THE A-INFINITY ALGEBRA OF

A CURVE AND THE
j-INVARIANT
by
ROBERT FISETTE

A DISSERTATION

Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
June 2012

DISSERTATION APPROVAL PAGE

Student: Robert Fisette

Title: The A-infinity Algebra of a Curve and the J-invariant
This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by:

Dr. Alexander Polishchuk
Dr. Daniel Dugger
Dr. Nicholas Proudfoot
Dr. Sergey Yuzvinsky
Dr. Davison Soper
and

Dr. Kimberly Andrews Espy Vice President for Research \& Innovation/Dean of the Graduate School

Original signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2012
© 2012, Robert Fisette.

DISSERTATION ABSTRACT

Robert Fisette
Doctor of Philosophy
Department of Mathematics
June 2012
Title: The A-infinity Algebra of a Curve and the J-invariant

We choose a generator G of the derived category of coherent sheaves on a smooth curve X of genus g which corresponds to a choice of g distinguished points P_{1}, \ldots, P_{g} on X. We compute the Hochschild cohomology of the algebra $B=\operatorname{Ext}^{*}(G, G)$ in certain internal degrees relevant to extending the associative algebra structure on B to an A_{∞}-structure, which demonstrates that A_{∞}-structures on B are finitely determined for curves of arbitrary genus.

When the curve is taken over \mathbb{C} and $g=1$, we amend an explicit A_{∞}-structure on B computed by Polishchuk so that the higher products m_{6} and m_{8} become Hochschild cocycles. We use the cohomology classes of m_{6} and m_{8} to recover the j-invariant of the curve. When $g \geq 2$, we use Massey products in $D^{b}(X)$ to show that in the A_{∞}-structure on B, m_{3} is homotopic to 0 if and only if X is hyperelliptic and P_{1}, \ldots, P_{g} are chosen to be Weierstrass points.

NAME OF AUTHOR: Robert Fisette

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Lebanon Valley College, Annville, PA

DEGREES AWARDED:

Doctor of Philosophy, University of Oregon, 2012
Master of Science, University of Oregon, 2010
Bachelor of Science, Lebanon Valley College, 2004

AREAS OF SPECIAL INTEREST:

A-infinity algebras, Hochschild cohomology and applications, quiver algebras, derived category of coherent sheaves

PROFESSIONAL EXPERIENCE

Graduate Teaching Fellow, University of Oregon, 2006-2012

GRANTS, AWARDS AND HONORS:

Johnson Fellowship, University of Oregon Department of Mathematics, 2010
Graduate School Research Award, University of Oregon Department of Mathematics, 2011

ACKNOWLEDGMENTS

I would like to thank the following people and institutions who have made this work possible: my thesis adviser, Dr. Alexander Polishchuk, for being a kind man, and obviously for his heavy guidance throughout this process; my undergraduate adviser, Dr. Patrick Brewer, to whom it is quite impossible to express (much less pay) what I owe; Dr. Arkady Vaintrob, for his abstract algebra class in 2006-2007, which taught me what mathematics was; my colleagues, past and present, for their collaboration in the early years, and for making my experience here enjoyable throughout; the mathematics faculty at the University of Oregon, for their contagious enthusiasm; the mathematics faculty at Lebanon Valley College, for their dedication to teaching and their forgiveness; the Institut des Hautes Études Scientifiques, for hosting me during the beginning of this research; and my students, for not complaining about me too loudly before I could finish this dissertation.

I am also grateful to Alathea Letaw for being in my vicinity more than any reasonable person probably should be, and to my parents, Pamela and Roger Fisette, for being proud of me.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. PRELIMINARIES 6
II.1. Reduced Hochschild Cohomology 6
II.2. The Normalized Bar Complex and Duality 8
II.3. $\quad A_{\infty}$-algebras 9
II.4. The Lie Superalgebra of Superderivations 11
II.5. Hochschild Cohomology and A_{∞}-structures 12
II.6. The Spectral Sequence of a Filtration 15
II.7. Eisenstein Series 16
II.8. Massey Products in a Triangulated Category 18
III. HOCHSCHILD COHOMOLOGY AND THE ELLIPTIC CURVE 19
III.1. The Associative Algebra B 20
III.2. A Filtration of the Reduced Hochschild Cochain Complex 21
III.3. Calculating Differentials in the Spectral Sequence 31
III.4. Hochschild Cohomology of B 33
IV. THE A_{∞}-ALGEBRA OF A COMPLEX ELLIPTIC CURVE AND THE J-INVARIANT 35
IV.1. An A_{∞}-structure on B 36
IV.2. Recovering the J-invariant 38
V. HOCHSCHILD COHOMOLOGY AND THE CURVE OF GENUS $g \geq 2$ 44
V.1. The Associative Algebra B^{g} 45
V.2. A Filtration of the Hochschild Complex 46
V.3. Differentials in the Spectral Sequence 49
V.4. Hochschild Cohomology of B^{g} 59
V.5. An Explicit \mathbb{K}-linear Isomorphism $\dot{H} H_{(-1)}^{3}\left(B^{g}\right) \cong \mathbb{K}^{g^{g}-g}$ 65
VI. THE A_{∞}-ALGEBRA OF A CURVE OF GENUS $g \geq 2$ 67
VI.1. A Massey Product in $D^{b}(X)$ 67
VI.2. Homotopy Class of Triple Products on a Curve 73
Chapter Page
APPENDICES
A. A MAP TO A PRODUCT OF SIMPLICES 76
B. HOMOLOGY OF A SIMPLICIAL COMPLEX 78
C. $\quad W_{2}$ AND W_{3} IN THE PROOF OF LEMMA V.3.4 81
REFERENCES CITED 83

LIST OF FIGURES

Figure Page

1. Arrow diagram for B 20
2. Arrow diagram for B^{g} 45

LIST OF TABLES

Table Page

1. Representatives of $H B_{\bullet}(\mathcal{O})$ 25
2. Representatives of $H B_{\bullet}(P)$. 26
3. Representatives of $H B_{\bullet}(\theta)$ 29
4. Representatives of $H B_{\bullet}(\eta)$ 30
5. Admissible sequences 50
6. Dimensions in internal degree 0 59
7. Dimensions in internal degree -1 60
8. Dimensions in internal degree -2 60
9. Dimensions in internal degree -3 61
10. Dimensions in internal degree -4 61
11. Dimensions in internal degree -5 62
12. Dimensions in internal degree -6 63
13. Dimensions in internal degree -7 64
14. Definition of $\Omega_{2}\left(F_{1} / F_{2}\right)$ 81
15. Definition of $\Omega_{3}\left(F_{1} / F_{2}\right)$ 82

CHAPTER I

INTRODUCTION

A-infinity $\left(A_{\infty^{-}}\right)$algebras were invented in the sixties by Stasheff ([24]), and occupy a central role in modern problems related to homological mirror symmetry. We consider a graded vector space A over a field \mathbb{K}. An A_{∞}-structure on A is a certain generalization of an associative algebra structure, where we relax the associativity condition in the presence of a differential, requiring that multiplication be associative only up to homotopy.

More specifically, an A_{∞}-algebra is the space A together with a set $\left\{m_{n}\right\}_{n=1}^{\infty}$ of operations $m_{n}: A^{\otimes n} \rightarrow A$ of homogeneous degree $2-n$ satisfying certain compatibility relations. For example, m_{1} is a differential and a derivation with respect to $m_{2} ; m_{2}$ is a homotopy associative multiplication with homotopy given by m_{3}. The cohomology $H^{*} A$ with respect to m_{1} is an associative algebra, but also inherits some higher-order operations (to compensate for the loss of chain information) which make it also an A_{∞}-algebra. Section II.3. gives a brief overview of A_{∞}-algebras and their morphisms. The reader is referred to [10] for a more detailed introduction.

Despite the evident motivation to forget associativity, a particular case of interest is when A is a differential graded (dg-) algebra; considered as an A_{∞}-algebra, m_{1} is taken as the differential, m_{2} is the usual (associative) multiplication, and $m_{n}=0$ for $n \geq 3$. There is no sense in which A and $H^{*} A$ are equivalent (in general) if we restrict to the context of usual algebras. A shadow of the power of the generalization to A_{∞}-algebras appears in the equivalence as triangulated categories of some derived A_{∞}-module categories over A and $H^{*}(A)$, respectively. Such a result implies that by living in the context of A_{∞}-algebras we do not lose so much information by passing to cohomology.

An A_{∞}-category is a natural generalization of an A_{∞}-algebra to a categorical setting, where we recover the notion of an A_{∞}-algebra by considering an A_{∞}-category with one object. The Fukaya category $\operatorname{Fuk}(M)$ of a symplectic manifold (M, ω) and the bounded derived category of coherent sheaves $D^{b}(X)$ on an algebraic variety X are interesting examples of A_{∞}-categories which appear naturally in practice. Indeed, these two examples are the focus of much present interest in A_{∞}-structures, due primarily to the influential paper [11] of Kontsevich from 1994.

In that paper, Kontsevich conjectured that string theoretic mirror symmetry between two Calabi-Yau manifolds X and Y should be understood mathematically as homological mirror symmetry (HMS), or equivalences of A_{∞}-categories,

$$
\operatorname{Fuk}(X) \simeq D^{b}(Y) \text { and } D^{b}(X) \simeq \operatorname{Fuk}(Y)
$$

This gives, roughly, an exchanging of the symplectic and complex structures by passing from X to Y. Polishchuk and Zaslow proved the conjecture in this form for elliptic curves in [16], [18]; Seidel proved it for the quartic surface in [23]; and Abouzaid and Smith have treated abelian surfaces in [2]. In [9], Katzarkov proposed a generalization of mirror symmetry for varieties of general type which are not Calabi-Yau; that version of the conjecture was proved in one direction for curves of genus two by Seidel [22] and for curves of higher genus by Efimov [4]. These works on curves of higher genus exhibit the equivalence of the symplectic structure on the curve with the complex structure on its proposed mirror dual, without considering the other direction.

In proving the homological mirror conjecture, little explicit knowledge of the $A_{\infty}{ }^{-}$ structures involved is needed. As some evidence for this claim, the full proof of HMS for elliptic curves (see [18]) only required specific calculation of m_{2} and m_{3}, while not until [17] was a complete A_{∞}-structure relevant to this problem computed. In this paper we seek to refine and expand the explicit knowledge of the A_{∞}-structures for curves on the complex side of this problem.

Let X be a variety over an algebraically closed field \mathbb{K} and let $G \in \operatorname{Coh}(X)$, where $\operatorname{Coh}(X)$ is the category of coherent sheaves on X. Let $G \rightarrow I^{\bullet}$ be an injective resolution of G in $\operatorname{Coh}(X)$; then $A=\operatorname{Hom}\left(I^{\bullet}, I^{\bullet}\right)$ has the structure of a dg-algebra whose cohomology is
$B=\operatorname{Ext}^{*}(G, G)$. By a theorem of Kadeishvili [8], there is a minimal $\left(m_{1}=0\right) A_{\infty}$-structure on B (unique up to A_{∞}-equivalence) such that A and B are quasi-isomorphic as A_{∞}-algebras.

Let \mathscr{C} be a triangulated category, and $T \in \operatorname{Ob}(\mathscr{C})$. We let $\operatorname{tria}(T) \subset \mathscr{C}$ be the smallest triangulated full subcategory containing T which is closed under passage to direct summands; in other words, $\boldsymbol{\operatorname { t r i a }}(T)$ is the closure of T under shifts, extensions, and taking direct summands. We say that T is a generator of \mathscr{C} if $\operatorname{tria}(T)=\mathscr{C}$.

Let $\operatorname{Mod}-B$ be the category of A_{∞}-modules over $B, D^{b}(\operatorname{Mod}-B)$ its bounded derived category. Then $\operatorname{tria}(B) \subset D^{b}(\operatorname{Mod}-B)$ is the triangulated subcategory generated by the free B-module of rank one. This is the derived category of perfect B-modules, and is sometimes denoted $\operatorname{perf}(B)$. If we suppose further that G is a generator of $D^{b}(X)$, then a theorem in the thesis of Lefévre-Hasegawa ([12], 7.6) implies that there is an equivalence of triangulated categories, $D^{b}(X) \simeq \operatorname{perf}(B)$.

When X is a smooth curve, it is known that we do not lose any information by passing from X to $D^{b}(X)$; that is, $X_{1} \cong X_{2}$ if and only if $D^{b}\left(X_{1}\right) \simeq D^{b}\left(X_{2}\right)$. This follows that the Bondal-Orlov reconstruction theorem ([3], 2.5) for curve of genus $g>1$, and is proved for elliptic curves by Hille and Van den Bergh ([7], 5.1). It follows that when X is a smooth complex curve and G is a generator of $D^{b}(X)$, the A_{∞}-structure on B is sufficient to recover X up to isomorphism. Therefore it is of value to investigate this structure in some detail.

Let E be a complex elliptic curve with structure sheaf \mathcal{O}_{E} and let L be a line bundle of degree 1. In [17], Polishchuk studies the case where $G=\mathcal{O}_{E} \oplus L$, and computes explicitly an A_{∞}-structure on $B(E)=\operatorname{Ext}^{*}(G, G)$ in terms of the Eisenstein series of E. The A_{∞}-algebra $B(E)$ recovers E up to isomorphism, but the associative algebra $B=\left(B(E), m_{2}\right)$ is independent of E. In this way we get a family of non-equivalent A_{∞}-structures extending the associative algebra structure of B. That is, if we denote by \mathcal{M}_{∞}^{B} the moduli space of A_{∞}-structures on B up to equivalence, and let $\mathcal{M}_{g, n}$ be the usual moduli space of smooth curves of genus g with n marked points, there is a map,

$$
\mathcal{M}_{1,1} \rightarrow \mathcal{M}_{\infty}^{B}, \quad E \mapsto B(E) .
$$

This leads naturally to several questions.

First, can we describe the equivalence classes of A_{∞}-structures extending the multiplication on B ? It is well-known that such extensions are governed by certain components of the Hochschild cohomology of B. The specifics of this relationship are recalled in detail in Section II.5.. In Chapter III, we compute relevant components of $H H^{*}(B)$. There is no particular need to restrict this calculation to the complex numbers. The main result is Theorem III.4.1, and it applies whenever char $\mathbb{K} \neq 2,3$. Prior to this writing, Perutz and Lekili published an independent calculation of this cohomology ([13], Thm.4); nonetheless, the author feels the calculation here is of value both for its method and for its usefulness in extending to the case of $g \geq 2$.

Let $H H_{(m)}^{n}(B)$ be the Hochschild cohomology of B in dimension n for maps of homogeneous degree m. Since $H H_{(2-n)}^{n}(B)$ vanishes for $n>8$ (by Theorem III.4.1), A_{∞}-structures on B are determined up to equivalence by the set $\left\{m_{n}\right\}_{n=3}^{8}$. (In general, when an A_{∞}-structure is determined up to equivalence by a finite number of operations, we say that it is finitely determined.) This also implies that $H H_{(2-n)}^{*}(B)$ is a finite-dimensional vector space, so \mathcal{M}_{∞}^{B} can be realized as a quotient of an affine scheme of finite type.

Second, the appearance of the Eisenstein series of E in the higher operations on $B(E)$ suggests that we might find some other interesting functions lurking there. In particular, can we recover the j-invariant $j(E)$ from this A_{∞}-structure? The A_{∞}-structure (m) in [17] has the property that for $k \in \mathbb{Z}_{\geq 1}, m_{2 k-1}=0$ and $m_{2 k} \neq 0$. Theorem III.4.1 implies the existence of an equivalent structure (m^{\prime}) (Proposition IV.1.2) such that $m_{2 k-1}^{\prime}=0, m_{4}^{\prime}=0$, and $m_{6}^{\prime}, m_{8}^{\prime}$ are Hochschild cocycles. We compute (m^{\prime}) explicitly in Chapter IV, and recover $j(E)$ in Theorem IV.2.3 as the value of a rational function on $V=H H_{(-4)}^{6}(B) \oplus H H_{(-6)}^{8}(B) \cong \mathbb{C}^{2}$ evaluated at the point $\left(m_{6}^{\prime}(E), m_{8}^{\prime}(E)\right)$ (with suitably chosen coordinates on V).

In Chapters V and VI we consider curves X of genus $g \geq 2$. We choose a generator G of $D^{b}(X)$, which amounts to choosing g distinguished points on X. When we choose these points across all genus g curves to satisfy a certain open condition on $\mathcal{M}_{g, g}$, we get a family of A_{∞}-algebras $B^{g}(X)=\operatorname{Ext}^{*}(G, G)$ which restrict to the same associative algebra, $B^{g}=$ $\left(B^{g}(X), m_{2}\right)$. That is, there is a map,

$$
\mathcal{M}_{g, g} \rightarrow \mathcal{M}_{\infty}^{B^{g}}, \quad X \mapsto B^{g}(X)
$$

Then we can ask, is the A_{∞}-structure on $B^{g}(X)$ finitely determined? In Chapter V we calculate the relevant components of Hochschild cohomology for the associative algebra B^{g}. The result in Theorem V.4.10 shows that $H H_{(2-n)}^{n}\left(B^{g}\right)$ vanishes for $n>6$, so $B^{g}(X)$ is determined up to equivalence knowing only up to m_{6}.

The question of finite determination is important for the HMS problem for curves of higher genus. If we are trying to determine an equivalence between two A_{∞}-structures, it is useful to know that we need only force their equality up to some finite level. Our choice of the generator G is not unique, and there is no reason to expect that an arbitrary such choice gives a finitely determined A_{∞}-structure. At present, there is no general program for finding a generator with the finite determination property; therefore these positive results in the simple cases of curves might also be useful for suggesting some patterns for finding such generators of arbitrary varieties.

Finally, what additional information can be determined about the A_{∞}-structure on $B^{g}(X)$? A result in [19] implies that m_{3} can be chosen to represent Massey products in $D^{b}(X)$. In Chapter VI we compute one of these Massey products in order to make some comments about if and when m_{3} is trivial (homotopic to 0). Theorem VI.2.1 shows that m_{3} is trivial only if X is hyperelliptic, and the g distinguished points are Weierstrass points. It would be interesting to find an explicit homotopy of this structure which takes m_{3} to 0 , thus making m_{4} and m_{5} Hochschild cocycles. One can then hope to recover analogs of the j-invariant from this A_{∞}-structure in the case of hyperelliptic curves.

CHAPTER II

PRELIMINARIES

This chapter compiles many of the results, definitions and notation used throughout this paper. The reader who prefers may skip this chapter and return to these sections as needed when they are referenced later. While there are no new results in this chapter, the proof of Lemma II.5.1 is new, as a suitable reference could not be found.

II.1. Reduced Hochschild cohomology

Let \mathbb{K} be a field, B a (unital) \mathbb{K}-algebra. Let M be a B-bimodule. We define the full Hochschild cochain complex, $C^{\bullet}(B, M)$, where,

$$
C^{n}(B, M):=\operatorname{Hom}_{\mathbb{K}}\left(B^{\otimes_{\mathbb{K}} n}, M\right), n \geq 0 .
$$

For a cochain $\phi \in C^{n}(B, M)$, we define the cochain $\delta \phi \in C^{n+1}(B, M)$ as,

$$
\begin{aligned}
(\delta \phi)\left(a_{0}, \ldots, a_{n}\right)= & (-1)^{\left|a_{0}\right||\phi|} a_{0} \phi\left(a_{1}, \ldots, a_{n}\right)+\sum_{i=1}^{n}(-1)^{i} \phi\left(a_{0}, \ldots, a_{i-1} a_{i}, \ldots, a_{n}\right) \\
& +(-1)^{n+1} \phi\left(a_{0}, \ldots, a_{n-1}\right) a_{n} .
\end{aligned}
$$

The cohomology of this complex is the Hochschild cohomology of B with coefficients in M, denoted $H H^{\bullet}(B, M)$.

Remark II.1.1. The sign on the first term applies to the case when B is \mathbb{Z}-graded, in which case $|\phi|$ is the homogeneous degree of the map ϕ. By convention, if B is not graded, then $|b|=0$ for all $b \in B$.

With \mathbb{K}, B as above, let $R \subset B$ be a semi-simple subring such that $B \cong R \oplus B / R$ as R-modules. Let B_{+}be the R-submodule of B isomorphic to B / R. We say in this case that B is augmented over R.

We define the reduced cochain complex $C_{R}^{\bullet}(B, M)$ by replacing $\otimes_{\mathbb{K}}$ and $H_{\mathbb{K}}$ with \otimes_{R} and Hom_{R} and replacing B with B_{+}in the full complex. That is,

$$
C_{R}^{n}(B, M):=\operatorname{Hom}_{R}\left(B_{+}^{\otimes_{R} n}, M\right), n \geq 0
$$

with the differential defined the same as above. The cohomology of this complex we call the reduced Hochschild cohomology of B over R with coefficients in M, denoted $H H_{R}^{\bullet}(B, M)$.

In all applications, we will use a reduced Hochschild cochain complex. The two complexes are known to be quasi-isomorphic for unital algebras ([21] (20d)). We will therefore usually write $C^{\bullet}(M)$ and $H H^{\bullet}(M)$ when B and R are understood, and it is understood that everything is reduced over R.

When B is a $\left(\mathbb{Z}\right.$-)graded \mathbb{K}-algebra, it follows that B_{+}is a graded R-module. Then the reduced tensor algebra,

$$
T\left(B_{+}\right)=\bigoplus_{i=1}^{\infty} B_{+}^{\otimes_{R} i},
$$

is bigraded. The cohomological grading $\operatorname{deg}_{\text {coh }}$ gives the length of a tensor, and the internal grading $\operatorname{deg}_{\text {int }}$ is inherited from the grading on B_{+}; that is,

$$
\operatorname{deg}_{\mathrm{coh}}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=n, \quad \operatorname{deg}_{\mathrm{int}}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=\sum_{i=1}^{n} \operatorname{deg}\left(x_{i}\right)
$$

When R is concentrated in degree 0 and M is a graded B-bimodule, the complex $C^{\bullet}(M)$ is bigraded. Recall that if $f: N \rightarrow M$ is a map of graded B-bimodules, we say that f is homogeneous of internal degree m if $\operatorname{deg}(f(x))=\operatorname{deg}(x)+m$ for all x in N.

We let $C_{(m)}^{n}(M) \subset C^{n}(M)$ be the R-submodule of homogeneous maps of internal degree m. It is easy to check that δ preserves m, so $C^{\bullet}(M)$ is a direct sum of complexes with fixed internal degree,

$$
C^{\bullet}(M)=\bigoplus_{m \in \mathbb{Z}} C_{(m)}^{\bullet}(M), \quad H H^{\bullet}(M)=\bigoplus_{m \in \mathbb{Z}} H H_{(m)}^{\bullet}(M)
$$

In cases when we have fixed the internal degree m and it does not cause ambiguity in later sections, we will suppress m also in the notation and write simply $C^{\bullet}(M)$ and $H H^{\bullet}(M)$.

II.2. The normalized bar complex and duality

Let \mathbb{K}, B, R, B_{+}be as in Section II.2.. We define the chain complex $\operatorname{Bar}_{\bullet}^{R}(B)$ as

$$
\operatorname{Bar}_{n}^{R}(B):=B_{+}^{\otimes_{R} n}, n \geq 0
$$

with differential defined by

$$
d\left(x_{1} \otimes \cdots x_{n}\right)=\sum_{i=1}^{n-1} x_{1} \otimes \cdots \otimes x_{i} x_{i+1} \otimes \cdots \otimes x_{n}
$$

This is the normalized bar complex of B over R, which we denote $H B_{\bullet}^{R}(B)$. When R is understood we will write $\operatorname{Bar}_{\bullet}(B)$ and $H B \bullet(B)$.

The complex Bar. (B) has the bigrading of $T\left(B_{+}\right)$described in Section II.1.. We let $\operatorname{Bar}_{n}^{(m)}(B)$ be the space of tensors of internal degree m.

Remark II.2.1. In general, when V is a chain (or cochain) space with an internal grading, we will write $V^{(m)}$ (or $V_{(m)}$, respectively) to denote the subspace of chains with internal degree m.

The differential d preserves the internal grading, so $\operatorname{Bar}_{\bullet}(B)$ is a direct sum of complexes,

$$
\operatorname{Bar}_{\bullet}(B)=\bigoplus_{m \in \mathbb{Z}} \operatorname{Bar}_{\bullet}^{(m)}(B)
$$

When the internal degree is fixed and it does not cause ambiguity, we will suppress m in the notation and write simply $\operatorname{Bar}_{\bullet}(B)$ and $H B_{\bullet}(B)$.

Let B be graded, M a graded B bimodule, and $C^{\bullet}(M)$ the Hochschild complex reduced over R. When the first and last terms of the Hochschild differential vanish, there is an isomorphism of complexes

$$
\left[\operatorname{Bar}_{\bullet}(B)\right]^{*} \otimes M \xrightarrow{\sim} C^{\bullet}(B, M)
$$

since in this case $\delta f=f \circ d$ for $f \in C^{n}(M)$. When M is concentrated in a single degree k, we have more specifically

$$
\left[\operatorname{Bar}_{\bullet}^{(m)}(B)\right]^{*} \otimes M \xrightarrow{\sim} C_{(k-m)}^{\bullet}(B, M)
$$

II.3. A_{∞}-algebras

We use [10] as a reference. Let \mathbb{K} be a field, V a graded \mathbb{K}-vector space. An A_{∞} structure on V is a collection of maps $m_{n} \in \operatorname{Hom}_{\mathbb{K}}\left(V^{\otimes_{\mathbb{K}} n}, V\right)$ of internal degree $2-n$ for each $n \geq 1$, which satisfy the compatibility relations:

$$
\begin{equation*}
\sum_{n=r+s+t}(-1)^{r+s t} m_{u}\left(\mathbf{1}^{\otimes r} \otimes m_{s} \otimes \mathbf{1}^{\otimes t}\right)=0 \tag{II.1}
\end{equation*}
$$

for each $n \geq 1$, where $u=r+1+t$. We call the relation in which $r+s+t=k$ the A_{∞}-relation of order k. The space V endowed with such maps is called an A_{∞}-algebra. We denote this space by (V, m), where $(m)=\left\{m_{n}\right\}_{n=1}^{\infty}$ is an A_{∞}-structure on V.

Remark II.3.1. If $|g|$ is the internal degree of a graded map g and $|x|$ is the internal degree of a tensor x, we use the sign convention that $(f \otimes g)(x \otimes y)=(-1)^{|g||x|} f(x) \otimes g(y)$.

An A_{∞}-structure is called minimal if $m_{1}=0$. The A_{∞}-relation of order 1 implies that m_{1} has internal degree 1 and $m_{1}^{2}=0$, so $\left(V, m_{1}\right)$ is a complex. We denote its cohomology by $H^{*} V$. The algebra V with multiplication $m_{2}\left(\right.$ denoted $\left.\left(V, m_{2}\right)\right)$ is not associative in general, but the A_{∞}-relation of order 3 implies that if either $m_{1}=0$ or $m_{3}=0$, then m_{2} is associative. In particular, m_{2} induces a multiplication on $H^{*} V$ such that $\left(H^{*} V, m_{2}\right)$ is an associative algebra.

Let (V, m) and $\left(V^{\prime}, m^{\prime}\right)$ be two A_{∞}-algebras. A morphism of A_{∞}-algebras is a collection of maps
$f_{n} \in \operatorname{Hom}_{\mathbb{K}}\left(V^{\otimes \mathbb{K} n}, V^{\prime}\right)$ of internal degree $1-n$ for each $n \geq 1$ satisfying the compatibility axioms:

$$
\begin{equation*}
\sum_{n=r+s+t}(-1)^{r+s t} f_{u}\left(\mathbf{1}^{\otimes r} \otimes m_{s} \otimes \mathbf{1}^{\otimes t}\right)=\sum(-1)^{s} m_{r}^{\prime}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{r}}\right), \tag{II.2}
\end{equation*}
$$

where $u=r+1+t$, and the sum on the right is over all $1 \leq r \leq n$ and all decompositions
$n=i_{1}+\cdots+i_{r}$, where we define

$$
s=\sum_{j=1}^{r}(r-j)\left(i_{j}-1\right) .
$$

We denote by $(f):(V, m) \rightarrow\left(V, m^{\prime}\right)$ the A_{∞}-morphism with component maps f_{n}.
As a reference for strict A_{∞}-isomorphisms, we use [20], Section 2.1. Let $(m),\left(m^{\prime}\right)$ be two A_{∞}-structures on V. Then we call a morphism $(f):(V, m) \rightarrow\left(V, m^{\prime}\right)$ a strict $A_{\infty}{ }^{-}$ isomorphism provided $f_{1}=\mathrm{id}_{V}$.

Proposition II.3.2. ([18], Lemma 1.1) Let (V, m) be an A_{∞}-algebra, and $(f)=\left\{f_{n}\right\}_{n=1}^{\infty}$ a collection of \mathbb{K}-linear maps $f_{n}: V^{\otimes n} \rightarrow V$, homogeneous of internal degree $1-n$, with $f_{1}=i d_{V}$. Then there is a unique A_{∞}-structure $\left(m^{\prime}\right)$ on V such that $(f):(V, m) \rightarrow\left(V, m^{\prime}\right)$ is a strict A_{∞}-isomorphism.

In particular, this means that the strict A_{∞}-isomorphisms act on A_{∞}-structures on V in an appropriate sense. In the situation of the proposition, we write $m^{\prime}=f * m$.
([12] 1.2.1.7) Let $f, g:(V, m) \rightarrow\left(V^{\prime}, m^{\prime}\right)$ be two A_{∞}-morphisms. A homotopy between f and g is a collection of maps

$$
h_{n}: V^{\otimes n} \rightarrow V^{\prime}, n \geq 1,
$$

homogeneous of internal degree $-i$ satisfying for each n the equation,

$$
\begin{aligned}
f_{n}-g_{n}= & \sum(-1)^{s} m_{r+1+t}\left(f_{1_{i}} \otimes \cdots \otimes f_{i_{r}} \otimes h_{k} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{t}}\right) \\
& +\sum(-1)^{j k+l} h_{i}\left(\mathbf{1}^{\otimes j} \otimes m_{k} \otimes \mathbf{1}^{\otimes l}\right.
\end{aligned}
$$

where

$$
j+k+l=i_{1}+\cdots+i_{r}+j_{1}+\cdots j_{t}+k=n
$$

and s determines a sign. We denote such a collection by (h). If such an (h) exists for f and g, we say that f and g are homotopic. We will not use these relations explicitly (justifying ignorance of the $\operatorname{sign} s$), but note: 1) homotopy between morphisms is an equivalence relation and 2) a morphism f and any collection (h) of such maps determines a unique morphism g such that (h) is a homotopy from f to $g([20]$, Lemma 2.1). In this case we say that $h * f=g$.

We now return to the situation of Section II.1. where B is a graded \mathbb{K}-algebra, $R \subset B$ is a semi-simple subring concentrated in degree 0 such that $B=R \oplus B_{+}$as an R-bimodule. A minimal A_{∞}-structure on B reduced over R is an A_{∞}-structure on B such that $m_{1}=0, m_{2}$ is the usual multiplication in B, and $m_{n} \in C_{R}^{n}(B, B)$ for $n \geq 3$. For $r \in R$ and $a_{i} \in B$, we require for $n \geq 3$ that

$$
m_{n}\left(a_{1}, \ldots, r, \ldots, a_{n}\right)=0 .
$$

We define morphisms and strict A_{∞}-isomorphisms of such structures by replacing $\otimes_{\mathbb{K}}$ and $\operatorname{Hom}_{\mathbb{K}}$ and \otimes_{R} and Hom_{R} in the above definitions.

II.4. The Lie superalgebra of superderivations

Let V be a graded \mathbb{K}-vector space, $f: T(V) \rightarrow T(V)$ a \mathbb{K}-linear map, homogeneous with respect to the internal grading. We call f a superderivation if for $v_{1}, v_{2} \in T(V)$, we have,

$$
f\left(v_{1} \otimes v_{2}\right)=f\left(v_{1}\right) \otimes v_{2}+(-1)^{\left|v_{1}\right||f|} v_{1} \otimes f\left(v_{2}\right) .
$$

We denote by $\operatorname{Der}_{l} T(V)$ the vector space of superderivations of internal degree l. We define,

$$
\operatorname{Der} T(V):=\bigoplus_{l \in \mathbb{Z}} \operatorname{Der}_{l} T(V)
$$

There is a bracket defined on $\operatorname{Der} T(V)$ which gives it the structure of a Lie superalgebra. For $d_{1} \in \operatorname{Der}_{i} T(V), d_{2} \in \operatorname{Der}_{j} T(V)$, and $d_{3} \in \operatorname{Der}_{k} T(V)$, the bracket is defined by,

$$
\left[d_{1}, d_{2}\right]=d_{1} d_{2}-(-1)^{i j} d_{2} d_{1},
$$

and the Jacobi identity states that

$$
(-1)^{i k}\left[d_{1},\left[d_{2}, d_{3}\right]\right]+(-1)^{i j}\left[d_{2},\left[d_{3}, d_{1}\right]\right]+(-1)^{j k}\left[d_{3},\left[d_{1}, d_{2}\right]=0\right.
$$

II.5. Hochschild cohomology and A_{∞}-structures

We restrict to the case where char $\mathbb{K} \neq 2,3$. Let $n \geq 2$. A minimal A_{n}-structure on a graded \mathbb{K}-vector space V is a collection of maps $m_{i} \in \operatorname{Hom}_{\mathbb{K}}\left(V^{\otimes i}, V\right)$ for $1 \leq i \leq n$, each of internal degree $2-i$, satisfying the A_{∞}-relations of order k for all $k \leq n+1$ (ref. Equation II.1), and such that $m_{1}=0$. Note that the relation of order $n+1$ would typically include the terms,

$$
\pm m_{1}\left(m_{n+1}\right) \pm m_{n+1}\left(\sum_{r+1+t=n+1} \mathbf{1}^{\otimes r} \otimes m_{1} \otimes \mathbf{1}^{t}\right)
$$

but that these terms vanish when $m_{1}=0$. In particular, note that a minimal A_{∞}-structure on V restricts to a minimal A_{n}-structure for all $n \geq 2$. In this section we recall the relationship between Hochschild cohomology of an associative algebra B and minimal A_{n}-structures on B. (See [1], [20])

Since $m_{1}=0$, the A_{∞}-relation of order $k+1 \geq 3$ can be rewritten in the form,

$$
m_{2}\left(1 \otimes m_{k} \pm m_{k} \otimes 1\right)-m_{k}\left(\sum_{r+2+t=k+1}(-1)^{r+1} \mathbf{1}^{\otimes r} \otimes m_{2} \otimes \mathbf{1}^{\otimes s}\right)=\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)
$$

where Φ_{k} is a quadratic expression. Since m_{2} is an associative multiplication, the left side of this equation is exactly δm_{k}, where δ is the Hochschild differential; that is, we have the equation

$$
\delta m_{k}=\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)
$$

Lemma II.5.1. ([1], Lemma 2.3) Assume the maps $\left\{m_{i} \mid 1 \leq i \leq k-1\right\}$ determine an $A_{k-1^{-}}$ structure on V. Then with Φ_{k} as defined above,

1. $\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right): V^{\otimes k+1} \rightarrow V$ is homogeneous of internal degree $2-k$; and
2. $\delta\left(\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)\right)=0$.

That is, the A_{k-1}-structure provides a particular cocycle, $\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)$. We can find m_{k} to extend this to an A_{k}-structure if the relation of order $k+1$ can be solved for m_{k}, i.e., if this cocycle is a coboundary. Therefore this result implies that if $H H_{(2-k)}^{k+1}(V)$ vanishes, any A_{k-1}-structure can be extended to an A_{k}-structure. Statement (1) is a trivial check, but we include a proof of statement (2).

Proof. Each given $m_{i}, 1 \leq i \leq k-1$, determines a map $\hat{m_{i}}: T(V) \rightarrow V$, homogeneous of internal degree $2-i$, equal to m_{i} on $V^{\otimes i}$ and zero otherwise. Let $S: V \rightarrow V$ be the grading shift of degree -1 , i.e., $(S V)_{j}=V_{j+1}$. Following [15] §4, we let $W=(S V)^{*}$. Then each \hat{m}_{i} has a dual map $\hat{d}_{i}: W \rightarrow T(W)$ of internal degree 1 , which can be uniquely extended to a superderivation $d_{i}: T(W) \rightarrow T(W)$ of internal degree 1 .

The A_{∞}-constraints arise from certain relations among the brackets of the superderivations $d_{i} \in \operatorname{Der}_{1} T(W)$. The Lie bracket $[-,-]_{D}$ on superderivations (see Section II.4.) corresponds to the Gerstenhaber bracket ([5]) $[-,-]_{G}$ on Hochschild cochains in the dual picture. We suppress G and D when no confusion will arise. If δ is the Hochschild differential, then on cochains we have $\delta f=\left[m_{2}, f\right]_{G}$ and,

$$
\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)= \begin{cases}-\left[m_{3}, m_{k-1}\right]-\left[m_{4}, m_{k-2}\right]+ \tag{II.3}\\ \cdots-\left[m_{(k+1) / 2}, m_{(k+3) / 2}\right] & \text { if } k \text { is odd } \\ \\ -\left[m_{3}, m_{k-1}\right]-\left[m_{4}, m_{k-2}\right]- \\ \cdots-\frac{1}{2}\left[m_{(k+2) / 2}, m_{(k+2) / 2}\right] & \text { if } k \text { is even. }\end{cases}
$$

(Here we need that 2 is invertible in \mathbb{K}.) For compactness, we will write Φ_{k} in place of $\Phi_{k}\left(m_{3}, \ldots, m_{k-1}\right)$. The condition that $\left[m_{2}, \Phi_{k}\right]_{G}=0$ is dual to the condition that $\left[d_{2}, \Phi_{k}^{*}\right]_{D}=$ 0 . Since Φ_{k} can be written as a sum of brackets of the m_{i}, dualizing presents Φ_{k}^{*} as a sum of brackets of derivations, making Φ_{k}^{*} itself a derivation. We show that $\left[d_{2}, \Phi_{k}^{*}\right]_{D}=0$ by induction in k.

The base case $k=3$ is obvious since $\Phi_{3}=\Phi_{3}^{*}=0$. Now suppose that superderivations d_{2}, \ldots, d_{k-1} are defined such that $\operatorname{deg}_{\text {int }} d_{j}=1$ and $\left[d_{2}, d_{j}\right]=\Phi_{j}^{*}$ for all $j<k$ with k even. Since each $d_{j} \in \operatorname{Der}_{1} T(W)$, the bracket and Jacobi identity reduce to,

$$
\left[d_{1}, d_{2}\right]=\left[d_{2}, d_{1}\right]=d_{1} d_{2}+d_{2} d_{1}, \quad\left[d_{1},\left[d_{2}, d_{3}\right]\right]+\left[d_{2},\left[d_{3}, d_{1}\right]\right]+\left[d_{3},\left[d_{1}, d_{2}\right]\right]=0
$$

Then

$$
\begin{aligned}
{\left[d_{2}, \Phi_{k}^{*}\right]=} & -\left[d_{2},\left[d_{3}, d_{k-1}\right]+\left[d_{4}, d_{k-2}\right]+\cdots+\frac{1}{2}\left[d_{(k+2) / 2}, d_{(k+2) / 2}\right]\right] \\
= & {\left[d_{3},\left[d_{2}, d_{k-1}\right]+\left[d_{k-1},\left[d_{2}, d_{3}\right]\right]+\left[d_{4},\left[d_{2}, d_{k-2}\right]\right]+\left[d_{k-2},\left[d_{2}, d_{4}\right]\right]+\right.} \\
& \cdots+\left[d_{(k+2) / 2},\left[d_{2}, d_{(k+2) / 2}\right]\right] \\
= & \sum_{i=3}^{k-1}\left[d_{i}, \Phi_{k+2-i}^{*}\right]
\end{aligned}
$$

When Φ_{k+2-i}^{*} are expanded as in equation II.3, the sum on the right will have terms:

1. $-\left[d_{i},\left[d_{j}, d_{t}\right]\right],-\left[d_{j},\left[d_{i}, d_{t}\right]\right],-\left[d_{t},\left[d_{i}, d_{j}\right]\right]$ where $i+j+t=k+4$ and i, j, t are all distinct.

Each term appears once, in the expansion of $\left[d_{i}, \Phi_{k+2-i}^{*}\right],\left[d_{j}, \Phi_{k+2-j}^{*}\right]$ and $\left[d_{k}, \Phi_{k+2-t}^{*}\right]$ respectively, and their sum vanishes by the Jacobi identity.
2. $-\left[d_{i},\left[d_{i}, d_{j}\right]\right],-\frac{1}{2}\left[d_{j},\left[d_{i}, d_{i}\right]\right]$ where $2 i+j=k+4$ and $i \neq j$. Each term appears once, in $\left[d_{i}, \Phi_{k+2-i}^{*}\right]$ and $\left[d_{j}, \Phi_{k+2-j}^{*}\right]$, respectively, and their sum vanishes by the Jacobi identity. By the Jacobi identity we have

$$
-\frac{1}{2}\left[d_{j},\left[d_{i}, d_{i}\right]\right]=\left[d_{i},\left[d_{i}, d_{j}\right]\right]
$$

so these terms cancel.
3. $-\left[d_{i},\left[d_{i}, d_{i}\right]\right]$ where $3 i=k+4$. By the Jacobi identity we have that $3\left[d_{i},\left[d_{i}, d_{i}\right]\right]=0$, so $\left[d_{i},\left[d_{i}, d_{i}\right]\right]=0$ since char $\mathbb{K} \neq 3$.

This completes the step for k even. When k is odd we have

$$
\begin{aligned}
{\left[d_{2}, \Phi_{k}^{*}\right] } & =-\left[d_{2},\left[d_{3}, d_{k-1}\right]+\cdots+\left[d_{(k+1) / 2}, d_{(k+3) / 2}\right]\right] \\
& =\sum_{i=3}^{k-1}\left[d_{i},\left[d_{2}, d_{k+2-i}\right]\right] \\
& =\sum_{i=3}^{k-1}\left[d_{i}, \Phi_{k+2-i}^{*}\right]
\end{aligned}
$$

with the same result as the k even case.

Lemma II.5.2. ([20], Lemma 2.2) Let (m) and $\left(m^{\prime}\right)$ be two minimal A_{∞}-structures on V whose restriction to A_{k-1}-structures are equal for some $k \geq 3$. Then,

1. $m_{k}-m_{k}^{\prime}$ is a Hochschild cocycle; and
2. $m_{k}-m_{k}^{\prime}$ is a Hochschild coboundary if and only if there exists a strict A_{∞}-isomorphism $(f): V \rightarrow V$ such that $f * m_{i}=m_{i}^{\prime}$ for all $i \leq k$.

Therefore if $H H_{(2-k)}^{k}(V)=0$, all extensions of a particular A_{k-1}-structure on V to A_{k}-structures are equivalent in this precise sense. The details of the proof of this lemma also show that we should take define f by $f_{1}=\operatorname{id}_{V} ; f_{k-1}$ such that $\delta f_{k-1}=m_{k}-m_{k}^{\prime}$; and $f_{n}=0$ otherwise.

Lemma II.5.3. ([20], Lemma 2.3) Let $(m),\left(m^{\prime}\right)$ be two minimal A_{∞}-structures on V and let $(f),\left(f^{\prime}\right)$ be strict A_{∞}-isomorphisms such that 1) $f * m=f^{\prime} * m=m^{\prime}$ and 2) $f_{i}=f_{i}^{\prime}$ for $1 \leq i<k$, where $k \geq 2$. Then,

1. $f_{k}-f_{k}^{\prime}$ is a Hochschild cocycle; and
2. $f_{k}-f_{k}^{\prime}$ is a Hochschild coboundary if and only if there is a homotopy h such that $h * f_{i}=f_{i}^{\prime}$ for all $i \leq k$.

Therefore if $H H_{(1-k)}^{k}(V)$ vanishes and f_{1}, \ldots, f_{k-1} (the start of an A_{∞}-morphism) are given, the choice of f_{k} which satisfies 1) and 2) in the statement of the lemma is unique up to homotopy.

II.6. The spectral sequence of a filtration

Let $\left(C_{\bullet}, d\right)$ be a chain complex $\left(d: C_{n} \rightarrow C_{n-1}\right)$ with $\left\{F_{i} C_{\bullet}\right\}_{i \in \mathbb{Z}}$ an ordered family of subcomplexes,

$$
\cdots \supset F_{i} C \supset F_{i+1} C \supset F_{i+2} C \supset \cdots
$$

Such a family is called a decreasing filtration of C_{\bullet}. The filtration is called exhaustive if $C \bullet=\bigcup_{i \in \mathbb{Z}} F_{i} C_{\bullet} ;$ bounded below if for each n there exists an integer s such that $F_{i} C_{n}=0$ for
all $i \geq s$; bounded above if for each n there exists an integer t such that and $F_{i} C_{n}=C_{n}$ for all $i \leq t$; and bounded if it is bounded above and bounded below.

Theorem II.6.1. ([25], Thm. 5.4.1) A filtration F of a chain complex C naturally determines a spectral sequence starting with $E_{p q}^{0}=F_{p} C_{p+q} / F_{p+1} C_{p+q}$ and $E_{p q}^{1}=H_{p+q}\left(E_{p *}^{0}\right)$.

The differential $d_{0}^{p q}$ in the spectral sequence is induced by the differential d in C, and is easy to understand. Let $x \in F_{i} C_{n} / F_{i+1} C_{n}$ (on the zero page of the sequence). Let \tilde{x} be a lifting of x in $F_{i} C_{n}$. Then $d_{0}^{p q}(x)$ is the class of $d(\tilde{x})$ in $F_{i} C_{n-1} / F_{i+1} C_{n-1}$, which is well-defined since $F_{i+1} C$ is a complex. Then $d_{0}^{p q}(x)=0$ (that is, x represents a class in $E_{p q}^{1}$) if and only if $d(\tilde{x}) \in F_{i+1} C_{n-1}$. Then we can consider $d_{1}^{p q}(x)$ similarly, with an appropriately defined target space.

Theorem II.6.2. ([25]), Thm. 5.5.1) Suppose that the filtration on C is either a) bounded or b) bounded below and exhaustive. Then the spectral sequence from Theorem II.6.1 converges to $H_{*}(C)$.

II.7. Eisenstein series

We use [17] as the main reference. Let T be the space of all oriented bases of \mathbb{C} as an \mathbb{R}-vector space, and let $k \in \mathbb{Z}$. A C^{∞}-function $F: T \rightarrow \mathbb{C}$ is called modular if 1) it is invariant under the action of $\mathrm{SL}(2, \mathbb{Z})$ on T and 2) $F(1, \tau)=f\left(e^{2 \pi i \tau}\right)$, where $f(q)$ is meromorphic at $q=0$. We say that F has weight k provided,

$$
F\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{k} F\left(\omega_{1}, \omega_{2}\right)
$$

for all $\left(\omega_{1}, \omega_{2}\right) \in T$.
For $\left(\omega_{1}, \omega_{2}\right) \in T$, let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$. The Eisenstein series $e_{2 k}$ for $k \geq 2$ is defined as,

$$
e_{2 k}\left(\omega_{1}, \omega_{2}\right)=\sum_{\omega \in \Lambda /\{0\}} \frac{1}{\omega^{2 k}}
$$

The function $e_{2 k}$ is modular of weight $2 k$. We consider the analogous series for $k=1$ defined
as

$$
e_{2}\left(\omega_{1}, \omega_{2}\right)=\sum_{m} \sum_{n ; n \neq 0 \text { if } m=0} \frac{1}{\left(m \omega_{2}+n \omega_{1}\right)^{2}} .
$$

Unfortunately e_{2} is not modular, but the correction

$$
e_{2}^{*}\left(\omega_{1}, \omega_{2}\right)=e_{2}\left(\omega_{1}, \omega_{2}\right)-\frac{\pi}{a(\Lambda)} \cdot \frac{\overline{\omega_{1}}}{\omega_{1}}
$$

where $a(\Lambda)=\operatorname{Im}\left(\overline{\omega_{1}} \omega_{2}\right)$ is the area of \mathbb{C} / Λ, is $\operatorname{SL}(2, \mathbb{Z})$-invariant of weight 2 . For convenience we set $e_{2 k}^{*}=e_{2 k}$ for $k \geq 2$.

For integers m, n of the same parity, we set

$$
f_{m, n}(\Lambda)=\left(\frac{\pi}{a(\Lambda)}\right)^{m} \sum_{\omega \in \Lambda /\{0\}} \frac{\bar{\omega}^{m}}{\omega^{n}} \exp \left(-\frac{\pi}{a(\Lambda)}|\omega|^{2}\right) .
$$

Then for integers $a, b \geq 0$ of different parity we set

$$
g_{a, b}(\Lambda)=\sum_{k \geq 0} k!\left(\binom{a}{k}+\binom{b}{k}\right) f_{a+b-k, k+1}(\Lambda) .
$$

When m, n are of different parity or a, b the same parity, then $f_{m, n}(\Lambda)=g_{a, b}(\Lambda)=0$. It is shown in [17] that $g_{a, b}$ is a polynomial in $e_{2}^{*}, e_{4}, \ldots, e_{a+b+1}$ with rational coefficients. A few of these polynomial relations we will use later. When the lattice is understood, we will write $e_{2 k}$ in place of $e_{2 k}(\Lambda), g_{a, b}$ in place of $g_{a, b}(\Lambda)$, and so on.

Lemma II.7.1.

1. $g_{3,0}=6 e_{4}$,
2. $g_{2,1}=-\left[e_{2}^{*}\right]^{2}+5 e_{4}$,
3. $g_{5,0}=120 e_{6}$,
4. $g_{4,1}=-5 g_{3,0} g_{1,0}+\frac{7}{10} g_{5,0}$,
5. $g_{3,2}=-2 g_{2,1} g_{1,0}+\frac{5}{6} g_{4,1}$,

Proof. These follow immediately from [17] Prop. 2.6.1.

When $C=\mathbb{C} /\langle\mathbb{Z} \oplus \tau \mathbb{Z}\rangle$ is a complex elliptic curve, we set $\Lambda=\mathbb{Z}+\tau \mathbb{Z}$ for the purpose of computing the Eisenstein series of the curve. We set $t=\frac{\operatorname{Im} \tau}{\pi}$, and for non-negative integers a, b, c, d define

$$
M(a, b, c, d):=(-1){\underset{2}{(a+b+c+d+1})}_{a!b!c!d!}^{a} \cdot t^{a+b+c+d+1} \cdot g_{a+c, b+d}(\Lambda)
$$

Note that the expression $M(a, b, c, d)$ is invariant under transpositions of a and c, and of b and d.

II.8. Massey products in a triangulated category

We use [19] as the reference. Let \mathcal{D} be a triangulated category, with X, Y, Z, T objects in $\mathcal{D}, f \in \operatorname{Hom}(X, Y), g \in \operatorname{Hom}(Y, Z[1]), h \in \operatorname{Hom}(Z, T)$ be morphisms such that $g \circ f=0$. We define the Massey product

$$
\operatorname{MP}(f, g, h) \in \operatorname{coker}(\operatorname{Hom}(X, Z) \oplus \operatorname{Hom}(Y, T)) \xrightarrow{(h, f)} \operatorname{Hom}(X, T) .
$$

Let

$$
Z \xrightarrow{\alpha} C \xrightarrow{\beta} Y \xrightarrow{g} Z[1] \rightarrow \cdots
$$

be a distinguished triangle in \mathcal{D}. Then by the axioms of the triangulated category there exist liftings $\tilde{f} \in \operatorname{Hom}(X, C)$ and $\tilde{h} \in \operatorname{Hom}(C, T)$ such that

$$
\beta \circ \tilde{f}=f, \tilde{h} \circ \alpha=h
$$

Then we define

$$
\operatorname{MP}(f, g, h)=[\tilde{h} \circ \tilde{f}] .
$$

CHAPTER III

HOCHSCHILD COHOMOLOGY AND THE ELLIPTIC CURVE

Let E be an elliptic curve with structure sheaf \mathcal{O} over an algebraically closed field \mathbb{K} with char $\mathbb{K} \neq 2,3$. Let $D^{b}(E)$ be the bounded derived category of coherent sheaves on E. Let P be a closed point on $E, \mathbb{K}(P)=\mathcal{O}(P) / \mathcal{O}$ the skyscraper sheaf at P. Let $G=\mathcal{O} \oplus \mathbb{K}(P)$, and $B(E):=\operatorname{Ext}^{*}(G, G)$.

We realize $B(E)$ as the cohomology of a differential graded (dg-) algebra as follows. We construct an injective resolution of $G, G \rightarrow I_{\mathbf{\bullet}}$. Then $A=\operatorname{Hom}\left(I_{\mathbf{\bullet}}, I_{\mathbf{\bullet}}\right)$ is a dg-algebra whose cohomology if $B(E)$. We consider A as an A_{∞}-algebra with $m_{n}=0$ for $n \geq 3$. Kadeishvili's
 induced by the multiplication in A and $(B(E), m)$ is $A_{\infty^{-}}$quasi-isomorphic to A. (An $A_{\infty^{-}}$ quasi-isomorphism is an A_{∞}-morphism such that f_{1} is a quasi-isomorphism of complexes.) Moreover, such (m) is unique up to (non-unique) strict equivalence.

Thus $B(E)$ inherits an A_{∞}-structure. By comments in the Introduction, it is clear that the equivalence class of this A_{∞}-structure depends on E. Since $m_{1}=0$, the remarks in Section II.3. imply that $\left(B(E), m_{2}\right)$ is an associative algebra, and it is not hard to see that the isomorphism class of this associative algebra is independent of E. The discussion in Section II.5. implies that extensions of an associative algebra to an A_{∞}-algebra are governed by Hochschild cohomology in cohomological degree n and internal degrees $1-n, 2-n$, and $3-n$.

The goal of this chapter is calculate the Hochschild cohomology of $\left(B(E), m_{2}\right)$ in these internal degrees. The main result is Theorem III.4.1.

III.1. The associative algebra B

With notation as above, let $B=\operatorname{Ext}^{*}(G(E), G(E))$ considered as an associative algebra. Then B is a direct sum (as a \mathbb{K}-vector space) of components:
(i) $\operatorname{Hom}(\mathcal{O}, \mathcal{O})$ and $\operatorname{Hom}(\mathbb{K}(P), \mathbb{K}(P))$, both one-dimensional generated by the identity maps $\operatorname{id}_{\mathcal{O}}, \operatorname{id}_{P} ;$
(ii) $\operatorname{Hom}(\mathcal{O}, \mathbb{K}(P))$, a one-dimensional space, generated by a function θ;
(iii) $\operatorname{Ext}^{1}(\mathbb{K}(P), \mathcal{O})$, a one-dimensional space generated by a function η;
(iv) $\operatorname{Ext}^{1}(\mathbb{K}(P), \mathbb{K}(P))$ and $\operatorname{Ext}^{1}(\mathcal{O}, \mathcal{O})$, both isomorphic to the one-dimensional space $H^{1}(\mathcal{O})$.

By Serre duality the products $\theta \eta=\xi \in \operatorname{Ext}^{1}(\mathcal{O}, \mathcal{O})$ and $\eta \theta=\psi \in \operatorname{Ext}^{1}(\mathbb{K}(P), \mathbb{K}(P))$ are nonzero, so we take ξ and ψ as generators of these spaces. For degree reasons all other products (except those involving the identities) are zero. Figure 1 gives a diagrammatic representation of B.

Figure 1: Arrow diagram for B
B is a graded \mathbb{K}-algebra, $B=B_{0} \oplus B_{1}$, where

$$
B_{0}=\left\langle\operatorname{id}_{P}, \operatorname{id}_{\mathcal{O}}, \theta\right\rangle, B_{1}=\langle\eta, \xi, \psi\rangle
$$

Let $R=\left\langle\operatorname{id}_{P}, \operatorname{id}_{\mathcal{O}}\right\rangle \subset B$. Then $R \cong \mathbb{K} \times \mathbb{K}$ is a semi-simple subring of B, and we consider B as an R-algebra. As R-bimodules,

$$
B \cong R \oplus B / R, \quad B / R \cong B_{+}=\langle\theta, \eta, \xi, \psi\rangle,
$$

so B is augmented over R in the sense of Section II.1..

III.2. A filtration of the reduced Hochschild cochain complex

Let $C_{R}^{\bullet}(B, B)$ be the Hochschild cochain complex of B with coefficients in B, reduced over R. The reader may refer to Section II.1. for definitions, conventions, and notation concerning Hochschild cohomology.

We consider the decreasing filtration on B as a B-bimodule,

$$
F_{0}=B \supset F_{1}=B_{+} \supset F_{2}=\langle\xi, \psi\rangle \supset F_{3}=0
$$

For any fixed internal degree m, this provides a decreasing filtration of the Hochschild cochain complex, $C_{(m)}^{\bullet}(B)$, by Hochschild complexes of the sub-bimodules F_{i},

$$
C_{(m)}^{\bullet}\left(F_{0}\right) \supset C_{(m)}^{\bullet}\left(F_{1}\right) \supset C_{(m)}^{\bullet}\left(F_{2}\right) \supset 0 .
$$

We will use the spectral sequence on Hochschild cohomology associated to this filtration (see Section II.6.). Since the filtration is bounded, the sequence converges to $H H_{(m)}^{\bullet}(B)$. From here we suppress m in the notation when it will cause no confusion. Isomorphisms

$$
C^{\bullet}\left(F_{i}\right) / C^{\bullet}\left(F_{i+1}\right) \cong C^{\bullet}\left(F_{i} / F_{i+1}\right)
$$

imply that on the zero page of this sequence we will compute $H H^{n}\left(F_{i} / F_{i+1}\right)$ for $i=0,1,2$.
III.2.1. $H H^{\bullet}\left(F_{2}\right)$ and $H H^{\bullet}\left(F_{0} / F_{1}\right)$

First, we reduce to a calculation on a subcomplex of the bar complex (see Section II.2.). Since $F_{2}=\langle\xi\rangle \oplus\langle\psi\rangle$ as a B-bimodule,

$$
C^{\bullet}\left(F_{2}\right)=C^{\bullet}(\langle\psi\rangle) \oplus C^{\bullet}(\langle\xi\rangle)
$$

as complexes. For the graded B-bimodule $\langle\xi\rangle$ concentrated in degree 1 , the concluding remark in Section II.2. implies that,

$$
C_{(m)}^{\bullet}(\langle\xi\rangle) \cong\left[\operatorname{Bar}_{\bullet}^{(1-m)}(B)\right]^{*} \otimes \xi \cong\left[\operatorname{id}_{\mathcal{O}} \otimes \operatorname{Bar}_{\bullet}^{(1-m)}(B) \otimes \operatorname{id}_{\mathcal{O}}\right]^{*} \otimes \xi
$$

So we compute homology of the complex,

$$
\operatorname{Bar}_{\bullet}(\mathcal{O}):=\operatorname{id}_{\mathcal{O}} \otimes_{R} \operatorname{Bar}_{\bullet}(B) \otimes_{R} \operatorname{id}_{\mathcal{O}}
$$

We interpret this complex as tensors of composable paths in Figure 1 starting and ending at the left vertex.

Proposition III.2.1. Let $H B_{\bullet}^{(m)}(\mathcal{O})$ be the homology of the complex $\operatorname{Bar}_{\bullet}^{(m)}(\mathcal{O})$. Then,

1. $\operatorname{dim} H B_{n}^{(n)}(\mathcal{O})= \begin{cases}1 & \text { if } n=0, \\ 0 & \text { otherwise } .\end{cases}$
2. $\operatorname{dim} H B_{n}^{(n-1)}(\mathcal{O})= \begin{cases}1 & \text { if } n=3,4, \\ 0 & \text { otherwise. }\end{cases}$
3. $\operatorname{dim} H B_{n}^{(n-2)}(\mathcal{O})= \begin{cases}1 & \text { if } n=7,8, \\ 0 & \text { otherwise. }\end{cases}$
4. $\operatorname{dim} H B_{n}^{(n-3)}(\mathcal{O})= \begin{cases}1 & \text { if } n=11,12, \\ 0 & \text { otherwise. }\end{cases}$

Remark III.2.2. We use juxtaposition in place of \otimes to represent tensors in $\operatorname{Bar} .(B)$.
For $m \geq 0$, we consider the decreasing filtration on the complex $\operatorname{Bar}_{\bullet}^{(m)}(\mathcal{O})$,

$$
F^{0} \operatorname{Bar}_{\bullet}^{(m)}(\mathcal{O}) \supset F^{1} \operatorname{Bar}_{\bullet}^{(m)}(\mathcal{O}) \supset \cdots,
$$

where,

$$
F^{i} \operatorname{Bar}_{n}^{(m)}(\mathcal{O})=\left\langle\xi^{k_{1}} \theta \psi^{c_{1}} \eta \xi^{k_{2}} \cdots \eta \xi^{k_{n-m+1}} \mid \sum k_{j} \geq i\right\rangle
$$

For fixed n, m, the space $F^{i} \operatorname{Bar}_{n}^{(m)}(\mathcal{O})=0$ for $i \gg 0$; so the filtration is bounded and the spectral sequence of the filtration therefore converges to the homology of the complex. On the zero page of this sequence, there are complexes $\left(\operatorname{gr}_{i} \mathcal{O}\right){ }_{\bullet}^{(m)}$ for each $i \geq 0$, where

$$
\left(\operatorname{gr}_{i} \mathcal{O}\right)_{n}^{(m)}=F^{i} \operatorname{Bar}_{n}^{(m)}(\mathcal{O}) / F^{i+1} \operatorname{Bar}_{n}^{(m)}(\mathcal{O}) \cong\left\langle\xi^{k_{1}} \theta \psi^{c_{1}} \eta \xi^{k_{2}} \cdots \theta \xi^{k_{n-m+1}} \mid \sum k_{j}=i\right\rangle
$$

We need the following lemma.
Lemma III.2.3. Let $H B_{\bullet}^{(m)}\left(g r_{i} \mathcal{O}\right)$ be the bar homology of the complex $\left(g r_{i} \mathcal{O}\right){ }_{\bullet}^{(m)}$. Then,

1. $H B_{n-1}^{(n-1)}\left(g r_{n-1} \mathcal{O}\right)=\left\langle\xi^{n-1}\right\rangle$;
2. $H B_{n}^{(n-1)}\left(g r_{n-2} \mathcal{O}\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \mid a+b=n-2\right\rangle$;
3. $H B_{n+1}^{(n-1)}\left(g r_{n-3} \mathcal{O}\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \eta \xi^{c} \mid a+b+c=n-3, b \neq 0\right\rangle$;
4. $H B_{n+2}^{(n-1)}\left(g r_{n-4} \mathcal{O}\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \eta \xi^{c} \theta \eta \xi^{d} \mid a+b+c+d=n-4, b, c \neq 0\right\rangle$;
5. $H B_{n+3}^{(n-1)}\left(g r_{n-5} \mathcal{O}\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \eta \xi^{c} \theta \eta \xi^{d} \theta \eta \xi^{\dagger} \mid a+b+c+d+e=n-5, b, c, d \neq 0\right\rangle$;
6. These are the only nonzero spaces on page one in internal degree $n-1$.

Proof. By Lemma A.1,

$$
\left(\mathrm{gr}_{i} \mathcal{O}\right) \bullet_{\bullet}^{(n-1)}=X_{\bullet}^{(n-1)} \oplus Y_{\bullet}^{(n-1)},
$$

and the only homology of this complex is the space $X_{l}^{(n-1)}$. We therefore find the values of l and i such that $X_{l}^{(n-1)}$ is nonzero.

Suppose $\xi^{a_{0}} \theta \eta \xi^{a_{1}} \cdots \theta \eta \xi^{a_{j}} \in\left(\operatorname{gr}_{i} \mathcal{O}\right)_{l}^{(n-1)}$. Then there are j factors of θ in this string, so the internal degree of this tensor is $l-j=n-1$; thus $j=l-n+1$. The sum of powers of ξ must be $i=l-2 j$, so

$$
i=l-2(l-n+1)=2 n-l-2 .
$$

Substituting $l=n-1, n, n+1, n+2, n+3$ gives the values of i in the lemma.
Proof of Proposition III.2.1. Lemma III.2.3 implies that on the first page of the spectral sequence there is one nontrivial complex,

$$
\begin{align*}
& \cdots \rightarrow H B_{n+3}^{(n-1)}\left(\mathrm{gr}_{n-5} \mathcal{O}\right) \rightarrow H B_{n+2}^{(n-1)}\left(\mathrm{gr}_{n-4} \mathcal{O}\right) \rightarrow H B_{n+1}^{(n-1)}\left(\mathrm{gr}_{n-3} \mathcal{O}\right) \rightarrow \tag{III.1}\\
& H B_{n}^{(n-1)}\left(\mathrm{gr}_{n-2} \mathcal{O}\right) \rightarrow H B_{n-1}^{(n-1)}\left(\operatorname{gr}_{n-1} \mathcal{O}\right) \rightarrow 0 . \tag{III.2}
\end{align*}
$$

For $n=1$, only the last space in III. 1 is nonzero, $H B_{0}^{(0)}\left(\mathrm{gr}_{n-1} \mathcal{O}\right)=\langle 1\rangle$, so this space survives in the limit, proving part (1) for $n=0$. From here we assume $n>1$. Let d_{1} be the differential
in III.1. Since,

$$
d_{1}\left(\xi^{k_{1}} \theta \eta \xi^{k_{2}} \cdots \eta \xi^{k_{m}}\right)=\sum_{i=1}^{m-1} \pm \xi^{k_{1}} \theta \cdots \xi^{k_{i-1}} \theta \eta \xi^{k_{i}+k_{i+1}+1} \cdots \eta \xi^{k_{j}}
$$

we can represent the differential as,

$$
\left(k_{1}, \ldots, k_{j}\right) \mapsto\left(k_{1}+k_{2}+1, k_{3}, \ldots, k_{j}\right) \pm \cdots \pm\left(k_{1}, \ldots, k_{j-1}+k_{j}+1\right)
$$

We map the complex III. 1 to a subcomplex of the simplex as in the proof of Lemma A.1. We make the change of variable $k_{i}^{\prime}=k_{i}$, then map,

$$
\left(k_{1}, \cdots, k_{j}\right) \mapsto\left(k_{1}^{\prime}, \cdots, k_{j}^{\prime}\right) \mapsto\left(k_{1}^{\prime}, k_{1}^{\prime}+k_{2}^{\prime}, \cdots, \sum_{i=1}^{j-1} k_{i}^{\prime}\right)
$$

In our case, $\sum k_{i}=n-j$; thus $\sum_{i=1}^{j-1} k_{i}^{\prime} \leq n-1$, so consider this a map to the $(n-1)$-simplex. Since we assume $k_{i} \geq 1$ for $2 \leq i \leq j-1$, it follows that the corresponding $k_{i}^{\prime} \geq 2$; thus the image of the map consists of the subcomplex of the $(n-1)$-simplex in which we require that the difference between adjacent vertices be at least 2 . So our complex maps isomorphically to the dimension 3, 2, 1, $0,-1$ part of the simplicial complex $\Delta[n-1]$ from Appendix B.

From Proposition B.1, the resulting simplicial complex has no homology in dimension -1 , so III. 1 has none in external degree $n-1$ when $n>1$. The simplicial complex has onedimensional homology: (reduced) in dimension 0 for $n-1=2,3$, so III. 1 has one-dimensional homology in dimension n for $n=3,4$; in dimension 1 for $n-1=5,6$, so III. 1 has onedimensional homology in dimension $n+1$ for $n+1=7,8$; and in dimension 2 for $n-1=8,9$, so III. 1 has one-dimensional homology in dimension $n+2$ for $n+2=11,12$. This completes the claim.

The correspondence with the simplicial complex allows us to find explicit representatives of all classes. In principle, the class representatives in Appendix B only correspond to homology classes on page one of the sequence and have no direct connection to the classes in $H B \bullet(\mathcal{O})$. However, the proof of the proposition shows that the complex III. 1 can be viewed directly as a subcomplex of $\operatorname{Bar} \bullet(\mathcal{O})$. Thus we extract directly from the simplicial correspondence
the representatives listed in the second column of Table 1.

Space	Simplicial representative	Simplified representative
$H B_{3}^{(2)}(\mathcal{O})$	$\sigma_{3}^{(2)}:=\theta \eta \xi+\xi \theta \eta$	$\theta \psi \eta$
$H B_{4}^{(3)}(\mathcal{O})$	$\sigma_{3}^{(2)} \otimes \xi$	$\theta \psi \eta \xi \sim \xi \theta \psi \eta$
$H B_{7}^{(5)}(\mathcal{O})$	$\sigma_{7}^{(5)}:=\theta \eta \xi^{2} \theta \eta \xi+\theta \eta \xi^{3} \theta \eta+\xi \theta \eta \xi \theta \eta \xi+\xi \theta \eta \xi^{2} \theta \eta$	$\theta \psi \eta \xi \theta \psi \eta$
$H B_{8}^{(6)}(\mathcal{O})$	$\sigma_{7}^{(5)} \otimes \xi$	$\theta \psi \eta \xi \theta \psi \eta \xi \sim \xi \theta \psi \eta \xi \theta \psi \eta$
$H B_{11}^{(8)}(\mathcal{O})$	$\sigma_{11}^{(8)}:=\theta \eta \xi^{3} \theta \eta \xi \theta \eta \xi+\theta \eta \xi^{2} \theta \eta \xi^{2} \theta \eta \xi+\xi \theta \eta \xi^{2} \theta \eta \xi \theta \eta \xi+$ $\xi \theta \eta \xi \theta \eta \xi^{2} \theta \eta \xi+\theta \eta \xi^{3} \theta \eta \xi^{2} \theta \eta+\theta \eta \xi^{2} \theta \eta \xi^{3} \theta \eta+$ $\xi \theta \eta \xi^{2} \theta \eta \xi^{2} \theta \eta+\xi \theta \eta \xi \theta \eta \xi^{3} \theta \eta$	$\theta \psi \eta \xi \theta \psi \eta \xi \theta \psi \eta$
$H B_{12}^{(9)}(\mathcal{O})$	$\sigma_{11}^{(8)} \otimes \xi$	$\theta \psi \eta \xi \theta \psi \eta \xi \theta \psi \eta \xi \sim$

Table 1: Representatives of $H B(\mathcal{O})$

The simplified representative is a more algebraically manageable homolog of the representative taken directly from the simplicial correspondence. We show the calculation that $\sigma_{7}^{(5)}$ is homologous to $\theta \psi \eta \xi \theta \psi \eta$ as an example of the simplification procedure. Let d be the bar differential. Then

$$
\begin{aligned}
x_{1}=d\left(\theta \eta \theta \eta \xi^{2} \theta \eta\right) & =\xi \theta \eta \xi^{2} \theta \eta-\theta \psi \eta \xi^{2} \theta \eta+\theta \eta \xi^{3} \theta \eta+\theta \eta \theta \eta \xi^{3}, \\
x_{2}=d(\theta \eta \theta \eta \xi \theta \eta \xi) & =\xi \theta \eta \xi \xi \eta \xi-\theta \psi \eta \xi \theta \eta \xi+\theta \eta \xi^{2} \theta \eta \xi-\theta \eta \theta \eta \xi^{3}, \\
x_{3}=d(\theta \psi \eta \xi \theta \eta \theta \eta) & =\theta \psi \eta \xi^{2} \theta \eta-\theta \psi \eta \xi \theta \psi \eta+\theta \psi \eta \xi \theta \eta \xi, \\
\theta \psi \eta \xi \theta \psi \eta & =\sigma_{7}^{(5)}-x_{1}-x_{2}-x_{3} .
\end{aligned}
$$

Let

$$
\operatorname{Bar}_{\bullet}(P):=\operatorname{id}_{P} \otimes_{R} \operatorname{Bar}_{\bullet}(B) \otimes_{R} \operatorname{id}_{P}
$$

We interpret this complex as tensors of composable paths in Figure 1 starting and ending at the right vertex.

Corollary III.2.4. Let $H B_{\bullet}^{(m)}(P)$ be the homology of the complex $\operatorname{Bar}_{\bullet}^{(m)}(P)$. Then,

1. $\operatorname{dim} H B_{n}^{(n)}(P)= \begin{cases}1 & \text { if } n=0, \\ 0 & \text { otherwise } .\end{cases}$
2. $\operatorname{dim} H B_{n}^{(n-1)}(P)= \begin{cases}1 & \text { if } n=3,4, \\ 0 & \text { otherwise. }\end{cases}$
3. $\operatorname{dim} H B_{n}^{(n-2)}(P)= \begin{cases}1 & \text { if } n=7,8, \\ 0 & \text { otherwise } .\end{cases}$
4. $\operatorname{dim} H B_{n}^{(n-3)}(P)= \begin{cases}1 & \text { if } n=11,12, \\ 0 & \text { otherwise. }\end{cases}$

Proof. There is an isomorphism of complexes $\operatorname{Bar}_{\bullet}^{(n-1)}(\mathcal{O}) \rightarrow \operatorname{Bar}_{\bullet}^{(n-1)}(P)$ induced by the following map on B_{+}:

$$
\eta \mapsto \theta, \theta \mapsto \eta, \xi \mapsto \psi, \psi \mapsto \xi
$$

This map of complexes provides the representatives of classes listed in Table 2.

Space	Simplified representative
$H B_{3}^{(2)}(P)$	$\eta \xi \theta$
$H B_{4}^{(3)}(P)$	$\eta \xi \theta \psi \sim \psi \eta \xi \theta$
$H B_{7}^{(5)}(P)$	$\eta \xi \theta \psi \eta \xi \theta$
$H B_{8}^{(6)}(P)$	$\eta \xi \theta \psi \eta \xi \theta \psi \sim \psi \eta \xi \theta \psi \eta \xi \theta$
$H B_{11}^{(8)}(P)$	$\eta \xi \theta \psi \eta \xi \theta \psi \eta \xi \theta$
$H B_{12}^{(9)}(P)$	$\eta \xi \theta \psi \eta \xi \theta \psi \eta \xi \theta \psi \sim \psi \eta \xi \theta \psi \eta \xi \theta \psi \eta \xi \theta$

Table 2: Representatives of $H B \bullet(P)$.

Corollary III.2.5. 1. $\operatorname{dim} H H_{(1-n)}^{n}\left(F_{2}\right)=\operatorname{dim} H H_{(-n)}^{n}\left(F_{0} / F_{1}\right)= \begin{cases}2 & \text { if } n=0 \\ 0 & \text { otherwise },\end{cases}$
2. $\operatorname{dim} H H_{(2-n)}^{n}\left(F_{2}\right)=\operatorname{dim} H H_{(1-n)}^{n}\left(F_{0} / F_{1}\right)= \begin{cases}2 & \text { if } n=3,4 \\ 0 & \text { otherwise, }\end{cases}$
3. $\operatorname{dim} H H_{(3-n)}^{n}\left(F_{2}\right)=\operatorname{dim} H H_{(2-n)}^{n}\left(F_{0} / F_{1}\right)= \begin{cases}2 & \text { if } n=7,8 \\ 0 & \text { otherwise, }\end{cases}$
4. $\operatorname{dim} H H_{(4-n)}^{n}\left(F_{2}\right)=\operatorname{dim} H H_{(3-n)}^{n}\left(F_{0} / F_{1}\right)= \begin{cases}2 & \text { if } n=11,12 \\ 0 & \text { otherwise } .\end{cases}$

Proof. There are isomorphisms $C_{(1-m)}^{\bullet}(\langle\psi\rangle) \cong\left[\operatorname{Bar}_{\bullet}^{(m)}(P)\right]^{*}$ and $C_{(1-m)}^{\bullet}(\langle\xi\rangle) \cong\left[\operatorname{Bar}_{\bullet}^{(m)}(\mathcal{O})\right]^{*}$, according to the duality of Section II.2.. Since $F_{2}=\langle\psi\rangle \oplus\langle\xi\rangle$, this is the claim for F_{2}. There is an isomorphism of B-bimodules $F_{0} / F_{1} \cong F_{2}[1]$, so the result for F_{0} / F_{1} differs by 1 in the internal degree.

III.2.2. $H H^{\bullet}\left(F_{1} / F_{2}\right)$

Again we reduce to a calculation on the bar complex since the first and last terms of the cohomology differential in $C^{\bullet}\left(F_{1} / F_{2}\right)$ vanish. As B-bimodules, there is an isomorphism

$$
F_{1} / F_{2} \cong\left(F_{2}+\langle\theta\rangle\right) / F_{2} \oplus\left(F_{2}+\langle\eta\rangle\right) / F_{2}:=V_{\theta} \oplus V_{\eta} .
$$

We begin by calculating $H H_{(-m)}^{\bullet}\left(V_{\theta}\right)$, which is dual to,

$$
\operatorname{Bar}_{\bullet}^{(m)}(\theta):=\operatorname{id}_{\mathcal{O}} \otimes_{R} \operatorname{Bar}_{\bullet}^{(m)}(B) \otimes_{R} \operatorname{id}_{P} \subset \operatorname{Bar}_{n}^{(m)}(B)
$$

We interpret tensors in this complex as paths in Figure 1 starting at the left vertex and ending at the right.

Proposition III.2.6. Let $H B{ }_{\bullet}^{(m)}(\theta)$ be the homology of the complex $\operatorname{Bar}_{\bullet}^{(m)}(\theta)$. Then,

1. $\operatorname{dim} H B_{n}^{(n-1)}(\theta)= \begin{cases}1 & \text { if } n=1,2 \\ 0 & \text { otherwise, }\end{cases}$
2. $\operatorname{dim} H B_{n}^{(n-2)}(\theta)= \begin{cases}1 & \text { if } n=5,6 \\ 0 & \text { otherwise, }\end{cases}$
3. $\operatorname{dim} H B_{n}^{(n-3)}(\theta)= \begin{cases}1 & \text { if } n=9,10 \\ 0 & \text { otherwise. }\end{cases}$

We mimic the procedure from Section III.2.1.. For $m, i \geq 0$, we consider the decreasing filtration such that,

$$
\begin{aligned}
F^{i} \operatorname{Bar}_{n}^{(m)}(\theta) & =\left\langle\xi^{k_{1}} \theta \psi^{c_{1}} \cdots \xi^{k_{n-m}} \theta \psi^{c_{n-m}} \mid \sum k_{j} \geq i\right\rangle, \\
\left(\operatorname{gr}_{i} \theta\right)_{n}^{(m)} & =F^{i} \operatorname{Bar}_{n}^{(m)}(\theta) / F^{i+1} \operatorname{Bar}_{n}^{(m)}(\theta)=\left\langle\xi^{k_{1}} \theta \psi^{c_{1}} \cdots \xi^{k_{n-m}} \theta \psi^{c_{n-m}} \mid \sum k_{j}=i\right\rangle .
\end{aligned}
$$

Lemma III.2.7. Let $H B_{\bullet}^{(m)}\left(g r_{i} \theta\right)$ be the bar homology of the complex $\left(g r_{i} \theta\right)_{\bullet}^{(m)}$. Let $n \geq 2$. Then,

1. $H B_{n-1}^{(n-2)}\left(g r_{n-2} \theta\right)=\left\langle\xi^{n-2} \theta\right\rangle$;
2. $H B_{n}^{(n-2)}\left(g r_{n-3} \theta\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \mid a+b=n-3, b \neq 0\right\rangle$;
3. $H B_{n+1}^{(n-2)}\left(g r_{n-4} \theta\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \eta \xi^{c} \theta \mid a+b+c=n-4, b, c \neq 0\right\rangle$;
4. $H B_{n+2}^{(n-2)}\left(g r_{n-5} \theta\right)=\left\langle\xi^{a} \theta \eta \xi^{b} \theta \eta \xi^{c} \theta \eta \xi^{d} \theta \mid a+b+c+d=n-5, \quad b, c, d \neq 0\right\rangle$;
5. $H B_{k}^{(n-2)}\left(g r_{i} \theta\right)=0$ for $k=n-1, n, n+1, n+2$ and all other values of i.

Proof. This follows as in Lemma III.2.3.

Proof of Proposition III.2.6. Lemma III.2.7 implies that on the first page of the spectral sequence of the given filtration we have one nontrivial complex,
$\cdots \rightarrow H B_{n+2}^{(n-2)}\left(\operatorname{gr}_{n-5} \theta\right) \rightarrow H B_{n+1}^{(n-2)}\left(\operatorname{gr}_{n-4} \theta\right) \rightarrow H B_{n}^{(n-2)}\left(\operatorname{gr}_{n-3} \theta\right) \rightarrow H B_{n-1}^{(n-2)}\left(\mathrm{gr}_{n-2} \theta\right) \rightarrow 0$.

For $n=2,3$ we have only $H B_{n-1}^{(n-2)} \neq 0$ in the above sequence, so these spaces survive when we pass to the limit. This gives the result in (1) after a change of variable in n.

For $n \geq 4$, we map to the simplex as in the proof of Proposition III.2.1 to recover the simplicial complex from Appendix B; the image is the complex $\Delta[n-3](n-3$ since $\sum_{i=1}^{j} k_{i}^{\prime}=n-1$ and $k_{j}^{\prime} \geq 2$.) According to Proposition B.1, the simplicial complex has onedimensional homology: (reduced) in dimension 0 for $n-3=2,3$, so the original complex has one-dimensional homology in dimension n for $n=5,6$; in dimension 1 for $n-3=5,6$, so the original complex has one-dimensional homology in dimension $n+1$ for $n+1=9,10$. This gives the result in (2), (3) after a change of variable in n.

The simplicial correspondence also provides representatives of classes, listed in Table 3.

Space	Simplified representative
$H B_{1}^{(0)}(\theta)$	θ
$H B_{2}^{(1)}(\theta)$	$\xi \theta \sim \theta \psi$
$H B_{5}^{(3)}(\theta)$	$\theta \psi \eta \xi \theta$
$H B_{6}^{(4)}(\theta)$	$\xi \theta \psi \eta \xi \theta \sim \theta \psi \eta \xi \theta \psi$
$H B_{9}^{(6)}(\theta)$	$\theta \psi \eta \xi \theta \psi \eta \xi \theta$
$H B_{10}^{(7)}(\theta)$	$\xi \theta \psi \eta \xi \theta \psi \eta \xi \theta \sim \theta \psi \eta \xi \theta \psi \eta \xi \theta \psi$

Table 3: Representatives of $H B \bullet(\theta)$

Corollary III.2.8. 1. $\operatorname{dim} H H_{(1-n)}^{n}\left(V_{\theta}\right)= \begin{cases}1 & \text { if } n=1,2 \\ 0 & \text { otherwise, }\end{cases}$
2. $\operatorname{dim} H H_{(2-n)}^{n}\left(V_{\theta}\right)= \begin{cases}1 & \text { if } n=5,6 \\ 0 & \text { otherwise, }\end{cases}$
3. $\operatorname{dim} H H_{(3-n)}^{n}\left(V_{\theta}\right)= \begin{cases}1 & \text { if } n=9,10 \\ 0 & \text { otherwise. }\end{cases}$

Proof. There is an isomorphism $C_{(-m)}^{\bullet}\left(V_{\theta}\right) \cong\left[\operatorname{Bar}_{\bullet}^{(m)}(\theta)\right]^{*}$ according to the duality of Section II.2..

Finally define,

$$
\operatorname{Bar}_{\bullet}^{(m)}(\eta):=\operatorname{id}_{P} \otimes \operatorname{Bar}_{\bullet}^{(m)}(B) \otimes \operatorname{id}_{\mathcal{O}}
$$

We interpret tensors in this complex as paths in Figure 1 starting at the left vertex and ending at the right.

Corollary III.2.9. Let $H B{ }_{\bullet}^{(m)}(\eta)$ be the homology of $\operatorname{Bar}_{\bullet}^{(m)}(\eta)$. Then,

1. $\operatorname{dim} H B_{n}^{(n)}(\eta)=\operatorname{dim} H H_{(1-n)}^{n}\left(V_{\eta}\right)= \begin{cases}1 & \text { if } n=1,2 \\ 0 & \text { otherwise, }\end{cases}$
2. $\operatorname{dim} H B_{n}^{(n-1)}(\eta)=\operatorname{dim} H H_{(2-n)}^{n}\left(V_{\eta}\right)= \begin{cases}1 & \text { if } n=5,6 \\ 0 & \text { otherwise, }\end{cases}$
3. $\operatorname{dim} H B_{n}^{(n-2)}(\eta)=\operatorname{dim} H H_{(3-n)}^{n}\left(V_{\eta}\right)= \begin{cases}1 & \text { if } n=9,10 \\ 0 & \text { otherwise } .\end{cases}$

Proof. There is an isomorphism of complexes $\operatorname{Bar}_{\bullet}^{(m-1)}(\theta) \cong \operatorname{Bar}_{\bullet}^{(m)}(\eta)$ induced by the following map on B_{+}:

$$
\eta \mapsto \theta, \theta \mapsto \eta, \psi \mapsto \xi, \xi \mapsto \psi
$$

Finally there is an isomorphism $C_{(1-m)}^{\bullet}\left(V_{\eta}\right) \cong\left[\operatorname{Bar}_{\bullet}^{(m)}(\eta)\right]^{*}$.
There are homology representatives listed in Table 4.

Space	Representative
$H B_{1}^{(1)}(\eta)$	η
$H B_{2}^{(2)}(\eta)$	$\psi \eta \sim \eta \xi$
$H B_{5}^{(4)}(\eta)$	$\eta \xi \theta \psi \eta$
$H B_{6}^{(5)}(\eta)$	$\psi \eta \xi \theta \psi \eta \sim \eta \xi \theta \psi \eta \xi$
$H B_{9}^{(7)}(\eta)$	$\eta \xi \theta \psi \eta \xi \theta \psi \eta$
$H B_{10}^{(8)}(\eta)$	$\psi \eta \xi \theta \psi \eta \xi \theta \psi \eta \sim \eta \xi \theta \psi \eta \xi \theta \psi \eta \xi$

Table 4: Representatives of $H B \bullet(\eta)$

Since $F_{1} / F_{2} \cong V_{\theta} \oplus V_{\eta}$ as R-bimodules, it follows that $H H_{(m)}^{n}\left(F_{1} / F_{2}\right)=H H_{(m)}^{n}\left(V_{\theta}\right) \oplus$ $H H_{(m)}^{n}\left(V_{\eta}\right)$.

III.3. Calculating differentials in the spectral sequence

We piece together the spectral sequence on Hochschild cohomology associated with the filtration of B given in the last section. We can understand all maps on the first page. Let $\delta_{1}^{i, n-i}: H H^{n}\left(F_{i} / F_{i+1}\right) \rightarrow H H^{n+1}\left(F_{i+1} / F_{i+2}\right)$ be the differential on page one. We will write simply δ_{1} if superscript information is understood.

Lemma III.3.1. (1) $\delta_{1}\left(H H^{n}\left(F_{2}\right)\right)=0$ for all n;
(2) $\delta_{1}^{0,4 j}: H H_{(-3 j)}^{4 j}\left(F_{0} / F_{1}\right) \rightarrow H H_{(-3 j)}^{4 j+1}\left(F_{1} / F_{2}\right)$ has rank 1 for $j=0$, 2 and rank 2 for $j=1,3$;
(3) $\delta_{1}\left(H H_{(-3 j)}^{4 j+1}\left(F_{1} / F_{2}\right)\right)=0$ for $j=0,1,2$;
(4) $\delta_{1}^{1,4 j+1}: H H_{(-3 j-1)}^{4 j+2}\left(F_{1} / F_{2}\right) \rightarrow H H_{(-3 j-1)}^{4 j+3}\left(F_{2}\right)$ has rank 1 for $j=1$ and rank 2 for $j=0,2 ;$
(5) $\delta_{1}\left(H H_{(-3 j-3)}^{4 j+3}\left(F_{0} / F_{1}\right)\right)=0$ for $j=0,1,2$.

Proof. (1) This is a trivial observation about the spectral sequence since $F_{3}=0$.
(2) Note that here δ_{1} is a map between two-dimensional spaces. Let x, x^{\prime} be the representatives of classes in $H B_{4 j}^{(3 j)}(\mathcal{O})$ from Table 1, respectively; let y, y^{\prime} be the representatives of classes in $H B_{4 j}^{(3 j)}(P)$ from Table 2. Then

$$
\alpha:=[x]^{*} \otimes \operatorname{id}_{\mathcal{O}}=\left[x^{\prime}\right]^{*} \otimes \operatorname{id}_{\mathcal{O}}, \beta:=[y]^{*} \otimes \operatorname{id}_{P}=\left[y^{\prime}\right]^{*} \otimes \operatorname{id}_{P}
$$

generate $H H_{(-3 j)}^{4 j}\left(F_{0} / F_{1}\right)$. From Table 3, the class of $\omega_{1}:=x \otimes \theta=\theta \otimes y^{\prime}$ generates $H B_{4 j+1}^{(3 j)}(\theta)$ and the class of $\omega_{2}=\eta \otimes x^{\prime}=y \otimes \eta$ generates $H B_{4 j+1}^{(3 j+1)}(\eta)$. Thus $\left[\omega_{1}\right]^{*} \otimes \theta$
and $\left[\omega_{2}\right]^{*} \otimes \eta$ generate $H H_{(-3 j)}^{4 j+1}\left(F_{1} / F_{2}\right)$. Then we calculate,

$$
\begin{aligned}
\delta_{1}(\alpha)\left(\omega_{1}\right) & =\delta\left([x]^{*} \otimes \operatorname{id}_{\mathcal{O}}\right)([x \otimes \theta]) \\
& =-[x]^{*}([x]) \cdot \operatorname{id}_{\mathcal{O}} \cdot \theta=-\theta, \\
\delta_{1}(\alpha)\left(\omega_{2}\right) & =\delta\left(\left[x^{\prime}\right]^{*} \otimes \operatorname{id}_{\mathcal{O}}\right)\left(\eta \otimes x^{\prime}\right) \\
& =(-1)^{-3 j} \eta \cdot\left[x^{\prime}\right]^{*}\left(\left[x^{\prime}\right]\right) \cdot \operatorname{id}_{\mathcal{O}}=(-1)^{j} \eta, \\
\delta_{1}(\beta)\left(\omega_{1}\right) & =\delta\left(\left[y^{\prime}\right]^{*} \otimes \operatorname{id}_{L}\right)\left(\left[\theta \otimes y^{\prime}\right]\right) \\
& =\theta \cdot\left[y^{\prime}\right]^{*}\left(\left[y^{\prime}\right]\right) \cdot \operatorname{id}_{L}=\theta, \\
\delta_{1}(\beta)\left(\omega_{2}\right) & =\delta\left([y]^{*} \otimes \operatorname{id}_{L}\right)([y \otimes \eta]) \\
& =-[y]^{*}([y]) \cdot \mathrm{id}_{L} \cdot \eta=-\eta .
\end{aligned}
$$

We conclude that $\delta_{1}(\alpha+\beta)=0$ when j is even, so $\delta_{1}^{0,4 j}$ has rank 1 in that case. When j is odd, we see that there is no kernel.
(3) For $\phi \in H H_{(-3 j)}^{4 j+1}\left(F_{0} / F_{1}\right)$, we have $\delta_{1} \phi \in H H_{(-3 j)}^{4 j+1}\left(F_{2}\right)$. But $H H_{(-3 j)}^{4 j+1}\left(F_{2}\right)=0$ by Lemma III.2.5.
(4) Let x, x^{\prime} be the representatives of the class in $H_{4 j+2}^{(3 j+1)}(\theta)$, and y, y^{\prime} be the representatives of the class in $H B_{4 j+2}^{(3 j+2)}(\eta)$ from Tables 3 and 4. Then the representative of the class in $H B_{4 j+3}^{(3 j+2)}(\mathcal{O})$ is $\theta \otimes y=x^{\prime} \otimes \eta$ and the representative of the class in $H B_{4 j+3}^{(3 j+2)}(P)$ is $y^{\prime} \otimes \theta=\eta \otimes x$. So it follows as in part (2) that $\delta_{1}^{1,4 j+1}$ has rank 1 when $3 j+1$ is even (i.e., j is odd) and rank 2 otherwise.
(5) This follows since $H H_{(-3 j-3)}^{4 j+4}\left(F_{1} / F_{2}\right)=0$.

On page two, the only nonzero maps are $\delta_{2}^{0, n}: \operatorname{ker} \delta_{1}^{0, n} \rightarrow \operatorname{coker} \delta_{1}^{1, n-1}$. We see from Lemma III.3.1 that $\operatorname{ker} \delta_{1}^{0, n}$ is one-dimensional for $n=4 j$ in internal degree $-3 j$, and twodimensional for $n=4 j+3$ in internal degree $-3 j-3$.

Lemma III.3.2. (1) $\delta_{2}^{0,4 j}=0$
(2) $\operatorname{rank} \delta_{2}^{0,4 j+3}=2$.

Proof. (1) Since $H H_{(-3 j)}^{4 j+1}\left(F_{2}\right)=0$, and thus coker $\delta_{1}^{1,4 j-1}=0$, so this is trivial.
(2) From Lemma III.3.1 we know that $\operatorname{ker} \delta_{1}^{0,4 j+3}=H H_{(-3 j-3)}^{4 j+3}\left(F_{0} / F_{1}\right)$ and coker $\delta_{1}^{1,4 j+2}=$ $H H_{(-3 j-3)}^{4 j+4}$. Let x be the representative of $H B_{4 j+3}^{(3 j+3)}(\mathcal{O})$ from Table 1, and let y be the representative of $H B_{4 j+3}^{(3 j+3)}(P)$ from Table 2. So $[x]^{*} \otimes \operatorname{id}_{\mathcal{O}},[y]^{*} \otimes \operatorname{id}_{P}$ generate $H H_{(-3 j-3)}^{4 j+3}\left(F_{0} / F_{1}\right)$. Then $\omega_{1}=[\xi \otimes x]=[x \otimes \xi]$ generates $H B_{4 j+4}^{(3 j+4)}(\mathcal{O})$ and $\omega_{2}=$ $[\psi \otimes y]=[y \otimes \psi]$ generates $H B_{4 j+4}^{(3 j+4)}(P)$. So we calculate,

$$
\begin{aligned}
& \delta_{2}\left([x]^{*} \otimes \operatorname{id}_{\mathcal{O}}\right)\left(\omega_{1}\right)= \pm \xi \cdot[x]^{*}([x]) \cdot \operatorname{id}_{\mathcal{O}}= \pm \xi \\
& \delta_{2}\left([x]^{*} \otimes \operatorname{id}_{\mathcal{O}}\right)\left(\omega_{2}\right)=0 \\
& \delta_{2}\left([y]^{*} \otimes \operatorname{id}_{P}\right)\left(\omega_{1}\right)=0 \\
& \delta_{2}\left([y]^{*} \otimes \operatorname{id}_{P}\right)\left(\omega_{2}\right)= \pm \psi \cdot[y]^{*}([y]) \cdot \operatorname{id}_{P}= \pm \psi
\end{aligned}
$$

Thus $\delta_{2}^{0,4 j+3}$ has rank 2.

III.4. Hochschild cohomology of B

Theorem III.4.1. The Hochschild cohomology of B for maps in internal degrees $1-n, 2-n$, and $3-n$ is,

1. $\operatorname{dim} H H_{(1-n)}^{n}(B)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise, }\end{cases}$
2. $\operatorname{dim} H H_{(2-n)}^{n}(B)= \begin{cases}1 & \text { if } n=6,8 \\ 0 & \text { otherwise, }\end{cases}$
3. $\operatorname{dim} H H_{(3-n)}^{n}(B)= \begin{cases}1 & \text { if } n=7,9 \\ 0 & \text { otherwise. }\end{cases}$

Proof. - First we fix internal degree $-3 j$, for $j=1,2,3$. We know,

$$
\begin{aligned}
\operatorname{dim} H H_{(-3 j)}^{4 j}\left(F_{0} / F_{1}\right) & =\operatorname{dim} H H_{(-3 j)}^{4 j+1}\left(F_{1} / F_{2}\right)=2, \\
H H_{(-3 j)}^{4 j+2}\left(F_{i} / F_{i+1}\right) & =H H_{(-3 j)}^{4 j-1}\left(F_{i} / F_{i+1}\right)=0,
\end{aligned}
$$

for all i from Corollaries III.2.5, III.2.8, and III.2.9. Now rank $\delta_{1}^{0,4 j}=1$ when j is even from Lemma III.3.1 part (2), and the sequence degenerates at this point since $H H_{(-3 j)}^{4 j+1}\left(F_{2}\right)=0$. It follows that $\operatorname{dim} H H_{(-3 j)}^{4 j}(B)=\operatorname{dim} H H_{(-3 j)}^{4 j+1}(B)=1$ when j is even. When j is odd, $\delta_{1}^{0,4 j}$ is an isomorphism and the sequence also degenerates here; so in that case there is no cohomology.

- We fix internal degree $-3 j-1$ for $j=0,1,2$. The same corollaries show

$$
\begin{aligned}
\operatorname{dim} H H_{(-3 j-1)}^{4 j+2}\left(F_{1} / F_{2}\right) & =\operatorname{dim} H H_{(-3 j-1)}^{4 j+3}\left(F_{2}\right)=2 \\
H H_{(-3 j-1)}^{4 j+1}\left(F_{i} / F_{i+1}\right) & =H H_{(-3 j-1)}^{4 j+4}\left(F_{i} / F_{i+1}\right)=0
\end{aligned}
$$

Lemma III.3.1 part (4) shows that delta $a_{1}^{1,4 j+1}$ has rank 1 when j is odd and is an isomorphism when j is even. The sequence degenerates at this point since $H H_{(-3 j-1)}^{4 j+2}\left(F_{0} / F_{1}\right)=$ 0. So $\operatorname{dim} H H_{(-3 j-1)}^{4 j+2}(B)=\operatorname{dim} H H_{(-3 j-3)}^{4 j+3}(B)=1$ when j is odd and that all cohomology vanishes when j is even.

- We fix internal degree $-3 j-2$ for $j=0,1,2$. Then Lemma III.3.1 part (5) shows that the nontrivial map on page two is a map between two-dimensional spaces; Lemma III.3.2 shows that map has rank 2. Therefore in the limit there is no cohomology.

CHAPTER IV

THE A_{∞}-ALGEBRA OF A COMPLEX ELLIPTIC CURVE AND THE J-INVARIANT

Let $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ be a complex elliptic curve (in particular $\left.\operatorname{Im} \tau>0\right) ; P$ a closed point on $E_{\tau} ; L=\mathcal{O}(P)$ the line bundle of degree 1 ; and $A\left(E_{\tau}\right)=\operatorname{Ext}^{*}(\mathcal{O} \oplus L, \mathcal{O} \oplus L)$. Let B be the associative algebra from Chapter III, $B\left(E_{\tau}\right)=\operatorname{Ext}^{*}(\mathcal{O} \oplus \mathbb{K}(P), \mathcal{O} \oplus \mathbb{K}(P))$.

In [17], Polishchuk calculates the A_{∞}-structure on $A\left(E_{\tau}\right)$ arising from using the Dolbeault complex to compute Ext. An obvious isomorphism of algebras $B \cong\left(A\left(E_{\tau}\right), m_{2}\right)$ naturally gives an A_{∞}-structure $(m(\tau))=\left\{m_{n}(\tau)\right\}_{n=1}^{\infty}$ on $B\left(E_{\tau}\right)$. We suppress τ when no confusion will arise.

In this chapter we construct a family of strict A_{∞}-equivalences

$$
\left(f_{\tau}\right): B\left(E_{\tau}\right) \rightarrow B\left(E_{\tau}\right)
$$

indexed by τ. The $\left(f_{\tau}\right)$ are constructed so that if

$$
\left(m^{\prime}(\tau)\right)=f *(m(\tau))
$$

we have that $m_{6}^{\prime}(\tau)$ and $m_{8}^{\prime}(\tau)$ are Hochschild cocycles (Proposition IV.1.2). We then construct an explicit \mathbb{C}-linear isomorphism,

$$
H H_{(-4)}^{6}(B) \oplus H H_{(-6)}^{8}(B) \xrightarrow{\sim} \mathbb{C}^{2}
$$

which allows us to recover the j-invariant of E_{τ} from the point $\left(m_{6}^{\prime}(\tau), m_{8}^{\prime}(\tau)\right)$ (Theorem IV.2.3).

IV.1. An A_{∞}-structure on B

Fix a curve E. Recall definitions and results concerning Eisenstein series from Section II.7..

Theorem IV.1.1. ([17], 2.5.1) The only non-trivial higher products m_{n} on $B(E)$ are of the form,

$$
\begin{aligned}
m_{n}\left(\xi^{a} \theta \psi^{b} \eta \xi^{c} \theta \psi^{d}\right) & =M(a, b, c, d) \cdot \theta, \\
m_{n}\left(\psi^{a} \eta \xi^{b} \theta \psi^{c} \eta \xi^{d}\right) & =M(a, b, c, d) \cdot \eta \\
m_{n}\left(\xi^{a} \theta \psi^{b} \eta \xi^{c} \theta \psi^{d} \eta \xi^{e}\right) & =M(a+e+1, b, c, d) \cdot i d_{\mathcal{O}} \\
m_{n}\left(\psi^{a} \eta \xi^{b} \theta \psi^{c} \eta \xi^{d} \theta \psi^{e}\right) & =M(a+e+1, b, c, d) \cdot i d_{P}
\end{aligned}
$$

All products m_{n} with odd n vanish.

Since $m_{3}=0$, the A_{∞}-relation of order 5 implies that m_{4} is a Hochschild cocycle. In Theorem III.4.1 we conclude that $H H_{(-2)}^{4}(B)=0$; so m_{4} is a coboundary and therefore by Lemma II.5.2, all choices of m_{4} are related by some strict A_{∞}-equivalence. Thus even though $m_{4} \neq 0$ in Theorem IV.1.1, there must exist some strict equivalence $f: B \rightarrow B$ such that $f * m_{4}=0$. Indeed, we take $f_{1}=\operatorname{id}_{B}, f_{3}$ to be such that $\delta f_{3}=m_{4}$, and $f_{n}=0$ otherwise. Moreover since $H H_{(-2)}^{3}(B)=0$, the choice of f_{3} in this equivalence is unique up to homotopy. We take as f_{3},

$$
\begin{aligned}
f_{3}= & M(1,0,0,0)\left[\left(\left[\eta \xi^{2}\right]^{*}-\left[\psi^{2} \eta\right]^{*}-[\psi \eta \xi]^{*}\right) \otimes \eta+\left(\left[\theta \psi^{2}\right]^{*}-\left[\xi^{2} \theta\right]^{*}-[\xi \theta \psi]^{*}\right) \otimes \theta+\right. \\
& \left.\left([\xi \theta \eta]^{*}+[\theta \psi \eta]^{*}-[\theta \eta \xi]^{*}\right) \otimes \mathrm{id}_{\mathcal{O}}+\left([\psi \eta \theta]^{*}+[\eta \xi \theta]^{*}-[\eta \theta \psi]^{*}\right) \otimes \mathrm{id}_{P}\right] .
\end{aligned}
$$

Proposition IV.1.2. Let $\left(m^{\prime}\right)=f *(m)$. Then,

1. $m_{k}^{\prime}=0$ for k odd and $m_{2}^{\prime}=m_{2}$;
2. $m_{4}^{\prime}=0$; and
3. m_{6}^{\prime} and m_{8}^{\prime} are Hochschild cocycles.

Proof. 1. The relation in Equation II. 2 of order 1 shows immediately that $m_{1}^{\prime}=0$, after which the relations of order 2 and 3 show that $m_{2}^{\prime}=m_{2}$ and $m_{3}^{\prime}=0$. We proceed by induction in k to show that $m_{2 k+1}^{\prime}=0$.

Assume $m_{2 j+1}=0$ for $j \leq k$, and consider the relation of order $2 k+3$. This relation reduces to the equation,

$$
f_{1} m_{2 k+3}+f_{3}\left(m_{2 k+1} \otimes \mathbf{1}^{\otimes 2}+\mathbf{1} \otimes m_{2 k+1} \otimes \mathbf{1}+\mathbf{1}^{\otimes 2} \otimes m_{2 k+1}\right)=m_{2 k+3}^{\prime}
$$

Other terms on the left vanish since only f_{1} and f_{3} are nonzero. Other terms on the right vanish by the induction assumption: in order for $i_{1}+\cdots+i_{r}=2 k+3$ where all i_{j} are 1 or 3 , we must have r odd, and $m_{r}^{\prime}=0$ for r odd and $r<2 k+3$. By Theorem IV.1.1 we know that $m_{2 k+1}=m_{2 k+3}=0$, so the left side vanishes completely, implying $m_{2 k+3}^{\prime}=0$.
2. The morphism relation of order 4 reduces to

$$
\delta f_{3}=m_{4}-m_{4}^{\prime}
$$

The claim that $\delta f_{3}=m_{4}$ can be verified by direct calculation, which implies that $m_{4}^{\prime}=0$.
3. The A_{∞}-relations for $\left(m_{n}^{\prime}\right)$ give

$$
\begin{align*}
& \delta m_{6}^{\prime}=\Phi_{6}\left(m_{3}^{\prime}, m_{4}^{\prime}, m_{5}^{\prime}\right) \tag{IV.1}\\
& \delta m_{8}^{\prime}=\Phi_{8}\left(m_{3}^{\prime}, m_{4}^{\prime}, m_{5}^{\prime}, m_{6}^{\prime}, m_{7}^{\prime}\right) \tag{IV.2}
\end{align*}
$$

where Φ_{k} is a quadratic expression. The right side of Equation IV. 1 is zero since $m_{3}^{\prime}=$ $m_{4}^{\prime}=m_{5}^{\prime}=0$. The right side of Equation IV. 2 is zero since only $m_{6}^{\prime} \neq 0$, and m_{6}^{\prime} is paired with m_{4}^{\prime} in this quadratic expression.

We determine from the morphism relations of order 6 and 8 that,

$$
\begin{align*}
& m_{6}^{\prime}=m_{6}+f_{3}\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{4} \otimes \mathbf{1}^{\otimes s}\right)-m_{2}\left(f_{3} \otimes f_{3}\right) \tag{IV.3}\\
& m_{8}^{\prime}=m_{8}+f_{3}\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{6} \otimes \mathbf{1}^{\otimes s}\right)-m_{6}^{\prime}\left(\sum_{r+s=5} \mathbf{1}^{\otimes r} \otimes f_{3} \otimes \mathbf{1}^{\otimes s}\right) \tag{IV.4}
\end{align*}
$$

IV.2. Recovering the j-invariant

We construct an explicit isomorphism,

$$
H H_{(-4)}^{6}(B) \oplus H H_{(-6)}^{8}(B) \xrightarrow{\sim} \mathbb{C}^{2}
$$

from which we extract the j-invariant of E. Let S be our standard basis of B as a \mathbb{K}-algebra. For every $x \in B_{+}^{\otimes n}$ and $y \in S$, we define an R-linear function $\mathrm{ev}_{x}^{y}: \operatorname{Hom}_{R}\left(B_{+}^{\otimes n}, B\right) \rightarrow \mathbb{C}$, where $\operatorname{ev}_{x}^{y}(\phi)$ is the coefficient on y in the expansion of $\phi(x)$ in the basis S. Let $\left(f^{\prime}\right)$ be another strict equivalence with $f_{i}^{\prime}=0$ for $i \neq 1,3$ and $\delta f_{3}^{\prime}=m_{4}$.

Proposition IV.2.1. Let

$$
\begin{aligned}
x= & -\eta \theta \eta \xi \theta \psi-\psi \eta \xi \theta \eta \theta+\psi \eta \theta \eta \theta \psi+\eta \theta \eta \theta \psi^{2}-\eta \theta \psi^{2} \eta \theta+\psi^{2} \eta \theta \eta \theta- \\
& \eta \xi \theta \eta \theta \psi-\psi \eta \theta \eta \xi \theta \\
x^{\prime}= & \theta \psi \eta \xi \theta \psi
\end{aligned}
$$

1. If $\hat{\phi} \in \operatorname{Hom}_{R}^{(-4)}\left(B_{+}^{\otimes 6}, B\right)$ is a Hochschild cocycle, then

$$
\hat{\beta}(\hat{\phi}):=\left(\mathrm{ev}_{x}^{i d_{P}}-\mathrm{ev}_{x^{\prime}}^{\theta}\right)(\hat{\phi})=0
$$

if and only if $\hat{\phi}$ is a coboundary; thus $\hat{\beta}$ detects cohomology classes.
2. Let $c \in H H_{(-4)}^{6}(B)$ such that $\hat{\beta}(c)=-15$. Then the \mathbb{C}-linear function $\beta: H H_{(-4)}^{6}(B) \rightarrow \mathbb{C}$ defined by $c \mapsto 1$ is an isomorphism such that $\beta\left(m_{6}^{\prime}\right)=t^{4} e_{4}$.
3. $m_{6}^{\prime}-f^{\prime} * m_{6}$ is a Hochschild coboundary; thus the class of m_{6}^{\prime} is independent of the choice of f_{3}.

Proof. 1. Let $\phi \in \operatorname{Hom}_{R}^{(-4)}\left(B_{+}^{\otimes 5}, B\right)$. Then the first and last terms of $(\delta \phi)(x)$ vanish for degree reasons and,

$$
\begin{aligned}
(\delta \phi)(x)= & \phi\left(-\left[-\psi \eta \xi \theta \psi+\psi \eta \theta \psi^{2}-\psi^{3} \eta \theta\right]+\left[-\eta \xi^{2} \theta \psi+\psi^{2} \eta \theta \psi+\eta \xi \theta \psi^{2}-\psi^{2} \eta \xi \theta\right]-\right. \\
& {\left[\psi \eta \xi \theta \psi+\eta \theta \psi^{3}+\psi^{3} \eta \theta-\eta \xi^{2} \theta \psi-\psi \eta \xi^{2} \theta\right]+\left[-\psi \eta \xi^{2} \theta+\psi \eta \theta \psi^{2}+\psi^{2} \eta \xi \theta-\eta \xi \theta \psi^{2}\right]-} \\
& {\left.\left[-\psi \eta \xi \theta \psi-\eta \theta \psi^{3}+\psi^{2} \eta \theta \psi\right]\right) } \\
= & \phi(\psi \eta \xi \theta \psi) \\
= & \operatorname{ev}_{\psi \eta \xi \theta \psi}^{\operatorname{id}_{P}}(\phi) \cdot \operatorname{id}_{P} \\
(\delta \phi)\left(x^{\prime}\right)= & \theta \cdot \phi(\psi \eta \xi \theta \psi) \\
= & \theta \cdot \operatorname{ev}_{\psi \eta \xi \theta \psi}^{\operatorname{id}_{P}}(\phi) \cdot \operatorname{id}_{P} \\
= & \operatorname{ev}_{\psi \eta \xi \theta \psi}^{\operatorname{id}_{P}}(\phi) \cdot \theta
\end{aligned}
$$

Since β takes the difference of the coefficients, this proves that β vanishes on coboundaries. The other direction will follow from (2).
2. Since m_{6}^{\prime} is a cocycle and Theorem III.4.1 showed that $H H_{(-4)}^{6}(B)$ is one-dimensional, calculating that $\beta\left(m_{6}^{\prime}\right)=-15 t^{4} e_{4}$ will prove (2) as well as the remaining direction in (1).

We use the relations given in Proposition II.7.1. Let

$$
z=m_{4} \otimes \mathbf{1}^{2}-\mathbf{1} \otimes m_{4} \otimes \mathbf{1}+\mathbf{1}^{2} \otimes m_{4}
$$

Recall the definition of m_{6}^{\prime} from Equation IV.3. We have,

$$
\begin{aligned}
m_{6}(x)= & (-M(2,0,0,1)-M(2,1,0,0)+M(3,0,0,0)+M(3,0,0,0)- \\
& M(1,0,2,0)+M(3,0,0,0)-M(2,1,0,0)-M(2,0,0,1)) \cdot \mathrm{id}_{P} \\
= & (-4 M(2,1,0,0)+3 M(3,0,0,0)-M(1,0,2,0)) \cdot \mathrm{id}_{P} \\
= & -2 t^{4} g_{2,1} \cdot \mathrm{id}_{P}, \\
f_{3}(z(x))= & M(1,0,0,0) g_{1,0} f_{3}(-\eta \theta \psi+\eta \theta \psi+\psi \eta \theta-\psi \eta \theta+\eta \theta \psi+\psi \eta \theta- \\
& \eta \theta \psi-\psi \eta \theta-\eta \theta \psi+\eta \theta \psi-\eta \xi \theta-\eta \xi \theta+\psi \eta \theta-\psi \eta \theta) \\
= & M(1,0,0,0) f_{3}(-2 \eta \xi \theta) \\
= & -2[M(1,0,0,0)]^{2} \cdot \mathrm{id}{ }_{P}, \\
= & -2 t^{4}\left[g_{1,0}\right]^{2} \cdot \mathrm{id}_{P} \\
-m_{2}\left(f_{3} \otimes f_{3}\right)(x)= & -f_{3}(\psi \eta \theta) \cdot f_{3}(\eta \theta \psi)+f_{3}(\eta \theta \psi) \cdot f_{3}(\psi \eta \theta)+f_{3}(\eta \xi \theta) \cdot f_{3}(\eta \theta \psi)+ \\
& f_{3}(\psi \eta \theta) \cdot f_{3}(\eta \xi \theta) \\
= & 0 ; \operatorname{therefore} \\
\operatorname{ev}_{x}^{\mathrm{id}}\left(m_{6}^{\prime}\right)= & -2 t^{4} g_{2,1}-2 t^{4}\left[g_{1,0}\right]^{2} \\
= & 2 t^{4}\left(\left[e_{2}^{*}\right]^{2}-5 e_{4}-\left[e_{2}^{*}\right]^{2}\right)=-10 t^{4} e_{4} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
m_{6}^{\prime}\left(x^{\prime}\right) & =M(0,1,1,1) \cdot \theta-f_{3}(\theta \psi \eta) \cdot f_{3}(\xi \theta \psi) \\
& =t^{4}\left(g_{2,1}+g_{1,0}^{2}\right) \cdot \theta=5 t^{4} e_{4} \cdot \theta ; \text { therefore } \\
\operatorname{ev}_{x^{\prime}}^{\theta}\left(m_{6}^{\prime}\right) & =5 t^{4} e_{4}, \\
\beta\left(m_{6}^{\prime}\right) & =\left(\operatorname{ev}_{x}^{\operatorname{id}_{P}}-\operatorname{ev}_{x^{\prime}}^{\theta}\right)\left(m_{6}^{\prime}\right)=-15 t^{4} e_{4} .
\end{aligned}
$$

3. By Lemma II.5.3, $f_{3}-f_{3}^{\prime}$ is a cocycle; since $H H_{(-2)}^{3}(B)=0$ it is also a coboundary. Let
$h \in C_{(-2)}^{2}(B)$ such that $\delta h=f_{3}-f_{3}^{\prime}$. Then,

$$
\begin{aligned}
m_{6}^{\prime}-f^{\prime} * m_{6} & =\delta h\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{4} \otimes \mathbf{1}^{\otimes s}\right)-m_{2}\left(f_{3} \otimes f_{3}\right) \cdot m_{2}\left(f_{3}^{\prime} \otimes f_{3}^{\prime}\right) \\
& =\delta h\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{4} \otimes \mathbf{1}^{\otimes s}\right)-m_{2}\left(f_{3} \otimes \delta h+\delta h \otimes f_{3}-\delta h \otimes \delta h\right) .
\end{aligned}
$$

From this last expression, it is a straightforward check that $\beta\left(m_{6}^{\prime}-f^{\prime} * m_{6}\right)=0$.

Proposition IV.2.2. Let $x=\eta \xi \theta \psi^{2} \eta \xi \theta$.

1. If $\hat{\phi} \in \operatorname{Hom}_{R}\left(B_{+}^{\otimes 8}, B\right)$ is a cocycle, then $\operatorname{ev}_{x}^{i d_{P}}(\hat{\phi})=0$ if and only if $\hat{\phi}$ is a coboundary.
2. Let $c \in H H_{(-6)}^{8}(B)$ such that $\operatorname{ev}_{x}^{i d_{P}}(c)=-35$. Then the \mathbb{C}-linear function

$$
\gamma: H H_{(-6)}^{8}(B) \rightarrow \mathbb{C}
$$

defined by $c \mapsto 1$ is an isomorphism such that $\gamma\left(m_{8}^{\prime}\right)=t^{6} e_{6}$.
3. $m_{8}^{\prime}-f^{\prime} * m_{8}$ is a Hochschild coboundary; thus the class of m_{8}^{\prime} is independent of the choice of f_{3}.

Proof. 1. For $\phi \in \operatorname{Hom}_{R}^{(-6)}\left(B_{+}^{\otimes 7}, B\right)$ we have,

$$
(\delta \phi)(x)=\eta \cdot \phi\left(\xi \theta \psi^{2} \eta \xi \theta\right)+\phi\left(\eta \xi \theta \psi^{2} \eta \xi\right) \cdot \theta
$$

which is 0 for degree reasons. The other direction will follow from (2).
2. Since $H H_{(-6)}^{8}(B)$ is one-dimensional and m_{8}^{\prime} is a cocycle, we need only check that $\gamma\left(m_{8}^{\prime}\right)=-35 t^{6} e_{6} \cdot \operatorname{id}_{P}$ to prove (2). Let

$$
\begin{aligned}
& \kappa_{1}=f_{3}\left(m_{6} \otimes \mathbf{1}^{\otimes 2}-\mathbf{1} \otimes m_{6} \otimes \mathbf{1}+\mathbf{1}^{\otimes 2} \otimes m_{6}\right) \\
& \kappa_{2}=-m_{6}^{\prime}\left(\sum_{r+s=5} \mathbf{1}^{\otimes r} \otimes f_{3} \otimes \mathbf{1}^{\otimes s}\right)
\end{aligned}
$$

so $m_{8}^{\prime}=m_{8}+\kappa_{1}+\kappa_{2}$. Then,

$$
\begin{aligned}
m_{8}(x)= & M(1,1,2,1) \cdot \mathrm{id}_{P} \\
= & -\frac{1}{2} t^{6} g_{3,2} \cdot \operatorname{id}_{P} \\
\kappa_{1}(x)= & t^{4} \cdot f_{3}(M(0,1,2,0) \cdot \eta \xi \theta+M(0,2,1,0) \cdot \eta \xi \theta) \\
= & 2 t^{6} \cdot M(2,1,0,0) \cdot M(1,0,0,0) \cdot \operatorname{id}_{P} \\
= & -t^{6} g_{2,1} g_{1,0} \cdot \operatorname{id}_{P}, \\
\kappa_{2}(x)= & -M(1,0,0,0) \cdot m_{6}^{\prime}\left(\operatorname{id}_{P} \psi^{2} \eta \xi \theta-\eta \theta \psi \eta \xi \theta+\eta \xi \theta \eta \xi \theta-\eta \xi \theta \eta \xi \theta-\eta \xi \theta \psi \eta \theta+\eta \xi \theta \psi^{2} \operatorname{id}_{P}\right) \\
= & M(1,0,0,0) \cdot m_{6}^{\prime}(\eta \theta \psi \eta \xi \theta+\eta \xi \theta \psi \eta \theta) \\
= & M(1,0,0,0) \cdot\left[M(1,0,1,1) \cdot \mathrm{id}_{P}+M(1,1,1,0) \cdot \mathrm{id}_{P}+M(1,0,0,0) \cdot f_{3}(\eta \xi \theta+\eta \xi \theta)\right. \\
& \left.-f_{3}(\eta \theta \psi) \cdot f_{3}(\eta \xi \theta)-f_{3}(\eta \xi \theta) \cdot f_{3}(\psi \eta \theta)\right] \\
= & -t^{6}\left(2 g_{2,1} g_{1,0}+2\left[g_{1,0}\right]^{3}\right) \cdot \operatorname{id}_{P},
\end{aligned}
$$

so

$$
\begin{aligned}
\operatorname{ev}_{x}^{\mathrm{id}_{P}}\left(m_{8}^{\prime}\right) & =t^{6}\left(-\frac{1}{2} g_{3,2}-g_{2,1} g_{1,0}-2 g_{2,1} g_{1,0}-2\left[g_{1,0}\right]^{3}\right) \\
& =t^{6} \cdot\left(-\frac{1}{2} g_{3,2}-3 g_{2,1} g_{1,0}-2\left[g_{1,0}\right]^{3}\right) \\
& =-35 t^{6} e_{6}
\end{aligned}
$$

3. Let $m_{6}^{\prime}-f_{3}^{\prime} * m_{6}=\delta g, f_{3}-f_{3}^{\prime}=\delta h$. Then,

$$
\begin{aligned}
m_{8}^{\prime}-f^{\prime} * m_{8} & =\delta h\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{6} \otimes \mathbf{1}^{\otimes s}\right)-m_{6}^{\prime}\left(\sum_{r+s=5} \mathbf{1}^{\otimes r} \otimes f_{3} \otimes \mathbf{1}^{\otimes s}\right)+ \\
& =\left(f^{\prime} * m_{6}\right)\left(\sum_{r+s=5} \mathbf{1}^{\otimes r} \otimes\left(f_{3}-\delta h\right) \otimes \mathbf{1}^{\otimes s}\right) \\
& =\delta h\left(\sum_{r+s=2} \mathbf{1}^{\otimes r} \otimes m_{6} \otimes \mathbf{1}^{\otimes s}\right)-\delta g\left(\sum_{r+s=5} \mathbf{1}^{\otimes r} \otimes f_{3} \otimes \mathbf{1}^{\otimes s}\right)
\end{aligned}
$$

Using this last expression, it is a straightforward check that $\gamma\left(m_{8}^{\prime}-f^{\prime} * m_{6}\right)=0$.

Theorem IV.2.3. Let α, γ be as defined in Propositions IV.2.1 and IV.2.2. Then the j invariant of E is

$$
j(E)=1728 \cdot \frac{\left[\beta\left(m_{6}^{\prime}\right)\right]^{3}}{\left[\beta\left(m_{6}^{\prime}\right)\right]^{3}-27\left[\gamma\left(m_{8}^{\prime}\right)\right]^{2}}
$$

Proof. Since,

$$
j(E)=1728 \cdot \frac{\left[e_{4}\right]^{3}}{\left[e_{4}\right]^{3}-27\left[e_{6}\right]^{2}}
$$

this follows immediately from the previous propositions.

CHAPTER V

HOCHSCHILD COHOMOLOGY AND THE CURVE OF GENUS $g \geq 2$

Let X be a smooth curve of genus $g \geq 1$ over an algebraically closed field \mathbb{K} with char $\mathbb{K} \neq 2,3$, with \mathcal{O}_{X} the structure sheaf on X. Let P be a point on X. Then there is a short exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(P) \rightarrow \mathbb{K}(P) \rightarrow 0
$$

which gives rise to a long exact sequence on Ext,

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(P)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(P)\right) \xrightarrow{\phi_{P}} \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \cdots .
$$

Let θ_{P} generate the one-dimensional space $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(P)\right)$. Since,

$$
\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(P)\right)
$$

is an isomorphism, ϕ_{P} is an injection; so $\phi_{P}\left(\theta_{P}\right) \neq 0$. Note that

$$
\operatorname{dim} \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)=\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=g
$$

Let P_{1}, \ldots, P_{g} be distinct points on X, with $\mathbb{K}\left(P_{i}\right)=\mathcal{O}_{X}\left(P_{i}\right) / \mathcal{O}_{X}$ the skyscraper sheaf at P_{i}, such that the classes $\left\{\phi_{P_{i}}\left(\theta_{P_{i}}\right\}_{i=1}^{g}\right.$ generate $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$. Then $G(X)=\mathcal{O}_{X} \oplus$ $\bigoplus_{i=1}^{g} \mathbb{K}\left(P_{i}\right)$ generates $D^{b}(X)$. Since $D^{b}(X)$ determines X uniquely, the minimal A_{∞}-algebra

$$
B^{g}(X)=\operatorname{Ext}^{*}(G(X), G(X))
$$

also recovers X. (Note that $B^{1}=B$ from Chapter III.) Since the restriction of $B^{g}(X)$ to an
associative algebra is independent of X when g is fixed, it is useful to study A_{∞}-extensions of the algebra $\left(B^{g}, m_{2}\right)$. In this chapter we calculate $H H_{(m)}^{n}$ for $g \geq 2$ and $m=1-n, 2-n, 3-n$. The main result is Theorem V.4.10.

V.1. The associative algebra B^{g}

In the remainder of the chapter we assume $g \geq 2$ unless otherwise noted. With notation as above, let B^{g} be the algebra $\operatorname{Ext}^{*}(G(X), G(X))$ considered as an associative algebra. Then B^{g} is a direct sum (as a \mathbb{K}-vector space) of components,
(i) $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$, a one-dimensional space generated by the identity map, id \mathcal{O}_{X};
(ii) $\operatorname{Hom}\left(\mathbb{K}\left(P_{i}\right), \mathbb{K}\left(P_{i}\right)\right)$, each one-dimensional generated by the identity map id ${ }_{P_{i}}$;
(iii) $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}\left(P_{i}\right)\right)$, each one-dimensional generated by a function θ_{i};
(iv) $\operatorname{Ext}^{1}\left(\mathbb{K}\left(P_{i}\right), \mathcal{O}_{X}\right)$, each one-dimensional generated by a function η_{i};
(v) $\operatorname{Ext}^{1}\left(\mathbb{K}\left(P_{i}\right), \mathbb{K}\left(P_{i}\right)\right)$, each one-dimensional generated by $\eta_{i} \theta_{i}=\psi_{i}$;
(vi) $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$, a g-dimensional space generated by the set of functions $\theta_{i} \eta_{i}=\xi_{i}$.

This also gives us a standard basis S of B^{g} over \mathbb{K}. Figure 2 gives a diagrammatic representation of B^{g}.

Figure 2: Arrow diagram for B^{g}

Then B^{g} is a graded \mathbb{K}-algebra with,

$$
B_{0}^{g}=\left\langle\operatorname{id}_{\mathcal{O}_{X}},\left\{\operatorname{id}_{P_{i}}, \theta_{i}\right\}_{i=1}^{g}\right\rangle, B_{1}^{g}=\left\langle\left\{\eta_{i}, \xi_{i}, \psi_{i}\right\}_{i=1}^{g}\right\rangle
$$

We also consider B^{g} as an algebra over the semi-simple subring,

$$
R^{g}=\left\langle\operatorname{id}_{\mathcal{O}_{X}},\left\{\operatorname{id}_{P_{i}}\right\}_{i=1}^{g}\right\rangle,
$$

over which B^{g} splits as a direct sum, $B^{g}=R^{g} \oplus B_{+}^{g}$, with

$$
B_{+}^{g}=\left\langle\left\{\theta_{i}, \eta_{i}, \psi_{i}, \xi_{i}\right\}_{i=1}^{g}\right\rangle .
$$

Thus B^{g} is augmented over R^{g} in the sense of Section II.1.. We write B is place of B^{g} and R for R^{g} when this will cause no confusion.

V.2. A filtration of the Hochschild complex

Our goal is to compute $H H_{R}^{n}(B)$ in internal degrees $1-n, 2-n$, and $3-n$ for all n. By \otimes we will mean \otimes_{R} and by Hom we mean Hom_{R}. We consider the decreasing filtration on B as a B-bimodule,

$$
F_{0}=B \supset F_{1}=B_{+} \supset F_{2}=\left\langle\left\{\xi_{i}, \psi_{i}\right\}_{i=1}^{g}\right\rangle \supset F_{3}=0
$$

The decreasing filtration on B gives rise to a decreasing filtration on the reduced Hochschild complex with coefficients in B,

$$
C^{\bullet}\left(F_{0}\right) \supset C^{\bullet}\left(F_{1}\right) \supset C^{\bullet}\left(F_{2}\right) \supset 0 .
$$

We consider the spectral sequence on Hochschild cohomology associated with this filtration. Since the filtration is finite (and therefore bounded) the spectral sequence converges to the cohomology of the complex, $H H^{\bullet}(B)$. On the zero page we have isomorphisms (fitting together into isomorphisms of complexes),

$$
C^{\bullet}\left(F_{i}\right) / C^{\bullet}\left(F_{i+1}\right) \cong C^{\bullet}\left(F_{i} / F_{i+1}\right)
$$

So we should compute $H H^{n}\left(F_{i} / F_{i+1}\right)$ to fill out page one of the spectral sequence. We
define:

1. $\operatorname{Bar}_{\bullet}\left(\mathcal{O}_{X}, B^{g}\right):=\operatorname{id}_{\mathcal{O}_{X}} \otimes_{R} \operatorname{Bar}_{\bullet}\left(B^{g}\right) \otimes_{R} \operatorname{id}_{\mathcal{O}_{X}}$, with homology $H B \bullet\left(\mathcal{O}_{X}, B^{g}\right)$;
2. $\operatorname{Bar}_{\bullet}\left(P_{i}, B^{g}\right):=\operatorname{id}_{P_{i}} \otimes_{R} \operatorname{Bar}_{\bullet}\left(B^{g}\right) \otimes_{R} \mathrm{id}_{P_{i}}$, with homology $H B_{\bullet}\left(P_{i}, B^{g}\right)$;
3. $\operatorname{Bar}_{\bullet}\left(\theta_{i}, B^{g}\right):=\operatorname{id}_{\mathcal{O}_{X}} \otimes_{R} \operatorname{Bar}_{\bullet}\left(B^{g}\right) \otimes_{R} \operatorname{id}_{P_{i}}$, with homology $H B_{\bullet}\left(\theta_{i}, B^{g}\right)$;
4. $\operatorname{Bar} \bullet\left(\eta_{i}, B^{g}\right):=\operatorname{id}_{P_{i}} \otimes_{R} \operatorname{Bar}_{\bullet}\left(B^{g}\right) \otimes_{R} \operatorname{id}_{\mathcal{O}_{X}}$, with homology $H B \bullet\left(\eta_{i}, B^{g}\right)$.

We interpret these subcomplexes as tensors corresponding to paths in Figure 2 where we specify the source and target. We write $\operatorname{Bar}_{\bullet}\left(\mathcal{O}_{X}\right), H B_{\bullet}\left(\mathcal{O}_{X}\right), \operatorname{Bar}_{\bullet}\left(P_{i}\right)$, etc. when it causes no confusion.

Lemma V.2.1. There are isomorphisms,

1. $H H_{(-k)}^{n}\left(F_{0} / F_{1}\right) \cong\left[H B_{n}^{(k)}\left(\mathcal{O}_{X}\right)\right]^{*} \otimes i d_{\mathcal{O}_{X}} \oplus \bigoplus_{i=1}^{g}\left[H B_{n}^{(k)}\left(P_{i}\right)\right]^{*} \otimes i d_{P_{i}} ;$
2. $H H_{(-k)}^{n}\left(F_{1} / F_{2}\right) \cong \bigoplus_{i=1}^{g}\left[H B_{n}^{(k)}\left(\theta_{i}\right)\right]^{*} \otimes \theta_{i} \oplus \bigoplus_{i=1}^{g}\left[H B_{n}^{(k+1)}\left(\eta_{i}\right)\right]^{*} \otimes \eta_{i}$;
3. $H H_{(-k)}^{n}\left(F_{2}\right) \cong \bigoplus_{i=1}^{g}\left[H B_{n}^{(k+1)}\left(\mathcal{O}_{X}\right)\right]^{*} \otimes \xi_{i} \oplus \bigoplus_{i=1}^{g}\left[H B_{n}^{(k+1)}\left(P_{i}\right)\right]^{*} \otimes \psi_{i}$.

Proof. There are isomorphisms of B-bimodules,

$$
\begin{aligned}
F_{0} / F_{1} & \cong\left(F_{1}+\left\langle\operatorname{id}_{\mathcal{O}_{X}}\right\rangle\right) / F_{1} \oplus \bigoplus_{i=1}^{g}\left(F_{1}+\left\langle\operatorname{id}_{P_{i}}\right\rangle\right) / F_{1}, \\
F_{1} / F_{2} & \cong \bigoplus_{i=1}^{g}\left(F_{2}+\left\langle\theta_{i}\right\rangle\right) / F_{2} \oplus \bigoplus_{i=1}^{g}\left(F_{2}+\left\langle\eta_{i}\right\rangle\right) / F_{2}, \\
F_{2} & \cong \bigoplus_{i=1}^{g}\left(\xi_{i}\right) \oplus \bigoplus_{i=1}^{g}\left(\psi_{i}\right),
\end{aligned}
$$

so these results would follow from isomorphisms for each corresponding summand. Those follow from the duality of Section II.2. since the first and last terms in the cohomology differential are zero in each quotient.

Remark V.2.2. We define

$$
V_{\theta}=\bigoplus_{i=1}^{g}\left(F_{2}+\left\langle\theta_{i}\right\rangle\right) / F_{2}, \quad V_{\eta}=\bigoplus_{i=1}^{g}\left(F_{2}+\left\langle\eta_{i}\right\rangle\right) / F_{2} .
$$

The second equation in this proof claims $F_{1} / F_{2} \cong V_{\theta} \oplus V_{\eta}$.

Let $B^{g}(i)=\left\langle\operatorname{id}_{\mathcal{O}_{X}}, \operatorname{id}_{P_{i}}, \theta_{i}, \eta_{i}, \xi_{i}, \psi_{i}\right\rangle \subset B^{g}$. There is an obvious isomorphism $B^{g}(i) \cong$ B^{1} as \mathbb{K}-algebras. Let $B_{+}^{g}(i)$ be the B^{g}-submodule corresponding to B_{+}^{1} under this isomorphism. Then there is an isomorphism of B^{g}-bimodules, $B_{+}^{g} \cong \bigoplus_{i=1}^{g} B_{+}^{g}(i)$. We define,
(1) $\widetilde{H B}\left(\mathcal{O}_{X}, B^{g}(i)\right): \bigoplus_{n=0}^{\infty} \bigoplus_{m=n-3}^{n} H B_{n}^{(m)}\left(\mathcal{O}_{X}, B^{1}\right)$, summarized in Proposition III.2.1;
(2) $\widetilde{H B}\left(P_{i}\right):=\bigoplus_{n=0}^{\infty} \bigoplus_{m=n-3}^{n} H B_{n}^{(m)}\left(P_{i}, B^{1}\right)$, summarized in Corollary III.2.4;
(3) $\widetilde{H B}\left(\theta_{i}\right):=\bigoplus_{n=0}^{\infty} \bigoplus_{m=n-3}^{n-1} H B_{n}^{(m)}\left(\theta_{i}, B^{1}\right)$, summarized in Proposition III.2.6;
(4) $\widetilde{H B}\left(\eta_{i}\right):=\bigoplus_{n=0}^{\infty} \bigoplus_{m=n-2}^{n} H B_{n}^{(m)}\left(\eta_{i}, B^{1}\right)$, summarized in Corollary III.2.9;
with representatives of all classes in cohomological degree n taken in $B_{+}^{g}(i)^{\otimes n}$. We rephrase the referenced results for our purposes here.

Lemma V.2.3. 1. $\widetilde{H B}\left(\mathcal{O}_{X}, B^{g}(i)\right)$ and $\widetilde{H B}\left(P_{i}\right)$ are nonzero only for $n=0,3,4,7,8,11,12$.
2. $\widetilde{H B}\left(\theta_{i}\right)$ and $\widetilde{H B}\left(\eta_{i}\right)$ are nonzero only for $n=1,2,5,6,9,10$.

For $m>0$,

$$
\begin{aligned}
S_{m} & :=\left\{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{Z}^{m} \mid 1 \leq i_{j} \leq g \text { and } i_{j} \neq i_{j+1} \text { for all } j\right\}, \\
W\left(\mathcal{O}_{X}\right) & :=\bigoplus_{m=1}^{\infty} \bigoplus_{\sigma \in S_{m}} \widetilde{H B}\left(\mathcal{O}_{X}, B^{g}\left(i_{1}\right)\right) \otimes_{R} \otimes \cdots \otimes_{R} \widetilde{H B}\left(\mathcal{O}_{X}, B^{g}\left(i_{m}\right)\right) .
\end{aligned}
$$

Remark V.2.4. We interpret $W\left(\mathcal{O}_{X}\right)$ as sequences of loops in B^{g} starting and ending at \mathcal{O}_{X} built by bar homology classes from B^{1}.

Lemma V.2.5. 1. $H B_{n}\left(\mathcal{O}_{X}\right)$ is the subspace of classes of cohomological degree n in $W\left(\mathcal{O}_{X}\right)$;
2. $H B_{n}\left(P_{i}\right)$ is the subspace of classes of cohomological degree n in $\widetilde{H B}\left(P_{i}\right) \oplus\left[\widetilde{H B}\left(\eta_{i}\right) \otimes_{R}\right.$ $\left.W\left(\mathcal{O}_{X}\right) \otimes_{R} \widetilde{H B}\left(\theta_{i}\right)\right] ;$
3. $\widetilde{H B}_{n}\left(\theta_{i}\right)$ is the subspace of classes of cohomological degree n in $W\left(\mathcal{O}_{X}\right) \otimes_{R} \widetilde{H B}\left(\theta_{i}\right)$;
4. $\widetilde{H B}_{n}\left(\eta_{i}\right)$ is the subspace of classes of external degree n in $\widetilde{H B}\left(\eta_{i}\right) \otimes_{R} W\left(\mathcal{O}_{X}\right)$.

Proof. We have

$$
\left(B_{+}^{g}\right)^{\otimes n}=\left(\bigoplus_{i=1}^{g} B_{+}^{g}(i)\right)^{\otimes n}=\bigoplus_{m=1}^{\infty} \bigoplus_{\sigma \in S_{m}}\left(\bigoplus_{\sum n_{j}=n, n_{j} \neq 0} B_{+}^{g}\left(i_{1}\right)^{\otimes n_{1}} \otimes \cdots \otimes B_{+}^{g}\left(i_{m}\right)^{\otimes n_{m}}\right)
$$

For each σ, the corresponding summands form the n-chains of the complex $T\left(B_{+}^{g}\left(i_{1}\right)\right) \otimes \cdots \otimes$ $T\left(B_{+}^{g}\left(i_{m}\right)\right)$, which is a tensor product of bar complexes. Since \otimes is \otimes_{R}, tensors represent paths in B^{g}; since $i_{j} \neq i_{j+1}$ for all j, it follows that we can only attach paths at the vertex corresponding to \mathcal{O}_{X} in Figure 2, i.e.,

$$
\operatorname{Bar} \bullet\left(\mathcal{O}_{X}\right)=\bigoplus_{m=1}^{\infty} \bigoplus_{\sigma \in S_{m}} \operatorname{Bar} \bullet\left(\mathcal{O}_{X}, B^{g}\left(i_{1}\right)\right) \otimes \cdots \otimes \operatorname{Bar}_{\bullet}\left(\mathcal{O}_{X}, B^{g}\left(i_{m}\right)\right)
$$

Thus the homology of this complex is the tensor product of homologies, which is the first result. The others follow similarly.

V.3. Differentials in the spectral sequence

This section compiles several technical lemmas concerning the behavior of the differentials in the spectral sequence associated with the filtration from Section V.2..

Lemmas V.2.1 and V.2.5 explain how to build each space $E_{1}^{i, n-i}=H H^{n}\left(F_{i} / F_{i+1}\right)$ by considering certain sequences $n_{1}-n_{2} \cdots-n_{m}$ of positive integers such that $\sum_{j=1}^{m} n_{j}=n$.

Remark V.3.1. These are the numbers n_{j} from the proof of Lemma V.2.5, with possible values of these numbers given in Lemma V.2.3. That is, the n_{j} are the lengths of classes in $\widetilde{H B}\left(\mathcal{O}_{X}, B^{g}\left(i_{j}\right)\right), \widetilde{H B}\left(P_{i}\right), \widetilde{H B}\left(\theta_{i}\right)$, or $\widetilde{H B}\left(\eta_{i}\right)$ which are tensored to give a class in $H B_{n}\left(\mathcal{O}_{X}\right)$, $H B_{n}\left(P_{i}\right), H B_{n}\left(\theta_{i}\right)$, or $H B_{n}\left(\eta_{i}\right)$, according to Lemma V.2.5.

Since we are only concerned with internal degrees $1-n, 2-n$, and $3-n$, this places a limit on the lengths of admissible such sequences. In particular, since the θ_{i} are the only basis elements of B_{+}in graded degree 0 , bar homology classes of internal degree $n-k$ are those which have exactly k factors of some (possibly different) θ_{i}. Each factor of θ_{i} corresponds either to an entire loop in B_{+}(in the sense of Remark V.2.4 and Figure 2), or to a path along θ_{i}.

The following comments describe the classes we will call admissible. A sequence is admissible if it corresponds to an admissible class. In $H B_{n}\left(\mathcal{O}_{X}\right)$ and $H B_{n}\left(P_{i}\right)$ we take classes of internal degree at least $n-3$ for each n (i.e., having no more than 3 loops in B_{+}); in $H B_{n}\left(\theta_{i}\right)$ we take classes of internal degree at most $n-3$ (i.e., having no more than 2 loops in B_{+}and an additional path along θ_{i}) ; in $H B_{n}\left(\eta_{i}\right)$ we take classes of internal degree at most $n-2$ (i.e.,
having no more than 3 loops in B_{+}and an additional path along η_{i}).
Table 5 in rows 0-12 summarizes admissible sequences. We include admissible sequences for θ_{i}, P_{i} for $n=13$ only because they appear as boundaries of admissible sequences for \mathcal{O}_{X}, P_{i} for $n=12$. The column labeled \mathcal{O}_{X} in row n lists sequences corresponding to admissible classes in $H B_{n}\left(\mathcal{O}_{X}\right)$, and similarly for P_{i} and θ_{i}. Since the admissible sequences for η_{i} are the reverse of those admissible for θ_{i}, only the sequences for θ_{i} are listed.

n	\mathcal{O}_{X}	P_{i}	$\theta_{i}\left(\eta_{i}\right)$
0	0	0	1
1			2
2		3	
3	3	4	$3-1$
4	4	$1-3-1$	$5,4-1,3-2$
5		$1-4-1,2-3-1,1-3-2$	
6	$3-3$	$7,2-4-1,1-4-2,2-3-2$	$3-3-1$
7	$7,3-4,4-3$	8,2	$7-1,3-5,4-3-1$,
8	$8,4-4$	$3-4-1,3-3-2$	
9	$3-3-3$	$1-7-1,2-3-3-1,1-3-3-2$,	$9,8-1,7-2,4-5,3-6$,
		$1-4-3-1,1-3-4-1$	$4-4-1,4-3-2,3-4-2$
10	$3-7,7-3,3-3-4$,	$1-7-2,2-7-1,1-8-1$,	$10,8-2,4-4-2,3-3-3-1$
	$3-4-3,4-3-3$	$2-3-3-2,1-4-4-1,1-4-3-2$,	
		$2-4-3-1,1-3-4-2,2-3-4-1$	
11	$11,3-8,8-3,4-7,7-4$,	$11,1-8-2,2-8-1,2-7-2$,	$3-3-3-2,7-3-1,3-7-1$,
	$3-4-4,4-3-4,4-4-3$	$1-4-4-2,2-4-4-1$,	$4-3-3-1,3-4-3-1,3-3-4-1$
		$2-4-3-2,2-3-4-2$	
12	$12,4-8,8-4,4-4-4$	$12,2-8-2,2-4-4-2$	$11-1,3-8-1,8-3-1,4-7-1$,
			$7-4-1,3-7-2,7-3-2$,
			$3-4-4-1,4-3-4-1,4-4-3-1$,
			$3-3-4-2,3-4-3-2,4-3-3-2$
13			$13,12-1,11-2,4-8-1$,
			$8-4-1,3-8-2,8-3-2$,
			$4-3-2,7-4-2,3-4-4-2$,
			$4-3-4-2,4-4-3-2,4-4-4-1$

Table 5: Admissible sequences

We decorate a sequence $n_{1} \cdots-n_{k}$ with an element $\sigma=\left(i_{1}, \ldots, i_{m}\right) \in S_{m}$ (defined after Lemma V.2.3 by writing $n_{1}\left(i_{1}\right) \cdots-n_{m}\left(i_{m}\right)$ to refer to the sequence where the class of length n_{j} is represented in $B\left(i_{j}\right)$. We will calculate differentials on page one of the spectral sequence
by playing a combinatorial game with these decorated sequences.
To describe this game, we assume for simplicity that we have a sequence $n_{1}-n_{2}$. It will be obvious that these comments extend to arbitrary sequences. Let α be the bar cycle corresponding to the sequence $n_{1}\left(i_{1}\right)-n_{2}\left(i_{2}\right)$, and ω be the bar cycle corresponding to the sequence $m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)$. Then the only way for $\left(\delta[\alpha]^{*}\right)(\omega)$ to be nonzero is if truncating the first or last factor in the tensor ω gives α (see calculations in the proof of Lemma III.3.1 part (2)); that is, the sequence for ω must be one of the following:

$$
\begin{aligned}
s_{1}(j) & =1(\mathrm{j})-n_{1}\left(i_{1}\right)-n_{2}\left(i_{2}\right), j \neq i_{1} \\
s_{2}(j) & =n_{1}\left(i_{1}\right)-n_{2}\left(i_{2}\right)-1(\mathrm{j}), j \neq i_{2} \\
s_{3} & =\left(n_{1}+1\right)\left(i_{1}\right)-n_{2}\left(i_{2}\right), \text { or } \\
s_{4} & =n_{1}\left(i_{1}\right)-\left(n_{2}+1\right)\left(i_{2}\right) .
\end{aligned}
$$

Therefore $\delta\left([\alpha]^{*}\right)$ is some linear combination of cocycles corresponding to the sequences $s_{1}(j)$, $s_{2}(j), s_{3}$, and s_{4}. Now we consider specific cases of how to compute δ using sequences:

1. Consider a sequence $m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)-n(i)$ admissible for θ_{i}, corresponding to some loops in $B_{+}\left(j_{1}\right), \ldots, B_{+}\left(j_{k}\right)$ (ref. Figure 2) and a path along θ_{i}. The dual of this path is a function,

$$
\left[m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-n(i)\right]^{*} \otimes \theta_{i} \in H H^{n}\left(F_{1} / F_{2}\right)
$$

Since $\delta_{1}\left(H H^{n}\left(F_{1} / F_{2}\right)\right) \subset H H^{n+1}\left(F_{2}\right)$, we look for sequences $s_{1}(j), s_{2}(j), s_{3}$, and s_{4} admissible for \mathcal{O}_{X} or P_{i}. To build such sequences:
(a) We can precede our sequence by a path along η_{i} whenever $j_{1} \neq i$, corresponding to the sequence $1(i)-m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-n(i)$ and the cohomology class,

$$
\left[1(i)-m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-n(i)\right]^{*} \otimes \psi_{i} ;
$$

(b) We can precede our sequence by a path along η_{i} whenever $j_{1}=i$ and m_{1} is even,
corresponding to the sequence $\left(m_{1}+1\right)(i) \cdots-m_{k}\left(j_{k}\right)-n(i)$ and the cohomology class,

$$
\left[\left(m_{1}+1\right)(i)-\cdots-m_{k}\left(j_{k}\right)-n(i)\right]^{*} \otimes \psi_{i}
$$

(c) We can follow our sequence by η_{i} whenever n is even, corresponding to the sequence $m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)-(n+1)(i)$, and the cohomology class,

$$
\left[m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-(n+1)(i)\right]^{*} \otimes \xi_{i}
$$

2. By analogy, the boundary of a class $\left[n(i)-m_{1}\left(j_{1}\right) \cdots \cdots-m_{k}\left(j_{k}\right)\right]^{*} \otimes \eta_{i}$ admissible for η_{i} is a linear combination of the classes:
(a) $\left[n(i)-m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-1(i)\right]^{*} \otimes \psi_{i}$, if $j_{k} \neq i$;
(b) $\left[n(i)-m_{1}\left(j_{1}\right) \cdots-\left(m_{k}+1\right)(i)\right]^{*} \otimes \psi_{i}$, if $j_{k}=i$ and m_{k} is even;
(c) $\left[(n+1)(i)-m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)\right]^{*} \otimes \xi_{i}$, if n is even.
3. Consider a sequence $m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)$ admissible for \mathcal{O}_{X}, corresponding to some loops in $B_{+}\left(j_{1}\right), \ldots, B_{+}\left(j_{k}\right)$. These sequences correspond to cohomology classes in $H H^{n}\left(F_{2}\right)$ and $H H^{n}\left(F_{0} / F_{1}\right)$. Of course $\delta_{1}\left(H H^{n}\left(F_{2}\right)\right)=0$, so our only interest in in computing,

$$
\delta_{1}\left(\left[m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}} \in H H^{n+1}\left(F_{1} / F_{2}\right)\right.
$$

Therefore we look for sequences $s_{1}(j), s_{2}(j), s_{3}$, and s_{4} admissible for θ_{i} or η_{i} for some i.
(a) We can precede this sequence by a path along η_{i}, which gives the classes,

$$
\begin{aligned}
& \quad\left[1(i)-m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)\right]^{*} \otimes \eta_{i} \text { if } i \neq j_{1} \text {, or } \\
& {\left[\left(m_{1}+1\right)\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)\right]^{*} \otimes \eta_{j_{1}} \text { if } i=j_{1} \text { and } m_{1} \text { even. }}
\end{aligned}
$$

(b) We can follow this sequence with a path along θ_{i}, which gives the classes,

$$
\begin{gathered}
{\left[m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)-1(i)\right]^{*} \otimes \theta_{i} \quad \text { if } i \neq j_{k}, \text { or }} \\
{\left[m_{1}\left(j_{1}\right) \cdots \cdots\left(m_{k}+1\right)\left(j_{k}\right)\right]^{*} \otimes \theta_{j_{k}} \quad \text { if } i=j_{k} \text { and } m_{k} \text { is even. }}
\end{gathered}
$$

4. Finally, consider sequences $n_{1}(i)-m_{1}\left(j_{1}\right) \cdots-m_{k}\left(j_{k}\right)-n_{2}(i)$ or $n(i)$ admissible for P_{i}. These correspond to: a path along η_{i}, some loops in different $B_{+}\left(j_{l}\right)$, and a path along θ_{i}; and some loops in $B_{+}(i)$ starting and ending at the vertex corresponding to $\mathbb{K}\left(P_{i}\right)$, respectively. Again we look for sequences allowable for θ_{i} or η_{i}.
(a) We can precede this sequence by a path along θ_{i} if n_{1} is even, giving the class,

$$
\left[\left(n_{1}+1\right)(i)-m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-n_{2}(i)\right]^{*} \otimes \theta_{i}
$$

(b) We can follow it by a path along η_{i} if n_{2} is even, giving the class,

$$
\left[n_{1}(i)-m_{1}\left(j_{1}\right)-\cdots-m_{k}\left(j_{k}\right)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \eta_{i}
$$

Remark V.3.2. The calculations here apply only to sequences of positive length. In particular, the boundaries of $[0]^{*} \otimes i d_{\mathcal{O}_{X}}$ and $[0]^{*} \otimes i d_{P_{i}}$ are special cases since these sequences therefore cannot be decorated with some $\sigma \in S_{m}$ for $m>0$.

These rules allow us to calculate $\delta_{1}^{0, n}$ and $\delta_{1}^{1, n-1}$. The reader may also reference Table 5 for admissible sequence information.

Lemma V.3.3. The following form a basis for $\operatorname{ker} \delta_{1}^{1, n-1}$ for $n>0$:

1. $[n(i)]^{*} \otimes \theta_{i}$ and $[n(i)]^{*} \otimes \eta_{i}$ with n odd;
2. $[n(i)]^{*} \otimes \theta_{i}+[n(i)]^{*} \otimes \eta_{i}$ with $n \equiv 6 \bmod 8$;
3. $[m(j)-1(i)]^{*} \otimes \theta_{i} \pm[1(i)-m(j)]^{*} \otimes \eta_{i} ;$ and

$$
\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(i)\right]^{*} \otimes \theta_{i} \pm\left[1(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{i}
$$

4. $[m(j)-5(i)]^{*} \otimes \theta_{i} \pm[1(i)-m(j)-4(i)]^{*} \otimes \eta_{i}$, and

$$
[5(i)-m(j)]^{*} \otimes \eta_{i} \pm[4(i)-m(j)-1(i)]^{*} \otimes \theta_{i}
$$

5. $[3(i)-m(j)-2(i)]^{*} \otimes \theta_{i} \pm[2(i)-m(j)-3(i)]^{*} \otimes \eta_{i} ;$
6. $[3(i)-m(j)-1(i)]^{*} \otimes \theta_{i}$ and $[1(i)-m(j)-3(i)]^{*} \otimes \eta_{i}$

Proof. We first prove that the sequences described give classes in $\operatorname{ker} \delta$.

1. When n is odd, $n+1,1-n$, and $n-1$ are not admissible sequences for \mathcal{O}_{X} or P_{i}.
2. When n is even, $n+1$ is an admissible sequence for both \mathcal{O}_{X} and P_{i}, so,

$$
\begin{aligned}
& \delta_{1}\left([n(i)]^{*} \otimes \theta_{i}\right)=(-1)^{(n+2) / 4}[(n+1)(i)]^{*} \otimes \psi_{i}-[(n+1)(i)]^{*} \otimes \xi_{i}, \\
& \delta_{1}\left([n(i)]^{*} \otimes \eta_{i}\right)=[(n+1)(i)]^{*} \otimes \xi_{i}-[(n+1)(i)]^{*} \otimes \psi_{i} .
\end{aligned}
$$

Then the sum of these is therefore in ker δ_{1} if and only if $(n+2) / 4$ is even.
3. We have,

$$
\begin{aligned}
\delta_{1}\left([1(\mathrm{i})-m(j)]^{*} \otimes \eta_{i}\right) & = \pm[1(\mathrm{i})-m(j)-1(\mathrm{i})] \otimes \psi_{i} \\
\delta_{1}\left([m(j)-1(\mathrm{i})]^{*} \otimes \theta_{i}\right. & = \pm[1(\mathrm{i})-m(j)-1(\mathrm{i})]^{*} \otimes \xi_{i}
\end{aligned}
$$

So a sum or difference of these is in $\operatorname{ker} \delta_{1}$. The same calculation gives this result for $1-m_{1}-m_{2}$ and $m_{1}-m_{2}-1$ by substituting $m_{1}-m_{2}$ for m.
4. We have,

$$
\begin{aligned}
\delta_{1}\left([1(i)-m(j)-4(i)]^{*} \otimes \eta_{i}\right)= & \pm[1(i)-m(j)-5(i)]^{*} \otimes \psi_{i}, \\
\delta_{1}\left([m(j)-5(i)]^{*} \otimes \theta_{i}\right) & = \pm[1(i)-m(j)-5(i)]^{*} \otimes \psi_{i} .
\end{aligned}
$$

This shows that a sum or difference of these is in $\operatorname{ker} \delta_{1}$, and the calculation for the reverse sequences is analogous.
5. We have,

$$
\begin{aligned}
\delta_{1}\left([2(i)-m(j)-3(i)]^{*} \otimes \eta_{i}\right) & =[3(i)-m(j)-3(i)]^{*} \otimes \xi_{i}, \\
\delta_{1}\left([3(i)-m(j)-2(i)]^{*} \otimes \theta_{i}\right. & = \pm[3(i)-m(j)-3(i)]^{*} \otimes \psi_{i} .
\end{aligned}
$$

So a sum or difference of these is in ker δ_{1}.
6. These follow as in (1), since 4-m-1, 3-m-2 are not admissible for \mathcal{O}_{X} or P_{i}.

It remains to show that this is the entire kernel. Let $\Omega\left(F_{1} / F_{2}\right)$ be the sequence basis for $H H^{n}\left(F_{1} / F_{2}\right)$ defined by all decorated admissible sequences. Let $V_{1} \subset H H^{n}\left(F_{1} / F_{2}\right)$ be the space with basis consisting of the set $\Omega_{1}\left(F_{1} / F_{2}\right)$ of elements of $\Omega\left(F_{1} / F_{2}\right)$ not yet considered;
i.e.,

$$
\begin{aligned}
V_{1}= & \left\langle\left\{[m(j)-k(i)]^{*} \otimes \theta_{i},[k(i)-m(j)]^{*} \otimes \eta_{i}, \mid k \text { is even, }\right\},\right. \\
& \left.\left\{\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-2(i)\right]^{*} \otimes \theta_{i},\left[2(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right\}\right\rangle .
\end{aligned}
$$

Let V_{2} be the space with basis $\Omega\left(F_{1} / F_{2}\right) / \Omega_{1}\left(F_{1} / F_{2}\right)$, so that $H H^{n}\left(F_{1} / F_{2}\right)=V_{1} \oplus V_{2}$.
We will construct a decomposition $H H^{n+1}\left(F_{2}\right)=W_{1} \oplus W_{2}$ such that 1) $\delta_{1}\left(V_{2}\right) \subset W_{2}$, and 2) the projection of $\delta\left(V_{1}\right)$ onto W_{1} is an isomorphism. This will complete the claim.

We begin by calculating $\delta_{1}\left(V_{1}\right)$.

$$
\begin{aligned}
\delta_{1}\left([m(j)-k(i)]^{*} \otimes \theta_{i}\right)= & \pm[1(\mathrm{i})-m(j)-k(i)]^{*} \otimes \psi_{i} \pm[m(j)-(k+1)(\mathrm{i})]^{*} \otimes \xi_{i}, \\
\delta_{1}\left([k(i)-m(j)]^{*} \otimes \eta_{i}\right)= & \pm[(k+1)(\mathrm{i})-m(j)]^{*} \otimes \xi_{i} \pm[k(i)-m(j)-1(\mathrm{i})]^{*} \otimes \psi_{i}, \\
\delta_{1}\left(\left[2(\mathrm{i})-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right)= & {\left[3(\mathrm{i})-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \xi_{i} \pm } \\
& {\left[2(\mathrm{i})-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(\mathrm{i})\right]^{*} \otimes \psi_{i}, } \\
\delta_{1}\left(\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-2(\mathrm{i})\right]^{*} \otimes \theta_{i}=\right. & \pm\left[1(\mathrm{i})-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-2(\mathrm{i})\right]^{*} \otimes \psi_{i} \pm \\
& {\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-3(\mathrm{i})\right]^{*} \otimes \xi_{i} . }
\end{aligned}
$$

Let $W_{1} \subset H H^{n+1}\left(F_{2}\right)$ have basis consisting of all

$$
\begin{gathered}
{[m(j)-(k+1)(i)]^{*} \otimes \xi_{i},[(k+1)(\mathrm{i})-m(j)]^{*} \otimes \xi_{i},} \\
{\left[3(\mathrm{i})-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \xi_{i},\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-3(\mathrm{i})\right]^{*} \otimes \xi_{i},}
\end{gathered}
$$

and let W_{2} be the complement of W_{1} with respect to the sequence basis. The calculations in 1-6 and in the equations above show that this decomposition satifies the required properties. In particular, each basis vector v of V_{1} has exactly one basis vector w of W_{1} in the expansion of $\delta_{1}(v)$, and this gives a one-to-one correspondence between bases. So $\operatorname{ker} \delta_{1} \subset V_{2}$, and this completes the proof.

Lemma V.3.4. The following form a basis of $\operatorname{ker} \delta_{1}^{0, n}$ for $n>0$:

1. $[n(i)]^{*} \otimes i d_{P_{i}}$, where n is odd;
2. $\left[n_{1}(i)-m(j)-n_{2}(i)\right]^{*} \otimes i d_{P_{i}}$, where n_{1}, n_{2} are odd;
3. $\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes i d_{P_{i}}$ where n_{1}, n_{2} are odd;
4. $\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes i d_{\mathcal{O}_{X}} \pm\left[\left(m_{1}-1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1\left(j_{1}\right)\right]^{*} \otimes i d_{P_{i}} \pm$ $\left[1\left(j_{2}\right)-m_{1}\left(j_{1}\right)-\left(m_{2}-1\right)\left(j_{2}\right)\right]^{*} \otimes i d_{P_{i}}$, where m_{1}, m_{2} are odd, in genus 2 only.

Proof. We first show that the vectors described in 1-4 are in ker δ_{1}. Note that we restrict to $n>0$ due to Remark V.3.2.

1. When n odd is admissible for $P_{i}, n+1$ is not admissible for θ_{i}, η_{i}.

2,3. In both cases, adding 1 to the outside sequences n_{1} and n_{2} do not produce admissible sequences for \mathcal{O}_{X} or P_{i} since n_{1}, n_{2} are odd.
4. Since m_{1}, m_{2} are odd, neither of the sequences $\left(m_{1}+1\right)-m_{2}$ or $m_{1}-\left(m_{2}+1\right)$ are admissible. Since we assume $g=2$,

$$
\begin{aligned}
& \delta_{1}\left(\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}}\right)= \pm\left[1\left(j_{2}\right)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{j_{2}}- \\
& {\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1\left(j_{1}\right)\right]^{*} \otimes \theta_{j_{1}} } \\
& \delta_{1}\left(\left[\left(m_{1}-1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1\left(j_{1}\right)\right]^{*} \otimes \operatorname{id}_{P_{i}}\right)= \pm\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1\left(j_{1}\right)\right]^{*} \otimes \theta_{j_{1}} \\
&\left.\delta_{1}\left(1\left(j_{2}\right)-m_{1}\left(j_{1}\right)-\left(m_{2}-1\right)\left(j_{2}\right)\right]^{*} \otimes \operatorname{id}_{P_{i}}\right)=-\left[1\left(j_{2}\right)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{j_{2}}
\end{aligned}
$$

It follows that a linear combination of these is in $\operatorname{ker} \delta_{1}$.
We will prove that this is the entire kernel as follows. Let $\Omega\left(F_{0} / F_{1}\right)$ be the sequence basis for $H H^{n}\left(F_{0} / F_{1}\right)$, and $\Omega\left(F_{1} / F_{2}\right)$ be the sequence basis for $H H^{n+1}\left(F_{1} / F_{2}\right)$.

Let $V_{1} \subset H H^{n}\left(F_{0} / F_{1}\right)$ be the subspace with basis $\Omega_{1}\left(F_{0} / F_{1}\right) \subset \Omega\left(F_{0} / F_{1}\right)$ consisting of those basis vectors considered in 1-4 above. The complement of $\Omega_{1}\left(F_{0} / F_{1}\right)$ in $\Omega\left(F_{0} / F_{1}\right)$ can be partitioned into two classes: those classes of the form $[s]^{*} \otimes \mathrm{id}_{P_{i}}$ for some i, and those of the form $[s]^{*} \otimes \mathrm{id}_{\mathcal{O}_{X}}$. Let V_{2} be the space spanned by the former classes with sequence basis $\Omega_{2}\left(F_{0} / F_{1}\right)$, and V_{3} be the space spanned by the latter with sequence basis $\Omega_{3}\left(F_{0} / F_{1}\right)$, so $H H^{n}\left(F_{0} / F_{1}\right)=V_{1} \oplus V_{2} \oplus V_{3}$.

We will provide a decomposition $H H^{n+1}\left(F_{1} / F_{2}\right)=W_{1} \oplus W_{2} \oplus W_{3}$ together with bases $\Omega_{1}\left(F_{1} / F_{2}\right), \Omega_{2}\left(F_{1} / F_{2}\right)$, and $\Omega_{3}\left(F_{1} / F_{2}\right)$ having the properties that:
(1) $\delta\left(V_{1}\right) \subset W_{1}$;
(2) the projection of $\delta\left(V_{2}\right)$ onto W_{2} gives a one-to-one correspondence between basis vectors, so that in some choice of basis orderings the matrix of this transformation is the identity;
(3) $\delta\left(V_{1} \oplus V_{2}\right) \subset W_{1} \oplus W_{2}$; and
(4) the projection of $\delta\left(V_{3}\right)$ onto W_{3} gives a one-to-one correspondence between basis vectors, so that in some choice of basis orderings the matrix of this transformation is the identity. Thus in particular $\delta\left(V_{1}\right) \subset W_{1}$ and the matrix of the projection of $\delta\left(V_{2} \oplus V_{3}\right)$ onto $W_{2} \oplus W_{3}$ can be chosen to be upper triangular with ones on the diagonal; this would complete the proof.

The spaces W_{2} and W_{3} are defined in Appendix C. We then define W_{1} as the complement of W_{2} and W_{3} in $H H^{n+1}\left(F_{1} / F_{2}\right)$ with respect to the basis $\Omega\left(F_{1} / F_{2}\right)$. One then checks based on the calculations in 1-4 and Appendix C that this decomposition satisfies these properties.

There is only one nontrivial map on page two of this spectral sequence,

$$
\delta_{2}^{0, n}: \operatorname{ker} \delta_{1}^{0, n} \rightarrow \operatorname{coker} \delta_{1}^{1, n-2} .
$$

We calculate δ_{2} using sequences from Table 5 similar to the computation of δ_{1}. To calculate δ_{2} on ker $\delta_{1}^{0, n}$, we take admissible sequences of type s_{3} and s_{4}, defined after Table 5 .

Lemma V.3.5. $\delta_{2}^{0, n}$ is injective for all $n>0$.
Proof. We restrict to $n>0$ due to Remark V.3.2. Lemma V.3.4 calculates a basis for ker $\delta_{1}^{0, n}$. We prove that $\delta_{2}^{0, n}$ is injective by describing a decomposition $H H^{n+1}\left(F_{2}\right)=W_{1} \oplus W_{2}$ together with bases of W_{1} and W_{2} such that: 1) $\delta_{1}^{1, n-1}\left(H H^{n}\left(F_{1} / F_{2}\right)\right) \subset W_{1}$; and 2) the projection of $\delta_{2}^{0, n}\left(\operatorname{ker} \delta_{1}^{0, n}\right)$ onto W_{2} provides a one-to-one correspondence of basis vectors, so that under some ordering of bases the matrix of this transformation is the identity. This would complete the proof.

Let $\Omega\left(F_{2}\right)$ be the sequence basis for $H H^{n+1}\left(F_{2}\right)$. We start by calculating values of $\delta_{2}^{0, n}$ on the basis from Lemma V.3.4, letting $x\left(j_{1}, j_{2}\right)$ represent the term from (4). We take the
underlined terms on the right below as the basis $\Omega_{2}\left(F_{2}\right)$ of W_{2}.

$$
\left.\begin{array}{rl}
\delta_{2}\left([n(i)]^{*} \otimes \operatorname{id}_{P_{i}}\right)= & \pm \underline{[(n+1)(i)]^{*} \otimes \psi_{i}}, \\
\delta_{2}\left(\left[n_{1}(i)-m(j)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}\right)= & \pm \underline{\left[\left(n_{1}+1\right)(i)-m(j)-n_{2}(i)\right]^{*} \otimes \psi_{i}}+ \\
& (-1)^{m}\left[n_{1}(i)-m(j)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \psi_{i}, \\
\delta_{2}\left(\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}\right)= & \pm \underline{\left[\left(n_{1}+1\right)(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes \psi_{i}}+ \\
& (-1)^{m_{1}+m_{2}\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \psi_{i},} \\
\delta_{2}\left(x\left(j_{1}, j_{2}\right)\right)= & \pm \underline{\left[\left(m_{1}+1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \xi_{j_{1}} \pm} \\
& {\left[m_{1}\left(j_{1}\right)-\left(m_{2}+1\right)\left(j_{2}\right)\right]^{*} \otimes \xi_{j_{2}} \pm}
\end{array}\right) \quad\left[\left(m_{1}-1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)-2\left(j_{1}\right)\right]^{*} \otimes \psi_{j_{1}} \pm .
$$

We define W_{1} to be the complement of W_{2} with respect to the basis $\Omega\left(F_{2}\right)$. We compare these results to those in Lemma V.3.3 to verify that this decomposition satisfies the given conditions.

Lemmas V.3.5 and V.3.3 give an easy way to count the dimension of $H H^{n}(B)$.

Lemma V.3.6. In nonzero internal degrees,

$$
\operatorname{dim} H H^{n}(B)=\operatorname{dim} H H^{n}\left(F_{2}\right)-\operatorname{rank} \delta_{1}^{1, n-2}+\operatorname{dim} \operatorname{ker} \delta_{1}^{1, n-1}-\operatorname{dim} H H^{n-1}\left(F_{0} / F_{1}\right)
$$

Proof. We restrict to nonzero internal degrees due to Remark V.3.2. In cohomological degree n on page two of the spectral sequence are the spaces,

$$
\operatorname{coker} \delta_{1}^{1, n-2}, \operatorname{ker} \delta_{1}^{1, n-1} / \operatorname{image} \delta_{1}^{0, n-1}, \text { and } \operatorname{ker} \delta_{1}^{0, n}
$$

Taking cohomology on this page leaves the spaces

$$
\operatorname{ker} \delta_{1}^{1, n-1} / \operatorname{image} \delta_{1}^{0, n-1} \text { and } \operatorname{coker} \delta_{2}^{0, n-1}=\operatorname{coker} \delta_{1}^{1, n-2} / \operatorname{ker} \delta_{1}^{0, n-1}
$$

Counting dimensions we have,

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{ker} \delta_{1}^{1, n-1} / \operatorname{image} \delta_{1}^{0, n-1}\right) & =\operatorname{dim} \operatorname{ker} \delta_{1}^{1, n-1}-\operatorname{rank} \delta_{1}^{0, n-1} \\
\operatorname{dim}\left(\operatorname{coker} \delta_{1}^{1, n-2} / \operatorname{ker} \delta_{1}^{0, n-1}\right) & =\operatorname{dim} H H^{n}\left(F_{2}\right)-\operatorname{rank} \delta_{1}^{1, n-2}-\operatorname{dim} \operatorname{ker} \delta_{1}^{0, n-1}
\end{aligned}
$$

Adding these and using the rank-nullity identity for $\delta_{1}^{0, n-1}$ gives the result.

V.4. Hochschild cohomology of B^{g}

We now proceed to the main computation. Recall from Remark V.2.2 that

$$
F_{1} / F_{2}=V_{\theta} \oplus V_{\eta}, \text { so } H H^{n}\left(F_{1} / F_{2}\right)=H H^{n}\left(V_{\theta}\right) \oplus H H^{n}\left(V_{\eta}\right)
$$

Lemmas V.4.1-V.4.8 have tables that contain the nonzero spaces on page one of the spectral sequence in some fixed internal degree; the sequence types from Table 5 which correspond to classes in that space; and the dimension of the space spanned by classes of that sequence type.

Lemma V.4.1. $\operatorname{dim} H H_{(0)}^{1}(B)=g$, and $H H_{(0)}^{2}(B)=H H_{(0)}^{3}(B)=0$.
Proof. It follows from Table 5 that the spaces on page one in internal degree 0 have the dimensions listed in Table 6.

Space	sequence(s)	dimension
$H H_{(0)}^{0}\left(F_{0} / F_{1}\right)$	0	$g+1$
$H H_{(0)}^{1}\left(V_{\eta}\right)$	1	g
$H H_{(0)}^{1}\left(V_{\theta}\right)$	1	g

Table 6: Dimensions in internal degree 0

Since $H H_{(0)}^{1}\left(F_{2}\right)=0, \operatorname{dim} \operatorname{ker} \delta_{1}^{1,-1}=2 g$. Using the representatives of $H H_{(0)}^{0}\left(F_{0} / F_{1}\right)$, we calculate,

$$
\begin{aligned}
\delta_{1}\left([1]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}}\right) & =\sum_{i=1}^{g}\left(\left[\eta_{i}\right]^{*} \otimes \eta_{i}+\left[\theta_{i}\right]^{*} \otimes \theta_{i}\right), \\
\delta_{1}\left([1]^{*} \otimes \operatorname{id}_{P_{i}}\right) & =\left[\eta_{i}\right]^{*} \otimes \eta_{i}+\left[\theta_{i}\right]^{*} \otimes \theta_{i} .
\end{aligned}
$$

So there is a 1 -dimensional kernel, and $\operatorname{rank} \delta_{1}^{0,0}=g$. The result follows.
Lemma V.4.2. $\operatorname{dim} H H_{(-1)}^{2}(B)=0, \operatorname{dim} H H_{(-1)}^{3}(B)=g^{2}-g$, and $H H_{(-1)}^{4}(B)=0$.
Proof. Table 7 summarizes the spaces in degree -1 on page one.

Space	sequence	dimension
$H H_{(-1)}^{2}\left(V_{\eta}\right)$	2	g
$H H_{(-1)}^{2}\left(V_{\theta}\right)$	2	g
$H H_{(-1)}^{3}\left(F_{2}\right)$	3	$g^{2}+g$

Table 7: Dimensions in internal degree -1

By Lemma V.3.3 part (2), $\delta_{1}^{1,1}$ has no kernel; so $\operatorname{rank} \delta_{1}^{1,1}=2 g$. The result follows from Lemma V.3.6.

Lemma V.4.3. $H H_{(-2)}^{3}(B)=0, \operatorname{dim} H H_{(-2)}^{4}(B)=2 g^{2}-2 g$, and $H H_{(-2)}^{5}(B)=0$.
Proof. Table 8 summarizes the spaces on page one in degree -2 .

Space	sequence	dimension
$H H_{(-2)}^{3}\left(F_{0} / F_{1}\right)$	3	$2 g$
$H H_{(-2)}^{4}\left(F_{2}\right)$	4	$g^{2}+g$
$H H_{(-2)}^{4}\left(V_{\eta}\right)$	$1-3$	$g(g-1)$
$H H_{(-2)}^{4}\left(V_{\theta}\right)$	$3-1$	$g(g-1)$
$H H_{(-2)}^{5}\left(F_{2}\right)$	$1-3-1$	$g(g-1)$

Table 8: Dimensions in internal degree -2

By Lemma V.3.3 part (3) and V.3.5, $\operatorname{ker} \delta_{1}^{1,3}$ has basis,

$$
\left\{[3(i)-1(j)]^{*} \otimes \theta_{j}-[1(j)-3(i)]^{*} \otimes \eta_{j} \mid j \neq i\right\} \quad g(g-1)
$$

So dim $\operatorname{ker} \delta_{1}^{1,3}=g^{2}-g$ and $\operatorname{rank} \delta_{1}^{1,3}=g^{2}-g$.

Lemma V.4.4. $H H_{(-3)}^{4}(B)=0, \operatorname{dim} H H_{(-3)}^{5}(B)=g^{2}-g$, and $\operatorname{dim} H H_{(-3)}^{6}(B)=g^{3}-2 g^{2}+g$.
Proof. Table 9 summarizes the spaces on page one in degree -3 .

Space	sequence(s)	dimension
$H H_{(-3)}^{4}\left(F_{0} / F_{1}\right)$	4	$2 g$
$H H_{(-3)}^{5}\left(V_{\eta}\right)$	5	g
	$1-4$	$g(g-1)$
	$2-3$	$g(g-1)$
$H H_{(-3)}^{5}\left(V_{\theta}\right)$	$5,4-1,3-2$	$g+2 g(g-1)$
$H H_{(-3)}^{5}\left(F_{0} / F_{1}\right)$	$1-3-1$	$g(g-1)$
$H H_{(-3)}^{6}\left(F_{2}\right)$	$3-3$	$g^{2}(g-1)$
	$1-4-1,2-3-1,1-3-2$	$3 g(g-1)$

Table 9: Dimensions in internal degree -3

Lemma V.3.3 implies that $\operatorname{ker} \delta_{1}^{1,4}$ has basis

$$
\begin{array}{ll}
\left\{[5(i)]^{*} \otimes \theta_{i},[5(i)]^{*} \otimes \eta_{i} \mid i=1, \ldots, g\right\} & 2 g \\
\left\{[4(i)-1(j)]^{*} \otimes \theta_{j}-[1(j)-4(i)]^{*} \otimes \eta_{j}\right\} & g(g-1)
\end{array}
$$

So $\operatorname{ker} \delta_{1}^{1,4}$ has dimension $g^{2}+g ; \operatorname{rank} \delta_{1}^{1,4}=3 g^{2}-3 g$.

Lemma V.4.5. $\operatorname{dim} H H_{(-4)}^{6}(B)=g$ and $\operatorname{dim} H H_{(-4)}^{7}(B)=3 g^{3}-5 g^{2}+3 g$.
Proof. Table 10 summarizes the spaces on page one in degree -4 .

Space	sequence(s)	dimension
$H H_{(-4)}^{6}\left(V_{\eta}\right)$	6	g
	$2-4$	$g(g-1)$
$H H_{(-4)}^{6}\left(V_{\theta}\right)$	$6,4-2$	$g+g(g-1)$
$H H_{(-4)}^{6}\left(F_{0} / F_{1}\right)$	$3-3$	$g(g-1)$
	$1-4-1,2-3-1,1-3-2$	$3 g(g-1)$
$H H_{(-4)}^{7}\left(F_{2}\right)$	7	$g^{2}+g$
	$4-3,3-4$	$2 g^{2}(g-1)$
	$2-4-1,1-4-2,2-3-2$	$3 g(g-1)$
$H H_{(-4)}^{7}\left(V_{\eta}\right)$	$1-3-3$	$g(g-1)^{2}$
$H H_{(-4)}^{7}\left(V_{\theta}\right)$	$3-3-1$	$g(g-1)^{2}$

Table 10: Dimensions in internal degree -4

By Lemma V.3.3, $\operatorname{ker} \delta_{1}^{1,5}$ has basis

$$
\left\{[6(i)]^{*} \otimes \theta_{i}-[6(i)]^{*} \otimes \eta_{i} \mid i=1, \ldots, g\right\}
$$

and so has dimension g; thus rank $\delta_{1}^{1,5}=2 g^{2}-g$.
By Lemma V.3.5 and V.3.4, $\operatorname{ker} \delta_{1}^{1,6}$ has basis,

$$
\begin{aligned}
\left\{[3(i)-3(j)-1(i)]^{*} \otimes \theta_{i},[1(i)-3(j)-3(i)]^{*} \otimes \eta_{i}\right\} & 2 g(g-1), \\
\left\{\left[3\left(j_{1}\right)-3\left(j_{2}\right)-1(i)\right]^{*} \otimes \theta_{i}+\left[1(i)-3\left(j_{1}\right)-3\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right\} & g(g-1)(g-2) .
\end{aligned}
$$

So dim $\operatorname{ker} \delta_{1}^{1,6}=g^{3}-g^{2}$.

Lemma V.4.6. $H H_{(-5)}^{7}(B)=0$ and $\operatorname{dim} H H_{(-5)}^{8}(B)=3 g^{3}-4 g^{2}+g$.
Proof. Table 11 summarizes the spaces in degree -5 on page one.

Space	sequence(s)	dimension
$H H_{(-5)}^{7}\left(F_{0} / F_{1}\right)$	7	$2 g$
	$3-4,4-3$	$2 g(g-1)$
	$2-4-1,1-4-2,2-3-2$	$3 g(g-1)$
$H H_{(-5)}^{8}\left(F_{2}\right)$	8	$g^{2}+g$
	$4-4$	$g^{2}(g-1)$
	$2-4-2$	$g(g-1)$
$H H_{(-5)}^{8}\left(V_{\eta}\right)$	$5-3,1-7$	$2 g(g-1)$
	$1-4-3,1-3-4$	$2 g(g-1)^{2}$
	$2-3-3$	$g(g-1)^{2}$
$H H_{(-5)}^{8}\left(V_{\theta}\right)$	$3-5,7-1$	$2 g(g-1)$
	$3-4-1,4-3-1,3-3-2$	$3 g(g-1)^{2}$

Table 11: Dimensions in internal degree -5

By Lemma V.3.3, $\operatorname{ker} \delta_{1}^{1,7}$ has basis:

$$
\begin{aligned}
\left\{[7(i)-1(j)]^{*} \otimes \theta_{j}+[1(j)-7(i)]^{*} \otimes \eta_{j}\right\} & g(g-1), \\
\left\{\left[3\left(j_{1}\right)-4\left(j_{2}\right)-1(i)\right]^{*} \otimes \theta_{i}+\left[1(i)-3\left(j_{1}\right)-4\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right\} & g(g-1)(g-2), \\
\left\{\left[4\left(j_{1}\right)-3(j-2)-1(i)\right]^{*} \otimes \theta_{i}+\left[1(i)-4\left(j_{1}\right)-3\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right\} & g(g-1)(g-2), \\
\left\{[1(i)-3(j)-4(i)]^{*} \otimes \eta_{i}+[3(j)-5(i)]^{*} \otimes \theta_{i}\right\} & g(g-1), \\
\left\{[4(i)-3(j)-1(i)]^{*} \otimes \theta_{i}+[5(i)-3(j)]^{*} \otimes \eta_{i}\right\} & g(g-1), \\
\left\{[3(i)-3(j)-2(i)]^{*} \otimes \theta_{i}+[2(i)-3(j)-3(i)]^{*} \otimes \eta_{i}\right\} & g(g-1), \\
\left\{[1(i)-4(j)-3(i)]^{*} \otimes \eta_{i},[3(i)-4(j)-1(i)]^{*} \otimes \theta_{i}\right\} & 2 g(g-1) .
\end{aligned}
$$

So dim ker $\delta_{1}^{1,7}=2 g^{3}-2 g$.

Lemma V.4.7. $H H_{(-6)}^{8}(B)=0$ and $\operatorname{dim} H H_{(-6)}^{9}(B)=g^{3}-g^{2}$.

Proof. Table 12 summarizes the spaces in degree -6 on page one.

Space	sequence(s)	dimension
$H H_{(-6)}^{8}\left(F_{0} / F_{1}\right)$	8	$2 g$
	$4-4$	$g(g-1)$
	$2-4-2$	$g(g-1)$
$H H_{(-6)}^{9}\left(V_{\eta}\right)$	9	g
	$1-8,2-7,5-4,6-3$	$4 g(g-1)$
	$1-4-4,2-3-4,2-4-3$	$3 g(g-1)^{2}$
$H H_{(-6)}^{9}\left(V_{\theta}\right)$	9	g
	$8-1,7-2,4-5,3-6$	$4 g(g-1)$
	$4-4-1,4-3-2,3-4-2$	$3 g(g-1)^{2}$

Table 12: Dimensions in internal degree -6

By Lemma V.3.3 $\operatorname{ker} \delta_{1}^{1,8}$ has basis:

$$
\begin{aligned}
\left\{[9(i)]^{*} \otimes \theta_{i},[9(i)]^{*} \otimes \eta_{i}\right\} & 2 g \\
\left\{[8(i)-1(j)]^{*} \otimes \theta_{j}+[1(j)-8(i)]^{*} \otimes \eta_{j}\right\} & g(g-1), \\
\left\{\left[4\left(j_{1}\right)-4\left(j_{2}\right)-1(i)\right]^{*} \otimes \theta_{i}+\left[1(i)-4\left(j_{1}\right)-4\left(j_{2}\right)\right]^{*} \otimes \eta_{i}\right\} & g(g-1)(g-2), \\
\left\{[4(i)-4(j)-1(i)]^{*} \otimes \theta_{i}+[5(i)-4(j)]^{*} \otimes \eta_{i}\right\} & g(g-1), \\
\left\{[1(i)-4(j)-4(i)]^{*} \otimes \eta_{i}+[4(j)-5(i)]^{*} \otimes \theta_{i}\right\} & g(g-1), \\
\left\{[2(i)-4(j)-3(i)]^{*} \otimes \eta_{i}+[3(i)-4(j)-2(i)]^{*} \otimes \theta_{i}\right\} & g(g-1),
\end{aligned}
$$

So dim $\operatorname{ker} \delta_{1}^{1,8}=g^{3}+g^{2}$.

Lemma V.4.8. $H H_{(-7)}^{10}(B)=0$.
Proof. Table 13 summarizes the spaces in degree -7 on page one.

Space	sequence(s)	dimension
$H H_{(-7)}^{10}\left(V_{\eta}\right)$	10	g
	$8-2$	$g(g-1)$
	$4-4-2$	$g(g-1)^{2}$
$H H_{(-7)}^{10}\left(V_{\theta}\right)$	10	g
	$2-8$	$g(g-1)$
	$2-4-4$	$g(g-1)^{2}$

Table 13: Dimensions in internal degree -7

From Lemma V.3.3, $\delta_{1}^{1,9}$ has no kernel.

Lemma V.4.9. $H H^{n}(B)=0$ in internal degrees $1-n, 2-n$, and $3-n$ for $n>10$.

Proof. The positive terms in the result in Lemma V.3.6 depend on $H H^{n}\left(F_{2}\right)$ and $H H^{n}\left(F_{1} / F_{2}\right)$ being nonzero. For $n>10$, these spaces are 0 in the specified internal degrees.

In summary we have the following result.

Theorem V.4.10. Let X be a curve of genus $g \geq 2$. Then,

1. $\operatorname{dim} H H_{(1-n)}^{n}\left(B^{g}\right)= \begin{cases}g & \text { if } n=1 \\ 0 & \text { otherwise } .\end{cases}$
2. $\operatorname{dim} H H_{(2-n)}^{n}\left(B^{g}\right)=\left\{\begin{array}{cl}g^{2}-g & \text { if } n=3 \\ 2 g^{2}-2 g & \text { if } n=4 \\ g^{2}-g & \text { if } n=5 \\ g & \text { if } n=6 \\ 0 & \text { otherwise. }\end{array}\right.$
3. $\operatorname{dim} H H_{(3-n)}^{n}\left(B^{g}\right)=\left\{\begin{array}{cl}g^{3}-2 g^{2}+g & \text { if } n=6 \\ 3 g^{3}-5 g^{2}+3 g & \text { if } n=7 \\ 3 g^{3}-4 g^{2}+g & \text { if } n=8 \\ g^{3}-g^{2} & \text { if } n=9 \\ 0 & \text { otherwise. }\end{array}\right.$

V.5. An explicit \mathbb{K}-linear isomorphism $H H_{(-1)}^{3}\left(B^{g}\right) \cong \mathbb{K}^{g^{2}-g}$

This isomorphism will be used explicitly in Chapter VI. We define,

$$
\alpha: H H_{(-1)}^{3}(B) \rightarrow \operatorname{Mat}_{g}(\mathbb{K}) \cong \mathbb{K}^{g^{2}}, f \mapsto\left(\alpha_{i j}(f)\right),
$$

where $\alpha_{i j}(f)$ is defined by the equation,

$$
f\left(\theta_{i} \psi_{i} \eta_{i}\right)=\lambda \cdot \xi_{i}+\sum_{j \neq i} \alpha_{i j}(f) \cdot \xi_{j}
$$

Proposition V.5.1. 1. α is well-defined;
2. α induces an isomorphism of $H_{(-1)}^{3}(B)$ with the subspace consisting of those matrices $\left(\alpha_{i j}\right)$ with $\alpha_{i i}=0$ for all i.

Proof. 1. We first show that α is well-defined by showing that it vanishes on boundaries. Let
$h \in C_{(-1)}^{2}\left(B^{g}\right)$. Then,

$$
\begin{aligned}
(\delta h)\left(\theta_{i} \psi_{i} \eta_{i}\right) & =\theta_{i} \cdot h\left(\psi_{i} \eta_{i}\right)-h\left(\theta_{i} \psi_{i}\right) \cdot \eta_{i} \\
& =\lambda \cdot \xi_{i}
\end{aligned}
$$

since $h\left(\psi_{i} \eta_{i}\right)$ is proportional to η_{i} for degree reasons and R-linearity of h, and $h\left(\theta_{i} \psi_{i}\right)$ is proportional to θ_{i} similarly. So α is well-defined.
2. Since $\operatorname{dim} H H_{(-1)}^{3}(B)=g^{2}-g$, it is enough to show that the image of α contains the subspace described, which clearly has dimension $g^{2}-g$. For $i \neq j$, let

$$
f_{i j}=\left(\theta_{i} \psi_{i} \eta_{i}\right)^{*} \otimes \xi_{j}+\left(\xi_{i} \theta_{i} \eta_{i}\right)^{*} \otimes \xi_{j} \in C_{(-1)}^{3}\left(F_{2}\right) \subset C_{(-1)}^{3}(B)
$$

The first and last terms of the Hochschild differential vanish since $f_{i j}$ maps to F_{2}, so for $(x, y, z, w) \in B_{+}^{\otimes 4}$,

$$
\left(\delta f_{i j}\right)(x, y, z, w)=-f_{i j}(x y, z, w)+f_{i j}(x, y z, w)-f_{i j}(x, y, z w)
$$

In order for one of these three terms not to vanish, we must have either $(x y, z, w)=\xi_{i} \theta_{i} \eta_{i}$ or $(x, y z, w)=\theta_{i} \psi_{i} \eta_{i}$. So we must have $(x, y, z, w)=\theta_{i} \eta_{i} \theta_{i} \eta_{i}$; but in this case the nonzero terms cancel, so we conclude that $f_{i j}$ is a cocycle. Furthermore $\alpha\left(f_{i j}\right)=E_{i j}$, where $E_{i j}$ is the $i j$-matrix unit. This completes the claim.

CHAPTER VI

THE A_{∞}-ALGEBRA OF A CURVE OF GENUS $g \geq 2$

We continue using the notation of Chapter V , with X a smooth complex curve of genus $g \geq 2$. Let $P \in X$ be a closed point, with

$$
\theta \in \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(P)\right), \eta \in \operatorname{Ext}^{1}\left(\mathbb{K}(P), \mathcal{O}_{X}\right)
$$

generators of these one-dimensional spaces, with

$$
\xi=\theta \eta \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right), \psi=\eta \theta \in \operatorname{Ext}^{1}(\mathbb{K}(P), \mathbb{K}(P))
$$

The reader may recall from Section II.8. the definitions of the Massey product in a triangulated category.

VI.1. A Massey product in $D^{b}(X)$

We consider the sequence in $D^{b}(X)$,

$$
\mathcal{O}_{X} \xrightarrow{\theta} \mathbb{K}(P) \xrightarrow{\psi} \mathbb{K}(P)[1] \xrightarrow{\eta} \mathcal{O}_{X}[1] .
$$

Since $\psi \circ \theta=\eta \circ \psi=0$, the Massey product,

$$
\operatorname{MP}(\theta, \psi, \eta) \in \operatorname{coker}\left(\operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(P)\right) \oplus \operatorname{Ext}^{1}\left(\mathbb{K}(P), \mathcal{O}_{X}\right) \xrightarrow{(\eta, \theta)} \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)\right)
$$

is well-defined. This target space is simply $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) /\langle\xi\rangle$.

Let $\operatorname{Coh}(X)$ be the abelian category of coherent sheaves on X, with

$$
\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3} \in \operatorname{Ob}(\operatorname{Coh}(X)) .
$$

We recall the correspondence between elements $f \in \operatorname{Ext}^{1}\left(\mathscr{F}_{1}, \mathscr{F}_{2}\right)$ and pairs (\mathscr{F}, g) with $\mathscr{F} \in$ $\operatorname{Ob}(\operatorname{Coh}(X)), g \in \operatorname{Hom}_{\operatorname{Coh}(X)}\left(\mathscr{F}_{2}, \mathscr{F}\right)$, such that there is an exact sequence

$$
0 \rightarrow \mathscr{F}_{2} \xrightarrow{g} \mathscr{F} \rightarrow \mathscr{F}_{1} \rightarrow 0 .
$$

When f corresponds to (\mathscr{F}, g) this way, we will say that (f, \mathscr{F}, g) is an extension triple.
If (f, \mathscr{F}, g) is an extension triple and $h \in \operatorname{Hom}_{(\operatorname{Coh}(X)}\left(\mathscr{F}_{3}, \mathscr{F}_{1}\right)$, then

$$
f \circ h \in \operatorname{Ext}^{1}\left(\mathscr{F}_{3}, \mathscr{F}_{2}\right)
$$

We understand this composition as the extension triple $(f \circ h, \widetilde{\mathscr{F}}, \tilde{g})$ where $\widetilde{\mathscr{F}}$ is a pullback in the diagram,

We now consider the maps θ, η, ξ, ψ in more detail. Let t be a local parameter in $\mathcal{O}_{X, P}$. Recall that we identify $\mathbb{K}(P)$ with $\mathcal{O}_{X}(P) / \mathcal{O}_{X}$.

1. The generator $\theta \in \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(P)\right)$ corresponds to the composition,

$$
\mathcal{O}_{X} \xrightarrow{\pi} \mathcal{O}_{X} / \mathcal{O}_{X}(P) \xrightarrow{\cdot t^{-1}} \mathbb{K}(P) .
$$

2. The generator $\eta \in \operatorname{Ext}^{1}\left(\mathbb{K}(P), \mathcal{O}_{X}\right)$ is in the extension triple $\left(\eta, \mathcal{O}_{X}(P)\right.$, i); i.e., it corresponds to the sequence,

$$
0 \rightarrow \mathcal{O}_{X} \xrightarrow{i} \mathcal{O}_{X}(P) \rightarrow \mathbb{K}(P) \rightarrow 0
$$

3. Let $\mathbb{K}(2 P)=\mathcal{O}_{X}(2 P) / \mathcal{O}_{X}$. The generator $\psi \in \operatorname{Ext}^{1}(\mathbb{K}(P), \mathbb{K}(P))$ is in the extension triple $(\psi, \mathbb{K}(2 P), i)$; i.e., it corresponds to the sequence,

$$
0 \rightarrow \mathbb{K}(P) \xrightarrow{i} \mathbb{K}(2 P) \rightarrow \mathbb{K}(P) \rightarrow 0
$$

4. The map $\xi \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$ is in the extension triple (ξ, Z, \tilde{i}) which corresponds to the bottom row in the diagram,

Since

$$
\mathbb{K}(P) \xrightarrow{i} \mathbb{K}(2 P) \xrightarrow{\pi} \mathbb{K}(P) \xrightarrow{\psi} \mathbb{K}(P)[1]
$$

is a distinguished triangle in $D^{b}(X)$, there exist liftings $\tilde{\theta} \in \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(2 P)\right)$ and $\tilde{\eta} \in \operatorname{Ext}^{1}\left(\mathbb{K}(2 P), \mathcal{O}_{X}\right)$ such that the following diagram commutes:

Then $\operatorname{MP}(\theta, \psi, \eta)=[\tilde{\eta} \circ \tilde{\theta}] \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) /\langle\xi\rangle$.
Lemma VI.1.1. For one choice of $\tilde{\eta}$, we have an extension triple $\left(\tilde{\eta}, \mathcal{O}_{X}(2 P), i\right)$.

Proof. Let $\left(\beta, \mathcal{O}_{X}(2 P), i\right)$ be an extension triple, corresponding to the sequence,

$$
0 \rightarrow \mathcal{O}_{X} \xrightarrow{i} \mathcal{O}_{X}(2 P) \rightarrow \mathbb{K}(2 P) \rightarrow 0
$$

It is sufficient to show that $\beta \circ i=\eta$. Composing $\beta \circ i$ gives the extension Z^{\prime} in the diagram,

The square,

commutes, so by the universal property of the pullback, i and π from $\mathcal{O}_{X, P}$ factor through Z^{\prime} by a $\operatorname{map}(i, \pi): \mathcal{O}_{X}(P) \rightarrow Z^{\prime}$.

We claim that all squares in the following diagram commute, giving an equivalence of extensions $\mathcal{O}_{X}(P) \sim Z^{\prime}$.

The second square commutes trivially by the diagram above, and the first square commutes since all of these maps are inclusions.

Let $K\left(\mathcal{O}_{X, P}\right)$ be the fraction field of $\mathcal{O}_{X, P}$, which has \mathbb{K}-basis $\left\{\ldots, t^{-2}, t^{-1}, 1, t, t^{2}, \ldots\right\}$. For $f \in K\left(\mathcal{O}_{X, P}\right)$, let $\operatorname{pol}(f)$ be the projection of f onto $V=\operatorname{Span}\left\{t^{-1}, t^{-2}, \ldots\right\}$, i.e., $\operatorname{pol}(f)$ is the polar part of f at P.

Lemma VI.1.2. One choice of $\tilde{\theta}$ is the composition

$$
\mathcal{O}_{X} \rightarrow \mathcal{O}_{X} / \mathcal{O}_{X}(-2 P) \xrightarrow{\cdot t^{-2}} \mathbb{K}(2 P) .
$$

Proof. Since the target is a skyscraper at P, it is sufficient to prove that this choice works on stalks at P. Let $f \in \mathcal{O}_{X, P}$. By the discussion preceding these lemmas we know that $\theta_{P}(f)=\operatorname{pol}\left(t^{-1} \cdot f\right)$. The projection $\pi: \mathbb{K}(2 P) \rightarrow \mathbb{K}(P)$ is given by $\pi_{P}(f)=\operatorname{pol}(t \cdot f)$. The composition in the statement of the lemma maps $f \mapsto t^{-2} \cdot f$. So with this composition at $\tilde{\theta}$ we have $\pi_{P} \circ \tilde{\theta}_{P}=\theta_{P}$ as needed.

We compose $\tilde{\eta} \circ \tilde{\theta}$ to get W in the following diagram,

Since $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(2 P)\right)$ is two-dimensional, we also consider the morphism $t \cdot \tilde{\theta}$, which is the map on stalks $f \mapsto \operatorname{pol}\left(t^{-1} f\right)$, corresponding to the extension W^{\prime} in the diagram,

Lemma VI.1.3. $W^{\prime} \cong Z$
Proof. We have a diagram,

For this diagram to commute it is enough to check on stalks at P, since the target is
a skyscraper at P. We can describe Z explicitly,

$$
Z=\operatorname{ker}\left(\mathcal{O}_{X}(P) \oplus \mathcal{O}_{X} \xrightarrow{(\pi,-\theta)} \mathbb{K}(P)\right),
$$

so

$$
Z_{P}=\left\{\left(f_{1}, f_{2}\right) \in \mathcal{O}_{X}(P)_{P} \oplus \mathcal{O}_{X, P} \mid \operatorname{pol}\left(f_{1}\right)=\operatorname{pol}\left(t^{-1} f_{2}\right) .\right.
$$

Then,

$$
\begin{aligned}
\left(\pi \circ i \circ \pi_{1}\right)_{P}\left(f_{1}, f_{2}\right) & =\pi_{P}\left(f_{1}\right)=\operatorname{pol}\left(f_{1}\right), \\
\left(t \cdot \tilde{\theta} \circ \pi_{2}\right)_{P}\left(f_{1}, f_{2}\right) & =t \cdot \tilde{\theta}_{P}\left(f_{2}\right)=\operatorname{pol}\left(t^{-1} f_{2}\right) .
\end{aligned}
$$

Since the diagram commutes, the maps to $\mathcal{O}_{X}(2 P)$ and \mathcal{O}_{X} factor through W^{\prime},

The map α fits into the diagram,

The top and bottom maps in the left square are inclusion in the first factor and α is the identity on the first factor, so this square commutes; the right square is the bottom left triangle on the diagram defining α. Therefore this diagram commutes, and α is an isomorphism by the Five Lemma.

Proposition VI.1.4. $\operatorname{MP}(\theta, \psi, \eta)=0$ if and only if X is hyperelliptic and P is a Weierstrass point on X.

Proof. The coset $\operatorname{MP}(\theta, \psi, \eta) \in \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) /\langle\xi\rangle$ is represented by W, while the coset 0 is represented by Z. It follows that $\operatorname{MP}(\theta, \psi, \eta)=0$ if and only if W and Z are proportional in $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$.

The short exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(2 P) \rightarrow \mathbb{K}(2 P) \rightarrow 0
$$

gives rise to a long exact sequence on Ext,

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(2 P)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}(2 P)\right) \xrightarrow{\gamma} \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \cdots
$$

The map γ is injective if and only if

$$
\operatorname{dim} \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(2 P)\right)=\operatorname{dim} \Gamma\left(\mathcal{O}_{X}(2 P)\right)=1
$$

i.e., P is not a Weierstrass point.

Thus when P is not a Weierstrass point, W and W^{\prime} are linearly independent; since $W^{\prime} \cong Z$ by Lemma VI.1.3, it must be that W and Z linearly independent. When P is Weierstrass, γ is not injective, so W and W^{\prime} map to the same line in $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$, therefore in that case the Massey product vanishes. Non-hyperelliptic curves have no Weierstrass points, so this forces X to be hyperelliptic.

VI.2. Homotopy class of triple products on a curve

An immediate consequence of [19] Proposition 1.1 is that since the A_{∞}-structure on B^{g} is minimal:

1. $\operatorname{MP}(x, y, z)=\left[m_{3}(x, y, z)\right]$, for $x, y, z \in B_{+}$such that $y \circ x=z \circ y=0$ and $\left[m_{3}(x, y, z)\right]$ denotes the coset of the element $m_{3}(x, y, z)$ in the space where $\operatorname{MP}(x, y, z)$ is defined; and
2. if $(f): B^{g} \rightarrow B^{g}$ is a strict equivalence such that $m_{3}^{\prime}=f * m_{3}$, then $\left[m_{3}^{\prime}(x, y, z)\right]=$ $\operatorname{MP}(x, y, z)$ as well.

In this way we may think of the Massey product as a strict equivalence-invariant version of m_{3}. Together with Proposition VI.1.4 this gives the following result.

Theorem VI.2.1. Let X be a smooth curve of genus $g \geq 2$ over \mathbb{C}. Then m_{3} is homotopic to 0 if and only if X is hyperelliptic and P_{1}, \ldots, P_{g} are Weierstrass points.

Proof. Let α be the map in Proposition V.5.1. Then Proposition VI.1.4 implies that $\alpha_{i j}\left(m_{3}\right)=$ 0 (i.e., m_{3} is a coboundary in Hochschild cohomology) for $i \neq j$ if and only if each point is a Weierstrass point. Since there are $2 g+2$ of them for any particular curve, there are sufficiently many to choose g.

It remains to show that g Weierstrass points satisfy the generation condition, that ξ_{1}, \ldots, ξ_{g} generate $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)$. Let P_{1}, \ldots, P_{g} be points on X hyperelliptic, with $D=$ $\sum_{i=1}^{g} P_{i}$. Let $f: X \rightarrow \mathbb{P}^{1}$ be the morphism of degree 2 . We claim that P_{1}, \ldots, P_{g} do not satisfy the generation condition if and only if $f\left(P_{i}\right)=f\left(P_{j}\right)$ for some i, j; that is, $P_{i}+P_{j}$ is in the hyperelliptic system on X.

The short exact sequence,

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \bigoplus_{i=1}^{g} \mathbb{K}\left(P_{i}\right) \rightarrow 0
$$

gives rise to a long exact sequence on Ext,

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(D)\right) \rightarrow \bigoplus_{i=1}^{g} \operatorname{Hom}\left(\mathcal{O}_{X}, \mathbb{K}\left(P_{i}\right)\right) \rightarrow \\
\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(D)\right) \rightarrow 0
\end{gathered}
$$

Thus the generation condition is equivalent to the statement that

$$
\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(D)\right) \cong H^{1}\left(X, \mathcal{O}_{X}(D)\right)=0
$$

i.e., D is non-special. By Serre duality $\left[H^{1}\left(X, \mathcal{O}_{X}(D)\right)\right] * \cong \operatorname{Hom}\left(\mathcal{O}_{X}(D), \omega_{X}\right)$ where ω_{X} is the canonical sheaf on X; this space is nonzero if and only if D is a subdivisor of an effective
canonical divisor on X.
By [6] Prop. IV.5.3, every effective canonical divisor on X is of the form $K=D_{1}+$ $\cdots+D_{g-1}$ where each D_{i} is in the hyperelliptic system. Since D has degree $g, D \subset K$ if and only if D contains some D_{i}. This proves the claim.

The Weierstrass points are exactly the ramification points of f. It follows that if the P_{i} are distinct Weierstrass points, the divisor D is non-special. This completes the claim.

APPENDIX A

A MAP TO A PRODUCT OF SIMPLICES

This lemma will apply directly to Lemma III.2.3, and uses the same notation. Let $\mathscr{K}(l)$ be the reduced simplicial complex of the simplicial l-cell; that is, the full simplicial complex with l vertices.

Lemma A.1. 1. $\left(g r_{i} \mathcal{O}\right)_{\bullet}^{(m)}=X_{\bullet}^{(m)} \oplus Y_{\bullet}^{(m)}$ where
$X_{n}^{(m)}=\left\langle\left\{\xi^{a_{0}} \theta \eta \xi^{a_{1}} \cdots \theta \eta \xi^{a_{n-m}} \mid a_{k} \neq 0\right.\right.$ for $\left.\left.1 \leq k \leq n-m-1\right\}\right\rangle$,
$Y_{n}^{(m)}=\left\langle\left\{\xi^{a_{0}} \theta \psi^{b_{1}} \eta \xi^{a_{1}} \cdots \eta \xi^{a_{n-m}} \mid b_{k} \neq 0\right.\right.$ for some k or $a_{k}=0$ for some $\left.\left.1 \leq k \leq n-m-1\right\}\right\rangle$.
2. $H B_{n}\left(X_{\bullet}^{(m)}\right)=X_{n}^{(m)}$ and $H B_{n}\left(Y_{\bullet}^{(m)}\right)=0$ for all n.

Proof. 1. Each standard basis tensor in $\left(\operatorname{gr}_{i} \mathcal{O}\right)_{n}^{(n-m)}$ is obviously in either X_{n} or Y_{n} (we suppress m since it is arbitrary). In X_{n}, d increases the sum of powers of ξ by 1 in each term, so $\left.d\right|_{X_{n}}=0$. On Y_{n}, any tensor that satisfies one of the two properties listed will have a boundary each of whose terms has a nonzero power on some b_{k}, which will therefore be in Y_{n-1}.
2. Since $\left.d\right|_{X_{n}}=0$, the first result is clear.

For every $j \geq 0$, there is a subcomplex $Y_{\bullet}^{j} \subset Y_{\bullet}$ where

$$
Y_{n}^{j}=\left\{\xi^{a_{0}} \theta \psi^{b_{1}} \eta \xi^{a_{1}} \cdots \eta \xi^{a_{n-m}} \mid \text { exactly } j \text { of } a_{1}, \ldots, a_{n-m-1} \text { are nonzero }\right\}
$$

such that

$$
Y_{\bullet}=\bigoplus_{j=1}^{m-1} Y_{\bullet}^{j}
$$

so it is enough to show that $H B_{n}\left(Y_{\bullet}^{j}\right)=0$ for all j. We will use induction in j.
For the base case, we map Y_{\bullet}^{0} to the simplicial complex as follows. A standard basis tensor in Y_{n}^{0} is determined by the $(n-m)$-tuple $\left(b_{1}, \ldots, b_{n-m}\right)$ where $\sum_{k=1}^{n-m} b_{k}=2 m-n-i$. The differential acts by

$$
d\left(b_{1}, \ldots, b_{m}\right)=\sum_{k=1}^{n-m-1} \pm\left(b_{1}, \ldots, b_{k}+b_{k+1}+1, \ldots, b_{n-m}\right) .
$$

After the change of variable $b_{k}^{\prime}=b_{k}+1$, we have $\sum_{k=1}^{n-m} b_{k}^{\prime}=m-i$ (which is constant since m, i are fixed), $b_{k}^{\prime} \geq 1$ for all k, and

$$
d\left(b_{1}^{\prime}, \ldots, b_{n-m}\right)=\sum_{k=1}^{n-m-1} \pm\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}+b_{k+1}^{\prime}, \ldots, b_{n-m}^{\prime}\right)
$$

Finally we map

$$
\left(b_{1}^{\prime}, \ldots, b_{n-m}^{\prime}\right) \mapsto\left(b_{1}^{\prime}, b_{1}^{\prime}+b_{2}^{\prime}, \ldots, \sum_{k=1}^{n-m-1} b_{k}^{\prime}\right) \in \mathscr{K}(m-i-1)
$$

This is a map of complexes which surjects onto $\mathscr{K}(m-i-1)$. Since $\mathscr{K}(m-i-1)$ has no homology, it follows that $H B_{n}\left(Y_{\bullet}^{0}\right)=0$ for all n.
Now suppose that $H B_{n}\left(Y_{\bullet}^{j,(m)}\right)=0$ for all n, all $j \leq l$, and all m. A standard basis tensor y in Y_{n}^{l+1} can be written as $y_{1} \otimes y_{2}$ where $y_{1} \in Y_{s}^{l,\left(m_{1}\right)}$ (for some internal degree m_{1}) and $y_{2} \in Y_{n-s}^{0,\left(m_{2}\right)}$ (for some internal degree m_{2}), by splicing y immediately before the $(l+1)$-st nonzero internal power of ξ. This gives an isomorphism

$$
Y_{\bullet}^{l+1,(m)} \cong \bigoplus_{m_{1}+m_{2}=m} Y_{\bullet}^{l,\left(m_{1}\right)} \otimes Y_{\bullet}^{0,\left(m_{2}\right)}
$$

It follows from the induction hypothesis and the Kunneth formula that the homology of the complex on the right is 0 , therefore $H B_{n}\left(Y_{\bullet}^{l+1}\right)=0$ for all n.

APPENDIX B

HOMOLOGY OF A SIMPLICIAL COMPLEX

Let $[n]=\{1,2, \ldots, n\}$. We define a simplicial complex $\Delta[n] \subset P([n])$ such that

$$
\Delta_{0}=\{\{i\} \mid i \in[n]\}, \Delta_{1}=\{\{i, j\} \mid j-i \geq 2\}, \Delta_{2}=\{\{i, j, k\} \mid j-i \geq 2, k-j \geq 2\},
$$

and in general

$$
\Delta_{m}=\left\{\left\{i_{1}, i_{2}, \ldots, i_{m}\right\} \mid i_{j+1}-i_{j} \geq 2, j=1, \ldots, m-1\right\}
$$

Proposition B.1. For all $k \in \mathbb{N}$,

$$
\begin{aligned}
\Delta[3 k+1] & \cong \text { point } \\
\Delta[3 k+2] & \cong S^{k} \\
\Delta[3 k+3] & \cong S^{k}
\end{aligned}
$$

Proof. We proceed by induction on k, starting at $k=0$. The complex $\Delta[1]$ is a point, $\Delta[2]$ is two points and no edges, and $\Delta[3]$ is three points and the edge $\{1,3\}$, so this establishes the base case.

Suppose the result for k. Then

$$
\Delta[3 k+4]=A \cup B
$$

where

$$
\begin{aligned}
& A=\{1,2,3, \ldots, 3 k+3\} \cap \Delta[3 k+4], \\
& B=\{\text { all simplices containing the vertex } 3 k+4\} .
\end{aligned}
$$

Then B is contractible so $B \cong D^{k}$ and $A \cong \Delta[3 k+3] \cong S^{k}$. Their intersection is

$$
A \cap B=\Delta[3 k+3] \cap\{1,2,3, \ldots, 3 k+2\} \cong \Delta[3 k+2] \cong S^{k}
$$

So $\Delta[3 k+4]=D^{k} \cup S^{k}$ with $D^{k} \cap S^{k}=S^{k}$, which is contractible. We proceed similarly in the other cases. Now $\Delta[3 k+5]=A \cup B$ where

$$
\begin{aligned}
A & =\{1,2, \ldots, 3 k+4\} \cap \Delta[3 k+5] \cong \Delta[3 k+4] \cong D^{k+1}, \\
B & =\{\text { all simplices containing } 3 \mathrm{k}+5\} \cong D^{k+1}, \\
A \cap B & \cong \Delta[3 k+3] \cong S^{k} .
\end{aligned}
$$

So now we have two disks intersecting in S^{k}, which gives S^{k+1}. Finally $\Delta[3 k+6]=A \cup B$ where

$$
\begin{aligned}
A & =\{1,2, \ldots, 3 k+5\} \cap \Delta[3 k+6] \cong \Delta[3 k+5] \cong S^{k+1}, \\
B & =\{\text { all simplices containing } 3 \mathrm{k}+6\} \cong D^{k+1}, \\
A \cap B & \cong \Delta[3 k+4] \cong D^{k+1} .
\end{aligned}
$$

So we have an S^{k+1} and a disk intersecting in a disk, which gives S^{k+1}.

For $k=0,1,2$, it will be helpful to have explicit representatives of the resulting homology class in $\Delta[3 k+2]$ and $\Delta[3 k+3]$. For $\Delta[2]$ and $\Delta[3]$ we use $\{1\}-\{2\}$.

The loop in $\Delta[5]$ is constructed from gluing the contractible complex $\Delta[5] \cap\{1,2,3,4\}$ with the contractible complex of those simplices touching $\{5\}$. The intersection is the S^{0} in $\{1,2,3\}$. The easiest way to realize this class is by taking the cone over $\{1\} \cup\{2\}$ to $\{4\}$ and
another cone to $\{5\}$. Thus the resulting loop is $\{1,5\} \pm\{1,4\} \pm\{2,5\} \pm\{2,4\}$. We also use this class in $\Delta[6]$. (The choice between + and - not relevant for our application of this calculation, so we do not make it.)

The class in $\Delta[8]$ we realize similarly. The intersection of the two contractible parts is $\Delta[6]$, which we consider as the loop above. We make a cone over this loop to the points $\{7\}$ and $\{8\}$ to get the class representative

$$
\{1,5,7\} \pm\{1,4,7\} \pm\{2,5,7\} \pm\{2,4,7\} \pm\{1,5,8\} \pm\{1,4,8\} \pm\{2,5,8\} \pm\{2,4,8\}
$$

This class will also represent the loop in $\Delta[9]$.

APPENDIX C

W_{2} AND W_{3} IN THE PROOF OF LEMMA V.3.4

We first define W_{2}. The table below collects the basis vectors of V_{2} and their boundaries, with the underlined term in each boundary designated to be in $\Omega_{2}\left(F_{1} / F_{2}\right)$. We also define for integers a, b,

$$
\kappa(a, b)= \begin{cases}1 & \text { if } a \equiv b \quad \bmod 2 \\ 0 & \text { otherwise }\end{cases}
$$

Element of $\Omega_{2}\left(F_{0} / F_{1}\right)$	$\Omega_{2}\left(F_{1} / F_{2}\right)$ expansion of boundary
$[n(i)]^{*} \otimes \operatorname{id}_{P_{i}}$ n even	$\underline{[(n+1)(i)]^{*} \otimes \theta_{i}} \pm[(n+1)(i)]^{*} \otimes \eta_{i}$
$[1(i)-m(j)-k(i)]^{*} \otimes \operatorname{id}_{P_{i}}$ k and m even; or k even, m odd and $g>2$	$\pm \underline{[1(i)-m(j)-(k+1)(i)]^{*} \otimes \eta_{i}}$
$[k(i)-m(j)-1(i)]^{*} \otimes \operatorname{id}_{P_{i}}$ k and m even; or k even, m odd and $g>2$	$\pm \underline{[(k+1)(i)-m(j)-1(i)]^{*} \otimes \theta_{i}}$
$\begin{aligned} & {\left[n_{1}(i)-m(j)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}} \\ & n_{1} \text { even and } n_{1}, n_{2}>1 \end{aligned}$	$\begin{aligned} & {\left[\left(n_{1}+1\right)(i)-m(j)-n_{2}(i)\right]^{*} \otimes \theta_{i}} \\ & \pm \kappa\left(n_{2}, 0\right)\left[n_{1}(i)-m(j)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \eta_{i} \end{aligned}$
$\begin{aligned} & {\left[n_{1}(i)-m(j)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}} \\ & n_{1} \text { odd and } n_{2} \text { even } \end{aligned}$	$\pm\left[n_{1}(i)-m(j)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \eta_{i}$
$\begin{aligned} & {\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}} \\ & n_{1} \text { even } \end{aligned}$	$\begin{aligned} & \underline{\left[\left(n_{1}+1\right)(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes \theta_{i}} \\ & \pm \kappa\left(n_{2}, 0\right)\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \eta_{i} \end{aligned}$
$\left[n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-n_{2}(i)\right]^{*} \otimes \operatorname{id}_{P_{i}}$ n_{1} odd and n_{2} even	$\pm\left[\underline{\left.n_{1}(i)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-\left(n_{2}+1\right)(i)\right]^{*} \otimes \eta_{i}}\right.$

Table 14: Definition of $\Omega_{2}\left(F_{1} / F_{2}\right)$

We define W_{3} similarly in the table below.

Element of $\Omega_{3}\left(F_{0} / F_{1}\right)$	$\Omega_{3}\left(F_{1} / F_{2}\right)$ expansion of boundary
$[n(i)]^{*} \otimes \mathrm{id}_{\mathcal{O}_{X}}$	$\begin{aligned} & \left. \pm \underline{[n(i)-1(j)]^{*} \otimes \theta_{j}} \text { (for some } j \neq i\right) \\ & \pm \kappa(n, 0)[(n+1)(i)]^{*} \otimes \theta_{i} \pm \kappa(n, 0)[(n+1)(i)]^{*} \otimes \eta_{i} \\ & \pm \sum_{k \neq i, j}[n(i)-1(k)]^{*} \otimes \theta_{k} \pm \sum_{k \neq i}[1(k)-n(i)]^{*} \otimes \eta_{k} \end{aligned}$
$\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}}$ $m_{1}, m_{2} \text { odd and } g>2$	$\begin{aligned} & \pm \underline{\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(j)\right]^{*} \otimes \theta_{j}} \text { (for some } j \neq j_{1} \text { and } j \neq j_{2} \text {) } \\ & \pm \sum_{k \neq j_{2}, j}\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(k)\right]^{*} \otimes \theta_{k} \pm \\ & \sum_{k \neq j_{1}}\left[1(k)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{k} \end{aligned}$
$\begin{aligned} & {\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}}} \\ & m_{1} \text { even } \end{aligned}$	$\begin{aligned} & \underline{\left[\left(m_{1}+1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{j_{1}}} \\ & \pm \kappa\left(m_{2}, 0\right)\left[m_{1}\left(j_{1}\right)-\left(m_{2}+1\right)\left(j_{2}\right)\right]^{*} \otimes \theta_{j_{2}} \pm \\ & \sum_{k \neq j_{2}}\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(k)\right]^{*} \otimes \theta_{k} \\ & \pm \sum_{k \neq j_{1}}\left[1(k)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{k} \end{aligned}$
$\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{x}}$ m_{1} odd and m_{2} even	$\begin{aligned} & \pm \underline{\left[m_{1}\left(j_{1}\right)-\left(m_{2}+1\right)\left(j_{2}\right)\right]^{*} \otimes \theta_{j_{2}}} \\ & \pm \sum_{k \neq j_{2}}\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-1(k)\right]^{*} \otimes \theta_{k} \pm \\ & \sum_{k \neq j_{1}}\left[1(k)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)\right]^{*} \otimes \eta_{k} \end{aligned}$
$\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-m_{3}\left(j_{3}\right)\right]^{*} \otimes \operatorname{id}_{\mathcal{O}_{X}}$	$\begin{aligned} & \pm\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-m_{3}\left(j_{3}\right)-1\left(j_{2}\right)\right]^{*} \otimes \theta_{j_{2}} \\ & \pm \kappa\left(m_{1}, 0\right)\left[\left(m_{1}+1\right)\left(j_{1}\right)-m_{2}\left(j_{2}\right)-m_{3}\left(j_{3}\right)\right]^{*} \otimes \eta_{j_{1}} \pm \\ & \kappa\left(m_{3}, 0\right)\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-\left(m_{3}+1\right)\left(j_{3}\right)\right]^{*} \otimes \theta_{j_{3}} \\ & \pm \sum_{k \neq j_{2}, j_{3}}\left[m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-m_{3}\left(j_{3}\right)-1(k)\right]^{*} \otimes \theta_{k} \pm \\ & \sum_{k \neq j_{1}}\left[1(k)-m_{1}\left(j_{1}\right)-m_{2}\left(j_{2}\right)-m_{3}\left(j_{3}\right)\right]^{*} \otimes \eta_{k} \end{aligned}$

Table 15: Definition of $\Omega_{3}\left(F_{1} / F_{2}\right)$

REFERENCES CITED

[1] M. Abouzaid, D. Auroux, A. I. Efimov, L. Katzarkov, D. Orlov, Homological mirror symmetry for punctured spheres. preprint arXiv:1103.4322v1, 2011.
[2] M. Abouzaid, I. Smith, Homological mirror symmetry for the 4-torus, Duke Math J. 152 (2010), pp.373-440.
[3] A. Bondal, D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), pp.327-344.
[4] A.I. Efimov, Homological mirror symmetry for curves of higher genus, preprint arXiv:0907.3903.
[5] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), pp.267-288.
[6] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[7] L. Hille, M. Van den Bergh, Fourier-Mukai transforms, Handbook of tilting theory, London Math. Soc. Lecture Note Ser. 332, Cambridge Univ. Press, Cambridge (2007), pp.147-177.
[8] T.V. Kadeishvili, The algebraic structure in the homology of an $A(\infty)$-algebra (Russian), Soobshch. Akad. Nauk Gruzin, SSR 108 (1982), pp.249-252.
[9] L. Katzarkov, Birational geometry and homological mirror symmetry, Real and complex singularities, Hackensack, NJ (2007), pp.176-206.
[10] B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy and Applications Vol. 3 (2001), pp.1-35.
[11] M. Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Zürich, Switzerland 1994, Vol. 1, Birkhäuser Basel (1995), pp.120-139.
[12] K. Lefèvre-Hasegawa, Sur les A_{∞}-catégories, Thèse de doctorat, Université Denis Diderot-Paris 7, 2003.
[13] Y. Lekili, T. Perutz, Fukaya categories of the torus and Dehn surgery, Proc. Natl. Acad. Sci. USA 108 (2011), pp.8106-8113.
[14] D. Orlov, Remarks on generators and dimensions of triangulated categories, Mosc. Math. J. 9 (2009), pp.153-159.
[15] M. Penkava, A. Schwarz, A_{∞}-algebras and the cohomology of moduli spaces, Lie Groups and Lie algebras: E.B. Dynkin's Seminar, AMS translations, ser. 2 Vol. 169 (1995), pp.91-107.
[16] A. Polishchuk, E. Zaslow, Categorical mirror symmetry in the elliptic curve, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, Cambridge, MA (1999), pp.275-295.
[17] A. Polishchuk, A_{∞}-algebra of an elliptic curve and Eisenstein series, Comm. Math. Phys. 301 (2011), pp.709-722.
[18] A. Polishchuk, A_{∞}-structures on an elliptic curve, Comm. Math. Phys. 247 (2004), pp.527-551.
[19] A. Polishchuk, Classical Yang-Baxter equation and the A_{∞}-constraint, Adv. Math. 168 (2002), pp.56-95.
[20] A. Polishchuk, Extensions of homogeneous coordinate rings to A_{∞}-algebras, Homology Homotopy Appl. 5 (2003), pp.407-421.
[21] P. Seidel, Fukaya Categories and Picard-Lefshetz Theory. European Mathematical Society, 2008.
[22] P. Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geometry. 20 (2011), pp.727-769.
[23] P. Seidel, Homological mirror symmetry for the quartic surface, arxiv:math/0310414v2, 2003.
[24] J.D. Stasheff, Homotopy associativity of H-spaces, I and II, Trans. Amer. Math. Soc. 108 (1963), pp.175-312.
[25] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press (1994).

