

A Freshman STEP Curriculum: A Project-Based Approach to STEM Student Success

Sponsored by NSF-STEP (#0653094) and Central Washington University Michael Braunstein, Michael Jackson, Physics, Central Washington University NSF STEP Grantees Meeting, March 2012

+ What is the Science Talent Expansion Program?

- The Science Talent Expansion Program (or STEP) is a program funded in-part by the **National Science Foundation**.
- STEP Seeks To . . .
 - Provide direct, significant, and sustained benefits to students.
 - Recruit and retain students in science,
 technology, engineering, and mathematics
 (STEM) fields through academic support and mentoring.
 - Direct students equipped with essential knowledge and skills toward successful STEM careers.

+ Central Washington University ...

- Public, regional, comprehensive, Master's-granting:
 - About 8000 FTES served on main campus
 - About 500 full time equivalent faculty.
 - About 2500 Baccalaureate degrees/year,
 - about 25% in College of the Sciences
 - about 10% in STEP disciplines.
 - About 20% of undergraduates are minorities.
 - About 2 hours east of Seattle (across Cascade range)

+ Central Washington University ...

Support for Undergraduate Research:

- Undergraduate Travel and Research Fellowships (University wide, COS)
- Summer Research Fellowships (COS)
- Science Honors program (select COS and Prof. Studies Depts.)
- The Symposium On University Research and Creative Expression
- Douglas Honors College Science Honors program (University wide)
- The Undergraduate Creative Expression and Research Initiative (STEP equivalent for the Arts and Humanities)
- The Pacific Northwest Journal of Undergraduate Research and Creative Activities

+ Central Washington University ...

Other Notable Resources:

- Writing Center
- **Math Center**
- Supplemental Instruction
- McNair Scholar's Program
- College Assistance Migrant Program
- **Living and Learning Communities**
- Center for Excellence in Science and Math Education

+STEP-Participating CWU Departments:

- **■** Biological Sciences
- Chemistry
- Computer Science
- Industrial & Engineering Technology
- Geological Sciences
- Mathematics
- Physics

+ What does CWU's Science Talent Expansion Program have to offer?

- STEP Offers Special Programs . . .
 - For Incoming Freshmen STEP Freshman Science Seminar and linked courses
 - For STEP Sophomores **STEP Sophomore Bridging Program**
 - For College Transfer Students **STEP Transfer Bridging Program**
- STEP offers **exclusive financial aid opportunities** for eligible students.
- STEP offers a unique housing opportunity for students **STEP Living Learning Community**

+ STEP Freshman Science Seminar

- **Freshman Linked Courses:**
 - 1. STEP 101, 102, 103 F(2), W(2), S(1)
 - 2. English 101, 102 F(4), W(4)
 - 3. University 101 F(1)
- Regularly scheduled meetings with the STEP Coordinator
- Informal activities: e.g., lunches, speakers, pizza gatherings
- **■** Sophomore Bridging Program student projects
- Cohort ~ 40 students

+ The STEP Freshman Curriculum (Freshman Science Seminar)

- ■STEP 101/102/103 (Gen Ed, W)
 - 101: Students are presented an overview of a broad science-based theme and develop a proposal for a project related to the theme to be carried out in the 102 course.
 - 102: Students perform instructor approved projects
 - 103: Introduces students to faculty and their research interests and development of a proposal for a Sophomore project

+ STEP Freshman Science Seminar Objectives

- University transition, expectations, opportunities (STEM) foundation for success in STEM disciplines
- Learning community
- Effective reading and writing for STEM
- Scientific practice
- Information Literacy
- Faculty contact
- (Note: no content objective)

+ Bloom's Taxonomy

- 1. Knowledge: Recall data or information.
- 2. Comprehension: Understand the meaning, translation, interpolation, and interpretation of instructions and problems. State a problem in one's own words.
- 3. **Application**: Use a concept in a new situation or unprompted use of an abstraction. Applies what was learned in the classroom into novel situations in the work place.
- 4. **Analysis**: Separates material or concepts into component parts so that its organizational structure may be understood. Distinguishes between facts and inferences.
- 5. **Synthesis**: Builds a structure or pattern from diverse elements. Put parts together to form a whole, with emphasis on creating a new meaning or structure.
- **6. Evaluation**: Make judgments about the value of ideas or materials.

+ Content Topic...

■Energy. Why?

- **■ Editorial decision** it's an important topic
- **■**Spans the STEM disciplines
 - □Provides wide latitude for STEP 102 projects
- **CWU** special considerations

+ STEP 101/102 Writing Component

- 15 20 Writing assignments:
 - Most are short (1 3 pages)
 - 2 4 are scientific logbook entries
 - **2 long (5 15 pages)**
 - Project Proposal
 - **Project Final Report**
 - Explicit drafting assignments
 - **■** Peer review

+

Instructor Management

- Detailed, explicit, consistent assignments and instructor expectations
- Rubrics
- Instructor prepared "model" assignments
- Curriculum includes units on information literacy and citing sources
- Resources:
 - Faculty Office Hours
 - Teaching Assistants
 - Peers
 - Linked English 101/102
 - University Writing Center
- Grading

+ STEP 101

- Instructor lectures
- Assigned readings
- Instructor-led experimental exercises
- Research assigned subtopics (jigsaw)
- Written assignments on assigned subtopics
- Group presentations on subtopics
- Develop project proposals
- Selection of projects from "acceptable" proposals
- Brief final exam on topic of energy

+ Examples of Experimental Exercises

- **■** Electronic snap-kit
 - Team-building
 - Problem solving
- Wind turbine/Solar Cell
 - Hypothesis formation
 - Experimental methods and procedures
- "Home-made" calorimeter
 - Experimental controls and uncertainties
- **Microbial Fuel Cells**
 - Experiment design
 - Experimental controls
 - Analyzing data and interpreting results

Wind Turbine Exercise

- "Side 1"- Instructors model for students:
 - Simplicity single question
 - Limited variables
 - Formulation of hypothesis
 - Experimental controls
 - Detailed methods and procedures
 - Using data to evaluate hypothesis
- "Side 2" Students' turn

+

Solar Cell Exercise

- "Side 1"- Instructors model for students:
 - Simplicity single question
 - Limited variables
 - Formulation of hypothesis
 - Experimental controls
 - Detailed methods and procedures
 - Using data to evaluate hypothesis
- "Side 2" Students' turn

+ STEP 101

- Examination and discussion of some of the STEP 101 curriculum and issues
 - Information Literacy
 - Citations
 - Exercises
 - Preparing proposals
 - Explicit drafting of assignments
 - Selection of proposals
 - Goal: viable project proposal

+ Student Project Criteria

- Do we know where the project will "go"?
- Are resources available?
- Is there instructor expertise?
- Can projects be completed in the time allowed?
- **■** Is there student interest?

+ STEP 102

- **Research Plan**
- **■** Carry out project
- Group work
- Instructor "consultants"
- Logbooks/Abstracts
- Report drafting with "peer review"
- **Final Report**
- **■** (Presentation of results)

+ STEP 102 Project Examples

- **■** Radiation absorption coefficients
- Stirling engine properties
- **■** Battery efficiency
- Calorimetry
- Hydrogen fuel cell efficiency
- **■** Thermoelectric generator efficiency
- **■** Water chemistry
- Invertebrate responses to stimuli

- Efficiency of electronic transformers
- Hydrogen production by electrolysis
- **Plant growth**
- **■** Conversion of cellulose to glucose
- **■** Microbial fuel cells
- **■** Bicycle generator
- **■** Computer energy use
- Solar cell efficiency

+ Logistics in STEP 101/102/103

■Resources

- 1. Time
- 2. Space
- 3. Equipment
- 4. Expertise

+ STEP 102

- Examination and discussion of some of the STEP 102 curriculum and issues
 - Writing
 - Group work
 - "Unsuccessful" projects
 - Time
 - Resources
 - Consulting responsibilities

+ Impact

- Freshman to Sophomore retention at higher rate than overall student body
- Higher GPA's than control group
- Higher declaration rate for STEM majors than control group
- Anecdotally, higher participation, more productive in undergraduate research
- Some portions of the curriculum adopted outside the STEP program

+ Managing Student and Instructor Expectations

- Hierarchical learning: meeting curriculum objectives necessarily places some uncomfortable demands on the students
 - Reassurance
- Relevance of the curriculum to student goals is not always clear
- Projects: faculty must be enthusiastic about problem solving, JITT.

+ Teaching Techniques

- **Jigsaw**
- Just In Time Teaching (JITT)
- Frequent short writing assignments
- **Detailed Assignments**
- "Model" Assignments
- **■** Grading Rubrics
- **■ Explicit drafting assignments**
- **■**Peer review of drafts

+ Questions and Conclusions

- **■**Contact Information:
 - Wendy Bohrson, Chair, Department of Geological Sciences, STEP PI bohrson@geology.cwu.edu
 - Michael Braunstein, Physics Department of Physics, STEP co-PI; leads STEP freshman curriculum development and implementation braunst@cwu.edu
 - Michael Jackson, Chair, Physics Department, STEP instructor jacksonm@cwu.edu