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DISSERTATION ABSTRACT

Robert Fisette

Doctor of Philosophy

Department of Mathematics

June 2012

Title: The A-infinity Algebra of a Curve and the J-invariant

We choose a generator G of the derived category of coherent sheaves on a smooth

curve X of genus g which corresponds to a choice of g distinguished points P1, . . . , Pg on X.

We compute the Hochschild cohomology of the algebra B = Ext∗(G,G) in certain internal

degrees relevant to extending the associative algebra structure on B to an A∞-structure, which

demonstrates that A∞-structures on B are finitely determined for curves of arbitrary genus.

When the curve is taken over C and g = 1, we amend an explicit A∞-structure on B

computed by Polishchuk so that the higher products m6 and m8 become Hochschild cocycles.

We use the cohomology classes of m6 and m8 to recover the j-invariant of the curve. When

g ≥ 2, we use Massey products in Db(X) to show that in the A∞-structure on B, m3 is

homotopic to 0 if and only if X is hyperelliptic and P1, . . . , Pg are chosen to be Weierstrass

points.
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CHAPTER I

INTRODUCTION

A-infinity (A∞-) algebras were invented in the sixties by Stasheff ([24]), and occupy

a central role in modern problems related to homological mirror symmetry. We consider a

graded vector space A over a field K. An A∞-structure on A is a certain generalization of an

associative algebra structure, where we relax the associativity condition in the presence of a

differential, requiring that multiplication be associative only up to homotopy.

More specifically, an A∞-algebra is the space A together with a set {mn}
∞
n=1 of oper-

ations mn : A⊗n → A of homogeneous degree 2 − n satisfying certain compatibility relations.

For example, m1 is a differential and a derivation with respect to m2; m2 is a homotopy as-

sociative multiplication with homotopy given by m3. The cohomology H∗A with respect to

m1 is an associative algebra, but also inherits some higher-order operations (to compensate for

the loss of chain information) which make it also an A∞-algebra. Section II.3. gives a brief

overview of A∞-algebras and their morphisms. The reader is referred to [10] for a more detailed

introduction.

Despite the evident motivation to forget associativity, a particular case of interest is

when A is a differential graded (dg-) algebra; considered as an A∞-algebra, m1 is taken as

the differential, m2 is the usual (associative) multiplication, and mn = 0 for n ≥ 3. There

is no sense in which A and H∗A are equivalent (in general) if we restrict to the context of

usual algebras. A shadow of the power of the generalization to A∞-algebras appears in the

equivalence as triangulated categories of some derived A∞-module categories over A andH∗(A),

respectively. Such a result implies that by living in the context of A∞-algebras we do not lose

so much information by passing to cohomology.
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An A∞-category is a natural generalization of an A∞-algebra to a categorical setting,

where we recover the notion of an A∞-algebra by considering an A∞-category with one object.

The Fukaya category Fuk(M) of a symplectic manifold (M,ω) and the bounded derived category

of coherent sheaves Db(X) on an algebraic variety X are interesting examples of A∞-categories

which appear naturally in practice. Indeed, these two examples are the focus of much present

interest in A∞-structures, due primarily to the influential paper [11] of Kontsevich from 1994.

In that paper, Kontsevich conjectured that string theoretic mirror symmetry between

two Calabi-Yau manifoldsX and Y should be understood mathematically as homological mirror

symmetry (HMS), or equivalences of A∞-categories,

Fuk(X) ≃ Db(Y ) and Db(X) ≃ Fuk(Y ).

This gives, roughly, an exchanging of the symplectic and complex structures by passing from

X to Y . Polishchuk and Zaslow proved the conjecture in this form for elliptic curves in [16],

[18]; Seidel proved it for the quartic surface in [23]; and Abouzaid and Smith have treated

abelian surfaces in [2]. In [9], Katzarkov proposed a generalization of mirror symmetry for

varieties of general type which are not Calabi-Yau; that version of the conjecture was proved

in one direction for curves of genus two by Seidel [22] and for curves of higher genus by Efimov

[4]. These works on curves of higher genus exhibit the equivalence of the symplectic structure

on the curve with the complex structure on its proposed mirror dual, without considering the

other direction.

In proving the homological mirror conjecture, little explicit knowledge of the A∞-

structures involved is needed. As some evidence for this claim, the full proof of HMS for elliptic

curves (see [18]) only required specific calculation of m2 and m3, while not until [17] was a

complete A∞-structure relevant to this problem computed. In this paper we seek to refine

and expand the explicit knowledge of the A∞-structures for curves on the complex side of this

problem.

Let X be a variety over an algebraically closed field K and let G ∈ Coh(X), where

Coh(X) is the category of coherent sheaves on X. Let G → I• be an injective resolution of

G in Coh(X); then A = Hom(I•, I•) has the structure of a dg-algebra whose cohomology is

2



B = Ext∗(G,G). By a theorem of Kadeishvili [8], there is a minimal (m1 = 0) A∞-structure

on B (unique up to A∞-equivalence) such that A and B are quasi-isomorphic as A∞-algebras.

Let C be a triangulated category, and T ∈ Ob(C ). We let tria(T ) ⊂ C be the smallest

triangulated full subcategory containing T which is closed under passage to direct summands;

in other words, tria(T ) is the closure of T under shifts, extensions, and taking direct summands.

We say that T is a generator of C if tria(T ) = C .

Let Mod -B be the category of A∞-modules over B, Db(Mod -B) its bounded derived

category. Then tria(B) ⊂ Db(Mod -B) is the triangulated subcategory generated by the free

B-module of rank one. This is the derived category of perfect B-modules, and is sometimes

denoted perf(B). If we suppose further that G is a generator of Db(X), then a theorem in

the thesis of Lefévre-Hasegawa ([12], 7.6) implies that there is an equivalence of triangulated

categories, Db(X) ≃ perf(B).

When X is a smooth curve, it is known that we do not lose any information by passing

from X to Db(X); that is, X1
∼= X2 if and only if Db(X1) ≃ Db(X2). This follows that the

Bondal-Orlov reconstruction theorem ([3], 2.5) for curve of genus g > 1, and is proved for

elliptic curves by Hille and Van den Bergh ([7], 5.1). It follows that when X is a smooth

complex curve and G is a generator of Db(X), the A∞-structure on B is sufficient to recover

X up to isomorphism. Therefore it is of value to investigate this structure in some detail.

Let E be a complex elliptic curve with structure sheaf OE and let L be a line bundle

of degree 1. In [17], Polishchuk studies the case where G = OE⊕L, and computes explicitly an

A∞-structure on B(E) = Ext∗(G,G) in terms of the Eisenstein series of E. The A∞-algebra

B(E) recovers E up to isomorphism, but the associative algebra B = (B(E),m2) is independent

of E. In this way we get a family of non-equivalent A∞-structures extending the associative

algebra structure of B. That is, if we denote by MB
∞ the moduli space of A∞-structures on B

up to equivalence, and let Mg,n be the usual moduli space of smooth curves of genus g with n

marked points, there is a map,

M1,1 → MB
∞, E 7→ B(E).

This leads naturally to several questions.

3



First, can we describe the equivalence classes of A∞-structures extending the multipli-

cation on B? It is well-known that such extensions are governed by certain components of the

Hochschild cohomology of B. The specifics of this relationship are recalled in detail in Section

II.5.. In Chapter III, we compute relevant components of HH∗(B). There is no particular

need to restrict this calculation to the complex numbers. The main result is Theorem III.4.1,

and it applies whenever charK 6= 2, 3. Prior to this writing, Perutz and Lekili published an

independent calculation of this cohomology ([13], Thm.4); nonetheless, the author feels the

calculation here is of value both for its method and for its usefulness in extending to the case

of g ≥ 2.

Let HHn
(m)(B) be the Hochschild cohomology of B in dimension n for maps of homo-

geneous degree m. Since HHn
(2−n)(B) vanishes for n > 8 (by Theorem III.4.1), A∞-structures

on B are determined up to equivalence by the set {mn}
8
n=3. (In general, when an A∞-structure

is determined up to equivalence by a finite number of operations, we say that it is finitely de-

termined.) This also implies that HH∗
(2−n)(B) is a finite-dimensional vector space, so MB

∞ can

be realized as a quotient of an affine scheme of finite type.

Second, the appearance of the Eisenstein series of E in the higher operations on B(E)

suggests that we might find some other interesting functions lurking there. In particular, can

we recover the j-invariant j(E) from this A∞-structure? The A∞-structure (m) in [17] has the

property that for k ∈ Z≥1, m2k−1 = 0 and m2k 6= 0. Theorem III.4.1 implies the existence of an

equivalent structure (m′) (Proposition IV.1.2) such that m′
2k−1 = 0, m′

4 = 0, and m′
6, m

′
8 are

Hochschild cocycles. We compute (m′) explicitly in Chapter IV, and recover j(E) in Theorem

IV.2.3 as the value of a rational function on V = HH6
(−4)(B)⊕HH8

(−6)(B) ∼= C
2 evaluated at

the point (m′
6(E),m′

8(E)) (with suitably chosen coordinates on V ).

In Chapters V and VI we consider curves X of genus g ≥ 2. We choose a generator

G of Db(X), which amounts to choosing g distinguished points on X. When we choose these

points across all genus g curves to satisfy a certain open condition on Mg,g, we get a family

of A∞-algebras Bg(X) = Ext∗(G,G) which restrict to the same associative algebra, Bg =

(Bg(X),m2). That is, there is a map,

Mg,g → MBg

∞ , X 7→ Bg(X).

4



Then we can ask, is the A∞-structure on Bg(X) finitely determined? In Chapter V

we calculate the relevant components of Hochschild cohomology for the associative algebra

Bg. The result in Theorem V.4.10 shows that HHn
(2−n)(B

g) vanishes for n > 6, so Bg(X) is

determined up to equivalence knowing only up to m6.

The question of finite determination is important for the HMS problem for curves of

higher genus. If we are trying to determine an equivalence between two A∞-structures, it is

useful to know that we need only force their equality up to some finite level. Our choice of

the generator G is not unique, and there is no reason to expect that an arbitrary such choice

gives a finitely determined A∞-structure. At present, there is no general program for finding a

generator with the finite determination property; therefore these positive results in the simple

cases of curves might also be useful for suggesting some patterns for finding such generators of

arbitrary varieties.

Finally, what additional information can be determined about the A∞-structure on

Bg(X)? A result in [19] implies that m3 can be chosen to represent Massey products in Db(X).

In Chapter VI we compute one of these Massey products in order to make some comments

about if and when m3 is trivial (homotopic to 0). Theorem VI.2.1 shows that m3 is trivial

only if X is hyperelliptic, and the g distinguished points are Weierstrass points. It would be

interesting to find an explicit homotopy of this structure which takes m3 to 0, thus making m4

and m5 Hochschild cocycles. One can then hope to recover analogs of the j-invariant from this

A∞-structure in the case of hyperelliptic curves.
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CHAPTER II

PRELIMINARIES

This chapter compiles many of the results, definitions and notation used throughout

this paper. The reader who prefers may skip this chapter and return to these sections as needed

when they are referenced later. While there are no new results in this chapter, the proof of

Lemma II.5.1 is new, as a suitable reference could not be found.

II.1. Reduced Hochschild cohomology

Let K be a field, B a (unital) K-algebra. Let M be a B-bimodule. We define the full

Hochschild cochain complex, C•(B,M), where,

Cn(B,M) := HomK(B
⊗Kn,M), n ≥ 0.

For a cochain φ ∈ Cn(B,M), we define the cochain δφ ∈ Cn+1(B,M) as,

(δφ)(a0, . . . , an) = (−1)|a0||φ|a0φ(a1, . . . , an) +

n∑

i=1

(−1)iφ(a0, . . . , ai−1ai, . . . , an)

+ (−1)n+1φ(a0, . . . , an−1)an.

The cohomology of this complex is the Hochschild cohomology of B with coefficients in M ,

denoted HH•(B,M).

Remark II.1.1. The sign on the first term applies to the case when B is Z-graded, in which

case |φ| is the homogeneous degree of the map φ. By convention, if B is not graded, then |b| = 0

for all b ∈ B.
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With K, B as above, let R ⊂ B be a semi-simple subring such that B ∼= R ⊕ B/R as

R-modules. Let B+ be the R-submodule of B isomorphic to B/R. We say in this case that B

is augmented over R.

We define the reduced cochain complex C•
R(B,M) by replacing ⊗K and HomK with

⊗R and HomR and replacing B with B+ in the full complex. That is,

CnR(B,M) := HomR(B
⊗Rn
+ ,M), n ≥ 0,

with the differential defined the same as above. The cohomology of this complex we call the

reduced Hochschild cohomology of B over R with coefficients in M , denoted HH•
R(B,M).

In all applications, we will use a reduced Hochschild cochain complex. The two com-

plexes are known to be quasi-isomorphic for unital algebras ([21] (20d)). We will therefore

usually write C•(M) and HH•(M) when B and R are understood, and it is understood that

everything is reduced over R.

When B is a (Z-)graded K-algebra, it follows that B+ is a graded R-module. Then the

reduced tensor algebra,

T (B+) =

∞⊕

i=1

B⊗Ri
+ ,

is bigraded. The cohomological grading degcoh gives the length of a tensor, and the internal

grading degint is inherited from the grading on B+; that is,

degcoh(x1 ⊗ · · · ⊗ xn) = n, degint(x1 ⊗ · · · ⊗ xn) =
n∑

i=1

deg(xi).

When R is concentrated in degree 0 and M is a graded B-bimodule, the complex C•(M)

is bigraded. Recall that if f : N → M is a map of graded B-bimodules, we say that f is

homogeneous of internal degree m if deg(f(x)) = deg(x) +m for all x in N .

We let Cn(m)(M) ⊂ Cn(M) be the R-submodule of homogeneous maps of internal

degree m. It is easy to check that δ preserves m, so C•(M) is a direct sum of complexes with

fixed internal degree,

C•(M) =
⊕

m∈Z

C•
(m)(M), HH•(M) =

⊕

m∈Z

HH•
(m)(M).

7



In cases when we have fixed the internal degree m and it does not cause ambiguity in later

sections, we will suppress m also in the notation and write simply C•(M) and HH•(M).

II.2. The normalized bar complex and duality

Let K, B, R, B+ be as in Section II.2.. We define the chain complex BarR• (B) as

BarRn (B) := B⊗Rn
+ , n ≥ 0,

with differential defined by

d(x1 ⊗ · · ·xn) =

n−1∑

i=1

x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn.

This is the normalized bar complex of B over R, which we denote HBR• (B). When R is

understood we will write Bar•(B) and HB•(B).

The complex Bar•(B) has the bigrading of T (B+) described in Section II.1.. We let

Bar(m)
n (B) be the space of tensors of internal degree m.

Remark II.2.1. In general, when V is a chain (or cochain) space with an internal grading,

we will write V (m) (or V(m), respectively) to denote the subspace of chains with internal degree

m.

The differential d preserves the internal grading, so Bar•(B) is a direct sum of com-

plexes,

Bar•(B) =
⊕

m∈Z

Bar(m)
• (B).

When the internal degree is fixed and it does not cause ambiguity, we will suppress m in the

notation and write simply Bar•(B) and HB•(B).

Let B be graded, M a graded B bimodule, and C•(M) the Hochschild complex re-

duced over R. When the first and last terms of the Hochschild differential vanish, there is an

isomorphism of complexes

[Bar•(B)]∗ ⊗M
∼
−→ C•(B,M),

8



since in this case δf = f ◦ d for f ∈ Cn(M). When M is concentrated in a single degree k, we

have more specifically

[Bar(m)
• (B)]∗ ⊗M

∼
−→ C•

(k−m)(B,M).

II.3. A∞-algebras

We use [10] as a reference. Let K be a field, V a graded K-vector space. An A∞-

structure on V is a collection of maps mn ∈ HomK(V
⊗Kn, V ) of internal degree 2− n for each

n ≥ 1, which satisfy the compatibility relations:

∑

n=r+s+t

(−1)r+stmu(1
⊗r ⊗ms ⊗ 1⊗t) = 0, (II.1)

for each n ≥ 1, where u = r+1+ t. We call the relation in which r+ s+ t = k the A∞-relation

of order k. The space V endowed with such maps is called an A∞-algebra. We denote this

space by (V,m), where (m) = {mn}
∞
n=1 is an A∞-structure on V .

Remark II.3.1. If |g| is the internal degree of a graded map g and |x| is the internal degree

of a tensor x, we use the sign convention that (f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y).

An A∞-structure is called minimal if m1 = 0. The A∞-relation of order 1 implies that

m1 has internal degree 1 and m2
1 = 0, so (V,m1) is a complex. We denote its cohomology by

H∗V . The algebra V with multiplicationm2 (denoted (V,m2)) is not associative in general, but

the A∞-relation of order 3 implies that if either m1 = 0 or m3 = 0, then m2 is associative. In

particular, m2 induces a multiplication on H∗V such that (H∗V,m2) is an associative algebra.

Let (V,m) and (V ′,m′) be two A∞-algebras. Amorphism of A∞-algebras is a collection

of maps

fn ∈ HomK(V
⊗Kn, V ′) of internal degree 1 − n for each n ≥ 1 satisfying the compatibility

axioms:

∑

n=r+s+t

(−1)r+stfu(1
⊗r ⊗ms ⊗ 1⊗t) =

∑
(−1)sm′

r(fi1 ⊗ · · · ⊗ fir ), (II.2)

where u = r + 1 + t, and the sum on the right is over all 1 ≤ r ≤ n and all decompositions
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n = i1 + · · ·+ ir, where we define

s =

r∑

j=1

(r − j)(ij − 1).

We denote by (f) : (V,m) → (V,m′) the A∞-morphism with component maps fn.

As a reference for strict A∞-isomorphisms, we use [20], Section 2.1. Let (m), (m′)

be two A∞-structures on V . Then we call a morphism (f) : (V,m) → (V,m′) a strict A∞-

isomorphism provided f1 = idV .

Proposition II.3.2. ([18], Lemma 1.1) Let (V,m) be an A∞-algebra, and (f) = {fn}
∞
n=1 a

collection of K-linear maps fn : V ⊗n → V , homogeneous of internal degree 1−n, with f1 = idV .

Then there is a unique A∞-structure (m′) on V such that (f) : (V,m) → (V,m′) is a strict

A∞-isomorphism.

In particular, this means that the strict A∞-isomorphisms act on A∞-structures on V

in an appropriate sense. In the situation of the proposition, we write m′ = f ∗m.

([12] 1.2.1.7) Let f, g : (V,m) → (V ′,m′) be two A∞-morphisms. A homotopy between

f and g is a collection of maps

hn : V ⊗n → V ′, n ≥ 1,

homogeneous of internal degree −i satisfying for each n the equation,

fn − gn =
∑

(−1)smr+1+t(f1i ⊗ · · · ⊗ fir ⊗ hk ⊗ gj1 ⊗ · · · ⊗ gjt)

+
∑

(−1)jk+lhi(1
⊗j ⊗mk ⊗ 1⊗l,

where

j + k + l = i1 + · · ·+ ir + j1 + · · · jt + k = n,

and s determines a sign. We denote such a collection by (h). If such an (h) exists for f and

g, we say that f and g are homotopic. We will not use these relations explicitly (justifying

ignorance of the sign s), but note: 1) homotopy between morphisms is an equivalence relation

and 2) a morphism f and any collection (h) of such maps determines a unique morphism g

such that (h) is a homotopy from f to g ([20], Lemma 2.1). In this case we say that h ∗ f = g.

10



We now return to the situation of Section II.1. where B is a graded K-algebra, R ⊂ B

is a semi-simple subring concentrated in degree 0 such that B = R⊕B+ as an R-bimodule. A

minimal A∞-structure on B reduced over R is an A∞-structure on B such that m1 = 0, m2 is

the usual multiplication in B, and mn ∈ CnR(B,B) for n ≥ 3. For r ∈ R and ai ∈ B, we require

for n ≥ 3 that

mn(a1, . . . , r, . . . , an) = 0.

We define morphisms and strict A∞-isomorphisms of such structures by replacing ⊗K and

HomK and ⊗R and HomR in the above definitions.

II.4. The Lie superalgebra of superderivations

Let V be a graded K-vector space, f : T (V ) → T (V ) a K-linear map, homogeneous

with respect to the internal grading. We call f a superderivation if for v1, v2 ∈ T (V ), we have,

f(v1 ⊗ v2) = f(v1)⊗ v2 + (−1)|v1||f |v1 ⊗ f(v2).

We denote by Derl T (V ) the vector space of superderivations of internal degree l. We define,

DerT (V ) :=
⊕

l∈Z

Derl T (V ).

There is a bracket defined on DerT (V ) which gives it the structure of a Lie superalgebra. For

d1 ∈ Deri T (V ), d2 ∈ Derj T (V ), and d3 ∈ Derk T (V ), the bracket is defined by,

[d1, d2] = d1d2 − (−1)ijd2d1,

and the Jacobi identity states that

(−1)ik[d1, [d2, d3]] + (−1)ij [d2, [d3, d1]] + (−1)jk[d3, [d1, d2] = 0.
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II.5. Hochschild cohomology and A∞-structures

We restrict to the case where charK 6= 2, 3. Let n ≥ 2. A minimal An-structure on

a graded K-vector space V is a collection of maps mi ∈ HomK(V
⊗i, V ) for 1 ≤ i ≤ n, each of

internal degree 2 − i, satisfying the A∞-relations of order k for all k ≤ n + 1 (ref. Equation

II.1), and such that m1 = 0. Note that the relation of order n+ 1 would typically include the

terms,

±m1(mn+1)±mn+1

(
∑

r+1+t=n+1

1⊗r ⊗m1 ⊗ 1t

)
,

but that these terms vanish when m1 = 0. In particular, note that a minimal A∞-structure on

V restricts to a minimal An-structure for all n ≥ 2. In this section we recall the relationship

between Hochschild cohomology of an associative algebra B and minimal An-structures on B.

(See [1], [20])

Since m1 = 0, the A∞-relation of order k + 1 ≥ 3 can be rewritten in the form,

m2(1⊗mk ±mk ⊗ 1)−mk

(
∑

r+2+t=k+1

(−1)r+11⊗r ⊗m2 ⊗ 1⊗s

)
= Φk(m3, . . . ,mk−1),

where Φk is a quadratic expression. Since m2 is an associative multiplication, the left side of

this equation is exactly δmk, where δ is the Hochschild differential; that is, we have the equation

δmk = Φk(m3, . . . ,mk−1).

Lemma II.5.1. ([1], Lemma 2.3) Assume the maps {mi|1 ≤ i ≤ k − 1} determine an Ak−1-

structure on V . Then with Φk as defined above,

1. Φk(m3, . . . ,mk−1) : V
⊗k+1 → V is homogeneous of internal degree 2− k; and

2. δ(Φk(m3, . . . ,mk−1)) = 0.

That is, the Ak−1-structure provides a particular cocycle, Φk(m3, . . . ,mk−1). We can

find mk to extend this to an Ak-structure if the relation of order k + 1 can be solved for mk,

i.e., if this cocycle is a coboundary. Therefore this result implies that if HHk+1
(2−k)(V ) vanishes,

any Ak−1-structure can be extended to an Ak-structure. Statement (1) is a trivial check, but

we include a proof of statement (2).

12



Proof. Each given mi, 1 ≤ i ≤ k − 1, determines a map m̂i : T (V ) → V , homogeneous of

internal degree 2 − i, equal to mi on V
⊗i and zero otherwise. Let S : V → V be the grading

shift of degree −1, i.e., (SV )j = Vj+1. Following [15] §4, we let W = (SV )∗. Then each m̂i

has a dual map d̂i : W → T (W ) of internal degree 1, which can be uniquely extended to a

superderivation di : T (W ) → T (W ) of internal degree 1.

The A∞-constraints arise from certain relations among the brackets of the superderiva-

tions di ∈ Der1 T (W ). The Lie bracket [−,−]D on superderivations (see Section II.4.) corre-

sponds to the Gerstenhaber bracket ([5]) [−,−]G on Hochschild cochains in the dual picture.

We suppress G and D when no confusion will arise. If δ is the Hochschild differential, then on

cochains we have δf = [m2, f ]G and,

Φk(m3, . . . ,mk−1) =





−[m3,mk−1]− [m4,mk−2]+

· · · − [m(k+1)/2,m(k+3)/2] if k is odd,

−[m3,mk−1]− [m4,mk−2]−

· · · −
1

2
[m(k+2)/2,m(k+2)/2] if k is even.

(II.3)

(Here we need that 2 is invertible in K.) For compactness, we will write Φk in place of

Φk(m3, . . . ,mk−1). The condition that [m2,Φk]G = 0 is dual to the condition that [d2,Φ
∗
k]D =

0. Since Φk can be written as a sum of brackets of the mi, dualizing presents Φ∗
k as a sum of

brackets of derivations, making Φ∗
k itself a derivation. We show that [d2,Φ

∗
k]D = 0 by induction

in k.

The base case k = 3 is obvious since Φ3 = Φ∗
3 = 0. Now suppose that superderivations

d2, . . . , dk−1 are defined such that degint dj = 1 and [d2, dj ] = Φ∗
j for all j < k with k even.

Since each dj ∈ Der1 T (W ), the bracket and Jacobi identity reduce to,

[d1, d2] = [d2, d1] = d1d2 + d2d1, [d1, [d2, d3]] + [d2, [d3, d1]] + [d3, [d1, d2]] = 0.
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Then

[d2,Φ
∗
k] = − [d2, [d3, dk−1] + [d4, dk−2] + · · ·+

1

2
[d(k+2)/2, d(k+2)/2]]

= [d3, [d2, dk−1] + [dk−1, [d2, d3]] + [d4, [d2, dk−2]] + [dk−2, [d2, d4]]+

· · ·+ [d(k+2)/2, [d2, d(k+2)/2]]

=

k−1∑

i=3

[di,Φ
∗
k+2−i]

When Φ∗
k+2−i are expanded as in equation II.3, the sum on the right will have terms:

1. −[di, [dj , dt]], −[dj , [di, dt]], −[dt, [di, dj ]] where i+ j+ t = k+4 and i, j, t are all distinct.

Each term appears once, in the expansion of [di,Φ
∗
k+2−i], [dj ,Φ

∗
k+2−j ] and [dk,Φ

∗
k+2−t]

respectively, and their sum vanishes by the Jacobi identity.

2. −[di, [di, dj ]], −
1

2
[dj , [di, di]] where 2i+ j = k + 4 and i 6= j. Each term appears once, in

[di,Φ
∗
k+2−i] and [dj ,Φ

∗
k+2−j ], respectively, and their sum vanishes by the Jacobi identity.

By the Jacobi identity we have

−
1

2
[dj , [di, di]] = [di, [di, dj ]],

so these terms cancel.

3. −[di, [di, di]] where 3i = k + 4. By the Jacobi identity we have that 3[di, [di, di]] = 0, so

[di, [di, di]] = 0 since charK 6= 3.

This completes the step for k even. When k is odd we have

[d2,Φ
∗
k] = −[d2, [d3, dk−1] + · · ·+ [d(k+1)/2, d(k+3)/2]]

=

k−1∑

i=3

[di, [d2, dk+2−i]]

=

k−1∑

i=3

[di,Φ
∗
k+2−i],

with the same result as the k even case.
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Lemma II.5.2. ([20], Lemma 2.2) Let (m) and (m′) be two minimal A∞-structures on V

whose restriction to Ak−1-structures are equal for some k ≥ 3. Then,

1. mk −m′
k is a Hochschild cocycle; and

2. mk −m′
k is a Hochschild coboundary if and only if there exists a strict A∞-isomorphism

(f) : V → V such that f ∗mi = m′
i for all i ≤ k.

Therefore if HHk
(2−k)(V ) = 0, all extensions of a particular Ak−1-structure on V to

Ak-structures are equivalent in this precise sense. The details of the proof of this lemma also

show that we should take define f by f1 = idV ; fk−1 such that δfk−1 = mk −m′
k; and fn = 0

otherwise.

Lemma II.5.3. ([20], Lemma 2.3) Let (m), (m′) be two minimal A∞-structures on V and

let (f), (f ′) be strict A∞-isomorphisms such that 1) f ∗m = f ′ ∗m = m′ and 2) fi = f ′i for

1 ≤ i < k, where k ≥ 2. Then,

1. fk − f ′k is a Hochschild cocycle; and

2. fk−f
′
k is a Hochschild coboundary if and only if there is a homotopy h such that h∗fi = f ′i

for all i ≤ k.

Therefore if HHk
(1−k)(V ) vanishes and f1, . . . , fk−1 (the start of an A∞-morphism) are

given, the choice of fk which satisfies 1) and 2) in the statement of the lemma is unique up to

homotopy.

II.6. The spectral sequence of a filtration

Let (C•, d) be a chain complex (d : Cn → Cn−1) with {FiC•}i∈Z an ordered family of

subcomplexes,

· · · ⊃ FiC ⊃ Fi+1C ⊃ Fi+2C ⊃ · · ·

Such a family is called a decreasing filtration of C•. The filtration is called exhaustive if

C• =
⋃
i∈Z

FiC•; bounded below if for each n there exists an integer s such that FiCn = 0 for
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all i ≥ s; bounded above if for each n there exists an integer t such that and FiCn = Cn for all

i ≤ t; and bounded if it is bounded above and bounded below.

Theorem II.6.1. ([25], Thm. 5.4.1) A filtration F of a chain complex C naturally determines

a spectral sequence starting with E0
pq = FpCp+q/Fp+1Cp+q and E1

pq = Hp+q(E
0
p∗).

The differential dpq0 in the spectral sequence is induced by the differential d in C, and

is easy to understand. Let x ∈ FiCn/Fi+1Cn (on the zero page of the sequence). Let x̃ be a

lifting of x in FiCn. Then d
pq
0 (x) is the class of d(x̃) in FiCn−1/Fi+1Cn−1, which is well-defined

since Fi+1C is a complex. Then dpq0 (x) = 0 (that is, x represents a class in E1
pq) if and only if

d(x̃) ∈ Fi+1Cn−1. Then we can consider dpq1 (x) similarly, with an appropriately defined target

space.

Theorem II.6.2. ([25]), Thm. 5.5.1) Suppose that the filtration on C is either a) bounded or

b) bounded below and exhaustive. Then the spectral sequence from Theorem II.6.1 converges to

H∗(C).

II.7. Eisenstein series

We use [17] as the main reference. Let T be the space of all oriented bases of C as an

R-vector space, and let k ∈ Z. A C∞-function F : T → C is called modular if 1) it is invariant

under the action of SL(2,Z) on T and 2) F (1, τ) = f(e2πiτ ), where f(q) is meromorphic at

q = 0. We say that F has weight k provided,

F (λω1, λω2) = λkF (ω1, ω2)

for all (ω1, ω2) ∈ T .

For (ω1, ω2) ∈ T , let Λ = Zω1 + Zω2. The Eisenstein series e2k for k ≥ 2 is defined as,

e2k(ω1, ω2) =
∑

ω∈Λ/{0}

1

ω2k
.

The function e2k is modular of weight 2k. We consider the analogous series for k = 1 defined
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as

e2(ω1, ω2) =
∑

m

∑

n;n6=0 if m=0

1

(mω2 + nω1)2
.

Unfortunately e2 is not modular, but the correction

e∗2(ω1, ω2) = e2(ω1, ω2)−
π

a(Λ)
·
ω̄1

ω1
,

where a(Λ) = Im(ω̄1ω2) is the area of C/Λ, is SL(2,Z)-invariant of weight 2. For convenience

we set e∗2k = e2k for k ≥ 2.

For integers m,n of the same parity, we set

fm,n(Λ) =

(
π

a(Λ)

)m ∑

ω∈Λ/{0}

ω̄m

ωn
exp

(
−

π

a(Λ)
|ω|2

)
.

Then for integers a, b ≥ 0 of different parity we set

ga,b(Λ) =
∑

k≥0

k!

((
a

k

)
+

(
b

k

))
fa+b−k,k+1(Λ).

When m,n are of different parity or a, b the same parity, then fm,n(Λ) = ga,b(Λ) = 0. It is

shown in [17] that ga,b is a polynomial in e∗2, e4, . . . , ea+b+1 with rational coefficients. A few of

these polynomial relations we will use later. When the lattice is understood, we will write e2k

in place of e2k(Λ), ga,b in place of ga,b(Λ), and so on.

Lemma II.7.1.

1. g3,0 = 6e4,

2. g2,1 = −[e∗2]
2 + 5e4,

3. g5,0 = 120e6,

4. g4,1 = −5g3,0g1,0 +
7

10
g5,0,

5. g3,2 = −2g2,1g1,0 +
5

6
g4,1,

Proof. These follow immediately from [17] Prop. 2.6.1.
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When C = C/〈Z⊕ τZ〉 is a complex elliptic curve, we set Λ = Z+ τZ for the purpose

of computing the Eisenstein series of the curve. We set t =
Im τ

π
, and for non-negative integers

a, b, c, d define

M(a, b, c, d) := (−1)(
a+b+c+d+1

2 ) 1

a!b!c!d!
· ta+b+c+d+1 · ga+c,b+d(Λ).

Note that the expression M(a, b, c, d) is invariant under transpositions of a and c, and of b and

d.

II.8. Massey products in a triangulated category

We use [19] as the reference. Let D be a triangulated category, with X, Y , Z, T objects

in D, f ∈ Hom(X,Y ), g ∈ Hom(Y,Z[1]), h ∈ Hom(Z, T ) be morphisms such that g ◦ f = 0.

We define the Massey product

MP(f, g, h) ∈ coker(Hom(X,Z)⊕Hom(Y, T ))
(h,f)
−−−→ Hom(X,T ).

Let

Z
α
−→ C

β
−→ Y

g
−→ Z[1] → · · ·

be a distinguished triangle in D. Then by the axioms of the triangulated category there exist

liftings f̃ ∈ Hom(X,C) and h̃ ∈ Hom(C, T ) such that

β ◦ f̃ = f, h̃ ◦ α = h.

Then we define

MP(f, g, h) = [h̃ ◦ f̃ ].
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CHAPTER III

HOCHSCHILD COHOMOLOGY AND THE ELLIPTIC CURVE

Let E be an elliptic curve with structure sheaf O over an algebraically closed field K

with charK 6= 2, 3. Let Db(E) be the bounded derived category of coherent sheaves on E. Let

P be a closed point on E, K(P ) = O(P )/O the skyscraper sheaf at P . Let G = O⊕K(P ), and

B(E) := Ext∗(G,G).

We realize B(E) as the cohomology of a differential graded (dg-) algebra as follows. We

construct an injective resolution of G, G → I•. Then A = Hom(I•, I•) is a dg-algebra whose

cohomology if B(E). We consider A as an A∞-algebra with mn = 0 for n ≥ 3. Kadeishvili’s

paper [8] then implies that B(E) = H∗A has a minimal A∞-structure (m) such that m2 is

induced by the multiplication in A and (B(E),m) is A∞-quasi-isomorphic to A. (An A∞-

quasi-isomorphism is an A∞-morphism such that f1 is a quasi-isomorphism of complexes.)

Moreover, such (m) is unique up to (non-unique) strict equivalence.

Thus B(E) inherits an A∞-structure. By comments in the Introduction, it is clear

that the equivalence class of this A∞-structure depends on E. Since m1 = 0, the remarks in

Section II.3. imply that (B(E),m2) is an associative algebra, and it is not hard to see that the

isomorphism class of this associative algebra is independent of E. The discussion in Section II.5.

implies that extensions of an associative algebra to an A∞-algebra are governed by Hochschild

cohomology in cohomological degree n and internal degrees 1− n, 2− n, and 3− n.

The goal of this chapter is calculate the Hochschild cohomology of (B(E),m2) in these

internal degrees. The main result is Theorem III.4.1.
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III.1. The associative algebra B

With notation as above, let B = Ext∗(G(E), G(E)) considered as an associative alge-

bra. Then B is a direct sum (as a K-vector space) of components:

(i) Hom(O,O) and Hom(K(P ),K(P )), both one-dimensional generated by the identity maps

idO, idP ;

(ii) Hom(O,K(P )), a one-dimensional space, generated by a function θ;

(iii) Ext1(K(P ),O), a one-dimensional space generated by a function η;

(iv) Ext1(K(P ),K(P )) and Ext1(O,O), both isomorphic to the one-dimensional space H1(O).

By Serre duality the products θη = ξ ∈ Ext1(O,O) and ηθ = ψ ∈ Ext1(K(P ),K(P ))

are nonzero, so we take ξ and ψ as generators of these spaces. For degree reasons all other

products (except those involving the identities) are zero. Figure 1 gives a diagrammatic repre-

sentation of B.

• •

θ

idO, ξ[1]

η[1]

idP , ψ[1]

Figure 1: Arrow diagram for B

B is a graded K-algebra, B = B0 ⊕B1, where

B0 = 〈idP , idO, θ〉, B1 = 〈η, ξ, ψ〉.

Let R = 〈idP , idO〉 ⊂ B. Then R ∼= K×K is a semi-simple subring of B, and we consider B as

an R-algebra. As R-bimodules,

B ∼= R⊕B/R, B/R ∼= B+ = 〈θ, η, ξ, ψ〉,

so B is augmented over R in the sense of Section II.1..
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III.2. A filtration of the reduced Hochschild cochain complex

Let C•
R(B,B) be the Hochschild cochain complex of B with coefficients in B, reduced

over R. The reader may refer to Section II.1. for definitions, conventions, and notation con-

cerning Hochschild cohomology.

We consider the decreasing filtration on B as a B-bimodule,

F0 = B ⊃ F1 = B+ ⊃ F2 = 〈ξ, ψ〉 ⊃ F3 = 0.

For any fixed internal degree m, this provides a decreasing filtration of the Hochschild cochain

complex, C•
(m)(B), by Hochschild complexes of the sub-bimodules Fi,

C•
(m)(F0) ⊃ C•

(m)(F1) ⊃ C•
(m)(F2) ⊃ 0.

We will use the spectral sequence on Hochschild cohomology associated to this filtration (see

Section II.6.). Since the filtration is bounded, the sequence converges to HH•
(m)(B). From here

we suppress m in the notation when it will cause no confusion. Isomorphisms

C•(Fi)/C
•(Fi+1) ∼= C•(Fi/Fi+1)

imply that on the zero page of this sequence we will compute HHn(Fi/Fi+1) for i = 0, 1, 2.

III.2.1. HH•(F2) and HH
•(F0/F1)

First, we reduce to a calculation on a subcomplex of the bar complex (see Section II.2.).

Since F2 = 〈ξ〉 ⊕ 〈ψ〉 as a B-bimodule,

C•(F2) = C•(〈ψ〉)⊕ C•(〈ξ〉)

as complexes. For the graded B-bimodule 〈ξ〉 concentrated in degree 1, the concluding remark

in Section II.2. implies that,

C•
(m)(〈ξ〉)

∼= [Bar(1−m)
• (B)]∗ ⊗ ξ ∼= [idO ⊗ Bar(1−m)

• (B)⊗ idO]
∗ ⊗ ξ.
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So we compute homology of the complex,

Bar•(O) := idO ⊗R Bar•(B)⊗R idO.

We interpret this complex as tensors of composable paths in Figure 1 starting and ending at

the left vertex.

Proposition III.2.1. Let HB
(m)
• (O) be the homology of the complex Bar(m)

• (O). Then,

1. dimHB
(n)
n (O) =





1 if n = 0,

0 otherwise.

2. dimHB
(n−1)
n (O) =





1 if n = 3, 4,

0 otherwise.

3. dimHB
(n−2)
n (O) =





1 if n = 7, 8,

0 otherwise.

4. dimHB
(n−3)
n (O) =





1 if n = 11, 12,

0 otherwise.

Remark III.2.2. We use juxtaposition in place of ⊗ to represent tensors in Bar•(B).

For m ≥ 0, we consider the decreasing filtration on the complex Bar(m)
• (O),

F 0 Bar(m)
• (O) ⊃ F 1 Bar(m)

• (O) ⊃ · · · ,

where,

F i Bar(m)
n (O) = 〈ξk1θψc1ηξk2 · · · ηξkn−m+1 |

∑
kj ≥ i〉.

For fixed n,m, the space F i Bar(m)
n (O) = 0 for i ≫ 0; so the filtration is bounded and the

spectral sequence of the filtration therefore converges to the homology of the complex. On the

zero page of this sequence, there are complexes (griO)
(m)
• for each i ≥ 0, where

(griO)(m)
n = F i Bar(m)

n (O)/F i+1 Bar(m)
n (O) ∼= 〈ξk1θψc1ηξk2 · · · θξkn−m+1 |

∑
kj = i〉.
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We need the following lemma.

Lemma III.2.3. Let HB
(m)
• (griO) be the bar homology of the complex (griO)

(m)
• . Then,

1. HB
(n−1)
n−1 (grn−1O) = 〈ξn−1〉;

2. HB
(n−1)
n (grn−2O) = 〈ξaθηξb|a+ b = n− 2〉;

3. HB
(n−1)
n+1 (grn−3O) = 〈ξaθηξbθηξc|a+ b+ c = n− 3, b 6= 0〉;

4. HB
(n−1)
n+2 (grn−4O) = 〈ξaθηξbθηξcθηξd|a+ b+ c+ d = n− 4, b, c 6= 0〉;

5. HB
(n−1)
n+3 (grn−5O) = 〈ξaθηξbθηξcθηξdθηξe|a+ b+ c+ d+ e = n− 5, b, c, d 6= 0〉;

6. These are the only nonzero spaces on page one in internal degree n− 1.

Proof. By Lemma A.1,

(griO)
(n−1)
• = X

(n−1)
• ⊕ Y

(n−1)
• ,

and the only homology of this complex is the space X
(n−1)
l . We therefore find the values of l

and i such that X
(n−1)
l is nonzero.

Suppose ξa0θηξa1 · · · θηξaj ∈ (griO)
(n−1)
l . Then there are j factors of θ in this string,

so the internal degree of this tensor is l − j = n− 1; thus j = l − n+ 1. The sum of powers of

ξ must be i = l − 2j, so

i = l − 2(l − n+ 1) = 2n− l − 2.

Substituting l = n− 1, n, n+ 1, n+ 2, n+ 3 gives the values of i in the lemma.

Proof of Proposition III.2.1. Lemma III.2.3 implies that on the first page of the spectral se-

quence there is one nontrivial complex,

· · · → HB
(n−1)
n+3 (grn−5O) → HB

(n−1)
n+2 (grn−4O) → HB

(n−1)
n+1 (grn−3O) → (III.1)

HB(n−1)
n (grn−2O) → HB

(n−1)
n−1 (grn−1O) → 0. (III.2)

For n = 1, only the last space in III.1 is nonzero, HB
(0)
0 (grn−1O) = 〈1〉, so this space survives

in the limit, proving part (1) for n = 0. From here we assume n > 1. Let d1 be the differential
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in III.1. Since,

d1(ξ
k1θηξk2 · · · ηξkm) =

m−1∑

i=1

±ξk1θ · · · ξki−1θηξki+ki+1+1 · · · ηξkj ,

we can represent the differential as,

(k1, . . . , kj) 7→ (k1 + k2 + 1, k3, . . . , kj)± · · · ± (k1, . . . , kj−1 + kj + 1).

We map the complex III.1 to a subcomplex of the simplex as in the proof of Lemma A.1. We

make the change of variable k′i = ki, then map,

(k1, · · · , kj) 7→ (k′1, · · · , k
′
j) 7→ (k′1, k

′
1 + k′2, · · · ,

j−1∑

i=1

k′i).

In our case,
∑
ki = n− j; thus

∑j−1
i=1 k

′
i ≤ n− 1, so consider this a map to the (n− 1)-simplex.

Since we assume ki ≥ 1 for 2 ≤ i ≤ j − 1, it follows that the corresponding k′i ≥ 2; thus the

image of the map consists of the subcomplex of the (n − 1)-simplex in which we require that

the difference between adjacent vertices be at least 2. So our complex maps isomorphically to

the dimension 3, 2, 1, 0, −1 part of the simplicial complex ∆[n− 1] from Appendix B.

From Proposition B.1, the resulting simplicial complex has no homology in dimension

−1, so III.1 has none in external degree n − 1 when n > 1. The simplicial complex has one-

dimensional homology: (reduced) in dimension 0 for n− 1 = 2, 3, so III.1 has one-dimensional

homology in dimension n for n = 3, 4; in dimension 1 for n − 1 = 5, 6, so III.1 has one-

dimensional homology in dimension n+ 1 for n+ 1 = 7, 8; and in dimension 2 for n− 1 = 8, 9,

so III.1 has one-dimensional homology in dimension n + 2 for n + 2 = 11, 12. This completes

the claim.

The correspondence with the simplicial complex allows us to find explicit representa-

tives of all classes. In principle, the class representatives in Appendix B only correspond to

homology classes on page one of the sequence and have no direct connection to the classes in

HB•(O). However, the proof of the proposition shows that the complex III.1 can be viewed di-

rectly as a subcomplex of Bar•(O). Thus we extract directly from the simplicial correspondence
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the representatives listed in the second column of Table 1.

Space Simplicial representative Simplified representative

HB
(2)
3 (O) σ

(2)
3 := θηξ + ξθη θψη

HB
(3)
4 (O) σ

(2)
3 ⊗ ξ θψηξ ∼ ξθψη

HB
(5)
7 (O) σ

(5)
7 := θηξ2θηξ + θηξ3θη + ξθηξθηξ + ξθηξ2θη θψηξθψη

HB
(6)
8 (O) σ

(5)
7 ⊗ ξ θψηξθψηξ ∼ ξθψηξθψη

HB
(8)
11 (O) σ

(8)
11 := θηξ3θηξθηξ + θηξ2θηξ2θηξ + ξθηξ2θηξθηξ+ θψηξθψηξθψη
ξθηξθηξ2θηξ + θηξ3θηξ2θη + θηξ2θηξ3θη+
ξθηξ2θηξ2θη + ξθηξθηξ3θη

HB
(9)
12 (O) σ

(8)
11 ⊗ ξ θψηξθψηξθψηξ ∼

ξθψηξθψηξθψη

Table 1: Representatives of HB•(O)

The simplified representative is a more algebraically manageable homolog of the rep-

resentative taken directly from the simplicial correspondence. We show the calculation that

σ
(5)
7 is homologous to θψηξθψη as an example of the simplification procedure. Let d be the bar

differential. Then

x1 = d(θηθηξ2θη) = ξθηξ2θη − θψηξ2θη + θηξ3θη + θηθηξ3,

x2 = d(θηθηξθηξ) = ξθηξθηξ − θψηξθηξ + θηξ2θηξ − θηθηξ3,

x3 = d(θψηξθηθη) = θψηξ2θη − θψηξθψη + θψηξθηξ,

θψηξθψη = σ
(5)
7 − x1 − x2 − x3.

Let

Bar•(P ) := idP ⊗R Bar•(B)⊗R idP .

We interpret this complex as tensors of composable paths in Figure 1 starting and ending at

the right vertex.
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Corollary III.2.4. Let HB
(m)
• (P ) be the homology of the complex Bar(m)

• (P ). Then,

1. dimHB
(n)
n (P ) =





1 if n = 0,

0 otherwise.

2. dimHB
(n−1)
n (P ) =





1 if n = 3, 4,

0 otherwise.

3. dimHB
(n−2)
n (P ) =





1 if n = 7, 8,

0 otherwise.

4. dimHB
(n−3)
n (P ) =





1 if n = 11, 12,

0 otherwise.

Proof. There is an isomorphism of complexes Bar(n−1)
• (O) → Bar(n−1)

• (P ) induced by the

following map on B+:

η 7→ θ, θ 7→ η, ξ 7→ ψ, ψ 7→ ξ.

This map of complexes provides the representatives of classes listed in Table 2.

Space Simplified representative

HB
(2)
3 (P ) ηξθ

HB
(3)
4 (P ) ηξθψ ∼ ψηξθ

HB
(5)
7 (P ) ηξθψηξθ

HB
(6)
8 (P ) ηξθψηξθψ ∼ ψηξθψηξθ

HB
(8)
11 (P ) ηξθψηξθψηξθ

HB
(9)
12 (P ) ηξθψηξθψηξθψ ∼ ψηξθψηξθψηξθ

Table 2: Representatives of HB•(P ).
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Corollary III.2.5. 1. dimHHn
(1−n)(F2) = dimHHn

(−n)(F0/F1) =





2 if n = 0

0 otherwise,

2. dimHHn
(2−n)(F2) = dimHHn

(1−n)(F0/F1) =





2 if n = 3, 4

0 otherwise,

3. dimHHn
(3−n)(F2) = dimHHn

(2−n)(F0/F1) =





2 if n = 7, 8

0 otherwise,

4. dimHHn
(4−n)(F2) = dimHHn

(3−n)(F0/F1) =





2 if n = 11, 12

0 otherwise.

Proof. There are isomorphisms C•
(1−m)(〈ψ〉)

∼= [Bar(m)
• (P )]∗ and C•

(1−m)(〈ξ〉)
∼= [Bar(m)

• (O)]∗,

according to the duality of Section II.2.. Since F2 = 〈ψ〉 ⊕ 〈ξ〉, this is the claim for F2. There

is an isomorphism of B-bimodules F0/F1
∼= F2[1], so the result for F0/F1 differs by 1 in the

internal degree.

III.2.2. HH•(F1/F2)

Again we reduce to a calculation on the bar complex since the first and last terms of

the cohomology differential in C•(F1/F2) vanish. As B-bimodules, there is an isomorphism

F1/F2
∼= (F2 + 〈θ〉)/F2 ⊕ (F2 + 〈η〉)/F2 := Vθ ⊕ Vη.

We begin by calculating HH•
(−m)(Vθ), which is dual to,

Bar(m)
• (θ) := idO ⊗R Bar(m)

• (B)⊗R idP ⊂ Bar(m)
n (B).

We interpret tensors in this complex as paths in Figure 1 starting at the left vertex and ending

at the right.
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Proposition III.2.6. Let HB
(m)
• (θ) be the homology of the complex Bar(m)

• (θ). Then,

1. dimHB
(n−1)
n (θ) =





1 if n = 1, 2

0 otherwise,

2. dimHB
(n−2)
n (θ) =





1 if n = 5, 6

0 otherwise,

3. dimHB
(n−3)
n (θ) =





1 if n = 9, 10

0 otherwise.

We mimic the procedure from Section III.2.1.. For m, i ≥ 0, we consider the decreasing

filtration such that,

F i Bar(m)
n (θ) = 〈ξk1θψc1 · · · ξkn−mθψcn−m |

∑
kj ≥ i〉,

(griθ)
(m)
n = F i Bar(m)

n (θ)/F i+1 Bar(m)
n (θ) = 〈ξk1θψc1 · · · ξkn−mθψcn−m |

∑
kj = i〉.

Lemma III.2.7. Let HB
(m)
• (griθ) be the bar homology of the complex (griθ)

(m)
• . Let n ≥ 2.

Then,

1. HB
(n−2)
n−1 (grn−2θ) = 〈ξn−2θ〉;

2. HB
(n−2)
n (grn−3θ) = 〈ξaθηξbθ|a+ b = n− 3, b 6= 0〉;

3. HB
(n−2)
n+1 (grn−4θ) = 〈ξaθηξbθηξcθ|a+ b+ c = n− 4, b, c 6= 0〉;

4. HB
(n−2)
n+2 (grn−5θ) = 〈ξaθηξbθηξcθηξdθ|a+ b+ c+ d = n− 5, b, c, d 6= 0〉;

5. HB
(n−2)
k (griθ) = 0 for k = n− 1, n, n+ 1, n+ 2 and all other values of i.

Proof. This follows as in Lemma III.2.3.

Proof of Proposition III.2.6. Lemma III.2.7 implies that on the first page of the spectral se-

quence of the given filtration we have one nontrivial complex,

· · · → HB
(n−2)
n+2 (grn−5θ) → HB

(n−2)
n+1 (grn−4θ) → HB(n−2)

n (grn−3θ) → HB
(n−2)
n−1 (grn−2θ) → 0.
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For n = 2, 3 we have only HB
(n−2)
n−1 6= 0 in the above sequence, so these spaces survive

when we pass to the limit. This gives the result in (1) after a change of variable in n.

For n ≥ 4, we map to the simplex as in the proof of Proposition III.2.1 to recover

the simplicial complex from Appendix B; the image is the complex ∆[n − 3] (n − 3 since

∑j
i=1 k

′
i = n − 1 and k′j ≥ 2.) According to Proposition B.1, the simplicial complex has one-

dimensional homology: (reduced) in dimension 0 for n − 3 = 2, 3, so the original complex has

one-dimensional homology in dimension n for n = 5, 6; in dimension 1 for n − 3 = 5, 6, so the

original complex has one-dimensional homology in dimension n+1 for n+1 = 9, 10. This gives

the result in (2), (3) after a change of variable in n.

The simplicial correspondence also provides representatives of classes, listed in Table

3.

Space Simplified representative

HB
(0)
1 (θ) θ

HB
(1)
2 (θ) ξθ ∼ θψ

HB
(3)
5 (θ) θψηξθ

HB
(4)
6 (θ) ξθψηξθ ∼ θψηξθψ

HB
(6)
9 (θ) θψηξθψηξθ

HB
(7)
10 (θ) ξθψηξθψηξθ ∼ θψηξθψηξθψ

Table 3: Representatives of HB•(θ)

Corollary III.2.8. 1. dimHHn
(1−n)(Vθ) =





1 if n = 1, 2

0 otherwise,

2. dimHHn
(2−n)(Vθ) =





1 if n = 5, 6

0 otherwise,

3. dimHHn
(3−n)(Vθ) =





1 if n = 9, 10

0 otherwise.

Proof. There is an isomorphism C•
(−m)(Vθ)

∼= [Bar(m)
• (θ)]∗ according to the duality of Section

II.2..
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Finally define,

Bar(m)
• (η) := idP ⊗ Bar(m)

• (B)⊗ idO.

We interpret tensors in this complex as paths in Figure 1 starting at the left vertex and ending

at the right.

Corollary III.2.9. Let HB
(m)
• (η) be the homology of Bar(m)

• (η). Then,

1. dimHB
(n)
n (η) = dimHHn

(1−n)(Vη) =





1 if n = 1, 2

0 otherwise,

2. dimHB
(n−1)
n (η) = dimHHn

(2−n)(Vη) =





1 if n = 5, 6

0 otherwise,

3. dimHB
(n−2)
n (η) = dimHHn

(3−n)(Vη) =





1 if n = 9, 10

0 otherwise.

Proof. There is an isomorphism of complexes Bar(m−1)
• (θ) ∼= Bar(m)

• (η) induced by the following

map on B+:

η 7→ θ, θ 7→ η, ψ 7→ ξ, ξ 7→ ψ.

Finally there is an isomorphism C•
(1−m)(Vη)

∼= [Bar(m)
• (η)]∗.

There are homology representatives listed in Table 4.

Space Representative

HB
(1)
1 (η) η

HB
(2)
2 (η) ψη ∼ ηξ

HB
(4)
5 (η) ηξθψη

HB
(5)
6 (η) ψηξθψη ∼ ηξθψηξ

HB
(7)
9 (η) ηξθψηξθψη

HB
(8)
10 (η) ψηξθψηξθψη ∼ ηξθψηξθψηξ

Table 4: Representatives of HB•(η)

Since F1/F2
∼= Vθ ⊕Vη as R-bimodules, it follows that HHn

(m)(F1/F2) = HHn
(m)(Vθ)⊕

HHn
(m)(Vη).
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III.3. Calculating differentials in the spectral sequence

We piece together the spectral sequence on Hochschild cohomology associated with the

filtration of B given in the last section. We can understand all maps on the first page. Let

δi,n−i1 : HHn(Fi/Fi+1) → HHn+1(Fi+1/Fi+2) be the differential on page one. We will write

simply δ1 if superscript information is understood.

Lemma III.3.1. (1) δ1(HH
n(F2)) = 0 for all n;

(2) δ0,4j1 : HH4j
(−3j)(F0/F1) → HH4j+1

(−3j)(F1/F2) has rank 1 for j = 0, 2 and rank 2 for j = 1, 3;

(3) δ1(HH
4j+1
(−3j)(F1/F2)) = 0 for j = 0, 1, 2;

(4) δ1,4j+1
1 : HH4j+2

(−3j−1)(F1/F2) → HH4j+3
(−3j−1)(F2) has rank 1 for j = 1 and rank 2 for

j = 0, 2;

(5) δ1(HH
4j+3
(−3j−3)(F0/F1)) = 0 for j = 0, 1, 2.

Proof. (1) This is a trivial observation about the spectral sequence since F3 = 0.

(2) Note that here δ1 is a map between two-dimensional spaces. Let x, x′ be the representa-

tives of classes in HB
(3j)
4j (O) from Table 1, respectively; let y, y′ be the representatives of

classes in HB
(3j)
4j (P ) from Table 2. Then

α := [x]∗ ⊗ idO = [x′]∗ ⊗ idO, β := [y]∗ ⊗ idP = [y′]∗ ⊗ idP

generate HH4j
(−3j)(F0/F1). From Table 3, the class of ω1 := x ⊗ θ = θ ⊗ y′ generates

HB
(3j)
4j+1(θ) and the class of ω2 = η ⊗ x′ = y ⊗ η generates HB

(3j+1)
4j+1 (η). Thus [ω1]

∗ ⊗ θ
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and [ω2]
∗ ⊗ η generate HH4j+1

(−3j)(F1/F2). Then we calculate,

δ1(α)(ω1) = δ([x]∗ ⊗ idO)([x⊗ θ])

= −[x]∗([x]) · idO · θ = −θ,

δ1(α)(ω2) = δ([x′]∗ ⊗ idO)(η ⊗ x′)

= (−1)−3jη · [x′]∗([x′]) · idO = (−1)jη,

δ1(β)(ω1) = δ([y′]∗ ⊗ idL)([θ ⊗ y′])

= θ · [y′]∗([y′]) · idL = θ,

δ1(β)(ω2) = δ([y]∗ ⊗ idL)([y ⊗ η])

= −[y]∗([y]) · idL · η = −η.

We conclude that δ1(α+ β) = 0 when j is even, so δ0,4j1 has rank 1 in that case. When j

is odd, we see that there is no kernel.

(3) For φ ∈ HH4j+1
(−3j)(F0/F1), we have δ1φ ∈ HH4j+1

(−3j)(F2). But HH
4j+1
(−3j)(F2) = 0 by

Lemma III.2.5.

(4) Let x, x′ be the representatives of the class inHB
(3j+1)
4j+2 (θ), and y, y′ be the representatives

of the class in HB
(3j+2)
4j+2 (η) from Tables 3 and 4. Then the representative of the class

in HB
(3j+2)
4j+3 (O) is θ ⊗ y = x′ ⊗ η and the representative of the class in HB

(3j+2)
4j+3 (P ) is

y′ ⊗ θ = η ⊗ x. So it follows as in part (2) that δ1,4j+1
1 has rank 1 when 3j + 1 is even

(i.e., j is odd) and rank 2 otherwise.

(5) This follows since HH4j+4
(−3j−3)(F1/F2) = 0.

On page two, the only nonzero maps are δ0,n2 : ker δ0,n1 → coker δ1,n−1
1 . We see from

Lemma III.3.1 that ker δ0,n1 is one-dimensional for n = 4j in internal degree −3j, and two-

dimensional for n = 4j + 3 in internal degree −3j − 3.

Lemma III.3.2. (1) δ0,4j2 = 0

(2) rank δ0,4j+3
2 = 2.
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Proof. (1) Since HH4j+1
(−3j)(F2) = 0, and thus coker δ1,4j−1

1 = 0, so this is trivial.

(2) From Lemma III.3.1 we know that ker δ0,4j+3
1 = HH4j+3

(−3j−3)(F0/F1) and coker δ1,4j+2
1 =

HH4j+4
(−3j−3). Let x be the representative of HB

(3j+3)
4j+3 (O) from Table 1, and let y be

the representative of HB
(3j+3)
4j+3 (P ) from Table 2. So [x]∗ ⊗ idO, [y]

∗ ⊗ idP generate

HH4j+3
(−3j−3)(F0/F1). Then ω1 = [ξ ⊗ x] = [x ⊗ ξ] generates HB

(3j+4)
4j+4 (O) and ω2 =

[ψ ⊗ y] = [y ⊗ ψ] generates HB
(3j+4)
4j+4 (P ). So we calculate,

δ2([x]
∗ ⊗ idO)(ω1) = ±ξ · [x]∗([x]) · idO = ±ξ,

δ2([x]
∗ ⊗ idO)(ω2) = 0,

δ2([y]
∗ ⊗ idP )(ω1) = 0,

δ2([y]
∗ ⊗ idP )(ω2) = ±ψ · [y]∗([y]) · idP = ±ψ.

Thus δ0,4j+3
2 has rank 2.

III.4. Hochschild cohomology of B

Theorem III.4.1. The Hochschild cohomology of B for maps in internal degrees 1−n, 2−n,

and 3− n is,

1. dimHHn
(1−n)(B) =





1 if n = 1

0 otherwise,

2. dimHHn
(2−n)(B) =





1 if n = 6, 8

0 otherwise,

3. dimHHn
(3−n)(B) =





1 if n = 7, 9

0 otherwise.
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Proof. • First we fix internal degree −3j, for j = 1, 2, 3. We know,

dimHH4j
(−3j)(F0/F1) =dimHH4j+1

(−3j)(F1/F2) = 2,

HH4j+2
(−3j)(Fi/Fi+1) =HH

4j−1
(−3j)(Fi/Fi+1) = 0,

for all i from Corollaries III.2.5, III.2.8, and III.2.9. Now rank δ0,4j1 = 1 when j is

even from Lemma III.3.1 part (2), and the sequence degenerates at this point since

HH4j+1
(−3j)(F2) = 0. It follows that dimHH4j

(−3j)(B) = dimHH4j+1
(−3j)(B) = 1 when j is

even. When j is odd, δ0,4j1 is an isomorphism and the sequence also degenerates here; so

in that case there is no cohomology.

• We fix internal degree −3j − 1 for j = 0, 1, 2. The same corollaries show

dimHH4j+2
(−3j−1)(F1/F2) =dimHH4j+3

(−3j−1)(F2) = 2,

HH4j+1
(−3j−1)(Fi/Fi+1) =HH

4j+4
(−3j−1)(Fi/Fi+1) = 0.

Lemma III.3.1 part (4) shows that delta1,4j+1
1 has rank 1 when j is odd and is an isomor-

phism when j is even. The sequence degenerates at this point since HH4j+2
(−3j−1)(F0/F1) =

0. So dimHH4j+2
(−3j−1)(B) = dimHH4j+3

(−3j−3)(B) = 1 when j is odd and that all cohomol-

ogy vanishes when j is even.

• We fix internal degree −3j − 2 for j = 0, 1, 2. Then Lemma III.3.1 part (5) shows that

the nontrivial map on page two is a map between two-dimensional spaces; Lemma III.3.2

shows that map has rank 2. Therefore in the limit there is no cohomology.
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CHAPTER IV

THE A∞-ALGEBRA OF A COMPLEX ELLIPTIC CURVE AND THE J-INVARIANT

Let Eτ = C/(Z+ τZ) be a complex elliptic curve (in particular Im τ > 0); P a closed

point on Eτ ; L = O(P ) the line bundle of degree 1; and A(Eτ ) = Ext∗(O ⊕ L,O ⊕ L). Let B

be the associative algebra from Chapter III, B(Eτ ) = Ext∗(O ⊕K(P ),O ⊕K(P )).

In [17], Polishchuk calculates the A∞-structure on A(Eτ ) arising from using the Dol-

beault complex to compute Ext. An obvious isomorphism of algebras B ∼= (A(Eτ ),m2) natu-

rally gives an A∞-structure (m(τ)) = {mn(τ)}
∞
n=1 on B(Eτ ). We suppress τ when no confusion

will arise.

In this chapter we construct a family of strict A∞-equivalences

(fτ ) : B(Eτ ) → B(Eτ ),

indexed by τ . The (fτ ) are constructed so that if

(m′(τ)) = f ∗ (m(τ)),

we have that m′
6(τ) and m

′
8(τ) are Hochschild cocycles (Proposition IV.1.2). We then construct

an explicit C-linear isomorphism,

HH6
(−4)(B)⊕HH8

(−6)(B)
∼
−→ C

2,

which allows us to recover the j-invariant of Eτ from the point (m′
6(τ),m

′
8(τ)) (Theorem IV.2.3).
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IV.1. An A∞-structure on B

Fix a curve E. Recall definitions and results concerning Eisenstein series from Section

II.7..

Theorem IV.1.1. ([17], 2.5.1) The only non-trivial higher products mn on B(E) are of the

form,

mn(ξ
aθψbηξcθψd) =M(a, b, c, d) · θ,

mn(ψ
aηξbθψcηξd) =M(a, b, c, d) · η,

mn(ξ
aθψbηξcθψdηξe) =M(a+ e+ 1, b, c, d) · idO,

mn(ψ
aηξbθψcηξdθψe) =M(a+ e+ 1, b, c, d) · idP .

All products mn with odd n vanish.

Since m3 = 0, the A∞-relation of order 5 implies that m4 is a Hochschild cocycle. In

Theorem III.4.1 we conclude that HH4
(−2)(B) = 0; so m4 is a coboundary and therefore by

Lemma II.5.2, all choices of m4 are related by some strict A∞-equivalence. Thus even though

m4 6= 0 in Theorem IV.1.1, there must exist some strict equivalence f : B → B such that

f ∗m4 = 0. Indeed, we take f1 = idB , f3 to be such that δf3 = m4, and fn = 0 otherwise.

Moreover since HH3
(−2)(B) = 0, the choice of f3 in this equivalence is unique up to homotopy.

We take as f3,

f3 =M(1, 0, 0, 0)[([ηξ2]∗ − [ψ2η]∗ − [ψηξ]∗)⊗ η + ([θψ2]∗ − [ξ2θ]∗ − [ξθψ]∗)⊗ θ+

([ξθη]∗ + [θψη]∗ − [θηξ]∗)⊗ idO + ([ψηθ]∗ + [ηξθ]∗ − [ηθψ]∗)⊗ idP ].

Proposition IV.1.2. Let (m′) = f ∗ (m). Then,

1. m′
k = 0 for k odd and m′

2 = m2;

2. m′
4 = 0; and

3. m′
6 and m′

8 are Hochschild cocycles.
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Proof. 1. The relation in Equation II.2 of order 1 shows immediately that m′
1 = 0, after

which the relations of order 2 and 3 show that m′
2 = m2 and m′

3 = 0. We proceed by

induction in k to show that m′
2k+1 = 0.

Assume m2j+1 = 0 for j ≤ k, and consider the relation of order 2k + 3. This relation

reduces to the equation,

f1m2k+3 + f3(m2k+1 ⊗ 1⊗2 + 1⊗m2k+1 ⊗ 1+ 1⊗2 ⊗m2k+1) = m′
2k+3.

Other terms on the left vanish since only f1 and f3 are nonzero. Other terms on the right

vanish by the induction assumption: in order for i1 + · · ·+ ir = 2k + 3 where all ij are 1

or 3, we must have r odd, and m′
r = 0 for r odd and r < 2k + 3. By Theorem IV.1.1 we

know that m2k+1 = m2k+3 = 0, so the left side vanishes completely, implying m′
2k+3 = 0.

2. The morphism relation of order 4 reduces to

δf3 = m4 −m′
4.

The claim that δf3 = m4 can be verified by direct calculation, which implies that m′
4 = 0.

3. The A∞-relations for (m′
n) give

δm′
6 = Φ6(m

′
3,m

′
4,m

′
5), (IV.1)

δm′
8 = Φ8(m

′
3,m

′
4,m

′
5,m

′
6,m

′
7), (IV.2)

where Φk is a quadratic expression. The right side of Equation IV.1 is zero since m′
3 =

m′
4 = m′

5 = 0. The right side of Equation IV.2 is zero since only m′
6 6= 0, and m′

6 is paired

with m′
4 in this quadratic expression.
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We determine from the morphism relations of order 6 and 8 that,

m′
6 = m6 + f3

(
∑

r+s=2

1⊗r ⊗m4 ⊗ 1⊗s

)
−m2(f3 ⊗ f3), (IV.3)

m′
8 = m8 + f3

(
∑

r+s=2

1⊗r ⊗m6 ⊗ 1⊗s

)
−m′

6

(
∑

r+s=5

1⊗r ⊗ f3 ⊗ 1⊗s

)
. (IV.4)

IV.2. Recovering the j-invariant

We construct an explicit isomorphism,

HH6
(−4)(B)⊕HH8

(−6)(B)
∼
−→ C

2

from which we extract the j-invariant of E. Let S be our standard basis of B as a K-algebra.

For every x ∈ B⊗n
+ and y ∈ S, we define an R-linear function evyx : HomR(B

⊗n
+ , B) → C, where

evyx(φ) is the coefficient on y in the expansion of φ(x) in the basis S. Let (f ′) be another strict

equivalence with f ′i = 0 for i 6= 1, 3 and δf ′3 = m4.

Proposition IV.2.1. Let

x =− ηθηξθψ − ψηξθηθ + ψηθηθψ + ηθηθψ2 − ηθψ2ηθ + ψ2ηθηθ−

ηξθηθψ − ψηθηξθ,

x′ =θψηξθψ.

1. If φ̂ ∈ Hom
(−4)
R (B⊗6

+ , B) is a Hochschild cocycle, then

β̂(φ̂) := (evidP
x − evθx′)(φ̂) = 0

if and only if φ̂ is a coboundary; thus β̂ detects cohomology classes.

2. Let c ∈ HH6
(−4)(B) such that β̂(c) = −15. Then the C-linear function β : HH6

(−4)(B) → C

defined by c 7→ 1 is an isomorphism such that β(m′
6) = t4e4.

3. m′
6− f

′ ∗m6 is a Hochschild coboundary; thus the class of m′
6 is independent of the choice

of f3.
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Proof. 1. Let φ ∈ Hom
(−4)
R (B⊗5

+ , B). Then the first and last terms of (δφ)(x) vanish for

degree reasons and,

(δφ)(x) = φ(−[−ψηξθψ + ψηθψ2 − ψ3ηθ] + [−ηξ2θψ + ψ2ηθψ + ηξθψ2 − ψ2ηξθ]−

[ψηξθψ + ηθψ3 + ψ3ηθ − ηξ2θψ − ψηξ2θ] + [−ψηξ2θ + ψηθψ2 + ψ2ηξθ − ηξθψ2]−

[−ψηξθψ − ηθψ3 + ψ2ηθψ])

= φ(ψηξθψ)

= evidP

ψηξθψ(φ) · idP ,

(δφ)(x′) = θ · φ(ψηξθψ)

= θ · evidP

ψηξθψ(φ) · idP

= evidP

ψηξθψ(φ) · θ,

Since β takes the difference of the coefficients, this proves that β vanishes on coboundaries.

The other direction will follow from (2).

2. Since m′
6 is a cocycle and Theorem III.4.1 showed that HH6

(−4)(B) is one-dimensional,

calculating that β(m′
6) = −15t4e4 will prove (2) as well as the remaining direction in (1).

We use the relations given in Proposition II.7.1. Let

z = m4 ⊗ 12 − 1⊗m4 ⊗ 1+ 12 ⊗m4.
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Recall the definition of m′
6 from Equation IV.3. We have,

m6(x) = (−M(2, 0, 0, 1)−M(2, 1, 0, 0) +M(3, 0, 0, 0) +M(3, 0, 0, 0)−

M(1, 0, 2, 0) +M(3, 0, 0, 0)−M(2, 1, 0, 0)−M(2, 0, 0, 1)) · idP

= (−4M(2, 1, 0, 0) + 3M(3, 0, 0, 0)−M(1, 0, 2, 0)) · idP

= − 2t4g2,1 · idP ,

f3(z(x)) = M(1, 0, 0, 0)g1,0f3(−ηθψ + ηθψ + ψηθ − ψηθ + ηθψ + ψηθ−

ηθψ − ψηθ − ηθψ + ηθψ − ηξθ − ηξθ + ψηθ − ψηθ)

= M(1, 0, 0, 0)f3(−2ηξθ)

= − 2[M(1, 0, 0, 0)]2 · idP ,

= − 2t4[g1,0]
2 · idP

−m2(f3 ⊗ f3)(x) = − f3(ψηθ) · f3(ηθψ) + f3(ηθψ) · f3(ψηθ) + f3(ηξθ) · f3(ηθψ)+

f3(ψηθ) · f3(ηξθ)

= 0; therefore

evidP
x (m′

6) = − 2t4g2,1 − 2t4[g1,0]
2

= 2t4([e∗2]
2 − 5e4 − [e∗2]

2) = −10t4e4.

Also,

m′
6(x

′) = M(0, 1, 1, 1) · θ − f3(θψη) · f3(ξθψ)

= t4(g2,1 + g21,0) · θ = 5t4e4 · θ; therefore

evθx′(m′
6) = 5t4e4,

β(m′
6) = (evidP

x − evθx′)(m′
6) = −15t4e4.

3. By Lemma II.5.3, f3 − f ′3 is a cocycle; since HH3
(−2)(B) = 0 it is also a coboundary. Let
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h ∈ C2
(−2)(B) such that δh = f3 − f ′3. Then,

m′
6 − f ′ ∗m6 = δh

(
∑

r+s=2

1⊗r ⊗m4 ⊗ 1⊗s

)
−m2(f3 ⊗ f3) ·m2(f

′
3 ⊗ f ′3)

= δh

(
∑

r+s=2

1⊗r ⊗m4 ⊗ 1⊗s

)
−m2(f3 ⊗ δh+ δh⊗ f3 − δh⊗ δh).

From this last expression, it is a straightforward check that β(m′
6 − f ′ ∗m6) = 0.

Proposition IV.2.2. Let x = ηξθψ2ηξθ.

1. If φ̂ ∈ HomR(B
⊗8
+ , B) is a cocycle, then evidP

x (φ̂) = 0 if and only if φ̂ is a coboundary.

2. Let c ∈ HH8
(−6)(B) such that evidP

x (c) = −35. Then the C-linear function

γ : HH8
(−6)(B) → C

defined by c 7→ 1 is an isomorphism such that γ(m′
8) = t6e6.

3. m′
8− f

′ ∗m8 is a Hochschild coboundary; thus the class of m′
8 is independent of the choice

of f3.

Proof. 1. For φ ∈ Hom
(−6)
R (B⊗7

+ , B) we have,

(δφ)(x) = η · φ(ξθψ2ηξθ) + φ(ηξθψ2ηξ) · θ,

which is 0 for degree reasons. The other direction will follow from (2).

2. Since HH8
(−6)(B) is one-dimensional and m′

8 is a cocycle, we need only check that

γ(m′
8) = −35t6e6 · idP to prove (2). Let

κ1 = f3(m6 ⊗ 1⊗2 − 1⊗m6 ⊗ 1+ 1⊗2 ⊗m6),

κ2 = −m′
6

(
∑

r+s=5

1⊗r ⊗ f3 ⊗ 1⊗s

)
,
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so m′
8 = m8 + κ1 + κ2. Then,

m8(x) = M(1, 1, 2, 1) · idP

= −
1

2
t6g3,2 · idP ,

κ1(x) = t4 · f3(M(0, 1, 2, 0) · ηξθ +M(0, 2, 1, 0) · ηξθ)

= 2t6 ·M(2, 1, 0, 0) ·M(1, 0, 0, 0) · idP

= − t6g2,1g1,0 · idP ,

κ2(x) = −M(1, 0, 0, 0) ·m′
6(idPψ

2ηξθ − ηθψηξθ + ηξθηξθ − ηξθηξθ − ηξθψηθ + ηξθψ2idP )

= M(1, 0, 0, 0) ·m′
6(ηθψηξθ + ηξθψηθ)

= M(1, 0, 0, 0) · [M(1, 0, 1, 1) · idP +M(1, 1, 1, 0) · idP +M(1, 0, 0, 0) · f3(ηξθ + ηξθ)

− f3(ηθψ) · f3(ηξθ)− f3(ηξθ) · f3(ψηθ)]

= − t6(2g2,1g1,0 + 2[g1,0]
3) · idP ,

so

evidP
x (m′

8) = t6
(
−
1

2
g3,2 − g2,1g1,0 − 2g2,1g1,0 − 2[g1,0]

3

)

= t6 ·

(
−
1

2
g3,2 − 3g2,1g1,0 − 2[g1,0]

3

)

= − 35t6e6.

3. Let m′
6 − f ′3 ∗m6 = δg, f3 − f ′3 = δh. Then,

m′
8 − f ′ ∗m8 = δh

(
∑

r+s=2

1⊗r ⊗m6 ⊗ 1⊗s

)
−m′

6

(
∑

r+s=5

1⊗r ⊗ f3 ⊗ 1⊗s

)
+

= (f ′ ∗m6)

(
∑

r+s=5

1⊗r ⊗ (f3 − δh)⊗ 1⊗s

)

= δh

(
∑

r+s=2

1⊗r ⊗m6 ⊗ 1⊗s

)
− δg

(
∑

r+s=5

1⊗r ⊗ f3 ⊗ 1⊗s

)
.

Using this last expression, it is a straightforward check that γ(m′
8 − f ′ ∗m6) = 0.
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Theorem IV.2.3. Let α, γ be as defined in Propositions IV.2.1 and IV.2.2. Then the j-

invariant of E is

j(E) = 1728 ·
[β(m′

6)]
3

[β(m′
6)]

3 − 27[γ(m′
8)]

2
.

Proof. Since,

j(E) = 1728 ·
[e4]

3

[e4]3 − 27[e6]2
,

this follows immediately from the previous propositions.
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CHAPTER V

HOCHSCHILD COHOMOLOGY AND THE CURVE OF GENUS g ≥ 2

Let X be a smooth curve of genus g ≥ 1 over an algebraically closed field K with

charK 6= 2, 3, with OX the structure sheaf on X. Let P be a point on X. Then there is a short

exact sequence

0 → OX → OX(P ) → K(P ) → 0

which gives rise to a long exact sequence on Ext,

0 → Hom(OX ,OX) → Hom(OX ,OX(P )) → Hom(OX ,K(P ))
φP
−−→ Ext1(OX ,OX) → · · · .

Let θP generate the one-dimensional space Hom(OX ,K(P )). Since,

Hom(OX ,OX) → Hom(OX ,OX(P ))

is an isomorphism, φP is an injection; so φP (θP ) 6= 0. Note that

dimExt1(OX ,OX) = dimH1(X,OX) = g.

Let P1, . . . , Pg be distinct points on X, with K(Pi) = OX(Pi)/OX the skyscraper

sheaf at Pi, such that the classes {φPi
(θPi

}gi=1 generate Ext1(OX ,OX). Then G(X) = OX ⊕

⊕g
i=1 K(Pi) generates D

b(X). Since Db(X) determines X uniquely, the minimal A∞-algebra

Bg(X) = Ext∗(G(X), G(X))

also recovers X. (Note that B1 = B from Chapter III.) Since the restriction of Bg(X) to an
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associative algebra is independent of X when g is fixed, it is useful to study A∞-extensions of

the algebra (Bg,m2). In this chapter we calculate HHn
(m) for g ≥ 2 and m = 1−n, 2−n, 3−n.

The main result is Theorem V.4.10.

V.1. The associative algebra Bg

In the remainder of the chapter we assume g ≥ 2 unless otherwise noted. With notation

as above, let Bg be the algebra Ext∗(G(X), G(X)) considered as an associative algebra. Then

Bg is a direct sum (as a K-vector space) of components,

(i) Hom(OX ,OX), a one-dimensional space generated by the identity map, idOX
;

(ii) Hom(K(Pi),K(Pi)), each one-dimensional generated by the identity map idPi
;

(iii) Hom(OX ,K(Pi)), each one-dimensional generated by a function θi;

(iv) Ext1(K(Pi),OX), each one-dimensional generated by a function ηi;

(v) Ext1(K(Pi),K(Pi)), each one-dimensional generated by ηiθi = ψi;

(vi) Ext1(OX ,OX), a g-dimensional space generated by the set of functions θiηi = ξi.

This also gives us a standard basis S of Bg over K. Figure 2 gives a diagrammatic representation

of Bg.

•

•
...

•

θ1

idO, ξ1[1], . . . , ξg [1]

θg

η1[1]

idP1
, ψ1[1]

ηg [1] idPg , ψg [1]

Figure 2: Arrow diagram for Bg

Then Bg is a graded K-algebra with,

Bg0 = 〈idOX
, {idPi

, θi}
g
i=1〉, B

g
1 = 〈{ηi, ξi, ψi}

g
i=1〉.
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We also consider Bg as an algebra over the semi-simple subring,

Rg = 〈idOX
, {idPi

}gi=1〉,

over which Bg splits as a direct sum, Bg = Rg ⊕Bg+, with

Bg+ = 〈{θi, ηi, ψi, ξi}
g
i=1〉.

Thus Bg is augmented over Rg in the sense of Section II.1.. We write B is place of Bg and R

for Rg when this will cause no confusion.

V.2. A filtration of the Hochschild complex

Our goal is to compute HHn
R(B) in internal degrees 1− n, 2− n, and 3− n for all n.

By ⊗ we will mean ⊗R and by Hom we mean HomR. We consider the decreasing filtration on

B as a B-bimodule,

F0 = B ⊃ F1 = B+ ⊃ F2 = 〈{ξi, ψi}
g
i=1〉 ⊃ F3 = 0.

The decreasing filtration on B gives rise to a decreasing filtration on the reduced

Hochschild complex with coefficients in B,

C•(F0) ⊃ C•(F1) ⊃ C•(F2) ⊃ 0.

We consider the spectral sequence on Hochschild cohomology associated with this filtration.

Since the filtration is finite (and therefore bounded) the spectral sequence converges to the

cohomology of the complex, HH•(B). On the zero page we have isomorphisms (fitting together

into isomorphisms of complexes),

C•(Fi)/C
•(Fi+1) ∼= C•(Fi/Fi+1).

So we should compute HHn(Fi/Fi+1) to fill out page one of the spectral sequence. We
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define:

1. Bar•(OX , B
g) := idOX

⊗R Bar•(B
g)⊗R idOX

, with homology HB•(OX , B
g);

2. Bar•(Pi, B
g) := idPi

⊗R Bar•(B
g)⊗R idPi

, with homology HB•(Pi, B
g);

3. Bar•(θi, B
g) := idOX

⊗R Bar•(B
g)⊗R idPi

, with homology HB•(θi, B
g);

4. Bar•(ηi, B
g) := idPi

⊗R Bar•(B
g)⊗R idOX

, with homology HB•(ηi, B
g).

We interpret these subcomplexes as tensors corresponding to paths in Figure 2 where we specify

the source and target. We write Bar•(OX), HB•(OX), Bar•(Pi), etc. when it causes no

confusion.

Lemma V.2.1. There are isomorphisms,

1. HHn
(−k)(F0/F1) ∼= [HB

(k)
n (OX)]∗ ⊗ idOX

⊕
⊕g

i=1[HB
(k)
n (Pi)]

∗ ⊗ idPi
;

2. HHn
(−k)(F1/F2) ∼=

⊕g
i=1[HB

(k)
n (θi)]

∗ ⊗ θi ⊕
⊕g

i=1[HB
(k+1)
n (ηi)]

∗ ⊗ ηi;

3. HHn
(−k)(F2) ∼=

⊕g
i=1[HB

(k+1)
n (OX)]∗ ⊗ ξi ⊕

⊕g
i=1[HB

(k+1)
n (Pi)]

∗ ⊗ ψi.

Proof. There are isomorphisms of B-bimodules,

F0/F1
∼= (F1 + 〈idOX

〉)/F1 ⊕

g⊕

i=1

(F1 + 〈idPi
〉)/F1,

F1/F2
∼=

g⊕

i=1

(F2 + 〈θi〉)/F2 ⊕

g⊕

i=1

(F2 + 〈ηi〉)/F2,

F2
∼=

g⊕

i=1

(ξi)⊕

g⊕

i=1

(ψi),

so these results would follow from isomorphisms for each corresponding summand. Those follow

from the duality of Section II.2. since the first and last terms in the cohomology differential are

zero in each quotient.

Remark V.2.2. We define

Vθ =

g⊕

i=1

(F2 + 〈θi〉)/F2, Vη =

g⊕

i=1

(F2 + 〈ηi〉)/F2.

The second equation in this proof claims F1/F2
∼= Vθ ⊕ Vη.
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Let Bg(i) = 〈idOX
, idPi

, θi, ηi, ξi, ψi〉 ⊂ Bg. There is an obvious isomorphism Bg(i) ∼=

B1 as K-algebras. Let Bg+(i) be the Bg-submodule corresponding to B1
+ under this isomor-

phism. Then there is an isomorphism of Bg-bimodules, Bg+
∼=
⊕g

i=1B
g
+(i). We define,

(1) H̃B(OX , B
g(i)) :

⊕∞
n=0

⊕n
m=n−3HB

(m)
n (OX , B

1), summarized in Proposition III.2.1;

(2) H̃B(Pi) :=
⊕∞

n=0

⊕n
m=n−3HB

(m)
n (Pi, B

1), summarized in Corollary III.2.4;

(3) H̃B(θi) :=
⊕∞

n=0

⊕n−1
m=n−3HB

(m)
n (θi, B

1), summarized in Proposition III.2.6;

(4) H̃B(ηi) :=
⊕∞

n=0

⊕n
m=n−2HB

(m)
n (ηi, B

1), summarized in Corollary III.2.9;

with representatives of all classes in cohomological degree n taken in Bg+(i)
⊗n. We rephrase

the referenced results for our purposes here.

Lemma V.2.3. 1. H̃B(OX , B
g(i)) and H̃B(Pi) are nonzero only for n = 0, 3, 4, 7, 8, 11, 12.

2. H̃B(θi) and H̃B(ηi) are nonzero only for n = 1, 2, 5, 6, 9, 10.

For m > 0,

Sm := {(i1, . . . , im) ∈ Z
m|1 ≤ ij ≤ g and ij 6= ij+1 for all j},

W (OX) :=

∞⊕

m=1

⊕

σ∈Sm

H̃B(OX , B
g(i1))⊗R ⊗ · · · ⊗R H̃B(OX , B

g(im)).

Remark V.2.4. We interpret W (OX) as sequences of loops in Bg starting and ending at OX

built by bar homology classes from B1.

Lemma V.2.5. 1. HBn(OX) is the subspace of classes of cohomological degree n inW (OX);

2. HBn(Pi) is the subspace of classes of cohomological degree n in H̃B(Pi) ⊕ [H̃B(ηi) ⊗R

W (OX)⊗R H̃B(θi)];

3. H̃Bn(θi) is the subspace of classes of cohomological degree n in W (OX)⊗R H̃B(θi);

4. H̃Bn(ηi) is the subspace of classes of external degree n in H̃B(ηi)⊗RW (OX).

Proof. We have

(Bg+)
⊗n =

(
g⊕

i=1

Bg+(i)

)⊗n

=

∞⊕

m=1

⊕

σ∈Sm


 ⊕

∑
nj=n,nj 6=0

Bg+(i1)
⊗n1 ⊗ · · · ⊗Bg+(im)⊗nm


 .
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For each σ, the corresponding summands form the n-chains of the complex T (Bg+(i1))⊗ · · · ⊗

T (Bg+(im)), which is a tensor product of bar complexes. Since ⊗ is ⊗R, tensors represent

paths in Bg; since ij 6= ij+1 for all j, it follows that we can only attach paths at the vertex

corresponding to OX in Figure 2, i.e.,

Bar•(OX) =

∞⊕

m=1

⊕

σ∈Sm

Bar•(OX , B
g(i1))⊗ · · · ⊗ Bar•(OX , B

g(im)).

Thus the homology of this complex is the tensor product of homologies, which is the first result.

The others follow similarly.

V.3. Differentials in the spectral sequence

This section compiles several technical lemmas concerning the behavior of the differ-

entials in the spectral sequence associated with the filtration from Section V.2..

Lemmas V.2.1 and V.2.5 explain how to build each space Ei,n−i1 = HHn(Fi/Fi+1) by

considering certain sequences n1-n2-· · · -nm of positive integers such that
∑m
j=1 nj = n.

Remark V.3.1. These are the numbers nj from the proof of Lemma V.2.5, with possible

values of these numbers given in Lemma V.2.3. That is, the nj are the lengths of classes in

H̃B(OX , B
g(ij)),, H̃B(Pi), H̃B(θi), or H̃B(ηi) which are tensored to give a class in HBn(OX),

HBn(Pi), HBn(θi), or HBn(ηi), according to Lemma V.2.5.

Since we are only concerned with internal degrees 1−n, 2−n, and 3−n, this places a

limit on the lengths of admissible such sequences. In particular, since the θi are the only basis

elements of B+ in graded degree 0, bar homology classes of internal degree n−k are those which

have exactly k factors of some (possibly different) θi. Each factor of θi corresponds either to

an entire loop in B+ (in the sense of Remark V.2.4 and Figure 2), or to a path along θi.

The following comments describe the classes we will call admissible. A sequence is

admissible if it corresponds to an admissible class. In HBn(OX) and HBn(Pi) we take classes

of internal degree at least n−3 for each n (i.e., having no more than 3 loops in B+); in HBn(θi)

we take classes of internal degree at most n − 3 (i.e., having no more than 2 loops in B+ and

an additional path along θi); in HBn(ηi) we take classes of internal degree at most n− 2 (i.e.,
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having no more than 3 loops in B+ and an additional path along ηi).

Table 5 in rows 0-12 summarizes admissible sequences. We include admissible sequences

for θi, Pi for n = 13 only because they appear as boundaries of admissible sequences for OX , Pi

for n = 12. The column labeled OX in row n lists sequences corresponding to admissible classes

in HBn(OX), and similarly for Pi and θi. Since the admissible sequences for ηi are the reverse

of those admissible for θi, only the sequences for θi are listed.

n OX Pi θi (ηi)
0 0 0
1 1
2 2
3 3 3
4 4 4 3-1
5 1-3-1 5, 4-1, 3-2
6 3-3 1-4-1, 2-3-1, 1-3-2
7 7, 3-4, 4-3 7, 2-4-1, 1-4-2, 2-3-2 3-3-1
8 8, 4-4 8, 2-4-2 7-1, 3-5, 4-3-1,

3-4-1, 3-3-2
9 3-3-3 1-7-1, 2-3-3-1, 1-3-3-2, 9, 8-1, 7-2, 4-5, 3-6,

1-4-3-1, 1-3-4-1 4-4-1, 4-3-2, 3-4-2
10 3-7, 7-3, 3-3-4, 1-7-2, 2-7-1, 1-8-1, 10, 8-2, 4-4-2, 3-3-3-1

3-4-3, 4-3-3 2-3-3-2, 1-4-4-1, 1-4-3-2,
2-4-3-1, 1-3-4-2, 2-3-4-1

11 11, 3-8, 8-3, 4-7, 7-4, 11, 1-8-2, 2-8-1, 2-7-2, 3-3-3-2, 7-3-1, 3-7-1,
3-4-4, 4-3-4, 4-4-3 1-4-4-2, 2-4-4-1, 4-3-3-1, 3-4-3-1, 3-3-4-1

2-4-3-2, 2-3-4-2
12 12, 4-8, 8-4, 4-4-4 12, 2-8-2, 2-4-4-2 11-1, 3-8-1, 8-3-1, 4-7-1,

7-4-1, 3-7-2, 7-3-2,
3-4-4-1, 4-3-4-1, 4-4-3-1,
3-3-4-2, 3-4-3-2, 4-3-3-2

13 13, 12-1, 11-2, 4-8-1,
8-4-1, 3-8-2, 8-3-2,
4-7-2, 7-4-2, 3-4-4-2,

4-3-4-2, 4-4-3-2, 4-4-4-1

Table 5: Admissible sequences

We decorate a sequence n1-· · · -nk with an element σ = (i1, . . . , im) ∈ Sm (defined after

Lemma V.2.3 by writing n1(i1)-· · · -nm(im) to refer to the sequence where the class of length

nj is represented in B(ij). We will calculate differentials on page one of the spectral sequence
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by playing a combinatorial game with these decorated sequences.

To describe this game, we assume for simplicity that we have a sequence n1-n2. It

will be obvious that these comments extend to arbitrary sequences. Let α be the bar cycle

corresponding to the sequence n1(i1)-n2(i2), and ω be the bar cycle corresponding to the

sequence m1(j1)-· · · -mk(jk). Then the only way for (δ[α]∗)(ω) to be nonzero is if truncating

the first or last factor in the tensor ω gives α (see calculations in the proof of Lemma III.3.1

part (2)); that is, the sequence for ω must be one of the following:

s1(j) = 1(j)-n1(i1)-n2(i2), j 6= i1

s2(j) = n1(i1)-n2(i2)-1(j), j 6= i2

s3 = (n1 + 1)(i1)-n2(i2), or

s4 = n1(i1)-(n2 + 1)(i2).

Therefore δ([α]∗) is some linear combination of cocycles corresponding to the sequences s1(j),

s2(j), s3, and s4. Now we consider specific cases of how to compute δ using sequences:

1. Consider a sequencem1(j1)-· · · -mk(jk)-n(i) admissible for θi, corresponding to some loops

in B+(j1), . . . , B+(jk) (ref. Figure 2) and a path along θi. The dual of this path is a

function,

[m1(j1)-· · · -mk(jk)-n(i)]
∗ ⊗ θi ∈ HHn(F1/F2).

Since δ1(HH
n(F1/F2)) ⊂ HHn+1(F2), we look for sequences s1(j), s2(j), s3, and s4

admissible for OX or Pi. To build such sequences:

(a) We can precede our sequence by a path along ηi whenever j1 6= i, corresponding to

the sequence 1(i)-m1(j1)-· · · -mk(jk)-n(i) and the cohomology class,

[1(i)-m1(j1)-· · · -mk(jk)-n(i)]
∗ ⊗ ψi;

(b) We can precede our sequence by a path along ηi whenever j1 = i and m1 is even,
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corresponding to the sequence (m1 +1)(i)-· · · -mk(jk)-n(i) and the cohomology class,

[(m1 + 1)(i)-· · · -mk(jk)-n(i)]
∗ ⊗ ψi;

(c) We can follow our sequence by ηi whenever n is even, corresponding to the sequence

m1(j1)-· · · -mk(jk)-(n+ 1)(i), and the cohomology class,

[m1(j1)-· · · -mk(jk)-(n+ 1)(i)]∗ ⊗ ξi.

2. By analogy, the boundary of a class [n(i)-m1(j1)-· · · -mk(jk)]
∗ ⊗ ηi admissible for ηi is a

linear combination of the classes:

(a) [n(i)-m1(j1)-· · · -mk(jk)-1(i)]
∗ ⊗ ψi, if jk 6= i;

(b) [n(i)-m1(j1)-· · · -(mk + 1)(i)]∗ ⊗ ψi, if jk = i and mk is even;

(c) [(n+ 1)(i)-m1(j1)-· · · -mk(jk)]
∗ ⊗ ξi, if n is even.

3. Consider a sequence m1(j1)-· · · -mk(jk) admissible for OX , corresponding to some loops

in B+(j1), . . . , B+(jk). These sequences correspond to cohomology classes in HHn(F2)

and HHn(F0/F1). Of course δ1(HH
n(F2)) = 0, so our only interest in in computing,

δ1([m1(j1)-· · · -mk(jk)]
∗ ⊗ idOX

∈ HHn+1(F1/F2).

Therefore we look for sequences s1(j), s2(j), s3, and s4 admissible for θi or ηi for some i.

(a) We can precede this sequence by a path along ηi, which gives the classes,

[1(i)-m1(j1)-· · · -mk(jk)]
∗ ⊗ ηi if i 6= j1, or

[(m1 + 1)(j1)-· · · -mk(jk)]
∗ ⊗ ηj1 if i = j1 and m1 even.

(b) We can follow this sequence with a path along θi, which gives the classes,

[m1(j1)-· · · -mk(jk)-1(i)]
∗ ⊗ θi if i 6= jk, or

[m1(j1)-· · · -(mk + 1)(jk)]
∗ ⊗ θjk if i = jk and mk is even.
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4. Finally, consider sequences n1(i)-m1(j1)-· · · -mk(jk)-n2(i) or n(i) admissible for Pi. These

correspond to: a path along ηi, some loops in different B+(jl), and a path along θi; and

some loops in B+(i) starting and ending at the vertex corresponding to K(Pi), respectively.

Again we look for sequences allowable for θi or ηi.

(a) We can precede this sequence by a path along θi if n1 is even, giving the class,

[(n1 + 1)(i)-m1(j1)-· · · -mk(jk)-n2(i)]
∗ ⊗ θi;

(b) We can follow it by a path along ηi if n2 is even, giving the class,

[n1(i)-m1(j1)-· · · -mk(jk)-(n2 + 1)(i)]∗ ⊗ ηi.

Remark V.3.2. The calculations here apply only to sequences of positive length. In particular,

the boundaries of [0]∗ ⊗ idOX
and [0]∗ ⊗ idPi

are special cases since these sequences therefore

cannot be decorated with some σ ∈ Sm for m > 0.

These rules allow us to calculate δ0,n1 and δ1,n−1
1 . The reader may also reference Table

5 for admissible sequence information.

Lemma V.3.3. The following form a basis for ker δ1,n−1
1 for n > 0:

1. [n(i)]∗ ⊗ θi and [n(i)]∗ ⊗ ηi with n odd;

2. [n(i)]∗ ⊗ θi + [n(i)]∗ ⊗ ηi with n ≡ 6 mod 8;

3. [m(j)-1(i)]∗ ⊗ θi ± [1(i)-m(j)]∗ ⊗ ηi; and

[m1(j1)-m2(j2)-1(i)]
∗ ⊗ θi ± [1(i)-m1(j1)-m2(j2)]

∗ ⊗ ηi;

4. [m(j)-5(i)]∗ ⊗ θi ± [1(i)-m(j)-4(i)]∗ ⊗ ηi, and

[5(i)-m(j)]∗ ⊗ ηi ± [4(i)-m(j)-1(i)]∗ ⊗ θi;

5. [3(i)-m(j)-2(i)]∗ ⊗ θi ± [2(i)-m(j)-3(i)]∗ ⊗ ηi;

6. [3(i)-m(j)-1(i)]∗ ⊗ θi and [1(i)-m(j)-3(i)]∗ ⊗ ηi

Proof. We first prove that the sequences described give classes in ker δ.

1. When n is odd, n+ 1, 1-n, and n-1 are not admissible sequences for OX or Pi.
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2. When n is even, n+ 1 is an admissible sequence for both OX and Pi, so,

δ1([n(i)]
∗ ⊗ θi) = (−1)(n+2)/4[(n+ 1)(i)]∗ ⊗ ψi − [(n+ 1)(i)]∗ ⊗ ξi,

δ1([n(i)]
∗ ⊗ ηi) = [(n+ 1)(i)]∗ ⊗ ξi − [(n+ 1)(i)]∗ ⊗ ψi.

Then the sum of these is therefore in ker δ1 if and only if (n+ 2)/4 is even.

3. We have,

δ1([1(i)-m(j)]∗ ⊗ ηi) = ± [1(i)-m(j)-1(i)]⊗ ψi,

δ1([m(j)-1(i)]∗ ⊗ θi = ± [1(i)-m(j)-1(i)]∗ ⊗ ξi.

So a sum or difference of these is in ker δ1. The same calculation gives this result for

1-m1-m2 and m1-m2-1 by substituting m1-m2 for m.

4. We have,

δ1([1(i)-m(j)-4(i)]∗ ⊗ ηi) = ± [1(i)-m(j)-5(i)]∗ ⊗ ψi,

δ1([m(j)-5(i)]∗ ⊗ θi) = ±[1(i)-m(j)-5(i)]∗ ⊗ ψi.

This shows that a sum or difference of these is in ker δ1, and the calculation for the reverse

sequences is analogous.

5. We have,

δ1([2(i)-m(j)-3(i)]∗ ⊗ ηi) = [3(i)-m(j)-3(i)]∗ ⊗ ξi,

δ1([3(i)-m(j)-2(i)]∗ ⊗ θi = ± [3(i)-m(j)-3(i)]∗ ⊗ ψi.

So a sum or difference of these is in ker δ1.

6. These follow as in (1), since 4-m-1, 3-m-2 are not admissible for OX or Pi.

It remains to show that this is the entire kernel. Let Ω(F1/F2) be the sequence basis

for HHn(F1/F2) defined by all decorated admissible sequences. Let V1 ⊂ HHn(F1/F2) be the

space with basis consisting of the set Ω1(F1/F2) of elements of Ω(F1/F2) not yet considered;
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i.e.,

V1 = 〈{[m(j)-k(i)]∗ ⊗ θi, [k(i)-m(j)]∗ ⊗ ηi, |k is even, },

{[m1(j1)-m2(j2)-2(i)]
∗ ⊗ θi, [2(i)-m1(j1)-m2(j2)]

∗ ⊗ ηi}〉.

Let V2 be the space with basis Ω(F1/F2)/Ω1(F1/F2), so that HHn(F1/F2) = V1 ⊕ V2.

We will construct a decomposition HHn+1(F2) =W1 ⊕W2 such that 1) δ1(V2) ⊂W2,

and 2) the projection of δ(V1) onto W1 is an isomorphism. This will complete the claim.

We begin by calculating δ1(V1).

δ1([m(j)-k(i)]∗ ⊗ θi) = ± [1(i)-m(j)-k(i)]∗ ⊗ ψi ± [m(j)-(k + 1)(i)]∗ ⊗ ξi,

δ1([k(i)-m(j)]∗ ⊗ ηi) = ± [(k + 1)(i)-m(j)]∗ ⊗ ξi ± [k(i)-m(j)-1(i)]∗ ⊗ ψi,

δ1([2(i)-m1(j1)-m2(j2)]
∗ ⊗ ηi) = [3(i)-m1(j1)-m2(j2)]

∗ ⊗ ξi±

[2(i)-m1(j1)-m2(j2)-1(i)]
∗ ⊗ ψi,

δ1([m1(j1)-m2(j2)-2(i)]
∗ ⊗ θi = ± [1(i)-m1(j1)-m2(j2)-2(i)]

∗ ⊗ ψi±

[m1(j1)-m2(j2)-3(i)]
∗ ⊗ ξi.

Let W1 ⊂ HHn+1(F2) have basis consisting of all

[m(j)-(k + 1)(i)]∗ ⊗ ξi, [(k + 1)(i)-m(j)]∗ ⊗ ξi,

[3(i)-m1(j1)-m2(j2)]
∗ ⊗ ξi, [m1(j1)-m2(j2)-3(i)]

∗ ⊗ ξi,

and let W2 be the complement of W1 with respect to the sequence basis. The calculations in

1-6 and in the equations above show that this decomposition satifies the required properties.

In particular, each basis vector v of V1 has exactly one basis vector w of W1 in the expansion

of δ1(v), and this gives a one-to-one correspondence between bases. So ker δ1 ⊂ V2, and this

completes the proof.

55



Lemma V.3.4. The following form a basis of ker δ0,n1 for n > 0:

1. [n(i)]∗ ⊗ idPi
, where n is odd;

2. [n1(i)-m(j)-n2(i)]
∗ ⊗ idPi

, where n1, n2 are odd;

3. [n1(i)-m1(j1)-m2(j2)-n2(i)]
∗ ⊗ idPi

where n1, n2 are odd;

4. [m1(j1)-m2(j2)]
∗ ⊗ idOX

± [(m1 − 1)(j1)-m2(j2)-1(j1)]
∗ ⊗ idPi

±

[1(j2)-m1(j1)-(m2 − 1)(j2)]
∗ ⊗ idPi

, where m1,m2 are odd, in genus 2 only.

Proof. We first show that the vectors described in 1-4 are in ker δ1. Note that we restrict to

n > 0 due to Remark V.3.2.

1. When n odd is admissible for Pi, n+ 1 is not admissible for θi, ηi.

2,3. In both cases, adding 1 to the outside sequences n1 and n2 do not produce admissible

sequences for OX or Pi since n1, n2 are odd.

4. Since m1,m2 are odd, neither of the sequences (m1+1)-m2 or m1-(m2+1) are admissible.

Since we assume g = 2,

δ1([m1(j1)-m2(j2)]
∗ ⊗ idOX

) = ± [1(j2)-m1(j1)-m2(j2)]
∗ ⊗ ηj2−

[m1(j1)-m2(j2)-1(j1)]
∗ ⊗ θj1 ,

δ1([(m1 − 1)(j1)-m2(j2)-1(j1)]
∗ ⊗ idPi

) = ± [m1(j1)-m2(j2)-1(j1)]
∗ ⊗ θj1 ,

δ1(1(j2)-m1(j1)-(m2 − 1)(j2)]
∗ ⊗ idPi

) = − [1(j2)-m1(j1)-m2(j2)]
∗ ⊗ ηj2 .

It follows that a linear combination of these is in ker δ1.

We will prove that this is the entire kernel as follows. Let Ω(F0/F1) be the sequence

basis for HHn(F0/F1), and Ω(F1/F2) be the sequence basis for HHn+1(F1/F2).

Let V1 ⊂ HHn(F0/F1) be the subspace with basis Ω1(F0/F1) ⊂ Ω(F0/F1) consisting

of those basis vectors considered in 1-4 above. The complement of Ω1(F0/F1) in Ω(F0/F1)

can be partitioned into two classes: those classes of the form [s]∗ ⊗ idPi
for some i, and those

of the form [s]∗ ⊗ idOX
. Let V2 be the space spanned by the former classes with sequence

basis Ω2(F0/F1), and V3 be the space spanned by the latter with sequence basis Ω3(F0/F1), so

HHn(F0/F1) = V1 ⊕ V2 ⊕ V3.
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We will provide a decomposition HHn+1(F1/F2) =W1⊕W2⊕W3 together with bases

Ω1(F1/F2), Ω2(F1/F2), and Ω3(F1/F2) having the properties that:

(1) δ(V1) ⊂W1;

(2) the projection of δ(V2) onto W2 gives a one-to-one correspondence between basis vectors,

so that in some choice of basis orderings the matrix of this transformation is the identity;

(3) δ(V1 ⊕ V2) ⊂W1 ⊕W2; and

(4) the projection of δ(V3) onto W3 gives a one-to-one correspondence between basis vectors,

so that in some choice of basis orderings the matrix of this transformation is the identity.

Thus in particular δ(V1) ⊂ W1 and the matrix of the projection of δ(V2 ⊕ V3) onto W2 ⊕W3

can be chosen to be upper triangular with ones on the diagonal; this would complete the proof.

The spaces W2 and W3 are defined in Appendix C. We then define W1 as the comple-

ment of W2 and W3 in HHn+1(F1/F2) with respect to the basis Ω(F1/F2). One then checks

based on the calculations in 1-4 and Appendix C that this decomposition satisfies these prop-

erties.

There is only one nontrivial map on page two of this spectral sequence,

δ0,n2 : ker δ0,n1 → coker δ1,n−2
1 .

We calculate δ2 using sequences from Table 5 similar to the computation of δ1. To calculate δ2

on ker δ0,n1 , we take admissible sequences of type s3 and s4, defined after Table 5.

Lemma V.3.5. δ0,n2 is injective for all n > 0.

Proof. We restrict to n > 0 due to Remark V.3.2. Lemma V.3.4 calculates a basis for ker δ0,n1 .

We prove that δ0,n2 is injective by describing a decomposition HHn+1(F2) =W1 ⊕W2 together

with bases of W1 and W2 such that: 1) δ1,n−1
1 (HHn(F1/F2)) ⊂ W1; and 2) the projection

of δ0,n2 (ker δ0,n1 ) onto W2 provides a one-to-one correspondence of basis vectors, so that under

some ordering of bases the matrix of this transformation is the identity. This would complete

the proof.

Let Ω(F2) be the sequence basis for HHn+1(F2). We start by calculating values of

δ0,n2 on the basis from Lemma V.3.4, letting x(j1, j2) represent the term from (4). We take the
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underlined terms on the right below as the basis Ω2(F2) of W2.

δ2([n(i)]
∗ ⊗ idPi

) = ± [(n+ 1)(i)]∗ ⊗ ψi,

δ2([n1(i)-m(j)-n2(i)]
∗ ⊗ idPi

) = ± [(n1 + 1)(i)-m(j)-n2(i)]
∗ ⊗ ψi+

(−1)m[n1(i)-m(j)-(n2 + 1)(i)]∗ ⊗ ψi,

δ2([n1(i)-m1(j1)-m2(j2)-n2(i)]
∗ ⊗ idPi

) = ± [(n1 + 1)(i)-m1(j1)-m2(j2)-n2(i)]
∗ ⊗ ψi+

(−1)m1+m2 [n1(i)-m1(j1)-m2(j2)-(n2 + 1)(i)]∗ ⊗ ψi,

δ2(x(j1, j2)) = ± [(m1 + 1)(j1)-m2(j2)]
∗ ⊗ ξj1±

[m1(j1)-(m2 + 1)(j2)]
∗ ⊗ ξj2±

[(m1 − 1)(j1)-m2(j2)-2(j1)]
∗ ⊗ ψj1±

[2(j2)-m1(j1)-(m2 − 1)(j2)]
∗ ⊗ ψj2 .

We define W1 to be the complement of W2 with respect to the basis Ω(F2). We compare

these results to those in Lemma V.3.3 to verify that this decomposition satisfies the given

conditions.

Lemmas V.3.5 and V.3.3 give an easy way to count the dimension of HHn(B).

Lemma V.3.6. In nonzero internal degrees,

dimHHn(B) = dimHHn(F2)− rank δ1,n−2
1 + dimker δ1,n−1

1 − dimHHn−1(F0/F1).

Proof. We restrict to nonzero internal degrees due to Remark V.3.2. In cohomological degree

n on page two of the spectral sequence are the spaces,

coker δ1,n−2
1 , ker δ1,n−1

1 / image δ0,n−1
1 , and ker δ0,n1 .

Taking cohomology on this page leaves the spaces

ker δ1,n−1
1 / image δ0,n−1

1 and coker δ0,n−1
2 = coker δ1,n−2

1 / ker δ0,n−1
1 .
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Counting dimensions we have,

dim(ker δ1,n−1
1 / image δ0,n−1

1 ) = dimker δ1,n−1
1 − rank δ0,n−1

1 ,

dim(coker δ1,n−2
1 / ker δ0,n−1

1 ) = dimHHn(F2)− rank δ1,n−2
1 − dimker δ0,n−1

1 .

Adding these and using the rank-nullity identity for δ0,n−1
1 gives the result.

V.4. Hochschild cohomology of Bg

We now proceed to the main computation. Recall from Remark V.2.2 that

F1/F2 = Vθ ⊕ Vη, so HH
n(F1/F2) = HHn(Vθ)⊕HHn(Vη).

Lemmas V.4.1-V.4.8 have tables that contain the nonzero spaces on page one of the spectral

sequence in some fixed internal degree; the sequence types from Table 5 which correspond to

classes in that space; and the dimension of the space spanned by classes of that sequence type.

Lemma V.4.1. dimHH1
(0)(B) = g, and HH2

(0)(B) = HH3
(0)(B) = 0.

Proof. It follows from Table 5 that the spaces on page one in internal degree 0 have the dimen-

sions listed in Table 6.

Space sequence(s) dimension
HH0

(0)(F0/F1) 0 g + 1

HH1
(0)(Vη) 1 g

HH1
(0)(Vθ) 1 g

Table 6: Dimensions in internal degree 0

Since HH1
(0)(F2) = 0, dimker δ1,−1

1 = 2g. Using the representatives of HH0
(0)(F0/F1), we cal-

culate,

δ1([1]
∗ ⊗ idOX

) =

g∑

i=1

([ηi]
∗ ⊗ ηi + [θi]

∗ ⊗ θi),

δ1([1]
∗ ⊗ idPi

) = [ηi]
∗ ⊗ ηi + [θi]

∗ ⊗ θi.
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So there is a 1-dimensional kernel, and rank δ0,01 = g. The result follows.

Lemma V.4.2. dimHH2
(−1)(B) = 0, dimHH3

(−1)(B) = g2 − g, and HH4
(−1)(B) = 0.

Proof. Table 7 summarizes the spaces in degree −1 on page one.

Space sequence dimension
HH2

(−1)(Vη) 2 g

HH2
(−1)(Vθ) 2 g

HH3
(−1)(F2) 3 g2 + g

Table 7: Dimensions in internal degree −1

By Lemma V.3.3 part (2), δ1,11 has no kernel; so rank δ1,11 = 2g. The result follows from Lemma

V.3.6.

Lemma V.4.3. HH3
(−2)(B) = 0, dimHH4

(−2)(B) = 2g2 − 2g, and HH5
(−2)(B) = 0.

Proof. Table 8 summarizes the spaces on page one in degree −2.

Space sequence dimension
HH3

(−2)(F0/F1) 3 2g

HH4
(−2)(F2) 4 g2 + g

HH4
(−2)(Vη) 1-3 g(g − 1)

HH4
(−2)(Vθ) 3-1 g(g − 1)

HH5
(−2)(F2) 1-3-1 g(g − 1)

Table 8: Dimensions in internal degree −2

By Lemma V.3.3 part (3) and V.3.5, ker δ1,31 has basis,

{[3(i)-1(j)]∗ ⊗ θj − [1(j)-3(i)]∗ ⊗ ηj |j 6= i} g(g − 1).

So dimker δ1,31 = g2 − g and rank δ1,31 = g2 − g.
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Lemma V.4.4. HH4
(−3)(B) = 0, dimHH5

(−3)(B) = g2−g, and dimHH6
(−3)(B) = g3−2g2+g.

Proof. Table 9 summarizes the spaces on page one in degree −3.

Space sequence(s) dimension
HH4

(−3)(F0/F1) 4 2g

HH5
(−3)(Vη) 5 g

1-4 g(g − 1)
2-3 g(g − 1)

HH5
(−3)(Vθ) 5, 4-1, 3-2 g + 2g(g − 1)

HH5
(−3)(F0/F1) 1-3-1 g(g − 1)

HH6
(−3)(F2) 3-3 g2(g − 1)

1-4-1, 2-3-1, 1-3-2 3g(g − 1)

Table 9: Dimensions in internal degree −3

Lemma V.3.3 implies that ker δ1,41 has basis

{[5(i)]∗ ⊗ θi, [5(i)]
∗ ⊗ ηi|i = 1, . . . , g} 2g,

{[4(i)-1(j)]∗ ⊗ θj − [1(j)-4(i)]∗ ⊗ ηj} g(g − 1).

So ker δ1,41 has dimension g2 + g; rank δ1,41 = 3g2 − 3g.

Lemma V.4.5. dimHH6
(−4)(B) = g and dimHH7

(−4)(B) = 3g3 − 5g2 + 3g.

Proof. Table 10 summarizes the spaces on page one in degree −4.

Space sequence(s) dimension
HH6

(−4)(Vη) 6 g

2-4 g(g − 1)
HH6

(−4)(Vθ) 6, 4-2 g + g(g − 1)

HH6
(−4)(F0/F1) 3-3 g(g − 1)

1-4-1, 2-3-1, 1-3-2 3g(g − 1)
HH7

(−4)(F2) 7 g2 + g

4-3, 3-4 2g2(g − 1)
2-4-1, 1-4-2, 2-3-2 3g(g − 1)

HH7
(−4)(Vη) 1-3-3 g(g − 1)2

HH7
(−4)(Vθ) 3-3-1 g(g − 1)2

Table 10: Dimensions in internal degree −4
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By Lemma V.3.3, ker δ1,51 has basis

{[6(i)]∗ ⊗ θi − [6(i)]∗ ⊗ ηi|i = 1, . . . , g},

and so has dimension g; thus rank δ1,51 = 2g2 − g.

By Lemma V.3.5 and V.3.4, ker δ1,61 has basis,

{[3(i)-3(j)-1(i)]∗ ⊗ θi, [1(i)-3(j)-3(i)]
∗ ⊗ ηi} 2g(g − 1),

{[3(j1)-3(j2)-1(i)]
∗ ⊗ θi + [1(i)-3(j1)-3(j2)]

∗ ⊗ ηi} g(g − 1)(g − 2).

So dimker δ1,61 = g3 − g2.

Lemma V.4.6. HH7
(−5)(B) = 0 and dimHH8

(−5)(B) = 3g3 − 4g2 + g.

Proof. Table 11 summarizes the spaces in degree −5 on page one.

Space sequence(s) dimension
HH7

(−5)(F0/F1) 7 2g

3-4, 4-3 2g(g − 1)
2-4-1, 1-4-2, 2-3-2 3g(g − 1)

HH8
(−5)(F2) 8 g2 + g

4-4 g2(g − 1)
2-4-2 g(g − 1)

HH8
(−5)(Vη) 5-3, 1-7 2g(g − 1)

1-4-3, 1-3-4 2g(g − 1)2

2-3-3 g(g − 1)2

HH8
(−5)(Vθ) 3-5, 7-1 2g(g − 1)

3-4-1, 4-3-1, 3-3-2 3g(g − 1)2

Table 11: Dimensions in internal degree −5
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By Lemma V.3.3, ker δ1,71 has basis:

{[7(i)-1(j)]∗ ⊗ θj + [1(j)-7(i)]∗ ⊗ ηj} g(g − 1),

{[3(j1)-4(j2)-1(i)]
∗ ⊗ θi + [1(i)-3(j1)-4(j2)]

∗ ⊗ ηi} g(g − 1)(g − 2),

{[4(j1)-3(j − 2)-1(i)]∗ ⊗ θi + [1(i)-4(j1)-3(j2)]
∗ ⊗ ηi} g(g − 1)(g − 2),

{[1(i)-3(j)-4(i)]∗ ⊗ ηi + [3(j)-5(i)]∗ ⊗ θi} g(g − 1),

{[4(i)-3(j)-1(i)]∗ ⊗ θi + [5(i)-3(j)]∗ ⊗ ηi} g(g − 1),

{[3(i)-3(j)-2(i)]∗ ⊗ θi + [2(i)-3(j)-3(i)]∗ ⊗ ηi} g(g − 1),

{[1(i)-4(j)-3(i)]∗ ⊗ ηi, [3(i)-4(j)-1(i)]
∗ ⊗ θi} 2g(g − 1).

So dimker δ1,71 = 2g3 − 2g.

Lemma V.4.7. HH8
(−6)(B) = 0 and dimHH9

(−6)(B) = g3 − g2.

Proof. Table 12 summarizes the spaces in degree −6 on page one.

Space sequence(s) dimension
HH8

(−6)(F0/F1) 8 2g

4-4 g(g − 1)
2-4-2 g(g − 1)

HH9
(−6)(Vη) 9 g

1-8, 2-7, 5-4, 6-3 4g(g − 1)
1-4-4, 2-3-4, 2-4-3 3g(g − 1)2

HH9
(−6)(Vθ) 9 g

8-1, 7-2, 4-5, 3-6 4g(g − 1)
4-4-1, 4-3-2, 3-4-2 3g(g − 1)2

Table 12: Dimensions in internal degree −6
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By Lemma V.3.3 ker δ1,81 has basis:

{[9(i)]∗ ⊗ θi, [9(i)]
∗ ⊗ ηi} 2g

{[8(i)-1(j)]∗ ⊗ θj + [1(j)-8(i)]∗ ⊗ ηj} g(g − 1),

{[4(j1)-4(j2)-1(i)]
∗ ⊗ θi + [1(i)-4(j1)-4(j2)]

∗ ⊗ ηi} g(g − 1)(g − 2),

{[4(i)-4(j)-1(i)]∗ ⊗ θi + [5(i)-4(j)]∗ ⊗ ηi} g(g − 1),

{[1(i)-4(j)-4(i)]∗ ⊗ ηi + [4(j)-5(i)]∗ ⊗ θi} g(g − 1),

{[2(i)-4(j)-3(i)]∗ ⊗ ηi + [3(i)-4(j)-2(i)]∗ ⊗ θi} g(g − 1).

So dimker δ1,81 = g3 + g2.

Lemma V.4.8. HH10
(−7)(B) = 0.

Proof. Table 13 summarizes the spaces in degree −7 on page one.

Space sequence(s) dimension
HH10

(−7)(Vη) 10 g

8-2 g(g − 1)
4-4-2 g(g − 1)2

HH10
(−7)(Vθ) 10 g

2-8 g(g − 1)
2-4-4 g(g − 1)2

Table 13: Dimensions in internal degree −7

From Lemma V.3.3, δ1,91 has no kernel.

Lemma V.4.9. HHn(B) = 0 in internal degrees 1− n, 2− n, and 3− n for n > 10.

Proof. The positive terms in the result in Lemma V.3.6 depend on HHn(F2) and HH
n(F1/F2)

being nonzero. For n > 10, these spaces are 0 in the specified internal degrees.
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In summary we have the following result.

Theorem V.4.10. Let X be a curve of genus g ≥ 2. Then,

1. dimHHn
(1−n)(B

g) =





g if n = 1

0 otherwise.

2. dimHHn
(2−n)(B

g) =





g2 − g if n = 3

2g2 − 2g if n = 4

g2 − g if n = 5

g if n = 6

0 otherwise.

3. dimHHn
(3−n)(B

g) =





g3 − 2g2 + g if n = 6

3g3 − 5g2 + 3g if n = 7

3g3 − 4g2 + g if n = 8

g3 − g2 if n = 9

0 otherwise.

V.5. An explicit K-linear isomorphism HH3
(−1)(B

g) ∼= K
g2−g

This isomorphism will be used explicitly in Chapter VI. We define,

α : HH3
(−1)(B) → Matg(K) ∼= K

g2 , f 7→ (αij(f)),

where αij(f) is defined by the equation,

f(θiψiηi) = λ · ξi +
∑

j 6=i

αij(f) · ξj .

Proposition V.5.1. 1. α is well-defined;

2. α induces an isomorphism of HH3
(−1)(B) with the subspace consisting of those matrices

(αij) with αii = 0 for all i.

Proof. 1. We first show that α is well-defined by showing that it vanishes on boundaries. Let
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h ∈ C2
(−1)(B

g). Then,

(δh)(θiψiηi) = θi · h(ψiηi)− h(θiψi) · ηi

= λ · ξi,

since h(ψiηi) is proportional to ηi for degree reasons and R-linearity of h, and h(θiψi) is

proportional to θi similarly. So α is well-defined.

2. Since dimHH3
(−1)(B) = g2 − g, it is enough to show that the image of α contains the

subspace described, which clearly has dimension g2 − g. For i 6= j, let

fij = (θiψiηi)
∗ ⊗ ξj + (ξiθiηi)

∗ ⊗ ξj ∈ C3
(−1)(F2) ⊂ C3

(−1)(B).

The first and last terms of the Hochschild differential vanish since fij maps to F2, so for

(x, y, z, w) ∈ B⊗4
+ ,

(δfij)(x, y, z, w) = −fij(xy, z, w) + fij(x, yz, w)− fij(x, y, zw).

In order for one of these three terms not to vanish, we must have either (xy, z, w) = ξiθiηi

or (x, yz, w) = θiψiηi. So we must have (x, y, z, w) = θiηiθiηi; but in this case the nonzero

terms cancel, so we conclude that fij is a cocycle. Furthermore α(fij) = Eij , where Eij

is the ij-matrix unit. This completes the claim.
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CHAPTER VI

THE A∞-ALGEBRA OF A CURVE OF GENUS g ≥ 2

We continue using the notation of Chapter V, with X a smooth complex curve of genus

g ≥ 2. Let P ∈ X be a closed point, with

θ ∈ Hom(OX ,K(P )), η ∈ Ext1(K(P ),OX)

generators of these one-dimensional spaces, with

ξ = θη ∈ Ext1(OX ,OX), ψ = ηθ ∈ Ext1(K(P ),K(P )).

The reader may recall from Section II.8. the definitions of the Massey product in a triangulated

category.

VI.1. A Massey product in Db(X)

We consider the sequence in Db(X),

OX
θ
−→ K(P )

ψ
−→ K(P )[1]

η
−→ OX [1].

Since ψ ◦ θ = η ◦ ψ = 0, the Massey product,

MP(θ, ψ, η) ∈ coker(Hom(OX ,K(P ))⊕ Ext1(K(P ),OX)
(η,θ)
−−−→ Ext1(OX ,OX)),

is well-defined. This target space is simply Ext1(OX ,OX)/〈ξ〉.
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Let Coh(X) be the abelian category of coherent sheaves on X, with

F1,F2,F3 ∈ Ob(Coh(X)).

We recall the correspondence between elements f ∈ Ext1(F1,F2) and pairs (F , g) with F ∈

Ob(Coh(X)), g ∈ HomCoh(X)(F2,F ), such that there is an exact sequence

0 → F2
g
−→ F → F1 → 0.

When f corresponds to (F , g) this way, we will say that (f,F , g) is an extension triple.

If (f,F , g) is an extension triple and h ∈ Hom(Coh(X)(F3,F1), then

f ◦ h ∈ Ext1(F3,F2).

We understand this composition as the extension triple (f ◦ h, F̃ , g̃) where F̃ is a pullback in

the diagram,

0 // F2
g //

g̃   

F // F1
// 0

F̃

π1

OO

π2 // F3

h

OO

// 0

We now consider the maps θ, η, ξ, ψ in more detail. Let t be a local parameter in OX,P .

Recall that we identify K(P ) with OX(P )/OX .

1. The generator θ ∈ Hom(OX ,K(P )) corresponds to the composition,

OX
π
−→ OX/OX(P )

·t−1

−−→ K(P ).

2. The generator η ∈ Ext1(K(P ),OX) is in the extension triple (η,OX(P ), i); i.e., it corre-

sponds to the sequence,

0 → OX
i
−→ OX(P ) → K(P ) → 0.
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3. Let K(2P ) = OX(2P )/OX . The generator ψ ∈ Ext1(K(P ),K(P )) is in the extension

triple (ψ,K(2P ), i); i.e., it corresponds to the sequence,

0 → K(P )
i
−→ K(2P ) → K(P ) → 0.

4. The map ξ ∈ Ext1(OX ,OX) is in the extension triple (ξ, Z, ĩ) which corresponds to the

bottom row in the diagram,

0 // OX
i //

ĩ
##

OX(P ) // K(P ) // 0

Z

π1

OO

π2 // OX

θ

OO

// 0

Since

K(P )
i
−→ K(2P )

π
−→ K(P )

ψ
−→ K(P )[1]

is a distinguished triangle in Db(X), there exist liftings θ̃ ∈ Hom(OX ,K(2P )) and

η̃ ∈ Ext1(K(2P ),OX) such that the following diagram commutes:

OX
θ //

θ̃ ##

K(P )
ψ // K(P )

η //

i

zzvv
vv

vv
vv

v

OX

K(2P )

π

OO

η̃

55

Then MP(θ, ψ, η) = [η̃ ◦ θ̃] ∈ Ext1(OX ,OX)/〈ξ〉.

Lemma VI.1.1. For one choice of η̃, we have an extension triple (η̃,OX(2P ), i).

Proof. Let (β,OX(2P ), i) be an extension triple, corresponding to the sequence,

0 → OX
i
−→ OX(2P ) → K(2P ) → 0.

It is sufficient to show that β ◦ i = η. Composing β ◦ i gives the extension Z ′ in the diagram,
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0 // OX
i //

$$H
HH

HH
HH

HH
H

OX(2P )
π // K(2P ) // 0

Z ′ //

OO

K(P )

i

OO

// 0

The square,

OX(2P )
π // K(2P )

OX(P )

i

OO

π // K(P )

i

OO

commutes, so by the universal property of the pullback, i and π from OX,P factor through Z ′

by a map (i, π) : OX(P ) → Z ′.

OX(2P )

%%J
JJJJJJJJ

OX(P )

99ssssssssss

%%KKKKKKKKKK

(i,π) // Z ′

OO

��

K(2P )

K(P )

99ttttttttt

We claim that all squares in the following diagram commute, giving an equivalence of

extensions OX(P ) ∼ Z ′.

0 // OX
//

=

��

OX(P ) //

(i,π)

��

K(P ) //

=

��

0

0 // OX
// Z ′ // K(P ) // 0

The second square commutes trivially by the diagram above, and the first square

commutes since all of these maps are inclusions.

LetK(OX,P ) be the fraction field of OX,P , which has K-basis {. . . , t−2, t−1, 1, t, t2, . . .}.

For f ∈ K(OX,P ), let pol(f) be the projection of f onto V = Span{t−1, t−2, . . .}, i.e., pol(f) is

the polar part of f at P .
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Lemma VI.1.2. One choice of θ̃ is the composition

OX → OX/OX(−2P )
·t−2

−−→ K(2P ).

Proof. Since the target is a skyscraper at P , it is sufficient to prove that this choice works

on stalks at P . Let f ∈ OX,P . By the discussion preceding these lemmas we know that

θP (f) = pol(t−1 · f). The projection π : K(2P ) → K(P ) is given by πP (f) = pol(t · f). The

composition in the statement of the lemma maps f 7→ t−2 · f . So with this composition at θ̃

we have πP ◦ θ̃P = θP as needed.

We compose η̃ ◦ θ̃ to get W in the following diagram,

0 // OX
i //

ĩ

$$I
II

II
II

II
I

OX(2P ) // K(2P ) // 0

W

OO

// OX

θ̃

OO

// 0

Since Hom(OX ,K(2P )) is two-dimensional, we also consider the morphism t · θ̃, which

is the map on stalks f 7→ pol(t−1f), corresponding to the extension W ′ in the diagram,

0 // OX
i //

ĩ

$$I
IIIIIIII
OX(2P ) // K(2P ) // 0

W ′

OO

// OX

t·θ̃

OO

Lemma VI.1.3. W ′ ∼= Z

Proof. We have a diagram,

Z
π1 //

π2

""E
EE

EE
EE

EE
OX(P )

i // OX(2P )

π

��
OX

t·θ̃

// K(2P )

For this diagram to commute it is enough to check on stalks at P , since the target is
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a skyscraper at P . We can describe Z explicitly,

Z = ker(OX(P )⊕OX
(π,−θ)
−−−−→ K(P )),

so

ZP = {(f1, f2) ∈ OX(P )P ⊕OX,P | pol(f1) = pol(t−1f2).

Then,

(π ◦ i ◦ π1)P (f1, f2) = πP (f1) = pol(f1),

(t · θ̃ ◦ π2)P (f1, f2) = t · θ̃P (f2) = pol(t−1f2).

Since the diagram commutes, the maps to OX(2P ) and OX factor through W ′,

Z //

α

""

��3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

OX(P ) // OX(2P )

��
W ′

��

99ssssssssss

K(2P )

OX

99ssssssssss

The map α fits into the diagram,

0 // OX
//

=

��

Z //

α

��

OX
//

=

��

0

0 // OX
// W ′ // OX

// 0

The top and bottom maps in the left square are inclusion in the first factor and α is the

identity on the first factor, so this square commutes; the right square is the bottom left triangle

on the diagram defining α. Therefore this diagram commutes, and α is an isomorphism by the

Five Lemma.
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Proposition VI.1.4. MP(θ, ψ, η) = 0 if and only if X is hyperelliptic and P is a Weierstrass

point on X.

Proof. The coset MP(θ, ψ, η) ∈ Ext1(OX ,OX)/〈ξ〉 is represented by W , while the coset 0 is

represented by Z. It follows that MP(θ, ψ, η) = 0 if and only if W and Z are proportional in

Ext1(OX ,OX).

The short exact sequence of sheaves

0 → OX → OX(2P ) → K(2P ) → 0

gives rise to a long exact sequence on Ext,

0 → Hom(OX ,OX) → Hom(OX ,OX(2P )) → Hom(OX ,K(2P ))
γ
−→ Ext1(OX ,OX) → · · · .

The map γ is injective if and only if

dimHom(OX ,OX(2P )) = dimΓ(OX(2P )) = 1,

i.e., P is not a Weierstrass point.

Thus when P is not a Weierstrass point, W and W ′ are linearly independent; since

W ′ ∼= Z by Lemma VI.1.3, it must be that W and Z linearly independent. When P is

Weierstrass, γ is not injective, so W and W ′ map to the same line in Ext1(OX ,OX), therefore

in that case the Massey product vanishes. Non-hyperelliptic curves have no Weierstrass points,

so this forces X to be hyperelliptic.

VI.2. Homotopy class of triple products on a curve

An immediate consequence of [19] Proposition 1.1 is that since the A∞-structure on

Bg is minimal:

1. MP(x, y, z) = [m3(x, y, z)], for x, y, z ∈ B+ such that y ◦ x = z ◦ y = 0 and [m3(x, y, z)]

denotes the coset of the element m3(x, y, z) in the space where MP(x, y, z) is defined; and
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2. if (f) : Bg → Bg is a strict equivalence such that m′
3 = f ∗ m3, then [m′

3(x, y, z)] =

MP(x, y, z) as well.

In this way we may think of the Massey product as a strict equivalence-invariant version of m3.

Together with Proposition VI.1.4 this gives the following result.

Theorem VI.2.1. Let X be a smooth curve of genus g ≥ 2 over C. Then m3 is homotopic to

0 if and only if X is hyperelliptic and P1, . . . , Pg are Weierstrass points.

Proof. Let α be the map in Proposition V.5.1. Then Proposition VI.1.4 implies that αij(m3) =

0 (i.e., m3 is a coboundary in Hochschild cohomology) for i 6= j if and only if each point is a

Weierstrass point. Since there are 2g+2 of them for any particular curve, there are sufficiently

many to choose g.

It remains to show that g Weierstrass points satisfy the generation condition, that

ξ1, . . . , ξg generate Ext1(OX ,OX). Let P1, . . . , Pg be points on X hyperelliptic, with D =

∑g
i=1 Pi. Let f : X → P

1 be the morphism of degree 2. We claim that P1, . . . , Pg do not satisfy

the generation condition if and only if f(Pi) = f(Pj) for some i, j; that is, Pi + Pj is in the

hyperelliptic system on X.

The short exact sequence,

0 → OX → OX(D) →

g⊕

i=1

K(Pi) → 0

gives rise to a long exact sequence on Ext,

0 → Hom(OX ,OX) → Hom(OX ,OX(D)) →

g⊕

i=1

Hom(OX ,K(Pi)) →

Ext1(OX ,OX) → Ext1(OX ,OX(D)) → 0.

Thus the generation condition is equivalent to the statement that

Ext1(OX ,OX(D)) ∼= H1(X,OX(D)) = 0,

i.e., D is non-special. By Serre duality [H1(X,OX(D))]∗ ∼= Hom(OX(D), ωX) where ωX is

the canonical sheaf on X; this space is nonzero if and only if D is a subdivisor of an effective
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canonical divisor on X.

By [6] Prop. IV.5.3, every effective canonical divisor on X is of the form K = D1 +

· · · +Dg−1 where each Di is in the hyperelliptic system. Since D has degree g, D ⊂ K if and

only if D contains some Di. This proves the claim.

The Weierstrass points are exactly the ramification points of f . It follows that if the

Pi are distinct Weierstrass points, the divisor D is non-special. This completes the claim.
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APPENDIX A

A MAP TO A PRODUCT OF SIMPLICES

This lemma will apply directly to Lemma III.2.3, and uses the same notation. Let K (l)

be the reduced simplicial complex of the simplicial l-cell; that is, the full simplicial complex

with l vertices.

Lemma A.1. 1. (griO)
(m)
• = X

(m)
• ⊕ Y

(m)
• where

X(m)
n = 〈{ξa0θηξa1 · · · θηξan−m |ak 6= 0 for 1 ≤ k ≤ n−m− 1}〉,

Y (m)
n = 〈{ξa0θψb1ηξa1 · · · ηξan−m |bk 6= 0 for some k or ak = 0 for some 1 ≤ k ≤ n−m− 1}〉.

2. HBn(X
(m)
• ) = X

(m)
n and HBn(Y

(m)
• ) = 0 for all n.

Proof. 1. Each standard basis tensor in (griO)
(n−m)
n is obviously in either Xn or Yn (we

suppress m since it is arbitrary). In Xn, d increases the sum of powers of ξ by 1 in each

term, so d|Xn
= 0. On Yn, any tensor that satisfies one of the two properties listed will

have a boundary each of whose terms has a nonzero power on some bk, which will therefore

be in Yn−1.

2. Since d|Xn
= 0, the first result is clear.

For every j ≥ 0, there is a subcomplex Y j• ⊂ Y• where

Y jn = {ξa0θψb1ηξa1 · · · ηξan−m |exactly j of a1, . . . , an−m−1 are nonzero},

such that

Y• =

m−1⊕

j=1

Y j• ,
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so it is enough to show that HBn(Y
j
• ) = 0 for all j. We will use induction in j.

For the base case, we map Y 0
• to the simplicial complex as follows. A standard basis tensor

in Y 0
n is determined by the (n −m)-tuple (b1, . . . , bn−m) where

∑n−m
k=1 bk = 2m − n − i.

The differential acts by

d(b1, . . . , bm) =

n−m−1∑

k=1

±(b1, . . . , bk + bk+1 + 1, . . . , bn−m).

After the change of variable b′k = bk + 1, we have
∑n−m
k=1 b′k = m − i (which is constant

since m, i are fixed), b′k ≥ 1 for all k, and

d(b′1, . . . , bn−m) =

n−m−1∑

k=1

±(b′1, . . . , b
′
k + b′k+1, . . . , b

′
n−m).

Finally we map

(b′1, . . . , b
′
n−m) 7→

(
b′1, b

′
1 + b′2, . . . ,

n−m−1∑

k=1

b′k

)
∈ K (m− i− 1).

This is a map of complexes which surjects onto K (m − i − 1). Since K (m − i − 1) has

no homology, it follows that HBn(Y
0
• ) = 0 for all n.

Now suppose that HBn(Y
j,(m)
• ) = 0 for all n, all j ≤ l, and all m. A standard basis tensor

y in Y l+1
n can be written as y1 ⊗ y2 where y1 ∈ Y

l,(m1)
s (for some internal degree m1) and

y2 ∈ Y
0,(m2)
n−s (for some internal degree m2), by splicing y immediately before the (l+1)-st

nonzero internal power of ξ. This gives an isomorphism

Y
l+1,(m)
•

∼=
⊕

m1+m2=m

Y
l,(m1)
• ⊗ Y

0,(m2)
• .

It follows from the induction hypothesis and the Kunneth formula that the homology of

the complex on the right is 0, therefore HBn(Y
l+1
• ) = 0 for all n.
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APPENDIX B

HOMOLOGY OF A SIMPLICIAL COMPLEX

Let [n] = {1, 2, . . . , n}. We define a simplicial complex ∆[n] ⊂ P ([n]) such that

∆0 = {{i}|i ∈ [n]}, ∆1 = {{i, j}|j − i ≥ 2}, ∆2 = {{i, j, k}|j − i ≥ 2, k − j ≥ 2},

and in general

∆m = {{i1, i2, . . . , im}|ij+1 − ij ≥ 2, j = 1, . . . ,m− 1}.

Proposition B.1. For all k ∈ N,

∆[3k + 1] ∼= point,

∆[3k + 2] ∼= Sk,

∆[3k + 3] ∼= Sk.

Proof. We proceed by induction on k, starting at k = 0. The complex ∆[1] is a point, ∆[2] is

two points and no edges, and ∆[3] is three points and the edge {1, 3}, so this establishes the

base case.

Suppose the result for k. Then

∆[3k + 4] = A ∪B
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where

A = {1, 2, 3, . . . , 3k + 3} ∩∆[3k + 4],

B = {all simplices containing the vertex 3k + 4}.

Then B is contractible so B ∼= Dk and A ∼= ∆[3k + 3] ∼= Sk. Their intersection is

A ∩B = ∆[3k + 3] ∩ {1, 2, 3, . . . , 3k + 2} ∼= ∆[3k + 2] ∼= Sk.

So ∆[3k+4] = Dk ∪Sk with Dk ∩Sk = Sk, which is contractible. We proceed similarly in the

other cases. Now ∆[3k + 5] = A ∪B where

A = {1, 2, . . . , 3k + 4} ∩∆[3k + 5] ∼= ∆[3k + 4] ∼= Dk+1,

B = {all simplices containing 3k+5} ∼= Dk+1,

A ∩B ∼= ∆[3k + 3] ∼= Sk.

So now we have two disks intersecting in Sk, which gives Sk+1. Finally ∆[3k + 6] = A ∪ B

where

A = {1, 2, . . . , 3k + 5} ∩∆[3k + 6] ∼= ∆[3k + 5] ∼= Sk+1,

B = {all simplices containing 3k+6} ∼= Dk+1,

A ∩B ∼= ∆[3k + 4] ∼= Dk+1.

So we have an Sk+1 and a disk intersecting in a disk, which gives Sk+1.

For k = 0, 1, 2, it will be helpful to have explicit representatives of the resulting homol-

ogy class in ∆[3k + 2] and ∆[3k + 3]. For ∆[2] and ∆[3] we use {1} − {2}.

The loop in ∆[5] is constructed from gluing the contractible complex ∆[5]∩ {1, 2, 3, 4}

with the contractible complex of those simplices touching {5}. The intersection is the S0 in

{1, 2, 3}. The easiest way to realize this class is by taking the cone over {1} ∪ {2} to {4} and
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another cone to {5}. Thus the resulting loop is {1, 5}±{1, 4}±{2, 5}±{2, 4}. We also use this

class in ∆[6]. (The choice between + and − not relevant for our application of this calculation,

so we do not make it.)

The class in ∆[8] we realize similarly. The intersection of the two contractible parts is

∆[6], which we consider as the loop above. We make a cone over this loop to the points {7}

and {8} to get the class representative

{1, 5, 7} ± {1, 4, 7} ± {2, 5, 7} ± {2, 4, 7} ± {1, 5, 8} ± {1, 4, 8} ± {2, 5, 8} ± {2, 4, 8}.

This class will also represent the loop in ∆[9].
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APPENDIX C

W2 AND W3 IN THE PROOF OF LEMMA V.3.4

We first defineW2. The table below collects the basis vectors of V2 and their boundaries,

with the underlined term in each boundary designated to be in Ω2(F1/F2). We also define for

integers a, b,

κ(a, b) =





1 if a ≡ b mod 2

0 otherwise.

Element of Ω2(F0/F1) Ω2(F1/F2) expansion of boundary
[n(i)]∗ ⊗ idPi

[(n+ 1)(i)]∗ ⊗ θi ± [(n+ 1)(i)]∗ ⊗ ηi
n even
[1(i)-m(j)-k(i)]∗ ⊗ idPi

±[1(i)-m(j)-(k + 1)(i)]∗ ⊗ ηi
k and m even; or
k even, m odd and g > 2
[k(i)-m(j)-1(i)]∗ ⊗ idPi

±[(k + 1)(i)-m(j)-1(i)]∗ ⊗ θi
k and m even; or
k even, m odd and g > 2
[n1(i)-m(j)-n2(i)]

∗ ⊗ idPi
[(n1 + 1)(i)-m(j)-n2(i)]

∗ ⊗ θi
n1 even and n1, n2 > 1

±κ(n2, 0)[n1(i)-m(j)-(n2 + 1)(i)]∗ ⊗ ηi

[n1(i)-m(j)-n2(i)]
∗ ⊗ idPi

±[n1(i)-m(j)-(n2 + 1)(i)]∗ ⊗ ηi
n1 odd and n2 even
[n1(i)-m1(j1)-m2(j2)-n2(i)]

∗ ⊗ idPi
[(n1 + 1)(i)-m1(j1)-m2(j2)-n2(i)]

∗ ⊗ θi
n1 even

±κ(n2, 0)[n1(i)-m1(j1)-m2(j2)-(n2 + 1)(i)]∗ ⊗ ηi

[n1(i)-m1(j1)-m2(j2)-n2(i)]
∗ ⊗ idPi

±[n1(i)-m1(j1)-m2(j2)-(n2 + 1)(i)]∗ ⊗ ηi
n1 odd and n2 even

Table 14: Definition of Ω2(F1/F2)

We define W3 similarly in the table below.
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Element of Ω3(F0/F1) Ω3(F1/F2) expansion of boundary
[n(i)]∗ ⊗ idOX

±[n(i)-1(j)]∗ ⊗ θj (for some j 6= i)

±κ(n, 0)[(n+ 1)(i)]∗ ⊗ θi ± κ(n, 0)[(n+ 1)(i)]∗ ⊗ ηi

±
∑
k 6=i,j [n(i)-1(k)]

∗ ⊗ θk ±
∑
k 6=i[1(k)-n(i)]

∗ ⊗ ηk

[m1(j1)-m2(j2)]
∗ ⊗ idOX

±[m1(j1)-m2(j2)-1(j)]
∗ ⊗ θj (for some j 6= j1 and j 6= j2)

m1,m2 odd and g > 2
±
∑
k 6=j2,j

[m1(j1)-m2(j2)-1(k)]
∗ ⊗ θk±

∑
k 6=j1

[1(k)-m1(j1)-m2(j2)]
∗ ⊗ ηk

[m1(j1)-m2(j2)]
∗ ⊗ idOX

[(m1 + 1)(j1)-m2(j2)]
∗ ⊗ ηj1

m1 even
±κ(m2, 0)[m1(j1)-(m2 + 1)(j2)]

∗ ⊗ θj2±

∑
k 6=j2

[m1(j1)-m2(j2)-1(k)]
∗ ⊗ θk

±
∑
k 6=j1

[1(k)-m1(j1)-m2(j2)]
∗ ⊗ ηk

[m1(j1)-m2(j2)]
∗ ⊗ idOX

±[m1(j1)-(m2 + 1)(j2)]
∗ ⊗ θj2

m1 odd and m2 even
±
∑
k 6=j2

[m1(j1)-m2(j2)-1(k)]
∗ ⊗ θk±

∑
k 6=j1

[1(k)-m1(j1)-m2(j2)]
∗ ⊗ ηk

[m1(j1)-m2(j2)-m3(j3)]
∗ ⊗ idOX

±[m1(j1)-m2(j2)-m3(j3)-1(j2)]
∗ ⊗ θj2

±κ(m1, 0)[(m1 + 1)(j1)-m2(j2)-m3(j3)]
∗ ⊗ ηj1±

κ(m3, 0)[m1(j1)-m2(j2)-(m3 + 1)(j3)]
∗ ⊗ θj3

±
∑
k 6=j2,j3

[m1(j1)-m2(j2)-m3(j3)-1(k)]
∗ ⊗ θk±

∑
k 6=j1

[1(k)-m1(j1)-m2(j2)-m3(j3)]
∗ ⊗ ηk

Table 15: Definition of Ω3(F1/F2)
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