


 
 

RESOLVING UPPER MANTLE SEISMIC STRUCTURE BENEATH THE PACIFIC 

NORTHWEST AND INFERRED PLUME-LITHOSPHERE INTERACTIONS 

DURING THE STEENS-COLUMBIA RIVER FLOOD BASALT ERUPTIONS  

 
 
 
 
 
 
 
 
 
 
 
 
 

by 
 

AMBERLEE PATRICE DAROLD 
 
 
 
 
 
 
 
 
 
 
 
 
 

A THESIS 
 

Presented to the Department of Geological Sciences 
and the Graduate School of the University of Oregon 

in partial fulfillment of the requirements 
for the degree of 

Master of Science  

June 2012 



 

 
 

ii

THESIS APPROVAL PAGE 
 
Student: Amberlee Patrice Darold 
 
Title: Resolving Upper Mantle Seismic Structure Beneath the Pacific Northwest and 
Inferred Plume-Lithosphere Interactions During the Steens-Columbia River Basalt 
Eruptions  
 
This thesis has been accepted and approved in partial fulfillment of the requirements for 
the Master of Science degree in the Department of Geological Sciences by: 
 
Eugene Humphreys Chairperson 
Doug Toomey Member 
Rebecca Dorsey Member 
 
and 
 
Kimberly Andrews Espy Vice President for Research and Innovation/Dean of the 

Graduate School  
 
Original approval signatures are on file with the University of Oregon Graduate School. 
 
Degree awarded June 2012 



 

 
 

iii 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

© 2012 Amberlee Patrice Darold  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

iv

THESIS ABSTRACT 
 
Amberlee Patrice Darold 
 
Master of Science 
 
Department of Geological Sciences 
 
June 2012 
 
Title: Resolving Upper Mantle Seismic Structure Beneath the Pacific Northwest and 
Inferred Plume-Lithosphere Interactions During the Steens-Columbia River Basalt 
Eruptions  
 
 
 Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle 

structures are remarkable, the latter revealed by EarthScope seismic data. In this thesis 

we model teleseismic body waves constrained by ambient-noise surface waves and 

teleseismic receiver function analysis in order to recover better-controlled higher 

resolution images of the PNW continuously from the surface of the crust to the base of 

the upper mantle. We focus on and have clearly imaged two major upper mantle 

structures: (1) the high-velocity Farallon slab (the “Siletzia curtain”) extending vertically 

beneath the Challis-Kamloops-Absaroka volcanic flareup (~53-47 Ma) of western Idaho 

and central Washington; and (2) a high-velocity anomaly beneath the Wallowa 

Mountains of northeast Oregon associated with the main Columbia River flood basalts 

source region. The proximity of these two structures along with the magmo-tectonic 

history of the PNW leads us to reexamine the origin of the Columbia River Basalts ~ 16 

Ma.  

This thesis includes co-authored material submitted for publication. 
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CHAPTER I 

INTRODUCTION 

 
 The research work throughout this thesis was executed entirely by me, Amberlee 

Darold.  The writing has been in conjunction with my advisor, Eugene Humphreys, as 

second author on my paper, submitted for publication. This thesis contains unpublished 

co-authored materials in chapter I., Introduction, chapter IV., Discussion, and chapter V., 

Conclusions. Eugene Humphreys has contributed greatly through mutual conversations 

and editorial assistance to the background knowledge that supports my introduction, 

discussion and conclusions.  

 This thesis chapter includes co-authored material written in conjunction with 

Eugene Humphreys. Eugene Humphreys has contributed greatly through mutual 

conversations and editorial assistance to the background knowledge that support this 

introduction.  

The EarthScope USArray provides the PNW with extensive teleseismic data 

coverage, facilitating numerous high-resolution seismic images of the crust and upper 

mantle (Roth et al., 2008; Sigloch et al., 2008; Burdick et al., 2009; Tian et al., 2009; Xue 

and Allen, 2010; Schmandt and Humphreys, 2010a). In this paper we discuss our 

tomographic inversion of teleseismic P and S body waves for PNW upper mantle 

structure produced under the constraints of a crustal structure derived from the ambient 

noise tomography and teleseismic receiver function analysis of Gao et al. (2011). Imaged 

mantle structures have large magnitudes and often correlate well with the major geologic 

structures. The major seismic structure imaged beneath the PNW is a high-velocity 
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curtain-like structure interpreted by Schmandt and Humphreys (2011) as a fragment of 

ocean lithosphere abandoned beneath much of Idaho and northern Washington during the 

~53 Ma accretion of Farallon lithosphere within the Columbia embayment. Also 

prominent is the high-velocity subducting Juan de Fuca slab, a low-velocity body in 

central Oregon and a high-velocity body beneath NE Oregon, directly below the source 

area for the ~16 Ma Columbia River flood basalt eruptions (CRB). This latter structure, 

its relation to the major high-velocity structure imaged beneath Idaho, and its relation to 

CRB event, are the foci of our paper. 

1.1. Geologic context prior to Steens-CRB eruptions 

By 125 Ma, the Blue Mountains accreted terrains (through which the CRB later 

erupt) had docked in the forearc of an active north-trending Cretaceous volcanic arc that 

extended from California through Idaho (the Idaho Batholith), to northern Washington 

and beyond (Fig. 1a and 1b). The arc became decreasingly active, becoming essentially 

amagmatic by ~53 Ma (Gaschnig et al., 2009) coinciding with the ending of the ~75-53 

Ma northern Laramide Orogeny. The Larimide Orogeny was expressed by strong 

thrusting within and east of the volcanic arc ( Dumitru et al., 1991; Humphreys et al., 

2003;) and waning arc magmatism (Gaschnig et al., 2009) throughout Idaho and 

northeastern Washington. Magmatic quiescence and Laramide thrusting ended with the 

accretion of Farallon lithosphere into the Columbia embayment ~53 Ma (Fig. 1 and 2). 

During or very shortly after the accretion of Farallon lithosphere, a phase of extension 

created the northern Washington core complexes and opened the Pasco basin within the 

accreted lithosphere (Catchings and Mooney, 1988) (Fig 2a). Sudden onset of 

magmatism began with the Challis-Kamloops-Absaroka volcanic flareup ~53-47 Ma, 



 

 
 
3 

primarily across Idaho and northern Washington, the Clarno volcanics erupted in north-

central Oregon (Fig. 1), starting perhaps as early as 50-54 Ma (Bestland et al., 1999; 

Retallack et al., 2000) and certainly active by 45 Ma. Magmatism surrounded most of the 

expected boundary of the accreted Farallon lithosphere at or soon after accretion (fig. 1c). 

We take this period of extension and magmatism quickly following the Laramide 

Orogeny, ~53 Ma, as strong evidence for the removal or disruption of the Farallon slab 

from the base of North America in these areas. Alternatively these magmas could 

represent ridge-trench intersection and slab window formation (Madsen et al., 2006). The 

Blue Mountains region would have remained in contact with the Farallon lithosphere and 

the absence of volcanism from this forearc area of southeast Washington and northeast 

Oregon indicates that the Farallon slab remained in contact with the lithosphere, a 

condition that continued until the CRB eruptions.  

Schmandt and Humphreys (2011) attribute this switch in magmatic and tectonic 

regime to a stalling and falling away of the flat subducting slab beneath Idaho and 

northern Washington, based in large part on the presence of a large curtain-like high-

velocity structure imaged roughly beneath the areas of renewed magmatism (Fig. 1c and 

4b). Magmas in this flareup include adakites and shoshonites, which Madsen et al. (2006) 

and Schmandt and Humphreys (2011) attribute to melting of the basaltic slab crust. The 

accretion of Farallon lithosphere also resulted in initiation of Cascadia subduction and 

Cascade Volcanic Arc ~45 Ma, although southern continuation of flat-slab subduction is 

evidenced by a near absence of magmatism until ~43 Ma and a continuation of Laramide 

thrust tectonics. This suggests that the subducting Farallon slab was torn between these 

two subduction domains, somewhere beneath southern Oregon (Fig 1c).  
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Figure 1. Tectonic setting of the U.S. Pacific Northwest without palinspastic restoration, 
(a) at 125 Ma, adapted by Dickinson (2006). Paleotectonic map of the Cretaceous 
volcanic arc and accreted oceanic arc terrains: the Blue Mountains (BM), western 
Klamath Mountains (KM), Sierra Nevada foothills (SN), and Peninsular Ranges (PR). 
Also showing configuration of the Farallon subduction zone and Columbia Embayment 
at ~125 Ma (solid blue line). (b) At 45 Ma, adapted from Riddihough et al., 1986, 
tectonic map after accretion of Farallon lithosphere into the Columbia Embayment (grey 
stipple): accreted oceanic arcs (green), and plutons of the Cretaceous arc (in pink). (c) 
Post 45 Ma, Tectono-magmatic map emphasizing main volcanic elements: Expected 
extent of accreted Farallon lithosphere (“Siletzia”, green); extent of Challis-Kamloops-
Absaroka magmatic flareup ~45-53 Ma; Clarno volcanics ~47-54 Ma; Cascade volcanic 
arc ~45; proposed Farallon slab tear ~53-47 Ma; Southern ignimbrite flare up ~43-21 Ma; 
Steens Mountains (S); Wallowa Mountains (W); Steens-CRB dike swarms (red dashes). 
 

 

1.2. The Steens-CRB eruptions 

Steens-Columbia River Basalt Group flows cover most of eastern Washington, 

northeast Oregon, and portions of western Idaho. The main phase eruptions, Steens, 

Imnaha and Grand Ronde, erupted a volume of ~ 220,500 km3 (94% of the total volume 

[Camp and Hanan, 2008]). Eruptions began ~16.8 Ma with the Steens theolitic basalt 
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eruptions in southeastern Oregon and migrated rapidly northward, erupting the Imnaha 

basalts ~16-2-16.0 Ma, and the Grande Ronde basaltic andesites ~16.0-15.6 Ma (Barry et 

al., 2010, Jarboe et al., 2010) from the north south trending Chief Joseph dike swarms 

(Fig. 1c and 2a). The Steens and Imnaha eruptions are composed of olivine theolites 

typical of flood basalt provinces worldwide. However, the Grand Ronde, which comprise 

~65% of the flood basalt volume, are high silica (~52-58%) basaltic andesites unique to 

the bulk composition of all other flood basalt provinces (Camp and Hanan, 2008). The 

silica-rich Grande Ronde magmas are not primary mantle melts but can be produced by 

direct partial melting of a basalt-like source material (Takahahshi et al., 1998; Yaxley, 

2000).  

Steens-CRB volcanism generally is attributed to interaction of the Yellowstone 

plume with North America (Brandon and Goals, 1988; Hooper and Hawkesworth, 1993; 

Dodson et al., 1997; Takahahshi et al., 1998; Camp et al., 2003).  However, this volcanic 

event presents puzzling complexities: (1) the eruptive centers define an elongated ~N-S 

trend roughly parallel to the Precambrian margin of North America (Fig. 2), which has 

been attributed to plume interaction with the old continental margin (Jordan et al., 2004; 

Camp, 2004); (2) the largest erupted volumes were produced by the CRB, far north of the 

location predicted by backtracking the Yellowstone volcanic track (Fig. 2), which has 

been attributed to slab deflection (Geist and Richards, 1993) or N-S tearing of the 

subducted slab (Liu and Stegman, 2012); (3) after an early basaltic phase the CRB 

magma composition changed rapidly to basaltic andesite, which is not a mantle melt and 

has been attributed to assimilation of the North American lower crust (Wolfe and Ramos, 

in press), melting of a eclogite entrained in a plume (Yaxley, 2000; Takahahshi et al., 
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1998; Hooper and Hawkesworth, 1993), or melting of the crust on the subducted Juan de 

Fuca slab (Camp, 2004); and (4) the CRB eruptions occurred largely within a quasi-

circular area of relative uplift and subsidence, centered on a pluton that experienced local 

uplift of 2 km, which has been attributed to a coincident delamination event (Hales et al., 

2005). It is unknown whether these peculiarities represent the sort of variations and 

complexities expected of plume-lithosphere interaction in the geologically complex Earth 

(Geist and Richards 1993; Camp and Ross 2004; Jordan et al., 2004), or if the CRB 

represent an unusually complex response to plume impingement, or if they are a result of 

local conditions unrelated to a plume (Carlson, 1984).   

 

1.3. Major mantle structures 

 Seismic Imaging has been important for gaining new insight into the tectono-

magmatic history of the PNW, and has progressed rapidly since the deployment of 

USArray. Several recent tomographic studies using USArray have imaged the mantle in 

the PNW (e.g., Roth et al., 2008; Sigloch et al., 2008; Burdick et al., 2009; Tian et al., 

2009; Xue and Allen, 2010). In our area of interest, northeast Oregon, the imaging of 

Schmandt and Humphreys (2010a, 2011) is unsurpassed. They image a high-velocity 

mantle “curtain” extending vertically from beneath central Idaho to near the eastern edge 

of the Cascades in Washington along with a separate prominent elliptical body below the 

source area of the CRB’s in northeast Oregon. This imaging was created by inverting 

248,000 P and 84,000 S relative teleseismic travel-time residuals observed by USArray 

and more than 1700 additional stations. Schmandt and Humphreys’ (2011) inversion uses 

a western U.S. crust model to isolate the mantle component of residual times and three-
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dimensional frequency-dependent sensitivity kernels to map residuals into velocity 

structures. They proposed that their imaged  “curtain” reflects rollback-like foundering of 

flat-subducting Farallon slab initiated by the accretion of Farallon lithosphere within the 

Columbia embayment and consequent subduction termination. Schmandt and Humphreys 

(2011) argued that any upper mantle high-velocity anomaly of this volume must be 

subducted ocean lithosphere. Its shape and location support this contention by being 

consistent with Farallon ocean lithosphere subduction that ended beneath this area ~53 

Ma. We agree with the conclusion of Schmandt and Humphreys and use their body wave 

data for our imaging. However, we use the ambient noise tomography and teleseismic 

receiver function model of Gao et al. (2011) specific to the PNW (Fig. 2c) instead of 

using the western U.S. crustal model in order to better image the relationship of the upper 

mantle with the lower crust.  
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Figure 2. Physiographic maps of the U.S. Pacific Northwest emphasizing (a) geology 
modified from Gao et al. (2011), outline of inferred Farallon lithosphere (dashed green 
and blue line); Steens-CRB province (yellow outlined area); Steens-CRB dike swarms 
(blue dashes); main Columbia River flood basalt source area (CRB); Steens basalts 
source area (S); Steens Cenozoic metamorphic core complexes (shaded grey patches); 
isotopic 87Sr/86Sr 0.706 line (dashed red line) and isotopic 87Sr/86Sr 0.704 line (dashed 
orange line, location uncertain in eastern Washington (?)) isopleths define boundaries 
between Precambrian silicic continental crust east of the 706 line and Mesozoic and 
younger mafic accreted oceanic crust  west of the 704 line; active High Cascade Arc and 
other Quaternary volcanoes (black triangles); Snake River Plain (SRP, grey outline); 
time-progressive Newberry and Yellowstone (YS) rhyolite eruptive progression across 
SRP and High Lava Plains (HLP) (black lines, in Ma); Pasco Basin (PB). (b) Northwest 
Oregon topography, USGS DEM image, focused on the bull’s eye pattern of uplift in the 
Wallowa Mountains (area corresponds to black box in Fig. 1a). (c) Regional topography 
and the 1,715 broadband seismic stations used in this study: Red circles represent 
Wallowa Flexible array operated between 2006-2009. The black rectangle represents the 
expanse of Gao et al., crustal model (lat: 42o to 49o, lon: -124o to -110o) used to constrain 
our body-wave imaging. 
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CHAPTER II 

DATA AND METHODS 

 

This thesis chapter was written entirely by me, Amberlee Darold, with editorial 

assistance from Eugene Humphreys. 

  

 From the teleseismic travel-time data assembled by Schmandt and Humphreys 

(2010a), we use 155,134 P-wave delay times from 1,715 broadband stations and 50,298 

S-wave delay times from 960 broadband stations recorded by seismic arrays operating in 

the Pacific northwestern United States between 2006-2010 (Fig. 2c). The regional 

coverage from the EarthScope Transportable array, with ~75 km station spacing, is 

augmented with stations of the Wallowa FlexArray (~10 km station spacing), and several 

other regional arrays located farther from our focus area and provides us with excellent 

ray path coverage. P waves are picked on the vertical component and S-waves are picked 

on the tangential component. We use teleseismic events with magnitudes Mw > 5.0, 

located at distances of 30°-90° for direct P and S phases, and 155°-180° for PKPdf 

phases. Waveforms are Gaussian band-pass filtered in up to four frequency bands with 

center frequencies of 1.0, 0.5, 0.3, 0.1 Hz for P waves and 0.4, 0.1, 0.05 Hz for S-waves, 

and arrival times are derived from cross-correlation of waveforms (VanDecar and 

Crosson, 1990). The root mean square (RMS) values of P and S residuals are 0.4154 s 

and 1.1591 s, respectively.  

 Inversion of damped least squares follows the methods of Schmandt and 

Humphreys (2010b). Using finite-frequency sensitivity kernels centered on rays located 
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by tracing through the AK135 (Kennett et al., 1995) 1-D Earth model, and that extend out 

to the first Fresnel zone (based on the center frequency of the filter used during cross 

correlation). These sensitivities are calculated using the Born theoretical ‘banana-

doughnut’ kernel approximation of Dahlen et al. (2000). Inversion is for slowness on a 

rectangular but variably spaced set of nodes (described below) using the LSQR algorithm 

(Paige and Sanders, 1982), which is regularized using gradient and norm damping and 

Laplacian smoothing.  Smoothing and damping parameters were chosen to give high 

variance reduction and precise images. 

Inside the region defined on Figure 2c, the upper ~75 km of our model is 

constrained by the velocity model of Gao et al. (2011), which is derived from 

fundamental-mode Rayleigh waves recovered from ambient noise and includes a velocity 

step at the Moho derived from receiver function analysis. This structure is enforced by its 

direct inclusion into our model and applying strong damping to model parameters above 

50 km (with relaxed damping between 60-90 km).  For the P-wave inversion, we multiply 

the surface wave model of Gao et al., (2011) by a Vp/Vs factor of 1.74 (scaling factor 

from Schmandt and Humphreys, 2010a). The RMS values of the P and S wave residuals 

from the model of Gao et al. (2011) are 0.0276 s and 0.0480 s, respectively. Outside this 

region we use crustal velocity and thickness models (elevation and Moho depths, [Gilbert 

and Fouch, 2007]) to calculate ray theoretical travel-time corrections for crustal 

heterogeneity (Schmandt and Humphreys, 2010b).  The RMS values for P and S wave 

crustal corrections are 0.1826 s and 0.1783 s, respectively and have little effect on the 

RMS values of P and S residuals before crustal corrections. This could be due to a lack of 

correlation between observed traveltime residuals and the crustal corrections. 
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We choose a model domain that is much larger than our focus area, to improve 

resolution of the deep mantle structure and to reduce edge effects in our area of interest. 

Our model domain extends in depth from the surface to 900 km, in longitude from -

125°W (near the Pacific coastline) to -106° W (the middle of Wyoming), and in latitude 

from 50°N (slightly north of the Canadian border) to 36°N (central California). Vertical 

node spacing increases gradually from 10 km in the crust to 60 km at depths of 565 km 

and below to account for both the increasing first Fresnel zone width and decreasing 

resolution with depth. The uppermost layer nodes are chosen to co-locate with those of 

Gao et al., (2011) ambient noise model to avoid interpolation. The horizontal node 

spacing is smallest in northeast Oregon and increases gradually away from this location, 

varying from 25 km to 40 km at the Earth’s surface and dilating progressively with depth. 
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CHAPTER III 

RESULTS 

 

This thesis chapter Written entirely by me, Amberlee Darold, with editorial 

assistance from Eugene Humphreys. 

Because we use the same data and similar methods of Schmandt and Humphreys 

(2010a and 2010b), our inversions are similar. However, our use of a better constrained 

crustal structure (Gao et al., 2011), anisotropic corrections, choice of node spacing and 

smoothing and damping optimized for the PNW, combine to create better constrained 

images of improved resolution for this area. This allows us to construct a well-resolved 

image that is continuous from the surface to ~800 km. Our inversion reduces overall 

travel-time residual variance by 89.5% for P waves and 86.4% for S waves.  Overall 

variance reduction tends to be an optimistic indicator of image quality because resolution 

changes throughout the model space. A more reliable assessment of model quality is the 

variance reduction for the well-sampled portions of the model, which are 81.4% for P 

waves and 75.2% for S waves (portions of the model domain where nodes are sampled by 

several rays from at least 2 back azimuth quadrants [see Schmandt and Humphreys, 

2010b]). 

We use synthetic testing to test the resolvability of specific structures of interest 

with the available ray set. Figure 3 summarizes synthetic resolution tests for P and S 

waves to an initial structure consisting of three checkerboard depth layers. We include the 

model of Gao et al. (2011) in our synthetic testing to allow for a direct comparison of 

results. These tests show good recovery of our basic input model with minimal streaking. 
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The peak amplitude recovery is roughly 70-80% for P-waves and 40-50% for S-waves. 

Greater resolution P-wave amplitude recovery occurs owing to the fact that we have over 

three times more recorded P-wave residuals, 755 more stations than for S waves and few 

high quality S arrivals of high frequency (0.4 Hz for S-waves). Below we show tests of 

structures specifically designed to test specific aspects of the structures imaged.  

 Our imaging resolves four primary structures in the upper mantle beneath the 

PNW (Fig. 4, we focus our discussion primarily on P-wave images): (1) the high-velocity 

subducted Juan de Fuca oceanic lithosphere (JdF), (2) a strong low-velocity structure 

beneath north-central Oregon, (3) the high-velocity “curtain” inferred to be abandoned 

Farallon oceanic lithosphere beneath western Idaho and across central Washington 

(Schmandt and Humphreys, 2011), and (4) a smaller high-velocity structure in NE 

Oregon, termed here the Wallowa anomaly. We further examine the high-velocity 

structure beneath NE Oregon and its relationship with the high-velocity “curtain”.  

Vp and Vs heterogeneity dominate the PNW crust and upper mantle. The P and S 

wave amplitudes of heterogeneity are greatest in the upper 250 km with S wave models 

showing very little structure below this. The discrepancy between heterogeneity 

amplitude of the P and S inversions most likely results from smaller data set, difference 

in station density and, more notably, the effects of anisotropy. 

We calculate the effect of upper mantle azimuthal anisotropy on P delays; 

correction times are estimated using a scaling relationship between SKS split times and 

teleseismic P-wave travel times (O’Driscoll et al., 2011). The effect of azimuthal 

anisotropy in a tomographic inversion is expected to cause P-wave anomalies that are too 

fast and S-wave anomalies that are too slow, and we see this disagreement in our 
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inversions. However, azimuthal anisotropy may not be appropriate in areas of vertical 

flow such as subducting slabs, upwelling plumes, downwelling lithospheric instabilities 

or foundering slabs (O’Driscoll et al., 2011). We image these types of structures in the 

PNW and have processed our inversion with and without these travel time adjustments.  

We note that the correction times for the PNW are relatively small and their effect on the 

inversion is minor (the largest effect occurs in the uppermost mantle velocity beneath the 

HLP, where very strong SKS splits are observed [Long et al., 2009]).  After careful 

consideration we conclude that the azimuthal anisotropy changes only complicate our 

analysis of northeastern Oregon and therefore we remove them from our final model.  
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Figure 3. Checkerboard resolution tests results. Cross section labeled as A-A’ on 
horizontal map view.  Input structures (top row) include the crust model of Gao et al., 
from zero to 75 km (above dashed line) and alternating anomalous volume layers for Vp 
(+/- 3%) and Vs (+/- 5%) at depths of 125-170 km, 225-290 km, and 370-415 km. 
Recovered structures are +/- 2% for both Vp and Vs.  

 

3.1. Juan de Fuca and low-velocity anomaly 

 As imaged previously (e.g., Michaelsen and Weaver, 1986), the JdF slab is 

imaged dipping steeply to the east and extending only to depths of 100-300 km. An 

apparent gap in the Juan de Fuca plate is imaged in the central portion of the slab at the 

border of Oregon and Washington (Rasmussen and Humphreys, 1988; Roth et al., 2008). 

This gap appears as shallow as 60 km and widens with depth to include all of Oregon 

below ~250 km (Fig. 4). The N-S extent of the gap is ~90 km in length at 60 km depth 

(which also is the depth where the JDF slab first appears in our images) and increases to a 
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width of ~550 km at 290 km depth. At this depth the entirety of the JDF (and “curtain”) 

appear to be breaking up. This apparent gap in the slab is adjacent to the large low 

velocity anomaly directly to the east, which appears as shallow as the Moho at 30 km and 

extends in depth to at least ~300 km. Both features are well resolved (Fig. 4b) and aside 

from the Yellowstone anomaly (Fig. 4b), the low velocity anomaly is the strongest low-

velocity anomaly in the PNW. This structure is centered adjacent to the JDF gap, dips 

eastward with the JDF slab, and is surrounded on three sides by high-velocity structures 

(the JDF slab and, to the north and east, the Siletzia curtain). 

 



 

 
 

17

 

Figure 4. Horizontal upper-mantle map slices. (a) Vp (left column) and Vs (right column) 
tomograms at depths 60 km, 145 km, and 195 km (from top to bottom) images show 
horizontal map slices above and below connection of the Wallowa anomaly and the 
curtain anomaly (b) Major upper mantle seismic anomalies at 255 km depth (top Vp and 
below Vs), from left to right, (1) the high-velocity Juan de Fuca, (2) the low-velocity 
structure, (4) high-velocity Wallowa, and (3) the high-velocity curtain.  
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3.2. The curtain and Wallowa anomaly 

 The previously imaged high-velocity curtain-like structure (Schmandt and 

Humphreys, 2011) extends vertically from the base of North America lithosphere to 

depths of ~600 km beneath northern Idaho and western Montana, ~450 km beneath 

central Idaho and ~300 km beneath northern Washington (Fig. 4). The Wallowa high-

velocity anomaly in NE Oregon lies just west of the southern extent of this structure. The 

Wallowa anomaly is circular in plan view ~80km wide and extends vertically from the 

base of NA lithosphere to ~350 km depth, ~250km in length. 

 

3.3. Advanced synthetic structures 

The high-velocity Wallowa structure in northeast Oregon lies beneath the 

topographic bull’s eye with the Wallowa Mountains uplift at its center (Hales et al., 

2005)(Fig. 2b).  Figure 4b shows that this structure lies adjacent to the curtain-like 

structure that was interpreted by Schmandt and Humphreys (2011) to be Farallon slab. To 

assess the structural relationship between these two structures we perform a series of 

resolution tests. Figure 5 shows some of these tests. We are led to conclude that the 

Wallowa high-velocity structure is connected to the high-velocity curtain-like structure 

from 105 km to145 km across northeastern most Oregon and central Idaho at the curtains 

southeast segment. Figure 5b shows resolution of the structures connected while Figure 

5c shows resolution of the structures separated.  For the “curtain” we have placed a slab-

like structure from 90km – 625 km depth that curves west with depth and shallows to the 

south, this structure is located in northern Idaho and across central Washington, 

surrounding Northeast Oregon. For the Wallowa anomaly we have placed an inverted 
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funnel-like structure at 105–370 km depth beneath the northeastern corner of Oregon and 

attached it to the "curtain" between 105–145 km depth  (Fig. 5b). The synthetic images of 

the connected structure are almost identical to our inversion images, whereas 

unconnected synthetic tests do not give similar images (Fig. 5a, 5b, and 5c). 

 The physical connection of the NE Oregon structure with the curtain-like 

structure suggests that it has the same origin; the curtain a part of the remnant Farallon 

slab. This suggests that just prior to the accretion of Farallon lithosphere, subducting 

Farallon slab may have been in contact with western U.S. lithosphere as far east as NE 

Wyoming (Humphreys, 2007). This would make the foundering Farallon slab at least 

~600 km in length beyond the expected extent of Farallon lithosphere within the 

Columbia Embayment. Our imaging agrees with this hypothesis and confirms a 

foundering slab of ~300 km beneath central Idaho and northern Washington and ~600 km 

beneath northern Idaho. The Wallowa anomaly is ~250 km in length and likely represents 

a later episode of foundering Farallon slab, which propagated from south to north and 

was initiated by the arrival and ponding of the Yellowstone Plume beneath Southeastern 

Oregon.   
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Figure 5. Advanced synthetic structures exhibiting, (a) map view and horizontal cross-
sections of Vp tomographic inversion images of the Wallowa anomaly and the Siletzia 
curtain. (b) Input and output of synthetic tests connecting the Wallowa anomaly and the 
Siletzia curtain from 105km-145km. (c) Input and output of synthetic tests separating the 
Wallowa anomaly and the Siletzia curtain. 
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CHAPTER IV 

DISCUSSION 

 

 This thesis chapter includes co-authored material written in conjunction with 

Eugene Humphreys. Eugene Humphreys has contributed greatly through mutual 

conversations and editorial assistance to the background knowledge that support this 

discussion.  

The eastern Oregon Steens-CRB flood basalt event generally is thought to be the 

initiation of the Yellowstone hotspot within North America. While hotspots typically 

initiate with a flood basalt event (Richards, et al., 1989), the eastern Oregon flood basalts 

are peculiar in that the main eruptions, the CRB, are far off track, and the main phase of 

the CRB eruptions, the Grande Ronde, are basaltic andesite.  Three independent lines of 

reasoning, discussed in the following paragraphs, lead us to conclude that the CRB 

eruptions, and their abnormalities, were related to a northward propagating delamination-

style foundering of Farallon lithosphere from the base of Cretaceous accreted terrains of 

North America ~16 Ma.  

 

4.1. Seismic evidence 

First, Our upper mantle imaging and resolution tests demonstrate that the high-

velocity Wallowa structure is connected to the large sheet-like high-velocity curtain 

structure imaged beneath much of Idaho and Washington. Schmandt and Humphreys 

(2011) argue that the curtain-like structure is subducted Farallon ocean lithosphere, based 

on its large volume and slab-like shape. If so, then the high-velocity Wallowa structure 
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also is likely to be foundered Farallon lithosphere. This is consistent with the volume of 

the Wallowa structure, which is to be too large to be delaminated North America 

lithosphere and too deep to be basalt-depleted upper mantle. 

The Wallowa anomaly at depths of 195-330 km is circular in map view and is 

nearly perfectly aligned with the circular bull’s eye topography (Fig 2b), which is the 

source area for most of the CRB. This uplift pattern was created during and after the CRB 

eruptions (Hales et al., 2005), suggesting that the Wallowa structure is related to the CRB 

event. The Wallowa anomaly is connected with the Idaho sheet-like anomaly below the 

north-northeast side of topographic bull’s eye at depths of 60-150 km (Fig. 2a and 4), as 

would occur if the Wallowa anomaly were foundered Farallon lithosphere that 

delaminated with a with a hinge on its north-northeast side. 

 

4.2. Tectono-magmatic evidence 

The tectonic and magmatic history of the region provides the second type of 

evidence that Farallon lithosphere was at the base of North America prior to CRB 

volcanism. We assume that waning magmatism in the well-established Idaho Cretaceous 

arc and the occurrence of strong backarc thrusting represents Laramide-age flattening of 

the Farallon slab. The ~53 Ma accretion of Farallon lithosphere within the Columbia 

Embayment and resulting initiation of Cascadia subduction would have abandoned the 

Farallon slab within the Embayment and at the base of North America east of the 

accreted Farallon lithosphere. We interpret the absence of magmatism from northeast 

Oregon and southeast Washington from the time of accretion until the time of CRB 

eruptions to indicate that the Farallon slab prevented magmatism by remaining at the base 
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of the North America lithosphere. This is in strong contrast to the sudden and vigorous 

magmatism that initiated ~53 Ma in all regions around this amagmatic area (Fig. 1c). 

This presumably indicates slab removal or disruption from the surrounding areas 

(Absaroka-Challis-Kamloops magmatism across northwestern Wyoming and from 

central Idaho through northern Washington [Feeley, 2003; Schmandt and Humphreys, 

2011]; Pasco basin magmatism [Catchings and Mooney, 1988]; and the Clarno volcanism 

of north-central Oregon [Bestland et al., 1999]). The initiation of Cascadia subduction 

west of Farallon lithosphere following accretion occurred during a time when the 

amagmatic Laramide Orogeny continued to the south of central Oregon suggesting a 

continuation of flat-slab subduction south of central Oregon. This would require an ~E-W 

tear in the subducted Farallon slab extending across central Oregon and east to the 

southern extent of the Idaho anomaly. The south to southwest propagation of slab 

removal from the base northwestern Nevada is thought to follow the sweep of 

magmatism that is the expression of the ignimbrite flareup (Humphreys, 1995) and 

Ancestral Cascade arc (Cousens et al., 2008). 

 

4.3. Physical and chemical evidence  

Our third line of reasoning for Farallon slab removal beneath northeast Oregon at 

~16 Ma comes from the physical and chemical nature of the Steens-CRB flood basalt 

event. The eastern Oregon flood basalt event initiated with the Steens theolitic basaltic 

eruptions ~16.8 Ma (Wolff et al., 2012; Camp et al., 2012, Jarboe et al., 2010) across 

southeastern Oregon. Magmatism migrated rapidly northward, erupting the Imnaha 

basalts ~16.1-15.9 Ma (Barry et al., 2010), and then the massive Grande Ronde basaltic 
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andesites ~16.0-15.5 Ma (Barry et al., 2010). The Grande Ronde flows erupted from dike 

swarms concentrated nearly 400km north-northeast of the initial Steens eruptions (Fig. 1c 

and 2a) Assuming pre-CRB magmatic quiescence was due to Farallon slab against the 

base of North America, CRB magmatism suggests a south-to-north removal of this 

lithosphere. In addition, the rapid exposure of the Farallon ocean crust to the 

asthenosphere makes available the large amounts of basalt-like rock required to produce 

the composition and volume of Grande Ronde magma. The fact that none of the Grande 

Ronde lavas express melting in the presence of garnet suggests that this crust had not 

metamorphosed to eclogite. This would not be surprising considering northeast Oregon 

was in a forearc position when the Farallon lithosphere accreted, and the subduction 

interface may well have been above the depth of garnet stability, ~35 km.  

Based on the magmatic volume, production rate and isotopic evidence (Camp and 

Ross, 2004; Hooper and Hawkesworth, 1993; Wolff and Ramos, 2012), we attribute the 

Steens magmatism to arrival of the Yellowstone mantle plume beneath southeast Oregon. 

This is an area where we do not expect Farallon lithosphere at the base of North America. 

But northward eruptive dike propagation enters an area underlain by Farallon lithosphere, 

and the evidence outlined above suggests a delamination style of foundering of this 

lithosphere occurred. Initial (Imnaha) CRB magmas were the first to invade northeast 

Oregon, and they have the isotopic signature of plume-derived melts. We envision sills of 

Imnaha basalt intruding at the density step between the Farallon crust and its mantle; this 

density profile would promote sill intrusion and could propagate magmatism northward 

rapidly, and the presence of such a magma layer would mechanically decouple the ocean 

lithosphere from North American and enable the delamination of the negatively buoyant 
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lithosphere. Rapid northward propagation was driven by the negative buoyancy of the 

Farallon lithosphere and the positive buoyancy of the plume asthenosphere and its melt, 

and was enabled by the mechanical decoupling provided by magmatic sills. This 

mechanism is similar to the plume-driven delamination discussed by Burov et al. (2007) 

and Camp and Hanan (2008). These invading magma sills and, with Farallon 

delamination, the inflowing hot buoyant plume mantle would also allow the garnet-rich 

Wallowa plutonic root (Johnson et at., 1997; O’Driscoll and Johnson, 2008) to detach. 

Like Hales et al. (2005), we attribute the ~2 km of Wallowa pluton uplift to the 

delamination of its root. The circular pattern of topographic uplift pattern could result 

from the underplating of magmas derived from the upflowing decompressing 

asthenosphere driven by the sinking of the Farallon lithosphere or the Wallowa pluton 

root, in a manner similar in form to that modeled by Elkins-Tanton (2000) for the 

Siberian Traps.  

 

Figure 6 (next page). Yellowstone plume induced delamination model of remnant 
Farallon lithosphere from the base of Cretaceous accreted terrains producing the CRB’s. 
Cross-sections a-d corresponds with age-progressive evolution of the CRB’s starting with 
the Steens basalt eruptions and concluding post Grande Ronde. (a) Steens theolitic basalts 
erupt from southeastern Oregon ~16.8 my and plume encroachment and destabilization of 
the Farallon lithosphere begins. (b) Plume activation of mechanical delamination and slab 
rollback of Farallon lithosphere from base of Cretaceous accreted terrains by the 
emplacement of magmatic sills and eruption of the Imnaha basalts ~16.1Ma. (c) Sill 
migration triggers Wallowa pluton root delaminate, melting of Farallon basaltic crust, 
and Grande Ronde andesitic basalt eruptions ~16.0 Ma. (d) Post Grande Ronde mantle 
structure with exaggerated topography (Figure 5a, column 5 represents map cross-
sesction and figure 5a, column 6 represents current Vp mantle structure). 
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CHAPTER V 

CONCLUSIONS 

 

 This thesis chapter includes co-authored material written in conjunction with 

Eugene Humphreys. Eugene Humphreys has contributed greatly through mutual 

conversations and editorial assistance to the background knowledge that support these 

conclusions.  

By combining constraints derived from our tomographic imaging, the geologic 

history, and the evolution of flood basalt magmatism in northeast Oregon and 

surrounding regions, we conclude the following (depicted in figure 6): (1) northeast 

Oregon and southeast Washington were directly underlain by subducting (~120-53 Ma) 

and abandoned (53-16 Ma) Farallon slab until the beginning of CRB magmatism (Fig. 6, 

green Farallon slab); (2) Yellowstone plume impingement beneath the southern Oregon 

lithosphere initiated flood basalt activity with the Steens eruptions (16.8 Ma, Barry et el., 

2010), which destabilized the Farallon lithosphere ~16.1 Ma (Fig. 6a); (3) the Farallon 

lithosphere foundered in a delamination style, with a hinge rolling rapidly toward the 

north-northeast. This was driven by the negative buoyancy of the slab and positive 

buoyancy of the hot, partially molten plume asthenosphere, and was mechanically 

enabled by the emplacement of magmatic sills between the dense Farallon lithosphere 

and the less dense overlying crust, and propagating northward following the pressure 

gradient created by delamination (Fig. 6b); (4) this initial basaltic magmatism, derived 

from plume-rich asthenosphere, gave rise to the northward-propagating Imnaha flows of 

the early CRB (Fig. 6b); (5) The voluminous Grande Ronde flows were largely sourced 
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from the basaltic oceanic crust of the Farallon lithosphere (Fig. 6c); (6) Wallowa pluton 

root delamination, driven by its dense garnet-rich restitic root (Johnson et at., 1997; 

O’Driscoll and Johnson, 2008) and enabled by the emplacement of basaltic sills above 

this body (Fig. 6c). The intense CRB magmatism is attributed to the forced overturn of an 

unusually hot asthenosphere and the presence of large volumes of basalt. 

We view the eastern Oregon flood basalt eruptions and Wallowa Mountain uplift 

as a plume amplified and accelerated version of western U.S. magmatic and tectonic 

activity. Throughout the western U.S., flat-slab Farallon subduction applied Laramide-

driving basal tractions (Coney and Reynolds, 1977; Bird, 1994, Saleeby, 2003), 

lithospheric cooling (Dumitru et al., 1991) and hydration (Dixon et al., 2004) of the 

lithosphere. The subsequent, protracted foundering of the flat slab and assent of 

asthenosphere to the base of a thinned (Spencer, 1996) and hydrated (Humphreys et al., 

2003) North American lithosphere created a vigorous ignimbrite flareup (Coney, 1978; 

Ward, 1995) and initiated lithospheric instability and associated uplifts [e.g., southern 

Sierra Nevada (Saleeby and Foster, 2004; Zant et al., 2004) and the southwest Colorado 

Plateau (Levander et al., 2011)]. The activity that occurred ~16 Ma in eastern Oregon 

presents a microcosm of all this, although with its local peculiarities and made especially 

intense by the impingement of Yellowstone plume asthenosphere. In particular, magmatic 

decoupling of the gravitationally unstable Farallon fragment and Wallowa pluton root 

enabled their foundering, which both drove uplift centered on the Wallowa Mountains 

and dragged anomalously hot mantle far north of its arrival location in southern Oregon. 
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APPENDIX A 

P-WAVE TOMOGRAPHY 

(8 km – 865 km) 
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APPENDIX B 

S-WAVE TOMOGRAPHY 

(8 km – 865 km) 
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APPENDIX C 

CHECKERBOARD SYNTHETICS 
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APPENDIX D 

VERTICAL CROSS SECTIONS THROUGH THE CONNECTION OF THE 

WALLOWA ANOMALY AND THE CURTAIN 
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APPENDIX E 

SYNTHETIC VERTICAL CROSS SECTIONS THROUGH THE CONNECTION OF 

THE WALLOWA ANOMALY AND THE CURTAIN 
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