induction without any trouble, and can thereby guarantee herself an optimal outcome. On 

                                                 
3
 Especially during the timeframe in which a single sequential consumption decision is typically made. 
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the other hand, if the tree is larger than some critical size, then we can think of that tree as 

stretching over the consumer’s horizon. They cannot see the entire tree, and cannot 

contemplate all of its nodes and branches at once. As a result, if the consumer is to make 

any decision at all at the nodes that she can see, she must do so using a tactic other than 

backward induction. In this paper, we will attempt to develop a model in which 

boundedly rational consumers make consumption choices in this sort of “over-the-

horizon” setting. We will assume that the entire budget set is an object which is too large 

to fully assess at one time, and so the consumer must make smaller, incremental 

decisions, employing only a limited amount of information at each step along the way. 

We will begin to describe what we shall call the “satisficing demand strategy,” a process 

by which the consumer makes purchase decisions, not as the result of a truly optimizing 

process, but as the result of a process where the consumer selects a minimum acceptable 

level of satisfaction, and then buys whatever items she happens to come across which 

meet or exceed that satisfaction threshold. 
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CHAPTER III  

 

THE CONSUMER SATISFICING DEMAND STRATEGY 
 

 

The Optimizing Consumption Strategy as a Sequential Process 

 

 
At the heart of the difference between the optimizing and satisficing demand 

strategies are the differences in the way the concept of opportunity cost is expressed. In a 

truly optimizing process, the consumer must, explicitly or implicitly, compare every 

available option, and select an option which is most-preferred among the set of available 

choices. In this way, the actual action choice prescribed by an optimizing process is 

guaranteed to be at least as good as every other available action choice.  

In a satisficing process, however, the consumer selects a minimum acceptable 

level of satisfaction, and then simply chooses the first action choice she encounters which 

provides at least that minimum acceptable level. This implies that, unlike an optimizing 

process, a satisficing process is inherently path-dependent. If we define set S as the set of 

all action choices which could be selected by the satisficing process, and set O as the set 

of all action choices which could be selected by an optimizing process, then if S is non-

empty, it must contain O. If S = O, for some set of parameters describing the overall 

budget problem, then we will say that the satisficing process is narrowly equivalent under 

those parameters. If S = O, for every set of parameters which might describe the overall 

budget problem, then we will say that the satisficing process is strategically equivalent 

under those parameters. If O is a proper subset of S, then we will say the satisficing 

process is less discriminating than the optimizing process under those parameters. Again, 

the notion of a path is of vital importance here, since any element of S may be selected, if 
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it is the first such element on which the satisficing consumer happens to consider, even 

though some elements of S may be strictly preferred to others. By definition, the 

consumer must be indifferent between all elements of O, so path or order of consideration 

of the available set of options does not matter under an optimizing process. 

Nonetheless, to emphasize the point that the fundamental difference between 

optimizing and satisficing is indeed the concept of opportunity cost, we will take a short 

detour, and attempt to describe what an optimizing process would look like, if we 

imposed the requirement that that process be sequential in nature.  

With every consumption path that we will consider in this paper, we will assume 

the requirement of the irreversibility of consumption. That is, once an object has been 

consumed, it may not be un-consumed. Although we might imagine a situation in which a 

consumer might buy a product, and then later change her mind and, say, return that 

product to the store for a refund, we will say that this situation does not actually reflect 

what we really mean by “consumption.” In other words, no item is truly consumed until it 

is no longer possible to return, nor otherwise undo the choice to purchase, that item. This 

will imply that any path through the consumption space which is to be considered a 

consumption path must be non-decreasing in the quantity of each individual good.  

A consumption path will begin at the origin, and then move through the 

consumption space (again, in non-decreasing fashion) until it terminates at a point 

representing some combination of goods. This terminal combination of goods will be the 

final consumption bundle selected by the sequential process. The final bundle will 

therefore be determined by the summation of a sequence of arbitrarily small partial 
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bundles, and the sequence or history of those partial bundles is precisely what we mean 

when we refer to the consumption path. 

In order for this type of consumption path to be consistent with true optimization, 

there must be a fully rational cost-benefit comparison which takes place for every 

sequential step along this path. Here, this cost-benefit comparison may be described in 

terms of the standard notion of opportunity cost. Consider some arbitrary consumption 

vector X, which begins at the origin and is fully contained within the budget set. If we 

interpret this vector as one step along the consumption path, then in order to assess 

whether or not this step is consistent with fully rational optimization, we must compare 

the costs and benefits of taking this step. A simple framework for performing this 

comparison is to consider which consumption opportunities are preserved, and which 

consumption opportunities are forgone, once this sequential step is taken. In other words, 

under the irreversibility assumption, if the consumer purchases the partial bundle X, some 

elements of the budget set will still be attainable afterwards, and other elements of the 

budget set will not longer be attainable afterwards. Specifically, if the consumer 

purchases X, then the set of still-attainable consumption opportunities, call it Α, is 

defined
4
 as A ≡ (X + ℝ

N
+) ∩ β, where N is the total number of distinct goods available, 

and β is the budget set. The set of consumption opportunities forgone, call it ~A, is the 

complement of A in β. 

Quite simply, any partial consumption bundle X is consistent with full 

optimization if and only if the most-preferred element of A is at least as good as every 

element of ~A. 

                                                 
4
 ℝ

N
+ is the closure of the positive orthant. 
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Likewise, any path through the consumption space may be thought of as the 

summation of a sequence of arbitrary partial consumption vectors (X
1
, X

2
, X

3
, …). Any 

path is consistent with optimization if and only if, for all i, 
1

i

n=

∑ X
n
 has the property that 

the most-preferred element of A
i
 is at least as good as every element of ~A

i
, where A

i
 and 

~A
i
 are defined analogously to A and ~A, but for the summation of i individual partial 

consumption vectors, rather than for a single partial vector X (fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sequential Optimizing Consumption. 

 

 

Obviously, this consumption path formulation of the consumer’s optimization 

process does not add very much to our understanding of standard consumer theory. The 

process needed to identify the most-preferred element of A or A
i
 (and then also to 

compare that element to every element of ~A
i
) is equivalent to the process needed to 

identify the most-preferred element of β. In other words, our attempts to describe the 

optimization process in terms of a sequential consumption path amount to little more than 
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saying “select the optimal bundle by finding a point of intersection
5
 between the budget 

hyperplane and the highest attainable indifference curve, and then select literally any 

non-decreasing path from the origin to that point.” Clearly, this adds nothing to our 

understanding of consumer optimization, per se. In fact, it is probably implicit in the 

standard demand model that there will be some path from the origin to an optimal bundle 

that the consumer actually follows as she makes sequential purchases; it is just that the 

path itself is trivial, and the location of the set of optimal bundles is all that matters. 

But the reason that we have taken the trouble to outline this sequential process is 

precisely because of the lack of important differences between the sequential description 

of the optimizing process and the standard, path-independent description of the same. 

Since satisficing processes are inherently path-dependent, and since we generally think of 

optimizing processes as path-independent, we want to be able to demonstrate that any 

differences between optimizing demand and satisficing demand are, in fact, due to 

differences in the role played by the concept of opportunity cost, and not due in any way 

to the fact that one process is path-dependent and one is not. 

Now that we have (trivially) described the optimizing demand process as a 

sequential process, we may more directly compare it to the inherently sequential 

satisficing demand process.  

 

 

 

 

                                                 
5
 A point of tangency if preferences are strictly convex and there is an interior solution to the utility 

maximization problem. 
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The Sequential Satisficing Process Outlined 

 

 
All vectors are N-dimensional, where N is the number of distinct goods available 

for purchase by the consumer. The process begins at period 1 and continues through 

period T. “Time” is notional, and the value of T is determined endogenously. 

 

Let 0 be a vector whose every element is zero. 

Let P be the price vector. 

Let O
t
 be a vector representing the quantities of each of the N distinct goods 

which have already been consumed as of the beginning of period t. Assume that O
1
 = 0. 

O
T
 is the consumer’s final consumption bundle. 

Let X
t
 ≥ 0 be a sequential candidate consumption vector which is under 

consideration during round t of the consumption process.  

Let X`
t
 ≧ 0 be a sequential realized consumption vector which is added to the 

physical consumption at the end of period t, so that consumption follows the consumption 

accumulation function given by O
t+1 

= O
t
 + X`

t
. 

The non-negativity requirement for X
t
 and X`

t
 is the consequence of the 

assumption of the irreversibility of consumption. Furthermore, we will require that X
t
 ≠ 

0, since we wish that each iteration of the satisficing process actually consider purchasing 

something (it is essentially meaningless to consider an iteration in which no purchases are 

contemplated).  We will allow for the possibility that X`
t
 = 0, meaning that, although 

some purchases were considered in period t, none were actually made. 
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Let ÷(O
t
) be the path-generating process for the candidate consumption vector, 

so that ÷(O
t
) = X

t
 for all t. 

Let √(X
t 
, O

t
) be the decision rule for sequential purchases, so that        

√(X
t
 , O

t
) = X`

t
. 

Together with the price vector and the consumer’s wealth and preferences, ÷(O
t
) 

and √(X
t 
, O

t
) will determine the consumers actual consumption path, including the value 

of T and the final realized consumption bundle O
T
. See Figure 3, following page. 

 

 

Thoughts on the ¬ Function 
 

 

There are many possibilities concerning the specific nature of the √ function.  

A central hypothesis of this paper is that, for a typical consumer, the entire budget set is 

likely to be an object which is too large to fully assess in a completely rational manner. 

From a modeling perspective, we would like to be able to explain consumer behavior in 

such a way as to reflect the practical impossibility of the comparison of all affordable 

bundles, while retaining the feature that individuals probably act rationally within the 

constraints imposed by their limited computational abilities. To put it simply, our present 

way of thinking about how consumption decisions are made involves a fundamental 

asymmetry between the two sides of a cost-benefit comparison: Consumers are very good 

at completely assessing the value of goods and bundles that they have directly in front of 

their faces, but are unable to fully assess the value of the set of all alternatives. 

Intuitively, this idea is perhaps best explained in a cardinal utility framework; consumers 

can correctly compute the amount of satisfaction that any particular purchase might give 

them, but are not able to know with certainty whether that amount of satisfaction is  
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O
t
 is an arbitrary point in the 

consumption space, along the 

consumption path 

 

 

 

      X
t
 is specified by Π(Ot). 

      The consumer ponders 

purchasing the incremental 

bundle X
t
 

       (X
t
 ≥ 0) 

 

 

 

      X`
t 
is specified by √(X

t
, O

t
). 

After considering X
t
, the consumer 

may decide to purchase all, some, or 

none of the elements in X
t
. 

 (X
t
 ≧ X`

t
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       O
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t
 + X`
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Figure 3. One Generic Iteration of the Sequential Satisficing Process.  
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greater than or equal to the maximum satisfaction from the set of all feasible alternative 

bundles. The satisficing consumer must, therefore, select a minimum acceptable level of 

satisfaction, and then choose to buy bundles which come under her consideration only if 

they meet or exceed that satisficing threshold. 

Note that the satisficing criterion (the minimum acceptable level of satisfaction) is 

the conceptual analog to the idea of opportunity cost in an optimizing process, as far as 

the role that it plays in the relevant performance test. An optimizing consumer will 

(possibly) take a given action if and only if that action is at least as good as the next-best 

available alternative. A satisficing consumer will choose a particular action that is under 

consideration if and only if the satisfaction that action yields meets or exceeds the 

satisficing criterion. If the satisficing criterion itself were defined in terms of the highest 

possible
6
 level of satisfaction, given the entire set of available alternatives, then there 

ceases to be any difference whatsoever between optimizing and satisficing. 

 

 

The ¬ Hypothesis 

 

 
We would like the decision rule employed by the satisficing consumer to reflect 

the idea that the consumer is unable to fully calculate the true opportunity cost of every 

potential purchase, but is otherwise rational. When making purchase decisions, she must 

form some simple model which estimates the true (but unknowable) opportunity cost of 

those purchases, and must use that model or estimate as the yardstick by which she 

measures potential purchases to separate the “good” bundles from the “bad” (or more 

                                                 
6
 Of course, this requires that the consumer has sufficient computation capacity to be able to fully assess the 

entire set of available alternatives.  
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precisely, the “good enough” bundles from the “not good enough”). Like the chess player 

who learns to estimate the value of intermediate states of the board (rather than 

calculating them through backward induction), and uses those estimated valuations to 

guide her choice of moves throughout the game, we assume that this estimate of 

opportunity cost is “learned” through experience in some way (as yet unspecified). We 

further assume that the estimate is a “passably close” approximation to the real 

opportunity cost, in the sense normally used when defining the term “satisficing.”  

Nonetheless, once a consumer has formed this estimate of opportunity cost (in 

utility terms), we should like to require that any subsequent decision-making based on 

this estimate be fully consistent with a comparison of benefits and (estimated) costs. In 

other words, if a consumer uses a (possibly incorrect) estimate of the opportunity cost of 

a decision, rather than the calculated true cost, the decision process can be thought of as 

boundedly rational. However, if the consumer ever decides to purchase any goods for 

which the marginal benefit is strictly less than the estimated cost, it would seem more 

appropriate to describe this behavior as irrational, rather than boundedly rational. To 

formalize this idea, we will define the following: 

 

The √ Hypothesis:  

If a satisficing rule involves forming an estimate of the opportunity cost of a 

potential purchase, then that rule satisfies the √ hypothesis if both of the 

following are true: 
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1) The rule never allows any purchases to be made such that any 

part, element, or subset of that purchase yields a marginal 

benefit less than the estimate of its opportunity cost.  

2) If the rule is applied to a candidate bundle for which any part, 

element, or subset of that purchase yields a marginal benefit 

greater than or equal to its estimated opportunity cost, then the 

rule must not fail to actually purchase that part, element, or 

subset of the candidate bundle, assuming it is affordable. 

 

In other words, we believe that consumers behave constrained rationally, up to their 

imperfect estimate of the opportunity cost of any choice. If the decision rule is not in 

some way based upon an estimate of opportunity cost, then the rule does not satisfy the √ 

hypothesis. 

By focusing attention on decision rules which satisfy the √ hypothesis, we can 

begin to construct a model of consumer behavior which has clear conceptual upper and 

lower bounds placed on the level of consumer rationality. Consumers are not so rational 

as to be able to fully assess the entire budget set at once, and so must use an estimate of 

the true opportunity cost of any purchase. But, once having formed that estimate, they are 

able to apply it to a decision-making process in such a way as to guarantee that they will 

never buy any good or service which does not appear to satisfy a cost-benefit test. That is, 

they are able to behave (constrained) optimally, so that their decisions are no less rational 

than their estimate of opportunity cost. One implication of this idea is that consumers will 

be savvy enough to avoid making partial purchases in which one subset of the purchase 
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has insufficient marginal utility, given its estimated opportunity cost. In other words, if X
t
 

is decomposable into smaller parts, then the consumer ought to only purchase the parts of 

X
t
 which are sufficiently valuable (at the margin) to stand on their own. The consumer 

should never decide to purchase parts of X
t
 which do not individually pass the underlying 

cost-benefit test. In practice, this implies that we must be careful to construct our √ 

functions in such a way as to avoid the possibility that excess marginal utility for one part 

of X
t
 compensates for, or cross-subsidizes the purchase of, any other part of X

t
 which is 

insufficiently valuable to have been purchased on its own merits.  

 

 

Examples of the ¬ Function 

 

 
In this section, we will begin to consider what the √ function could or should 

specifically look like. We will examine a series of potential forms, and then briefly 

discuss the merits and shortcomings of each. Ultimately, we will not necessarily settle on 

one universal specification of the √ rule, intended to validly apply in every conceivable 

circumstance. Instead, we will hope to begin to outline some of the major issues which 

ought to be considered as we try to implement a specific decision rule which is consistent 

with the √ hypothesis, for the parameters of any single particular problem we may wish 

to consider.  

One way to loosely categorize the possibilities is to think of the space of all 

possible √ functions as somehow associated with a continuum of assumptions concerning 

the level and sophistication of consumer rationality. On one extreme, we might conceive 

of a decision rule which is completely a-rational; a rule which completely accepts 

whatever candidate consumption vector it is ever asked to pass judgment upon. In other 
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words, we might define a completely non-discriminating satisficing rule, which we will 

call √0:  

 

√0(X
t
 , O

t
) ≡ X

t
 = X`

t
, " (X

t
 , O

t
) 

 

The level of consumer rationality implicit in this rule is low enough to strain the 

applicability of the term “satisficing,” since it is not apparent that this rule even exhibits a 

minimum acceptable level of performance or satisfaction (at least, that is, without 

imposing some external restrictions on the set of possible sequences of X
t
 vectors, on the 

utility function, or on both). It certainly will not satisfy the √ hypothesis, as it makes no 

non-trivial attempt to compare costs and benefits. Although √0 is unlikely to ever provide 

a reasonable representation of actual consumer satisficing behavior, it still may be 

illustrative to at least consider its existence in principle. 

More discriminating (and therefore, more rational) decision rules are of course 

also possible. We will spend considerable time discussing a particular class of these 

functions, which are intended to model the behavior of boundedly rational consumers.  

This class of satisficing rules of thumb emphasized in this paper is based on the 

notion of marginal utility per dollar. The consumer selects a minimum level of marginal 

utility per dollar which any actual purchase must meet or exceed. We will call this 

benchmark value µ, and it will represent the satisficing criterion that any potential 

purchase must satisfy if it is to become a realized purchase. As described above, this 

class of rules employs a performance test to any candidate bundle. The test is similar to a 
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cost-benefit test; the consumer buys the candidate bundle if its marginal utility meets or 

exceeds the satisficing criterion, and does not buy the bundle otherwise. 

One way to think of the justification for basing the satisficing rule on the idea of 

marginal utility per dollar is to compare satisficing with the constrained optimization 

problem of the fully rational solution. At an optimal bundle, the value of the Lagrangian 

multiplier λ measures the true shadow value of wealth: the rate at which utility increases 

as the budget constraint is relaxed slightly. If we make certain standard assumptions 

concerning the nature of the utility function, then implicitly, it is as if the optimizing 

consumer had imputed a level of “intrinsic” value to each unit of wealth (specifically, λ, 

measured in utility per dollar), and then performed a simple cost-benefit test on each item 

in the budget set. For each item, the opportunity cost can be thought of as simply the 

price of that item, multiplied by λ. It is a necessary condition for inclusion of an item in 

an optimal bundle that the utility of that item meets or exceeds the opportunity cost. If 

there is exactly one most-preferred bundle, then this is a sufficient condition as well. 

In fact, if preferences are strictly convex and continuous, then there is no element 

in an optimal consumption bundle (under a given price vector) which does not satisfy the 

notional cost-benefit test described above, or else it would be possible to improve overall 

utility while expending the same amount of wealth, by substituting away from these 

elements in favor of elements of the budget set with higher marginal utility per dollar. 

Likewise, every item in the budget set whose marginal utility per dollar is strictly greater 

than λ is necessarily in the final consumption bundle. Fundamentally, these statements 

are true because the constrained optimization problem inherently finds the value of λ for 

which both of these statements are true. 
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As such, it is appropriate to think of λ as capturing a great deal of information 

about the given utility maximization problem. Specifically, λ may be thought of as a 

utility index: a scalar value which summarizes the multi-dimensional budget set, and 

describes the maximum value of the affordable elements. In a very real sense, λ 

represents the actual opportunity cost, in utility terms, of purchasing $1 worth of any 

good, under the parameters of the UMP. If any of the parameters should change (prices, 

wealth), then of course the value of λ will immediately change as a result. Of course, this 

process is still fully rational and globally optimal, because λ itself is computed as a 

function of the fundamental parameters of the utility maximization problem (wealth, 

prices, and preferences). It is a fundamental feature of the optimization process that the 

“correct” value of λ is always calculated for any possible set of parameters. Of course, µ 

is also a utility index, although it is not a perfectly calculated value of the shadow value 

of wealth. Instead, this index is presumably learned in some way through experience. The 

difference between µ and λ, as employed in a cost-benefit test, will lead to potentially 

important consequences in the strategic interactions which take place at the market level, 

between price-competing firms and the set of consumers. 

This specific interpretation of the optimization process is the primary motivation 

for construction a class of satisficing rules which are based upon the idea of marginal 

utility per dollar. Essentially, the consumer will form an estimate µ of the utility value of 

a dollar, and then use that estimate (rather than the true, computed value λ) as a stand-in 

for the actual opportunity cost of each $1 worth of purchases. The same cost-benefit test 

as above will be applied to a sequence of candidate partial consumption bundles, and 

those bundles passing the test will be purchased, and those not passing the test will not be 
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purchased. The process will continue until the consumer either exhausts her wealth, or 

until there are no longer any candidate consumption bundles available which can pass the 

cost-benefit test. 

This will allow the consumer to make a one-dimensional comparison between any 

item she wishes to purchase and its (estimated) opportunity cost (equal to monetary cost 

times µ). This is opposed to the optimizing strategy, which inherently requires that a 

multi-dimensional comparison be made between the item under consideration, and every 

other element of the budget set. Furthermore, for certain utility functions, if the estimate 

is correct, so that µ = λ for a given parameterization of the budget problem, the 

satisficing strategy will be narrowly equivalent to the optimizing strategy (More on this 

in the next section). 

Alternatively, if the estimate µ is not necessarily correct, but is instead merely 

“close enough” to the true value λ, then the utility of the final consumption bundle 

selected will be “close enough” to the utility of a truly optimal bundle. The phrase “close 

enough” here represents the minimum acceptable level of performance of the satisficing 

rule, and the selection of a particular µ, in effect, defines what that minimum acceptable 

level of performance is.  

To continue exploring the possibilities offered by this type of satisficing rule, 

consider the following concrete example, which we shall refer to as √1. 

For each candidate consumption vector X
t
 to which the decision rule √1 is 

applied, the consumer will calculate the incremental utility which would be gained if that  
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bundle X
t
 were consumed. That is, the consumer calculates the difference between total 

utility realized with and without the incremental bundle. Define the difference ∆1 as 

 

∆1(X
t
, O

t
) ≡ U(O

t
 + X

t
) – U(O

t
) 

 

If ∆1(X
t
, O

t
) is sufficiently large, then √1 will select that bundle for purchase. More 

specifically √1 is defined as the following: 

 

 If ∆1(X
t
, O

t
) ≥ µ (P · X

t
), then √1(X

t
 , O

t
) = X

t
 = X`

t
.  

Otherwise, √1(X
t
 , O

t
) = 0. 

 

Clearly, √1 is a function of µ, so different values of µ will lead to different 

effective decision rules. Consequently, the decision rule √1 ought to be properly indexed 

in some way by the choice of µ that it employs (i.e., we should use the notation √1
µ
). For 

now, we will consider this to be implicit, and will suppress the notation which indexes for 

µ. 

Also, consider the level of rationality represented by this decision rule. It is 

clearly significantly more sophisticated than √0, since for the first time we now have 

some estimate of opportunity cost, and some attempt being made to compare costs and 

benefits so as to reach a somewhat efficient allocation of scarce resources (wealth). 

However, this rule still exhibits a level of rationality that is likely to too low, if our goal is 

to describe the behavior of “reasonably” rational consumers; this rule does not satisfy the 

√ hypothesis. 
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To see why, consider the following. We can see that there is a certain troublesome 

feature of √1: the possibility exists that surplus utility, over and above the threshold value 

specified by µ, from one good in the bundle X
t
 might compensate for insufficient utility 

from another good, and the consumer might end up expending scare wealth on goods that 

do not yield a high enough level of utility, relative to µ. 

As an example, consider a consumer who derives a constant 10 utils worth of 

utility per each unit of good X she consumes, but derives 0 utility from any level of 

consumption of good Y. Assume the price vector is (1 , 1), she has 100 units of wealth, 

and µ = 4. If the consumer were to employ √1 to judge whether or not partial 

consumption bundle (2 , 2) were “good enough” to justify purchasing that bundle, she 

would find that the marginal utility of good X was high enough to justify purchasing the 

entire bundle: 

 

∆1((2 , 2), O
t
) = 20 for any O

t
 

The total cost of (2 , 2) is 4. 

 

So, the incremental utility gained by the bundle X
t
, 20, exceeds the estimate of the 

bundle’s opportunity cost in utility terms, 16 (which is the number of dollars spent in 

purchasing X
t
, 4, multiplied by the benchmark estimate for minimum utility per dollar, µ 

= 4).  

Since 20 > 16, X
t
 satisfies √1 in this case. 

Accordingly, √1 will select the entire bundle (2 , 2) for purchase, despite the fact 

that both units of good Y were completely useless, but came at a total cost of 2 units of 
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wealth. We submit that it is not satisfactory to consider a demand strategy which 

supposedly reasonably rational consumers would ever choose to make such a purchase as 

described here. The specific violation of the √ hypothesis happens, of course, because 

this rule allows for good Y to be purchased, despite the fact that, in utility terms, the 

marginal benefit of Y is zero, which is strictly less than its estimated marginal cost (Py*µ, 

or 4 per unit). Again, the reasoning underlying the √ hypothesis is that, even if a 

consumer cannot fully compute the opportunity cost of this bundle, they should 

nonetheless possess sufficient rationality to know not to purchase anything for which the 

marginal benefit is less than the best guess of the marginal cost. In order to address this 

concern, we need to consider a still more sophisticated satisficing rule, which we will call 

√2. 

Given that we should expect that our consumers should be able to look at a 

candidate consumption bundle both as a whole, and in part, we need to be able to allow 

for the possibility that the consumer consider each distinct element of candidate 

consumption vectors, and should be able to discard portions of those bundles which do 

not satisfy the cost-benefit test, while retaining those portions of the bundle which do.  

 The following is a description of satisficing decision rule √2. For each candidate 

consumption vector X
t
 to which the decision rule is applied, the consumer will consider 

the incremental or marginal utility offered by each component of that consumption 

vector, and decide to purchase only those components for which the incremental 

(marginal) utility, divided by the cost (price) of that component, meets or exceeds the 

critical value µ. 
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The satisficing rule √2 used here will be purely subtractive. That is, it will only 

pare down X
t
 in order to obtain X`

t
. √2 will only potentially remove elements from X

t 

and will never add anything to it. As a result, for any period t, we must have either         

X
t
 ≥ X`

t
 or X

t 
= X`

t
.  

The rule √2 makes a utility comparison between U(O
t
) and U(O

t
 + X

t
), but does 

so component-wise. For any vector Q, define Qi as the i
th

 component of Q, and define Qi 

as the as the vector whose i
th

 element is Qi, and whose every other element is zero. When 

employing √2, the consumer calculates U(O
t
 + Xi

t
) - U(O

t
) for each i ∈[1,N], and uses 

the resulting value as the measure of the incremental utility gained by purchasing the 

quantity Xi
t
 of good i. Define this value as ∆2i(X

t
, O

t
), or simply ∆2i(X

t
) as a notional 

shortcut, so that  

 

∆2i(X
t
) ≡ U(O

t
 + Xi

t
) - U(O

t
) 

 

∆2i(X
t
) will be used by the consumer to measure the incremental value of each individual 

component of X
t
, and then to compare this value against the benchmark estimate of its 

opportunity cost, µ*Pi*Xi
t
 (the benchmark, µ, for minimum acceptable marginal utility 

per dollar, multiplied by the number of dollars, Pi*Xi
t
, required to purchase the quantity 

of good i present in the candidate bundle). √2 will then construct X`
t
 in a component-wise 

fashion. For any element of X
t
 for which  

 

∆2i(X
t
) ≥ µ*Pi*Xi

t
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 √2 will add Xi
t
 as the i

th
 element the realized partial consumption bundle X`

t
. For any 

element of X
t
 for which ∆2i(X

t
) < µ*Pi*Xi

t
, √2 will place a 0 as the i

th
 component of X`

t
. 

In this way, √2 will avoid the some of the possibilities of wasteful purchases that were 

possible with √1, and thus provide us with a more reasonable way of modeling the 

behavior of boundedly rational consumers. The expression ∆2i(X
t
) ≥ µ*Pi*Xi

t
 describes 

the decision rule in terms of a cost-benefit comparison, but it is obviously equivalent to 

express the same rule in terms of a marginal utility per dollar form:   

 

(∆2i(X
t
) / Xi

t
 ) / Pi ≥ µ 

 

That is, purchases which yield a marginal-utility-per-dollar which is greater than or equal 

to the threshold level µ will be selected, and those that do not meet or exceed µ will not 

be selected. Still, there is at least one obvious shortfall of decision rule √2, as well, as 

pertains to the √ hypothesis. One of these shortfalls has to do with the magnitude of the 

candidate consumption vectors. It is entirely possible that, even in cases where ∆2i(X
t
) ≥ 

µ*Pi*Xi
t
, for some i, the rule could violate the √ hypothesis by consuming too many units 

of good i.  

Consider the case where the utility function is additively separable, and marginal 

utility in good i is decreasing according to ∑U/∑xi = (10 - xi), and Pi = 1. If µ = 5, then the 

consumer ought to purchase up to 5 units of good i. Specifically, if Xi
t
 was less than or 

equal to 5, then there is not an immediate problem with respect to the √ hypothesis, as √2 

will correctly accept the entire candidate quantity of i, and Xi
t
 = X`i

t
. However, if Xi

t
 was, 

say, 6 units of good i, then we potentially have a situation where the utility of the first 5 
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units of i sufficiently compensates for the lower-than-threshold level of utility of the sixth 

unit, just as excess utility from good X “subsidized” the inefficient purchases of Y in the 

previous example. Consider a concrete example: 

If Oi
t
 = 0, and Xi

t
 = 6, then ∆2i(X

t
) = 42. This exceeds the estimate of the 

oppotunity cost of Xi
t
, which is 30 (since Xi

t
 = 6, Pi = 1 and µ = 5). Therefore, √2 will 

select Xi
t
 = X`i

t
 = 6. However, the 6

th
 unit of good i, by itself, does not pass the cost-

benefit test. The additional utility of the 6
th

 unit is 4.5, and its estimated opportunity cost 

is 5. If good i must be purchased in blocks of 6 units, then there is no problem. However, 

if good i can be purchased by the single unit, then our boundedly rational consumer ought 

to know better than to purchase this 6
th

 unit, and hence we have demonstrated that √2 

violates the √ hypothesis. 

There are two ways to address this particular concern. The first, is to shift 

emphasis from the discrete to the continuous version of this idea, and consider this idea in 

the limit as we let ||X
t
|| Ø 0 for all t. Therefore, the issues related to the magnitude of X

t
 

become irrelevant, as the consumer considers each differential unit of each good on its 

own. This is the tactic we will eventually take in this paper, as we later describe the 

geometry needed to derive the consumer’s satisficing demand curve.  

Alternatively, we could resolve this √ hypothesis issue, and continue to consider 

the discrete version of this rule, if we redefined √2 to allow for the possibility that X`i
t
 

could be an intermediate value between Xi
t
 and zero. For example, given some O

t
, if it is 

the case that Xi
t
 is divisible into smaller units, then the consumer probably ought to be 

attributed with sufficient computational ability to be able to sequentially apply the 

decision rule to each of the smallest feasible units on the interval [0, Xi
t
]. In this way, the 
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consumer can select only the number of units for which the benefit exceeds the 

(estimated) cost, and decline to purchase any units for which the opposite is true. 

Whereas √2 applied the same estimated cost-benefit test as √1 to each individual 

component of X
t
, rather than to the entire vector, this new rule √3 is defined in such a 

way as to apply the same cost-benefit test as √2, not only to each component, but also to 

the smallest feasible unit of each component. That is, √3 would calculate ∆2i(X
t
), not just 

for each component of X
t
, but for each smallest unit of each component of X

t
.  

If good i is available in continuous quantities, such as -- hypothetically-- gallons 

of gas or pounds of ground beef, then it makes sense to describe the satisificing criterion 

in terms of the partial derivative. In this continuous case, √3(X
t
, O

t
) = X`

t
, where the i

th
 

component of X`
t
 is largest number (or supremum) on the interval (0, Xi

t
] for which 

∑U/∑xi ≥ µ*Pi, or zero if no such quantity exists. 

If a good is not continuously divisible, but must instead be purchased in discrete 

units, such as jars of tomato sauce or number of whole turkeys, etc., then define the 

smallest indivisible unit of good i as the number Ii. For example, Ii for pineapples
7
 would 

then likely be 1 (pineapple), while Ii for cans of beer might be 6 (cans). Also define Ii as 

the vector whose i
th

 element is Ii, and whose every other element is 0. If the good truly is 

only available in discrete quantities, then it will be assumed that Xi
t
 for that good must be 

some whole number multiple of Ii, as will X`i
t
. 

 

 

                                                 
7
 This is assuming that pineapples are sold by the count, not by weight. If sold by weight, then this good 

might or might not be more properly thought of as being continuous. Some peripheral concerns exist 

concerning how best to model this situation, though we do not intend to address them here. 
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If we wish to define √3 in this situation, we must do so in terms of ∆3i(X
t
, O

t
), where: 

 

∆3i,n(X
t
) ≡ U(O

t
 + n*Ii) - U(O

t
 + [n-1]*Ii) 

 

√3(X
t
, O

t
) = X`

t
, where the i

th
  component X`

t
, X`i

t
, is defined as the n* Ii, where n is the 

largest integer on the interval [1, Xi
t
/ Ii] such that ∆3in(X

t
) ≥ Ii* Pi*µ. X`i

t
 is defined to be 

zero if no such n exists. 

Going forward, we will assume that any subsequent decision rules we may wish 

to consider will implicitly have this “incrementalist” approach, and can therefore select 

intermediate quantities between 0 and Xi
t
, as necessary.

8
 Basically, this allows for the 

consumer to be able to “optimize”
9
 over a single, one-dimensional segment (the interval 

[0, Xi
t
]), while still being unable to perform the more sophisticated multi-dimensional 

true optimization problem over the entire budget set.  

When describing subsequent decision rules √x, as well as their corresponding 

∆x(X
t
) functions, we will assume that each is expressable in terms of a similar ”n” and 

“Ii” notation to convey the idea that increments between 0 and Xi
t
 are possible. However, 

for simplicity and clarity, as well as to more easily emphasize the difference between 

ensuing decision rules, we will assume that the fact that intermediate values may be 

found for each good is implied. We will therefore focus our ensuing notation on 

highlighting the interaction between the various components of the consumption vector, 

                                                 
8
 The same effect would be achieved by restricting the magnitude of Xt

, so that each Xi
t
 was always the 

smallest feasible unit of good i. If Xt
 always only involved the smallest feasible unit of each good, then √2 

and √3 would necessarily be equivalent. Some extra technical concerns would need to be addressed, 

though, if we were to decide to restrict the set of Xt 
vectors in this way, though. 

 
9
 Obviously, the consumer is not necessarily optimizing, per se. They are doing the best they can over the 

specific interval [0,Xi
t
], given their particular estimate of opportunity cost. 
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keeping in mind that, in the continuous version of the satisficing process, there ceases to 

be any relevant difference between √2 and √3.  

In addition to the quantity concerns described above, the more pressing objection 

to both √2 and √3 at the moment is that these rules, while still likely better 

approximations of consumer behavior than √1, will not allow us to adequately describe 

behavior in situations where there are interactions among distinct goods in the utility 

function. If the utility function is additively separable, then √3 (as well as the continuous 

version of √2) will actually satisfy the √ hypothesis. But if the utility function involves 

interactions between distinct goods, this will not be the case. Specifically, if we wish to 

consider situations where the consumer uses a satisficing process to select bundles of 

goods which include perfect complements or perfect substitutes, for instance, merely 

assessing incremental utility in a component-wise manner will not allow us to correctly 

measure the proper marginal utility of items in a candidate consumption bundle. If the 

utility function includes 2 goods J and K which are perfect complements, then √3 will 

never allow the consumer to purchase any positive amount of either good (let alone both). 

When the consumer considers the marginal utility of J, she will always find that the 

marginal utility of J is equal to zero, and will accordingly never decide to purchase any 

additional units of J. Similarly for good K. This is true even if it is the case that the 

consumer might derive significant surplus over and above the estimated opportunity cost 

through the consumption of both goods together. If we wish to employ a rule which is 

capable of dealing with this objection, we will need to consider a still more sophisticated 

decision rule, √4.  
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For any vector Q, define Qi as the i
th

 component of Q, and define Q~i as the as the 

original vector Q, but with the i
th

 component Qi replaced by a zero (so that Q~i = Q - Qi). 

When using √4, the consumer calculates U(O
t
 + X

t
) – U(O

t
 + X~i

t
) for each i ∈[1,N], and 

uses the resulting value as the measure of the incremental utility gained by purchasing the 

quantity Xi
t
 of good I, conditional on also jointly purchasing the rest of the items in 

vector X
t
. Define this value as ∆4i(X

t
, O

t
), or simply ∆4i(X

t
) as a notional shortcut, so that  

 

∆4i(X
t
) ≡ U(O

t
 + X

t
) – U(O

t
 + X~i

t
) 

 

(Note that ∆4i(X
t
) and ∆3i(X

t
) will be equivalent if the utility function is additively 

separable.)  

∆4i(X
t
)/Xi

t
 can be though of as the conditional marginal utility (CMU) of good i, given 

that the consumer already has consumed bundle O
t
, and is going to purchase all of the 

other components which make up vector X
t
. If we contemplate the continuous version of 

this idea by considering the limit of ∆4i(X
t
)/Xi

t
 as ||X

t
|| Ø 0, we see that the conditional 

marginal utility is equivalent to the left-hand partial derivative of the utility function with 

respect to good i, evaluated at (O
t
 + X

t
).

10
 

 The partial derivative of the utility function, with respect to good i, evaluated at 

(O
t
 + X

t
) is defined as: 

 

∑U/∑Xi = lim h → 0 [U(O
t
 + X

t
 + h*Xi

t
/ Xi

t
) - U(O

t
 + X

t
)]/h 

                                                 
10

 There might be some technical bugs yet to work out with this statement, and the lines which follow it. It 

is probably necessary to be more precise about whether we are taking lim ||Xt|| → 0  or lim Xit → 0. These are 

not necessarily the same thing. 
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The left-hand partial derivative is the left-hand limit in the above equation, which also 

implies that h is negative. Therefore, we have: 

 

(∑U/∑Xi)
-
 = lim h → 0

-
 [U(O

t
 + X

t
) - U(O

t
 + X

t
 - |h|*Xi

t
/ Xi

t
)]/|h| 

 

which is equivalent to: 

 

lim Xit → 0
 
∆4i(X

t
)/Xi

t 

 

The motivation for using the left-hand partial derivative as part of our 

performance test for partial bundles is as follows. First of all, in cases where the utility 

function is differentiable at O
t
, the left-hand partial derivative will of course be equal to 

the full partial derivative, by definition. That is, if the partial derivative is defined, then it 

will always have the same value as the left-hand partial derivative. In cases where the 

overall derivative is undefined, such as in cases where marginal utility has a jump 

discontinuity, it may still be possible for the left-hand partial derivative to be perfectly 

well-defined. We may therefore capture relevant information given by the utility function 

that we would be unable to utilize if we restricted our attention to the partial derivative. 

We can appeal to the intuitive structure of the sequential satisficing process in order to 

consider why the left-hand partial derivative contains the “correct” information for the 

consumer’s performance test. We recognize that the consumer needs to compare total 

levels of utility both with and without the incremental unit of good i (in order to 

determine whether or not that unit of good i is “worth it”). However, if there are 
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interactions amongst distinct goods in the utility function, then the utility comparison 

ought to be able to account for these interactions. Basically, the satisficing process will 

accomplish this in the same way that the optimizing process does: by evaluating bundles 

of goods rather than only considering the one-dimensional marginal effect of altering a 

single quantity at a time. In fact, the conditional marginal utility concept, in the context of 

the sequential satisficing process, will actually do both. We will evaluate the marginal 

effect of altering a single quantity, conditional on larger bundle being purchased at the 

same time. In this way, the consumer will be able to allow for utility to be derived 

through the simultaneous purchase of complementary goods, but will also be able to 

separate out the individual contribution of each component of the marginal bundle. That 

is, conditional marginal utility will allow the consumer to avoid buying too many of any 

single complement (i.e. avoid the cross-subsidization of “too many” units of one good by 

the surplus utility of the bundle as a whole). Consider the following example: 

 

Assume the utility function is U(x,y) = min(x,y). 

The partial derivative of the utility function with respect to good x is 1 if x < y, is 

0 if x > y, and is undefined if x = y. 

However, the left-hand partial derivative for good x is defined everywhere. It is 1 

if x ≤ y, and it is 0 if x > y.  

Also, we argue that the left hand partial derivative allows a more valid 

comparison of marginal utility. If the consumer already has bundle O
t
 = (5,5), and is 

considering purchasing the candidate consumption bundle X
t
 = (1,1), what is the 

appropriate way to measure the marginal utility of the additional unit of x and y? As we 
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would normally apply the idea of marginal utility, we would find the marginal utility of x 

by finding [U(O
t
 + Xi

t
) – U(O

t
)] / Xi

t
, or [U(6,5) – U(5,5)] / 1. This is, of course, zero for 

this utility function. However, an alternative calculation would be the conditional 

marginal utility of x. By “conditional,” we mean that marginal utility of x, conditional on 

X
t
. To perform this calculation, we find [U(O

t
 + X

t
) – U(O

t
 + X~i

t
)] / Xi

t
, or           

[U(6,6) – U(5,6)] / 1. In the latter calculation, we find that the conditional marginal utility 

of x is 1. In this way, CMU can give us a more valid measure of the marginal utility of 

complementary goods in a bundle
11

.  

Furthermore, CMU gives us a mechanism for ensuring that the √ hypothesis is 

satisfied in situations where complementary goods are purchased. Again, as above, 

assume that U(x,y) = min(x,y). Further assume that the price vector is ( ½ , ½ ) and that        

µ = ½ . For a candidate consumption vector X
t
 = (2,1), the total cost of the bundle is 1.5, 

the incremental utility of the bundle is 1. Therefore X
t
 would satisfy √1,       

since 1 ≥ (½ , ½)·(2,1) * µ = 0.75, and X
t 
= X`

t
. This is true despite the fact that the 2

nd
 

unit of x in Xi
t
 obviously yields zero additional utility, but still costs a positive amount of 

wealth. Again, this demonstrates that √1 violates the √ hypothesis for this utility function. 

However, because of the complementarity between the two goods, neither 

component of X
t
 will pass the performance test conducted by √3. Since positive marginal 

utility requires additional units of both x and y, ∆2i(X
t
) will be zero for both i = x and       

i = y. Therefore, √3 violates the √ hypothesis for the opposite reason that √1 did; it 

ignores the opportunity to purchase a bundle which offers strictly greater additional 

utility than its estimated opportunity cost. Relative to what we might think of as 

                                                 
11

 Though, this also introduces a sort of “double-counting” problem, which is addressed below. 
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“reasonable” consumer behavior, √1 buys too much, and √3 buys too little, in this 

example. 

√4 can begin to address both types of √ hypothesis violations, because it employs 

CMU in its performance test. First of all, √4 avoids the pitfall of √1, because it will not 

allow for the purchase of the 2
nd

, useless unit of x in X
t
. Specifically, the left-hand partial 

derivative of the utility function, with respect to x, evaluated at (O
t
 + X

t
) will be zero on 

the interval (1, 2], and will be 1 on the interval [0, 1], given that Xy
t
 = 1. When √4 is 

applied (under the assumption of incrementalism, described in the √2/√3 section), it will 

reject any amount of x which is strictly greater than Xy
t
, and so it is able to avoid the 

pitfall of √1. Furthermore, once the “excess” of good x has been trimmed, √4 will be able 

to consider the remaining bundle (1, 1). It will accept the remaining bundle in its entirety, 

because ∆4i(X
t
) is high enough in (1, 1) for both i = x and i = y, and thus avoid the pitfall 

of √3. 

Notice, despite the fact that we are employing a left-hand derivative (or its 

discrete analog), this concept of marginal utility is not necessarily backward-looking. 

Since each iteration of the satisficing process begins at some O
t
, and then considers the 

effect of adding a partial vector X
t
, conditional marginal utility does measure the change 

in utility that results from the addition of further consumption. Specifically, the 

comparison involves the difference in utility level caused by an increase in good i 

consumption from Oi
t
 to (Oi

t
 + Xi

t
). Loosely, the process is forward-looking from the 

perspective of O
t
 and backward looking from the perspective of (O

t
 + X

t
). 

√4 still introduces its own worries with respect to the √ hypothesis, however. 

Essentially, by looking at conditional marginal utility, √4 “double counts” the marginal 
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utility offered by a partial bundle which contains complementary goods. Using the same 

utility function as above, U(x,y) = min(x,y), we can easily provide an example where √4 

violates the √ hypothesis: 

O
t
 = 0 

P = (1,1) 

X
t
 = (1,1) 

µ = 1 

 

In this example, ∆4i(X
t
) = 1 for both i = x and i = y. Therefore, both elements of 

X
t
 will pass √4’s performance test, and X

t
 = X`

t
 = (1,1). However, in this example, X

t
 as 

a whole would not have even passed √1. The total marginal utility gained by X
t
 = X`

t
 is 

1, while the total marginal cost of this partial bundle is 2. If µ = 1, then the bundle as a 

whole provides strictly less marginal utility than its estimated opportunity cost. 

Therefore, its purchase is represents a violation of the √ hypothesis. This is due to the 

fact that the concept of conditional marginal utility assigns the full amount of added 

satisfaction derived from any partial bundle to both goods x and y. 

Therefore, in order to formulate a rule which is consistent with the √ hypothesis, 

we need to define a still more sophisticated satisficing rule, √5. This rule will be identical 

to √4, except that the consumer will be aware of any relevant utility interactions between 

goods, and will also apply the performance test to all combinations of goods for which 

there exists such an interaction. When the consumer considers purchasing combinations 

of items which are related in the utility function, she will first test each quantity of each 

item individually, as in √4. But she will then further test the combined quantities of those 
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goods, as if they were jointly considered a single good. In the previous example, √5 

would, just like √4, first pare down the original Xt vector from (2, 1) to (1, 1), since the 

CMU of good x is zero if x > y. √5’s individual component test approves both elements 

of (1, 1). However, √5 would then further test (1, 1) by evaluating incremental utility 

along the direction of the vector (1, 1). This is found by calculating U(1, 1) – U(0, 0) = 1 

and comparing it to the total cost (Px, Py) · (1, 1) = 2. Since the estimated opportunity 

cost (defined as µ * total cost) exceeds the marginal utility, √5 will reject the entire X
t
 

bundle, thus avoiding any violation of the √ hypothesis in this case. 

Also, there is a similar concern with √4 with respect to the situation where the 

utility function includes goods which are perfect substitutes. Assume there are two goods 

I and J which are perfect substitutes. The utility function is such that the consumer 

derives 1 util of utility, so long as she consumes at least one unit total of either good, but 

receives no additional utility from further consumption beyond one unit.  

That is:  

 U(x, y) = 0 if (x + y) < 1 

 1 if (x + y) ≥ 1  

 

If O
t
 = (0, 0) and X

t
 = (1, 1), µ = 0.5, and P = (1, 1), then if we apply √4 we will 

get X`
t
 = 0. The CMU of both x and y is zero, since U(O

t
 + X~i

t
) = U(O

t
 + X

t
) = 1 for 

both i = x and for i = y. However, by purchasing either (1, 0) or (0, 1), the consumer 

would increase her total utility by an amount greater than µ times the cost of her bundle. 

Therefore, failure to make one and only one of these two purchases constitutes a violation 

of the √ hypothesis. As with the issues related to the magnitude of the X
t
 vectors, 
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mentioned in relation to √2, the concerns about the under-consumption of perfect 

substitutes will not be relevant if we restrict our attention to only the continuous case of 

the satisficing process. However, if we wish to address these concerns in our formulation 

of the discrete version of this process, we need to also define √5 appropriately.  

Once again, the following correction is not necessary in the continuous version of 

this model, but if we wish for the discrete version to be well-defined and consistent with 

the √ hypothesis, we must also define √5 and ∆5i(X
t
) such that: 

 

∆5i(X
t
) ≡ U(O

t
 + X

t
) – U(O

t
 + X

A
~i

t
) 

 

where X
A

~i
t
 is defined such that its j

th
 component is  X

A
j
t
 = Xj

t
, if j > i 

        X
A

j
t
 = 0, if j = i  

        X
A

j
t
 = X`j

t
, if j < i 

 

√5(X
t
) is applied, in ascending order from i = 1 to i = N in the construction of X

A
~i

t
. 

 

 

An Intuitive Sketch of the Satisficing Process Under ¬5 
 

 

Imagine that a consumer makes periodic trips to the supermarket throughout the 

month. At the beginning of each trip, there is an accumulated bundle of goods that she 

has already purchased prior to making the current trip (This bundle may be the zero 

vector, if the current trip is her first trip of the month). Call this accumulated bundle O
t
. 

Based, in part, on the composition of O
t
, the consumer will select a basket of goods to 

consider purchasing during her current trip. She will walk through the aisles, and select 
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various quantities of various goods, and place them in her shopping cart. Call the function 

which specifies which quantities of which goods are placed into the cart Π(O
t
), and call 

the bundle of goods which ends up in the shopping cart X
t
. The bundle in the shopping 

cart consists of the goods that she will consider purchasing during her current trip. Once 

she has selected her candidate basket of goods, the consumer will ask herself if she is 

sure that she wants to buy each of these items. She must make a final decision about 

whether she actually wishes to purchase all of the items in her cart. In order to make this 

decision, she will conduct a performance test for each item in her cart, and as necessary, 

for combinations of items. One by one, she picks up items from her basket, and holds 

them in her hand. She is then able to perfectly assess the conditional marginal utility of 

each of these items. For each item, she knows how much additional utility she would 

derive by purchasing everything else in her basket, and she knows by how much her 

utility would increase over that amount if she were to also the item in her hand. She 

knows the conditional marginal utility of each item, and she knows the price of each 

item. If the conditional marginal utility is at least as great as its price multiplied by µ 

(recall that Price*Quantity*µ is her estimate of the opportunity cost of any purchase), 

then she will decide to actually purchase the item in her hand. If the conditional marginal 

utility is less than price times µ, then she will decide not to purchase the item in her hand, 

and will remove it from her cart and place it back on the shelf. Assume that she conducts 

this performance test for the smallest feasible unit of each type of good in her basket, so 

that she may alter the quantity of any good in her basket, by deciding to put some of any 

particular good back on the shelf while also keeping some in her cart. Once she has 

completed this process for each individual good, she repeats the process for combinations 
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of goods that have potential interactions between them in the utility function. That is, if 

her basket is initially full of hot dogs and hot dog buns, she will first decide whether she 

has too many hot dogs (individually) or too many buns (individually), relative to the 

amount of the other complement present in her basket. She will remove any of either 

which do not pass the performance test. Next, she will conduct a joint performance test of 

the combination of both complements. If the number of hot dogs and hot dogs buns 

provides a jointly sufficient amount of marginal utility, relative to the total price of both 

goods, then she will purchase the remaining contents of her basket. If the combination of 

hot dogs and buns does not pass the joint performance test, then she will remove dog-bun 

quantities until the joint performance test is satisfied
12

. 

Finally, note that it is not necessary for the above description to be a literal 

description of the behavior of a typical consumer. In fact, it is probably more valid to 

imagine that the “basket” is a virtual basket, and the comparison of conditional utility 

takes place in the consumer’s mind, rather than the consumer physically placing all 

potential items into a basket, and physically taking them out one by one to evaluate their 

conditional marginal utility. 

In this way, we can allow our satisficing rule √5 to make a valid judgment in 

cases where there are interactions in the utility function among different goods 

(complementarities, substitutabilities). 

 

                                                 
12

 Possible further adjustments need to be made if the complementarity between the goods is non-linear. 

For now, we will not address these types of concerns. Our basic approach is to require that, whatever the 

satisficing rule is that the consumer employs, it must be consistent with the √ hypothesis. The details and 

mechanics of constructing such a rule, relative to a certain utility function, may be left unaddressed until 

that particular problem is modeled. In other words, the precise construction of an √ hypothesis-consistent 

rule for every conceivable utility function need not be conducted now. We can cross some bridges as we 

come to them. 
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Additional Comments on the ¬ Function 

 

 

Once again, our purpose in the preceding discussion was not necessarily to derive 

a single, universal decision rule which is applicable in every conceivable situation. There 

probably do exist certain reasonable utility functions for which it can be easily shown that 

√5 potentially violates the √ hypothesis. Our intent was to highlight, through examples, 

some of the issues which need to be considered when attempting to derive a specific 

decision rule for use in a specific example. Going forward, we will assume that, whatever 

utility function we are employing in any particular example, all we need to do in order to 

analyze the problem is to find a specific √ function which satisfies the √ hypothesis for 

that particular utility function. Through the remainder of this paper, we will use √5, 

unless otherwise noted. We will keep in mind, though, that other examples not discussed 

here may require a different rule in order for the resulting satisficing strategy to be 

consistent with the √ hypothesis. Going forward in this paper, we will drop the subscript 

on √, and will adopt the convention that, if we are using the just the unmodified symbol 

“√” to denote our decision rule, then we are implicitly claiming that said decision rule 

satisfies the √ hypothesis for the problem in question. 

Finally, we may point out that, in principle, the idea of the satisficing rule of 

thumb actually nest the fully optimizing demand strategy, as a special case. If we define a 

particular rule √
FR

, such that the rule itself is a function of all of the parameters of the 

consumer Utility Maximization Problem (prices, wealth, preferences), we can clearly 

describe a sequential satisficing strategy that will necessarily be strategically equivalent 

to the true optimizing demand strategy for any path-generating process in which all X
t
 

vectors are strictly > 0. Specifically, if √
FR

 identifies the set of most-preferred affordable 
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consumption bundles, and then simply approves all components of any X
t
 vector which 

leave at least one element of the most-preferred set still attainable (in the “A/~A” sense, 

described above), and disallows any components which would lead to no elements of the 

most-preferred set still attainable, then we would necessarily have a satisficing rule
13

 and 

strategy which are indistinguishable from the true optimizing strategy. Of course, this 

situation would not really capture the essence of the term “satisficing.” We will assume, 

as we have all along, that consumers lack the computational capacity to employ such a 

sophisticated satisficing rule as √
FR

. 

 

 

The Path-Generating Process ’ 

 

 

In order to describe the sequential consumption process, we need some construct 

in place to describe the order in which partial consumption bundles are evaluated by the 

decision rule √. That is, conditional on the consumer already having chosen to consume 

some bundle O
t
, we need to specify what the next sequential candidate bundle X

t
 will be. 

In other words, we need to define the path-generating process Π.  

We can do so by conceiving of the consumption space as a vector field. That is, to 

every point in the consumption space, we associate a corresponding vector. The 

associated vector will be the candidate consumption vector X
t
 for that particular point in 

the consumption space O
t
. As we defined previously, this means that Π(O

t
) = X

t
. Under 

the assumption of the irreversibility of consumption, each of the associated vectors must 

be ≥ 0 (implying also that they all be ≠ 0, as stated in the initial description of the 

sequential satisficing process). There will be an analogous field defined below, Π`(O
t
) = 

                                                 
13

 Including an arbitrary tie-breaking rule, if necessary. 
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X`
t
, which describes the actual consumption path which results from the application of √ 

to O
t
 and Π(O

t
). Again, as described previously, the vectors in the Π`, the X`

t
s, may be = 

0, but must be non-negative in every component, so that X`
t
 ≧0 for all t. 

We may think of the Π field as being a preference function, of sorts. Given that 

the sequential consumption process has already arrived at point O
t
, the consumer would 

like for consumption to continue in the direction specified by Π(O
t
). Like a standard 

utility function over bundles of goods, the Π field itself may be, in principle, arbitrarily 

complex, ill-behaved, or mischievous. But in practice, we will generally restrict our 

analysis to certain well-behaved forms. Our hope is to use a few tractable examples to 

begin to draw general conclusions and find patterns in how this Π field construct impacts 

the consumption process. 

Once we have defined the Π field, we can then conduct our entire demand 

analysis using only the information contained in three separate functions of the same 

domain (namely, the consumption space). That is, the consumption space contains three 

distinct layers of information, and each layer plays a fundamental role in the evaluation 

of the sequential satisficing process. The three layers are: 

 

1)  The cost function: for any point O, the monetary cost of purchasing the 

consumption bundle represented by O is very simply given by the inner product 

of the consumption vector with the price vector P. (Cost = O·P) 

2) Preferences: The utility function (and all of its relevant derivatives) 

3) The ÷ field: The vector field, Π(O
t
), which gives the associated candidate 

consumption vector, X
t
, for each point in the consumption space. This function 
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tells us the order in which sequential candidate bundles will be evaluated by the 

chosen decision rule √. The Π field will, in conjunction with √, determine the 

evolution of the actual consumption path, from the origin to the final consumption 

bundle O
T
. 

 

The first two layers of information are standard and familiar, while the third is 

novel. Together, these three layers of information make the satisficing process possible. 

The third specifies what bundles will be assessed by the satisficing rule, and in what 

order, while the first two allow for a comparison of the (estimated) costs and (true) 

benefits of those bundles. Along with a given price vector P and initial condition that 

consumption begins at the origin, this vector field ÷ defines candidate consumption as a 

simple dynamical system in wealth
14

. Later, we will incorporate the decision rule √, and 

will define a related vector field Π`(O
t
), which will define the actual consumption path as 

a simple dynamical system.   

Consider the ÷ vector field in isolation. Starting at any point O in the 

consumption space, ÷ defines a flow trajectory which uses point O as its initial condition 

(fig. 4). This process may be either discrete (in which case the magnitude of the 

associated vectors is important) or continuous (in which case the magnitude is not 

important, for our purposes). We shall focus primarily on the continuous case in most of 

what follows, and will accordingly ignore the magnitude of all associated X
t
 vectors. This 

system will exhibit no momentum in the consumption path, and the algebraic description 

of the consumption path can usually be found by solving a simple differential equation. 

                                                 
14

 It is possible that we are not using the precisely correct terminology here. What we mean is that the 

“time” dimension may be interpreted as the consumer’s remaining wealth. 
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For what follows, we will generally assume that the most important initial condition is 

the origin; the consumer starts with nothing, and must purchase everything she needs in 

each period. Since our goal is ultimately to derive demand, this assumption is 

appropriate. Even if we wished to use this construct to describe a situation in which the 

consumer has some initial endowment (or previously accumulated stock) of consumption 

goods at period zero of our model, we should still conceive of the consumption path in 

the current period starting at the origin, and then impose the appropriate translation or 

shift of the utility function in order to properly reflect the marginal utilities of subsequent 

purchases beyond the initial stock
15

. 

Since we will be primarily concerned with the flow given by ÷ which begins at 

the origin, we shall refer to this flow as the principal path or original path of the vector 

field. The principal path will be an important construct in determining the actual demand 

functions. A simple interpretation of the principal path is that it describes the physical 

history of incremental purchases which would result if the consumer’s behavior was not 

bound by any constraints (especially the worth constraint). That is, if there were no 

constraints on the consumer’s purchase behavior, then physical consumption would 

evolve simply by following along the principal path through the consumption space, ad 

infinitum. In practice, the vector field provides the physical path that consumption will 

follow, as well as a complete set of rules by which the actual consumption path will be  

  

                                                 
15

 As an example, assume that U(x) = 1/x, and that the consumer has an initial endowment of 1 unit of good 

x. If we wish to describe demand, or what the consumer will purchase in the current period, we should not 

begin the consumption path at a quantity of 1, since that first unit is not actually purchased in the current 

period. Instead, we should still require that the consumption path begin at the origin, but shift the utility 

function to U(x) = 1/(x+1). 
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Figure 4. Vector Fields and Consumption Trajectories.  
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updated/determined should the principal path be constrained or altered by either the 

budget hyperplane or by the satisficing rule √.  

Consider two simple fields, which are chosen primarily for their simplicity and 

tractability: 

The “identity field,” (fig. 5) in which to each n-tuple Q in ℝ
N

+, we associate the same 

vector Q.  

 

 

Figure 5. Identity Field (ℝ
2
). 

The “inverse identity field” (fig. 6) in  ℝ
2

+, in which to each pair (x,y) in ℝ
2

+, we 

associate the vector (y,x).  
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Figure 6. Inverse Identity Field (ℝ
2
). 

 

 

Since the domain of each of these fields is consumption space, or the (closure of 

the) positive orthant, both of these fields generically satisfy the irreversible consumption 

requirement that each partial consumption vector X
t
 be ≥ 0. Despite the simplicity of 

these two fields, they each exhibit the troublesome feature that the vector associated with 

the origin is the zero vector, 0. Note that, not only does this imply that the principal path 

for each of these fields is the degenerate case of a single point (the origin itself), but these 

fields do not satisfy the assumptions of the satisficing process itself. It is required, by 

construction, that each associated candidate consumption vector X
t
 be non-negative in 

every component, and also not equal to zero. We must overcome this problem by 

assumption, if we are to employ either of these simple fields as a path-generating process. 

For everything that follows, we will establish a convention that any field Π for which it is 
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the case that Π(0) = 0, we will implicitly assume that we replace the zero vector with 

some other vector which is ≥ 0. For simplicity, we will use the δ vector in place of the 

zero vector 0 at the origin (if δ is some arbitrarily small but positive number, then the δ 

vector is defined as the vector whose every element is δ). So, for example, when we refer 

to the “identity field” henceforth, we will actually be referring to the field defined by 

÷(Q) = Q, if Q ≥ 0, and ÷(Q) = δ, if Q = 0. Similarly for the “inverse identity field” in 

ℝ

2
. Once we have made this “δ modification,” both of these fields (in 2-space) will have 

the identical principal path: the line y = x. 

 

 

Beginning to Outline the Geometry of the Satisficing Demand Process 

 
 

Recall that we have previously defined √0 as the completely non-discriminating 

satisficing rule:  

 

√0(X
t
 , O

t
) ≡ X

t
 = X`

t
, " (X

t
 , O

t
) 

 

If we assume for the moment that the satisficing rule employed is the completely 

non-discriminating rule √0, so that the rule fully approves any and all candidate 

consumption vectors which are brought under its consideration, then the actual 

consumption path will simply follow along the principal path of ÷ until the consumer 

exhausts all of her available wealth. In other words, if √ is non-discriminating, then the 

final consumption bundle selected by the satisficing process will simply be the point of 

intersection of the primary path and the budget hyperplane (fig. 7). 
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Qualitatively, this is precisely the geometry that will allow us to derive the 

demand curve for a satisficing consumer: the Π field specifies a principal path, and actual 

consumption begins at the origin and follows that path, until it is no longer able to do so 

due to the presence of some binding constraint. In this particular example, the only such 

constraint is the budget constraint (again, due to the non-discriminating nature of √0). 

Below, we will introduce other constraints which are the result of more restrictive 

satisficing rules beyond √0. For now, however, we will make some observations on the 

role played by the Π field in selecting the final consumption bundle O
T
. Most 

importantly, it is obvious that the nature of the Π field itself will play a role in the 

selection of the final consumption bundle.  

 

 

Figure 7. Budget Constraint and the Consumption Path. 
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Clearly, under √0, changing altering the principal path of the vector field will alter 

the realized final consumption bundle. In fact, in this particular case, all that is necessary 

to achieve a different final bundle is to replace the vector which is associated to the 

origin. In 2–space specifically, we can replace the δ vector (δ , δ) with a more general 

definition of the associated vector (α*δ , δ), where α is any number on [0 , ∞) , as our 

defined value of Π(0). The δ vector, as previously defined, obviously corresponds to the 

case where α = 1, but we can select any bundle
16

 on the budget hyperplane by altering the 

value of α (fig. 8). 

Obviously, it is possible for the Π field itself to discriminate amongst 

consumption bundles, even if the decision rule does not do so in any substantive way. In 

fact, it is necessary that this be the case; even under √0, some final bundle is going to be 

chosen by the satisficing process. If √0 does play a role in deciding which final bundle is 

selected, then the Π field must do so by default. Like the decision rule, the Π process can 

in principle be “tuned” to reflect varying levels of sophistication on the part of the 

consumer. That is, we can imagine very sophisticated Π fields, which utilize a great deal 

of available information, and lead to a final consumption bundle which is either truly 

optimal, or at least very close to optimal a great deal of the time. We can also imagine 

very simple Π fields, which reflect a low level of rationality on the part of the consumers, 

and which do not do a good job, by themselves, of ensuring a close-to-optimal final 

bundle. We can imagine a continuum between the two extremes.  

 

  

                                                 
16

 Clearly, to include both endpoints of the budget line, it is also necessary to allow for altering the 

component in which α appears, as in (δ, α*δ) in place of (α*δ, δ). 
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Figure 8. Varying the Vector Associated to the Origin. 
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Also like the decision rule, it is possible to construct a Π field in such a way as to 

guarantee strategic equivalence between the satisficing and optimizing strategies (We can 

refer to this “fully rational” field as Π
FR

). As a result, there is a second way in which the 

satisficing process actually nests the optimizing process as a special case. Basically, the 

process described above, in the section entitled “The Optimizing Consumption Strategy 

as a Sequential Process,” is an example of a path generating process which is necessarily 

strategically equivalent to the optimizing strategy. Recall that this process basically 

involves first identifying the set of optimal affordable bundles, and then selecting any one 

of many possible (non-decreasing) paths from the origin to any member of that set. Of 

course, in order for this strategic equivalence to hold, it is a necessary condition that the 

Π field itself be a function of the price vector and the utility function. That is, if the Π 

field is to guarantee a truly optimal consumption bundle under √0, for all possible price 

vectors, than the field itself must change as the parameters of the consumer budget 

problem (prices, wealth, preferences) change. Moreover, the field must always change in 

a precisely-chosen way which guarantees that the principal path will intersect with the set 

of optimal bundles at the budget hyperplane. In other words, Π
FR

(O
t
) exists, but it is 

actually more accurately written as Π
FR

(O
t
,P,U(O

t
),w). 

Recall that a central hypothesis of this paper is that these informational 

requirements, which must be satisfied in order to allow for such a sophisticated field as 

Π
FR

 to be employed by the consumer, are too unreasonably unwieldy to be thought of as 

describing the behavior of a realistic consumer. Accordingly, despite the fact that the 

basic setup of the satisficing can be thought of as nesting the optimizing strategy, true 

optimization does not truly reflect the spirit of what we mean by the term “satisficing.” 
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We will assume that the consumer does not employ either √
FR

 or Π
FR

 as a component of 

a satisficing strategy.  

On the other extreme of the “rationality spectrum” of the set of all possible Π 

fields is what we will define as a naïve field. A field will be said to be naïve if and only if 

it is not a function of the price vector or of the utility function itself. That is, if a field 

changes the mapping from the consumption space to the set of X
t
 vectors, as the set of 

optimal bundles changes (which is, in turn, the result of a change in P, in wealth, or in the 

utility function), then that field will not be said to be naïve. Consequently, under √0, a 

naïve field might lead to a satisficing demand process which is narrowly equivalent to the 

optimizing process, for some specific parameters of the consumer budget problem. But a 

naïve field cannot, in general, be strategically equivalent to the optimizing process, under 

√0. 

In general, what we intend to describe when we use the term “satisficing strategy” 

will be a combination of an imperfectly rational decision rule (a rule which is not √
FR

, 

but is instead based upon an estimate of the opportunity cost of any purchase), in 

combination with a naïve vector field Π. 

We can use this type of strategy, as defined, to derive consumer demand. To do 

so, we will use the ÷ field, and then we overlay an analytic locus which describes a 

constraint on the consumption behavior. In the preceding example, the budget line 

represents the only constraint on consumption behavior. Using the same domain (the 

consumption space), we have superimposed objects of two types: the vector field and the 

budget hyperplane. The interaction between these two objects will, in part, determine the 

consumer’s final demand bundle. 
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We will use a similar structure to complete the description of the geometry of the 

satisficing process. We will continue with the practice of starting with the ÷ field, and 

then overlaying constraints upon the field and its principal path. Here, we will consider 

another type of constraint, which we will call the worth constraint. The worth constraint 

is a physical manifestation of the satisficing rule √, and represents the locus of all points 

for which the conditional marginal utility of any partial purchase is just equal to its price 

times the benchmark “utility index” value µ. Though there is but a single satisficing rule 

employed by this process, there will be at least as many distinct worth constraints as there 

are distinct goods available for consumption (and strictly more worth constraints than 

goods, if there are any complementarities among those goods). In other words, each 

worth constraint represents the application of the satisficing rule to one specific margin of 

consumption. For points in the consumption space at or outside (relative to the origin) the 

locus of points describing any particular worth constraint, actual consumption may not 

continue in the direction specified by that particular consumption margin. This is 

demonstrated below. 

By overlaying a system of worth constraints on the consumption space, we can 

use the ÷ field as well as the constraints to derive an actual consumption path (ACP). In 

general, the ACP will be a piecewise combination of the ÷ field’s principal path and an 

algebraic description of one or more of the worth constraints. It can equivalently be 

thought of as the principal path of the modified vector field, Π`(O
t
) = X`

t
. 
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The Worth Constraints 

 

 
The shape and location of the worth constraints will depend upon the satisficing 

rule √ (including the value of µ), the utility function, and the price vector. The price 

vector and µ will have a quantitative effect, primarily determining the position of the 

constraints (changes to the price vector or to µ will shift the location of one or more 

constraints). The utility function has both a quantitative effect, as well as a qualitative 

effect on the nature of the worth constraints; it determines the shape of the constraints, as 

well as the position. Each worth constraint will coincide with one of the level curves of a 

particular partial derivative of the utility function. Each worth constraint describes the 

frontier at which the decision rule just begins to censor specific components of any 

potential candidate consumption vectors. 

 

 

Three Illustrative Cases 

 

 
Consider three cases for the utility function. While clearly not an exhaustive list 

of possibilities, the following three cases can be used to illustrate how the worth 

constraints will depend upon the utility function. 

 

Case 1: Additive Separability 

If the utility function is additively separable, the marginal utility of each good 

depends only on the quantity of that good consumed. Therefore, the worth constraint for 

each good will always be a hyperplane normal to the axis measuring that good. In two 

dimensions, this is easy to illustrate; given Pi and µ, there will be exactly one critical 
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value for consumption of good i at which the rule √ is just satisfied (with no slack). The 

worth constraint for good i (again, given parameters given Pi and µ), will be the line 

through that critical value and perpendicular to the i-axis. 

 

Case 2: Perfect Substitutes 

If the utility function is of the form U(x , y) = u(A*x + B*y), then the worth 

constraints will be linear, and downward sloping. In fact, they will coincide exactly with 

the indifference curves. 

 

Case 3: Perfect Complements 

These constraints will have two parts: a segment connecting the origin with some 

point (α, α), where α is some number ≥ 0, and then a segment beginning at (α, α) and 

extending indefinitely in the positive direction perpendicular to one of the axes.  

Because of the discontinuity in the marginal utility function for perfect 

complements, the worth constraints in this case can be thought of as being composed of 

two parts: the “inside” constraint, and the “outside” constraint. The “inside” constraint 

reflects the fact that each good will have zero marginal benefit if there is an insufficient 

amount of the other good already being consumed. The “outside” constraint reflects the 

fact that, in the range of quantities for which altering the amount of one good does affect 

the value of the utility function, then conditional marginal utility of doing so still must be 

at least as great as µ times price. 
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Worth Constraints in Action 
 

 

The underlying idea here is that the ÷ field simply indicates the order in which 

the decision rule √ is applied to partial consumption bundles. The physical manifestation 

of the decision rule, as visible in the consumption space, is the system of worth 

constraints. Worth constraints represent the possible ways in which the consumer might 

value individual goods, or combinations of goods, in any specific partial consumption 

bundle. At a minimum, there will be one worth constraint for each good available to the 

consumer. But there will also be an additional worth constraint for each relevant 

interaction between goods (i.e., if goods X and Y are complements, then there will be a 

worth constraint for X, another for Y, and a third for X-and-Y jointly).  

The worth constraint for “good x” will always coincide with one of the level 

curves of the partial derivative of the utility function with respect to x. Specifically, it 

will be the level curve for which marginal utility is equal to µ times the goods price. As 

mentioned above, these level curves, and therefore the constraints themselves, will have 

qualitatively different shapes, depending upon the nature of the utility function. 

The worth constraints shape the actual consumption path, using the primary path 

of the ÷ field as a “starting point.”  

For example, consider the identity field in 2-space. If we assume that the utility 

function is additively separable, and is given by U(x , y) = ln x + ln y, the price vector for 

goods  (x , y) is (1 , 1), and the value of µ employed by √ is 1/5. Clearly, by construction, 

this satisficing process will exhibit a binding worth constraint at a quantity of 5 for each 

good. At any quantity below 5 (for either good), the marginal utility divided by the price 

will exceed the µ-threshold, and so any partial consumption bundle in that range will pass 
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the √ test with respect to that good. Geometrically, we can represent this by plotting the 

locus of points where this worth constraint is just binding, so that ∂U/∂x = µ*Px and 

∂U/∂y = µ*Py. Shown below is the identity field with just the “y” worth constraint 

superimposed (fig. 9). 

 

 

Figure 9. The Worth Constraint. 

 

If we ignore the x worth constraint for the moment, we can envision what the 

actual consumption process will look like with this primary path and this single worth 

constraint. Consumption begins at the origin, and follows the primary path (y = x). We 

can conceive of every sequential step of arbitrary smallness as being one iteration of the 

satisficing process. In the range below the constraint, the satisficing rule approves 

everything in each candidate consumption bundle, so that candidate consumption and 
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actual consumption are equivalent over that range. However at the constraint (and above 

it, if for the sake of argument, it were possible for consumption to ever consumption to 

enter that range), any possible candidate consumption bundle would not pass the √ test 

with respect to good y, since marginal utility divided by price would be strictly less than 

µ. Therefore, the satisficing rule would require that any quantity of good y which is 

present in any candidate bundle X would be removed prior to purchasing the actual 

partial bundle X`. Accordingly, actual consumption will only proceed in a direction 

orthogonal to the y-axis, once we have reached the portion of the consumption space 

where the y worth constraint is binding. More specifically, in a region where the worth 

constraint binds for only one good y, any actual consumption vector X`
t
 will be equal to 

the orthogonal projection of the candidate consumption vector X
t
, onto the hyperplane 

formed by the remaining axes other than the y-axis. It is as if the consumption path “runs 

into a wall” formed by the worth constraint, and cannot continue in the direction of the 

wall, but can continue in a modified direction, along the wall.  

An alternative way of describing the same law of motion is to assume that the 

worth constraint actually operates directly on the vector field Π(O
t
) itself. That is, for all 

points in the consumption space which lie beneath the worth constraint (ie, between the 

constraint and the origin), the vector field remains unchanged. But for all points which lie 

on or above the worth constraint for good y, the y-component of the associated vector in 

the ÷ field is censored, and replaced with a zero. The original, unmodified vector field is 

Π(O
t
). However, the new, modified vector field (which takes into account the 

consequences of applying the decision rule √, and of the potentially binding worth 
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constraints) is not Π(O
t
), but is instead Π`(O

t
). The difference

17
 being that Π`(O

t
) 

specifies the sequence of realized partial consumption vectors, X`
t
, rather than the 

sequence of candidate partial consumption vectors X
t
. Recall that one difference between 

these two types of partial consumption vectors is that X`
t
 may be equal to the zero vector, 

while X
t
 may not. 

 In this way, it is not necessary to define any new law of motion that rigorously 

specifies how to find the actual path when the primary path intersects with a constraint. 

This is shown on the following page (fig. 10), with the worth constraint shown as a 

dashed black line. 

Introducing the x worth constraint, and performing the same vector field 

modification, we can show the complete vector field Π`(O
t
), which describes actual law 

of motion for consumption in this example (fig. 11). 

Note the important feature that, for these constraints (and if we ignore the budget 

constraint for now), the final consumption bundle will necessarily be (5 , 5). Furthermore, 

this is the case even if we replace the vector associated to the origin with literally any 

other vector which is > 0, or strictly positive in every component. Interestingly, this 

consumption bundle will necessarily result (again, ignoring the budget constraint for the 

moment) for nearly any vector field which satisfies the irreversibility of consumption 

requirement (each associated candidate partial consumption vector is ≥ 0). Indeed, the 

only fields which will possibly not lead to consumption bundle (5 , 5) are those which 

have regions where some associated vectors are parallel to at least one axis. In this case,  

                                                 
17

 More accurately, Π`(Ot
) is actually  Π`(Ot

, √, U(Ot
), P, w) 
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Figure 10. The Worth Constraint and the Π` Field. 

 
 

 

 
Figure 11. Complete System of Worth Constraints. 
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there are regions in the consumption space where the consumer simply would not 

consider purchasing any additional units of at least one particular good, under any 

circumstances. If consumption were described by such a field, it would be as if it simply 

would not occur to the consumer to even entertain the idea of purchasing additional units 

of that particular good. While we claim that this situation is unlikely to be a realistic 

description of actual behavior in most cases, we also point out that, without controversy, 

we can be certain that the consumption bundle (5,5) is necessarily chosen if the ÷ field 

satisfies the stronger assumption that each vector be strictly > 0, and the budget constraint 

is not binding. 

Also, note that each individual worth constraint only censors the Π field with 

respect to a particular component. As a result, each worth constraint will only prevent 

further movement in one particular direction. If we were to shift the X worth constraint 

out from x = 5 to x = 7 in our previous example, the principal path would still intersect 

the y worth constraint at (5,5). However, consumption would still continue; it would 

move along the y worth constraint until consumption was restricted in all directions, at 

(7,5). The actual consumption path will therefore still terminate at the intersection of both 

worth constraints, even if one begins to bind before the other (fig. 12). 
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Figure 12. Final consumption bundle is (7,5) if the worth constraints are adjusted as 

shown. The Actual Consumption Path is in heavy black, the worth constraints are  

dashed, and the final consumption bundle is the point indicated. 

 

Although this claim should be obvious, below we include a few illustrative 

examples (fig. 13) of distinct fields, with the same system of worth constraints, which all 

lead to the same consumption bundle (5 , 5).   

The constant among all four panels in figure 13 is of course that the decision rule 

√, through the system of worth constraints it imposes on the consumption space, is what 

actually shapes the consumption path and determines the final consumption bundle O
T
. 

This is true despite the fact that the satisficing strategy is employing a completely a-

rational naïve vector field in each case. In other words, whatever rationality is present in 

these four particular satisficing strategies is manifested in the form of the decision rule,  
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÷(x,y)=(y,x) 

 

÷(x,y)=(y,2x) 
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2
) 

 

Figure 13. Worth Constraints Shaping Differing Π Fields.  

 

 

and not the path-generating process. As a result, the particular choice of Π field is largely 

irrelevant to determining the final bundle in this case (again, so long as the budget 

constraint is not binding where the any of the worth constraints are slack). Because of this 

fact, we should feel more comfortable allowing for an essentially arbitrary choice of the 

system of worth constraints it imposes on the consumption space, is what actually shapes 

the consumption path and determines the final consumption bundle O
T
. This is true
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despite the fact that the satisficing strategy is employing a completely a-rational (non-

decreasing) Π field as we analyze specific examples of satisficing strategies, at least in 

cases where the utility function is additively separable. We will eventually show that, 

even in cases where the choice of vector field does influence the final consumption 

bundle selected, this does not, in general, prevent the possibility of any arbitrary non-

decreasing vector field from forming a part of a Nash equilibrium in the overall market. 

Notice, of course, that the fields here have no impact on the consumption bundle. 

All of the discrimination is done by the system of worth constraints, or more 

fundamentally, by the decision rule √. In this case, any field which has all associated 

vectors strictly > 0 will necessarily lead to bundle (5 , 5). This is precisely the reason why 

we might not object to the assumption that the satisficing consumer employs a naïve 

path-generating process; the (bounded) rationality of the satisficing strategy is still 

present, it just results from the decision rule rather than from the sequence of candidate 

consumption vectors.  

Of course, if we do take the budget constraint into account, it is no longer 

necessarily the case that each of these distinct fields will lead to the same consumption 

bundle. But they will still all lead to the same consumption bundle, if that common 

bundle, (5,5) in this case, lies in the affordable region of the consumption space. If that 

bundle is not affordable, then consumption will terminate at some point along the budget 

hyperplane, and the location of that point will potentially be different for different vector 

fields. However, we will show in the next section that this situation (where it is possible 

for different fields to lead to different consumption bundles, under a utility function 
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which is additively separable) is not consistent with profit maximization, and so therefore 

cannot occur in Nash equilibrium. 

With qualitatively different utility functions, we will get qualitatively different 

worth constraints, even using the same decision rule √. For example, if instead of 

additively separable utility, we had a situation where two or more goods were perfect 

substitutes, then we will see a different shape of the worth constraint for each good. 

For example, assume that the utility function for goods x and y is given by  

U(x , y) = 100 ln (x + y) 

And the price vector is (Px , Py) = (2, 3) 

And the satisficing rule √ uses µ = 5 

 

Then the locus which describes the “x” worth constraint is found by solving: 

∑U(x , y)/∑x = Px · µ  

100/(x+y) = 2·5 

y = 10 – x 

And the locus describing the “y” worth constraint is found similarly: 

∑U(x , y)/∑y = Px · µ  

100/(x+y) = 3·5 

y = 20/3 – x 

Each of these loci coincides with a particular indifference curve, 

U(x,y) = 100*ln (10), and U(x,y) = 100*ln (20/3), respectively (fig. 14, fig. 15). 
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Figure 14. The system of worth constraints divides the consumption space into 3 regions  

(outward from origin): Fully unconstrained consumption, Y-constrained-only 

consumption, and fully constrained consumption. 

 

 

 
 

 

Figure 15. The same graph as above, with the Actual Consumption Path (ACP) 

and the final consumption bundle, (20/3, 20/6), superimposed. 
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This example has been constructed primarily to illustrate the mechanics of how 

the satisficing process works under this particular utility function. But it also reveals an 

interesting feature of this strategy, which will be discussed in more detail in the next 

section; there are certain price vectors to which the satisficing strategy is not capable of 

being a best response, for any level of µ. Obviously, given this utility function, this 

particular satisficing strategy (√ and Π) cannot possibly be a best response to the given 

price vector, nor to any price vector where Px ≠ Py. Since the two goods are perfect 

substitutes with distinct prices, full rationality requires that the consumer purchase only 

the cheaper good (and none of the more expensive good), regardless of the total amount 

of wealth available. Clearly, this construction will, in general, have a region in which 

consumption of both goods is not bound by a worth constraint. As a result, the satisficing 

process will generally always involve purchasing at least some amount of every perfect 

substitute good for which the corresponding component of the X
t
 vectors is positive, even 

if the prices of those substitutes are not equal. We will address this concern in the next 

section, where we will demonstrate that, if the consumer views two products as perfect 

substitutes, and if the consumer employs a satisficing demand strategy, then it will not be 

profit-maximizing for firms to charge prices which differ from each other. Thus, we will 

eventually suggest that, if consumers, as a group, were to employ a satisficing strategy, 

then they will be unlikely to face such a troublesome price vector in the first place
18

. 

Finally, the third illustrative (though certainly not exhaustive) case involves a 

utility function in which goods are perfect complements. As discussed in the section 

dealing with the √ rule, the discontinuity in the marginal utility function complicates the 

                                                 
18

 It is already well-known to be the case that profit-maximization implies that no such “unequal” price 

vector would prevail in equilibrium if all consumers were employing an optimizing demand strategy.  
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application of the decision rule somewhat, in that we must explicitly consider the left-

hand partial derivative of the utility function when measuring conditional, rather than 

absolute, marginal utility. If the quantities of goods J and K enter the utility function as 

an argument of a Min function, then there is will one constraint (previously alluded to as 

the “inside constraint,” as it refers to the “inside” function of the compound function 

U(x,y) = (f(Min(x,y))…) that is binding only if J ≥ K. If J > K, then a marginal decrease 

in the quantity of J will not change utility (Equivalently, a marginal increase in 

consumption, equal to X
t
, will have exactly the same change in utility as a marginal 

increase in consumption of X~J
t
). If a change in the quantity of J does not change the 

evaluation of the inside function, Min(x,y), then J’s conditional marginal utility is zero. 

Hence the conditional marginal utility of good J is zero if J > K. The inside constraint is 

therefore described by the line J = K. Any X
t
 vectors for points below this line (so that J 

> K), will have the J element replaced with a zero in the Π` field (fig. 16).  

If changing the quantity of J does change the value of the inside function, then the 

inside worth constraint is not binding. Next, the satisficing consumer must decide 

whether the conditional marginal utility of each good (which, in general, will be positive 

if the inside constraint is not binding) is sufficiently high, given the price of good J, and 

given µ. This is accomplished by assessing changes in the “outside” function of the 

compound utility function, and the locus of points for which good J provides just enough 

conditional marginal utility to satisfy √ will accordingly be referred to as the “outside 

worth constraint.” If it is the case that J ≤  K, then the (conditional) marginal utility of 

consumption depends entirely upon the quantity of good J. Accordingly, there will be 

some critical value for the quantity of J, given PJ, the value of µ, and the nature of the  
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Figure 16. The Identity Field, with the inside worth constraint shown for good X, under  

U(x,y) = f(Min(x,y)). Min( ) is the “inside function” while f( ) is the “outside function.” 

 

 

outside function, which just satisfies the decision rule √. As a result (in 2-space) the 

outside worth constraint for good J will be a line that is perpendicular to the J axis, and is 

located at the critical value of J (fig. 17). 

For any utility function with Min(x,y) as an argument, the concept of CMU will 

result in double-counting of marginal utility, if applied only to each element of the X
t
 

vector. As described in the previous section detailing √4, another constraint is needed to 

test not only the individual components x and y, but also joint components involving 

specific combinations of x and y. For the perfect complement case, where each quantity 

enters the utility function only as an argument of the Min( ) function and nowhere else,  
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Figure 17. The Identity Field, with the inside and outside worth constraints shown for 

good X. The outside constraint binds at x = 4. 

 

 

this can be accomplished by imposing an additional outside constraint, in which the CMU 

of good x is divided by the sum of the two prices (Px + Py) rather than just its own price. 

Since the CMU for each complement will be the equal to the marginal utility of 

the bundle (Xi
t
, Xi

t
), then we can achieve a valid cost-benefit comparison by using the 

total price of the bundle, rather than just the price of one good, in our estimate of 

opportunity cost. Since prices are always strictly positive, this second outside constraint 

will always be necessarily more restrictive than the original inside constraint. Therefore, 

we may disregard the fact that there are, strictly speaking, two distinct outside 

constraints. Instead we shall refer only to a single outside constraint, whose position is 

given by the quantity satisfying ∆5i(X
t
)/(Xi

t
*(Px + Py)) = µ (fig. 18, fig. 19). 
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Figure 18. The complete Π` field. The principal path is the segment  

beginning at the origin and ending at (4,4). 
 

 

 
 

Figure 19. Same graph as above, with the inside worth constraints and peripheral 

streamlines removed, showing only the outside constraints and the  

principal path of the Π` field. 
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Under a given satisficing rule √, the principal path of the Π` field specifies the 

actual sequential path that consumption will follow. We may think of this as a simple 

dynamical system, where the t dimension has the natural interpretation of the amount of 

wealth which the consumer has expended at each point along the path. The Π field, along 

with the decision rule √, will define the Π` field, and its principal path. In order to 

complete this description of the satisficing demand strategy, we simply need to specify 

how far along the principal path of Π` the actual consumption path will proceed. This is 

as simple as specifying the amount of wealth available to the consumer. This can be 

accomplished, quite simply, by finding the point of intersection of the principal path of 

the Π` field and the budget hyperplane. Graphically, if we superimpose the budget line in 

any of our previous three examples, the final consumption bundle O
T
 is simply the point 

where the principal path of Π` crosses the budget line. 

This geometry fully describes the satisficing demand process. It incorporates both 

types of binding constraints on consumer behavior, the budget constraint and the worth 

constraints, as well as the path generating process Π. The final consumption bundle 

selected by the satisficing demand strategy will be the point of intersection between the 

principal path of the Π` field and the budget line. Shown below are three examples (fig. 

20, fig. 21, fig. 22). The budget line is in bold, and the system of worth constraints are 

shown dashed.  
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Figure 20. The budget constraint may be either more restrictive than the worth 

constraints… 
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Figure 21. ...exactly as restrictive as the worth constraints… 
 

 
 

Figure 22. …or less restrictive than the worth constraints. 

 

 

 

But in any case, the final consumption bundle is determined by the interaction of 

the Π field, the worth constraints, and the budget constraint
19

. In the next section, we will 

allow prices to vary, thereby systematically changing the location of the system of worth 

constraints and the budget hyperplane. By doing so, we will be able to derive individual 

demand curves, firm profit functions, and firm best-response functions, which will finally 

allow us to demonstrate the existence of a new class of Nash equilibria in the overall 

market game. 
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 Or just by the ACP, if it does not intersect the budget hyperplane. 
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CHAPTER IV 

 

THE COMPLETE MARKET, WITH SATISFICING 

CONSUMERS 

 

 

After having outlined the satisficing strategy itself, we now want to begin to 

analyze the performance and the implications that strategy, within the strategic context of 

a complete market. The markets in this section will consist of a representative consumer, 

and two (or more) firms, each of whom produces one good. The relationships among the 

products of distinct firms will depend upon the nature of the consumer’s utility function. 

We will begin by allowing the price of an individual good to vary, in order to 

demonstrate how to derive the satisficing demand curve for an individual good. From 

there, we will impose a firm cost structure, and then use the demand curve in order to 

derive the firm profit function. Next, we will construct the best-response functions, which 

give the profit-maximizing price for each firm, as a function of the price(s) of the 

competing firm(s). This will enable us to demonstrate the existence of a new class of 

Nash equilibria in markets in which firms compete in prices. The new equilibrium will be 

a function of the consumer worth parameter µ (as well as of the Π function). This implies 

that, for any set of preferences, consumer wealth, and firm production technology, there 

will be an infinitude of distinct Nash equilibria in the overall market game. That is, 

assuming that consumers satisfice, and firms compete in prices, then equilibrium prices 

will not necessarily be fully determined by the underlying structural parameters of the 

problem (technology, wealth, preferences), but instead will be dependent upon the 
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satisficing rule employed, and more specifically by the consumer’s estimate of the utility 

value of a dollar, µ. Importantly, in a wide set of circumstances, this estimate µ will be 

self-fulfilling. Whatever the estimate of µ that a consumer chooses as a part of her 

satisficing strategy, that value will end up being correct under the final equilibrium price 

vector, once firms compete in prices. Furthermore, despite the ex ante less-than-full 

rationality exhibited by a satisficing strategy, we will demonstrate several distinct cases 

where the use of such a strategy by the consumer will end up inducing price competition 

between firms which has the effect of rationalizing the satisficing strategy itself. That is, 

despite not being a true algorithm for finding an optimal consumption bundle under any 

possible price vector, the satisficing strategy, as previously defined, has the important 

feature that it constitutes a best response to the best response to itself, and will therefore 

form a part of a Nash equilibrium strategy profile in the complete market game. 

Our first step is to begin to describe the satisficing demand curve. We will assume 

that every firm produces only a single good, and we will derive a separate demand curve 

for the product of each firm, even if the representative consumer views the output of one 

firm as a perfect substitute for the output of another firm. Recall from the previous 

section that of the three fundamental structures of the satisficing demand strategy (Π 

field, satisficing decision rule √/system of worth constraints, and budget constraint), we 

have assumed that one of these, the Π field, is independent of the price vector, while the 

other two are each a function of prices. In later work, we expect that it will be of interest 

to explore the consequences of allowing the Π field itself to vary, either as a function of 

prices, or as a separate object of competition amongst firms (for example, exploring the 

hypothesis that a primary beneficial effect of advertising is to alter the Π field in favor of 
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the firm which is doing the advertising). That is, we will later wish to explore the 

hypothesis that firms might prefer to compete, not in prices, but in the space of 

influencing, possibly through advertisement, the order in which consumers consider 

purchasing goods under a satisficing framework. For now, we will continue with our 

assumption that the Π field is naïve, and does not change as the price vector changes. 

From the consumer’s point of view, this implies once again that it is the decision rule 

(and its resulting worth constraints) which discriminates amongst potential consumption 

bundles, and not the Π field itself.  

The budget constraint obviously shifts as prices change (holding wealth constant), 

as does the system of worth constraints (holding µ and √ constant). By varying the price 

of a single good, we observing the resulting changes in the effect of the constraints on the 

satisficing process, we can derive a demand curve for every firm and every good in a 

straightforward manner.  

Specifically, the demand curve for any individual good can be shown to be 

derived from a combination of (at least) two distinct loci. In the consumption space, 

varying the price of any good will have the effect of shifting the position of both the 

budget constraint and the worth constraints. In general, these two types of constraints will 

not shift at the same rate or in the same direction, so it is the net effect of both shifts 

which will allow us to see how quantity demanded varies with price. For any good, the 

quantity demanded for that good will be defined as the minimum of two critical values: 

the quantity at which the worth constraint binds for that good, and the quantity of that 

good at which the budget constraint binds overall. Both of these critical values are 

determined, in part, by the manner in which the actually sequence of partial purchases is 
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accumulated (i.e. the ACP). Looking at each of these quantities separately, we can 

describe how each critical quantity varies as the price of the good in question changes. 

Plotting either critical value as a function of price gives us a partial description of the 

demand curve. 

First, consider a simple example of the worth constraint. The worth constraint 

represents the consumer’s rule of thumb for making a yes/no decision over any potential 

purchase of an arbitrarily small unit of a particular good, or of a particular subset of a 

partial bundle of goods. The critical value at which the worth  constraint just begins to 

bind may be found by graphing the quantity of the good on the horizontal axis, and 

marginal utility divided by that good’s price, graphed on the vertical axis. In addition, if 

we plot a horizontal line at the consumer’s estimate of the utility measure of the good’s 

marginal opportunity cost (defined as µ*Px), then the intersection of the marginal utility 

curve and the µ*Px line determines the highest quantity of the good in question that the 

consumer will be willing to purchase. As mentioned above, this value ignores concerns 

about whether the consumer has sufficient wealth to be able to purchase the good in 

question. Increasing the value of µ employed by the consumer will shift the µ*Px line up, 

and will therefore decrease the quantity for which the worth just constraint binds. 

Decreasing the value of µ will have the opposite effect. More importantly, increases or 

decreases in the good’s price will have an identical impact on the location of the 

intersection point, and hence the critical quantity of consumption. 

 It will be shown below that the marginal utility of the good in question may also 

depend on quantities of other goods consumed. If the quantity consumed of any one good 

is related to the quantity consumed of another good (as specified by the Π field and the 
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ACP), then the marginal utility of good “X" at quantity “x” will be the partial derivative 

of the total utility function, evaluated at the consumption bundle on the ACP that contains 

x units of good X. In two dimensions, this implies that the quantity demanded “y” of 

good “Y” is implicitly defined as a function of the quantity demanded “x” of good “X” 

by the Π field and the ACP. As a result, the relevant measure
20

 of marginal utility for 

good X is 
[ , ( )]U x y x

x

∂

∂
. 

Accordingly, we can find the first critical value for the quantity of good X         

(fig. 23), the critical value which corresponds to the worth constraint, by solving the 

following for x:  
[ , ( )]U x y x

x

∂

∂
= µ*Px 

 

 

Figure 23. Deriving the Worth Constraint Locus in Price-Quantity Space. 

 

                                                 
20

 Or more accurately, the left-hand partial derivative of the utility function, with respect to good x. 
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The curve represents the marginal utility of X, while the horizontal line is defined 

by µ*Px. Changes in Px shift the horizontal line up or down. The quantity of good X at 

the point of intersection is therefore a function of the price, and will be a key component 

in the derivation of the satisficing consumer’s demand curve (see below). If U( · ) is not 

additively separable, then the marginal utility of one good may depend in part upon the 

quantity of a different good. Therefore, changes in the Π field or the ACP will have the 

result of changing the shape or position of the curve above (for example, as y[x] 

changes), and therefore will also change the critical value of good X for a given µ and a 

given Px. 

In addition, there is a second critical value of consumption, which is determined 

by the budget constraint. The quantity of good X for the point where the ACP intersects 

the budget line defines the second critical value. Both of these critical values will be a 

function of good X’s price. For any price, the corresponding quantity demanded must be 

the minimum of these two critical values. As a matter of notation, we will refer to the 

first critical value for good X as “x
1
” and the second critical value for good X as “x

2
” 

(and similarly, of course, “y
1
” and “y

2
” for the critical values of good Y) (fig.24). 

 

 

Deriving the Demand Curve 

 

 
Given the two types of constraints on consumption behavior (the budget constraint and 

the worth constraints), it is possible to use the geometry of these constraints, along with 

the Π field, to derive the individual demand curve for any good available to the 

consumer. Since an individual consumer will continue to purchase differential units of 

each good up to the point where at least one constraint just begins to bind, we can use  
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Figure 24. From Consumption Space To Demand Curve Loci. 

A decrease in the price of one 

good will shift the budget line 

out, leading to an increase in the 

budget constraint critical value 

for that good, from x
2
 to x

2
`. 

 

A price increase will have the 

opposite effect. 

 

(ACP is shown here as the 

curved line) In this case, neither 

good is bound by its worth 

constraint at the prices and 

quantities shown. 

 x
2
         x

2
` 

The ACP is a function of the price vector, 

so it is possible for the consumption of one 

good to be capped at the quantity for 

which its worth constraint is binding (as 

shown here for good Y). This does not 

alter our analysis for finding the budget-

constraint critical value for good X, though 

it will, in general, lead to a higher quantity 

of good X demanded at any price, relative 

to the above case where good Y is not 

worth-bound. 

 

The new x
2
 after the price change is 

determined by the point of intersection of 

the ACP and the budget line. 

 x
2

                    x
2
` 

In the case where the ACP reflects the fact 

that the good for which we are deriving the 

demand curve (here, good X) is worth-

bound at a quantity within the budget set, 

we have a choice about how to define x
2
. 

We could continue to use the quantity 

where the ACP intersects the budget line 

(x
2
`), or we could use the point where the 

ACP would have intersected the budget line 

(x
2
``) if we could ignore the worth 

constraint for good X. 

 

We will use x
2
``, but this choice does not 

alter the ultimate shape of the demand 

curve. 
 x

2
  x

2
` x

2
`` 
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each constraint to calculate two critical values for consumption, based upon the other 

parameters of the consumer’s budget problem: wealth, prices, and preferences. 

Specifically, the consumer will employ a process by which she sequentially accumulates 

differential units of each type of good available, and will stop purchasing additional units 

good X once she either runs out of money, or she has already consumed a large enough 

amount of good X so that additional purchases of X do not produce a sufficient amount of 

marginal utility relative to the estimated opportunity cost of that good (in other words, 

when it does not become “worth it” to buy any more good X at the going price). 

Therefore, the first critical value, x
1
, is the amount of good X which corresponds to the 

point of intersection between the marginal utility curve and the µ*Px line. This is the 

point at which the consumer will stop buying any more units of good x, because of the 

fact that she no longer feels that the benefit exceeds the cost. The second critical point, 

x
2
, which is also a function of the price of good X, is the point at which the ACP 

intersects the budget line. This is the point at which the consumer will stop buying any 

more units of good X, because she has exhausted her income. Since either constraint 

becoming binding will prevent the consumer from purchasing any more good X, we can 

use these constraints to find the quantity demanded for good X at each and every price of 

good X. Specifically, at any price of good X (given the price of good Y, etc.), the 

quantity demanded at that price must be the minimum of the two critical values, and as 

mentioned, each of these values will depend directly upon the price of good X. 

The demand curve is therefore constructed in a piecewise fashion: for “low” 

prices, the demand curve is the locus of price-quantity pairs for which the budget 

constraint just binds; for “higher” prices, the demand curve is the locus of price-quantity 
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pairs for which the worth constraint just binds. The point of intersection of these two loci 

will, in general, form a kink or corner in the individual demand curve, and this “kink 

point” will be a focus of later discussion. The shape and location of each of these loci, 

and therefore the shape and location of the demand curve itself, will also depend on the 

particular sequential path followed by consumption, the ACP, which is in turn derived 

from the Π field and the decision rule √, in the manner described in section II. 

 

 

Individual Loci and Demand Curve 

 

 
So far, we have described the location of the two critical values in term of the 

marginal utility space and the consumption space. In order to derive the demand curve, 

we must translate these critical values into price-quantity space. This is easily done 

simply by for solving for each critical quantity as a function of price for the good in 

question.  

Consider an example where the consumer’s utility function is of the form: 

 

U(x,y) = A ln [Bx + Cy + D] 

and we will derive the demand curve for good X using the following parameterization: 

u[x,y] = 3000 ln [(x + y)/10 + 1] 

∂u/∂x = 300/([x+y]/10 + 1) 

Π(x, y) is the identity field; the line y = x is its principal path 

w = 100   

µ = 10 

Py = 5; (Py is the price of the competing firm) 
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The first critical value of x (called “x
1
”) is found by solving the following system 

of equations
21

 for x: 

ACP: y(x) = Min[x, y
1
] 

Worth Constraint: ∂u[x, y(x)]/∂x = µ* Px  

 

For the above parameterization, this gives the value of x
1
 as a function of Px, as shown 

below. This is the locus of all price-quantity pairs of good X for which the worth 

constraint just binds (fig. 25): 

 

 

Figure 25. X
1
 as a function of price (Px). 

 

 

Likewise, the second critical value, x
2
, is found by solving for x in the following 

system of equations: 

ACP: y(x) = Min[x, y
1
] 

Budget Constraint: w = x*Px + y*Py  

 

                                                 
21

 Note that x
1
 and y

1
 are defined in terms of each other.  
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Strictly speaking, we ought to consider the possibility that good X may become worth-

bound if the ACP reaches x
1
 at a point within the budget set. We would therefore 

otherwise wish to adjust our algebraic description of the ACP to account for this 

possibility. However, when we realize that the calculation of x
1
 already accounts for this 

contingency, we recognize that, in practice, we are able to ignore this with respect to our 

definition of x
2
. In other words, just as we ignored any concerns over whether the 

consumer actually had sufficient income to purchase the quantities of good X in question 

when we calculated x
1
, here we are able to ignore any concerns about whether the 

quantities of good X actually satisfy √ when we calculate x
2
. It is important to realize that 

we are not able to ignore such considerations for any good other than the good for which 

we are presently deriving the demand curve. If any other goods are worth-bound within 

the budget set, that fact absolutely must be accounted for in our description of the ACP as 

we derive both x
1 

and x
2
. 

Recall that this is essentially the same issue as whether to use x
2
` or x

2
`` as the second 

critical value, as mentioned of the third panel Figure 24. Again, the choice of whether we 

should use x
2
` or x

2
`` is largely a matter of taste, as it will have absolutely no effect on 

the ultimate quantity demanded for good X, since we have defined quantity demanded for 

good X at a given Px as Min[x
1
, x

2
]. In neither case (x

2
` or x

2
``) will x

2
 ever be less than 

x
1
 if the X worth constraint is binding for a particular price and consumption bundle (fig. 

26). 
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Figure 26. X
2
 as a function of price (Px). 

 

 

Superimposing both loci shows the outline of the demand curve (axes inverted) (fig. 27): 

 

 

Figure 27. Both Loci Superimposed. 

 

 

Plotting the minimum of {x
1
, x

2
} as a function of Px gives the complete demand curve for 

product x, given the parameters of the problem (fig. 28). 
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Figure 28. Satisficing Demand Curve for good X (Axes Transposed). 
 

 
 

 

Transposing the axes presents the demand curve in standard format (fig 29): 

 

 
 

Figure 29. The standard presentation of the satisficing demand curve. The “Worth 

Constraint Locus” forms the upper segment of the demand curve, while the  

“Budget Constraint Locus” forms the lower segment. 
 
 

 

As a result of being derived from the minimum of two loci, the individual demand 

curve will, in general, have a kinked shape. This is qualitatively identical to the demand 
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curve facing an oligopolist, as described in 1939 IO papers by Sweezy and by Hall and 

Hitch. Both Sweezy and Hall and Hitch found modest empirical support for this shape of 

the demand curve, at least to the extent that several business owners indicated in survey 

responses that they believed they actually faced a demand curve such as this, and 

conducted their pricing decisions accordingly (most notably, several business owners 

responded to the questionnaire that, despite the recommendations made by the concept of 

marginal cost pricing, they set their own prices based, in part, on some concept of 

average total cost. This leads to higher prices realized in the market than what would 

have otherwise been predicted by standard models of price competition. When confronted 

with economic theory that predicted higher profits resulting from lower prices, several 

respondents declined to lower price due to a belief that doing so would not sufficiently 

increase their quantity sales. This is belief is entirely consistent with the predictions made 

by a satisficing demand curve.). Stigler later found no empirical evidence for a kinked 

demand curve in several oligopolistic industries, though it should be pointed out that all 

of the markets he looked at involved wholesalers and intermediate suppliers. As such, the 

buyers in these markets were all large firms in reasonably concentrated industries, who 

were not price-takers. As a result, all of the firms in Stigler’s study would be a poor fit for 

the hypothesis of a satisficing consumer (as described in [field paper]). We will show 

below that the satisficing strategy is likely more appropriately employed by a price-taker 

than by a consumer with market power. 

Returning to our model, we can begin to describe competition between firms, by 

using our newly constructed demand curve. We can find the profit-maximizing price for 

this firm once we assume a cost structure. We can use this solution (which will obviously 
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be a function of the competing firm’s price) to construct a best response function in the 

price game for each firm. Interestingly, we can show very easily that, in 2 dimensions, 

and for linear ACPs of the form y = a*x, a > 0, it is never profit-maximizing for a firm to 

set its price along the lower portion of the demand curve. 

Price-quantity pairs along this lower portion of the demand curve satisfy the the 

following two equations, so we can easily solve for both x and y as a function of prices 

and the parameter a. 

x y

x y

x
y

w = p x+p

y = a*x             (a > 0)

w
x = 

p a*p

w
y = 

p
p

a

y

+

+

 

Differentiating total revenue with respect to price for each firm shows the result: 
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The inequality in the final line is a strict inequality if px, py and x are all strictly positive. 
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Likewise, for good Y: 
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The inequality in the final line is a strict inequality if px, py and x are all strictly positive. 

In other words, along the portion of the demand curve where the budget constraint 

binds and the worth constraint does not, revenue is strictly increasing in price. If costs are 

not decreasing in quantity, then profits must also be strictly increasing in price, as well. 

This implies
22

 that neither firm will ever, in equilibrium, price its product so as to locate 

along the bottom portion of the demand curve; price must necessarily be set at the kink in 

the demand curve, or higher. This is the algebraic consequence of the “race to the budget 

line” story from [field paper], in which muted substitution effects on the part of the 

consumer induce firms to attempt to capture as much of the consumer’s wealth as 

possible, as quickly as possible, by attempting to price as high as possible but not higher 

                                                 
22

 Assuming a representative consumer. There are a richer set of implications to be derived from consumer 

heterogeneity in one or more of income, preferences, or particular choice or estimate of the value of µ, but 

these will not be explored in the current paper. 
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than the consumer’s worth constraint, in contrast to the traditional “race to the bottom” in 

standard Bertrand competition where each firm tries to undercut the competitor by the 

smallest possible amount. 

Therefore, it can never be a profit-maximizing strategy for a firm to price below 

the price corresponding to the kink in the demand curve, though it may sometimes be 

optimal to price above the kink. In either case, the worth constraint must hold with 

equality, and so the consumer’s prior µ will necessarily be confirmed in the final 

accumulated consumption bundle, if we have price competition and profit-maximization. 

This is significant, since it guarantees that the equilibrium price-response by each firm to 

the consumer satisficing strategy will be such that the worth constraint binds. This 

implies that the marginal utility per dollar in the consumer’s final bundle must be exactly 

µ. This result shows that, at a minimum, the consumer satisficing strategy, where 

purchase decisions are made on the basis of the rule-of-thumb, rather than on the 

complete “fully rational” optimizing algorithm from standard consumer theory, will be 

supported by the equilibrium concept of rational expectations equilibrium: consumers 

based their decisions on the belief that each dollar spent on consumption would yield 

them at least µ units worth of marginal utility (and possibly more). Once they have 

behaved in this way and assess the results of their actions, they find that, indeed, every 

dollar did get them at least µ, and the marginal dollar of consumption yielded exactly µ. 

In other words, consumers will necessarily find that, whatever their estimate for the 

utility value of a dollar, they were correct. At this point, the equilibrium concept 

supporting the outcome is different for each player in the market game: each firm’s action 

vis-à-vis the other player and the consumer is part of a Nash equilibrium (slight abuse of 
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terminology here, since technically we can not have a Nash equilibrium if all three 

parties are not playing a best response), while the consumer’s actions are justified by a 

rational expectations equilibrium. More on this below. 

We now return to the profit functions for each firm. For simplicity, we will use 

constant marginal cost throughout this paper. Again, following Sweezy and Hall/Hitch, it 

has already been shown that, for kinked demand curves, the profit-maximizing price will 

be the price at the “kink” in the demand curve, for a range of values for marginal cost. 

This follows from the fact that the shape of the demand curve implies that marginal 

revenue will be discontinuous at the kink. There will be a range of values of marginal 

cost such that marginal revenue is lower than marginal cost for all prices below the “kink 

price,” and marginal revenue will be higher than marginal cost for all prices above the 

kink price. Therefore, the profit-maximizing price occurs exactly at the kink, if marginal 

cost lies within the given range. The above proof implies that marginal revenue is 

negative for quantities above the kink quantity (since total revenue is increasing in price 

below the kink), so for linear ACPs in two dimensions, the lower bound of the range of 

marginal cost that implies profit-maximization at the kink is not greater than zero. Later 

we will extend this result to more general situations.  

Finally, note that the location of the kink is itself a function of both firms’ prices, 

and so the location of the kink in each firm’s demand curve will change with the 

competitor’s price.  

Holding wealth and Py constant, we can graph firm X profit as a function of Px 

(fig. 30). This is done numerically (see Appendix). 
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Figure 30. Firm X profit function, for U(x, y) = 3000 ln [(x + y)/10 + 1], W = 100, 

µ =10, Py = 5, and Π(x, y) = (x, y), with constant marginal cost c = 3.  

Note that the maximum profit in this example is attained by  

pricing good X at the “kink price” of 15. 

 

 

Next, by allowing the price of the competitor’s product, Py, to vary, and graphing the firm 

X profit maximizing price as a function of Py, we can derive firm X’s best-response 

function (fig. 31). This is also done numerically (see Appendix). 

 

 

Figure 31. Firm X Best Response (as a function of Py) is shown. Superimposed is the  

line Px = Py. By symmetry, this demonstrates the existence of a Nash  

equilibrium in the firm pricing game at a price profile of (20, 20). 
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For this example, when each firm charges a price of 20, then each firm is profit-

maximizing relative to the behavior of the other firm, and the behavior of consumers. 

Since neither firm has an incentive to change price (and doing so will lead to strictly 

lower profit), then, if we can verify that the consumer is purchasing a consumption 

bundle which is utility-maximizing given her preferences, income, and price vector, then 

we have demonstrated the existence of a Nash equilibrium in the overall market game in 

which the consumer plays a satisficing, rather than optimizing, demand strategy (fig. 32). 

 

 

Figure 32. The demand curve shown for good X, when Py is equal to 20. By symmetry, 

the demand curve for good Y when Px is equal to 20 is identical. Notice that the  

“kink” is located at the equilibrium price of 20 for each firm. Under the price  

vector (20, 20), this satisficing consumer purchases the bundle (2.5, 2.5). 
 

 

First of all, it is straightforward to verify that this satisficing consumer is 

exhausting all of her available wealth (100) when she purchases the bundle (2.5, 2.5) at 

prices (20, 20). She spends 50 units of wealth on each good X and Y, for a total of 100. 

Furthermore, since goods X and Y each enter the utility function as perfect substitutes, it 

must be the case that the marginal utility of each good is identical, at each and every 
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possible consumption bundle. In other words, the marginal rate of substitution is exactly 

equal to 1. Since prices are also equal in this price profile, we also have that the price 

ratio of the two goods equals 1. We therefore necessarily have satisfied the utility-

maximizing conditions that: 

 

1) The consumer’s MRS = Price Ratio 

2) She spends all available wealth. 

 

As a result, there is no opportunity for the consumer to achieve a strictly higher level of 

utility under this price vector. In other words, this particular satisficing demand strategy 

is clearly a best-response to the price vector (20, 20). Had the consumer used the standard 

optimizing algorithm as her demand strategy under this price vector, instead of using her 

satisficing strategy, she would have ended up with the same action choice, which in this 

setting means she would have ended up with the exact same final consumption bundle 

(2.5, 2.5). The price vector (20, 20) represents profit-maximizing behavior for each firm, 

given the strategy choices of the consumer and the competing firm, and the consumption 

bundle yields to the consumer the highest attainable utility under that price vector.  

 

In other words, we have shown that the complete strategy profile constitutes a Nash 

equilibrium.  

 

Furthermore, since we have a utility function for which both goods X and Y are perfect 

substitutes, and we have two firms X and Y which compete in prices, we already know, 
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that the standard Nash equilibrium (which we would obtain on the assumption that the 

consumer uses an optimizing, rather than satisficing, demand strategy is the Bertrand 

result: each firm sets price equal to its marginal cost, which in this example was constant 

at c = 3. Clearly, we have qualitatively different pricing behavior being supported in each 

of these two distinct Nash equilibria, so the differences between them are not trivial. This 

distinct, “satisficing equilibrium” in the overall market game has not been the subject of 

any previous research of which the author is aware.  

In the previous example, we relied on the fact that the two goods being perfect 

substitutes implied that the marginal rate of substitution was equal to the price ratio, at 

the final satisficing consumption bundle. Next we shall follow a similar analysis of a 

problem with a utility function for which the goods X and Y are not perfect substitutes, 

and we shall demonstrate that the utility maximization conditions will still hold under the 

equilibrium price vector, as a fundamental consequence of the satisficing strategy itself. 

Consider a similar problem, where we change the utility function so that the 

goods X and Y are no longer perfect substitutes. Let us leave all of the other parameters 

of the previous problem unchanged, except for the fact that the utility function is now of 

the form 

 

U(x, y) = A ln(B*x +1)+ C ln(D*y + 1) 

  

Since we no longer have perfect substitute goods, we are no longer able to invoke the 

standard Bertrand result that, in equilibrium, P = MC. Instead, we must do a bit of math 

to calculate the equilibrium price vector for differentiated Bertrand competition (which is 
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what we would have if the consumer employed the standard optimizing demand 

strategy).  

For the parameterization A = C = 2000; B = D = 1/5; W = 100; c = 3, it can be 

shown (see Appendix I) that the equilibrium price vector under differentiated Bertrand 

competition is (9.39, 9.39). 

First of all, we solve the system of equations 

 

W = Px*x + Py*y 

(∑U(x, y)/∑x)/ Px = (∑U(x, y)/∑y)/ Py 

 

for both x and y, in order to derive the individual demand functions. This gives 

x = 
5(20 )

2

x y

x

P P

P

− +
  and y = 

5(20 )

2

y x

y

P P

P

− +
 

Firm total revenue is given by multiplying price times quantity demanded, so  

TRx = 
5(20 )

2

x yP P− +
     and   TRy = 

5(20 )

2

y xP P− +
 

And the profit function for each firm is 

Profitx = 
5(20 )

( )
2

x y
x

x

P P
P c

P

− +
−  and  Profity = 

5(20 )
( )

2

y x
y

y

P P
P c

P

− +
−  

 

Plotting the ArgMax of each profit function, as a function of the other firm’s price gives 

(fig. 33): 
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Figure 33. The Bertrand equilibrium price vector, (9.39, 9.39), can be  

solved for numerically. See Appendix. 

 

When faced with the equilibrium price vector, this optimizing consumer will purchase the 

bundle (5.32, 5.32). 

Next, let us contrast this equilibrium result with the resulting equilibrium strategy 

profile if the consumer employs a satisficing demand strategy, rather than an optimizing 

one. As before, let us assume that the satisficing strategy used by the consumer involves       

Π(x, y) = (x, y), and µ = 10. Different assumptions concerning Π and µ will lead to 

different equilibrium price vectors and consumption bundles. We will discuss this in 

greater detail later on. At this point, our primary goal is to demonstrate the existence of 

distinct equilibria from the differentiated Bertrand competition result above. 

Using the same process as above, we can derive the satisficing demand curve for 

good X by calculating the corresponding loci for each the two constraints on 

consumption. Shown here is the demand curve for good X, when Py = 9.39, and the other 

parameters are as above (fig. 34). 
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Figure 34. Satisficing Demand Curve for X when Py = 9.39. 

 

This demand function, under the same assumption of constant marginal cost production 

technology with c = 3, gives the following firm X profit function (the profit function 

below (fig. 35), and the demand curve immediately above are both shown here for the 

case that the competing firm is charging the differentiated Bertrand equilibrium price of 

9.39): 

 

 Figure 35. Satisficing Firm X profit function for Py = 9.39. 
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Once again, allowing Py to vary, and plotting the profit-maximizing price for firm X as a 

function of firm Y’s price, gives the best response function for firm X (fig 36). The        

Px = Py line is once again shown, to illustrate the location of the equilibrium price of 30.0. 

 

 

Figure 36. The equilibrium price vector, (30, 30), can be demonstrated numerically. See 

Appendix. The best response function is flat above Py = 40, because, as we can see from  

the demand curve, 40 is the “choke price” at or above which firm Y will sell exactly  

0 units. Therefore, prices at or above 40 for firm Y do not impact firm X’s  

objective function, and firm X would effectively act as a monopolist. 

 

As before, having shown that charging a price of 30 is profit maximizing for each 

firm, given that the other firm is also charging 30, and the consumer is utilizing the 

particular satisficing demand strategy {Π = (x, y), µ =10}, we further need to 

demonstrate that the consumer’s satisficing strategy constitutes a best response to this 

price vector. The first step in demonstrating this is to consider the symmetric individual 

good demand curves, for the case where the price of the other good is 30. This/these 

is/are shown here (fig. 37): 
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Figure 37. Once again, observe that the kink price coincides with the  

equilibrium price of 30. 

 

 

From this demand curve, we can verify that the corresponding quantity demanded 

is precisely 5/3 units of each good. At a price of 30, the consumer spends 50 units of 

income on each good individually, or 100 total, thereby exhausting her entire income. 

From the utility function, we know that the marginal utility of each good at this quantity 

is 2000 / (5 + 5/3) = 300. Marginal utility (300) divided by price (30) gives precisely 10, 

which is our value of µ in this satisficing strategy. Here again, since marginal utilities are 

both equal, and prices are both equal, we have also satisfied the utility maximization 

condition that MRS = price ratio, since these are both once again equal to exactly 1. 

Hence, there is nothing (including both changing any of the parameters of the 

satisficing strategy, as well as changing from a satisficing to an optimizing strategy) 

which the consumer can do to unilaterally increase her utility under this price vector. 

Once again, this demonstrates the existence of a Nash equilibrium in the market game 

which is distinct from the standard differentiated Bertrand equilibrium. 
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So far, we have only looked at symmetric examples, and therefore we have been 

able to demonstrate that the satisficing strategy is a best response for the consumer 

because the marginal utilities are equal for both goods, as are the prices. In other words, 

we have been able to demonstrate the existence of a novel Nash equilibrium in the market 

game because the MRS and the price ratio have both been equal to exactly 1. We next 

quickly demonstrate that this is not necessary for a satisficing Nash equilibrium to exist 

in a market. 

If we revisited the immediately previous example, but break the symmetry 

between the two goods by altering the utility function, we can see that there will still exist 

a distinct Nash equilibrium involving a satisficing strategy on the part of the consumer. 

Specifically, if we alter the utility function so that  

 

U(x, y) = 2000 ln(x/5 +1) + 1000 ln(y/5 + 1) 

 

then we obviously have a situation where the symmetry between the two goods has been 

broken. It can be shown (see Appendix I) that, if the consumer plays an optimizing 

strategy, then the differentiated Bertrand equilibrium in the market game includes the 

price vector (Px, Py) = (12.73, 7.01), with the consumer purchasing the bundle           

(x, y) = (5.41, 4.45). The final marginal utility per dollar spent for each good is 15.1. 

If we calculate how the equilibrium changes if the consumer were to employ the 

satisficing strategy {Π = (x, y), µ = 10} once again, we will discover that the equilibrium 

price vector becomes (Px, Py) = (26.65, 13.35), and the consumer purchases the bundle   

(x, y) = (2.505, 2.491). Notice, despite the fact that the consumer is worse off than in the 
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optimizing equilibrium (less consumption of each good, less total utility), this strategy 

profile is nonetheless a Nash equilibrium, since the consumer cannot unilaterally improve 

her utility by altering her strategy in any way, including by switching from a satisficing to 

an optimizing demand strategy. 

 

Once again, this is straightforward to verify y: 

(Px, Py) · (x, y) = (26.65, 13.35) · (2.505, 2.491) = 100 = W 

And  

Ux(2.505, 2.491) = 266.5 

Uy(2.505, 2.491) = 133.5 

So the MRS = 1.99625 

Which is precisely equal to the price ratio, as 

26.65/13.35 = 1.99625 

Since the consumer exhausts all of her wealth, and purchases a bundle for which the 

marginal rate of substitution is equal to the price ratio, she is maximizing her utility, 

given the price vector. Therefore, we have a Nash equilibrium in the market game, and 

furthermore, it is one which is entirely distinct from the differentiated Bertrand outcome. 

Further note that the final marginal utility per dollar for both goods is exactly 

equal to the value of µ employed by the satisficing strategy, µ = 10. 

 

Ux(2.505, 2.491)/ Px = 266.5/26.65 = 10 

Uy(2.505, 2.491)/ Py = 133.5/13.35 = 10 
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It is this last fact, which has been touched upon previously, which offers the best intuitive 

insight into why a satisficing demand strategy can form a part of a Nash equilibrium 

strategy profile in the market game.  

For convex preferences, there are two conditions which are, jointly, necessary and 

sufficient for consumer utility maximization: 

 

1. The MRS must equal the price ratio  

2. The consumer must spend all her available wealth 

 

Together, these conditions imply that the consumption bundle which satisfies 1 and 2 will 

lie on the consumer’s highest attainable indifference curve. By the construction of the 

satisficing strategy, condition 1 will necessarily be satisfied whenever the price vector is 

such that the price for every individual good is located on the upper segment of the 

consumer’s demand curve. Recall that this upper segment was defined as the locus of 

price-quantity pairs for which the worth constraint for that good was just binding. This 

implies that for any good for which it is the case that the price is located on the upper 

segment of the demand curve, then marginal utility per dollar (that is, marginal utility of 

each good at the final bundle, divided by the price of that good) for that good must be 

exactly equal to µ. If every good is priced at a level along the upper locus of the demand 

curve, then every good has marginal utility per dollar exactly equal to µ. This of course 

implies in turn that every good has marginal utility per dollar equal to that of every other 

good. In other words, the MRS will equal the price ratio, and condition 1 is satisfied. 
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Furthermore, if the market’s representative consumer is employing a satisficing 

strategy, then price competition among firms will guarantee that all individual prices will 

in fact be located somewhere along the upper segment of the corresponding demand 

curve. This is so, with satisficing demand, because upper-locus pricing is a necessary 

condition for profit-maximization. If it were ever the case that a firm was pricing strictly 

below the kink price, then it could unambiguously increase profit by raising its price (a 

proof of this statement is provided below). Price competition and profit-maximization 

imply that condition 1 will be met if the consumer employs a satisficing demand strategy. 

Furthermore, condition 2 is satisfied whenever the final consumption bundle is 

located strictly on the budget hyperplane. Any price located along the lower portion of 

the demand curve, by construction, involves a consumption bundle located precisely on 

the consumption frontier. 

 

 

The Satisficing Market Equilibrium 

 
 

To summarize, for a given satisficing demand strategy, the kink in the individual 

satisficing demand curve is a very special place indeed.  

Firstly, as described in Hall and Hitch, the fact that the demand curve itself is not 

differentiable at the kink implies that there is a discontinuity in marginal revenue at that 

point. This means that there will be a range of values for marginal cost, all of which 

imply that the profit-maximizing price and quantity for an individual firm will be at the 

kink. As long as marginal cost is positive, it will be profit-maximizing to price at least as 

high as the kink (since marginal revenue beyond the kink quantity and below the kink 

price will be either zero or negative—see proof below). If marginal cost is less than or 
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equal to the left-hand marginal revenue, then the profit-maximizing price will be exactly 

the kink price. If marginal cost is higher than left-hand marginal revenue at the kink, then 

the profit-maximizing price will occur somewhere on the portion of the demand curve 

strictly above the kink, located on the worth-constraint locus. 

Since the kink point lies on the upper locus of the demand curve, it guarantees 

that, if the price of the good in question is set at or above this price, marginal utility per 

dollar spent on that good in the final bundle is exactly equal to µ. If this is true for all 

goods, then condition 1 for utility maximization is met. Furthermore, profit-maximization 

implies that it will, in fact, be true that all goods are priced along this portion of the 

demand curve.  

Since the kink also lies on the lower locus of the demand curve, it guarantees that, 

if the price of the good in question is set at or below this price, then the budget constraint 

will hold with equality. Furthermore, if the budget constraint holds with equality for one 

good, then it must necessarily hold with equality for all goods (It is impossible to have 

insufficient income available to purchase an additional differential unit of one good, 

while at the same time having sufficient income to purchase an additional differential unit 

of a different good). Thus, if the price of any good is set at the kink price, then condition 

2 for utility maximization is met.  

Conditions 1 and 2 together imply that the satisficing strategy constitutes a best 

response on the part of the consumer to the price vector which helped define
23

 the 

satisficing demand curves. In other words, and loosely speaking, the higher segment of 

the demand curve is the locus of points which satisfies condition 1 of the requirements 

for utility maximization, while the lower portion of the demand curve is the locus of 

                                                 
23

 By helping to determine the location of the worth constraints in the consumption space. 
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points which satisfies condition 2. The kink itself is the only point which satisfies both 

conditions, as it lies in/on both loci. As a result, all firms pricing at their own kink price is 

a necessary condition for Nash equilibrium in the market game, assuming that the 

consumer is playing a satisficing strategy. 

 

       ----------------------------------------------------------------------------------------- 

Claim:  

Under satisficing demand, it is a necessary condition for profit-

maximization that every firm prices its product along the upper 

segment of its satisficing demand curve. 

Proof: 

Assume there exists a firm X, which produces good X, which has 

priced its product strictly below the kink price for its satisficing demand 

curve. Call the kink price for good X “Px
k
” and the actual initial price of 

good X “P
0

x”.  

If P
0

x < Px
k
, then, by construction, the worth constraint for that 

firm’s product is not binding at the corresponding quantity demanded for 

firm X’s product. (This is true because, at the low price, the budget 

constraint becomes binding upon the consumption of that particular good 

before the worth constraint does). Therefore, firm X has an opportunity to 

raise its price at least slightly to P
1

x < Px
k
, and still have it be the case that 

the worth constraint is not binding for its product.  
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Furthermore, as long as there is at least one good for which the 

worth constraint is not binding, this implies that the resulting consumption 

bundle must be located on the budget hyperplane (at the very least, the 

consumer would have exhausted all of her income buying additional units 

of the non-worth-bound good, even if every other good were worth 

bound). This implies in turn that the consumption bundles corresponding 

to both P
0

x and P
1

x satisfy the equation for the budget hyperplane: 

W = Px
 
· Qx + i i

i X

P Q
≠

⋅∑   

Solving for Qx gives 

Qx = (W - i i

i X

P Q
≠

⋅∑ )/ Px 

And firms X’s total revenue is 

TRx = Px
 
· Qx = (W - i i

i X

P Q
≠

⋅∑ ) 

Or simply, firm X revenue equals total wealth minus the total amount of 

money spent on all other goods combined. 

For a given price vector P, the quantities demanded Qi of all i distinct 

goods are given by the ACP. 

When firm X increases its price from P
0

x to P
1

x, the budget hyperplane 

will shift inward, and all of the Qi’s will change in a manner prescribed by 

the ACP. Denote the quantities demanded under P
0

x as Q
0

i’s, and the 

quantities demanded under P
1

x as Q
1

i’s. 

Therefore, as the price of good X increases from P
0

x to P
1

x, firm X total 

revenue changes from  
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TR
0

x = (W - 0
i i

i X

P Q
≠

⋅∑ ) 

to 

TR
1

x = (W - 1
i i

i X

P Q
≠

⋅∑ ) 

 

Shifting the budget hyperplane inward towards the origin implies 

that the resulting consumption bundle, after the price change, will be a 

point along the ACP which is closer to the origin than the original 

consumption bundle before the price change. Since the ACP is non-

decreasing in the quantity of every individual good, we know that          

Q
1

i ≤ Q
0
i, ∀i.  

(The only possible way that any of the Qi’s can increase in response to an 

increase in the price of good X is if good X is already worth-bound. By 

hypothesis of this proof, the worth constraint is not binding for good X at 

either price, since Px
0
 > Px

1
 > Px

k 
) 

Since, once again, TRx = (W - i i

i X

P Q
≠

⋅∑ ), the condition that        

Q
1

i ≤ Q
0
i for all i implies the total revenue earned by firm X after the price 

increase is at least as large as the total revenue earned by the firm before 

the price change. At a minimum, total revenue remains unchanged for firm 

X as a result of the price change, and this only happens if all goods other 

than X are worth-bound at the consumption bundles corresponding to Px
0
 

and
 
Px

1
, so that all other quantities besides that of good X remain 

unchanged (Q
1

i = Q
0

i, for all i ≠ X). If at least one other quantity besides 
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that for good X does change as a result of the price increase, then total 

revenue earned by firm X will be strictly higher after the price increase 

than before. 

Regardless of whether firm X revenue increases or remains the 

same, profit will necessarily increase after the price change from Px
k0 

to 

Px
1
. This is true, because as Px increases, Qx necessarily decreases if X is 

not worth-bound. If marginal cost is strictly positive, then total cost will 

decrease while total revenue either stays unchanged or increases, as a 

result of the price change. Hence, firm X profit must increase when firm X 

raises its price, assuming that it is pricing strictly below the kink price. 

Since any firm charging a price strictly below the kink price 

implies that profits may be increased through a price increase, this 

demonstrates that all firms pricing their product at or above the kink price 

is a necessary condition for profit-maximization. QED. 

       ----------------------------------------------------------------------------------------- 

 

As a corollary to the point that, if the budget constraint binds for one good, then it 

must also bind for every other good, it should be obvious that similar reasoning applies to 

the possibility that the budget constraint does not bind for one good. That is, if any firm is 

pricing its product strictly above the kink price, this implies that the firm is pricing in 

such a way that the worth constraint binds for its good, but the budget constraint does not 

bind. This, of course, means that the consumer has extra available wealth that she could 

use to purchase additional units of the good in question, if she so desires. However, she 
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chooses not to purchase these additional units, because the monetary cost of the would-be 

additional purchases does not justify the estimated opportunity cost, in utility terms, of 

the money which would need to be spent. Of course, if she has additional available 

wealth to potentially purchase more units of this particular good, then she necessarily has 

additional wealth available to purchase more units of any other good, as well. That is, it 

is simply not possible for the budget constraint to bind on some goods and not on others. 

This also illustrates the important point that, changes in price by any one firm will 

potentially lead to a change in demand for all other firms (and more specifically, to a 

change in the location of the kink price for all other firms). 

 

 

The Kinked Demand Curves and Nash Equilibrium 

 

 
If the (single) consumer in the market is playing a satisficing consumption 

strategy, then under the following conditions, a kinked demand curve for every individual 

good will be a necessary condition for Nash equilibrium: 

1) Firm marginal costs are positive everywhere 

2) Marginal utility is bounded (so as to rule out the possibility that a 

consumer would ever be willing to exchange 100% of her available wealth for an 

infinitesimal amount of consumption) 

3) Preferences are strictly convex 

First of all, consider the set of all goods available to the consumer which do not 

enter the utility function in an additively separable manner. This set may or may not be 

empty. Regardless of the presence or absence of a distinct kink, or point of non-

differentiability, it is necessary that the demand curve for every good in this set be such 
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that the price of each good lies on both the worth constraint locus and the budget 

constraint locus, if the consumer is to be playing a best response (that is, if the consumer 

is to satisfy conditions 1 and 2 for utility maximization). Furthermore, given that each 

firm has a positive marginal cost, profit maximization is only possible in this 

circumstance of the two loci of each of the corresponding demand curves are such that 

the worth constraint locus has a flatter slope than the budget constraint locus. 

To see why, recall (from the proof beginning on page 150) that along the budget 

constraint locus, for any budget hyperplane, and for any non-decreasing consumption 

path, it must be the case that firm revenue is non-decreasing in price. Since the budget 

constraint locus is everywhere downward sloping, this implies that marginal revenue is 

non-positive at all points along the budget constraint. Since utility maximization requires 

than any candidate Nash equilibrium involve all prices lying on both loci of the 

corresponding demand curve, we can directly compare the marginal revenue implied by 

each locus. 

In general, marginal revenue at any differentiable point on the demand curve is 

given by  

MR = Q*(dP/dQ) + P 

So the marginal revenue implied by the worth constraint locus is 

MR
wc

 = Q*[dP/dQ]
wc

 + P 

And marginal revenue implied by the budget constraint locus is 

MR
bc

 = Q*[dP/dQ]
bc

 + P 

Profit maximization requires that each firm set their price such that they sell the largest 

possible quantity for which marginal revenue is greater than or equal to marginal cost. 
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Since marginal costs are positive by assumption, and marginal revenue along the budget 

constraint locus is everywhere non-positive, Nash equilibrium is only possible if marginal 

revenue is also positive along the worth constraint locus at a point of intersection between 

the two loci. 

Thus, if MR
wc

 > MR
bc

, since at any intersection point, both loci will by definition 

have P and Q in common, if follows that the slope of the worth constraint must by larger 

(flatter, since both slopes are negative) than the slope of the budget constraint. In other 

words, it is necessary for equilibrium that, in absolute value, [dP/dQ]
wc

  >  [dP/dQ]
bc

. 

Hence, in equilibrium, all demand curves (within the set of non-additively separable 

goods) must have a kink point, or point of non-differentiability, at the equilibrium price.  

Finally, consider the set of all goods which do enter the utility function in an 

additively separable manner. Likewise, this set may or may not be empty. If it is non-

empty, then all goods within this set will necessarily exhibit diminishing marginal utility 

(implied by the assumed convexity of preferences), and so all worth constraint loci for 

these goods must be downward sloping, regardless of the choice of Π field (since 

consumption of any other good will not impact the marginal utility of an additively 

separable goods; only the quantity consumed of the good in question has a bearing on the 

marginal utility of that good). 

Since marginal utility is assumed bounded, each of the goods in this set will have 

a choke price, at or above which zero units of that good are purchased, for any choice of 

satisficing strategy. Since the worth constraint locus is asymptotic to the price axis for 

any choice of Π, there will necessarily always be a range in the neighborhood of the price 

axis for which the budget constraint locus lies above the worth constraint locus. Since 
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both loci are decreasing everywhere, if the two loci do intersect, there must be at least 

one point of intersection for which the budget constraint locus is as steep as or steeper 

than the worth constraint locus. As above, if there is to be a Nash equilibrium in the 

market, then the worth constraint locus must be strictly steeper than the budget constraint 

locus, since marginal revenue is non-positive at all points along the budget constraint 

locus (regardless of the particular Actual Consumption Path, provided that that path is 

non-decreasing, as required by the construction of this model).  

Without imposing additional restrictions on the utility function, there is nothing to 

rule out the possibility that there is more than one point of intersection between the two 

loci. However, if any hypothetical additional points are to constitute possible locations 

for a Nash equilibrium price for the corresponding good, it must be the case that that 

intersection point be qualitatively identical to the point described above (i.e., that the 

demand curve in the neighborhood of such an intersection point be composed of a flatter 

worth constraint locus portion in the neighborhood immediately above the intersection, 

and a steeper budget constraint locus in the neighborhood immediately below the 

intersection). This is true, again, because of the fact that profit is unambiguously 

increasing in price along the budget constraint locus, for any choice of Actual 

Consumption Path.  

To show why, first notice that, if both loci are downward sloping, then in order 

for them to intersect, it must be the case that the "upper" locus must be flatter than the 

"lower" locus in the neighborhood of the intersection point, regardless of which of the 

two loci is upper and which is lower. Therefore, if there were a point of intersection of 

the two loci, such that the budget locus was above the worth locus at the intersection, that 



 

158 

 

point could never be consistent with profit maximization (and therefore never be 

consistent with Nash equilibrium), since the firm could always strictly increase profit by 

increasing price. Furthermore, the possibility that, in equilibrium, both loci have the same 

slope at the intersection is ruled out by the assumption of strictly positive marginal costs 

(as described above). 

Once again, if there is to be a Nash equilibrium in a market with a representative 

consumer which plays a satisficing strategy, it must be the case that all demand curves 

have a kink located at the equilibrium price. 

For certain preferences or satisficing strategy choices, we cannot presently rule 

out the possibility that the resulting demand curves behave in ways which are 

qualitatively different from the demand curves presented in this paper. Furthermore, it is 

possible in principle, that in certain circumstances, there may not exist a Nash 

equilibrium involving a satisficing consumption strategy, since we have not yet been able 

to derive a rigorous proof of existence of such an equilibrium under general conditions 

(Though we have been demonstrated the existence of such an equilibrium within the 

context of a non-negligible set of arguably realistic examples). The current lack of formal 

existence proof notwithstanding, we still have demonstrated that it is a necessary 

condition that the system of satisficing demand curves behaves qualitatively as we have 

described them in this paper, at least locally. In other words, if a satisficing Nash 

equilibrium exists for any specific market, it must involve a system of demand curves 

which all have a point of non-differentiability at the equilibrium price for each product, 

with the worth constraint locus forming the portion of the demand curve in a 
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neighborhood immediately above this kink, and the budget constraint locus forming the 

portion of the demand curve in a neighborhood immediately below.  

Nonetheless, we argue that the model developed in this paper does apply, without 

ambiguity as to whether a satisficing Nash equilibrium exists, not to all possible cases, 

but to a reasonably broad set of realistic circumstances. As such, we feel that this model 

does offer an interesting an potentially important contribution towards describing 

consumer behavior, and one which cannot be duplicated with existing models based upon 

subgame perfect consumption behavior. 

 

 

Aggregation 

 

 

So far, we have restricted our attention to the case where the demand side of the 

market is composed of a single, representative consumer. We are accustomed to having a 

single consumer’s behavior serve as a model for an entire population of consumers, 

because, in an optimizing framework, the necessary conditions for the existence of a 

positive representative consumer have been derived by Deaton and Mellbauer (1980) and 

others. However, in a framework where consumers may conceivably choose a satisficing 

strategy, it is not clear that individual demand curves will aggregate into a market 

demand curve which is identical to that of an appropriately chosen notional representative 

consumer. A diverse population of consumers may, potentially, give rise to a market 

demand curve which is not validly modeled by the demand curve of a single satisficing 

consumer. 

We do not need to justify the representative agent assumption in order to 

demonstrate that the satisficing equilibrium exists. We do, however, need to justify the 
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assumption in order to feel confident that the equilibrium provides a relevant description 

of the behavior of actual markets. To defend the applicability of the satisficing Nash 

equilibrium developed in the previous sections, we now wish to devote some 

consideration to the issue of aggregation. We should begin by recognizing that, for a 

population of consumers which is heterogeneous with respect to wealth and/or 

preferences, we needn’t necessarily expect that the summation of the individual demand 

curves for any particular good look qualitatively identical to a typical individual 

satisficing demand curve. If individuals are diverse, then for any particular good, it is 

possible that the “kink price” for that good is different for each individual. As a result, 

horizontally adding the individual demand curves may lead to a market demand curve 

which is different from the demand curve of a potential representative consumer in at 

least one of two ways. Either there will be many individual kinks (one at each price 

which is a kink price for at least one of the underlying individual curves), so that the 

aggregated market demand curve is a piecework collection of convex sections connected 

by kinks, or the kinks tend to smooth out as many different consumers are added (see, for 

example, the discussion of the “regularizing effects of aggregation” in Mas-Colell, et al., 

page 122). In either case, it is probable that the fundamentally most important feature of 

the satisficing equilibrium carries through; the price vector supported by Nash 

equilibrium is (potentially) higher if consumers satisfice than it would be if consumers all 

optimized. Nonetheless, in either case, it would also be true that the market demand 

curves would be qualitatively different from the demand curves of any satisficing 

consumer, and we would not be justified in using a representative satisficing consumer to 

describe market behavior. 
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To address these concerns, and to begin to make the case in favor of a positive 

representative satisficing consumer, we will argue that the issues raised above 

(concerning both multiple possible kinks and regularizing smoothing) are possible only in 

situations where consumers are heterogeneous in their fundamental characteristics 

(wealth, preferences), and are playing satisficing strategies which are chosen arbitrarily. 

In other words, if we allow ourselves to analyze the individual demand choices of 

consumers, within the context of the overall strategic setting of the market game, we will 

have reason to conclude that reasonably rational consumers’ demand strategies will be 

selected so as to induce a remarkable amount of regularity in the market demand curve. 

In other words, the situation where the market demand curve is qualitatively 

distinct from the individual demand curves is not consistent with utility maximization. 

Basically, we will employ the concept of Nash equilibrium as our aggregation technique. 

However, even if the underlying fundamental characteristics of the individual 

consumers are quite different among the population, we can predict a high degree of 

order in the stylized model if we consider the implications that each consumer ought to, 

eventually, be playing a best response to the same price vector. That is, even for distinct 

preferences and levels of wealth, if all consumers are employing a best response strategy 

to the prevailing price vector, then the strategy choice of each consumer will result in a 

system of demand functions for which the primary kink of each demand curve coincides 

with the prevailing price of the corresponding good. 

The intuition underlying this result is identical to that in the previous section, 

describing why a Nash equilibrium in the representative consumer case must occur where 

all firms price their product at precisely the kink price. Another way of thinking about the 
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same idea is that, assuming that all consumers play a satisficing strategy, then in 

equilibrium, all consumers must be selecting a demand strategy chosen specifically so 

that the kink of the demand curve for each product coincides exactly with the prevailing 

price of that good. 

Again, the reason for this result has to do with the idea of utility-maximization 

and that of consumer best response. If there is a situation where an individual consumer 

has a demand curve for which the kink price does not coincide with the actual price, then 

the product is priced on either the strict upper portion or the strict lower portion of her 

demand curve. In either case, one of the two requirements for utility maximization is not 

met
24

. 

Consider a population of 2 consumers, with distinct wealth and preferences, but 

with an identical satisficing strategy ( Π, µ ). 

 

Consumer 1:  

Wealth = 100 

 U( x,y ) = 3000 ln[(x/50) + 1] + 6000 Log[(y/25) + 1] 

Consumer 2:  

Wealth = 200 

 U( x,y ) = 6000 ln[(x/25) + 1] + 3000 Log[(y/50) + 1] 

 

Both consumers employ the satisficing strategy using the identity field as their choice of 

Π, and use µ = 10. 

                                                 
24

 I believe this result holds generically, but there are exceptions. For example, it is possible to have a 

satisficing strategy where the underlying satisficing decision rule is √0, and the principal path of the Π field 

is Π
FR

. 
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Shown below are the individual demand curves for good X (fig. 38) (note the axes 

are transposed relative to the standard presentation of the demand curve): 

 

 

Figure 38. Individual Demand Curves for Heterogeneous Consumers. 

 

 

Adding (by price) these individual demand curves yields the following (transposed) 

market demand curve for good X (fig. 39): 

 

 
 

Figure 39. Non-equilibrium Market Demand Curve with Heterogeneous Consumers. 
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Notice that adding the two distinct individual demand curves leads to a shape 

which is qualitatively different from that of the typical individual satisficing demand 

curve. Specifically, since each individual curve has a point of non-differentiability 

occurring at a different price, then the market curve will have a point of non-

differentiability at each of those two prices. Also, since we are constructing a market 

demand curve by adding two simple demand curves together, the market demand curve 

will have an additional point of non-differentiability located at the choke price of each of 

the individual demand curves, when such choke prices exist (except, of course, for the 

highest choke price, which also constitutes the choke price for the market demand curve). 

This new type of kink, which we will refer to as “secondary kinks,” is a consequence of 

the aggregation of a finite number of distinct individual demand curves, and is common 

to both satisficing and optimizing market demand curves. These secondary kinks are not 

of much particular interest, and we will not go into very much detail describing them or 

their implications, other than to note that the “direction” of secondary kinks is opposite of 

that of primary kinks. That is, a segment connecting two points on the demand curve on 

either side of, and in a neighborhood around a secondary kink will always lie above the 

demand curve, while a similar such segment for a primary kink will always lie below. As 

a result, the union of two convex sections of the demand curve which are joined by a 

secondary kink will still be a convex curve (though it will obviously have a point of non-

differentiability) (fig. 40). 
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Figure 40. Primary and Secondary Kinks. 

 

 

We argue that the reason we see heterogeneous satisficing consumers giving rise 

to market demand curves with multiple primary kinks is that the satisficing strategy used 

by both consumers in the above illustration is essentially arbitrary. Furthermore, while it 

makes sense to suspect that allowing consumers to be heterogeneous in strategy choice as 

well as wealth and preferences (recall, in the above example, both consumers played the 

same satisficing strategy) will only increase the irregularity of the market demand curve, 

we will demonstrate that allowing strategy choices to be made rationally will actually 

improve the behavior of the market demand curve.  

It is important to note that strategy choices are not made in a vacuum, they are 

made within the context of the strategic interaction of the overall market game. So, 

whatever the particular combination of individual consumer strategies that comprise the 

market demand curves, firms will select a price for their product which is profit 
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Importantly, once firms have each set their price, then the same price vector faces all 

consumers. In other words, no matter how diverse consumers may be in the dimensions 

of wealth or preferences, they will always be identical, at least, in the price vector that 

they face. This common price vector is the feature of the market game that allows 

heterogeneous consumers to select distinct strategies which ultimately end up leading to a 

well-behaved market demand curve. 

When we conceive of consumers in the standard optimizing model, we are in 

effect, assuming that consumers are playing a strategy which is a best response to every 

possible price vector. In the satisficing framework, in order to demonstrate orderly 

aggregation to a market demand curve which resembles the demand curve of a 

representative consumer, we will need only to assume that consumers play a strategy that 

is a best response to a single price vector (i.e., whichever price vector the consumers 

actually face). In fact, so long as all consumers are playing a satisficing strategy which is 

a best response to the prevailing price vector, then all individual demand curves for all 

distinct goods will exhibit a single primary kink at the actual price of the corresponding 

good. Despite the fact that consumers are heterogeneous in wealth and preferences, the 

fact that they are also allowed to be heterogeneous in strategy choice (including choice of 

µ, which, like the utility function, is not directly observable) allows the population of 

consumers to “coordinate” on a particular price vector. 

If all consumers have demands curves such that the kink price for every good 

coincides with the kink price of the same good for every other consumer, then adding the 

individual demand curves by price will result in a market demand curve which has 

exactly one primary kink. There may be as many as N-1 secondary kinks (where N is the 
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total number of individual consumers), but we will assume that these types of kinks will 

not substantively affect our analysis, for two reasons. First of all, if two convex sections 

of a market demand curve are connected by a secondary kink, then the union of those 

sections will still be convex. Therefore, if there is only one primary kink in the market 

demand curve, then the existence of a number of secondary kinks will not change the 

qualitative feature that the market demand curve and individual demand curves share in 

common: they are formed by two convex segments joined at a primary kink. Though this 

is not yet a perfect proof that a positive representative satisficing consumer exists (since 

we cannot construct an example of an individual consumer’s demand curve which has 

secondary kinks), it is at least a step in the right direction. 

In order to demonstrate that, in equilibrium, even a population of heterogeneous 

consumers will have demand curves which each have a primary kink at the prevailing 

price (which, as noted previously, also implies that each firm’s price is profit-maximizing 

for an entire range of values of marginal cost), we will rely on similar reasoning to the 

proof of why a Nash equilibrium in the single-consumer case must involve all products 

being priced at the kink price (or, equivalently, in all kinks being located at the actual 

price).  

Regardless of the underlying unobservable utility functions
25

, or of the level of 

wealth available to a consumer, if a consumer’s satisficing strategy is to be considered a 

best response to the behavior of the other actors in the market game, it necessarily must 

be narrowly equivalent to the optimizing strategy under the prevailing price vector 

(though again, it need not be narrowly equivalent under any other price vector, and it 

                                                 
25

 Although we do require standard assumptions on preferences such as rationality, convexity, local non-

satiation, etc. 
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need not be strategically equivalent). The argument why all individual consumers must 

have demand curves such that the actual price is the kink price is similar to the reason 

why the single consumer Nash equilibrium must involve all firms pricing at the kink 

price. If any consumer is buying any good at a point on their demand curve below the 

kink, then she is not located on the worth constraint locus, and therefore it will not be the 

case that the marginal utility per dollar is equal for all goods. She can therefore increase 

her total utility by reallocating her income among the goods she is able to buy. I.e., she 

has a profitable deviation, and the initial situation could not be part of a Nash 

equilibrium. Likewise, if any consumer is buying any good at a point on her demand 

curve above the kink, then she is not spending all of her income, and assuming LNS 

preferences, can increase her total utility by buying more. 

Only if each consumer is buying each good in such a way that every demand 

curve has a kink at the actual price can it be the case that every consumer is maximizing 

their utility relative to the price vector they face, which is of course a necessary condition 

for Nash equilibrium. 

For any price vector, in order to find the parameters of a satisficing strategy that 

can be a best response to that price vector, the consumer can conceivably behave in one 

of at least two ways. In principle, the consumer can “learn” the best response to a price 

vector through something like a tâtonnement process. That is, if under a given price 

vector, the satisficing strategy ever leads to a consumption bundle that does not exhaust 

all her income, she can revise her estimate of µ downward, so that she has a lower 

threshold for purchases which satisfy her satisficing decision rule. If she ever has a 

situation where the marginal utility per dollar is not the same for all goods, then she can 
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increase her utility by reallocating consumption. Here, she can either increase µ, or alter 

her choice of Π field (or both) in order to increase her utility. This process needs 

elaboration, but if this type of tâtonnement process does indeed take place, then it is still 

going to be the case that the outcome of Bertrand competition with fully optimizing 

consumers will not necessarily result. 

In addition to the possibility of some type of tâtonnement process, it is also 

possible that, in a multi-period framework, the consumer could learn the parameters of a 

best response satisficing strategy all in one shot, by optimizing in the first period, and 

then playing a particular satisficing strategy (which is derived from the first period 

consumption bundle bundle) in every period thereafter. In this case, the satisficing 

strategy serves the role as a sort of “memory” of what the consumer did when she was 

optimizing. In other words, a consumer first truly does optimize with respect to her 

consumption choices, but having optimized in one period, the consumer next “goes from 

memory” in deciding which consumption choices to make in some number of subsequent 

periods. 

In this setting, the particular satisficing strategy which is a best response to the 

first period price vector is easy to calculate, and we will define such a strategy as a 

“Calibrated Satisficing Strategy (CSS).” 

We will introduce a concept which will play a pivotal role in the description of 

market Nash equilibria, the Calibrated Satisficing Strategy (CSS): 

 
Calibrated Satisficing Strategy (CSS): A consumer’s satisficing demand 

strategy is a calibrated satisficing strategy for some price vector P, if the strategy 

is narrowly equivalent to the optimizing strategy under P, and the worth 

constraint binds for all goods at the consumption bundle selected by the strategy 

under P. 
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The concept of the CSS can be used to demonstrate the way in which Nash aggregation 

might affect market behavior.  

Notice that the condition of narrow equivalence is a necessary condition for Nash 

equilibrium. By definition, the consumer cannot be employing a best-response strategy to 

any price vector if the demand strategy is not narrowly equivalent to the optimizing 

strategy under that price vector.  

It can be shown that there exists at least one CSS for any parameterization of the 

consumer budget problem (that is, for any specific choice of utility function with convex 

preferences, level of wealth, and price vector).  

 

Claim: A CSS exists for any consumer budget problem with convex preferences 

 

Proof: 

Assume a particular convex utility function U(*), level of consumer wealth W, and 

prevailing price vector P.  

Let X be an optimal bundle
26

 selected by the standard optimizing demand strategy. Let λ 

represent the shadow value of wealth of the constrained optimization problem.  

Define a satisficing strategy S to be the satisficing strategy (as defined in previous 

sections) for which µ = λ, and for which the principal consumption path is the ray which 

begins at the origin and includes the vector X. 

 

                                                 
26

 There may, in principle, be more than one such bundle. But if so, the total utility U(X) is the same for all 

such bundles, and all such bundles will share a common shadow value of wealth λ. 
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Consumption will begin at the origin, and then move along the principal consumption 

path eventually ceasing precisely at point X. The budget constraint will bind exactly at X, 

since X being optimal requires that it lie on the budget hyperplane, if preferences are 

convex. Furthermore, since the shadow value of wealth at X is precisely λ, the worth 

constraints will all bind precisely at X and not before, if preferences are convex. 

 

In other words, strategy S will select the optimal bundle X under the given parameters of 

the consumer budget problem. 

 

Since strategy S will select bundle X, and since all worth constraints will just begin to 

bind at this consumption bundle, then strategy S is a CSS for the budget problem in 

question. QED. 

Returning to the example of the demand curves of heterogeneous consumers from 

above, we can now demonstrate that, by calculating a CSS for each consumer, and 

allowing each consumer to play that particular best response strategy, rather than the 

arbitrary strategy used by each consumer in the initial example, then the market demand 

curve derived by adding both CSSs will have a single primary kink located at the 

prevailing price vector, and will consist of two convex sections which intersect at that 

kink. In other words, the market demand curve composed of CSSs instead of arbitrary 

satisficing strategies is qualitatively similar to a single-consumer satisficing strategy. 

By taking an arbitrary price vector, in this case ( 7,6 ), and finding each 

consumer’s optimal consumption bundle under that vector, given her unique income level 
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and preferences, we can construct a CSS for each consumer. Plotting the individual 

CSS’s gives the following (figs. 41-44): 

 

Consumer 1: 

 

Figure 41. Consumer 1 Demand Curve for X (under the CSS) with the  

price of X plotted as the dashed line. 

 

 

 

 

Figure 42. Consumer 1 Demand Curve for Y (under the CSS) with the  

price of Y plotted as the dashed line. 
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Consumer 2: 

 

Figure 43. Consumer 2 Demand Curve for X (under the CSS) with the  

price of X plotted as the dashed line. 

 

 

 

Figure 44. Consumer 2 Demand Curve for Y (under the CSS) with the  

price of Y plotted as the dashed line. 
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Adding the individual demand curves gives the well-behaved market demand 

curves we were looking for (fig.45, fig. 46): 

 

Figure 45. The aggregated market demand curves for good X, resulting from all 

consumers playing a best-response to the price vector P (in other words, the  

market demand curve resulting from all consumers playing a CSS for P)  

results in exactly one primary kink, with one convex section above and  

one convex section (including one secondary kink) below. 

 

 

 

 

Figure 46. The aggregated market demand curves for good Y. 
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In summary, we can make a reasonable argument that the satisficing demand 

strategy aggregates to the market level in a well-behaved way (that is, up to a collection 

of secondary kinks which result from the “graininess” of market demand due to the 

discrete nature of any population of consumers), assuming that the individual satisficing 

consumers select their satisficing strategies in a manner which depends upon the prices 

vector they face. Although the concept of the calibrated satisficing strategy (CSS) is 

useful here, we have not yet spent any time explaining how we might expect a satisficing 

consumer to come to know the relevant parameters of a CSS for any particular budget 

problem. We shall explore this issue in the next section (Section IV: Identification). But 

for now, we will be content to show that, if all consumers play a CSS, then for each good, 

the individual demand curve kink prices coincide with each other and with the prevailing 

price of that good, and we have a well-behaved market demand curve which is 

qualitatively similar to the individual demand curve of a single representative satisficing 

consumer. 

 

 

Differential Rationality 

 

 
In the model as set up so far, it is natural to wonder whether any results obtained 

depend critically on the idea that agents are, in some sense, “stupid” when functioning in 

their role as consumers (and lack the computational capacity to optimize, and so must 

satisfice), and yet are “smart” in their role as producers and managers of firms (and 

therefore have the ability to work out the precise shape of the satisficing demand curve 

and its implications for the location of the profit-maximizing price for their own product). 

This is certainly a topic which deserves discussion. But, along several fronts, we believe 
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it is possible to demonstrate that this particular issue of differential rationality is not a 

major concern as far as limiting the applicability of this model’s results. 

Firstly, there is a scale argument to be made as to why firms might be more likely 

to have an incentive to be more precise about their choice of pricing strategy than 

consumers would be about their consumption strategy. Paralleling the argument first laid 

out by Stigler’s (1961) seminal paper on search theory, it should be clear that the payoff 

to more effective consumption or pricing strategies is increasing in the amount bought or 

sold. Since firms tend to operate on scales much larger than those at which consumers 

consume, the level of potential benefit from more sophisticated strategies is likely to be 

higher for firms than for individual consumers. Assuming that the costs of implementing 

a fully rational strategy are roughly of the same magnitude in either case (or at least, that 

the relative difference in implementation costs is smaller than the relative difference in 

scale), then it would make sense for firms to devote more resources to identifying and 

employing a sophisticated pricing strategy (that is, a strategy which develops and 

employs a great deal of information about the nature of the demand system which 

describes consumer behavior) than what an individual consumer might choose to employ 

with respect to her consumption strategy (that is, she may devote relatively fewer 

resources to being diligently certain that she has considered all available alternative 

consumption choices, or that she has carefully considered the true opportunity of any 

partial purchase). This difference in scale would account for a distinct level of apparent 

rationality between firm behavior and consumer behavior, even if we recognize the fact 

that the consumers are the very same agents who are ultimately running the firms, and 
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even if we imagine that they have the same capacity for calculation and comparison of 

alternatives in either role. 

In addition, there is an agent heterogeneity argument. It is possible that there are 

differences in the innate abilities and talents of agents, and that some consumers are more 

adept at making optimal choices than others. A simple version of this argument would 

involve two types of agents, “smart” and “stupid.” If we assume that the number of 

“smart” agents is small relative to the number of “stupid” ones, then we can easily 

envision a scenario where (relatively few) smart agents have roles making the strategic 

choices for firms, and the larger number of stupid agents have less sophisticated tasks in 

the operation of firms. In this case, firms could again reasonably be expected to be able to 

employ a more sophisticated strategy relative to consumers. If the number of smart agents 

is small enough relative to the overall population of consumers, then it may still be a 

reasonable approximation of the aggregate group of consumers to model demand as 

primarily deriving from the behavior of the (much larger) segment of less-sophisticated 

agents. 

But, perhaps most importantly, it should be argued that firm behavior in this 

model is not necessarily fundamentally founded on hyper-accurate knowledge of the 

demand curve, as we might expect. And likewise, satisficing consumer behavior is not 

necessarily as brainless as we might expect. 

To the first point, we can recall the result from Day (1967), mentioned earlier, 

that firms may themselves employ a type of satisficing process that converges to profit-

maximization, even in the case where they do not know their own profit functions. So, 

extending that the result to this model, we do have some reason to believe that, even if 
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firms are not fully aware of the specific shape of their own demand curve (including, for 

example, complete ignorance of the fact that the market demand curve is kinked), then it 

is still possible for firm pricing behavior to converge to the (profit-maximizing) kink 

price. Basically, the process specified by Day amounts to a numerical optimization 

process in the price space, where firms charge one price, observe the resulting profit, and 

then charge a higher (lower) price and observe if profit went up or down. If profit 

increases in response to the price change, then further price changes in the same direction 

are explored. If profit decreases in response to the price change, then price changes in the 

opposite direction are explored. The step size of the price change also depends upon the 

previously observed size of the change in profit. Firms settle on a final price once the 

changes in profit become “sufficiently” small, and so the firm’s price will eventually be 

within an arbitrarily small distance ε from the true profit-maximizing price (so that the 

minimum acceptable change in profit, ε, can itself be considered the satisficing criterion 

for the firm pricing process).  

Again, nothing about this process requires that the firm have any more intricate 

knowledge of the demand curve than the consumers themselves do. In fact, firms can in 

principle have even less knowledge
27

 of the demand curve for this result to hold. 

Furthermore, it is certainly not required that the firms have any knowledge of the fact that 

consumers are satisficers rather than optimizers. All that is required is that firms be 

pricing at (or arbitrarily near) the kink price. This pricing behavior would be part of an 

equilibrium, even if firms believed, mistakenly, that consumers were behaving in manner 

consistent with full optimization. That is, firms may be mistaken about the nature of the 

                                                 
27

 In reality, of course, firms are likely to have far more information about market demand than consumers 

are, but this observation is not essential to the result from Day (1967).  
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consumer strategy, and the nature of consumer preferences, but if they are correct about 

the location of the profit-maximizing price, then the strategy profile may persist 

indefinitely as part of an equilibrium. 

Of course, this combination of pricing strategy and (mistaken) firm beliefs are 

entirely consistent with the concept of model equilibrium discussed earlier. Firms may 

have a profoundly inaccurate misconception of the nature of the consumers’ preferences 

and strategies, but as long as the outcome of actual game play gives them no indication 

that they are mistaken (and there will be no such indication if the firm is pricing at its 

kink price), then there will be no incentive for that firm to alter either their pricing 

strategy, or their beliefs about the consumer. In other words, it is not, in principle, 

necessary to conclude that firms have any more intricate knowledge of consumers, or any 

higher levels of computational ability or rationality, than what the consumers themselves 

have. 

In addition, it is also not necessarily the case that consumers who choose to 

employ a satisficing strategy are “stupid.” Particularly in the case where there is some 

resource or utility cost required in order to employ a more involved optimizing strategy, 

then it is if individual consumers are all price-takers, then a simpler satisficing strategy 

will yield strictly higher utility than optimizing will
28

. This feature of the model is 

discussed in greater detail in the following section, under the topic of business cycles. 

 

                                                 
28

 “Optimizing” used here in the sense of finding a consumption bundle which yields the highest possible 

direct utility for every price vector, and not necessarily the highest possible payoff for the payoff function 

which includes both direct utility from consumption as well as information/implementation costs.  
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CHAPTER V 

 

IDENTIFICATION 
 

 

So far, we have developed a model of price-competing markets in which 

consumers have the option of employing a satisficing demand strategy, in addition to the 

standard fully optimizing consumption strategy. We have demonstrated the existence of a 

fully stable Nash equilibrium in the overall market game, despite the fact that consumers 

may be playing a strategy which is ex ante only boundedly rational. A significant feature 

of this equilibrium, in a static analysis, is that it is possible for equilibrium prices to be 

supported at levels above marginal cost, even in the case where competing firms supply 

products which are perfect substitutes for each other
29

. Obviously, the present model is 

not the only model for which this qualitative result holds. 

If firms compete in quantities, rather than prices, for instance, then it is certainly 

well-known that price above marginal cost can be supported in equilibrium. Likewise, if 

there is some sort of transportation cost or information cost involved with the process of 

buying from different sellers, then it will also be the case that prices can be supported 

above marginal cost, even for perfect substitute goods. Finally, it should also be noted 

that, since preferences cannot be observed directly, it is also always a possibility that the 

consumer(s) perceive some relevant difference between products that we might otherwise 

expect to be close or perfect substitutes. Therefore, even if we were to observe price 

competition in markets with close substitutes leading to pricing behavior which is well in 

                                                 
29

 As mentioned earlier, this result is not in conflict with the uniqueness proof for the single Nash 

equilibrium in standard Bertrand competition, since the setup of the current model does not satisfy the 

hypothesis of the proof: instead of a single demand curve which is taken as given in a particular market, 

there are a collection of possible demand curves which may result from differing choice of consumer 

strategies, even in the face of a given fundamental consumer profile of wealth and preferences.  
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excess of marginal cost (say, in the market for sugary carbonated sodas, for instance), we 

would still not be able to consider that observation as definitive empirical evidence of 

satisficing consumer behavior. Such a market would be qualitatively consistent with both 

satisficing consumers, as well as with Bertrand competition with product differentiation.  

We should certainly point out that, with respect to transportation costs, we hope 

that the current model is easily differentiable from the literal interpretation of standard 

transportation cost model, since we have in mind that the satisficing model can explain, 

among other things, how a consumer might make a purchase decision when faced with an 

array of similar choices which are all for sale at the same physical location
30

. A literal 

interpretation of a travel cost model obviously would not be a valid model for this 

situation, although interpreting the concepts of distance and travel cost more figuratively, 

as in the common interpretation of Hotelling’s law, might make it harder to differentiate 

between travel cost models and our satisficing model. 

Nonetheless, as previously discussed examples demonstrate, for a given utility 

function which specifies the precise relationship between the various goods available to 

the consumer (so that, in a hypothetical example, we do not need to admit of any 

uncertainty whatsoever concerning the psychological “distance” between any of the 

products), the price profile which prevails in satisficing equilibrium can be strictly higher 

than the price profile which is possible in optimizing equilibrium.  

                                                 
30

 For example, one of my earliest inspirations for this satisficing model involves my own personal 

experience grocery shopping (specifically, for potato chips). My wife and I had a particular style of potato 

chips that we would buy on a regular basis. When I went down the potato chip aisle, there were probably 

dozens of different bags of chips for sale on the same few shelves. However, I found myself repeatedly 

buying my customary chips, and in doing so, rather automatically ignoring any of the bags of chips – brand, 

style, and most importantly, price. This behavior is absolutely inconsistent with optimizing behavior, and is 

clearly also inconsistent with the literal version of a typical travel cost model (linear city, etc). 

Furthermore, since I essentially never made any attempt to verify that there might be a low enough price 

that could coax me into trying a different brand of potato chip, it is probably true that this behavior was not 

even consistent with the “psychic distance” interpretation of travel cost models, either. 
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In other words, if we observe an actual market for which the prevailing price is 

greater than marginal cost, we might not necessarily know whether P > MC because the 

consumers are satisficing or because they perceive an importance difference between the 

products supplied by various firms in the market. But we can be confident in concluding 

that, even if P > MC because optimizing consumers perceive a differentiation in the 

products supplied by competing firms, prices would possibly be even higher still if 

consumers were to satisfice rather than optimize (holding preferences unchanged). 

 

 

Features Unique to Satisficing Demand Curves 

 

 
While looking only at the static qualitative features of a market equilibrium 

(primarily, the level of price in relation to marginal cost) might give us only a limited 

ability to differentiate between two hypotheses regarding consumer behavior, we can 

begin to see a wider range of variation in the predictions of the two models (optimizing 

demand, satisficing demand) if we begin to consider more dynamic aspects of how price 

competing markets behave. 

First, we can point to a particular characteristic of the “kinked” demand curve 

which was pointed out long ago by the original authors of a kinked demand curve model 

(Sweezy, and Hall & Hitch). As previously mentioned, if the demand curve for a product 

is in fact kinked, so that there is a point of non-differentiability somewhere along it, then 

marginal revenue for that product will exhibit a jump discontinuity at the kink. This 

implies that the “kink price” is profit-maximizing for the seller not just for a single value 

of marginal cost, but for a range of values of marginal cost. In turn, this means that the 
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profit-maximizing price will remain constant even in the face of cost shocks (assuming 

the shocks are small enough in magnitude).  

In light of this, we would expect the prices for consumer goods to be somewhat 

less volatile than prices for inputs (because we would expect consumers to be more likely 

to satisfice than producers are…more on this later). And in fact, when we compare CPI 

and PPI for the last 20 years or so, we do see considerably higher price volatility for 

consumer goods than producer goods (fig. 47).  

 

 

Figure 47. CPI vs. PPI volatility (Source: St. Louis Fed). 

 

 

Furthermore, the particular derivation of the satisficing demand curve has 

additional interesting features not predicted by the original kinked demand curve models. 

Specifically, satisficing demand curves in particular may exhibit the property that prices 

may be upwardly flexible but downwardly rigid. 
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Recall that the satisficing demand curve is composed of two sections, one 

representing the locus of points in price-quantity space for which the consumer’s budget 

constraint is just binding (under the particular satisficing strategy used to derive said 

demand curve), and another representing the locus of points for the consumer’s worth 

constraint is just binding for the good corresponding to the particular demand curve in 

question. Only when the price vector is such that the actual price and the kink price 

correspond for all goods will it be the case that the consumer is playing a best response 

(as both conditions for utility maximization are met: condition 1 being that the marginal 

rate of transformation equals the marginal rate of substitution across all goods, and 

condition 2 being that all available income spent). In section III, we demonstrated that, 

for the satisficing demand curves we have described, it can never be profit-maximizing 

for any firm (with positive marginal costs) to price below the kink price of the market 

demand curve. It can be profit-maximizing for a firm to price at the kink price, assuming 

that marginal cost falls within the range of marginal revenue at the kink. However, if 

marginal cost should ever rise above that range, then the profit-maximizing price will lie 

strictly above the kink price.  

Assume that a market is initially in satisficing Nash equilibrium, with all firms 

pricing precisely at the kink price. If the production process experiences relatively small 

cost shocks, price and output can remain unchanged indefinitely. But if there should 

happen to be a large enough positive cost shock, then profit-maximization will dictate 

that prices rise in this market, and that quantity falls. However, though the higher price is 

consistent with profit-maximization among firms, this situation cannot continue to be a 

Nash equilibrium in the overall market game, because once prices move above the kink 
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price, consumers are no longer playing a best response strategy, relative to the new price 

vector. 

Specifically, consumers will be consuming along the interior of the upper portion 

of their demand curve for at least one good, which implies that consumers will have a 

positive amount of income which is going unspent (since consumption is no longer also 

taking place along the lower portion of the demand curve). They could, therefore, 

increase their overall utility by consuming more (i.e., they have a profitable deviation). 

However, more consumption is not possible under their existing satisficing strategy, since 

the fact that all goods are being consumed along the upper portion of the demand curve 

means that the worth constraint binds for all goods at quantities less than what would be 

needed to exhaust all income.  

Of course, one way that consumers could alter their strategy so as to begin 

playing a best response to the new (higher) price vector would be to switch from 

satisficing to optimizing. But consumers could also play a best response to the new price 

vector simply by altering their choice of µ. If the higher prices make the old worth 

constraint so restrictive that not all income can be spent under the old decision rule, then 

by relaxing the worth constraint, consumers can improve their total utility under the new 

price vector. Of course, by downwardly revising µ, and effectively selecting a new 

satisficing demand strategy, consumers will also end up changing the location of the kink 

on their demand curves for all goods. Specifically, we could imagine that consumers, 

realizing that each dollar does not go as far as it used to due to higher prices, have 

lowered expectations for how much utility each dollar ought to bring them, and so keep 

revising their estimate of µ until their new demand curves have kinks located precisely at 
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the prevailing price level. In this case, a new Nash equilibrium can be reached, where the 

higher prices are still profit-maximizing, but satisficing consumers are still playing a best 

response to those prices. If and once this happens, then not even an equally large negative 

cost shock would be sufficient to return prices to their initial equilibrium levels. Again, 

assuming that the negative shock occurs after the adjustment of consumer satisficing 

strategies, then the lower (original) prices would then be located along the lower portion 

of the new satisficing demand curves. As a result, even if costs were to return to normal, 

prices would be expected to remain elevated for some time, since consumers have taken 

the chance to reevaluate their assessment of µ, or of how much they expect each dollar of 

income should be able to buy for them, in utility terms. 

Here, we present a numerical example of this “upwardly flexible, downwardly 

rigid” price characteristic. This shows the initial satisficing equilibrium for the utility 

function  

 

U(x, y) = 2000 ln(.2 x +1)+ 2000 ln(.2 y + 1) 

 

where consumer wealth is W = 100 and constant marginal cost  is c = 3, and the 

particular satisficing strategy being used by the consumer is µ = 10 and Π = ( x , y ). 

As previously shown, the Nash equilibrium price vector for this market is ( 30 , 30 ), 

which does correspond to the kink price on each demand curve (fig. 48). 
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Figure 48. Initial Equilibrium at price vector (30, 30). 

 

 

Assume that there is a cost shock which increases the marginal cost of both firms, 

and leads to a situation where the higher price vector (Px, Py) = (35, 35) now becomes 

profit-maximizing for each firm. Until the consumer change her strategy, it must be the 

case that both firms’ price of 35 will be above the consumer’s kink price. As we have 

mentioned, although this situation is consistent with profit-maximization for each firm, 

this situation could not be a Nash equilibrium in the market game. The consumer’s 

unspent income implies that that condition 2 for utility maximization is not met, and the 

consumer’s satisficing strategy cannot be a best response to the price vector. 

If we do in fact assume that the price vector (35, 35) is profit-maximizing, then 

obviously neither firm will have an incentive to alter price. The only avenue remaining 

for adjustment to equilibrium is for the consumer to alter her demand strategy. 

Specifically, she can lower the value of µ that she is using, which will lower the 

marginal utility per dollar threshold that potential purchase need to satisfy, and therefore 

will make her worth constraints for all goods less restrictive. This will enable her to 

spend all of her income, while continuing to employ a satisficing strategy (fig. 49).  
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Figure 49. By decreasing µ from 10 to 9, the consumer can maximize utility under the 

price vector (35, 35), and doing so moves the kink price up to meet the price vector. 

(Demand curve for Y is symmetrical). 

 

 

The consumer can exercise a profitable deviation from her original satisficing strategy by 

revising her estimate µ downward. This lowers the threshold for potential purchases to 

satisfy, and enables her to exchange 100% of her available wealth for goods. 

Furthermore, this alters the demand curve for each firm, and once again aligns the profit-

maximizing price vector with the kink price. Left-hand marginal revenue at a price of 35 

will be higher under the new demand curve than marginal revenue was at the same price 

on the original demand curve. Therefore, if a price of 35 was profit-maximizing before 

the revision in µ, it will continue to be profit-maximizing after the change in µ. And, 

importantly, even if costs were to subsequently return to their original levels, neither firm 

will have any incentive to lower its price. 

Through this example, we can begin to see some hints of a fundamental 

asymmetry between upward and downward price movements. That is, using a given 

satisficing strategy as a starting point, prices below the kink level will likely never persist 

0 2 4 6 8
X0

10

20

30

40

Px

Demand Curve for Good X



 

189 

 

for long, since firms can always strictly increase profit by raising price. But prices above 

the kink might persist for a while, if costs shocks are large enough. In this case, the 

satisficing consumer’s best response is to alter her strategy in such a way as to “lock in” 

these higher prices, by altering µ, and effectively shifting the demand curve kink upward 

to meet the high prices. Therefore, if there is some temporary cost shock which initially 

raises prices above the kink, when the consumer revises µ in response, there may be 

something of a “ratchet up” effect. Once the location of the demand kink has changed, 

then, as long as the consumer is playing the equilibrium satisficing strategy, there will be 

no immediate incentive for firms to lower prices, even if costs should subsequently fall 

back to their original levels. This is true despite the fact that the firms are assumed to be 

competing in prices. In other words, it is at least possible that there may exist a structural 

bias in markets with satisficing consumers, in which prices are upwardly flexible, but 

downwardly rigid.  

This example provides us with another clear prediction about consumer behavior 

which cannot easily be matched by existing models, and therefore gives us another 

potential way in which the satisficing demand model can be differentiated from the 

predictions of existing models. 

With respect to this predicted possibility of upwardly flexible, downwardly rigid 

output prices in response to cost shocks, we can look to the literature which investigates 

the relationship between movements in the price of crude oil and resulting movements in 

the price of gasoline. In various studies, Bacon (1991), Karrenbock (1991), Borenstein, et 

al. (1997), Balke, et al. (1998), and Brown and Yucel (2000) all find empirical evidence 

that gasoline prices do react asymmetrically to increases and decreases in the price of 
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crude oil. In particular, Brown and Yucel note, conspicuously, that “In addition, no 

formal theory relating market power to asymmetry has been tested (to our knowledge).” 

It is encouraging to see that the present model is potentially consistent with the observed 

empirical evidence in this area, and also a candidate to provide a theoretical structure 

which may begin to explain this previously unexplained market behavior. 

 

 

Thoughts on Monetary Policy 
 

Also worth emphasizing is the fact, when consumers behave in the manner 

described by this satisficing demand model, it will always be the case that their beliefs 

about the utility value of a dollar (i.e., µ) are correct, in equilibrium. Most of the time, 

this is implies that consumer beliefs about µ are self-fulfilling prophecies. That is, 

consumers each have their own utility function, and their own estimate of µ, and then 

firms select their own prices in such a way as to maximize profit. This then implies that 

consumers buy the amount of each good for which it will be case that the marginal utility 

of their final dollar of expenditures (for each good) is precisely equal to µ. Since there is 

nothing which requires any consumer to select the “correct” µ for every price vector, so 

that µ=λ (where λ is the Lagrangian multiplier of the fully rational constrained 

optimization problem, or the shadow value of wealth in utility terms) for every price 

vector, it is at least worth considering the question of to what extent changes in the 

money supply effect real output. Since we assume that consumers may find it reasonable 

to satisfice rather than truly optimize in the static setting of their single-period budget 

problems, it is not a forgone conclusion that these consumers would react fully rationally 

to changes in the money supply by altering their µ’s in precisely the “correct” value 
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based on the size of the change in the money supply. Although the current model does 

not include the necessary structure for assessing the impact of monetary policy (we have 

no financial assets such as bonds which may be bought or sold by the central bank, no 

structural equation for how aggregate consumption and prices respond to changes in the 

money supply, and no interest rates) the fact that consumers always behave in a way 

which confirms their own µ
31

 is at least suggestive of the possibility that there will be 

rational expectations equilibria in which money is non-neutral in the real economy. 

 

 

Business Cycles 
 

 

A final area where expect to be able find implications of the satisficing demand 

model which are distinct from those of existing models concerns the nature of business 

cycles. As in Adam (2005), we hypothesize that one effect of boundedly rational 

consumption behavior might be cyclical behavior of macro level variables such as output, 

employment, and inflation
32

. Although we have not yet been able to develop a 

satisfactory specific mathematical or numerical example, we can at least try to sketch the 

intuition underlying our hypothesis that the satisficing demand model is consistent with 

the observed stylized facts of the typical United States business cycle. 

The main point here is that the satisficing demand model illustrates that all price-

competing markets exhibit multiple Nash equilibria: there is (usually) one Nash 

equilibrium where all consumers play an optimizing consumption strategy, and then there 

                                                 
31

 Or, more precisely, the fact that firms never find it profit-maximizing to price below the market kink 

price. 

 
32

 I wish to acknowledge a debt of gratitude to Dr. Klaus Adam, whose excellent paper, cited here, was 

perhaps the earliest conceptual inspiration for this dissertation. 
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is an entire class of additional Nash equilibria in which consumers play a satisficing 

demand strategy. The specific realization of the set of satisficing Nash equilibria depends, 

in part, upon the group of consumers’ estimate of the utility value of a dollar at any point 

in time. 

We hypothesize that many of the features of the US business cycle can be 

explained in terms of the process of endogenous adjustment or switching back and forth 

between these two types of consumption behaviors. The gist of the story we are trying to 

tell here, and the fundamental feature of the model which causes us to suspect that this 

model may be a good explanation for the existence of business cycles, is that when all 

consumers are optimizing, then individual consumers have an incentive to satisfice 

instead, and when all consumers are satisficing, then individual consumers have an 

incentive to optimize. 

This story, as we are in the process of trying to tell it, depends upon at least two 

assumptions. First, all consumers are price takers. And second, that consumers have a 

lexicographic preference for strategy-payoff combinations which values utility and 

simplicity. That is, they place the foremost importance on selecting a strategy which 

provides the highest level of direct utility. But, if two distinct strategies were to offer the 

same amount of direct utility in a given situation, then they strictly prefer to use the 

simpler strategy. Specifically, we will assume that, for a given price vector, every 

consumer would prefer to employ a satisficing strategy rather than an optimizing 

strategy, if that strategy could be guaranteed to select a bundle which yields the same 

amount of direct utility as optimizing.  
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Recalling the definition of a Calibrated Satisficing Strategy (CSS), we know that 

consumers will always have at least one such strategy for any price vector/income 

combination for which they have previously optimized. Here, the distinction between the 

two involves the manner in which consumers utilize their previous information. True 

optimization, arguably, treats all previous information about prices as irrelevant; to find a 

truly optimal bundle yesterday, it was necessary to compare every possible margin of 

consumption against every other margin of consumption. To find a truly optimal bundle 

today, it is also necessary to compare every possible margin of consumption against 

every other. Even if no prices change from period to period, true optimization requires, at 

a minimum, that consumers verify that the level of every price has remained unchanged. 

Satisficing, on the other hand, allows the consumer to ignore the prices of goods which 

are never actually purchased (along the principal consumption path), and to ignore the 

comparison of marginal utility levels for quantities higher than the consumption path 

selects. 

In other words, optimizing is more complicated because it requires that the 

consumer consider, at least implicitly, every bundle in the budget set, while satisficing 

only requires purchases along the consumption path to be considered. If consumers have 

a preference for simplicity, then it can never be a best response for a price-taking 

consumer to optimize under a given price vector, if that consumer has the information 

available necessary to employ a CSS for that vector. Based on this, it can be said that the 

employment of a satisficing strategy can be thought of as a type of “memory” on the part 

of consumers, since the parameters of a CSS are derived from a previous period where 

the consumer actually optimized. 
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Roughly, we can begin to describe the intuition of the cyclical behavior of 

markets as a dynamic switching between satisficing and optimizing consumption 

regimes. If we start in a situation where consumers all optimize, we get one price vector 

and corresponding level of output. But, if this price vector were to persist through a 

certain period of time, price-taking consumers each individually have an incentive to 

“play from memory” rather than to truly optimize, and thereby utilize the costly 

information which was obtained in previous periods of optimizing. As more and more 

consumers switch from an optimizing to a satisficing (CSS) consumption regime, firms 

have more and more incentive to increase price, as a higher proportion of satisficing 

consumers means that their demand curve becomes less elastic, and they lose fewer sales 

at higher prices than they would under a fully optimizing set of consumers. Competition 

amongst firms therefore leads to higher prices once consumers have begun to satisfice. 

 If we assumed that more complicated strategies involved an explicit resource cost 

C to employ, this would strengthen our results, but the lexicographic preference for 

simplicity is the weakest assumption which supports the following conclusion. In 

addition, we shall here assume that there are two firms which supply the market with 

perfect substitutes, but many individual consumers who are each price-takers (though 

their joint behavior may be described by a positive representative consumer). We will try 

to motivate our story using myopic Nash equilibrium in each stage of the game as our 

equilibrium concept (ignoring for now any more complicated multi-period effects on 

consumer or firm strategies, and ignoring more dynamic notions of what an equilibrium 

is in this multi-period market game). 
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Expansionary/Inflationary Phase 

 

 

We begin our description of a generic business cycle at period 0, where all 

consumers are playing an optimizing demand strategy, and both price-competing firms 

charge the Nash equilibrium price which is equal to their (identical) constant marginal 

cost of production. The prevailing price vector is P
MC

. 

In period 1, this same strategy profile cannot continue to be a Nash equilibrium. 

Consumers, having optimized under P
MC

 in period zero, now have all the information 

that they need to play a CSS (with respect to P
MC

) in period 1, and given that the CSS 

does not require them verify that every price has remained unchanged (and doesn’t 

require them to perform a complete optimization over again in period 1 which they have 

already performed), CSS is lexicographically preferable to optimizing, for every 

individual consumer (and the CSS is even more preferable if there is an information cost 

C which must be paid in order for consumers to fully optimize). As a result, no consumer 

can be playing a best response in period 1, under these assumptions, if the price vector is 

still P
MC

, and the consumer is optimizing. Each consumer in period 1 would prefer 

instead to “play from memory,” and, through the employment of a CSS, just buy the 

same things in period 1 that they bought in period 0. 

However, even though all consumers would be playing a best response in each 

stage if they optimized in period zero, and then played CSS(P
MC

) in period 1, this 

situation cannot be a Nash equilibrium either. If all consumers were playing their 

preferred satisficing strategy in period 1, then the price vector P
MC

 would not be profit-

maximizing for either firm. Instead, once all consumers (or even just a positive fraction 
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of all consumers) have begun to satisfice rather than optimize, then both firms have an 

incentive to raise their price above marginal cost. 

We hypothesize that what might actually happen in this case is that, having 

exhibited a standard Bertrand equilibrium outcome in period 0, the market will slowly, 

over time, evolve from that Bertrand equilibrium to a satisficing equilibrium. Each 

subsequent period after period 0, a fraction of consumers will satisfice, allowing firms to 

increase their prices a little bit. Higher prices lead to two reinforcing effects. The first 

effect results from the fact that slightly higher prices mean, holding income constant, the 

worth constraints will begin to bind for both goods before the budget constraint does. As 

in the example above concerning upwardly flexible but downwardly rigid prices, this 

means that each consumer has an incentive to revise her estimate of µ downward, thereby 

giving herself a less restrictive decision rule which allows her to spend all of her income. 

The second reinforcing effect is that, as prices rise, so does marginal revenue product
33

, 

and so, ultimately, so must wages. As wages increase, each consumer has more income to 

spend on each of the two available goods. This also must eventually lead to a downward 

revision of µ, all else equal. 

The reason that both of these effects are “reinforcing” is that, as µ gets lower and 

lower, then the ability of the price-competing firms to raise their prices becomes greater 

and greater. As a result, we hope to be able to show that this inflation cycle can continue 

in the economy for some time. Notably, this seems like it will occur even in the absence 

of any sort of monetary authority or even an explicitly modeled money supply. 

                                                 
33

 My current attempts at mathematically modeling this have been troublesome. I’m having some trouble 

justifying how or why quantity would increase as price increases, which I suspect must be a key part of this 

“expansionary phase” story. 
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An important difference between the process described here and a standard model 

in which information costs C allow for prices to exceed MC in what would otherwise be 

standard Bertrand competition is that, in the standard approach, prices can exceed MC by 

at most C. But in this setup, if there were an information cost C which was required of 

any consumer who wished to optimize in any given period, then C would constrain only 

the amount by which prices could increase in any one period. So long as prices increase 

by less than C in any period, no price-taking consumer has an incentive to optimize 

instead of satisfice. But the cumulative effect of several consecutive periods in which 

satisficing consumer behavior has allowed prices to slowly rise may, in principle, by 

much larger than C. The ultimate equilibrium price level will depend upon consumer 

wealth, and on consumers’ estimates of µ, and not on the size of C. Information costs, 

therefore, can only place a constraint on the rate of growth in prices, not, ultimately, on 

the level of prices. As a result, we hope to be able to show that satisficing consumption 

behavior may lead to long periods where feedback between rising prices, rising marginal 

revenue product, and rising wages, allow mild —but persistent— inflation to take place 

in an economy. 

 

 

Contractionary Phase 

 

 

While we expect to be able to show that the inflationary phase of the business 

cycle can persist for some time in this model, it wouldn’t be a very satisfactory model of 

business cycles if that expansionary phase never actually ended. We hope to motivate the 

narrative of how economies can find themselves in period recessions as being basically 

the story of how the economy switches from a satisficing to an optimizing equilibrium. 
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Having exhibited a period of sustained inflation, one way
34

 in which an economy might 

find itself in recession is through the actions of some sort of central monetary authority 

(which we have not needed to consider until now). If that central monetary authority 

notices that inflation is proceeding too rapidly, it may feel a policy intervention designed 

at breaking the wage-price feedback alluded to in the preceding section is warranted. By 

acting to increase interest rates and affect the real economy through the investment 

channel, for instance, the monetary authority can indeed achieve their goal of reducing 

inflation. But at the same time, they may also end up leading to the unwinding of the 

process described above. As real demand falls in interest-rate sensitive sectors, so too 

will employment in those sectors. As employment falls, income falls. Both this fall in 

income, as well as pessimistic expectations about the future can probably be expected to 

lead to an increase in optimizing behavior, as unemployed and employed-but-skittish 

workers become more careful with their money across the board. But even among those 

consumers who continue to satisfice, falling income and falling employment will lead to 

upward revisions in µ. Higher µ’s are not able to support prices as high as they what 

prevailed prior to the start of the recession, so firms that do not lower their prices will see 

their sales fall. This will lead to these firms being unable to justify keeping their own 

employment at pre-recession levels, and so will lead to further layoffs, less income, and a 

combination of more consumer optimizing and higher µ’s from those consumers who 

continue to satisfice. Both of these last effects will mean that some workers whose wage 

                                                 
34

 There are other recession triggers that I’ve considered, including some unforeseen shock with darkens 

expectations about the future across the board, as well as the idea that wages do not quite keep pace with 

inflation for the all of the expansionary phase, so that eventually consumers find themselves in a situation 

where their real wage is low enough, or their debt levels are high enough, that they no longer find it a best 

response to satisfice. The central bank story just seems like the easiest story to actually use to sketch out 

this portion of the business cycle at the moment.  
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was justifiable to the employing firm during a time when every consumer was satisficing, 

and when prices were rising, will no longer pay for themselves, and so will be laid off, 

furthering the downward cycle. 

The recession reaches its trough when all consumers are once again optimizing, 

prices are low, but the economy is once again in Bertrand equilibrium. 

Once again, this was merely an attempt to sketch out the intuition underlying our 

attempt to describe business cycles in light of the satisficing demand model. There is 

obviously a great deal of work yet to do on developing a mathematical example of such a 

business cycle, but the central hypothesis is that the transition back and forth between 

satisficing and optimizing equilibria can be a compelling way to explain why it is  that 

economies do experience booms and recessions. 
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CHAPTER VI  

 

CONCLUDING REMARKS 

 

 

We have begun to develop a rigorous model of consumer behavior which is 

based, not on a standard optimization algorithm consistent with full rationality and 

subgame perfection, but based instead upon a simplifying rule of thumb, which we model 

as satisficing behavior. We have begun to explore the consequences of this type of 

boundedly rational consumer behavior, within the context of a specific, somewhat 

stylized model. We have demonstrated that it is possible for ex ante boundedly rational 

behavior to nonetheless form part of a Nash equilibrium strategy profile. In other words, 

the particular strategy choices of satisficing consumers may end up being rationalized by 

the strategic behavior of firms which compete in prices to supply the market with output. 

In strategic settings, what is “rational” and what is “irrational” is, in some sense, a 

murkier proposition than the same question posed in a static setting. Our main hope is 

that we have, at a minimum, made a reasonable case that we, as economists, ought to 

consider broadening the scope of models which we consider to provide a compelling 

description of consumer behavior, and attempt to explore this and related models in the 

future as thoroughly as possible. We further hope that such models may ultimately prove 

to be a useful and appealing source of new insight into the way in which consumers and 

firms behave within the context of the strategic interaction of markets, and new insight 

into the types of outcomes for those markets that can be supported in equilibrium. 
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To the extent that this model does provide novel insight, we do wish to make clear 

that our view is that this insight ought to be properly viewed as a complement, rather than 

a substitute, to the many well-known and valuable lessons of standard models, which 

rightly form the foundation of consumer theory in particular, and microeconomics in 

general. 

We also recognize that this work also potentially opens up several new areas 

which appear promising for future research. First and foremost, we must admit that there 

is still plenty of room for exploring the implications of the most basic form of this model. 

Furthermore, there is similar room for continued exploration of the implications of each 

line of discussion laid out in Chapter V, Identification. Undoubtedly, the investigation of 

the implications of satisficing consumption behavior is quite preliminary in this 

document, but we are hopeful that future work will be able to make more progress along 

these lines. 

We also suspect that there is future opportunity for successful and compelling 

investigation along several lines of testing, including a more thorough investigation of the 

relationship of gasoline and crude oil prices, the implications for monetary policy, and 

perhaps even direct testing, through an appropriate designed experimental study, of the 

underlying structures of the model. 

We close with two final possibilities for future work, which we have not 

previously touched on. First, since the behavior of consumers, and consequently the 

location of market Nash equilibria, depends crucially on the estimate µ of the utility value 

of a dollar, we have reason to believe that there may be further insight to be gained by 

extending the model to investigate the manner in which income, or more specifically, the 
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distribution of income, might impact consumer and market behavior, in a positive sense 

rather than in a normative one. 

Finally, we also suspect that some version of a satisficing model might do well in 

explaining why we seem to observe persistent cost increases in certain sectors, such as 

health care or higher education, which consistently outpace the rate of income growth or 

inflation. We are especially hopefully of developing future fruitful work in these areas, 

since it we suspect that these two sectors in particular are likely to have a close 

correspondence with the setup of our current model; specifically, consumers in those 

markets potentially do not compare the perceived utility of those goods against their true 

opportunity cost, as calculated by considering every other available margin of 

consumption. In other words, if consumers essentially take it as given that they are going 

to purchase health care or higher education, we expect that we may find a close 

correspondence between their actual behavior in those particular markets, and the 

behavior predicted by our current model. 

 

 

 



 

203 

 

APPENDIX 

 

SAMPLE MATHEMATICA CODE 
 

 

The code appearing on the following pages is a sample of the actual program used 

to generate most of the graphics included in this work, as well as to calculate the shape 

and location of the relevant functions, loci, equilibria, and vector fields. The program 

itself was written and executed using Wolfram Mathematica® 7 for Students. 

Sample programming related to the calculation of the relevant constituent parts of 

a satisficing demand system for a single consumer in a two-good economy can be found 

on pages 204 through 210. Sample code used for the more complicated problem of 

finding aggregated market demand curves in settings where there are multiple 

heterogeneous consumers, and for calculating Calibrated Satisficing Strategies (CSS), 

can be found on pages 211 through 228. 



Single Consumer Case

"Graph Slider Names in @BracketsD Denote Slidable Display

Parameters Hhorizontal range, vertical range, etc.L";

Quiet@ClearAll@"`∗"DD

"User−Defined Functions and Commands";

ColumnSwap@list_D :=

Drop@Transpose@Insert@Transpose@listD, list@@All, 1DD, 3DD, 8<, 81<D;

Default@PlotTranspose, 2D = Null;

Default@PlotTranspose, 3D = Null;

Default@PlotTranspose, 4D = Null;

Default@PlotTranspose, 5D = None;

Default@PlotTranspose, 6D = Automatic;

PlotTranspose@plot_, plabel_.,

xlabel_., ylabel_., gridlines_., plotstyle_.D := I
Points = Cases@plot, 8_?NumericQ, _?NumericQ<, 86<D;
Pause@TransposeDelayD;
ListLinePlot@ColumnSwap@PointsD, AxesLabel → 8xlabel, ylabel<,
PlotLabel → plabel, GridLines → gridlines, PlotStyle → plotstyleDM

"Structural Parameter Values";

a = 3000; b = 1 ê 10; cc = 1 ê 10; d = 1;

W1init = 100;

mu1init = 10;

xCost = 3;

yCost = 3;

"Display Parameter Values, non−structural variables";

TransposeDelay = 3;

Group0PMax = 40;

Group1PMax = 40;

Group2PMax = 40;



Group3PMax = 40;

Group4PMax = 40;

Group0QMax = 25;

Group1QMax = 25;

Group2QMax = 25;

Group3QMax = 25;

Group4QMax = 25;

PMaxMarket = 40;

QMaxMarket = 50;

PmaxBR = 40;

EpilogPx = 35;

EpilogPy = 35;

"Utility Functions and Partial Derivatives";

Utility1@x_, y_D = a Log@b x + cc y + dD;

Ux1@x_, y_D = Derivative@1, 0D@Utility1D@x, yD;
Uy1@x_, y_D = Derivative@0, 1D@Utility1D@x, yD;
Print@"Ux1@x,yD = ", FullSimplify@Ux1@x, yDDD
Print@"Uy1@x,yD = ", FullSimplify@Uy1@x, yDDD

"Principal Path of Π Field

LHS=RHS −> 8LHS,RHS<";

piPP1 = 8y, x<;

"Satisficing Critical Values";

"Consumer 1";

c1xcrit0@px_, mu1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, yD<,
D



Max@0, x ê. First@Solve@Ux1@x, y1D 	 mu1 px, xDDD;

c1ycrit0@py_, mu1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, xD<,
Max@0, y ê. First@Solve@Uy1@x1, yD 	 mu1 py, yDDD;

c1xcrit1@px_, py_, mu1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, yD, y2 =

y ê. First@Solve@Uy1@x, yD 	 py ∗ mu1 && piPP1@@1DD 	 piPP1@@2DD, y, xD<,
Max@0, x ê. First@Solve@Ux1@x, y1D 	 mu1 px, xD,
x ê. First@Solve@Ux1@x, Max@0, y2DD 	 mu1 px, xDDD;

c1ycrit1@px_, py_, mu1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, xD, x2 =

x ê. First@Solve@Ux1@x, yD 	 px ∗ mu1 && piPP1@@1DD 	 piPP1@@2DD, x, yD<,
Max@0, y ê. First@Solve@Uy1@x1, yD 	 mu1 py, yD,
y ê. First@Solve@Uy1@Max@0, x2D, yD 	 mu1 py, yDDD;

c1xcrit2@px_, py_, mu1_, W1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, yD,
y2 = y ê. 8y −> c1ycrit0@py, mu1D<<,

Max@0, x ê. First@Solve@W1 	 px x + py y1, xD,
x ê. First@Solve@W1 	 px x + py y2, xDDD;

c1ycrit2@px_, py_, mu1_, W1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD 	 piPP1@@2DD, xD,
x2 = x ê. 8x −> c1xcrit0@px, mu1D<<,

Max@0, y ê. First@Solve@W1 	 px x1 + py y, yD,
y ê. First@Solve@W1 	 px x2 + py y, yDDD;

"Graph of Consumer 1 Constraints in Consumption Space";

Manipulate@Plot@8Flatten@Solve@W1 	 py y + px x, yDD@@1DD@@2DD,
Flatten@Solve@Ux1@x, yD 	 mu1 px, yDD@@1DD@@2DD, Min@c1ycrit0@py, mu1D,
Flatten@Solve@piPP1@@1DD 	 piPP1@@2DD, yDD@@1DD@@2DDD<,

8x, 0, 50<, PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"X", "Y"<,
PlotLabel → "Consumption Space HX ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<, 88py, 10, Subscript@P, yD<, 0, 50<,



88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88mu1, mu1init, Subscript@µ, 1D<, 0, 100<D

Manipulate@
Plot@8Flatten@Solve@W1 	 py y + px x, xDD@@1DD@@2DD, Min@c1xcrit0@px, mu1D,

Flatten@Solve@piPP1@@1DD 	 piPP1@@2DD, xDD@@1DD@@2DDD,
Flatten@Solve@Uy1@x, yD 	 mu1 py, xDD@@1DD@@2DD<, 8y, 0, 50<,

PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"Y", "X"<,
PlotLabel → "Consumption Space HY ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<, 88py, 10, Subscript@P, yD<, 0, 50<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88mu1, mu1init, Subscript@µ, 1D<, 0, 100<D

"Demand Functions";

"Inidvidual Demand Functions";

Default@c1Dx, 3D = mu1init;

Default@c1Dx, 4D = W1init;

c1Dx@px_, py_, mu1_., W1_.D :=

Max@0, Min@c1xcrit1@px, py, mu1D, c1xcrit2@px, py, mu1, W1DDD

Default@c1Dy, 3D = mu1init;

Default@c1Dy, 4D = W1init;

c1Dy@px_, py_, mu1_., W1_.D :=

Max@0, Min@c1ycrit1@px, py, mu1D, c1ycrit2@px, py, mu1, W1DDD

"Plotting Inidivual Demand Curves and Constituent Loci";

Manipulate@Plot@c1xcrit0@px, mu1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 First Critical X"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88PxMax, Group0PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group0QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit0@py, mu1D, 8py, 0, PyMax<,



PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 First Critical Y"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88PyMax, Group0PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group0QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c1xcrit1@px, py, mu1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Worth Locus HXL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<, 88py, 5, Subscript@P, yD<, 0, 25<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1xcrit2@px, py, mu1, W1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Budget Locus HXL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@
Plot@8c1xcrit1@px, py, mu1D, c1xcrit2@px, py, mu1, W1D<, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Combined Loci HXL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@PYG = py; Dx = Plot@c1Dx@px, py, mu1, W1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Demand Curve X HtransposedL for Py = " @pyDD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth,D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<,



88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit1@px, py, mu1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Worth Locus HYL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit2@px, py, mu1, W1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Budget Locus HYL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@
Plot@8c1ycrit1@px, py, mu1D, c1ycrit2@px, py, mu1, W1D<, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Combined Loci HYL"D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@PXG = px; Dy = Plot@c1Dy@px, py, mu1, W1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Demand Curve Y HtransposedL for Px = " @pxDD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<,
88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D



"Standard Presentation of Demand Curves";

PlotTranspose@Dx,
"Good X Demand Curve for Py = " @PYGD, "X", Subscript@P, xDD

PlotTranspose@Dy, "Good Y Demand Curve for Px = " @PXGD,
"Y", Subscript@P, yDD

"Firm Profit Functions";

Manipulate@
Quiet@ProfitX1 = Quiet@Plot@Hpx − xcL c1Dx@px, py, mu1, W1D, 8px, 0, PxMax<,

PlotRange → 880, PxMax<, 80, xProfitmax<<,
AxesLabel → 8Subscript@P, xD, "ProfitX"<,
PlotLabel → "Firm X Profit Function for Py ="@pyD,
WorkingPrecision → MachinePrecisionDDD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<, 88py, yCost, Subscript@P, yD<,
0, 50<, 88xc, xCost, "Firm X Cost"<, 0, 100<,

88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88PxMax, PMaxMarket, "@PxMaxD"<, 0, 100<,
88xProfitmax, HW1initL, "@X Profit MaxD"<, 0, 2 HW1initL<,
ContinuousAction → NoneD

Manipulate@Quiet@
ProfitY1 = Plot@Hpy − ycL c1Dy@px, py, mu1, W1D, 8py, 0, PyMax<, PlotRange →

880, PyMax<, 80, yProfitmax<<, AxesLabel → 8Subscript@P, yD, "ProfitY"<,
PlotLabel → "Firm Y Profit Function for Px = " @pxD,
WorkingPrecision → MachinePrecisionDD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88px, xCost, Subscript@P, xD<, 0, 50<, 88yc, yCost, "Firm Y Cost"<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88PyMax, PMaxMarket, "@PyMaxD"<, 0, 100<,
88yProfitmax, HW1initL, "@Y Profit MaxD"<, 0, 2 HW1initL<,
ContinuousAction → NoneD

"Best Response Functions";

Default@BestResponseX, 2D = xCost;

Default@BestResponseX, 3D = mu1init;

Default@BestResponseX, 4D = mu2init;



Multiple Consumer Case

"Run each cell in order once to calibrate, disregarding

output. Then run each cell Hin order from 1stL a second time"

"Graph Slider Names in @BracketsD Denote Slidable Display

Parameters Hhorizontal range, vertical range, etc.L";

Quiet@ClearAll@"`∗"D

"User−Defined Functions and Commands";

ColumnSwap@list_D :=

Drop@Transpose@Insert@Transpose@listD, list@@All, 1DD, 3DD, 8<, 81<D;

Default@PlotTranspose, 2D = Null;

Default@PlotTranspose, 3D = Null;

Default@PlotTranspose, 4D = Null;

Default@PlotTranspose, 5D = None;

Default@PlotTranspose, 6D = Automatic;

Default@PlotTranspose, 7D = 1;

PlotTranspose@plot_, plabel_., xlabel_.,

ylabel_., gridlines_., plotstyle_., delayfactor_.D := I
Points = Cases@plot, 8_?NumericQ, _?NumericQ<, 86<D;
Pause@delayfactor ∗ TransposeDelayD;
ListLinePlot@ColumnSwap@PointsD, AxesLabel → 8xlabel, ylabel<,
PlotLabel → plabel, GridLines → gridlines, PlotStyle → plotstyleDM

Default@IsEqual, 3D = IEtolerance;

IsEqual@q1_, q2_, tolerance_.D := If@Abs@q1 − q2D <= tolerance, True, FalseD

CSS1Slope@px_, py_D :=

If@OCB1@px, pyD@@1DD ≠ 0, c1A = OCB1@px, pyD@@2DD ê OCB1@px, pyD@@1DD,
Vertical1 = True; && Print@"Consumer 1 Principal Path is Vertical"D;D

CSS2Slope@px_, py_D :=

If@OCB2@px, pyD@@1DD ≠ 0, c2A = OCB2@px, pyD@@2DD ê OCB2@px, pyD@@1DD,
Vertical2 = True; && Print@"Consumer 2 Principal Path is Vertical"D;D

CSS@px_, py_D := H



Unprotect@c1A, c2A, lambda1, lambda2D;

CSS1Slope@px, pyD;
CSS2Slope@px, pyD;

c1CSSmu1 = Ux1@OCB1@px, pyD@@1DD, OCB1@px, pyD@@2DDD ê px;
c1CSSmu2 = Uy1@OCB1@px, pyD@@1DD, OCB1@px, pyD@@2DDD ê py;
If@c1CSSmu1 � c1CSSmu2, Print@"Lambda 1 = " , lambda1 = c1CSSmu1D,
Print@"Error: Lambda mismatch"DD;

c2CSSmu1 = Ux2@OCB2@px, pyD@@1DD, OCB2@px, pyD@@2DDD ê px;
c2CSSmu2 = Uy2@OCB2@px, pyD@@1DD, OCB2@px, pyD@@2DDD ê py;
If@TrueQ@c2CSSmu1 � c2CSSmu2D, Print@"Lambda 2 = " , lambda2 = c2CSSmu1D,
Print@"Error: Lambda mismatch"DD;

Protect@c1A, c2A, lambda1, lambda2D;

L

"Principal Path of Each Π Field

LHS=RHS −> 8LHS,RHS<";

If@Vertical1 � True, piPP1 = 80, x<;, piPP1 = 8y, c1A ∗ x<;D;
If@Vertical2 � True, piPP2 = 80, x<;, piPP2 = 8y, c2A ∗ x<;D;

"Structural Parameter Values";

a = 3000; b = 1 ê 10; c = 1 ê 10; d = 1;

Quiet@lambda1 = 10D;
Quiet@lambda2 = 10D;
Quiet@c1A = 1D;
Quiet@c2A = 1D;
Quiet@Vertical1 = FalseD;
Quiet@Vertical2 = FalseD;

W1init = 150;



W2init = 150;

mu1init = lambda1;

mu2init = lambda2;

xCost = 3;

yCost = 3;

"Display Parameter Values, non−structural variables";

IEtolerance = 0.00001;

TransposeDelay = 1;

BRDelayFactor = 1;

Group0PMax = 40;

Group1PMax = 40;

Group2PMax = 40;

Group3PMax = 40;

Group4PMax = 40;

Group0QMax = 25;

Group1QMax = 25;

Group2QMax = 25;

Group3QMax = 25;

Group4QMax = 25;

PMaxMarket = 40;

QMaxMarket = 50;

PmaxBR = 40;

EpilogPx = 35;

EpilogPy = 35;

"Utility Functions and Partial Derivatives";

Utility1@x_, y_D = a Log@b x + dD + 2 a Log@2 c y + dD;

Ux1@x_, y_D = Derivative@1, 0D@Utility1D@x, yD;
Uy1@x_, y_D = Derivative@0, 1D@Utility1D@x, yD;
Print@"Ux1@x,yD = ", FullSimplify@Ux1@x, yDDD
Print@"Uy1@x,yD = ", FullSimplify@Uy1@x, yDDD



Utility2@x_, y_D = 2 a Log@2 b x + dD + a Log@c y + dD;

Ux2@x_, y_D = Derivative@1, 0D@Utility2D@x, yD;
Uy2@x_, y_D = Derivative@0, 1D@Utility2D@x, yD;
Print@"Ux2@x,yD = ", FullSimplify@Ux2@x, yDDD
Print@"Uy2@x,yD = ", FullSimplify@Uy2@x, yDDD

"Optimizing Demand Functions";

Print@"Consumer 1 Optimizing Consumption Bundle = ",

OCB1@px_, py_D = With@8xd =

x ê. With@8y1 = y ê. First@Solve@HUx1@x, yDL ê px � HUy1@x, yDL ê py, yD<,
First@Solve@W1init � x px + y1 py, xDD, yd =

y ê. With@8x1 = x ê. First@Solve@HUx1@x, yDL ê px � HUy1@x, yDL ê py, xD<,
First@Solve@W1init � x1 px + y py, yDD<,

8Min@W1init ê px, Max@0, xdDD, Min@W1init ê py, Max@0, ydDD<D êê
FullSimplifyD

Print@D

If@Length@Solve@HUx1@x, yDL ê px � HUy1@x, yDL ê py, yD == 1 &&

Length@Solve@W1init � x px + y1 py, xD � 1 &&

Length@Solve@HUx1@x, yDL ê px � HUy1@x, yDL ê py, xD � 1 &&

Length@Solve@W1init � x1 px + y py, yD � 1,

Print@"No Multiple Solutions HConsumer 1L"D,
Print@"Check for Multiple Solutions! HConsumer 1L"DD

Print@D

Print@"Consumer 2 Optimizing Consumption Bundle = ",

OCB2@px_, py_D = With@8xd =

x ê. With@8y1 = y ê. First@Solve@HUx2@x, yDL ê px � HUy2@x, yDL ê py, yD<,
First@Solve@W2init � x px + y1 py, xDD, yd =

y ê. With@8x1 = x ê. First@Solve@HUx2@x, yDL ê px � HUy2@x, yDL ê py, xD<,
First@Solve@W2init � x1 px + y py, yDD<,

8Min@W2init ê px, Max@0, xdDD, Min@W2init ê py, Max@0, ydDD<D êê
FullSimplifyD



Print@D

If@Length@Solve@HUx2@x, yDL ê px � HUy2@x, yDL ê py, yD � 1 &&

Length@Solve@W2init � x px + y1 py, xD � 1 &&

Length@Solve@HUx2@x, yDL ê px � HUy2@x, yDL ê py, xD � 1 &&

Length@Solve@W2init � x1 px + y py, yD � 1,

Print@"No Multiple Solutions HConsumer 2L"D,
Print@"Check for Multiple Solutions! HConsumer 2L"DD

Print@D

Manipulate@Plot@OCB1@px, pyD@@1DD, 8px, 0, pxmax<,
PlotLabel → "Optimzing Demand Curve HConsumer 1, Good XL for Py = " @pyD,
PlotRange → 880, pxmax<, 8−5, xmax<<, WorkingPrecision → MachinePrecisionD,

88py, 10, Subscript@P, yD<, 0, 1000<, 88pxmax, 50, "@PxmaxD"<, 0, 1000<,
88xmax, 50, "@XmaxD"<, 0, 100<D

Manipulate@Plot@OCB1@px, pyD@@2DD, 8py, 0, pymax<,
PlotLabel → "Optimzing Demand Curve HConsumer 1, Good YL for Px = " @pxD,
PlotRange → 880, pymax<, 8−5, ymax<<, WorkingPrecision → MachinePrecisionD,

88px, 10, Subscript@P, xD<, 0, 1000<, 88pymax, 50, "@PymaxD"<, 0, 100<,
88ymax, 50, "@YmaxD"<, 0, 1000<D

Manipulate@Plot@OCB2@px, pyD@@1DD, 8px, 0, pxmax<,
PlotLabel → "Optimzing Demand Curve HConsumer 2, Good XL for Py = " @pyD,
PlotRange → 880, pxmax<, 8−5, xmax<<, WorkingPrecision → MachinePrecisionD,

88py, 10, Subscript@P, yD<, 0, 1000<, 88pxmax, 50, "@PxmaxD"<, 0, 1000<,
88xmax, 50, "@XmaxD"<, 0, 100<D

Manipulate@Plot@OCB2@px, pyD@@2DD, 8py, 0, pymax<,
PlotLabel → "Optimzing Demand Curve HConsumer 2, Good YL for Px = " @pxD,
PlotRange → 880, pymax<, 8−5, ymax<<, WorkingPrecision → MachinePrecisionD,

88px, 10, Subscript@P, xD<, 0, 1000<, 88pymax, 50, "@PymaxD"<, 0, 100<,
88ymax, 50, "@YmaxD"<, 0, 1000<D

"Define CSSs";

"Principal Path of Each Π Field

LHS=RHS −> 8LHS,RHS<";

If@Vertical1 � True, piPP1 = 80, x<;, piPP1 = 8y, c1A ∗ x<;D
If@Vertical2 � True, piPP2 = 80, x<;, piPP2 = 8y, c2A ∗ x<;D



"Define CSSs";

CSS1@px_, py_D := H

Unprotect@c1A, c2A, lambda1, lambda2D;

If@OCB1@px, pyD@@1DD ≠ 0, c1A = OCB1@px, pyD@@2DD ê OCB1@px, pyD@@1DD,
Vertical1 = True; && Print@"Consumer 1 Principal Path is Vertical"D;D

If@OCB2@px, pyD@@1DD ≠ 0, c2A = OCB2@px, pyD@@2DD ê OCB2@px, pyD@@1DD,
Vertical2 = True; && Print@"Consumer 2 Principal Path is Vertical"D;D

"Principal Path of Each Π Field

LHS=RHS −> 8LHS,RHS<";

If@Vertical1 � True, piPP1 = 80, x<;, piPP1 = 8y, c1A ∗ x<;D;
If@Vertical2 � True, piPP2 = 80, x<;, piPP2 = 8y, c2A ∗ x<;D;

c1CSSmu1 = Ux1@OCB1@px, pyD@@1DD, OCB1@px, pyD@@2DDD ê px;
c1CSSmu2 = Uy1@OCB1@px, pyD@@1DD, OCB1@px, pyD@@2DDD ê py;
If@c1CSSmu1 � c1CSSmu2, Print@"Lambda 1 = " , lambda1 = c1CSSmu1D,
Print@"Error: Lambda mismatch"DD;

c2CSSmu1 = Ux2@OCB2@px, pyD@@1DD, OCB2@px, pyD@@2DDD ê px;
c2CSSmu2 = Uy2@OCB2@px, pyD@@1DD, OCB2@px, pyD@@2DDD ê py;
If@TrueQ@c2CSSmu1 � c2CSSmu2D, Print@"Lambda 2 = " , lambda2 = c2CSSmu1D,
Print@"Error: Lambda mismatch"DD;

Protect@c1A, c2A, lambda1, lambda2D;

L

"Satisficing Critical Values";

"Consumer 1";



c1xcrit0@px_, mu1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD � piPP1@@2DD, yD<,
Max@0, x ê. First@Solve@Ux1@x, y1D � mu1 px, xDDD;

c1ycrit0@py_, mu1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD � piPP1@@2DD, xD<,
Max@0, y ê. First@Solve@Uy1@x1, yD � mu1 py, yDDD;

c1xcrit1@px_, py_, mu1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD � piPP1@@2DD, yD, y2 =

y ê. First@Solve@Uy1@x, yD � py ∗ mu1 && piPP1@@1DD � piPP1@@2DD, y, xD<,
Max@0, x ê. First@Solve@Ux1@x, y1D � mu1 px, xD,
x ê. First@Solve@Ux1@x, Max@0, y2DD � mu1 px, xDDD;

c1ycrit1@px_, py_, mu1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD � piPP1@@2DD, xD, x2 =

x ê. First@Solve@Ux1@x, yD � px ∗ mu1 && piPP1@@1DD � piPP1@@2DD, x, yD<,
Max@0, y ê. First@Solve@Uy1@x1, yD � mu1 py, yD,
y ê. First@Solve@Uy1@Max@0, x2D, yD � mu1 py, yDDD;

c1xcrit2@px_, py_, mu1_, W1_D =

With@8y1 = y ê. First@Solve@piPP1@@1DD � piPP1@@2DD, yD,
y2 = y ê. 8y −> c1ycrit0@py, mu1D<<,

Max@0, x ê. First@Solve@W1 � px x + py y1, xD,
x ê. First@Solve@W1 � px x + py y2, xDDD;

c1ycrit2@px_, py_, mu1_, W1_D =

With@8x1 = x ê. First@Solve@piPP1@@1DD � piPP1@@2DD, xD,
x2 = x ê. 8x −> c1xcrit0@px, mu1D<<,

Max@0, y ê. First@Solve@W1 � px x1 + py y, yD,
y ê. First@Solve@W1 � px x2 + py y, yDDD;

"Consumer 2";

c2xcrit0@px_, mu2_D =

With@8y1 = y ê. First@Solve@piPP2@@1DD � piPP2@@2DD, yD<,
Max@0, x ê. First@Solve@Ux2@x, y1D � mu2 px, xDDD;

c2ycrit0@py_, mu2_D =

With@8x1 = x ê. First@Solve@piPP2@@1DD � piPP2@@2DD, xD<,
D



Max@0, y ê. First@Solve@Uy2@x1, yD � mu2 py, yDDD;

c2xcrit1@px_, py_, mu2_D =

With@8y1 = y ê. First@Solve@piPP2@@1DD � piPP2@@2DD, yD, y2 =

y ê. First@Solve@Uy2@x, yD � py ∗ mu2 && piPP2@@1DD � piPP2@@2DD, y, xD<,
Max@0, x ê. First@Solve@Ux2@x, y1D � mu2 px, xD,
x ê. First@Solve@Ux2@x, Max@0, y2DD � mu2 px, xDDD;

c2ycrit1@px_, py_, mu2_D =

With@8x1 = x ê. First@Solve@piPP2@@1DD � piPP2@@2DD, xD, x2 =

x ê. First@Solve@Ux2@x, yD � px ∗ mu2 && piPP2@@1DD � piPP2@@2DD, x, yD<,
Max@0, y ê. First@Solve@Uy2@x1, yD � mu2 py, yD,
y ê. First@Solve@Uy2@Max@0, x2D, yD � mu2 py, yDDD;

c2xcrit2@px_, py_, mu2_, W2_D =

With@8y1 = y ê. First@Solve@piPP2@@1DD � piPP2@@2DD, yD,
y2 = y ê. 8y −> c2ycrit0@py, mu2D<<,

Max@0, x ê. First@Solve@W2 � px x + py y1, xD,
x ê. First@Solve@W2 � px x + py y2, xDDD;

c2ycrit2@px_, py_, mu2_, W2_D =

With@8x1 = x ê. First@Solve@piPP2@@1DD � piPP2@@2DD, xD,
x2 = x ê. 8x −> c2xcrit0@px, mu2D<<,

Max@0, y ê. First@Solve@W2 � px x1 + py y, yD,
y ê. First@Solve@W2 � px x2 + py y, yDDD;

"Graph of Consumer 1 Constraints in Consumption Space";

Manipulate@
Plot@8With@8y1 = y ê. First@Solve@W1 � px x + py y, yD<, y1D, Min@c1ycrit0@py,

mu1D, Flatten@Solve@piPP1@@1DD � piPP1@@2DD, yDD@@1DD@@2DDD<,
8x, 0, 50<, Epilog → 8With@8x1 = x ê. First@Solve@Ux1@x, yD � mu1 px, xD<,

Line@88x1, 0<, 8x1, 50<<DD<,
PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"X", "Y"<,
PlotLabel → "Consumption Space 1 HX ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<,
88py, 10, Subscript@P, yD<, 0, 50<,
88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<D



Manipulate@
Plot@8With@8x1 = x ê. First@Solve@W1 � px x + py y, xD<, x1D, Min@c1xcrit0@px,

mu1D, Flatten@Solve@piPP1@@1DD � piPP1@@2DD, xDD@@1DD@@2DDD<,
8y, 0, 50<, Epilog → 8With@8y1 = y ê. First@Solve@Uy1@x, yD � mu1 py, yD<,

Line@88y1, 0<, 8y1, 50<<DD<,
PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"Y", "X"<,
PlotLabel → "Consumption Space 1 HY ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<,
88py, 10, Subscript@P, yD<, 0, 50<,
88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<D

"Graph of Consumer 2 Constraints in Consumption Space";

Manipulate@
Plot@8With@8y1 = y ê. First@Solve@W2 � px x + py y, yD<, y1D, Min@c2ycrit0@py,

mu2D, Flatten@Solve@piPP2@@1DD � piPP2@@2DD, yDD@@1DD@@2DDD<,
8x, 0, 50<, Epilog → 8With@8x1 = x ê. First@Solve@Ux2@x, yD � mu2 px, xD<,

Line@88x1, 0<, 8x1, 50<<DD<,
PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"X", "Y"<,
PlotLabel → "Consumption Space 2 HX ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<,
88py, 10, Subscript@P, yD<, 0, 50<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<D

Manipulate@
Plot@8With@8x1 = x ê. First@Solve@W2 � px x + py y, xD<, x1D, Min@c2xcrit0@px,

mu2D, Flatten@Solve@piPP2@@1DD � piPP2@@2DD, xDD@@1DD@@2DDD<,
8y, 0, 50<, Epilog → 8With@8y1 = y ê. First@Solve@Uy2@x, yD � mu2 py, yD<,

Line@88y1, 0<, 8y1, 50<<DD<,
PlotRange → 880, 50<, 80, 50<<, AxesLabel → 8"Y", "X"<,
PlotLabel → "Consumption Space 2 HY ConstraintsL"D,

88px, 10, Subscript@P, xD<, 0, 50<,
88py, 10, Subscript@P, yD<, 0, 50<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<D

"Demand Functions";



"Inidvidual Demand Functions";

Default@c1Dx, 3D = mu1init;

Default@c1Dx, 4D = W1init;

c1Dx@px_, py_, mu1_., W1_.D =

Max@0, Min@c1xcrit1@px, py, mu1D, c1xcrit2@px, py, mu1, W1DDD;

Default@c1Dy, 3D = mu1init;

Default@c1Dy, 4D = W1init;

c1Dy@px_, py_, mu1_., W1_.D =

Max@0, Min@c1ycrit1@px, py, mu1D, c1ycrit2@px, py, mu1, W1DDD;

Default@c2Dx, 3D = mu2init;

Default@c2Dx, 4D = W2init;

c2Dx@px_, py_, mu2_., W2_.D =

Max@0, Min@c2xcrit1@px, py, mu2D, c2xcrit2@px, py, mu2, W2DDD;

Default@c2Dy, 3D = mu2init;

Default@c2Dy, 4D = W2init;

c2Dy@px_, py_, mu2_., W2_.D =

Max@0, Min@c2ycrit1@px, py, mu2D, c2ycrit2@px, py, mu2, W2DDD;

"Market Demand Functions";

Default@MDx, 3D = mu1init;

Default@MDx, 4D = mu2init;

Default@MDx, 5D = W1init;

Default@MDx, 6D = W2init;

MDx@px_, py_, mu1_., mu2_., W1_., W2_.D =

c1Dx@px, py, mu1, W1D + c2Dx@px, py, mu2, W2D;

Default@MDy, 3D = mu1init;

Default@MDy, 4D = mu2init;

Default@MDy, 5D = W1init;

Default@MDy, 6D = W2init;

MDy@px_, py_, mu1_., mu2_., W1_., W2_.D =

c1Dy@px, py, mu1, W1D + c2Dy@px, py, mu2, W2D;

"Plotting Inidivual Demand Curves and Constituent Loci";



Manipulate@Plot@c1xcrit0@px, mu1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 First Critical X", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88PxMax, Group0PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group0QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit0@py, mu1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 First Critical Y", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88PyMax, Group0PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group0QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c2xcrit0@px, mu2D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 2 First Critical X", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88PxMax, Group0PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c2ycrit0@py, mu2D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 2 First Critical Y", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88PyMax, Group0PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group0QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c1xcrit1@px, py, mu1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Worth Locus HXL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<, 88py, 5, Subscript@P, yD<, 0, 25<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1xcrit2@px, py, mu1, W1D, 8px, 0, PxMax<,



PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Budget Locus HXL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@
Plot@8c1xcrit1@px, py, mu1D, c1xcrit2@px, py, mu1, W1D<, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Combined Loci HXL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1Dx@px, py, mu1, W1D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 1 Demand Curve X HtransposedL for Py = " @pyD,
PlotPoints → 2000D, 88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,

88W1, W1init, Subscript@Wealth,D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group1PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group1QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit1@px, py, mu1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Worth Locus HYL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c1ycrit2@px, py, mu1, W1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Budget Locus HYL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D



Manipulate@
Plot@8c1ycrit1@px, py, mu1D, c1ycrit2@px, py, mu1, W1D<, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Combined Loci HYL", PlotPoints → 2000D,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c1Dy@px, py, mu1, W1D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 1 Demand Curve Y HtransposedL for Px = " @pxD,
PlotPoints → 2000D, 88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,

88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group2PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group2QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c2xcrit1@px, py, mu2D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 2 Worth Locus HXL", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group3PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group3QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c2xcrit2@px, py, mu2, W2D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 2 Budget Locus HXL", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group3PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group3QMax, "@QxMaxD"<, 0, 100<D

Manipulate@
Plot@8c2xcrit1@px, py, mu2D, c2xcrit2@px, py, mu2, W2D<, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 2 Combined Loci HXL", PlotPoints → 2000D,



88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group3PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group3QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c2Dx@px, py, mu2, W2D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Consumer 2 Demand Curve X HtransposedL for Py = " @pyD,
PlotPoints → 2000D, 88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,

88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<, 88PxMax, Group3PMax, "@PxMaxD"<, 0, 100<,
88Xmax, Group3QMax, "@QxMaxD"<, 0, 100<D

Manipulate@Plot@c2ycrit1@px, py, mu2D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 2 Worth Locus HYL", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group4PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group4QMax, "@QyMaxD"<, 0, 100<D

Manipulate@Plot@c2ycrit2@px, py, mu2, W2D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 2 Budget Locus HYL", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group4PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group4QMax, "@QyMaxD"<, 0, 100<D

Manipulate@
Plot@8c2ycrit1@px, py, mu2D, c2ycrit2@px, py, mu2, W2D<, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 2 Combined Loci HYL", PlotPoints → 2000D,

88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group4PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group4QMax, "@QyMaxD"<, 0, 100<D



Manipulate@Plot@c2Dy@px, py, mu2D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Consumer 2 Demand Curve Y HtransposedL for Px = " @pxD,
PlotPoints → 2000D, 88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,

88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<, 88PyMax, Group4PMax, "@PyMaxD"<, 0, 100<,
88Ymax, Group4QMax, "@QyMaxD"<, 0, 100<D

"Plotting Market Demand Curves";

Manipulate@Quiet@XDIndividuals =

Plot@8c1Dx@px, py, mu1, W1D, c2Dx@px, py, mu2, W2D<, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Individual Demand Curves X HtransposedL",
WorkingPrecision → MachinePrecision, PlotPoints → 2000DD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<,
88PxMax, PMaxMarket, "@PxMaxD"<, 0, 2 PmaxMarket<,
88Xmax, QMaxMarket, "@QxMaxD"<, 0, 2 QMaxMarket<D

Manipulate@PYG = py;

Quiet@XDMarket = Plot@MDx@px, py, mu1, mu2, W1, W2D, 8px, 0, PxMax<,
PlotRange → 880, PxMax<, 80, Xmax<<, AxesLabel → 8Subscript@P, xD, "X"<,
PlotLabel → "Market Demand Curve X HtransposedL for Py = " @pyD,
WorkingPrecision → MachinePrecision, PlotPoints → 2000DD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88py, 5, Subscript@P, yD<, 0, 50<,
88PxMax, PMaxMarket, "@PxMaxD"<, 0, 2 PmaxMarket<,
88Xmax, QMaxMarket, "@QxMaxD"<, 0, 2 QMaxMarket<D

Manipulate@ Quiet@YDIndividuals =

Plot@8c1Dy@px, py, mu1, W1D, c2Dy@px, py, mu2, W2D<, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Individual Demand Curves Y HtransposedL",

DD



WorkingPrecision → MachinePrecision, PlotPoints → 2000DD,
88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<,
88PyMax, PMaxMarket, "@PyMaxD"<, 0, 2 PmaxMarket<,
88Ymax, QMaxMarket, "@QyMaxD"<, 0, 2 QMaxMarket<D

Manipulate@PXG = px;

Quiet@YDMarket = Plot@MDy@px, py, mu1, mu2, W1, W2D, 8py, 0, PyMax<,
PlotRange → 880, PyMax<, 80, Ymax<<, AxesLabel → 8Subscript@P, yD, "Y"<,
PlotLabel → "Market Demand Curve Y HtransposedLfor PX = " @pxD,
WorkingPrecision → MachinePrecision, PlotPoints → 2000DD,

88mu1, mu1init, Subscript@µ, 1D<, 0, 100<,
88mu2, mu2init, Subscript@µ, 2D<, 0, 100<,
88W1, W1init, Subscript@Wealth, 1D<, 0, 1000<,
88W2, W2init, Subscript@Wealth, 2D<, 0, 1000<,
88px, 5, Subscript@P, xD<, 0, 50<,
88PyMax, PMaxMarket, "@PyMaxD"<, 0, 2 PmaxMarket<,
88Ymax, QMaxMarket, "@QyMaxD"<, 0, 2 QMaxMarket<D

p1 = 7;

p2 = 6;

CSS@p1, p2D
OCB1@p1, p2D
OCB2@p1, p2D

c1A

c2A



Plot@c1Dx@px, p2, lambda1, W1initD, 8px, 0, 50<,
PlotRange → 880, 25<, 80, 50<<, Epilog → 8Dashed, Line@88p1, 0<, 8p1, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

Plot@c2Dx@px, p2, lambda2, W2initD, 8px, 0, 50<,
PlotRange → 880, 25<, 80, 50<<, Epilog → 8Dashed, Line@88p1, 0<, 8p1, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

Plot@MDx@px, p2, lambda1, lambda2, W1init, W2initD, 8px, 0, 25<,
PlotRange → 880, 25<, 80, 25<<, PlotLabel → "Market X",

Epilog → 8Dashed, Line@88p1, 0<, 8p1, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

Plot@c1Dy@p1, py, lambda1, W1initD, 8py, 0, 50<,
PlotRange → 880, 25<, 80, 50<<, Epilog → 8Dashed, Line@88p2, 0<, 8p2, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

Plot@c2Dy@p1, py, lambda2, W2initD, 8py, 0, 50<,
PlotRange → 880, 25<, 80, 25<<, Epilog → 8Dashed, Line@88p2, 0<, 8p2, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

Plot@MDy@p1, py, lambda1, lambda2, W1init, W2initD, 8py, 0, 50<,
PlotRange → 880, 25<, 80, 50<<, PlotLabel → "Market Y",

Epilog → 8Dashed, Line@88p2, 0<, 8p2, 50<<D<,
WorkingPrecision → MachinePrecision, PlotPoints → 2000D

c1xcrit1@p1, p2, lambda1D ==

c1xcrit2@p1, p2, lambda1, W1initD == c1Dx@p1, p2, lambda1, W1initD

c1ycrit1@p1, p2, lambda1D ==

c1ycrit2@p1, p2, lambda1, W1initD == c1Dy@p1, p2, lambda1, W1initD

c2xcrit1@p1, p2, lambda2D ==

c2xcrit2@p1, p2, lambda2, W2initD == c2Dx@p1, p2, lambda2, W2initD

c2ycrit1@p1, p2, lambda2D ==

c2ycrit2@p1, p2, lambda2, W2initD == c2Dy@p1, p2, lambda2, W2initD

8c2xcrit1@p1, p2, lambda2D,
c2xcrit2@p1, p2, lambda2, W2initD, c2Dx@p1, p2, lambda2, W2initD<

8c2ycrit1@p1, p2, lambda2D,
c2ycrit2@p1, p2, lambda2, W2initD, c2Dy@p1, p2, lambda2, W2initD<

8c1xcrit1@p1, p2, lambda1D,
c1xcrit2@p1, p2, lambda1, W1initD, c1Dx@p1, p2, lambda1, W1initD<

8c1ycrit1@p1, p2, lambda1D,
c1ycrit2@p1, p2, lambda1, W1initD, c1Dy@p1, p2, lambda1, W1initD<



test1 = Plot@c2Dx@px, p2, lambda2, W2initD, 8px, 0, 50<,
PlotRange → 880, 25<, 80, 25<<, Epilog → 8Dashed, Line@88p1, 0<, 8p1, 50<<D<,
WorkingPrecision → MachinePrecision,

PerformanceGoal → "Quality", PlotPoints → 2000D
Plot@8Evaluate@c2xcrit1@px, p2, lambda2D,

Evaluate@c2xcrit2@px, p2, lambda2, W2initD<, 8px, 0, 50<,
PlotRange → 880, 25<, 80, 25<<, Epilog → 8Dashed, Line@88p1, 0<, 8p1, 50<<D<,
WorkingPrecision → MachinePrecision,

PerformanceGoal → "Quality", PlotPoints → 2000D
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