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DISSERTATION ABSTRACT 

 

Edward F. Ester 

 

Doctor of Philosophy 

 

Department of Psychology 

 

December 2011 

 

Title: Neural Mechanisms of Mnemonic Precision 

 

 

Working memory (WM) enables the storage of information in a state that can be 

rapidly accessed and updated. This system is a core component of higher cognitive 

function – individual differences in WM ability are strongly predictive of general 

intelligence (IQ) and scholastic achievement (e.g., SAT scores), and WM ability is 

compromised in many psychiatric (e.g., schizophrenia) and neurological (e.g., 

Parkinson’s) disorders. Thus, there is a strong motivation to understand the basic 

properties of this system. Recent studies suggest that WM ability is determined by two 

independent factors: the number of items an individual can store and the precision with 

which representations can be maintained. Significant progress has been made in 

developing neural measures that are sensitive to the number of items stored in WM. For 

example, electrophysiological and neuroimaging studies have demonstrated that activity 

in posterior parietal cortex is directly modulated by the number of items stored in WM 

and reaches a plateau at the same set size where individual memory capacity is exceeded. 

However, comparably little is known regarding the neural mechanisms that enable the 

storage of high-fidelity information in WM. This dissertation describes two experiments 

that evaluate so-called sensory-recruitment models of WM, where the storage of high-

fidelity information in WM is mediated by sustained activity in sensory cortices that 
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encode memoranda. In Chapter II, functional magnetic resonance imaging (fMRI) and 

multivoxel pattern analysis were used to demonstrate that sustained patterns of activiation 

observed in striate cortex discriminate specific feature attribute(s) (e.g., orientation) that 

an observer is holding in WM. In Chapter III, I show that these patterns of activation can 

be observed in regions of visual cortex that are not retinotopically mapped to the spatial 

location of a remembered stimulus and suggest that this spatially global recruitment of 

visual cortex enhances memory precision by facilitating robust population coding of the 

stored information. Together, these results provide strong support for so-called sensory 

recruitment models of WM, where the storage of fine visual details is mediated by 

sustained activity in sensory cortices that encode information. 

This dissertation includes previously published and co-authored material. 
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CHAPTER I 

INTRODUCTION 

 

Working memory (WM) refers to a temporary, limited-capacity storage buffer 

that enables the retention of information in a readily accessible and easily updated state. 

This system is an integral component of higher cognitive function. For example, inter-

individual variations in WM ability are strongly correlated with measures of general 

intelligence (e.g., Stanford-Binet IQ or Raven‘s Progressive Matrices; Conway, Cowan, 

Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999, 

Fukuda, Vogel, Mayr, & Awh, 2010) and reading ability (e.g., verbal SAT scores; 

Daneman & Carpenter, 1980). Likewise, WM ability is severely disrupted in a number of 

psychiatric and neurological disorders, including schizophrenia (e.g., Goldman-Rakic, 

1994; Gold, Carpenter, Randolph, Goldberg, & Weinberger, 1997; Gold, Wilk, 

McMahon, Buchanan, & Luck, 2003), major depression (e.g., Channon, Baker, & 

Robertson, 1993), Parkinson‘s (Owen, Iddon, Hodges, Summers, & Robbins, 1997), and 

Alzheimer‘s (Baddeley, Bressi, Della Sala, Logie, & Spinnler, 1991). These findings 

provide a compelling motivation to identify and understand the basic factors that 

determine WM ability.  

To date, converging evidence from multiple studies employing a diverse array of 

methodologies suggests that WM ability is determined by the confluence of two 

independent factors: the number of representations an individual can store, and the 

precision or fidelity of these representations (for a review, see Fukuda, Vogel, & Awh, 

2010). In this dissertation, I will develop and test specific hypotheses regarding the neural 

mechanisms that enable the storage of high-fidelity stimulus representations in WM. In 
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the interests of brevity I focus on domain of visual WM. However, there is ample reason 

to suspect that many of the findings discussed in this chapter and those that follow also 

apply to other sensory modalities (see Chapter IV for an elaboration of this point).  

 

What Factors Determine Working Memory Ability? 

Although WM is critical for virtually all forms of online cognitive processing, 

converging evidence from multiple sources suggests that it has a capacity limit of only 3-

4 items (e.g., Awh, Barton, & Vogel, 2007; Irwin, 1992; Luck & Vogel, 1997; Sperling, 

1960). In one notable study, Luck and Vogel (1997) asked subjects to remember 

―sample‖ arrays containing a variable number of colored squares over a brief delay. At 

the end of each trial a test array was presented, and subjects were asked to determine 

whether the initial or test arrays were identical or differed in the color of a single item. 

Performance on this so-called ―change detection‖ task was virtually perfect for arrays 

containing fewer than 3-4 items, but decreased monotonically once this range was 

exceeded. Based on this profile, Luck and Vogel estimated that subjects could remember, 

at most, 3-4 items from the sample array. Critically, similar estimates were obtained 

when the sample array contained more ―complex‖ items such as colored, oriented bars of 

different sizes. Thus, Luck and Vogel concluded that WM can store about 3-4 integrated 

objects, regardless of their complexity. 

Although it is generally agreed that WM is subject to some form of capacity limit, 

there is substantial debate regarding how to best characterize this limit. On the one hand, 

some authors have advocated a ―discrete resource‖ model of capacity, where WM is 

conceptualized as a limited number of ―slots‖, each capable of storing a single integrated 
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object or ―chunk‖ of information (e.g., Barton, Ester, & Awh, 2009; Luck & Vogel, 

1997; Rouder et al., 2009; Zhang & Luck, 2008). In contrast, others have advocated a 

―flexible resource‖ model of WM capacity, where WM is conceptualized as a pool of 

mnemonic ―resources‖ that can be allocated to a variable number of items (Bays & 

Husain, 2008; Bays, Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011; Wilken & Ma, 

2004). By this account, there is no fixed limit in the number of items that can be held in 

WM; individuals can choose to store as few or as many items as they like. However, as 

more items are stored each receives a smaller proportion of available resources, and 

memory performance decreases. Conversely, when fewer items are stored each receives a 

greater proportion of resources, and memory performance is enhanced (relatively 

speaking). 

In an influential study, Wilken and Ma (2004) attempted to distinguish between 

flexible- and discrete resource models of memory by asking subjects to perform a change 

detection task similar to the one described by Luck and Vogel (1997). In addition to 

reporting whether a change did or did not occur, subjects were also asked to indicate their 

confidence on a four-point scale (from ―very confident‖ to ―very unconfident‖). This 

enabled the authors to generate a series of receiver operating characteristics (ROC) that 

were subsequently fit with quantitative models derived from core prediction of flexible- 

and discrete resource models of WM capacity. In their formulations, Wilken and Ma 

characterized the discrete resource model as ―high-threshold‖, such that an item is either 

stored perfectly (i.e., with no internal noise) or not at all. Moreover, provided that a 

probed item was stored in memory, it is assumed that changes will be detected with 100% 

accuracy. Thus, this model predicts that task performance will be perfect for sub-capacity 
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arrays (e.g., 1-3 or 4 items), but fall monotonically with increases in set size beyond this 

range.  

Wilken and Ma compared this high-threshold discrete resource model to two 

different flexible resource models. These models varied in their formulations, but both 

shared the core assumption of a linear relationship between the number of representations 

in WM and the internal noise associated with each representation, with no limit in the 

number of representations that can be simultaneously maintained. The results of this 

study indicated that the flexible resource model of WM capacity provided an excellent 

description of the empirically observed data, while the discrete resource model provided 

a comparably poor fit. Thus, Wilken and Ma concluded that – consistent with the core 

predictions of the flexible resource model– there is no fixed limit in the number of items 

that can be stored in WM. Instead, observers can store as many items as necessary, with 

the caveat that the internal noise associated with each representation held in WM 

increases as more items are stored.  

Other recent studies (e.g., Bays & Husain, 2008; Bays, Catalao, & Husain, 2009; 

Bays, Wu, & Husain, 2010) have also reported evidence consistent with a flexible 

resource model of WM capacity. In one example, Bays and Husain (2008) asked subjects 

to remember the locations or orientations of multiple stimuli (colored squares and 

oriented bars, respectively) across a short delay. Changes occurred on each trial, and 

subjects were required to report the direction of change (e.g., leftward or rightward 

displacement in the location memory task, clockwise or counterclockwise rotation in the 

orientation memory task). To discriminate between flexible and discrete resource models 

of WM capacity, Bays and Husain expressed their data as the frequency of a given 
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response (e.g., leftward displacement or clockwise rotation) as a function of both set size 

and change size (i.e., the magnitude of probe displacement or rotation relative to the 

corresponding item in the sample array). These profiles were then fit with cumulative 

response functions, and set-size dependent changes in the slopes of these functions were 

then examined with reference to core assumptions of flexible- and discrete resource 

models of WM. As in the Wilken and Ma study, Bays and Husain (2008) characterized 

the discrete resource model as high-threshold: an item is stored perfectly, or it is not 

stored at all. Thus, assuming a capacity limit of 4 items, this model predicts no change in 

slope from set sizes 1-4, followed by monotonic decreases in slope at larger set sizes. In 

contrast, a flexible resource model predicts monotonic reductions in slope across all set 

sizes, because any increase in set size requires subjects to spread mnemonic resources 

across a greater number of stimuli. The results of this study revealed monotonic 

reductions in slope across the entire range of tested set sizes (1, 2, 4, or 6) for both tasks 

(orientation and location), consistent with the predictions of a flexible resource model. 

The findings reported by Wilken and Ma (2004) and Bays and Husain (2008) are 

consistent with the core predictions of a flexible resource model of memory. However, 

note that both of these studies compared the flexible resource model with a ―high-

threshold‖ instantiation of the discrete resource model, where items are assumed to be 

stored perfectly (i.e., with no internal noise) or not at all. As many others (e.g., Fukuda, 

Vogel, & Awh, 2010) have noted, this characterization overlooks multiple studies 

demonstrating that representations held in WM have limited resolution or clarity (e.g., 

Awh, Barton, & Vogel, 2007; Barton, Ester, & Awh, 2009; Zhang & Luck, 2008). Thus, 

one can argue the studies reported by Wilken and Ma (2004) and Bays and Husain (2008) 
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failed to provide a ―fair‖ comparison of flexible and discrete resource models. Below, I 

review evidence consistent with the hypothesis that representations held in WM have 

limited resolution or clarity and describe the results of a recent study that compared the 

flexible resource model of WM capacity with a discrete resource model that 

acknowledges the limited resolving power of WM.  

 

Evidence for a Limit in the Resolving Power of Working Memory 

A number of studies have documented substantial reductions in WM capacity 

with increasing stimulus complexity (e.g., Alvarez & Cavanagh, 2004; Eng, Chen, & 

Jiang, 2005). In one notable example, Alvarez and Cavanagh (2004) asked subjects to 

perform a change detection task that utilized stimuli that varied in complexity (e.g., 

colored squares, Chinese characters, and three-sided shaded cubes). Complexity was 

operationalized using an independent visual search task that required subjects to report 

the presence or absence of a target among distractors from the same stimulus class; 

stimuli with greater search slopes were deemed more complex. The results of this study 

revealed a strong inverse relationship between stimulus complexity and change detection 

performance. For example, Alvarez and Cavanagh reported that subjects could remember 

approximately 3-4 ―simple‖ stimuli such as colored squares (commensurate with the 

findings reported by Luck & Vogel, 1997), but only 1-2 ―complex‖ stimuli such as 

Chinese characters.  

In a subsequent study, Awh, Barton, and Vogel (2007) raised the possibility that 

reductions in change detection accuracy for complex stimuli reflect errors in detecting 

relatively small changes rather than a reduction in WM capacity per se. To test this 
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hypothesis, Awh et al. asked subjects to perform a change detection task that utilized 

arrays containing a mixture of complex stimuli (e.g., Chinese characters and shaded 

cubes). On 50% of change trials, a Chinese character was replaced with a shaded cube (or 

vice versa; so-called ―cross-category‖ changes), while on the remaining 50% of change 

trials, a Chinese character or shaded cube was replaced with a probe from the same 

stimulus category (―within-category‖ changes). Awh et al. reasoned that if reductions in 

change detection performance for complex stimuli are due to errors in detecting relatively 

small changes, then decreasing the similarity between the sample and test stimuli (via 

cross-category changes) should have a beneficial effect on change detection performance 

(relative to performance with within-category changes). In fact, change detection 

accuracy was relatively poor for within-category changes, replicating the core findings of 

Alvarez and Cavanagh (2004). However, change detection accuracy for cross-category 

changes was subsequently equivalent to that observed in a color change detection task 

similar to the one reported by Luck and Vogel (1997). Thus, when sample-test similarity 

was minimized, change detection performance was equivalent for simple and complex 

objects. These findings suggest that the reductions in change detection accuracy with 

increasing stimulus complexity observed by Alvarez and Cavanagh (2005; see also Eng, 

Chen, & Jiang, 2005) were due to errors in detecting relative small changes than a 

reduction in WM storage capacity.  

One important implication of the findings reported by Awh et al (2007) is that the 

change detection task may measure unique aspects of memory ability depending on 

whether subjects are required to make fine-grained or coarse discriminations between 

sample and test stimuli. For example, when relatively coarse discriminations are required, 
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this procedure provides a reliable estimate of the number of items an individual can hold 

in WM (e.g., Luck & Vogel, 1997; Vogel & Machizawa, 2004). However, when subjects 

must make fine-grained discriminations between similar sample and test stimuli, then 

performance may also be limited by the relative clarity or resolution of representations 

held in memory. Critically, these two factors (i.e., the number of items an individual can 

represent in WM and the relative precision of these representations) appear to be 

independent aspects of memory ability. For example, Awh et al. (2007) reported that 

change detection accuracy was reliably correlated across so-called ―number-limited‖ 

conditions where sample-test similarity was low. Likewise, accuracy was also reliably 

correlated across ―resolution-limited‖ conditions where sample-test similarity was high. 

However, performance in number-limited conditions did not correlate with performance 

in the resolution-limited conditions. In a subsequent study, Fukuda, Vogel, Mayr, and 

Awh (2010) who asked a large pool of subjects to perform a battery of number- and 

resolution-limited WM tasks. An exploratory factor analysis on these data identified 

wholly orthogonal factors for number and resolution, suggesting that number and 

resolution are indeed distinct aspects of WM ability. 

The findings reported by Awh et al. (2007) suggest that WM ability is determined 

by the confluence of two factors: the number of items a person can store, and the clarity 

or resolution of the stored information. This ―hybrid‖ model can be contrasted with a 

flexible-resource model that assumes an inverse relationship between the number of 

representations stored in WM and the precision of each representation, with no fixed limit 

in the number of representations that can be stored. To distinguish between these 

perspectives, Zhang and Luck (2008) presented subjects with sample arrays of colored 
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squares followed by a brief retention interval. At the end of each trial, subjects were cued 

to report the color of a single square by clicking on a color wheel. The logic of this 

approach was that if the cued item was stored in WM, then subjects should have at least 

some (i.e., non-zero) information about its color, and their responses should be normally 

distributed around the true color value. However, if the cued item was not stored in WM, 

the subject will be forced to guess, leading to a uniform distribution of responses across 

color space. Using a relatively simple estimation procedure, the density function 

associated with each type of trial can be recovered. Thus, this procedure enables the 

simultaneous estimation of (1) the probability that a given item was stored in WM, and 

(2), the precision with which stored items were represented. According to the hybrid 

model outlined above, increasing the number of to-be-stored items should decrease the 

probability that the probed item was stored in memory, but it should only affect the 

resolution of the stored representations until a relatively small item limit has been 

exceeded
1
. By contrast, the flexible resource model predicts that increasing the number of 

to-be-stored items should affect the precision of each representation, but there should be 

no structural limit in the number of items that can receive mnemonic resources.  In fact, 

Zhang and Luck (2008) found that the proportion of subjects‘ responses attributable to 

random guessing increased as subjects attempted to store more items in WM. In addition, 

modest declines in precision were observed until a set size of three items, after which no 

                                                 
1
 This prediction is based on the assumption that subjects can choose to represent the same information in 

multiple slots. For example, when asked to remember a single oriented bar a subject might choose to store 

4 copies of this information (one per slot) and average these representations in an effort to obtain a more 

precise representation. Likewise, when two oriented bars must be represented the subject might choose to 

devote two slots to each bar. Here, fewer samples of each stimulus are stored, so resolution will be worse 

relative to a case where the subject can devote all of their slots to a single item. Thus, this model predicts 

that estimates of mnemonic resolution will decrease with set size until putative capacity limits are 

exceeded, after which no further changes in resolution will be observed. See Zhang & Luck, 2008; 

Anderson et al, 2011 for further discussion of this point.  
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further declines were observed.  Thus, WM storage was constrained by a relatively small 

item limit, consistent with a hybrid model of WM capacity.  

 

Neural Evidence for a Fixed Capacity Limit in Working Memory 

A number of human neuropsychological and neuroimaging studies also suggest 

that WM has a fixed capacity limit (Anderson et al., 2011; Todd & Marois, 2004; Vogel 

& Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005; Xu & Chun, 2006). In 

one example, Vogel and Machizawa (2004) recorded EEG waveforms from subjects as 

they performed a lateralized WM change detection task that required them to remember a 

variable number of objects presented in a cued hemifield. These authors observed a 

sustained, negative voltage wave over posterior contralateral electrodes that began 

approximately 300 ms following the onset of the memory array and persisted throughout 

the maintenance period. This so-called contralateral delay activity (CDA) was strongly 

modulated by the number of objects subjects were required to remember. Specifically, the 

amplitude of this component increased monotonically from one to three items and 

reached an asymptotic limit at around four items. Moreover, individual differences in the 

specific point at which the CDA reached asymptote were strongly predicted by 

behavioral estimates of WM capacity. Recent neuroimaging studies (e.g., Todd & 

Marois, 2004; Xu & Chun, 2006) have identified a similar response profile associated 

localized in human intraparietal sulcus (IPS). For example, Todd and Marois (2004) 

presented subjects with a variable number of colored discs followed by a short retention 

interval. Activity in bilateral IPS during this retention interval was strongly modulated by 
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the number of discs subjects were required to remember, reaching an asymptotic limit at 

around 3-4 items.  

Extant neuroimaging data are also broadly consistent with the distinction between 

number and resolution discussed above. For example, Xu and Chun (2006) asked subjects 

to remember arrays containing simple or complex shapes and found that activity in 

inferior IPS scaled with the total number of items subjects were asked remember before 

reaching an asymptotic limit at around 4 items (consistent with the core finding of Todd 

and Marois, 2004). Critically, a similar profile was observed when subjects were asked to 

remember simple or complex stimuli. However, activity in two other cortical areas – the 

superior IPS ad the lateral occipital complex (LOC) – was modulated by the relative 

complexity of to-be-remembered information. Specifically, when subjects were asked to 

remember simple objects activity in these regions increased monotonically with set size 

before reaching an asymptotic limit at around 4 items. In contrast, when subjects were 

asked to remember complex items activity in these regions reached asymptote at around 2 

items. Thus, these findings suggest that independent brain regions track the number and 

relative complexity of representations stored in WM.  

Asymptotic limits in neural activity associated with WM storage are most easily 

explained by discrete resource models of WM that assume a fixed capacity limit of about 

3-4 items. In contrast, it is not immediately clear how a flexible resource model of WM 

could account for these limits. For example, a core prediction of these models is that 

mnemonic resources can be used to store as few or as many items as necessary. By this 

account, subjects should always store all the items in a display, and storage-related neural 

activity should continue to increase well beyond set sizes of 3-4 items. Furthermore, the 
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basic finding that CDA and BOLD amplitudes are modulated by the number of items 

stored in WM poses a challenge to flexible resource models. Specifically, these models 

predict that the amount of mnemonic resources should always be consumed regardless of 

how many items the subject is required to store. If CDA amplitude represents the 

allocation of WM resources – as suggested by strong correlations with individual WM 

capacity – then CDA amplitude should be equivalent for one-item and three-item arrays. 

However, this is clearly not the case.  

Recent theoretical (Lisman & Idiart, 1995; Raffone & Wolters, 2001) and 

experimental (Siegel et al., 2009) work has identified a neurally plausible discrete 

resource model of WM. Specifically, this model assumes each item held in WM is 

represented though a unique pattern of high-frequency, synchronous firing across large 

populations of neurons. When multiple items must be held in memory, the high-

frequency activity related to each remembered item may be multiplexed within distinct 

phases of slower oscillatory activity. One attractive aspect of this phase-coding scheme is 

that it provides a relatively straightforward explanation of discrete capacity limits that 

have been reported in numerous studies of WM. For example, if information about each 

item stored in WM must be segregated from the others in a different range of phase 

orientations, then there should be a maximum number of locations that could be distinctly 

represented at once. This implies that the discrete resource limit in selection observed in 

these experiments may ultimately be due to a basic biophysical limitation in how 

information can be represented in the brain. 
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How Are Fine Visual Details Stored in Working Memory? 

 Although the number of items that can be stored in WM is a core limit in human 

cognition, the evidence reviewed in the preceding section suggests that the quality of 

representations stored in WM may be best understood as a distinct aspect of memory 

ability. This distinction is supported by neural evidence suggesting that different brain 

regions track the number of items stored in WM and the total amount of visual 

information contained within the stored items (e.g., Xu & Chun, 2006) as well as 

analyses of individual differences that identify orthogonal factors for number and 

resolution in WM (Awh et al., 2007; Fukuda et al., 2010). Significant progress has been 

made in developing neural measures that are sensitive to individual differences in the 

number of representations that can be simultaneously maintained in WM. For example, 

multiple electrophysiological (Vogel & Machizawa, 2004) and neuroimaging (Todd & 

Marois, 2004; Xu & Chun, 2006) studies in humans have demonstrated that activity in 

regions of posterior parietal cortex increases monotonically with the number of items 

held in WM before reaching an asymptotic limit at or near behavioral estimates of 

capacity. However, comparably little is known concerning the neural mechanisms that 

enable the storage of detailed visual information in WM. Thus, a key goal for future 

research is to identify and understand the neural mechanisms that determine the clarity or 

resolution of representations store in WM.  

 Early investigations concerning the storage of visual information in WM focused 

primarily on regions of prefrontal cortex (PFC). This focus was driven by a multitude of 

studies in non-human primates that documented impairments in visual memory following 

ablation or lesions of PFC (e.g., Goldman & Rosvold, 1970; Gross, 1963; Warren & 
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Akert, 1964), as well as single-unit recording studies that revealed sustained increases in 

the firing of PFC cells during the delay period of a delayed-match to sample task (e.g., 

Fuster & Alexander, 1971; Fuster, 1973; Niki & Watanabe, 1976). However, subsequent 

studies have made it clear that there is no single brain region or network of brain regions 

responsible for WM storage. Instead, an emerging view is that WM storage is mediated 

by the selective and flexible recruitment of cortical areas that have evolved to perform 

various sensory, cognitive, and motor functions (see Awh & Jonides, 2001; Jonides, 

Lacey, & Nee, 2005; Postle, 2006; and D‘Esposito, 2007 for reviews). For example, 

single-unit recording studies in macaques have revealed sustained changes in the firing 

rates of neurons in direction-selective cortical area MT+ when monkeys are required to 

remember the direction of a motion stimulus over a short delay (e.g., Bisley & Pasternak, 

2001), and microstimulation of cortical area MT+ during the delay period of a motion 

discrimination task has a deleterious effect on memory performance (Bisley, Zaksas, & 

Pasternak, 2001). Likewise, multiple studies have revealed sustained changes in neural 

firing rates in object- and face-selective regions of inferotemporal cortex when monkeys 

are required to remember an object or face over a brief delay (Chelazzi, Miller, Duncan, 

& Desimone, 1993; Miller, Li, & Desimone, 1993). 

A number of human neuroimaging studies have also reported sustained activity in 

sensory cortices during WM storage. Importantly, the specific sensory cortical regions 

engaged during WM storage depend strongly on the type of information subjects are 

asked to remember. For example, a wealth of neuroanatomical and neuropsychological 

studies suggest that the human (and primate) visual system can be (coarsely) divided into 

―dorsal‖ and ―ventral‖ pathways responsible for the processing of spatial and nonspatial 
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(i.e., object) information, respectively (e.g., Ettlinger, 1990; Ungerleider & Mishkin, 

1982). In an early PET study, Courtney, Ungerleider, Keil, and Haxby (1996) asked 

whether a similar anatomical segregation also exists during the storage of spatial and 

nonspatial information in WM. In this study, subjects were shown arrays face stimuli that 

appeared at various spatial locations. In separate blocks, subjects were instructed to 

remember either the identities of the faces or their positions. Whole-brain PET images 

were used to measure local changes in regional cerebral blood flow (rCBF) during the 

delay period of the task. During remember-location blocks, the authors observed 

sustained increases in rCBF in the superior and inferior parietal cortex, both of which 

have been implicated in the sensory processing of spatial information. Conversely, during 

remember-identity blocks, the authors observed sustained increases in a number of 

occipitotemporal sites, including the fusiform and parahippocampal cortices. Thus, 

different cortical regions showed evidence of sustained increases in activity depending on 

what type of information subjects were asked to remember. These findings are consistent 

with the hypothesis that WM storage is mediated by the selective and flexible recruitment 

of sensory cortical areas specialized for the processing of specific stimulus attributes. 

 Psychophysical studies in humans and macaques also suggest that independent, 

feature-selective mechanisms mediate the storage of elementary visual properties (e.g., 

color, orientation, spatial frequency) in WM. For example, Mangussen, Greenlee, 

Asplund, and Dyrnes (1991) asked subjects to remember the spatial frequency of a Gabor 

over a 10 second delay. A memory mask presented at various intervals during the delay 

had a deleterious effect on subjects‘ performance, but only when the spatial frequency of 

the mask differed from that of the remembered stimulus by an octave or more. Critically, 
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memory performance was unaffected by the orientation of this mask, consistent with the 

hypothesis that specialized mechanisms mediate the storage of spatial frequency and 

orientation information in WM. In another example, Zaksas et al. (2001) trained monkeys 

to perform a delayed motion discrimination task where the sample and test stimuli either 

appeared at the same or different locations. These conditions were blocked, so it was 

always possible to infer the location of the test stimulus given the location of the sample. 

On some trials, the experimenters presented a random dot mask during the delay period; 

this stimulus could appear at the location of the sample stimulus, the impending test 

stimulus, or elsewhere in the display. Task performance was significantly impaired by the 

presentation of this mask, but only when it appeared at the location of the impending test 

stimulus. The selective interference produced by this stimulus suggests that memory for 

the random dot aperture was localized in the cortical regions that were retinotopically 

mapped to the position of the impending test stimulus. Thus, there appear to be 

specialized mechanisms that mediate the storage of information regarding stimulus 

location, orientation, and spatial frequency in WM.  

 Considered as a whole, the findings discussed in the last few paragraphs motivate 

the hypothesis that the storage of fine visual details in WM is mediated by sensory 

recruitment, or sustained activity in cortical regions responsible for sensory processing of 

the memoranda (Awh & Jonides, 2001; Jonides, Lacey, & Nee, 2005; Postle, 2006; and 

D‘Esposito, 2007). In the chapters that follow, I examine two untested predictions of this 

model. First, the sensory recruitment view assumes that sustained activity in sensory 

cortices during WM storage reflects the active storage of hypothesis assumes that this 

activity represents the specific stimulus values of the stored items. Chapter II describes a 
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study designed to test this hypothesis using fMRI and multivoxel pattern analysis 

(MVPA). Second, the sensory recruitment view predicts that when required to remember 

a specific stimulus value such as orientation, humans opportunistically recruit all 

available sensory machinery in an effort to store this information with maximal precision. 

Chapter III describes the results of an experiment that provide preliminary insights into 

this possibility. 

 Chapter II was previously published with John T. Serences, Edward K. Vogel, 

and Edward Awh in Psychological Science: Serences, JT, Ester, EF, Vogel, EK, & Awh, 

E (2009) Stimulus-specific delay activity in human primary visual cortex. Psychol Sci 

20:207-214. 

 Chapter III was previously published with John T. Serences and Edward Awh in 

the Journal of Neuroscience: Ester EF, Serences JT, Awh E (2009) Spatially global 

representations in human primary visual cortex during working memory maintenance. J 

Neurosci 29:15258-15265. 
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CHAPTER II 

STIMULUS-SPECIFIC DELAY ACTIVITY IN HUMAN PRIMARY VISUAL 

CORTEX 

 

 This chapter was previously published with John T. Serences, Edward K. Vogel, 

and Edward Awh in Psychological Science: Serences, JT, Ester, EF, Vogel, EK, & Awh, 

E (2009) Stimulus-specific delay activity in human primary visual cortex. Psychol Sci 

20:207-214.  

 

INTRODUCTION 

 

Working memory (WM) allows the on-line storage of behaviorally relevant 

information. One emerging view is that WM is supported by the same neural mechanisms 

that encode the sensory information being remembered (we term this the sensory 

recruitment model of WM; see Awh & Jonides, 2001; D‘Esposito, 2007; Jonides, Lacey, 

& Nee, 2005; Postle, 2006). For example, neurons in face-selective regions of 

inferotemporal cortex show sustained amplitude increases while an observer is holding a 

face in WM (Chelazzi, Miller, Duncan, & Desimone, 1993; Courtney, Ungerleider, Keil, 

& Haxby, 1997; Druzgal & D‘Esposito, 2001; Lepsien & Nobre, 2007; Miller, Li, & 

Desimone, 1993; Ranganath, Cohen, Dam, & D‘Esposito, 2004). The sensory-

recruitment hypothesis assumes that this activity represents the specific stimulus values 

of the stored items. Here we report a study in which functional magnetic resonance 

imaging (fMRI) and multivoxel pattern analysis (MVPA) provided direct support for this 
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claim, showing that activation patterns in relevant sensory regions represent the specific 

stimulus value that is held in WM.  

MVPA provides a useful tool for identifying the neural regions that mediate WM 

by focusing on changes in activation patterns as opposed to simply changes in the mean 

amplitude of the blood-oxygenation-level-dependent (BOLD) response. For example, 

Offen, Schluppeck, and Heeger (2009) used fMRI to index activation changes in primary 

visual cortex (V1), a region known to represent orientation and spatial frequency. 

Although mean response amplitudes in V1 increased during sustained deployments of 

spatial attention, activation levels were indistinguishable from a low-level baseline when 

information about orientation (or spatial frequency) was stored in WM. This finding 

appears to contradict the sensory-recruitment model. However, as Offen et al. noted, 

neurons that respond preferentially to the remembered orientation should become more 

active, whereas neurons tuned away from the remembered orientation should be 

suppressed (relatively speaking; see, e.g., Martinez-Trujillo & Treue, 2004). A 

differential pattern of activity across the relevant sensory neurons is thought to represent 

the encoded orientation (Paradiso, 1988; Pouget, Dayan, & Zemel, 2003; Sanger, 1996), 

and therefore the sensory-recruitment account holds that this pattern should be 

maintained during a WM delay period as well. However, if the BOLD response spatially 

integrates information from neurons that are more active (i.e., those tuned to the 

remembered orientation) with information from neurons that are less active (Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001), then a failure to find a sustained amplitude 

increase in orientation-specific regions of cortex during a delay period does not provide 

strong evidence against the sensory-recruitment model of WM. 
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We tested the sensory-recruitment hypothesis by determining if WM is mediated 

by sustained feature-selective activation patterns in cortical regions that process the 

relevant sensory information. Using fMRI, MVPA, and a pattern-classification algorithm, 

we examined feature-specific WM modulations in V1 while subjects remembered either 

an orientation or a color for 10 s (Haxby et al., 2001; Haynes & Rees, 2005; Kamitani & 

Tong, 2005, 2006; Norman, Polyn, Detre, & Haxby, 2006; Peelen & Downing, 2007; 

Serences & Boynton, 2007a, 2007b). The observation of feature-specific activation 

patterns in V1 suggests that sensory mechanisms are recruited to support the storage of 

information in WM and furthermore indicates that subjects have top-down control over 

which features of a multifeature stimulus are stored. 

 

METHOD 

 

Observers 

Ten neurologically intact observers participated in a single 2-hr scanning session. 

All observers gave written informed consent in accord with the requirements of the 

institutional review board at the University of Oregon. Data from 3 observers were 

discarded because of technical problems or voluntary withdrawal from the study. Each 

observer was trained in the experimental task for approximately 1.5 hr prior to scanning, 

to set sample-test disparities to threshold (see Staircase Procedure). 
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Behavioral Task 

Stimuli were rendered on a light-gray background and displayed via a rear-

mounted projector (see Figure 2-1). Observers were instructed to maintain fixation on a 

central square (subtending 1° visual angle from a viewing distance of 58 cm) that was 

present for the duration of each scan. At the beginning of each trial, observers were 

shown the sample, a Gabor stimulus (diameter = 13°) with a small circular aperture 

(diameter = 2°) cut around the fixation square. The sample stimulus was rendered in one 

of two orientations (45° or 135°, plus or minus an additional offset randomly selected 

from a range of ±10°) and in one of two colors (middle red or middle green, plus or 

minus an offset randomly selected from a range of ±10% saturation). The addition of 

random jitter around the canonical features discouraged the use of verbal labels, which 

would not have been precise enough to support accurate performance in this task. For 

some observers (n = 2), the spatial frequency of the stimulus varied randomly across 

trials (0.75–1.25 cycles/deg); for the others, the spatial frequency was fixed at 1 

cycle/deg. The sample stimulus flickered on and off at 5 Hz and was presented for a total 

of 1 s, followed by a 10-s blank retention interval. Next, observers were shown a test 

stimulus (again flickering at 5 Hz for a total of 1 s) that either was identical to or 

mismatched the sample along one feature dimension (i.e., either the orientation or the 

color was slightly different). Observers then used a custom-made button box to make a 

two-alternative forced-choice response regarding whether the sample and test stimuli 

matched. The sample and test stimuli differed on 50% of trials. A 10-s intertrial interval 

followed the offset of each test stimulus. At the beginning of each block of trials (or 

scan), observers were informed that the sample and test stimuli would differ along only 
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one feature dimension (color or orientation). Thus, remember- orientation and remember-

color trials were run in separate scans. Each scan contained eight trials, and each observer 

completed seven or eight scans in each memory condition. Feedback (percentage correct) 

was given after each scan. 

 

Staircase Procedure 

To encourage a narrow focus of attention on only the relevant feature, and to 

discourage verbal-labeling strategies, we titrated task difficulty for each observer in a 

separate behavioral testing session (7–8 blocks of each feature condition). The task was 

identical to that just described, and the sample-test disparity was adjusted independently 

for each feature dimension until a criterion level of performance (approximately 75% 

correct) was reached. The resulting orientation and color disparities were used to 

determine the sample-test disparity for each feature during scanning. 

 

Figure 2-1: Working memory task. On each trial, a sample stimulus that flickered at 5 

Hz was presented for 1 s; observers were instructed to remember either the exact 

orientation or the exact color of this sample over the following 10-s delay period. After 

the delay, a test stimulus was presented, also for 1 s. The task was to indicate with a 

button press whether or not the test stimulus matched the sample stimulus on the 

intended dimension. An exaggerated orientation-mismatch trial is depicted here for 

illustrative purposes. The test stimulus was followed by a 10-s intertrial interval (ITI). 
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fMRI Data Acquisition and Analysis 

Scanning was performed using a 3-T Siemens Allegra system at the Robert and 

Beverly Lewis Center for Neuroimaging at the University of Oregon. Anatomical images 

were acquired using a spoiled-gradient-recalled T1-weighted sequence that yielded 

images with a 1-mm3 resolution. Whole-brain echo-planar images (EPIs) were acquired 

in 33 transverse slices (2,000-ms repetition time, 30-ms echo time, 901 flip angle, 64x64 

matrix, 192-mm field of view, 3.5-mm slice thickness, no gap). Data analysis was 

performed using BrainVoyagerQX (Version 1.86; Brain Innovations, Maastricht, The 

Netherlands) and custom time-series analysis and pattern-classification routines written 

in MATLAB (Version 7.2; Mathworks, Natick, MA). Either seven (N = 2) or eight (N = 

5) scans of the remember orientation and remember-color tasks were collected per subject 

(14–16 scans per subject), with each scan lasting 186 s. EPI images were slice-time-

corrected, motion-corrected (within and between scans), and high-pass-filtered (three 

cycles per run). 

 

Retinotopic Mapping 

Retinotopic maps were obtained using a rotating checkerboard stimulus and 

standard presentation and analysis techniques (Engel et al., 1994; Sereno et al., 1995). 

This procedure was used to identify V1, a region known to respond to both color and 

orientation (e.g., Johnson, Hawken, & Shapley, 2001; Leventhal, Thompson, Liu, Zhou, 

& Ault, 1995; Sincich & Horton, 2005; Solomon & Lennie, 2007), as well as ventral (V2, 

V3, hV4) and dorsal (V2, V3, V3a) visual areas. 
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Voxel Selection 

Independent functional localizer scans were used to identify regions of occipital 

visual cortex that responded to the spatial position occupied by the stimulus aperture in 

the main experiment. Colored Gabor stimuli identical to those used in the WM task were 

cycled on and off at 5 Hz for 10 s on each trial and followed by a 10-s passive fixation 

epoch. At the beginning of each localizer run, observers were instructed to attend to 

either the color or the orientation of the stimulus for the duration of that run. Color and 

orientation runs were presented in alternation. During each trial, two or three target 

events (a change in the value of the relevant feature dimension for 100 ms) occurred, and 

observers pressed a button whenever they detected a target event. Each localizer run 

contained 12 trials, and observers completed either one (N = 4) or two (N = 3) runs per 

attended feature dimension. We then used a general linear model (GLM) to identify 

voxels within each visual area that responded more strongly during epochs of stimulation 

than during epochs of passive fixation. The single regressor in the GLM was created by 

convolving a boxcar model of the stimulus protocol with a gamma function (Boynton, 

Engel, Glover, & Heeger, 1996). In each visual area, all voxels that passed a statistical 

threshold of p < .05 (corrected for multiple comparisons using the false discovery rate 

algorithm in BrainVoyager) were retained for further analysis. 

 

Multivoxel Pattern Analysis 

For the MVPA, we first extracted the raw time series from each voxel within each 

region of interest during a time period extending from 4 s to 10 s after the presentation of 

each sample stimulus. These time series were then normalized using a z transform on a 
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scan-by-scan basis. Temporal epochs from all but one scan were extracted to form a 

‗‗training‘‘ data set for the classification analysis; data from the remaining scan were 

defined as the ‗‗test‘‘ set (we use the term scan to refer to an entire 186-s data-collection 

sequence, so the training and test data sets were always independent). We then trained a 

Support Vector Machine (SVM; specifically, the OSU-SVM implementation, 

http://sourceforge.net/projects/svm/; see also Kamitani & Tong, 2005, 2006) using only 

the training data and then used the SVM to classify the orientation or the color of the 

sample stimulus on each trial from the test scan (classification of color and classification 

of orientation were carried out separately, so chance for all comparisons was 50%). 

This procedure was repeated using a hold-one-scan-out cross-validation approach, 

so that data from every scan were used as a test set in turn. The SVM‘s overall 

classification accuracy for each observer was then defined as the average classification 

accuracy across all seven or eight permutations of holding one scan out for use as a test 

set (depending on the number of scans the subject completed). Classification accuracy 

was averaged across corresponding regions of interest in the left and right hemispheres 

because no significant differences were observed between left and right visual areas. 

 

RESULTS 

 

Behavioral Performance 

Discrimination thresholds did not differ between the two subtypes of either 

feature dimension (45 vs. 135, red vs. green), and overall accuracy was maintained at the 

level predetermined by the staircase procedure.  
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Analysis of WM-Related Activation in Visual Cortex 

All analyses reported here are based on the 62 most responsive voxels within each 

visual area because this was the minimum number of voxels with significant activity 

across subjects and visual areas; however, our main conclusions are robust even when 

more or fewer voxels are included in the analysis.  

The goal of this study was to use fMRI and MVPA to determine whether, as 

predicted by the sensory-recruitment hypothesis, there are stimulus-specific modulations 

in early regions of visual cortex while an observer is remembering a specific orientation 

or color. Although we examined the response properties of several visual areas in 

occipital cortex (V1, V2v, V3v, hV4, V2d, V3d, V3a), we focused on V1 because this 

region contains neurons that are selective for both orientation and color (Johnson et al., 

2001; Leventhal et al., 1995; Sincich & Horton, 2005; Solomon & Lennie, 2007), making 

it the ideal region to test for orientation and color-selective modulations during the 

storage of information in WM. Independent functional localizer scans were used to 

identify the 62 V1 voxels in each observer that were most selective for the retinotopic 

position occupied by the stimulus aperture in the WM task (see the Method section for 

our voxel-selection logic). Before performing the MVPA, we compared the mean 

amplitude of the BOLD response in V1 (collapsed across all 62 voxels) during the delay 

period of the WM task with the mean amplitude of the BOLD response in a 

corresponding temporal epoch following the test stimulus (see Figures. 2-2a and 2-2b). 

This comparison controlled for low-level sensory factors, as the sample and test stimuli 

were essentially identical. Even though response amplitudes were slightly higher 10 s 

post-sample than 10 s post-test, overall activation levels during the WM delay period 



27 

 

were statistically indistinguishable from activation levels during the corresponding epoch 

following the test stimulus on both remember-orientation trials and remember-color 

trials. Two-way repeated measures analyses of variance (ANOVAs) with delay type 

(WM vs. ITI) and time point (four levels, from 4 s through 10 s) as factors showed no 

reliable main effect of delay type, F(1, 6) = 0.4, p = 0.55, η
2
 = 0.06, and F(1, 6) = 0.27, p 

= 0.62, η
2
 = 0.04, respectively. We examined activation 4 s through 10 s post-stimulus 

because this epoch should reflect activation associated with the retention of information 

in WM. No other retinotopically organized region showed sustained amplitude increases 

related to storing information in WM. Because comparing activation during the WM 

delay period with activation during a ‗‗passive‘‘ ITI following the presentation of the test 

stimulus is potentially problematic, we also plotted the mean time series for 24 s 

following the presentation of each sample stimulus (as in Offen et al., 2009). Activation 

levels fell back to baseline approximately 8 s after the onset of the sample stimulus (see 

Figs. 2-2c and 2-2d), in contrast to the sustained amplitude increases often observed in 

parietal and frontal cortex across the delay period in a WM task (e.g., see Figure 1 in 

D‘Esposito, 2007). Thus, at least in our study, V1 did not exhibit a robust sustained 

amplitude increase that is often associated with WM maintenance. It is important to note 

that the lack of amplitude changes in V1 does not rule out the possibility that stimulus-

specific patterns of activation are involved in maintaining information in WM. Therefore, 

we used MVPA to determine if V1 exhibits a stimulus-specific activation pattern during 

the delay period, consistent with the predictions of the sensory-recruitment hypothesis. 

The MVPA approach is based on the assumption that some subregions of visual cortex 

contain submillimeter columns of neurons that are selective for different stimulus 
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features, such as orientation. In comparison, fMRI voxels are large (~3 mm
3
); however, if 

slightly more neurons within a voxel prefer a particular orientation than prefer other 

Figure 2-2: Mean amplitude of the blood-oxygenation-level-dependent (BOLD) 

response in primary visual cortex (V1) across the working memory (WM) delay 

period and intertrial interval (ITI). All time series were computed against a baseline 

of the activation level at time 0. The vertical dotted lines highlight the onset of the 

sample stimulus at 0 s and the onset of the test stimulus at 11 s. The graphs at the top 

show results for (a) remember-orientation and (b) remember-color trials over a time 

window extending through 12 s post-stimulus, and the graphs at the bottom show 

results for (c) remember-orientation and (d) remember-color trials over a longer, 24-s 

temporal window. Note that because all the event related time series were computed 

against a baseline of the respective activation level at time 0, the second halves of the 

time series in (c) and (d) look slightly different from the ITI-evoked responses in (a) 

and (b) even though they show the same data. Error bars represent ±1 SEM across 

observers. 
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orientations, then that voxel may exhibit a weak but detectable response bias (Kamitani & 

Tong, 2005). By examining the distributed voxel-by-voxel activation pattern across a 

visual area such as V1, one can make inferences about changes in the underlying 

population response profile, and pattern-classification algorithms can be used to predict 

the specific feature that an observer is viewing, attending, or (in our case) remembering 

(Haynes & Rees, 2005; Kamitani & Tong, 2005, 2006; Norman et al., 2006; Peelen & 

Downing, 2007; Serences & Boynton, 2007a, 2007b). We therefore examined activation 

patterns in V1 during the delay period of the WM task (4–10 s following sample onset) to 

determine if information about the remembered feature was being actively represented. 

As predicted by the sensory recruitment hypothesis, when observers were remembering 

the orientation of the sample stimulus, activation patterns in V1 discriminated stimulus 

orientation, but not stimulus color (see Figure 2-3a). A complementary pattern was 

observed when observers were instructed to remember the color of the stimulus. A two-

way repeated measures ANOVA with memory instruction (remember orientation vs. 

remember color) and stimulus feature (classify orientation vs. classify color) as factors 

yielded a significant interaction, F(1, 6) = 21.4, p < .005, η
2
 = 0.78. In contrast, activation 

patterns associated with a corresponding temporal epoch following the test stimulus—

which was physically identical and required a challenging discrimination without 

storage—did not support above-chance classification accuracy (see Figure 2-3b), F(1, 6) 

= 0.14, p = 0.72, η
2
 = 0.02, so that there was a three-way interaction of delay type (WM 

vs. ITI), memory instruction, and stimulus feature, F(1, 6) = 6.90, p < 0.05, η
2
 = 0.54. 

Given that the test stimulus evoked a BOLD response whose amplitude was statistically 

indistinguishable from that evoked by the sample stimulus (see Figure 2), these data 
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suggest that the active discrimination of the test stimulus for 1 s was not sufficient to 

drive above-chance classification accuracy. Thus, we conclude that the stimulus-specific 

pattern of delay activity in V1 was a direct consequence of active maintenance in WM. 

Activation patterns in other retinotopically organized visual areas did not consistently 

discriminate the remembered feature of the sample stimulus. The three-way interaction 

illustrated in Figure 2-3 was also significant when 80 V1 voxels were used to perform the 

classification, F(1, 6) = 6.90, p < 0.05, η
2
 = 0.53. Thus, a similar pattern of classification 

accuracy is observed even when more than 62 voxels are considered in the analysis. 

Qualitatively similar results were obtained for pattern sizes ranging from 40 to 100 

Figure 2-3: Feature-selective working memory (WM) modulations revealed by 

multivoxel pattern analysis. The graphs show classification accuracy as a function of 

the stimulus feature (color or orientation) being classified and whether the subject was 

instructed to remember orientation or color during the scan used as the basis for 

classification. Results are shown for (a) the WM delay period and (b) an analogous 

temporal interval following presentation of the test stimulus (i.e., during the intertrial 

interval, ITI). The horizontal lines at 0.5 accuracy highlight the level of chance 

performance. Error bars represent ±1 SEM across observers. 
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voxels as well. When a linear discriminant classifier based on the Mahalanobis distance 

between activation patterns was used to compute classification accuracy, the three-way 

interaction was again significant, F(1, 6) = 10.80, p < 0.025, η
2
 = 0.64. Thus, the results 

were not idiosyncratically dependent on the use of an SVM.  

At first glance, it is striking that classification accuracy for orientation was below 

chance when participants were remembering stimulus color (see Figure 3a). However, 

this effect was not robust across all activation pattern sizes, and we never observed 

below-chance color classification accuracy when participants were remembering 

orientation. Together, these analyses suggest that sustained stimulus-specific patterns in 

V1 reflect active storage in WM, and are not a passive consequence of the attentive 

encoding of the sample stimulus. Although both the sample and the test stimuli required 

attentive processing, significant classification accuracy was obtained only during the WM 

delay period following the sample stimulus. These differences in classification accuracy 

cannot easily be explained by differences in general arousal or effort related to task 

demands, as the overall amplitude of the evoked BOLD response was roughly equivalent 

for the test and the sample stimuli. However, to provide additional support for sustained 

feature-selective modulations during the WM delay period, we repeated the classification 

analyses with and without data from the last time point in the delay period (i.e., 10 s after 

the onset of the sample; see Figures 2-2a and 2-2b). If there were a sustained WM-related 

activation pattern, then data from the last time point in the delay period would contribute 

to classification accuracy. By contrast, if feature-selective activation patterns were not 

sustained across the entire delay period, then adding data from the last time point would 

not improve classification accuracy (and might even impair classification accuracy if the 
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activation patterns associated with the last time point were dominated by noise). As 

Figure 2-4 shows, classification of the remembered stimulus was significantly better 

when activation patterns associated with the last time point in the delay period were 

included. However, the addition of this last time point in the delay period did not alter 

classification accuracy for the non-remembered feature (see Figure 2-4a). Thus, the mere 

addition of more data did not necessarily improve the performance of the pattern 

classifier. A two-way ANOVA with memory instruction (orientation vs. color) and time 

bin (4 s through 8 s vs. 4 s through 10 s) as factors confirmed that adding information 

from the last time point in the delay period (10 s post-stimulus) selectively enhanced 

Figure 2-4: Comparison of classification accuracy (collapsed across feature 

dimensions) in two time bins: 4 through 8 s poststimulus and 4 through 10 s 

poststimulus. The graph in (a) shows classification accuracy for remembered features 

(i.e., for orientation when subjects were remembering orientation and for color when 

subjects were remembering color) and for nonremembered features (e.g., for orientation 

when subjects were remembering color). The graph in (b) shows classification accuracy 

for the remembered (or relevant) feature based on data from the working memory (WM) 

delay period and based on data from the intertrial interval (ITI) following the test 

stimulus. (Note that following the test stimulus, the ―remembered‖ feature did not need to 

be remembered anymore and was simply the relevant feature for comparison with the 

sample.) Error bars represent ±1 SEM across observers. 
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classification accuracy for the remembered feature, F(1, 6) = 6.70, p < .05, η
2
 = 0.53. 

Furthermore, although including data from 10 s post-sample clearly improved 

classification accuracy for the remembered stimulus feature, including data from 10 s 

posttest (at the end of the ITI) had little effect on classification of the test stimulus (see 

Fig. 4b). The two-way interaction of delay type and time bin was significant, F(1, 6) = 

6.20, p < .05, η
2
 = 0.51. Finally, we repeated the analysis after removing data from the 

peak of the stimulus-evoked BOLD response (4 s; see Figure 2-2) and used only data 

collected 6 s to 10 s post-stimulus to classify the remembered feature attribute. Even 

when data from the peak were excluded, classification accuracy for the remembered 

feature was significantly higher than classification accuracy for the non-remembered 

feature, collapsed across remember-orientation and remember-color trials (.584 vs. .474), 

t(6) = 2.9, prep > .87. These control analyses support our conclusion that the interaction 

depicted in Figure 2-3a reflects the on-line maintenance of information in WM, rather 

than the aftereffects of a phasic sensory response.  

Although our data suggest that maintaining information in WM gives rise to 

sustained feature-selective activation patterns in V1, a stronger prediction of the sensory-

recruitment hypothesis is that the pattern of activation during the delay period will 

literally mimic the pattern of activation evoked during sensory processing of the same 

stimulus. To test this prediction, we trained a classification algorithm using data from the 

functional localizer scans that were initially used to identify visually responsive voxels in 

each subregion of occipital cortex (see Method). The stimuli used in the localizer scans 

were identical to those used in the WM study, except that they were presented 

continuously for 10 s instead of only 1 s, and WM was not required during the localizer 
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tasks. Each subject completed two to four of these localizer scans (in half of the scans, 

they attended orientation and ignored color; in the other half, they attended color and 

ignored orientation). One SVM was trained using data from attend-orientation localizer 

scans, and another was trained using data from attend-color localizer scans. These SVMs 

were then used to predict the orientation or color that subjects were remembering on each 

trial during the main WM task. Collapsed across remember-orientation and remember-

color trials, classification accuracy was .607 (SEM = 0.04), t(6) = 2.50, prep > .87. This 

above-chance classification accuracy demonstrates that the V1 activation pattern that is 

sustained during WM resembles the sensory-evoked response that is observed during 

sensory processing alone. 

 

DISCUSSION 

 

These results demonstrate that the maintenance of information in visual WM 

elicits stimulus-specific activation patterns in the same regions of visual cortex that 

encode the to-be-remembered sensory information. These activation patterns were 

specifically tied to the delay period, when active rehearsal in WM was required. 

Classification accuracy was not above chance following the test stimulus, which involved 

identical bottom-up stimulation and discrimination of the same stimulus dimension, but 

no WM load. In addition, the sustained activation patterns observed during the delay 

period were similar to patterns evoked by the continuous presentation of identical sensory 

stimuli, which suggests that early feature-selective visual areas are recruited to maintain a 

‗‗copy‘‘ of remembered stimulus attributes, as opposed to a more abstract or categorical 
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representation. In addition to providing these empirical results, this study demonstrates 

that MVPA is a valuable tool for answering questions about the neural mechanisms that 

mediate the storage of specific stimulus values in WM. 

Finally, these findings are also relevant to the claim that the capacity of visual 

WM is determined by the number of individuated objects that have to be stored, rather 

than the total amount of visual detail contained within those items (Awh, Barton, & 

Vogel, 2007; Irwin, 1992; Luck & Vogel, 1997; Woodman & Vogel, 2008; Xu & Chun, 

2006; Zhang & Luck, 2008). For example, Luck and Vogel (1997) showed that capacity 

estimates for objects defined by a single feature (e.g., color or orientation) were 

equivalent to capacity estimates for multifeatured objects (e.g., colored oriented lines). 

This suggests that capacity is determined by the number of objects that are stored, rather 

than by the total information load. Alternatively, other researchers have proposed that an 

obligatory set of core features, including attributes such as color and orientation, is 

maintained regardless of the observer‘s intentions (Alvarez & Cavanagh, 2004). This 

hypothesis might explain Luck and Vogel‘s observation of equivalent capacity estimates 

for single and multifeature objects if all the possible features were obligatorily stored 

even when only a single feature was relevant. However, our results (Fig. 2-3) reveal that 

early sensory areas selectively represent only behaviorally relevant features during a WM 

delay period and suggest that observers have top-down control over which features are 

stored (see also Olivers, Meijer, & Theeuwes, 2006; Woodman & Vogel, 2008). 
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CHAPTER III 

SPATIALLY GLOBAL REPRESENTATIONS IN HUMAN PRIMARY VISUAL 

CORTEX DURING WORKING MEMORY MAINTENANCE 

 

 This chapter was previously published with John T. Serences and Edward Awh in 

the Journal of Neuroscience: Ester EF, Serences JT, Awh E (2009) Spatially global 

representations in human primary visual cortex during working memory maintenance. J 

Neurosci 29:15258-15265. 

 

INTRODUCTION 

 

Working memory (WM) supports the maintenance of information in an online 

state. Human neuroimaging (Harrison and Tong, 2009; Serences et al., 2009a) and single-

unit studies in non-human primates (Miller et al., 1996; Super et al., 2001) suggest that 

WM storage is mediated by sensory recruitment, or sustained activity in early cortical 

regions that encode information. For example, Serences et al. (2009a) required subjects to 

remember the orientation or color of a foveally presented grating. Using functional 

magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA), they 

demonstrated that sustained patterns of activation in primary visual cortex (V1) during 

WM storage discriminated the specific value of the remembered attribute, even in the 

absence of changes in overall response amplitude. 

One important question concerns the spatial extent of sensory recruitment. On one 

hand, recruitment may be confined to cortical regions that were activated during the 

encoding of a stimulus. Dill and Fahle (1998) showed subjects two dot patterns separated 
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by a short interval and asked them to determine whether these stimuli were identical. 

Relative to a condition in which the stimuli appeared in the same spatial location, 

performance was reliably reduced when they appeared in different locations (see also 

Zaksas et al, 2001; Hollingworth, 2006; 2007). These findings suggest that object 

representations held in WM are spatially-specific, thus motivating the hypothesis that 

sensory recruitment is confined to cortical regions that are retinotopically mapped to the 

spatial location occupied by the memoranda. 

Alternatively, sensory recruitment may extend to cortical regions that were not 

engaged during stimulus encoding. For example, a specific orientation could be 

represented via the broad recruitment of cortical neurons that encode orientation, 

regardless of the retinotopic position of the remembered stimulus.  This possibility is 

suggested by studies demonstrating a spatially global spread of feature-based attention 

during perception (Treue & Martinez-Trujillo, 1999; Serences & Boynton, 2007a). For 

example, Serences and Boynton (2007a) instructed subjects to monitor one of two 

directions of motion carried by stimuli located in one hemifield of a display. Using fMRI 

and MVPA, these authors demonstrated that patterns of activity in visual areas ipsilateral 

to the stimuli discriminated the attended direction of motion, despite the fact that these 

regions were not being driven by a bottom-up signal. During WM maintenance, this kind 

of spatially global recruitment might enhance the precision of mnemonic representations 

by recruiting additional neurons that support robust population coding of the stored 

information (Pouget et al., 2003). 

Here, we attempted to determine whether sensory recruitment during WM 

maintenance is spatially local or global. Subjects were required to remember the 
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orientation of a grating presented in the left or right visual field. Using fMRI and MVPA, 

we found that patterns of activity in early cortical regions (V1) both contralateral and 

ipsilateral to a stimulus discriminated the remembered orientation. Under identical 

sensory conditions where WM maintenance was not required, these effects were 

abolished. Furthermore, patterns of activity in contralateral and ipsilateral ROIs were 

qualitatively similar during perception and WM maintenance, consistent with sensory 

recruitment accounts of storage in visual working memory. 

 

MATERIALS AND METHODS 

 

Subjects 

Twenty neurologically intact subjects participated in a single two-hour scanning 

session. All subjects gave informed written consent in accordance with the Office for the 

Protection of Human Subjects at the University of Oregon. Data from three subjects were 

discarded due to technical difficulties (n = 2) or voluntary withdrawal from the study (n = 

1). Prior to scanning, each subject participated in a 1.5h training session to identify 

performance thresholds in each behavioral task (see Staircase Procedure, below). 

Subjects were compensated at a rate of $8 per hour for behavioral testing and $25 per 

hour for scanning.  

 

Working Memory Task 

Stimuli were generated in Matlab (Version 7.1; Mathworks, Natick, MA) using 

Psychophysics Toolbox software (Brainard, 1997; Pelli, 1997) and rendered in black on a 
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medium-grey background via a rear projection system. Subjects were instructed to 

maintain fixation on a central dot (subtending approximately 0.2º from a viewing distance 

of 58cm) throughout each scan. Eye position was monitored via an ASL (Bedford, MA) 

model 5000 eyetracking system.  

 The sequence of events on each trial is presented in Figure 3-1. At the start of 

each trial, a ―sample‖ grating stimulus (radius 4º, 1 cycle/deg) was displayed in the upper 

left or right portion of the display (horizontal and vertical eccentricity of ±8.5º and +5º, 

respectively). The sample was rendered with an orientation of 45º or 135º (jittered on a 

trial-by-trial basis by a randomly selected value in the range of ±10º to discourage the use 

of categorical labels), and cycled on and off at a rate of 2Hz (250ms on, 250ms off) for a 

total of 6 seconds. To attenuate the potency of retinal afterimages and any perception of  

Figure 3-1: Working Memory Task. On each trial, observers were shown a sample 

grating in the upper left or right visual field for 6 s. A subsequent change in the color of 

the fixation point (to red or green; shown here in white) informed observers whether they 

should remember the sample orientation (memory trials) or simply wait for the next trial 

to begin (no-memory trials). On memory trials, the cue was followed by a 14 s delay 

period and the presentation of a 1 s test grating in the same spatial location as the sample. 

Observers made a two-alternative, forced-choice response indicating whether the sample 

and test gratings shared the same orientation. On no-memory trials, the 14 s delay period 

was followed by an additional 1 s blank interval (i.e., no test grating was shown and no 

response was required). Trials were separated by a 2 s intertrial interval (ITI).  
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apparent motion, the spatial phase of the sample was randomized on each cycle. After the 

sample epoch, a 2 second change in the color of the fixation point (to red or green) 

instructed subjects to remember the orientation of the sample for comparison with a 

subsequent test grating (a ―memory‖ trial) or wait for the start of the next trial (a ―no-

memory‖ trial). For nine subjects, a green cue was used to denote memory trials and a red 

cue denoted no-memory trials. For the remaining eight subjects, this mapping was 

reversed. The cue was followed by a 14 second delay period. On memory trials, the delay 

period was followed by the presentation of a static, 1 second test grating and a 2 second 

inter-trial interval. Subjects made a button press response during this 3-second interval to 

indicate whether the sample and test stimuli shared the same orientation (50% of trials). 

On no-memory trials, the delay period was instead followed by an additional 3 seconds of 

fixation. Stimulus orientation (45º or 135º), position (left or right visual field), and trial 

type (memory or no-memory) were balanced within each scan (where ―scan‖ refers to a 

continuous, 404s-long block of 16 trials). Subjects completed a total of 6 (n = 1), 7 (n = 

7), 8 (n = 7), or 9 (n = 2) scans as time permitted.  

 

Perceptual Monitoring (PM) Task 

During the same scanning session, subjects also performed a perceptual 

monitoring task. The stimuli and display parameters were closely modeled after those 

used in the WM task. On each trial, a sample grating oriented to 45º or 135º (randomly 

jittered on a trial-by-trial basis by a value in the range of ±10º) was presented in the upper 

left or right visual field. This stimulus cycled on and off at a rate of 2 Hz for the duration 

of each 15 second trial. Subjects were instructed to monitor this stimulus and make a 
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manual button press response whenever they detected a brief (one cycle) change in its 

orientation (a target event; these occurred at unpredictable intervals 2-3 times per trial; 

see Staircase Procedure for information about the size of these angular deviations). Each 

260s-long scan contained a total of 12 real and 3 ―null‖ (i.e., 15 seconds of fixation) 

trials, and each observer completed a total of 3 (n = 2) or 4 (n = 15) scans as time 

permitted.  

 

Staircase Procedure 

To ensure that both behavioral tasks were sufficiently challenging, we adjusted 

their difficulty for each subject during a separate behavioral testing session (completed 1 

to 3 days prior to the scanning session). Sample-test (for the WM task) and sample-target 

(for the PM task) disparities were independently adjusted for each orientation category 

(45º or 135º) until a criterion level of performance (75% accuracy) was reached. The 

resulting orientation disparities were used to set sample-test and sample-target disparities 

during the scan session.   

 

fMRI Data Acquisition and Analysis 

fMRI data were collected using a 3T Siemens Allegra system at the Robert and 

Beverly Lewis Center for Neuroimaging at the University of Oregon. Anatomical images 

were acquired using a spoiled-gradient-recalled T1-weighted sequence that yielded 

images with a 1-mm
3
 resolution. Whole-brain echo-planar images (EPIs) were acquired 

in 33 transverse slices (3mm in-plane resolution, 2000-ms TR, 30-ms TE, 90º flip angle, 

64 x 64 matrix, 192-mm FoV, 3.5-mm slice thickness, no gap). EPIs were slice-time 
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corrected, motion corrected (both within and between scans), and high-pass filtered (three 

cycles per run). Image preprocessing and data analysis were performed using 

BrainVoyagerQX (Version 1.9) and custom time-series and pattern-classification routines 

written in Matlab.  

 

Retinotopic Mapping and Voxel Selection 

Retinotopic mapping data were acquired using a rotating checkerboard stimulus 

flickering at 8 Hz and subtending 45º of polar angle (following Engel et al., 1994; Sereno 

et al., 1995). Each observer completed one scan lasting 480s. This procedure was used to 

identify visual areas V1, V2v, V3v, V4v, V2d, V3d, and V3a in each cortical hemisphere. 

To aid in the visualization of these regions, data were projected onto a computationally 

inflated representation of each observer‘s grey/white matter boundary.  

To identify spatially selective voxels in these visual areas, we constructed a 

general linear model (GLM) with a single boxcar regressor (denoting stimulus location, 

i.e., left vs. right visual field) using data from all four PM scans. This regressor was then 

convolved with a gamma function to account for the assumed shape of the hemodynamic 

response (see Boynton, Engel, Glover, & Heeger, 1996). Voxels that showed a stronger 

response during epochs of contralateral (relative to ipsilateral) stimulation (p < .05, 

Bonferroni corrected) were used to define ROIs in V1, V2v, V3v, hV4v, and V3a (as 

stimuli were presented in the upper visual field, ROIs in V2d and V3d typically contained 

too few voxels to enable a meaningful analysis).  
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Multivoxel Pattern Analysis 

MVPA provides a powerful complement to conventional univariate analyses of 

fMRI data. Posterior cortical regions such as V1 contain submillimeter columns of 

neurons that are selective for different stimulus features such as orientation. MVPA 

assumes that if a particular fMRI voxel contains slight preponderance of columns tuned 

to a specific feature value, it should give rise to a weak but detectable response bias. By 

considering patterns across multiple weakly selective voxels, it is possible to infer the 

specific feature values that subjects are attending (e.g., Haxby et al., 2001; Haynes & 

Rees, 2005; Kamitani & Tong, 2005; Norman et al., 2006; Peelen & Downing, 2007; 

Serences & Boynton, 2007a; 2007b; Serences et al. 2009b), imagining (Stokes et al., 

2009) or remembering (Serences et al., 2009a; Harrison & Tong, 2009), even in the 

absence of sustained changes in overall response amplitude (Serences et al., 2009a).  

To perform MVPA, we first extracted the raw time series from each voxel in a 

given ROI during a time period extending from 6 to 16 seconds following the offset of 

the sample stimulus (i.e., 12-22 seconds after the start of each trial). Each time series was 

normalized on a scan-by-scan basis using a z transform and sorted into one of eight bins 

according to three factors: ROI (contralateral or ipsilateral to the stimulus location), 

orientation (45º or 135º), and memory condition (memory or no-memory). We then 

defined a ―training‖ data set using the data from all but one scan (here, ―scan‖ refers to a 

single, continuous block of trials; thus, the training and test sets were always 

independent). Within the training data set, we computed activation patterns comprising 

the mean response of each voxel during 45º and 135º trials. This was done independently 

for each location x memory condition pair, yielding a total of 8 activation patterns. Data 
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from the remaining scan were used to define a ―test‖ data set using an analogous 

approach. Before classification, we removed the overall mean from each activation 

pattern in the training and test sets. Finally, we trained a Support Vector Machine (SVM; 

specifically, the OSU-SVM implementation, http://sourceforge.net/projects/svm) to 

discriminate sample orientation using patterns from the training set, then used it to infer 

the orientation of the sample stimulus on each trial in the test set. Classification was 

performed separately for each stimulus location and memory condition pairing, so chance 

performance was always 50%. This analysis was iterated using a hold-one-out cross-

validation procedure (see, e.g., Kamitani & Tong, 2005) until data from every scan had 

been used as the test set. Overall classification accuracy for each observer was then 

defined as the average classification accuracy for each observer across all 6, 7, 8, or 9 

permutations (depending on how many WM scans the observer completed) of the hold-

one-out procedure.  

 

RESULTS 

 

 The primary goal of this study was to use fMRI and MVPA to examine the spatial 

extent of sensory recruitment during WM maintenance. We examined response profiles 

within several regions of occipital cortex (V1, V2v, V3v, hV4v, V3a); however, we focus 

on V1 as previous demonstrations show that this region displays robust patterns of 

orientation-selective activity during both perception (Haynes & Rees, 2005; Kamitani & 

Tong, 2005; 2006; Serences & Boynton, 2007a; Serences et al. 2009b) and WM 

maintenance (e.g., Serences et al., 2009a; Harrison & Tong, 2009). For all analyses, data 

http://sourceforge.net/porojects/svm
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are presented as collapsed across corresponding ROIs in each visual area (e.g., left and 

right V1) as no differences in classification accuracy were observed across cortical 

hemispheres. All analyses reported here are based on the 60 most spatially selective 

voxels in each ROI. Specific V1 ROIs in three subjects contained fewer than 60 voxels. 

For these subjects, analyses were performed using all available voxels within each ROI. 

Critically, we observed no systematic relationship between ROI sizes and overall 

classification accuracy, indicating that the findings reported here were not unfairly 

influenced by subjects with larger ROIs. In addition, all findings are robust across a broad 

range of pattern sizes (i.e., 50 – 75 voxels).  

Overall, orientation discrimination thresholds were higher during perceptual 

monitoring (two-sample paired t-test, p < .001), indicating that this task was more 

challenging than the WM task. However, no differences in discrimination thresholds 

were observed between orientation categories (45º and 135º) in either task, and overall 

accuracy remained at a level near that dictated by the staircase procedure.  

 

Multivoxel Pattern Analysis 

If sensory recruitment operates in a spatially global fashion, then sustained 

patterns of activation in ROIs both contralateral and ipsilateral to a remembered stimulus 

should discriminate its orientation. Figure 3-2 depicts the results of an MVPA analysis 

based on the 60 most spatially selective voxels (as identified using data from the 

perceptual monitoring task, see Retinotopic Mapping and Voxel Selection, Methods) from 

each V1 ROI during a time period extending from 6 to 16 seconds following the offset of 

the sample stimulus. An analysis of variance revealed a main effect of memory condition 
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(F(1, 16) = 11.07, p < .001), no effect of stimulus location (contralateral or ipsilateral; F(1, 

16) = 1.49, p > .24), and no interaction between these two factors (F(1, 16) < 1). Planned 

comparisons revealed that classification accuracy was higher on memory trials relative to 

no memory trials. Critically, this was true in both contralateral (t(16) = 3.48, p < .01) and 

ipsilateral (t(16) = 2.84, p < .05) ROIs. Moreover, we failed to observe consistent above-

chance classification in either ROI on no memory trials (t(16) = .19, p > .8 and t(16) = -1.99, 

p > .06 for contralateral and ipsilateral ROIs, respectively; apparent below chance 

classification in ipsilateral ROIs during no-memory trials was not robust across variations 

Figure 3-2. Multivoxel pattern analysis of WM data. The results of a multivoxel 

pattern analysis using the 60 most spatially selective voxels in each V1 ROI during a time 

period extending from 6 to 16 s after the offset of the sample stimulus. The horizontal 

line at 0.5 denotes chance classification accuracy. ROIs both contralateral and ipsilateral 

to the sample stimulus discriminated its orientation but only when active WM 

maintenance was required. Qualitatively similar results were obtained across a range of 

pattern sizes (50 and 75 voxels) as well as when a linear discriminant algorithm was used 

to perform classification. Error bars represent ±1 SEM. 
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in pattern sizes). As sensory conditions were equivalent during memory and no memory 

trials, these findings suggest that the above-chance classification observed in both ROIs 

during memory trials reflects active WM maintenance rather than a lingering sensory 

response to the sample stimulus. Qualitatively similar findings were observed across a 

range of pattern sizes (50, 75 voxels) and classification algorithms (e.g., linear 

discriminant function), indicating that above-chance classification is not idiosyncratically 

dependent on the use of a SVM.  

MVPA was also applied to data from extrastriate visual areas V2v, V3v, hV4v, 

and V3a. However, contralateral and ipsilateral ROIs in each of these areas failed to 

support above chance classification accuracy during memory or no-memory trials (see 

Serences et al., 2009a, for similar findings using foveal stimuli). Qualitatively similar 

results were observed over a wide range of pattern sizes (i.e., 50, 60, and 75 voxels) and 

different classification algorithms (e.g., linear discriminant function). We suspect that this 

lack of generalization is due to the relatively low salience of our stimuli. For example, 

our small, peripheral stimuli produced a relatively weak response in only a few dozen 

voxels within each extrastriate visual area we examined. It is possible that with a larger, 

sustained response, patterns of activity in each of these visual areas would support robust 

classification of the remembered orientation. Relevant to this issue, MVPA was also 

applied to data from the PM task (using the same hold-one-out cross validation procedure 

described above; see Multivoxel Pattern Analysis, Methods). Here, patterns of activity 

contralateral and ipsilateral V1 ROIs discriminated the orientation of a monitored 

stimulus. In addition, patterns of activity in several extrastriate visual areas also 

discriminated the monitored orientation. However, these effects were confined to 
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contralateral ROIs. We speculate that the absence of above chance ipsilateral 

classification in extrastriate visual areas is due to the fact that this analysis was based on a 

small amount of data (each subject completed only 3-4 PM scans).  

 Our WM findings are consistent with the hypothesis that sensory recruitment 

during WM maintenance is spatially global. However, there are a number of possible 

issues that might also account for these effects. One such issue is head motion. For 

example, subjects may have made small head movements consistent with the 

remembered orientation (e.g., rightward for 45º trials and leftward for 135º trials). Such 

movement could differentially alter the intensity of fMRI voxels and bias the results of 

MVPA. To quantify any differences in head position as a function of the remembered 

orientation, we compared the mean change (relative to the start of each trial) in three 

parameters corresponding to leftward and rightward head movement (translation in the 

axial plane, as well as rotation in the coronal and axial planes) during a window 

extending from 6-16s following the offset of the sample stimulus (12-22s; the same 

temporal window used to perform MVPA). Across all three parameters, we failed to 

observe any differences in head position on 45º and 135º trials (two-sample, repeated 

measures t-tests; all ps > .1). Thus, it is unlikely that the spatially global recruitment 

effects reported here are due solely to differences in head position. 

 A second potential issue is eye position. Although subjects were instructed to 

maintain fixation for the duration of each WM scan (as assessed by visually monitoring 

ongoing eye position in all subjects with the aid of an ASL tracking system) it is possible 

that they made subtle eye movements consistent with the orientation of a remembered 

grating. To further assess compliance with fixation instructions and examine whether 
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there were any subtle differences in eye position as a function of the remembered 

orientation, eye position data were recorded as for four subjects during scanning. We 

computed mean eye position during a period 6-16 seconds following the offset of the 

sample stimulus on memory trials (the same temporal window used for MVPA). We 

observed no systematic differences in mean eye position as a function of stimulus 

orientation (two-sample, repeated measures t-tests, all ps > .3), suggesting that the 

spatially global recruitment effects reported here are not due to different patterns of eye 

movements on 45º and 135º trials. 

Recent human neuroimaging (Serences & Boynton, 2007a) and single-unit 

(Martinez-Trujillo & Treue, 2004) studies in nonhuman primates have reported spatially 

global feature-based attention effects during perceptual processing. To examine whether 

similar effects could be observed in the present study, we performed a classification 

analysis on patterns observed in each ROI during a period 4-10s following the onset of 

the sample stimulus. Because the sample epoch of memory and no-memory trials were 

identical, both types of trial were included in this analysis. In contrast to the spatially 

global effects we observe during WM maintenance, neither contralateral nor ipsilateral 

V1 ROIs reliably discriminated the orientation of the sample stimulus (two-tailed t-tests 

against chance, all ps > .1). We suspect that this lack of generality is due to the relatively 

low salience of our stimuli. For example, MVPA was also applied to data from the PM 

task using a longer analysis window (6-16s following stimulus onset). Following 

Serences and Boynton (2007a), patterns of activity in contralateral and ipsilateral V1 

ROIs reliably discriminated the orientation of a monitored grating. However, when the 

same analysis was repeated using a shorter analysis window (4-10s following stimulus 
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onset), these effects were abolished. We speculate that with a longer sample epoch, 

patterns of activity in both contralateral and ipsilateral ROIs would support robust 

classification of sample orientation. 

Because classification was carried out independently for each ROI, these findings 

do not establish whether contralateral and ipsilateral patterns within a given region are 

similar. To evaluate this possibility, we repeated our classification analysis using data 

from contralateral memory trials as the training set and examined whether this would 

allow accurate classification of the stored orientation when the same cortical ROI was 

ipsilateral to the sample stimulus (using the same hold-one-out cross validation procedure 

described above; see Multivoxel Pattern Analysis, Methods). Across a range of pattern 

sizes (50, 60, 75 voxels), this analysis failed to reveal above chance classification 

accuracy (one-sample t-tests against chance, all ps > .1). Thus, although patterns of 

activation in both contralateral and ipsilateral ROIs discriminate the orientation of a 

remembered stimulus (see Figure 3-2), the pattern of activity in a given ROI is not 

necessarily identical across trials in which that region is contralateral and ipsilateral to the 

stored stimulus (see Serences & Boynton, 2007a, for a qualitatively similar finding in the 

context of a perceptual discrimination task). We speculate that this lack of generalization 

may be due to differences in lingering bottom-up activity in when a given ROI is 

contralateral and ipsilateral to the stored stimulus. However, it is also possible that 

patterns of activation in ipsilateral ROIs may be qualitatively different from those 

observed in contralateral ROIs. 
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Event-related Analysis of WM Data 

Data from the WM task were also submitted to a conventional univariate analysis. 

Figure 3-3 depicts the mean amplitude of the BOLD response in each V1 ROI during 

both memory and no-memory trials (no significant differences in mean response 

amplitude as a function of angle were observed; thus the data are shown collapsed across 

this factor). To quantify differences between memory conditions and ROIs during WM 

maintenance, we computed the mean BOLD response within each condition during a 

period extending from 6-16s following the offset of the sample stimulus (12-22s in 

Figure 3-3). A 2 (memory condition) x 2 (ROI) ANOVA of these data revealed a main 

effect of memory condition, F(1, 16) = 11.98, p < .01, no effect of ROI, F(1, 16) < 1, and no 

interaction between these factors, F(1, 16) = 3.65, p = .07. Curiously, mean response 

amplitudes on no-memory trials were higher than those on memory trials (M = .15 vs. -

.15, respectively; standardized units), particularly towards the end of the memory period. 

Qualitatively similar effects were also observed in extrastriate visual areas.  

 

Similarities between Spatially Global Signals during Perception and WM Maintenance 

Recent studies (Serences et al., 2009a; Harrison & Tong, 2009) have reported a 

high degree of similarity between stimulus-specific patterns of activation in early sensory 

regions during perceptual processing and WM maintenance, consistent with the 

hypothesis that WM involves the ingemination of a specific perceptual event. For 

example, Serences et al. (2009a) trained a classification algorithm to recognize stimulus-

specific patterns in V1 using data from a perceptually-demanding orientation 

discrimination task, then used this classifier to successfully discriminate the identity of a  
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Figure 3-3: Event-related analysis of WM data. The mean response of the 60 most 

spatially selective voxels in V1 (collapsed across hemispheres) is shown as a function of 

memory condition and ROI. Data are collapsed across stimulus orientation (i.e., 45° vs. 

135° trials) because no differences in mean response amplitude attributable to this factor 

were observed. Dashed vertical lines at 0 and 22s denote the onset of the sample and test 

stimuli, respectively. Shaded Regions represent ±1 SEM. 

 

remembered orientation during a separate WM task (see Harrison & Tong, 2009, for a 

similar demonstration). However, this analysis was restricted to cortical ROIs that 

corresponded to the location of the monitored or remembered stimulus. Here, we asked 

whether a qualitatively similar result would be observed in ROIs that were not 

retinotopically mapped to the position of the stimulus that was stored in WM (i.e., ROIs 

ipsilateral to the stimulus‘ location). To examine this possibility, we trained a classifier to 

recognize stimulus orientation using data from PM scans. Recall that the stimuli used in 

PM scans were identical to those used in the WM task. However, during PM scans, 

stimuli cycled on and off at 2Hz for the duration of each 15 second trial, and thus, WM 
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maintenance was not explicitly required. The classifier trained using the PM task was 

then used to infer the specific orientation that subjects were remembering during each 

trial of the WM task. 

Figure 3-4 depicts the results of this analysis using the 75 most spatially-selective 

voxels from each cortical ROI. Data from one subject were excluded from this analysis 

due to 0% classification accuracy in each ROI across all tested pattern sizes. The findings 

reported here represent the remaining 16 subjects. However, a qualitatively similar 

pattern of results was also obtained when all subjects were included in the analysis. 

Collapsed across ROIs, this analysis revealed a successful generalization between 

patterns of activity observed during PM and WM maintenance, but only when active 

memory maintenance was required (two-tailed t-tests against chance, p < .01 and p = .44 

for memory and no-memory conditions, respectively). Qualitatively similar results were 

observed across a range of pattern sizes (50 voxels). Thus, patterns of activity in a given 

ROI were similar during PM and WM maintenance. These findings lend further support 

to the hypothesis that WM involves the reiteration of a specific perceptual event. The 

same analysis failed to reveal consistent above chance classification in extrastriate 

regions V2v, V3v, hV4v, and V3a.  

These findings reflect conditions in which the sample stimulus appeared in the 

same spatial location during the PM and WM tasks. We next asked whether the pattern of 

activity in a given ROI contralateral to the stimulus in the PM task could successfully 

predict the pattern of activity in the same ROI when it was ipsilateral to the sample in the 

WM task.  Likewise, we also tested whether the pattern of activity in a given ROI 

ipsilateral to the stimulus in the PM task could successfully predict the pattern of activity 
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in the same ROI when it was contralateral to the sample in the WM task.  These analyses 

failed to reveal consistent above-chance classification accuracy in any of the visual areas 

that we examined (two-tailed t-tests against chance, all ps > .15), suggesting that 

similarities between PM and WM maintenance may be restricted to situations where a 

monitored and remembered stimulus occupy the same spatial location.  
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Figure 3-4: Global orientation-selective patterns are similar during PM and WM 

maintenance. A classification algorithm was trained to recognize orientation-selective 

patterns using the 75 most spatially selective voxels from each V1 ROI during PM 

(both left and right visual field trials were included in this analysis; top panels depict 

RVF trials for illustrative purposes). The algorithm was then used to infer the 

orientation of the same stimulus during each trial of the WM task. The horizontal line 

at 0.5 denotes chance classification accuracy. Above-chance classification accuracy 

was observed in ROIs both contralateral and ipsilateral to the sample stimulus, 

indicating that orientation-selective patterns are similar during PM and WM storage. 

Critically, this relationship was dependent on the observer‘s intent to store the 

stimulus‘ orientation during the WM task; we failed to observe above-chance 

classification accuracy on no-memory trials. Error bars depict ±1 SEM.  
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DISCUSSION 

 

 An emerging perspective – informed by human neuroimaging and single-unit 

recordings in nonhuman primates – is that WM storage is mediated by sensory 

recruitment, or sustained activity in posterior cortical regions that encode memoranda 

(Miller et al., 1996; Awh & Jonides, 2001; Super et al., 2001; Jonides et al., 2005; 

Pasternak & Greenlee, 2005; Postle, 2006; D‘Esposito, 2007). In this study, we attempted 

to determine the spatial extent of sensory recruitment during WM maintenance. 

Positional specificity effects in WM (e.g., Dill & Fahle, 1998; Zaksas, et al., 2001; 

Hollingworth 2006; 2007) motivate the hypothesis that sensory recruitment is spatially 

local. However, several studies have reported spatially global feature-based attention 

effects during perception (e.g., Treue & Martinez-Trujillo, 1999; Saenz, Buracas, & 

Boynton, 2002; Martinez-Trujillo & Treue, 2004; Bichot et al., 2005; Serences & 

Boynton, 2007a). Given known similarities between mechanisms of visual attention and 

working memory (e.g., Desimone, 1996; Rainer, Assad, & Miller, 1998; Awh & Jonides, 

2001), these findings suggest that sensory recruitment may be spatially global. Here, 

subjects were required to remember the orientation of a grating presented in one visual 

hemifield. Using fMRI and MVPA, we found that patterns of activity in early visual areas 

(e.g., V1) both contralateral and ipsilateral to this stimulus discriminated its orientation 

(see Figure 3-2). These findings cannot be explained by subtle differences in head or eye 

movements. Moreover, under identical sensory conditions where WM maintenance was 

not explicitly required, these effects were abolished. Thus, above-chance classification 

observed on memory trials was not caused by a sustained sensory response to the sample 
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stimulus. Additionally, we found that patterns of activity in contralateral and ipsilateral 

ROIs were qualitatively similar during perceptual processing and WM maintenance, 

suggesting that similar mechanisms may support both processes (Figure 3-4). Taken 

together, these results suggest that sensory recruitment during WM maintenance is 

spatially global.  

Several studies have reported successful classification of stimulus orientation in 

extrastriate visual areas during sensory encoding (Kamitani & Tong, 2005; Serences & 

Boynton, 2007b) and WM maintenance (Harrison & Tong, 2009). Likewise, studies of 

feature-based attention have documented spatially global effects in extrastriate visual 

areas (e.g., Treue & Martinez-Trujillo, 1999; Serences & Boynton, 2007a). In contrast, 

the spatially global WM effects reported here were confined to primary visual cortex. We 

suspect that this difference is due to the relatively low salience of our stimuli. For 

example, the large, high-contrast, and foveally-presented stimuli used by Harrison and 

Tong (2009) activated several hundred voxels within extrastriate visual areas V2-hV4v. 

In contrast, our small, peripheral stimuli produced a relatively weak response in only a 

few dozen voxels within each extrastriate visual area we examined (see Supplementary 

Table 1). It is possible that with a larger, sustained response, patterns of activity in each 

of these visual areas would support robust classification of the remembered orientation.  

Our findings complement recent studies that have reported feature-specific 

patterns of activation in retinotopically organized visual areas during WM maintenance in 

the absence of sustained changes in overall response amplitude (e.g., Serences et al., 

2009a; Harrison & Tong, 2009). In the current study, we observed a relative decrease in 

response amplitude during WM maintenance (relative to a condition where WM 
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maintenance was not required). One possibility is that WM maintenance involves the 

recruitment of only those neurons tuned to the remembered feature value, while neurons 

tuned to other values are suppressed (relatively speaking). This might lead to an overall 

decrease in response amplitude during WM storage. However, we emphasize that this 

account is purely speculative as changes in response amplitude have been inconsistent 

across different studies that have examined activity in primary visual cortex. For 

example, Serences et al. (2009a) failed to observe sustained increases in response 

amplitude during WM maintenance (see also Offen et al., 2009). Likewise, Harrison and 

Tong (2009) observed sustained increases in response amplitude during WM 

maintenance in a subset of their subjects, and no sustained changes in others. These 

studies, in concert with the current findings, raise questions about the extent to which 

sustained increases in response amplitude are diagnostic of an area‘s involvement in WM 

maintenance.  

Our findings are consistent with a growing number of studies that have reported 

spatially global signals in retinotopic cortex during visual perception (e.g., Zaksas & 

Pasternak, 2005; Serences & Boynton, 2007a; Williams et al, 2008). In one example, 

Williams et al. (2008) required subjects to compare the category membership of two 

stimuli presented in the periphery of a visual display. Using fMRI and a multivariate 

analysis, these authors identified category-specific information in foveal retinotopic 

cortex, despite the fact that all stimuli were presented in spatial locations corresponding 

to cortical regions well outside of this area. Over several control experiments, the authors 

establish that these effects are likely due to feedback generated in anterior cortical 

regions. One difference between the task devised by Williams et al. and the WM task 
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used in this study is that in the former, all stimuli were present for the duration of each 

trial. However, we speculate that similar feedback mechanisms support the spatially 

global mnemonic representations observed in this study. One possibility is that this 

feedback directly facilitates stimulus-specific patterns of activity in both cortical 

hemispheres. Alternatively, feedback signals might be directed to a contralateral ROI and 

spread to ipsilateral ROIs via hard-wired cross-hemispheric connections between 

similarly tuned neurons in each hemisphere (for example, recent work has described a 

network of callosal axons linking cortical regions that represent the same orientation and 

spatial location of visual stimuli in cat visual areas 17 and 18; Rochefort et al., 2009; 

Schmidt et al., 2010). By this account, similarly tuned neurons in each cortical 

hemisphere are connected in a mutually excitatory manner; the efficacy of these 

connections might be modified by WM maintenance, giving rise to stimulus-specific 

modulations in the ipsilateral ROI. However, we believe this possibility unlikely given 

that patterns of activity in a given ROI during contralateral and ipsilateral trials are not 

necessarily identical (see Results). Finally, inhibitory connections between corresponding 

visual areas in each hemisphere may play a role in producing stimulus-specific activation 

patterns. This possibility is consistent with the lack of generalization across patterns of 

activation evoked by contralateral and ipsilateral memoranda in a given ROI.  

An important question concerns the boundary conditions that govern the spatially 

global mnemonic representations observed in this experiment. Several studies have 

demonstrated that performance on a memory-limited change detection task is degraded 

when the sample and test stimuli can occupy different spatial locations (Foster & Khan, 

1985; Dill & Fahle, 1998; Zaksas, et al., 2001). For example, Zaksas et al. (2001; 
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Experiment 1) trained monkeys to perform a change detection task while varying the 

spatial separation of the sample and test stimuli. These conditions were blocked, so it was 

always possible to infer the location of the test stimulus given the location of the sample. 

On some trials, the experimenters presented a random dot mask during the delay period; 

this stimulus could appear at the location of the sample stimulus, the impending test 

stimulus, or elsewhere in the display. Task performance was significantly impaired by the 

presentation of this mask, but only when it appeared at the location of the impending test 

stimulus. The selective interference produced by this stimulus suggests that memory for 

the random dot aperture was localized in the cortical regions that were retinotopically 

mapped to the position of the impending test stimulus. However, these findings do not 

necessarily preclude the existence of spatially global mnemonic representations similar to 

those observed in this study. As Zaksas et al note, the masking effects observed in this 

study may simply mean that the discrimination judgment required by the task was biased 

towards information stored in the cortical regions that processed the eventual test 

location, even if the relevant information was also stored in other cortical regions.  It is 

therefore still possible that the relevant directional information was stored in a spatially 

global manner during this task.  

 Do the spatially global activation patterns observed in this study have functional 

consequences for WM maintenance? Posterior visual areas V1-hV4v are thought to 

represent information about feature properties such as orientation via population response 

profiles (e.g., Pouget et al., 2001; Pouget et al., 2003; Ma et al., 2006). One possibility is 

that the spatially global representations observed in this study act to enhance the 

precision of mnemonic representations (e.g., Awh, Barton, & Vogel, 2007; Zhang & 
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Luck, 2008; Barton, Ester, & Awh, 2009). For example, spatially global sensory 

recruitment would increase the number of neurons dedicated to representing a 

remembered feature attribute, which may in turn improve the efficiency or signal-to-noise 

ratio of population responses and thus enhance the precision of mnemonic 

representations. Alternatively, these global representations may be a passive result of 

diffuse feedback projections from higher cortical areas. Future research is needed to 

distinguish these possibilities.  

In summary, our findings demonstrate that sensory recruitment during active WM 

maintenance is spatially global. We propose that spatially global gain modulations such 

as those observed in this study may serve to enhance the precision of mnemonic 

representations by recruiting additional sensory neurons that are not directly driven by the 

stimulus. 
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CHAPTER IV 

GENERAL CONCLUSIONS 

 

 Converging evidence from multiple sources suggests that the storage of fine 

visual detail in WM is mediated by sensory recruitment, or sustained activity in cortical 

regions responsible for the sensory processing of memoranda. Here, I examined two 

untested predictions of this model. In Chapter II, I examined whether sustained patterns 

of activation observed in sensory cortices during WM storage contain information about 

specific featural attributes (e.g., color, orientation) of a remembered stimulus. Consistent 

with this possibility, functional magnetic resonance imaging (fMRI) and multivoxel 

pattern analysis (MVPA) revealed that sustained patterns of activation observed in 

sensory cortices (specifically, V1) discriminate the specific visual features that an 

observer is remembering. Moreover, these patterns of activation were qualitatively 

similar to those observed during the sensory processing of identical stimuli, suggesting 

that mnemonic representations in V1 are reasonable ―copies‖ of those evoked during 

sensory processing. In Chapter III, I examined the hypothesis that humans 

opportunistically recruit all available sensory machinery in order to represent a specific 

feature value with maximal precision. Consistent with the results presented in Chapter II, 

patterns of activation observed in sensory cortical regions of interest (ROIs) 

retinotopically mapped (i.e., contralateral) to a remembered stimulus discriminated its 

orientation. In addition, patterns of activation observed in ipsilateral ROIs (i.e., those 

mapped to portions of empty space) also discriminated the orientation of a remembered 

stimulus. These results suggest that visual details are held in WM via a spatially global 
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recruitment of sensory cortex. This global recruitment may enhance memory precision by 

facilitating robust population coding of information. 

 In sum, the findings reported here are broadly consistent with a sensory 

recruitment model of WM. Before concluding, I briefly discuss a number of outstanding 

issues, including (1) the diagnostic power of sustained changes in BOLD amplitude as 

they relate to WM storage, (2) the conditions under which sensory recruitment might or 

might not be observed, and (3) the role of sensory recruitment in the short-term storage of 

information in non-visual sensory modalities.  

 

Sustained Changes in the BOLD Signal as a Measure of WM Storage 

 Sustained changes in the amplitude of the blood-oxygen-level-dependent (BOLD) 

signal during the delay period of a WM task are typically interpreted as evidence that a 

given cortical region contributes to the short-term storage of information. However, 

although the experiments described in Chapters II and III revealed sustained stimulus-

specific patterns of activation in primary visual cortex while subjects remembered the 

orientation or color of a stimulus, neither revealed any evidence for a sustained increase 

in the amplitude of the BOLD response during this interval. This finding raises a number 

of important questions regarding the diagnostic power of this measure (see Serences and 

Saproo, in press, for an in-depth discussion of this issue). Consider a case where a subject 

is holding a specific orientation value in WM. Single-unit recording studies in non-

human primates suggest that directing attention to a specific feature value enhances the 

responses of cells that prefer the attended value and suppresses the responses of cells that 

prefer orthogonal values (relatively speaking; e.g., Martinez-Trujillo & Treue, 2004); this 
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pattern of activity is thought to represent the stored information (Paradiso, 1988; Pouget, 

Dayan, & Zemel, 2003; Sanger, 1996). According to the sensory recruitment hypothesis, 

the pattern of activity observed when an observer directs attention to a specific feature 

value should persist while an observer holds this information in WM. However, because 

each fMRI voxel integrates information from neurons that are more active (i.e., those 

tuned to the remembered orientation) with information from neurons that are less active, 

one might expect little overall change in the amplitude of the overall BOLD signal. Thus, 

the absence of a sustained change in the BOLD response during the delay period of a 

WM task should not be interpreted as definitive evidence that a given cortical region does 

not contribute to WM storage.  

 

Under What Conditions Does Sensory Recruitment Occur?  

Researchers who work in the domain of WM are (often painfully) aware that 

humans ―opportunistically, automatically, recruit as many mental codes as are afforded 

by a stimulus when representing that stimulus in working memory‖ (Postle, 2006; p. 31). 

For example, a subject might choose to remember a color by assigning it a categorical 

label (e.g., ―light red‖ or ―dark green‖) instead of attempting to store its exact hue. 

Alternately, a subject might choose to remember an array of spatial positions as the 

vertices of a single polygon. These ―recoding‖ strategies can have a significant influence 

of memory performance, and researchers typically take great pains to discourage their 

use. Thus, the experiments described in Chapters II and III were designed with the 

assumption that sensory recruitment would be most evident when recoding strategies 

were discouraged. To this end, subjects were required to make very fine-grained 
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discriminations between sample and test stimuli (where the magnitude of sample-test 

changes were determined on a subject-by-subject basis using a titration procedure) in the 

hope that this would actively discourage the use of verbal labels or categorical coding. 

Does sensory recruitment also occur when observers are allowed to use 

alternative mnemonic strategies, or in tasks that do not require the storage of detailed 

visual information (e.g., the change detection procedure described by Luck & Vogel, 

1997)? To my knowledge, this issue has never been systematically investigated. 

However, from a purely theoretical perspective there is ample room for doubt on this 

point. As mentioned above, most contemporary neural models suggest that WM storage 

involves the opportunistic recruitment of different cortical regions to represent different 

types of information via different mnemonic strategies (e.g., Postle, 2006; D‘Esposito, 

2007). Thus, if an observer can effectively store visual information using a non-visual 

(e.g., verbal or categorical) code, then there is little reason to engage in the metabolically 

demanding task of recruiting specific portions of visual cortex in an effort to maintain a 

―veridical‖ stimulus representation. 

 

Sensory Recruitment in Non-visual Sensory Modalities 

 The experiments described in Chapters II and III focused on sensory recruitment 

in the domain of visual WM. However, as noted in Chapter I, there is ample reason to 

suspect that sensory recruitment mediates the storage of fine detail for non-visual stimuli. 

For example, single-unit recordings in macaques have revealed sustained changes in the 

firing of neurons in the primary somatosensory cortex (S1) during the delay period of a 

haptic memory task (Zhou & Fuster, 1996). In a related study, Harris et al. (2002) asked 
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human subjects to compare two vibrotactile stimuli delivered to the same hand and 

separated by a brief delay. During the delay period, the authors delivered a single 

transcranial magnetic stimulation (TMS) pulse to regions of S1 contralateral or ipsilateral 

to the stimulated hand. Relative to pulses delivered to ipsilateral portions of S1, pulses 

delivered to portions of S1 contralateral to the stimulated hand had a deleterious effect on 

discrimination performance. This finding is consistent with the hypothesis that S1 

contributes to the storage of vibrotactile information in WM
2
. Other studies, however, 

have failed to find evidence for sustained changes in S1 responses during WM storage. 

For example, Romo and colleagues (e.g., Hernandez, Zainos, & Romo, 2000; Salinas, 

Hernandez, Sainos, & Romo, 2000) recorded from macaque S1 during the delay period of 

a task that required monkeys to discriminate between two vibrotactile stimuli. These 

authors observed transient changes in the responses of S1 neurons immediately following 

the presentation of the sample stimulus, but this activity quickly decayed during the 

subsequent delay interval. Harris et al. (2002) suggested that this result could reflect the 

fact that monkeys were extensively trained in the discrimination task prior to recording; 

this may allowed the monkeys to adopt behavioral strategies that do not rely on activity 

in S1. Further research is necessary to explore this possibility in detail.  

 Evidence for sensory recruitment has also been observed in auditory WM. In one 

example, Gottleib, Vaadia, and Abeles (1989) recorded from the primary auditory cortex 

(A1) of macaques during the delay period of a pitch discrimination task. These authors 

                                                 
2
 Note that TMS pulses applied to regions of S1 ipsilateral to the stimulated hand had no effect on 

discrimination performance. This is inconsistent with a key finding of the experiment reported in Chapter 

III, where sensory recruitment was found in regions of visual cortex both contralateral and ipsilateral to a 

remembered stimulus. A likely explanation for this difference is anatomical: whereas regions of left and 

right primary visual cortex with similar spectral tuning are connected by cross-callosal fibers (e.g., 

Rochefort et al., 2009; Schmidt et al., 2010), hand representations in S1 are acallosal (Jones & Powell, 

1969; Killackey et al., 1983).   
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observed sustained increases in the activity of A1 neurons selective for the first of the 

two tones that persisted throughout the delay period. Critically, this effect was drastically 

reduced (though not fully abolished) during an identical task that did not require the 

monkeys to compare the two tones. In a related study, Brechmann et al. (2007) asked 

human subjects to perform an n-back auditory WM task that required storage of 

frequency-modulated tones over short delays. Using fMRI, these authors observed 

sustained changes in bilateral regions of the planum temporal that predicted subjects‘ 

behavioral performance. Together, these results are consistent that A1 and other early 

auditory areas play an important role in the short-term storage of pitch information. 

However, it should be noted that more recent studies (e.g., Lemus, Hernandez, & Romo, 

2009a; 2009b) have failed to identify sustained changes in the activity of A1 neurons 

during auditory delayed-match-to-sample tasks. In one example, monkeys were required 

to discriminate the pitches of two sequential acoustic ―flutter‖ stimuli (rapid pulses of an 

acoustic stimulus) separated by a brief delay. Single-unit recordings failed to reveal any 

sustained changes in the firing rates of A1 neurons during the delay period of this task. At 

present, it is unclear what factor(s) might account for the discrepancies between these 

studies, though one possibility is that extensive training in the discrimination task prior to 

recording allowed monkeys to learn and adopt behavioral strategies that do not rely on 

the responses of A1 neurons.  

 

Conclusions 

An emerging perspective – informed by human neuroimaging and single-unit 

recordings in nonhuman primates – is that WM storage is mediated by sensory 
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recruitment, or sustained activity in posterior cortical regions that encode memoranda 

(Miller et al., 1996; Awh & Jonides, 2001; Super et al., 2001; Jonides et al., 2005; 

Pasternak & Greenlee, 2005; Postle, 2006; D‘Esposito, 2007). In this dissertation, I 

examined two untested predictions of this perspective. In Chapter II, fMRI and MVPA 

were used to demonstrate that during a WM task that requires the storage of fine visual 

detail, sustained patterns of activation observed in sensory cortices (specifically, V1) 

discriminate the specific visual features that an observer is remembering. Moreover, these 

patterns of activation were qualitatively similar to those observed during the sensory 

processing of identical stimuli, suggesting that mnemonic representations in V1 are 

reasonable ―copies‖ of those evoked during sensory processing. In Chapter III, similar 

methods were used to demonstrate that humans opportunistically recruit all available 

sensory machinery in order to represent a specific feature value with maximal precision. 

Specifically, patterns of activation observed in sensory cortical regions of interest (ROIs) 

retinotopically mapped (i.e., contralateral) to a remembered stimulus discriminated its 

orientation. In addition, patterns of activation observed in ipsilateral ROIs (i.e., those 

mapped to portions of empty space) discriminated the orientation of a stimulus that 

observers were storing in WM. Together, these findings lend additional support to the 

sensory recruitment view of WM.  
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