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DISSERTATION ABSTRACT 

Steven S. Laurie 
 
Doctor of Philosophy 
 
Department of Human Physiology 
 
September 2012 
 
Title: The Regulation and Significance of Intrapulmonary Arteriovenous Anastomoses in 

Healthy Humans 
 
 

Intrapulmonary arteriovenous anastomoses (IPAVA) have been known to exist as 

part of the normal pulmonary vasculature for over 50 years but have been 

underappreciated by physiologists and clinicians. Using a technique called saline contrast 

echocardiography we and others have demonstrated that during exercise or when 

breathing low oxygen gas mixtures IPAVA open, but breathing 100% oxygen during 

exercise prevents them from opening. However, the mechanism(s) for this dynamic 

regulation and the role IPAVA play in affecting pulmonary gas exchange efficiency 

remain unknown. 

In Chapter IV the infusion of epinephrine and dopamine into resting subjects 

opened IPAVA. While it is possible this opening was due to the direct vasoactive action 

of these catecholamines, the opening may simply be due to increases in cardiac output 

and pulmonary artery systolic pressure secondary to the cardiac effects of these drugs.  

In Chapter V I used Technetium-99m labeled macroaggregated albumin (99mTc-

MAA) to quantify blood flow through IPAVA in exercising healthy humans. Initial 

attempts to correct for attenuation of the emitted signal were unsuccessful due to the time 

necessary for data acquisition and the resulting accumulation of free-99mTc. However, I 
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used a blood sample to calculate freely circulating 99mTc which could be subtracted from 

the shunt fraction. Using this procedure I demonstrated for the first time using filtered 

solid particles that breathing 100% oxygen reduces blood flow through IPAVA during 

exercise. 

Finally, in Chapter VI I tackled the elephant in the room surrounding IPAVA in 

healthy humans: do these vessels play a role in pulmonary gas exchange efficiency? Our 

data suggest that the efficiency of pulmonary gas exchange is dependent on the driving 

pressure gradient for oxygen and the distance to blood flowing through the core of 

IPAVA. As such, with increases in exercise intensity the diffusion distance and transit 

time of blood at the core of IPAVA prevent complete gas exchange, thus blood flow 

through IPAVA acts as a shunt.  

This dissertation includes previously unpublished co-authored material. 
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CHAPTER I 

INTRODUCTION 

With every heart beat blood is pumped from the right ventricle into the pulmonary 

circulation before it returns to the left side of the heart, while blood in the left ventricle is 

pumped into the systemic circulation before it returns to the right side of the heart. This 

design puts these two circulations in series with each other and allows the pulmonary 

circulation to achieve two critically important tasks. First, the exchange of gases between 

pulmonary blood and alveolar gas allows oxygen to diffuse into the blood and carbon 

dioxide to diffuse out before this blood is pumped into the systemic circulation. Second, 

the pulmonary microvasculature acts as a sieve to filter the blood and prevent potential 

emboli from entering the systemic circulation where they could become lodged in 

systemic organs such as the heart or brain.  

Large diameter intrapulmonary arteriovenous anastomoses (IPAVA), however, 

provide an additional pathway for blood flow, and this bypasses the alveolar-capillary 

interface, which is classically considered to be the gas exchange unit. If blood flows 

through this alternative pathway it may potentially impair pulmonary gas exchange 

efficiency as well as bypass the filtering ability of the pulmonary microcirculation. 

Recently, controversy has arisen surrounding the existence, regulation, and significance 

of large diameter IPAVA. Accordingly, the overall purpose of this dissertation is to 

determine the role of and significance for IPAVA in healthy humans. The first objective 

in this dissertation was to identify a potential mechanism regulating the opening of 

IPAVA in healthy humans. The second objective was to use an anatomical approach to 

quantify changes in blood flow through IPAVA during normoxic versus hyperoxic 



 2 

exercise, and the third objective was to determine if the blood flowing through open 

IPAVA during exercise impairs pulmonary gas exchange efficiency. 

HISTORICAL PERSPECTIVE 

The historical paths of respiratory physiology have been at best tumultuous, and 

at worst a propagation of immense inaccuracy. I would like to begin this dissertation with 

a few stories as recounted by Dr. John West (192) that are part of the inaccurate history 

of respiratory physiology and relate these lessons to our current understanding of 

pulmonary vascular regulation. 

The first story involves the development of our understanding of the pulmonary 

circulation. Claudius Galen (129-199AD) was one of the first scientists to apply clinical 

observations to explain and understand physiological processes. He described that the 

liver produced blood, which would only flow through the pulmonary artery to nourish the 

lung, while the remainder would cross invisible interventricular ‘pores’ to reach the left 

side of the heart. ‘Pneuma’ would be brought from the lung to the left side of the heart 

through the pulmonary vein and combine with the blood that had traversed through the 

‘pores’ and subsequently flow to the remainder of the body. Galen’s ideas were 

enthusiastically embraced and proliferated unchallenged for centuries, due in part to 

Arabic scholars such as Avicenna (circa 980-1037) who created a virtual medical 

encyclopedia of the time. Galen’s ‘pores’ continued unchallenged until the Arab scholar 

Ibn Al Nafis (1210-1288) wrote his treatise Commentary on the Anatomy of the Canon of 

Avicenna and more than suggested that all of the blood traveled through the lung where it 

could be permeated with air (193). 
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Unaware of Ibn Al Nafis’ writings, Michael Servetus (1509-1553) also challenged 

Galen’s interventricular ‘pores’ and described how the blood changed colors as it flowed 

through the pulmonary circulation, though the explanation for this was still two centuries 

away. While this point in history could have represented a true step forward in 

overcoming the crucial inaccuracy put forth by Galen, Servetus and his book were 

deemed heretical by the Catholic Church and were burned at the stake in 1553. It wasn’t 

until 1616 that William Harvey (1578-1657) first presented his ideas that blood circulated 

continuously throughout the lung and the body and in 1628 described both the lesser 

(pulmonary) and greater (systemic) circulations. Despite puzzling anatomists for 

centuries who could find no such pores, Galen’s scheme had been allowed to flourish for 

over 1400 years and represented the propagation of a gross inaccuracy in our 

understanding of blood flow through the lung. 

 The next story occurred during the late nineteenth and early twentieth century as 

our understanding of oxygen was developing. Not surprising, a few inaccuracies 

developed and scientific controversy ensued. In 1870, Christian Bohr and his colleagues 

suggested that oxygen was actively secreted in the lung and this idea soon gained support 

from the eminent respiratory physiologist John Scott Haldane. Haldane claimed to prove 

this hypothesis by finding the average arterial PO2 to be 200 mmHg, much higher than 

that of air. However, August Krogh, a pupil of Bohr’s, continued to refine techniques to 

measure arterial PO2 and always showed it to be less than alveolar PO2, and thus less than 

that of air as well. Meanwhile, Krogh’s wife Marie was investigating the diffusing 

capacity of the lung for carbon monoxide and demonstrated that oxygen could 

sufficiently enter the pulmonary blood through diffusion alone and that active secretion 
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was not necessary. Therefore, only in the past 100 years has it been fully accepted that 

oxygen gains entry through the lung solely via passive diffusion and not active secretion. 

Taking into consideration the lessons from these historical accounts, it is not 

surprising that potential inaccuracies in our understanding of cardiopulmonary 

physiology and pulmonary gas exchange have again persevered despite anatomically 

based evidence suggesting alternative explanations than those more conveniently 

accepted throughout the literature. The impetus for this dissertation lies at the confluence 

of ideas stemming from the first two stories, where pulmonary blood flow meets 

pulmonary ventilation and pulmonary gas exchange occurs. Ironically, Galen’s idea was 

perpetuated for centuries by ignoring the fact that there was no anatomical evidence to 

support ‘interventricular pores’. Today however, anatomical evidence supports the 

existence and importance of IPAVA, yet these data have been largely ignored. 

BACKGROUND AND SIGNIFICANCE 

One of the most fundamental roles of the lung is to efficiently exchange oxygen 

and carbon dioxide between the alveolar air and the blood flowing through pulmonary 

capillaries. The efficiency of pulmonary gas exchange is both defined and quantified by 

the difference between the alveolar and arterial partial pressure of oxygen (AaDO2) and 

can worsen due to three accepted causes: diffusion limitation, ventilation-perfusion (V/Q) 

mismatch, and/or right-to-left shunt. While it is well known that the efficiency of 

pulmonary gas exchange is not perfect at rest and worsens during incremental exercise 

(30), identifying which of the three possible causes is contributing to this inefficiency 

remains an unresolved and controversial area of research (71, 95).  
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When taking into account the diffusion capacity of the blood-gas barrier, 

pulmonary capillary blood volume, shape of the oxyhemoglobin dissociation curve, and 

chemical interactions between O2 and CO2, complete partial pressure equilibration 

between the alveolar air and pulmonary capillary blood occurs in about 0.25 sec at rest at 

sea level (154, 181). A diffusion limitation could occur if the transit time of red blood 

cells flowing through pulmonary capillaries was reduced below 0.25 sec preventing the 

complete equilibration of gases between the alveoli and pulmonary capillary blood. 

During exercise, cardiac output increases up to five fold so the transit time could decrease 

significantly. Fortunately the transit time is determined by the ratio of capillary blood 

volume to cardiac output. With the tripling of capillary blood volume that occurs due, in 

part, to exercise-induced increases in left atrial pressure (135), there is sufficient time for 

the complete equilibration of gases even with a five fold increase in cardiac output (rest: 

70ml / 83ml/sec=0.84 sec; max exercise: 210ml / 415 ml/sec=0.51sec)  (181). Thus, 

diffusion limitation is an unlikely explanation for the reduction in pulmonary gas 

exchange efficiency that occurs during incremental exercise at sea level. 

The other two causes that could reduce pulmonary gas exchange efficiency at rest 

or during exercise are the inefficient matching of alveolar ventilation (V̇) with pulmonary 

blood flow (Q̇) and shunt. The multiple inert gas elimination technique (MIGET) was 

developed with the intention to quantify the contributions from V̇/Q̇ mismatch and shunt 

based on the retention and excretion of six inert gases of varying solubility (184, 185) and 

represents one of the only techniques used to quantify the contributing factors to 

pulmonary gas exchange inefficiency. If the pulmonary gas exchange inefficiency 

measured during exercise is not predicted by MIGET to be a result of V̇/Q̇ mismatch 
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and/or shunt, then it is assumed that a diffusion limitation must be occurring to explain 

the measured inefficiency, despite the unlikeliness of this happening in individuals 

breathing room air. MIGET, however, cannot differentiate between that portion of 

pulmonary gas exchange inefficiency suggested to be due to diffusion limitation, and that 

known to be caused by the anatomical post-pulmonary shunt of the Thebesian venous 

drainage and the bronchial venous drainage.  

Using this gas exchange-dependent technique, the role of V̇/Q̇ mismatch during 

exercise at sea level has been inconsistent, with data demonstrating either no significant 

increase in V̇/Q̇ mismatch during exercise (136), a non-significant increase (41, 173), or a 

significant increase only at higher levels of exercise, VO2>2.5 L/min (58) or VO2>3.0 

L/min (186). Despite these inconsistencies, the AaDO2 widened during increases in 

exercise intensity in every study and significant contributions from a right-to-left shunt 

(intrapulmonary or intracardiac) were not detected using this technique. These 

investigators have also used the 100% oxygen technique to support their assertion that 

there is no detectable intrapulmonary shunt during exercise (58, 178, 182). Thus, despite 

the variable findings obtained with gas exchange dependent techniques and the unlikely 

probability that diffusion limitation would occur during exercise in normoxia, V̇/Q̇ 

mismatch and diffusion limitation have classically been identified as the only 

contributing factors to pulmonary gas exchange inefficiency that occurs during exercise. 

This represents the current dogma for factors affecting pulmonary gas exchange 

efficiency at rest and during exercise in healthy humans. 

Rather than using gas exchange-dependent techniques, such as the MIGET and 

100% oxygen technique, we and others have used anatomic based techniques such as 
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detecting intravenously injected microspheres in the pulmonary venous effluent, 

detecting intravenously injected radio-labeled macroaggregates outside of the lung using 

gamma camera imaging, and detecting intravenously injected microbubbles in the left 

ventricle using saline contrast echocardiography to consistently demonstrate that large 

diameter intrapulmonary arteriovenous anastomoses (IPAVA) exist in the lung under a 

variety of conditions (99, 129, 151, 172). Large diameter IPAVA in healthy human lungs 

could allow blood to bypass the classically-considered alveolar-capillary gas-exchanging 

unit and theoretically act like a shunt. These pathways are suggested to be closed at rest, 

but open in healthy human lungs during exercise (32, 159) consistent with conditions 

when pulmonary gas exchange efficiency worsens and consistent with microsphere data 

in dogs (156). However, when subjects breathe 100% oxygen during exercise, these large 

diameter IPAVA are suggested to be closed (97). Thus, if IPAVA were contributing to 

pulmonary gas exchange inefficiency during exercise in normoxia, using the 100% 

oxygen technique to detect contributions due to shunt would close IPAVA and at least 

partially explain why intrapulmonary shunt is not detected using this gas-exchange 

dependent technique (178). 

STATEMENT OF PROBLEM 

Despite decades of research that either unknowingly or unwillingly failed to 

recognize the existence and potential importance of IPAVA, our understanding of their 

regulation and significance in the human pulmonary circulation remains rudimentary at 

best. Exercise and/or hypoxic gas mixtures open large diameter IPAVA, however the 

mechanism(s) underlying the opening of these pathways are not known. Once open, their 

role in pulmonary gas exchange efficiency remains controversial. The classical 
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understanding of the contributing factors to pulmonary gas exchange inefficiency is 

rooted in gas exchange-dependent techniques (MIGET and 100% oxygen) that 

demonstrate variable and/or inconsistent results. Specifically, these results are not 

consistent with the extensive anatomic-based studies that preceded these gas-exchange 

dependent techniques for over 100 years, which directly demonstrated the existence of 

large diameter IPAVA. The diffusion gradient needed to reach the blood flowing through 

the center of a large diameter IPAVA could theoretically prevent at least some of the 

blood flowing through IPAVA from participating in pulmonary gas exchange and it could 

therefore act like a shunt. However, a negative contribution to pulmonary gas exchange 

efficiency by IPAVA has not been directly demonstrated. 

PURPOSE AND HYPOTHESES 

The purpose of this dissertation is to identify potential mechanisms regulating the 

patency of intrapulmonary arteriovenous anastomoses and determine their physiologic 

significance, if any, in healthy humans.  

Aim #1 

The mechanism(s) regulating the opening and closing of IPAVA are currently 

unknown. However, a common link between their opening during exercise or when 

breathing hypoxic gas mixtures at rest, and their closure when breathing hyperoxic gas 

mixtures during exercise may be activation of the sympathetic nervous system. Binding 

of epinephrine to β-receptors in the pulmonary vasculature can lead to vasodilation (101), 

however binding to α-receptors may cause vasoconstriction and increased resistance 

(123). The balance between these competing influences appears to favor binding to α-

receptors during normal tone, but binding to β-receptors during increased tone and may 
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play a role in determining blood flow through IPAVA. The plasma concentration of 

Dopamine also increases during exercise and binds to dopaminergic, β- and α-receptors 

and therefore has the potential to affect IPAVA patency as well. Therefore, Aim #1 tested 

the hypothesis that the intravenous infusion of epinephrine or dopamine opens IPAVA in 

subjects at rest breathing (A) room air and (B) 100% oxygen as detected by saline 

contrast echocardiography. 

Aim #2 

Using saline contrast echocardiography in exercising subjects breathing 100% 

oxygen demonstrates a reduction or elimination of microbubbles in the left heart. 

However, no studies have attempted to directly quantify a reduction in blood flow 

through IPAVA during exercise in subjects breathing 100% oxygen. Therefore, Aim #3 

used planar Gamma-camera imaging of 99mTechnetium labeled macroaggregated albumin  

(99mTc-MAA) to test the hypothesis that breathing 100% oxygen during exercise reduces 

blood flow through IPAVA. To do this, subjects were injected with filtered 99mTc-MAA 

during three separate conditions and then immediately underwent planar scanning using a 

dual-headed Gamma camera to simultaneously acquire anterior and posterior images. The 

three conditions included: (1) at rest and (2) during cycle-ergometer exercise breathing 

room air and (3) during cycle-ergometer exercise breathing 100% oxygen. 

Aim #3 

In order for blood flowing through IPAVA to act like a shunt and contribute to the 

widening of the AaDO2, that blood must not fully participate in pulmonary gas exchange. 

Aim #3 tested the hypothesis that blood flowing through IPAVA negatively contributes 

to pulmonary gas exchange efficiency by acting like a shunt. To do this we measured the 



 10 

AaDO2 in subjects at rest and during cycle-ergometer exercise while breathing 40% 

oxygen when contributions from diffusion limitation and V/Q inequality are eliminated, 

leaving only shunt (IPAVA and post-pulmonary) as a possible factor affecting pulmonary 

gas exchange efficiency.  

The hypotheses of these three Aims will be tested in Chapters IV-VI, respectively 

of this dissertation. Chapter IV is in review with the Journal of Applied Physiology and 

Jonathan E. Elliott, Randall D. Goodman, and Andrew T. Lovering are co-authors. I 

performed the experimental work and the methods were developed equally between all 

authors. The writing is entirely mine. J.E. Elliott and A.T. Lovering provided editorial 

assistance. In Chapter V, the manuscript is in preparation for publication in Journal of 

Applied Physiology with Randall D. Goodman, Dixie Aaring, Thomas Voelkel, Scott 

Stewart, Toni Bamford, Igor M. Gladstone, Mathews I. Fish, and Andrew T. Lovering as 

coauthors. I performed the experimental work along with the help of all coauthors. The 

writing is entirely mine and co-authors provided editorial assistance. In Chapter VI, the 

manuscript is in preparation with Jonathan E. Elliott, Kara M. Beasley, Randall D. 

Goodman, Igor M. Gladstone, Jerold M. Hawn, and Andrew T. Lovering as coauthors. 

Drs. I.M. Gladstone and J.M. Hawn placed the radial artery catheters in all subjects. All 

other co-authors assisted in data collection. A.T. Lovering helped develop the protocols 

and provided editorial assistance. R.D. Goodman performed all echocardiography and 

Doppler ultrasound measurements for all experiments. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

INTRODUCTION 

This review of pertinent literature was designed to present a comprehensive 

understanding of pulmonary vascular control and begins with pulmonary vascular 

development and the regulation of blood flow during various physiological perturbations 

such as exercise or breathing hyperoxic or hypoxic gas mixtures. Next, the historical 

anatomical precedent for the existence of IPAVA is presented before describing recent 

work using saline contrast echocardiography which frame our current, yet limited 

understanding of the regulation of IPAVA. This foundation led to the development of the 

studies discussed in Chapters IV and V of this dissertation, which investigate the possible 

mechanisms regulating the opening of IPAVA as well as quantification of blood flow 

through these unique vessels. Finally, this chapter shifts from pulmonary vascular control 

to pulmonary gas exchange efficiency where I describe the inconsistencies surrounding 

the accepted factors affecting pulmonary gas exchange efficiency. Together, these data 

underscore the need to establish whether or not IPAVA play a significant role in affecting 

pulmonary gas exchange efficiency. 

 PULMONARY VASCULATURE DEVELOPMENT 

 Blood flow returns from the systemic circulation to the right side of the heart 

where it is pumped into the pulmonary circulation before it returns to the left side of the 

heart to be pumped into the systemic circulation. This design places the lung in series 

with the systemic circulation and creates a unique feature by which the pulmonary 

circulation receives the entirety of the cardiac output. Accordingly, pulmonary vascular 
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control and blood flow regulation are important for maintaining the efficient matching 

between alveolar ventilation and pulmonary blood flow, while maintaining a pressure 

about 1/5 that of the systemic circulation.  

The pulmonary vascular tree develops in coordination with a branching airway 

tree to closely match lung airways with pulmonary vasculature and thus provide maximal 

surface area for gas exchange to occur (155). Branches of pulmonary arteries continue to 

narrow, ultimately distributing into a fine capillary network that envelops alveoli like a 

sheet, allowing red blood cells to pass virtually single file through capillaries. Even when 

the transpulmonary vascular pressure is greatest in Zone III conditions, the mean 

capillary diameter is only 6.5µm, with the greatest never exceeding 13µm (45). This fine 

network of pulmonary capillaries creates an extremely large surface area for the diffusion 

of gases to occur between capillary blood and alveolar air, while also acting as a physical 

sieve to prevent the passage of thrombi into the systemic circulation, a second critically 

important task of the pulmonary microcirculation.  

The branching from the pulmonary artery into arterial branches has been 

described by two main types of vessels: (a) conventional arteries, which run along the 

airways and branch into terminal arterioles which feed the capillary bed; and (b) 

supernumerary arteries, which branch from conventional arteries at ninety degree angles, 

do not have accompanying airways, and take a shorter and more direct route to the 

capillary bed (34, 148, 155). While the matched branching of conventional arteries with 

successive airway generations intuits to provide the best possible chance for the exchange 

of gases, it is unclear what benefit supernumerary arteries provides to the overall 

pulmonary vasculature design. Additionally, supernumerary arteries may account for up 
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to 40% of the total pulmonary arteries, appear poorly perfused under resting conditions, 

and contain a sphincter (34) or baffle valve (148) that could allow for selective regulation 

of blood flow through supernumerary arteries and thus actively influence the regulation 

of pulmonary blood flow and/or pressure (21). The entrance to supernumerary arteries 

has been measured to be as large as 800-1,000µm in diameter, narrowing to 50-200µm in 

diameter at their distal end. Thus, these vessels have the potential to greatly influence 

total pulmonary vascular resistance if blood flowing through these vessels bypasses the 

fine capillary network and anastomoses to the pulmonary venous circulation. 

Unfortunately, after the initial description of these vessels in 1965, a total of only five 

studies have been undertaken to specifically investigate the mechanisms responsible for 

the regulation of blood flow through these vessels (21, 147, 148, 174, 175), a few studies 

have investigated the role these vessels may play in the development of arterial lesions in 

pulmonary hypertension (13, 42, 201), and only one has included these vessels in models 

of pulmonary arterial and venous trees in an attempt to uncover the functional 

significance of supernumerary arteries (22). Outside of these few studies, very little is 

known about supernumerary arteries and therefore studying these vessels represents a 

vast area for future research into pulmonary vasculature control. 

PULMONARY BLOOD FLOW REGULATION 

In Chapters IV-VI of this dissertation I detail my studies of human subjects at rest 

and during exercise while breathing various gas mixtures containing normal, increased, 

and decreased concentrations of oxygen. Additionally, some of my previous work 

investigating IPAVA regulation had subjects breathe hypoxic gas mixtures at rest (89). 

Thus, it is important to highlight the pulmonary hemodynamic responses to these types of 
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physiologic perturbations in order to place IPAVA responses in context of known 

pulmonary vascular responses.    

Exercise 

During exercise cardiac output can increase up to six-fold and, in order to prevent 

excessive rises in pulmonary artery pressure, blood flow resistance through the 

pulmonary vasculature must decrease. This is traditionally thought to be achieved, in 

part, through an increase in left atrial pressure which helps to recruit and distend the 

pulmonary vasculature and results in adequate red blood cell transit time and diffusing 

area through pulmonary capillaries for the complete diffusion of oxygen into the blood 

while maintaining a low driving pressure at the delicate alveolar-capillary interface (135, 

181). IPAVA are also recruited during exercise, as first demonstrated in exercising 

humans using saline contrast echocardiography (32), and subsequently using large 

diameter microspheres in exercising dogs (156). In Chapter VI, I present data from 

exercising subjects who demonstrate greater bubble scores with increasing exercise 

intensity, suggesting a graded response by IPAVA as pulmonary pressures and flows 

increase. However, it is not known if the increase in left atrial pressure is also the direct 

cause of IPAVA recruitment, or if there is some other mechanism regulating blood flow 

through these unique vessels. Still, the physiologic benefit of blood flow through IPAVA 

has not been determined. 

Gravity 

It seems logical that another acute perturbation that could effect pulmonary blood 

flow distribution would be the effects due to gravity, such as when in the supine versus 

standing position. Over 50 years ago it was first suggested that gravity might be the 
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primary determinant of the distribution of blood flow throughout the lung and multiple 

studies demonstrated support for such a concept (81, 195, 196). However, in what 

appears to be a theme in respiratory physiology, debate surrounding the role of gravity in 

determining pulmonary perfusion continues (46, 76). Evidence is mounting that there is a 

greater genetic basis to the anatomical heterogeneity of blood flow distribution and that 

gravity plays more of a minor role in blood flow distribution (11, 47-49, 51, 57, 68, 113). 

Additional evidence in support of a minimal role for gravity in determining blood flow 

distribution comes from studies in which the gravitational force was altered and blood 

flow distribution was measured. Glenny and colleagues flew with piglets in the NASA 

KC-135 aircraft which flies in a series of parabolas to create alternating weightlessness 

and gravity 1.8 times greater than normal (50). After injecting 15.5 µm diameter 

microspheres during conditions of weightlessness (0G), normal gravity (1G), and 

hypergravity (1.8G), the lungs were removed, dried, cut into 2-cm3 cubes, and blood flow 

to each cube was determined. This study revealed that the slope of the perfusion gradient 

of blood flow down the lung was the same in 0G, 1G, and 1.8G conditions, suggesting 

that the vertical pressure gradient due to gravity does not explain the blood flow 

distribution pattern from the apices to the base of the lung. Additionally, I believe one of 

the most striking studies to demonstrate how pulmonary blood flow distribution can be 

influenced to a greater degree by factors other than gravity measured pulmonary blood 

flow distribution in human subjects spun in a human centrifuge to create hypergravity 

three times normal gravity (3G) and demonstrated blood flow distribution moving from 

the dependent to the nondependent region of the lung as gravitational forces increased in 

the opposite direction (120)!  
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While we have not (yet) studied blood flow through IPAVA in human subjects in 

a human centrifuge or while riding in a plane flying in a parabolic pattern, we do have 

some data to suggest that in resting subjects, moving from the supine to upright position 

can alter blood flow through IPAVA. Over the past 5 years we have screened ~200 

subjects in the left lateral decubitus position for presence of a patent foramen ovale (PFO) 

using saline contrast echocardiography. We have found that in a normal, healthy, 

asymptomatic population, ~33% of subjects demonstrate 1-3 bubbles appearing in the left 

heart not due to a PFO, suggesting patent IPAVA. We invited 15 of these subjects back to 

the lab for further testing up to 13 months after their initial screening and all 

demonstrated the same indication of a patent IPAVA at rest while in the left lateral 

decubitus position. After these subjects stood upright another bubble injection was 

performed and 14/15 subjects no longer demonstrated open IPAVA. These data may 

suggest that the location of large diameter IPAVA are in the apices of the lung and that 

moving from supine to upright posture reduces blood flow to the apices, and thus reduces 

blood flow through IPAVA. This hypothesis gains support from early anatomical work 

by Tobin and Zariquiey in which large diameter arteriovenous anastomoses were 

visualized in the apices of the lung (172), and more recently by Stickland, et al who also 

demonstrated a postural effect in subjects studied using saline contrast echocardiography 

(159).  

Hypoxia 

In addition to the exercise-induced increases in pulmonary artery blood flow and 

pressure, vasoactive agents in alveolar air or mixed venous blood can influence 

pulmonary vascular tone and redistribute blood flow. In 1946 von Euler and Liljestrand 
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were the first to demonstrate that ventilating cats with low oxygen increased pulmonary 

artery pressure and suggested that oxygen was having a direct effect on pulmonary 

vascular smooth muscle to cause vasoconstriction (179). The following year Motley, et 

al. (112) demonstrated hypoxic pulmonary vasoconstriction in man breathing 10% 

oxygen and since then there has been an extensive amount of work conducted to identify 

the mechanisms that underlie hypoxic pulmonary vasoconstriction (HPV). The initiation 

of HPV was debated in the Journal of Applied Physiology Point:Counterpoint series (189, 

191) and directly confronted the notion that hypoxia results in a greater production of 

reactive oxygen species (ROS) by the mitochondrion, which acts as the primary sensor of 

hypoxia. It is, however, accepted that hypoxia inhibits the KV1.5 channels (5, 190) which 

leads to an increase in intracellular Ca2+ through both L-type Ca2+ channels (39) as well 

as store-operated Ca2+ channels (187), and ultimately leads to constriction of pulmonary 

vascular smooth muscle cells in distal pulmonary arteries to cause vasoconstriction (1). 

This represents a response that is opposite that of the systemic circulation, in which 

systemic arterioles dilate in response to reduced oxygen tension in order to increase blood 

flow and preserve oxygen delivery. The depolarization of pulmonary artery smooth 

muscle cells is not endothelium-dependent; however, the endothelium may release an 

unidentified agent that can modulate the response to hypoxia (2). Thus, the oxygen sensor 

for HPV is believed to reside within the pulmonary artery smooth muscle cell itself.  

Smooth muscle cells in smaller pulmonary arteries demonstrate the greatest 

contraction response, while larger arteries do not respond to hypoxia in the same fashion 

(103, 104). Because it is the smooth muscle cell itself that is detecting and responding to 

low PO2, the majority of the stimulus for these myocytes is due to hypoxic alveolar gas, 
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however hypoxemic mixed venous blood returning to the lungs from the systemic 

circulation also contributes to the total vasoconstrictor response (105, 106). This response 

to hypoxia begins within seconds, but full hypoxic pulmonary vasoconstriction develops 

over two hours or more (31), suggesting there to be a rapid phase and slow phase to HPV 

(168). Interestingly, KV1.5 mRNA and protein are expressed to a greater degree in small 

(<40 µm) compared to large (100-200 µm) distal pulmonary arteries (6), and longitudinal 

differences between proximal conductance arteries and more distal resistance arteries in 

Ca2+ channel density (39) suggest a location-dependent effect of HPV based on 

potassium depolarization and/or calcium channel density. 

An extremely thorough, extensive, and up to date review on HPV was recently 

published (166) that integrates much of the recent cellular and molecular work that has 

been accomplished in the past few decades. While it highlights the effects of hypoxia on 

pulmonary vascular smooth muscle and helps clarify some of the controversy that exists 

regarding the mechanisms required for HPV to occur, the exact mechanism initiating 

HPV remains incompletely understood.  

While this vasonconstricting response to hypoxia appears unique to the 

pulmonary vasculature, IPAVA in humans, dogs, and rats operate similarly to systemic 

vessels and open in response to hypoxia (10, 89, 115). We speculated that IPAVA could 

be remnant fetal vessels similar to the ductus arteriosus which is patent during fetal 

development when the PO2 is much lower than in the adult (149) and constricts in 

response to high levels of oxygen (37, 176). One major difference between the ductus 

arteriosus and IPAVA, however, is that after closure it becomes the ductus ligamentum 

and does not retain the ability to dilate in hypoxic conditions. 
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A final note of interest regarding hypoxia and the recruitment of IPAVA is that 

while increases in left atrial pressure are believed to recruit and distend pulmonary 

capillaries with the onset of exercise, left atrial pressure does not appear to increase in 

response to hypoxia (54). Thus, this potential recruitment mechanism for IPAVA in 

hypoxia appears unlikely.  

Hyperoxia 

In addition to low oxygen, high oxygen tension also causes a redistribution of 

pulmonary blood flow. Using a sheep model, Melsom, et al. (110) injected 15µm 

microspheres into sheep ventilated with either hypoxia (FIO2=0.12) or hyperoxia 

(FIO2=0.40) for 10 min and demonstrated a low correlation between local flow in 

normoxia and exposure to hypoxia that was similar to the correlation between normoxia 

and hyperoxia. Similarly, an increase in V̇/Q̇ heterogeneity was seen in pigs ventilated 

with both hypoxic (FIO2=0.09) and hyperoxic (FIO2=0.50) gas mixtures as well (64). 

Because hypoxic pulmonary vasoconstriction is not contributing to blood flow 

heterogeneity in human subjects breathing room air (4), the above data would suggest 

that hyperoxia is altering the distribution of pulmonary blood flow through a mechanism 

other than simply reducing hypoxic pulmonary vasoconstriction. The mechanism(s) 

causing the hyperoxic redistribution of pulmonary blood flow are unknown.  

ANATOMICAL EVIDENCE FOR PULMONARY ARTERIOVENOUS 

ANASTOMOSES 

In 1939 a review of anatomical literature by Clara (24) listed numerous systemic 

vascular beds that contain arteriovenous anastomoses including the skin, nose, ear, ovary, 

kidney, stomach, small intestine, and brain. Further evidence for arteriovenous 
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anastomoses in the systemic circulation exists in dogs (93), the human ear (127), and dog, 

sheep and goat tongue (126, 128). Thus, in addition to the conventional and 

supernumerary arteries in the pulmonary circulation which both deliver blood flow to the 

capillary bed, intrapulmonary arteriovenous anastomoses may also be a component of the 

normal pulmonary vasculature that would allow some of the blood to bypass the 

capillary-alveolar interface. Prinzmetal and colleagues first demonstrated large diameter 

arteriovenous anastomoses existed in the heart when glass spheres of 10-400µm injected 

into the left coronary artery were recovered from the coronary sinus, ranging from 70-

170µm (130). This same group also injected glass microspheres into rabbit liver, dog 

spleen, and rabbit, dog, and cat lungs which were then retrieved from the venous effluent, 

signifying that the microspheres passed through large diameter arteriovenous 

anastomoses (129). Also using the glass microsphere technique, IPAVA were identified 

in dogs (115) and post-mortem human lungs (170, 172). In fact, anatomic descriptions 

based on plastic casts made by Tobin indicate the presence of arteriovenous shunts to be 

in the apex of the lung, in the form of a loop, lacking muscle or elastic tissue in their 

walls, and large enough to allow passage of 200µm glass spheres (170).  By 1953 it was, 

“generally accepted that arterio-venous anastomoses exist in the lungs” (151). 

Unfortunately, while their existence appeared “generally accepted,” their significance 

remained unknown. Possibly for this reason, or due to attempts to explain pulmonary gas 

exchange efficiency, which failed to demonstrate a role for intrapulmonary shunting, the 

existence of these apparently ubiquitous vessels was ignored, disregarded, and forgotten 

for the next few decades. Recently, additional microsphere evidence in dogs, isolated 

human and baboon lungs, and rats has brought these potentially important vessels back 
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into the discussion of pulmonary vasculature (10, 99, 156), while nuclear medicine 

imaging of 99mTc-labeled macroaggregates of albumin (99mTc-MAA) in healthy humans 

breathing room air have quantified an increase in blood flow through exercise-induced 

IPAVA (96, 197). Not surprisingly, controversy about the existence of and role for these 

vessels has emerged (71, 95). 

INTRAPULMONARY ARTERIOVENOUS ANASTOMOSES DETECTED 

USING SALINE CONTRAST ECHOCARDIOGRAPHY 

Another anatomic-based technique called transthoracic saline contrast 

echocardiography (TTSCE) has been used to study IPAVA in healthy humans (32, 35, 

89, 94, 97, 157). TTSCE uses ultrasound to visualize the heart while air bubbles in saline 

are injected into an arm vein. These bubbles travel in the venous blood returning to the 

right side of the heart and appear as a “cloud of echoes”. As this blood with bubbles in it 

then travels through the pulmonary circulation, the small diameter capillaries act as a 

sieve to filter out the microbubbles and prevent them from returning to the left side of the 

heart. However, when large diameter IPAVA open, they provide a pathway for the 

bubbles to bypass the pulmonary capillaries and these bubbles subsequently return to the 

left heart and thus the patency of IPAVA can be non-invasively determined using this 

anatomic-based technique.  

Using this technique we and others have demonstrated that IPAVA are closed at 

rest, but open in healthy humans during exercise (32, 159) or in resting subjects breathing 

low levels of oxygen (hypoxia) (89). However, when subjects breathe 100% oxygen 

during exercise, bubbles do not appear in the left heart, suggesting that large diameter 

IPAVA are closed (97). However, while these studies demonstrated the existence and 
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provided potential insight into the regulation of arteriovenous anastomoses in the 

pulmonary circulation, their physiologic roles as part of the normal pulmonary circulation 

are not yet proven.  

PULMONARY GAS EXCHANGE EFFICIENCY  

If blood flow through these large diameter arteriovenous anastomoses does not 

fully participate in pulmonary gas exchange, then IPAVA could act like a shunt and 

contribute negatively to pulmonary gas exchange efficiency. However, as I will describe 

below, a technique developed to investigate the role of shunt in pulmonary gas exchange 

efficiency ruled out such a possibility and consequently, much of the anatomical data 

collected over multiple decades has been essentially disregarded or forgotten.  

We have speculated that large diameter IPAVA divert blood flow away from the 

alveoli and pulmonary capillaries and thus reduce pulmonary gas exchange efficiency, 

but no study has directly determined if the opening of IPAVA negatively affects 

pulmonary gas exchange efficiency as defined by the AaDO2. Therefore, in order to 

identify why the AaDO2 is not perfect at rest and increases during exercise (7, 29, 30), 

the potential factors contributing to pulmonary gas exchange inefficiency will be 

considered below, followed by any support for these factors found in the literature. 

Potential Factor – V̇/Q̇ Mismatch 

The matching of alveolar ventilation (V̇) and pulmonary blood flow (Q̇) is 

fundamentally necessary for the maintenance of pulmonary gas exchange efficiency and 

prevention of arterial hypoxemia. Thus, the significant alveolarization and microvascular 

growth and development that occur postnatally involve a coordination of growth via a 

cross talk of paracrine signals, such as the release of vascular endothelial growth factor 
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from alveolar epithelial cells to stimulate the associated microvascular development (19, 

155). Further regional matching of ventilation and perfusion may be occurring via 

hypoxic pulmonary vasoconstriction, which occurs through direct effects of oxygen on 

the vascular wall of both the pulmonary arterioles and venules, with contributions from 

both the alveolar PO2, as well as the mixed venous PO2 (12, 14, 15, 38). The goal of this 

matching is to help divert blood flow away from poorly ventilated areas and towards 

areas with a higher driving pressure of oxygen to result in complete equilibration between 

alveolar PO2 and end capillary PO2 (118). However, in humans resting at sea level this 

does not appear to play a role in determining perfusion heterogeneity (4). Therefore, at 

rest when both ventilation and perfusion are well below their maximum capacities and 

local matching due to hypoxic pulmonary vasoconstriction contributes minimally, a 

normal resting AaDO2 of 6 Torr could be entirely accounted for by a fixed 

postpulmonary shunt from the Thebesian and bronchial circulations (see below) of 1.5% 

of the cardiac output (assuming PAO2=103 Torr, Pv
_
O2=40 Torr, and normal body 

temperature and partial pressure to saturation relationships (83)) without negative 

contributions from V̇/Q̇ mismatch. 

Potential Factor – Diffusion Limitation  

At rest, the transit time of red blood cells within the pulmonary capillary is 

sufficiently long for the complete diffusion of oxygen as indicated above in the 

Introduction. With the onset of exercise, the increase in left atrial pressure that occurs in 

concert with the increase in cardiac output recruits and distends pulmonary capillaries to 

increase capillary blood volume and minimize the reduction in transit time of red blood 

cells flowing past the alveolar-capillary interface (135). Because the complete 
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equilibration of oxygen between the alveoli and pulmonary capillary blood occurs in 

~0.25 sec, a diffusion limitation due to insufficient transit time stemming from increased 

cardiac output seems highly unlikely, even at maximal exercise in subjects breathing 

room air (181).  

Potential Factor – Shunt 

Any right-to-left shunt will allow venous blood to directly mix with blood that has 

already participated in gas exchange, thus lowering the PO2 in that mixed blood. Sources 

of anatomic right-to-left shunt include intracardiac, such as a patent foramen ovale 

(PFO), postpulmonary, such as the drainage from the Thebesian and bronchial 

circulations, and intrapulmonary, such as pulmonary arteriovenous malformations. The 

most comprehensive autopsy study detected a probe-patent PFO incidence of 27.3% in 

the general population (56), while echocardiography bubble studies indicate similar 

incidence of 25-30% (150, 200). Thus, ~1/3 of the population could have an anatomic 

right-to-left shunt between the right and left atrium which could negatively affect 

pulmonary gas exchange efficiency. At rest, there is a small, but significant increase in 

the AaDO2 in PFO positive subjects, however no difference during exercise, possibly due 

to increases in left atrial pressure preventing blood from flowing into the left atrium (98). 

This suggests that the presence of a PFO does not explain why the AaDO2 widens during 

exercise. All individuals, however, do have an anatomic right-to-left shunt stemming 

from the venous drainage of the Thebesian and bronchial circulations, which return some 

of their venous blood directly to the left side of the heart (8, 90, 171). Attempts to directly 

quantify this blood flow utilizing the 100% oxygen technique are difficult to accurately 

measure due to errors associated with measuring the high PO2, but range from 0.18-2.2% 
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of the cardiac output (58, 173, 182). Finally, a significant body of anatomical based 

evidence demonstrates the existence of large diameter IPAVA (32, 89, 99, 115, 129, 131, 

156, 157, 172) and if blood flowing through these anastomoses did not participate in gas 

exchange with an alveolus, it would result in a shunt and cause a reduction in pulmonary 

gas exchange efficiency.  

Experimental Evidence Supporting These Factors 

The classical understanding of the partitioning of possible contributing factors (V̇

/Q̇ mismatch, diffusion limitation, and shunt) to pulmonary gas exchange inefficiency is 

based on data collected at rest and during cycle ergometry exercise using the multiple 

inert gas elimination technique (MIGET) (184, 185) and the 100% oxygen technique. 

These data suggest V̇/Q̇ mismatch accounts for the pulmonary gas exchange inefficiency 

at low and moderate exercise intensities, with an additional contribution from diffusion 

limitation only at higher levels of exercise intensity (>250-300W). Furthermore, these 

studies have measured a variable degree of postpulmonary shunt (~0.18-2.2% of cardiac 

output) and a non-significant or undetectable contribution from intrapulmonary shunt, 

neither of which are suggested to contribute to the AaDO2 (58, 173, 182).  

The MIGET determines contributions from V̇/Q̇ mismatch and shunt to 

pulmonary gas exchange inefficiency by quantifying the distribution of retention and 

excretion of six inert gases of varying solubility (184, 185). Theoretically, these gases 

should be retained and excreted in a predictable pattern that depends on the V̇/Q̇ 

heterogeneity of the lung, including regions of shunt.  
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In Chapter VI of this dissertation I describe in great detail the high variability in 

results that MIGET has detected between multiple studies and will only highlight some of 

these results in this section. 

Briefly, if the measured AaDO2 exceeds that predicted from V̇/Q̇ and shunt by the 

MIGET, the assumption is put forth that the remainder of the AaDO2 is caused by a 

combination of postpulmonary (bronchial and Thebesian) shunt and diffusion limitation 

because the MIGET cannot detect these contributions which will, without a doubt, cause 

the AaDO2 to widen. While V̇/Q̇ mismatch has been suggested to increase with exercise 

intensity at sea level, this often does not reach significance, especially at lower 

workloads, while some subjects demonstrate no increase in V̇/Q̇ mismatch during 

exercise, yet the AaDO2 consistently widens (122, 136, 144, 182). Consequently, the 

explanation for the widening of a significant portion of the AaDO2 falls on the 

assumption of a diffusion limitation despite neither a direct measurement of such 

impairment, nor any other support that such diffusion limitation to oxygen could 

theoretically or even likely occur (154, 181), while intrapulmonary and postpulmonary 

shunt are considered negligible contributing factors.  

Non-capillary Gas Exchange 

It is not entirely clear why the MIGET technique demonstrates such variable 

results regarding V̇/Q̇ mismatch or why an assumed diffusion limitation is accepted when 

a large body of evidence suggests an alternative explanation that IPAVA could be 

diverting blood flow away from the pulmonary gas exchange unit and acting as a shunt. 

A potentially critical flaw in the overall analysis of the excretion and retention pattern of 

the MIGET gases fails to account for interactions occurring between the airways and 
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arterioles which would influence the overall excretion and retention profile of inert gases 

(44, 153). This possibility of conducting airway gas exchange identifies only one problem 

in the attempts to quantify pulmonary gas exchange using a gas exchange-dependent 

technique that must rely on assumptions about the locations of inert gas exchange, which 

may be at best over-simplified and at worst incorrect.  

100% Oxygen Technique 

Another assumption used to support the lack of intrapulmonary shunt detection by 

the MIGET was by Vogiatzis, et al who attempted to quantify intrapulmonary shunt in 

subjects exercising while breathing 100% oxygen and apply that shunt fraction to 

normoxic exercise. The assumption was that breathing 100% oxygen was not causing any 

alteration to the pulmonary vasculature that could affect the quantification of shunt (143, 

178). However, as stated above in Aim #1, hyperoxia appears to dynamically close 

IPAVA (97) as well as cause a redistribution in pulmonary blood flow (110). In this 

situation, any potential contributions from IPAVA to the AaDO2 would not be detected 

and the 100% oxygen technique would only detect post-pulmonary and intracardiac shunt 

contributions. 

In summary, the MIGET has been used to quantify the contributions from V̇/Q̇ 

mismatch and shunt to pulmonary gas exchange inefficiency and assumes that any gas 

exchange inefficiency not explained by these two factors can only be due to a diffusion 

limitation. Anatomical data demonstrate that large diameter intrapulmonary arteriovenous 

anastomoses exist in the pulmonary circulation that could theoretically act like a shunt, 

but the MIGET and the 100% oxygen technique do not detect shunt as a contributing 
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factor during exercise. Thus, the role of IPAVA acting as shunts remains a controversial, 

not yet proven hypothesis.  

For these reasons, we believe, the potential role for IPAVA in affecting 

pulmonary gas exchange efficiency have been prematurely disregarded and discounted. 

However it is exactly because of the inconsistency in results by MIGET, along with the 

clear anatomic evidence that IPAVA have the potential to play a role in pulmonary gas 

exchange efficiency that the core understanding of factors affecting pulmonary gas 

exchange efficiency must be reconsidered and modified to reflect the totality of the 

pulmonary vasculature. The innovative approach used in this dissertation to quantify the 

contributing factors to pulmonary gas exchange inefficiency is entirely novel and directly 

challenges the prevailing understanding of factors contributing to pulmonary gas 

exchange inefficiency. 
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CHAPTER III 

METHODS 

INFORMED CONSENT 

All protocols completed as part of this dissertation were approved by the 

University of Oregon Office for Protection of Human subjects. The nuclear medicine 

study in Chapter V was conducted in part at the Oregon Heart & Vascular Institute and 

received additional approval by the PeaceHealth Institutional Review Board and the State 

of Oregon Radiation Safety Board. I verbally discussed all procedures, risks, and benefits 

with every subject and each subject provided written informed consent prior to 

participation.  

PATENT FORAMEN OVALE SCREENING 

The foramen ovale is an opening in the fetal circulation that allows blood to flow 

from the right atrium to the left atrium of the heart. After birth, the resistance to blood 

flow through the pulmonary circulation drops, reducing pressure on the right side of the 

heart to less than that on the left side of the heart. Consequently, a flap of tissue covers 

the foramen ovale and seals it to prevent blood from flowing into the left atrium. 

However, in ~1/3 of the population, this flap of tissue does not completely seal, resulting 

in a patent foramen ovale (PFO) and the potential for blood to continue to flow from right 

to left atrium (56). Saline contrast echocardiography is a technique developed to 

determine if an individual has a PFO. This technique involves placing an ultrasound 

probe against the chest near the apex of the heart and directing the ultrasound beam up 

through the apex towards the base of the heart. This placement allows all four chambers 

of the heart to be visualized and the tissue is displayed as white, while the blood appears 
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black and does not reflect the ultrasound. This view is called the apical four-chamber 

view. The ability to accurately image the apical four-chamber view (as well as measure 

the peak velocity of the tricuspid regurgitation, detailed below) of a beating heart under 

the variety of conditions presented in this dissertation (i.e. drug infusions or exercise) is 

technically difficult and was accomplished by a licensed registered diagnostic cardiac 

sonographer with 25 years experience, including 5 years conducting research with our 

group.  

To detect the presence of a PFO, saline and air are agitated back and forth 

between two 10ml syringes. This agitation creates microbubbles which are rapidly and 

forcefully injected into a peripheral arm vein. These saline microbubbles travel in the 

venous blood and enter the right side of the heart. Saline microbubbles are echogenic and 

reflect ultrasound. Thus, while imaging the heart in the apical four-chamber view, saline 

microbubbles appear in the right heart as a cloud of echoes. If an individual has a PFO, 

microbubbles have a pathway to travel through the opening between the two atria and can 

rapidly appear on the left side of the heart. The appearance of saline microbubbles in the 

left side of the heart within three cardiac cycles of their initial appearance in the right 

heart is a positive test for a PFO. Those bubbles not passing through a PFO flow into the 

pulmonary artery and into the pulmonary microcirculation.  

Upon injection of microbubbles into the blood, the gas inside the bubbles begins 

rapidly diffusing out of the bubbles, causing them to shrink in size. As the bubbles shrink, 

the surface tension increases, causing the bubble to be less stable, ultimately leading to its 

total diffusion into the blood and disappearance (202, 203). Those bubbles that are large 

enough to maintain their stability are larger than the pulmonary capillaries and become 



 31 

trapped and eventually completely dissolve, preventing their appearance in the left heart. 

However, if a large diameter intrapulmonary arteriovenous anastomoses is open, bubbles 

that are large enough to stabilize have a pathway to bypass the sieve of the pulmonary 

microcirculation and can eventually flow through to the left side of the heart. Because of 

the increased time needed for bubbles to flow from the right heart, into the pulmonary 

circulation and finally return to the left heart, we are able to detect patent IPAVA based 

on the delayed appearance of saline microbubbles in the left heart. However, if a subject 

has a PFO, bubbles have the potential to travel through the opening between the right and 

left atria more quickly than the bubbles traveling through IPAVA. Thus, in subjects with 

a PFO, it is impossible to differentiate the appearance of bubbles traveling through the 

PFO and those traveling through IPAVA and thus these subjects must be excluded from 

participation. 

The screening to determine if a subject is positive for the presence of a PFO 

begins with an initial bubble injection with the subject at rest. Subsequently, we instruct 

the subject to perform a Valsalva maneuver. This involves bearing down against a closed 

glottis to increase the intrathoracic pressure for a minimum of 15 sec. This maneuver 

temporarily prevents blood from returning to the right side of the heart and into the 

pulmonary circulation, while blood continues to drain from the pulmonary circulation and 

is pumped to the body. Upon release of the Valsalva maneuver there is a large increase in 

venous blood returning to the heart, increasing the pressure on the right side of the heart 

to greater than the pressure on the left side. Thus, the release of this maneuver transiently 

increases the pressure gradient directed through a potential PFO and provides the best 

opportunity to detect a PFO. Based on the screenings of ~200 subjects in our lab over the 
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past five years, this screening procedure has detected a PFO in ~39% of healthy 

individuals volunteering to participate as research subjects in our lab. Approximately 2/3 

of subjects positive for PFO must release this Valsalva maneuver in order to detect blood 

flow through the PFO. Nevertheless, the detection of a PFO under any condition is an 

exclusion criterion for participation in research studying IPAVA. Following the PFO 

screening the cardiac sonographer continued with a general heart screening of all valves 

and great vessels to ensure there were no signs of cardiac disease or other undiagnosed 

cardiac abnormality.  

PULMONARY ARTERY SYSTOLIC PRESSURE 

The gold standard measurement for measuring pulmonary artery pressures 

involves floating a catheter with a pressure transducer through the right heart into the 

pulmonary artery and directly measuring pulmonary artery pressures. This, however, is 

an invasive procedure that cannot be conducted in our campus research setting. Using 

Doppler ultrasound we can estimate pulmonary artery systolic pressure (PASP), which 

has been shown to correlate well with direct catheter measurements (62, 204). PASP is 

the peak blood pressure developed in the pulmonary artery during each cardiac cycle. 

During systole, or heart contraction, the right ventricle contracts, increasing 

intraventricular pressure. Once this pressure exceeds the pulmonary artery pressure on the 

opposite side of the pulmonic valve, blood flows down a pressure gradient and enters the 

pulmonary artery. The tricuspid valve, which prevents blood from flowing back into the 

right atrium during systole, has a small leak in almost all individuals. Doppler ultrasound 

can be used to measure the peak velocity of blood leaking through the tricuspid valve. 

Using the peak tricuspid regurgitation velocity (v) and the estimate of right atrial pressure 
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(PRA) an estimate of PASP can be calculated using the modified Bernoulli equation: 

PASP = 4v2 + PRA (142). PRA is estimated based on the collapsibility of the inferior vena 

cava upon a quick inspiration and is assumed to remain constant from rest through 

exercise. If the inferior vena cava just proximal to the entrance into the right atrium is 

≤2.1cm and collapses >50% upon a quick sniff by the subject, right atrial pressure is 

assumed to be normal (0-5 mmHg) and assigned a value of 3 mmHg. If the sniff results in 

<50% collapse and the diameter of the inferior vena cava is >2.1 cm, this suggests 

elevated right atrial pressure (10-15 mmHg) and is assigned a value of 15 mmHg. If 

either of these values is indeterminate, an intermediate value of 8 mmHg is assigned. 

Because this technique is actually estimating the peak pressure developed by the right 

ventricle, any obstruction in the outflow tract of the pulmonary artery could cause this 

measurement of PASP to overestimate the peak pressure developed in the pulmonary 

artery beyond the obstruction. However, this limitation is typically not a concern in 

healthy individuals, and we ensure there is no obstruction during the heart screening. 

In subjects with a small tricuspid regurgitation jet, the Doppler waveform of the 

regurgitation velocity can be difficult to measure. We developed a technique to enhance 

the ability to measure the jet by injecting a small volume of saline contrast microbubbles 

to provide additional contrast for the ultrasound beam to reflect off of in addition to the 

few red blood cells leaking through the valve (62). By doing this “contrast-enhancement” 

we increased our ability to detect the Doppler waveform developed through the tricuspid 

valve at rest and during exercise (unpublished observations) and used this technique for 

all measurements of PASP made for this dissertation. 
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LUNG FUNCTION 

Forced Vital Capacity 

The first lung function test performed is known as spirometry and is used to 

determine how well subjects inhale and exhale air. This test determines the forced vital 

capacity (FVC), which is the maximum volume of air a subject can exhale with a 

maximum effort. The American Thoracic Society/European Respiratory Society have 

created joint guidelines to standardize the maneuver, acceptability, and reproducibility of 

this test (111). The subject is instrumented with a nose clip and breathes through a low 

resistance mouthpiece and pneumotach to measure airflow. The subject inhales a rapid 

and full breath of air and, without a pause, “blasts out the air” fully and completely and 

continues exhalation for a minimum of 6 sec. Of note, the subject is prompted to “blast” 

out the air and verbal encouragement is continued throughout the full 6 sec of exhalation.  

In addition to the FVC measurement, the volume of air expired in the first 1 sec is 

the forced expiratory volume in 1 sec (FEV1). In young healthy individuals the 

FEV1/FVC ratio is ~0.80. However, if there is any sort of increased airway reactivity or 

obstruction, such as asthma, the volume of air expired in the first second will be reduced 

and consequently the FEV1/FVC ratio will be reduced.  

The rate at which the air is flowing out during the middle portion of the FVC 

maneuver is referred to as the forced expiratory flow at 25-75% of the FVC 

(midexpiratory flow, FEF25-75%) and provides a measure of small distal airway function 

that is mostly independent of subject effort during the maneuver. Individuals with 

reactivity of their small airways or other obstruction will demonstrate small distal airway 
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closure earlier than predicted and thus the FEV1 and FEF25-75% will be less than predicted 

based on age, sex, and height. 

The validity and reproducibility of the test is determined after a minimum of 3 

trials in which the difference between the two largest FVC measurements is ≤0.150 L and 

difference between the two largest FEV1 measurements is ≤0.150 L. For all studies 

carried out for this dissertation, subjects demonstrating an FVC, FEV1, or FEV1/FVC 

ratio less than 90% predicted were excluded.  

Slow Vital Capacity 

The slow vital capacity (SVC) maneuver is the second lung function test 

performed by all subjects. This test is conducted by having the subject breathe a 

minimum of four tidal breaths, ensuring they end each breath at a consistent lung volume, 

which is determined to be their functional residual capacity (FRC). This lung volume is a 

result of the balance between the force from the rib cage pulling outward and the 

elasticity of the lung tissue pulling inward. Once this lung volume is determined, the 

subjects conduct an inspiratory capacity (IC) maneuver to completely fill their lungs. 

Once at total lung capacity (TLC) subjects slowly and in a controlled fashion let all of the 

air out of their lungs, squeezing it out completely. When the expiration is complete and 

no more air can be forced out of the lung, there is still a volume of air remaining, termed 

residual volume (RV), which can be measured using another technique discussed in the 

next section. The volume measured from FRC to RV represents the expiratory reserve 

volume (ERV). Conducting this vital capacity in a slower maneuver reduces the rate of 

airway collapse compared to the FVC maneuver and typically results in a slightly larger 
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vital capacity measurement. The largest SVC measured throughout the testing protocol is 

chosen for the SVC measurement. 

Whole-body Plethysmography 

The FVC and SVC are unable to measure the volume of air remaining in the lung 

at the point when no more air can be expelled and is termed residual volume (RV). The 

gold standard way of measuring RV uses a technique called whole-body 

plethysmography. Subjects in studies conducted for this dissertation were seated in a 

MedGraphics Elite Series Plethysmograph, which is a sealed plexiglass box 

approximately the size of a phone booth, and they breathed through a mouthpiece and 

pneumotach. This test began similar to the SVC maneuver with the recording of a 

minimum of four tidal breaths ending at FRC. The subject as then instructed to begin a 

“panting maneuver” at a rate between 70-90 pants per min. Once panting in the correct 

range, a shutter closed to prevent airflow from entering or leaving the mouth. During the 

2 sec while the shutter was closed, the subject continued the in-and-out panting and 

pressure transducers on either side of the shutter measured pressure at the mouth as well 

as of the box. Because the volume of the box is known, the pressure in the box was 

measured, and the measured mouth pressure was assumed to equal the intrathoracic 

pressure, the volume of the thoracic cavity could be calculated based on Boyle’s law. 

This law states that, under isothermic conditions, a volume of a compressible gas will 

change in relation to the change in pressure such that the product of volume and pressure 

remains constant. Thus, this measurement determines the volume in the thoracic cavity at 

FRC. Subtracting the measured ERV from this volume nets RV, and adding RV to the 

SVC determined TLC. 
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Diffusion Capacity for Carbon Monoxide 

The final test was done to determine if the diffusion of gases between the alveolar 

air and pulmonary blood is normal (102). To do this, the diffusion capacity for carbon 

monoxide (DLCO) was conducted using a MedGraphics Elite Series Plethysmograph. The 

subject began the test by blowing the air completely out of their lungs, down to RV. 

Next, subjects inhaled a full and breath of a gas mixture containing 21% oxygen with 

0.3% carbon monoxide, 0.5% neon, and balance nitrogen. This gas mixture was held for 

8 sec and a sample of the exhaled alveolar gas sample was analyzed using a gas 

chromatograph containing diatomaceous earth to separate the different gas molecules. 

Based on the difference between the carbon monoxide in the initial gas mixture and that 

measured in the alveolar gas sample, the volume of gas that diffused into the blood can 

be calculated. The volume of CO taken up by the blood is standardized to the time of the 

breath hold, including a portion of time during both inspiration and expiration (80). The 

resulting value can also be standardized for alveolar volume (VA, measured during the 

max inhalation using an estimated deadspace based on height and sex) so that individuals 

with smaller lung volumes, resulting in a smaller surface area for diffusion, will not result 

in artificially low measurements of diffusion capacity. 

SUBJECT INSTRUMENTATION 

Intravenous Catheter 

I placed a 20G intravenous catheter (i.v.) (ProtectIV Plus, 20Gx1¼”) into a 

peripheral arm vein for all screening procedures and bubble studies. Two 3-way 

stopcocks were attached in series to allow for the agitation of 3 ml sterile saline with 1 ml 

of air to create saline contrast microbubbles.  
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Radial Artery Catheter 

In Chapter VI of this dissertation arterial blood samples were required. To 

minimize the risk associated with the placement of the radial artery catheter, an Allen’s 

test was conducted to ensure adequate collateral blood flow to the hand. Because both the 

radial and ulnar arteries provide blood flow to the hand, anastomoses in the palm of the 

hand connect the two arteries and allow for the ulnar artery to provide the entirety of 

blood flow to the hand if the radial were blocked or blood was prevented from flowing 

into the hand. To test the adequacy of these anastomoses to allow the ulnar artery to 

perfuse the entire hand, both arteries were manually and temporarily occluded. Once the 

majority of venous blood had drained and the hand appeared blanched in color, the 

occlusion over the ulnar artery was removed and the return of color depicting the return 

of blood flow into the hand was visualized. To pass the Allen’s test complete reperfusion 

needed to occur in less than 7 sec. This was always attempted on the subject’s non-

dominant hand first. If the complete return of blood flow was questionable, the dominant 

hand was checked and the medical doctor made the final decision on which wrist to use 

for placement of the arterial catheter.  

The placement of a radial artery catheter (20Gx1¾”, Arrow International) was 

placed under local anesthesia (1% lidocaine, 1% by volume nitroglycerine to prevent 

vasospasm) by a licensed cardiologist (Jerold Hawn) or neonatologist (Igor M. 

Gladstone). A 20G needle was used to gain access to the artery, and a wire threaded 

through the needle until the stiff portion of the wire was at the entrance to the artery. 

After removing the needle, the catheter was threaded over the wire into the artery and the 

wire removed. The catheter, extension set, and stopcock were subsequently flushed with 
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~4 ml of heparinized saline (1U/ml) to minimize the possibility of a clot forming in the 

catheter. This catheter was used for sampling arterial blood for measurement of PO2, 

PCO2, pH, SaO2, lactate, and hematocrit, see Arterial Blood Draw and Analysis for 

details. 

Esophageal Temperature Probe 

Determination of body core temperature was necessary to correct blood gas 

measurements for the increase in body temperature that occurs during exercise. While 

body temperature can be measured in a variety of ways such as an ingestible thermister 

pill, rectal temperature probe, or tympanic temperature, these do not respond fast enough 

to the increase in body temperature occurring during the first few minutes of exercise. 

Thus, we chose to use the gold-standard measurement of an esophageal temperature 

probe, which measures temperature from the esophagus immediately next to the heart. I 

placed the probe (Mon-a-therm General Purpose probe, 7-french) in all subjects. The 

subject self-administered 1 ml of Lidocaine jelly to coat their nasal passage and back of 

their throat. I slid the probe up one nostril until the tip could be visualized in the back of 

their throat. Then, the subject began swallowing small sips of water as I advanced the 

temperature probe until it was completely in place and only the final 2-3 cm of the probe 

extended from their nostril, which could be secured to the top of their nose with tape. For 

subjects with a strong gag reflex that could not tolerate the placement, 1-2 sprays of 

HurriCaine spray (20% Benzocaine oral anesthetic) were used to temporarily numb the 

back of throat while the placement occurred. Once in place, the temperature probe 

remained in place for the duration of the study. 

 



 40 

Oxygen Saturation and Heart Rate 

Peripheral estimate of arterial oxygen saturation (SpO2) and heart rate were 

measured using a pulseoximeter (Nelcor, Oxymax sensor) with forehead sensor. The 

sensor contains two light emitting diodes (LEDs) that transmit red and infrared light, 

respectively, and is placed above the pupil of either eye to shine through blood-perfused 

tissue. These wavelengths of light are reflected differently by oxygenated and 

deoxygenated hemoglobin and their ratio of reflected light is used to estimate hemoglobin 

saturation, while the pulsatile changes in color are used to determine heart rate. The heart 

rate was also determined from Lead II of the electrocardiogram (ECG) used with 

echocardiography. A 12-lead was also placed during the infusion of drugs in Chapter IV 

to monitor electrical activity of the heart more precisely. 

ECHOCARDIOGRAPHY MEASUREMENTS 

Saline Contrast Echocardiography 

For all studies in Chapters IV-VI, transthoracic saline contrast echocardiography 

(TTSCE) was performed for detection of open IPAVA. The sonographer obtained an 

apical four-chamber view of the heart, making sure the plane of view sliced through the 

apex of the heart and the middle of the base of the heart so as to prevent a foreshortened 

view. For each bubble injection, 20 cardiac cycles were recorded beginning with the 

appearance of bubbles in the right heart. The sonographer reviewed the entire 20 cardiac 

cycles and determined the greatest number and/or spatial distribution of bubbles 

appearing in the left ventricle in a single frame. A 0-5 score was assigned based on the 

following criteria: 1-3 bubbles received a score of 1; 4-12 bubbles received a score of 2; 

>12 bubbles appearing in a bolus received a score of 3; >12 bubbles in which the bolus 
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filled the left ventricle, but was heterogeneous in density received a score of 4; and if the 

bubbles appearing filled the left ventricle, a score of 5 was assigned. During the first 

study conducted in our lab, two independent sonographers scored over 100 bubble studies 

spanning all bubble scores and found perfect agreement on all 100 studies. During 

preparation of a second manuscript, 57 images were scored by the sonographer and by a 

licensed cardiologist who was blinded to the conditions and there was 93% agreement. 

The echocardiograms in which there was disagreement were from images in which either 

0 or only 1-3 bubbles appeared throughout the 20 cardiac cycles. A single sonographer 

scored all bubble scores during the studies conducted for this dissertation.  

In Chapter IV, subjects reclined in the left lateral decubitus position and a 

baseline bubble injection was done before the first infusion of either EPI or DA while 

breathing room air or 100% oxygen. TTSCE was performed 2-4 min after the start of 

each infusion rate to allow the heart rate to stabilize, which we used as an indicator that 

the plasma catecholamine concentration had reached stability.  

In Chapter V, subjects were seated on a cycle ergometer in the forward leaning 

aerobar position for both resting and exercise study visits. For the exercise visits, subjects 

warmed up for 2 min at 50% of their power output attained at VO2peak and continued for 

another 3 min at 85% of their max. The bubble injection was conducted 2 min into the 3 

min bout at 85% of their max.  

In Chapter VI, the resting bubble injection during the room air bout was 

conducted in the forward leaning position once the metabolic rate reached a stable 

respiratory exchange ratio (usually 5-10 min), whereas subjects breathed the hyperoxic 

gas mixture for 15 min at rest prior to the resting bubble injection during the hyperoxic 
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bout. During all exercise bouts, subjects exercised for 3.5 min before the bubble injection 

occurred, which occurred simultaneously with the arterial blood draw (see Arterial Blood 

Draw and Analysis, below). 

Pulmonary Artery Systolic Pressure 

The peak velocity of the tricuspid regurgitation was measured immediately prior 

to all bubble injections using the “contrast enhanced” bubble injection described above in 

the screening details. The average of three velocities was used in determining PASP 

based on the modified Bernoulli equation: PASP=4v2 + PRA. 

Cardiac Output 

From the 20 cardiac cycles recorded in the apical four-chamber view during the 

bubble injection, the sonographer determined end diastolic and end systolic left 

ventricular volumes from three representative cardiac cycles using the Modified 

Simpson’s technique. This technique is the most common measurement technique for 

determining volumes and is recommended by the American Society of Echocardiography 

(88). The endocardial border of the left ventricle is traced from an image frame at end 

systole and end diastole and is divided into 20 stacked discs based on the height of the 

long axis of the ventricle. Because we used a single plane (apical four-chamber view) for 

determining the endocardial border, each disc is assumed to be circular, an assumption 

that is only a limitation when there is extensive wall-motion abnormalities, which was not 

demonstrated by any of our subjects. The difference between the end diastolic left 

ventricular volume and the end systolic left ventricular volume provides an estimate of 

stroke volume. This value was multiplied by the heart rate obtained from the ECG to 

determine cardiac output. Because the same sonographer made all measurements on all 
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subjects for studies conducted throughout this dissertation, any bias or error introduced 

by the sonographer should have occurred in all measurements and thus the difference 

between various perturbations throughout these studies should be a reliable indicator of 

changes in cardiac output. 

EXERCISE TESTING 

Metabolic Rate 

All metabolic testing was measured using a MedGraphics CardioO2 metabolic 

system. Prior to every study a pneumotach was calibrated to 5 varying flow rates using a 

3L syringe. A fast responding zirconia oxygen cell and CO2 infrared analyzer allowed for 

inspiratory and expiratory concentrations of these gases to be measured and breath-by-

breath metabolic analysis with end tidal O2 and CO2 partial pressures to be determined. 

All metabolic measurements reported in this dissertation represent ~15 sec averages. 

VO2peak Testing 

In Chapters V and VI subjects exercised on a cycle ergometer (Lode Excalibur 

Sport) at various workloads, some of which were standardized to a percentage of their 

max. We set the wattage attained at VO2peak to 100% and set relative workloads 

accordingly. After the initial echocardiography and lung function screenings, subjects (all 

male) reported to the lab for a graded exercise protocol. After being fit on the bike, they 

warmed up at a self-selected wattage for 5-10 min, during which time an individualized 

protocol was devised. Each protocol began at 90W and was increased each minute by 20-

30W depending on the predicted fitness of the subject. Verbal encouragement was 

provided and in all cases the test was terminated when the subject could no longer 

maintain a pedal cadence >80. Retrospective analysis indicated that at the conclusion of 
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the test respiratory exchange ratio for all subjects was greater than 1.10 and a plateau in 

oxygen consumption. 

Exercise Protocols 

In Chapter V our goal was to quantify the amount of blood flowing through 

IPAVA during exercise and quantify a reduction in blood flow during the same intensity 

of exercise while the subjects breathed 100% oxygen. Pilot work indicated that having 

subjects warm up at 50% of their max before progressing to 85% of their wattage attained 

at VO2peak would elicit a high bubble score, but also was a workload that could be 

sustained for a maximum of 3-4 min. Thus, a total of three protocols were required: (1) 

rest breathing room air; (2) exercise breathing room air; and (3) exercise breathing 100% 

oxygen. The bike was placed in the same room as the Gamma camera in order to 

minimize the time between exercise and the start of the scanning and subjects were 

studied in the forward leaning aerobar position. See Nuclear imaging and analysis, below 

for a complete description of scanning procedures, which occurred immediately after the 

injection of the radioactive macroaggregated albumin.  

In Chapter VI our goal was to determine the role of IPAVA in pulmonary gas 

exchange efficiency. Because the majority of previous research done in determining 

pulmonary gas exchange efficiency in healthy individuals has been conducted on male 

subjects exercising at wattages as high as >300W, we wanted to study a similar 

population in order to make comparisons between studies. We chose to study subjects 

exercising at workloads of 100W, 200W, and 300W and a relative workload at 85% of 

max. We had subjects exercise at each workload for 4 min, with a PASP measurement 

conducted at 3 min and bubbles injected at 3:30. At the same time as the bubble injection, 
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a 3 ml radial artery blood sample was drawn into a heparinized syringe and immediately 

analyzed for PO2, PCO2, and pH (see Arterial blood draw and analysis for details). We 

provided subjects with an active break between each of the absolute workloads, typically 

pedaling at approximately 150W for about 1 min, in order to provide enough time for the 

blood gas sample to be analyzed in triplicate before the next sample was ready to be 

analyzed. At the conclusion of the 300W bout, subjects were allowed to continuing 

spinning their legs to cool down and remained on the bike for a 10 min break. Two min 

before the conclusion of the break subjects began ramping up the wattage and warmed 

back up for the final 3.5 min bout at 85% of their max. After measurements were made, 

subjects took at 45 min break off the bike where they were able to drink water ad libitum. 

At the conclusion of the break this same protocol of exercise was conducted with subjects 

breathing 40% oxygen. Subjects breathed the hyperoxic gas mixture for 15 min prior to 

the arterial blood draw and remained on the mouthpiece throughout the 10 min break in 

order to ensure a stable respiratory exchange ratio. A second protocol was also 

undertaken with a different group of subjects exercising for 3-4 min at each 25%, 50%, 

and 75% of their max wattage in a continuous protocol. Subjects completed this exercise 

protocol first breathing an FIO2=0.21, then breathing an FIO2=0.60, and finally breathing 

an FIO2=0.14. Each bout was separated by ~45 min.  

MEASUREMENT OF BLOOD GASES 

Tonometry 

The quality control in place for a standard blood gas machine only allows the user 

to determine if the blood gas electrodes are reading within an appropriate range of 

acceptable values, but will not allow the user to discriminate between day-to-day 
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fluctuations in the exact PO2 or PCO2 measured. In order to correct for any inherent 

errors of the blood gas analyzer, I used a gas-liquid tonometer to equilibrate three 6 ml 

samples of human blood with three known concentrations of O2 and CO2. After a 45-60 

min equilibration period in a 37°C water bath, a blood sample was drawn from the 

tonometer and immediately run through the blood gas analyzer. Samples were run in 

duplicate, or triplicate if the difference between the first two samples was >5%. The 

inverse slope of ‘predicted versus measured’ values created a correction factor to apply to 

the measured values obtained during the study. For the study in Chapter VI of this 

dissertation I ran the tonometry procedure using two sets of O2/CO2 gas mixtures to 

create a ‘predicted versus measured’ slope of values expected to span the range of arterial 

PO2 and PCO2 of exercising subjects breathing (1) room air and (2) 40% oxygen, 

respectively. For the protocol in which subjects exercised breathing an FIO2=0.21, 0.60, 

and 0.14 only one set of O2/CO2 gas mixtures that spanned the range of all three FIO2s 

was used to tonometry correct the blood gases. 

Arterial Blood Draw and Analysis 

The tip of a 3 ml syringe was filled with Heparin (heparin sodium, 1,000 U/ml) 

and used to obtain a sample of radial artery blood. The hub of the radial artery catheter 

was connected to a three-inch extension set and 3-way stopcock. For each blood sample, 

approximately 0.5-1 ml of blood was pulled though the distal port of the stopcock as 

waste. The heparinized syringe connected to the side port was used to pull the arterial 

blood sample over ~10-15 sec in order to be representative of multiple respiratory cycles 

and to enable matching blood gas data with the VO2 data acquired with the metabolic 

system. This syringe was immediately inspected and voided of any air bubbles, the tip 
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covered with a finger and handed to another researcher for blood gas analysis. Thus, the 

time from blood draw to the first analysis was <30 sec. The sample was analyzed using a 

Siemens 248 RapidLab containing a Clarke electrode for measurement of PO2 and a 

Severinghaus electrode for measurement of PCO2. While measurements were being 

analyzed for blood gases, direct hemoglobin saturation (SaO2) was determined 

photometrically using a Radiometer OSM-3. While the sample was being analyzed, the 

stopcock, extension set and arterial catheter were flushed with ~4 ml heparinized saline 

(1U/ml heparin) by the first investigator. 

After blood gas analysis was complete, a blood sample was analyzed for lactate 

concentration (YSI 1500 Sport Lactate Analyzer) and a sample was collected in a 

microcapillary tube for determination of hematocrit using the centrifugation method.  

Thus, the bubble study, arterial blood draw, and record of esophageal temperature 

occurred simultaneously. The temperature measurement was used with the tonometry 

correction during data analysis to temperature correct the arterial blood gas sample (84, 

146). 

At the conclusion of the study a researcher removed the arterial catheter and held 

manual pressure over the site for at least 10 min. An ice pack was then wrapped over the 

site for another 10 min before a bandage was placed over the entry site. 

DELIVERY OF INSPIRED GAS MIXTURES 

During all resting and exercise protocols described in this dissertation, subjects 

breathed through a low resistance 2-way non-rebreathing valve (Hans Rudolph, 2700) 

and the expiratory port vented to room air. When breathing a normoxic gas mixture, the 

inspiratory port was open to room air. When breathing hyperoxic gas mixtures, the 
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inspiratory port was connected to a non-diffusing Mylar bag containing the appropriate 

gas mixture. The hose connecting the bag to the non-rebreathing valve was directed 

through a custom built humidifier. 

To create hyperoxic gas mixtures, medical grade oxygen and air were attached to 

a high flow gas blender that was capable of varying the gas mixture between 21% and 

100% oxygen, while hypoxic gas mixtures blended medical grade air and nitrogen. Prior 

to all studies, a zirconia oxygen cell analyzer was calibrated to a calibration and reference 

gas. The gas analyzer sampled the blended gas mixtures and the blender dial was adjusted 

to the desired fraction of oxygen. Once set, the non-diffusing bag could be continuously 

filled to match the ventilatory rate of the subject to ensure an adequate reservoir of air. 

The gas sampling line just distal the mouth of the subject, but proximal to the 2-way non-

rebreathing valve allowed breath-by-breath analysis of the fraction of inspired oxygen to 

ensure the correct concentration was being delivered to the subject and there were no 

leaks. 

DRUG INFUSIONS 

In Chapter IV of this dissertation I present a study in which two drugs, 

epinephrine (EPI) and dopamine (DA), were infused into healthy human subjects at rest. 

EPI was diluted in sterile saline to 4,000 ng•ml-1 and DA was diluted to 1,600 µg•ml-1 

and loaded into syringes which were infused at constant rates using a Harvard Apparatus 

syringe infusion pump (Pump 22). Subjects had an i.v. placed in the opposite arm as the 

i.v. used for the saline contrast injections for drug infusions. EPI infusion rates were 

chosen that would elicit a range of increases in cardiac output, result in plasma EPI 

concentrations similar to that seen at maximal exercise, and that had been previously used 
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in human subjects (28). DA infusion rates were chosen to elicit concentrations that would 

bind to a range of receptors: dopaminergic receptors at low doseages, β-receptors at 

moderate dosages, and α-receptors at dosages greater than 10µg•kg-1•min-1. 

NUCLEAR MEDICINE IMAGING AND ANALYSIS 

The few studies that have quantified blood flow through IPAVA during exercise 

imaged the distribution of Technetium-99m labeled macroaggregated albumin (99mTc-

MAA) using simple, two-dimensional planar imaging (32, 197). Gamma photons emitted 

from 99mTc-MAA lodged at various depths must pass through tissues of varying density 

and will lose a variable degree of energy due to attenuation and Compton scatter before 

reaching the collimators in the heads of the cameras. Thus, a potential limitation of this 

technique is the inability to correct the radioactive counts for the nonuniform attenuation 

and Compton scattering of photons that is known to occur (23). One way to correct for 

this attenuation is to reconstruct a three-dimensional map of the location of 99mTc-MAA 

using single photon emission computed tomography (SPECT) and fuse this image with 

an attenuation-correction map derived from a low dose computed tomography (CT) scan 

(121). Recent advances in quantitative medical imaging have combined both SPECT and 

CT imaging modalities into a single device so a subject can be scanned by each camera 

without being moved from the bed (121). When the CT data is fused to the SPECT data, 

it can be used to correct for the nonuniform attenuation of gamma photons that occurs 

based on the distance and density of tissue the photons encounter as they pass through the 

body (20, 23, 138, 198) as well as the Compton scattering of photons that still reach the 

collimators within the desired energy window (99mTc emit at an energy of 140 keV) 

(109).  



 50 

Thus, we developed a collaboration with Dr. Matthews Fish of the Oregon Heart 

& Vascular Institute at Sacred Heart Medical Center in Springfield, OR and set out to 

employ SPECT/CT imaging using a Philips Precedence 16P SPECT/CT camera (Philips 

Medical Systems, The Netherlands) to overcome problems due to attenuation and scatter 

and thus improve the sensitivity and objectivity in quantifying blood flow through large 

diameter IPAVA, known as the shunt fraction.  

MAA Filtering and Technetium-99m Labeling 

The gold standard for measuring blood flow through large diameter MAA would 

be to use large diameter solid microspheres of an exact known size. Unfortunately, these 

are no longer available for use in human subjects. Rather, macroaggregated albumin 

(MAA) are used despite the range of particle sizes contained in each batch (>90% 

between 10-70µm). While the mean length of MAA particles is significantly larger than 

the largest pulmonary capillary, there is the potential that some small particles could 

travel through pulmonary capillaries and circulate freely in the blood. After preliminary 

scans revealed potential errors in the quantified shunt fraction, I developed a filtering 

procedure in which the reconstituted MAA were drawn through a 20µm nylon filter 

(20µm x 25mm nylon net filter, Millipore) to remove as many small particles as possible. 

During development of this technique a sample of reconstituted MAA solution was 

placed on a hemacytometer and visualized under a microscope. The hemacytometer had 

markings every 5 µm so the number and size of MAA could be determined. Prior to 

filtering, the size distribution of MAA demonstrated 2 peaks, one over the 0-15 µm range 

and a second over ~30-35µm. After filtering, the percentage of MAA in the 0-15µm 

range was reduced from 17.7% to 6.5%. Thus, for all procedures moving forward this 
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filtering procedure was conducted prior to labeling with 99mTc. This had the added benefit 

that after labeling, which is described in more detail in Chapter V, the 99mTc-MAA was 

pulled through the filter again to remove any free 99mTc, and potentially removed even 

more small particles, and fresh saline added before the final dose was drawn up for 

injection into the subject. 

All radioactivity was handled by the licensed nuclear medicine technicians, 

including the labeling of MAA with 99mTc which occurred after the filtering procedure 

and immediately prior to use in each study visit. A dose of 0.057 mCi/kg was drawn up 

for injection into subjects for each study visit. This dose was previously used in healthy 

human subjects (96) and the total dose of radiation is standardized for the body weight of 

each subject.  

SPECT/CT Imaging 

After the rest or exercise protocol (described above), subjects were quickly moved 

to the bed attached to the SPECT/CT camera located in the same room and rested quietly. 

An initial “scout scan” was conducted which was a low dose CT image used to determine 

the location of the subject on the bed. Next, the bed slid through the CT scanner and 

scanned the subject from head to toe. Because the data from the CT scan was not needed 

to reconstruct a high-resolution image, but rather just determine tissue densities, we used 

a low dose, dose-modulation CT scan using a 16 slice helical CT scanner (140kv, 50 

mAs/slice maximum, 0.5-s rotation time). The dose-modulation automatically reduced 

the radiation transmitted through the subject as lower density tissue was encountered. The 

entire scan took ~47 secs.  
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After the CT scan, the bed was automatically repositioned to line up the two 

Gamma cameras anteriorly and posteriorly over the head of the subject. These cameras 

used a step-and-shoot sequence to capture the 99mTc photopeak of 140keV with a 10% 

window for 20 sec and then they rotated 5.625 degrees. By rotating 32 times, the anterior 

and posterior cameras captured data from 360° around the subject. Post-processing of the 

Gamma camera data is able to reconstruct a three-dimensional data set indicating the 

location and intensity of the 99mTc-MAA. Once the Gamma cameras captured views 

encircling the entire body, the bed shifted down to begin capturing photons emitted from 

the next section of the body and this was repeated for a total of 4 sections to image the 

entire length of the body. As a consequence, the time from 99mTc-MAA injection to the 

completion of the fourth SPECT section took ~50-55 min.  

After the initial analysis of visits using these scanning procedures (see below for 

details), there was concern that the total time of the scan was long enough to allow some 

of the 99mTc to unbind from the MAA, resulting in free 99mTc throughout the blood. If this 

were the case, then any detection of radioactive counts outside the body could not be 

assumed to be attached to large diameter MAA. We were also concerned that the 

breathing movement artifact while imaging over the lung during the first two SPECT 

segments could have been artificially inflating the shunt fraction. To address both of 

these concerns, we shortened the Gamma camera imaging time from 20 sec to 10 sec per 

stop and had the subjects conduct a breath hold at FRC during the 10 sec image 

acquisition. Halving the stop-time reduced the total imaging time by 21 min to ~30-32 

min total. The camera took ~3 sec to rotate to the next stop before continuing to aquire 

data. Thus, we were able to coach the subjects to inhale and exhale to FRC during the 3 
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sec transition and thus all SPECT data during the first two stops was subsequently 

collected at a constant lung volume with minimal breathing motion artifact. We then 

repeated our initial studies using this updated protocol in our first subject and all 

subsequent studies. 

Post-processing Data Reconstruction and Analysis 

In order to quantify the percentage of blood flowing through large diameter 

IPAVA using SPECT/CT imaging, we assume that the percentage of radiation counts 

detected outside of the lung versus inside of the lung represents counts emitted from 

99mTc-MAA that have traveled through IPAVA and are proportional to blood flow 

through IPAVA. To determine this ratio, I used Philips proprietary software to analyze 

the SPECT/CT data. First, the SPECT data was transformed into transverse slices using 

AutoSPECT+, aligned with the CT data to create the attenuation correction map, and 

Syntegra was used to reconstruct attenuation-corrected SPECT data for all 4 acquisitions 

covering the body. The reconstruction method used the Astonish algorithm (2 iterations, 

16 subsets, Hanning filter max 1.20), which is a three dimensional ordered subsets 

expectation maximization reconstruction that applies the attenuation map derived from 

the low-dose CT to correct each voxel for attenuation and compensates for the blurring 

effects of the collimator built into the reconstruction. This is intended to allow for greater 

resolution recovery and improve the signal-to-noise ratio.  

The head-to-toe CT image was reconstructed into 10mm thick slices, an objective 

region of interest (ROI) determined for each slice, and the resulting three-dimensional 

region applied to the fused SPECT data to determine the whole body ROI. The lung ROI 

was determined automatically by setting a minimum threshold of 5 counts per pixel to 
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represent the border of the lung. Blood flow through IPAVA, known as the shunt 

fraction, was quantified as follows: (whole body counts–lung counts) / (whole body 

counts). 

While the use of SPECT/CT imaging has the potential to increase the sensitivity 

of detecting radioactive counts by using attenuation correction, this technique has never 

been used to quantify shunt fractions in human subjects. Thus, we repeated the rest and 

exercise visits breathing room air that were scanned with SPECT/CT in order to compare 

the calculated shunt fractions to those determined using simple planar imaging. Based on 

the results of these 4 visits (rest or exercise breathing room air), we decided to continue 

with the exercise breathing 100% oxygen visit using the planar imaging method, as 

described below. Thus, in addition to the pilot work visits during which we (1) developed 

the filtering technique, (2) began acquiring SPECT data during a breath hold at FRC, and 

(3) shortened the SPECT acquisition in half, four subjects completed a total 5 visits to the 

Nuclear Medicine department to collect the data presented in Chapter V of this 

dissertation. 

Planar Imaging 

After either the rest or exercise protocol breathing room air, subjects were moved 

to the bed of the SPECT/CT camera, however there was no CT scan performed. Rather, 

the bed was immediately positioned to put the head of the subject between the anterior 

and posterior Gamma cameras. The scan began within 3 min of the 99mTc-MAA injection 

and the bed moved in a continuous fashion to capture photons down the length of the 

entire body. This scan took 17:15. Thirty min and 60 min after the MAA injection, we 

began subsequent Gamma camera scans to determine if the shunt fraction was changing 
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the longer the 99mTc-MAA was in the subject. In order to determine if 99mTc was 

unbinding from the MAA and circulating freely in the blood, we obtained a 1ml venous 

blood sample at the conclusion of each scan. This blood sample was placed in a 

scintillation counter, corrected for time decay, and the total free radioactivity in the body 

estimated using an estimate of total blood volume (114). By dividing this total blood 

radioactivity by the total initial radioactivity (mCi) injected, we could estimate the 

portion of the quantified shunt fraction due to free-99mTc. While this technique helped to 

correct for free-99mTc in the blood, the longer SPECT/CT scan was still quantifying large 

shunt fractions that appeared physiologically implausible for reasons that may have been 

due to the longer acquisition time as well as errors inherent to the Astonish algorithm 

reconstruction method being applied to the data. While I developed a way to correct for 

free-99mTc in the blood, the longer scanning acquisitions would allow some of the free-

99mTc to be filtered from the blood and accumulate in the kidneys, bladder, salivary 

glands, and thyroid and these counts would be counted as part of the shunt fraction. Thus, 

because planar scanning proved more accurate than the SPECT/CT procedure due to its 

shorter acquisition time, we continued with the planar imaging for the exercise protocol 

with subjects breathing 100% oxygen. 
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CHAPTER IV 

CATECHOLAMINE-INDUCED OPENING OF INTRAPULMONARY 

ARTERIOVENOUS ANASTOMOSES IN HEALTHY HUMANS AT REST 

This chapter is in review with the Journal of Applied Physiology and Jonathan E. 

Elliott, Randall D. Goodman, and Andrew T. Lovering are co-authors. I performed the 

experimental work and the methods were developed equally between all authors. The 

writing is entirely mine. J.E. Elliott and A.T. Lovering provided editorial assistance. 

INTRODUCTION 

Intrapulmonary arteriovenous anastomoses (IPAVA) are closed at rest in healthy 

humans. These vessels can open during exercise (32, 35, 159) or at rest when breathing 

hypoxic gas mixtures (89, 94) and can be detected using a technique called saline contrast 

echocardiography. Additionally, IPAVA are not open during exercise in subjects 

breathing 100% oxygen (35, 97). However, the mechanism(s) that regulate blood flow 

through IPAVA under these conditions remain unknown. 

During exercise, plasma epinephrine (EPI) and dopamine (DA) concentrations 

both increase (67). In subjects breathing hypoxic gas mixtures for brief periods of time 

the change in plasma EPI concentration is reportedly varied depending on the duration 

and level of hypoxia (140), with most demonstrating an increase (82, 107, 117, 141). 

Therefore, an increase in plasma EPI or DA concentrations during exercise or when 

breathing hypoxic gas mixtures may represent a common link causing IPAVA to open 

during both of these conditions in healthy humans. Indeed, using 15- to 30-µm 

radioactive albumin microspheres Nomoto, et al. (116) demonstrated that IPAVA open in 

dogs infused with EPI. Additionally, Berk and colleagues also suggested a direct effect of 
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EPI increasing venous admixture in anesthetized dogs based on an immediate fall in 

arterial PO2 during EPI infusion (16-18), while Huckauf, et al. (75) suggested a similar 

effect in patients with left heart failure receiving DA infusion. Thus, these 

catecholamines could potentially be opening IPAVA; however, their role and mechanism 

of action in opening IPAVA in healthy humans is unknown. 

When EPI binds to β2-adrenergic receptors on pulmonary vascular smooth 

muscle, it activates a receptor-linked pathway to increase the intracellular concentration 

of cAMP leading to pulmonary vascular smooth muscle relaxation (40, 125). 

Alternatively, the binding of EPI to α-receptors on pulmonary vascular smooth muscle 

leads to vasoconstriction. Under conditions of normal pulmonary vascular tone, EPI 

infusion appears to favor an increased pulmonary vascular resistance, while EPI infusion 

during conditions of increased basal tone causes dilation and a decrease in resistance (77, 

78, 123, 124, 199). Thus, the net change in pulmonary vascular resistance due to EPI 

infusion is due to a balance between its α- and β-adrenergic effects.  

Dopamine stimulates dopaminergic receptors when administered at low doses 

(0.5-3 µg•kg-1•min-1), weakly stimulates β1-adrenergic receptors at intermediate doses (3-

10 µg•kg-1•min-1), and stimulates α1-adrenergic receptors at higher infusion rates (119). 

Binding to dopaminergic receptors on renal vascular smooth muscle induces vasodilation 

(108), as do higher doses of 5 and 10 µg•kg-1•min-1 (33). In the pulmonary circulation 

DA has been shown to have no effect (65), increase (53), or decrease (132) vascular 

resistance.  

Thus, the purpose of this study was to investigate if the intravenous infusion of 

the vasoactive substances EPI or DA opens IPAVA in healthy human subjects at rest 
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breathing room air and, additionally, to determine if breathing 100% oxygen prevents 

IPAVA from opening during a repeated EPI or DA infusion, respectively. We 

hypothesized that the intravenous infusion of EPI and DA would open IPAVA in healthy 

human subjects at rest breathing room air. We also hypothesized that if EPI or DA had a 

direct effect on IPAVA by binding to a receptor-mediated vasodilatory pathway, then a 

repeated infusion of EPI or DA would also open IPAVA in the same healthy human 

subjects breathing 100% oxygen at rest. We subsequently investigated the contribution of 

a β-receptor mediated pathway in the opening of IPAVA in subjects breathing hypoxic 

gas mixtures. We hypothesized that if the hypoxia-induced opening of IPAVA occurred 

via β-receptor mediated pathway, then IPAVA would remain closed when breathing an 

FIO2=0.10 after the infusion of 10mg of the β-blocker Propranolol. 

METHODS 

The University of Oregon Office for Protection of Human Subjects approved this 

project and all subjects provided verbal and written informed consent prior to 

participation. All studies were performed in accordance with the Declaration of Helsinki. 

Echocardigraphic Screening and Lung Function Testing  

Upon initial screening, 10/21 (48%) subjects demonstrated bubbles in the left 

heart within 3 cardiac cycles and were excluded from further participation due to the 

presence of a patent foramen ovale. Two additional subjects demonstrated 1-3 bubbles in 

the left ventricle not due to a patent foramen ovale and were also excluded. The 

remaining 9 subjects (1 female) participated in the study protocol. Spirometry including 

forced vital capacity (FVC) and slow vital capacity (SVC), and whole body 

plethysmography were performed according to ATS/ERS standards to determine lung 
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function indices, lung volumes, and capacities (111, 188). The single-breath, breath-hold 

technique was used for determination of lung diffusion capacity for carbon monoxide 

according to ATS/ERS standards (102) using the Jones and Meade method for timing 

(80).  

Resting Epinephrine and Dopamine Infusions 

During a subsequent visit, subjects were instrumented with a 20G intravenous 

catheter in each arm and reclined in the left lateral decubitus position at rest before and 

during all catecholamine infusions. EPI was diluted in sterile saline to 4,000ng/ml and 

DA was diluted to 160µg/ml and delivered at a constant rate using a Harvard Apparatus 

syringe infusion pump (Pump 22). Bubble injections used for transthoracic saline contrast 

echocardiography (TTSCE) were injected through an intravenous catheter placed in the 

opposite arm. TTSCE was performed at rest, before and during the infusions of EPI at 20, 

40, 80, 160, and 320 ng•kg-1•min-1 for 3-4 min each with minimal breaks between each 

infusion rate. At the conclusion of the highest EPI infusion rate, subjects took a 30 min 

break before TTSCE was again performed before and during the infusions of EPI (as 

above) in subjects breathing 100% oxygen. After another 30 min break, TTSCE was 

performed at rest, before and during the infusions of DA at 1, 2, 4, 8, and 16 µg•kg-1•min-

1 for 3-4 min each with minimal breaks between each infusion rate (1 subject failed to 

complete the final infusion concentration of DA due to nausea). After a final 30 min 

break, TTSCE was performed again before and during the infusions of DA (as above) in 

subjects breathing 100% oxygen. The female subject did not participate in any DA 

infusions due to the feeling of nausea during EPI infusions breathing 100% oxygen. For 

each bubble injection the apical four-chamber view was recorded for 20 cardiac cycles 
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after the initial appearance of bubbles in the right ventricle. Using a previously published 

scoring system, a 0-5 score was assigned based on the greatest number and spatial 

distribution of bubbles appearing in the left ventricle during a single frame >3 cardiac 

cycles after their appearance in the right heart (35, 89, 97). A score of 1 = 1-3 bubbles; 2 

= 4-12 bubbles; 3 = >12 bubbles in a bolus; 4 = >12 bubbles heterogeneously filling the 

left ventricle; and 5 = >12 bubbles homogenously filling the left ventricle (35, 89, 97). 

End systolic and end diastolic volumes were determined using the Modified Simpson’s 

technique from the apical four-chamber view by tracing the left ventricular endocardial 

border during systole and diastole from a minimum of three cardiac cycles (88). Stroke 

volume was determined as the difference between end diastolic and end systolic volumes. 

Heart rate was obtained from lead II of the ECG and multiplied by stroke volume for 

determination of cardiac output. Pulmonary artery systolic pressure was determined by 

measuring the peak velocity (v) of the tricuspid regurgitation jet and applying that to the 

modified Bernoulli equation 4v2 + 3 (26, 62, 142, 204).  

Hypoxia and Beta-blockade 

During a subsequent visit, 5 of the initial 9 subjects returned and were 

instrumented with an intravenous catheter and forehead saturation monitor (Nellcor, 

OxyMax sensor). TTSCE was performed with subjects at rest breathing room air, and 

then every 10 min throughout a 30 min period breathing an FIO2=0.10. We have 

previously shown that IPAVA open in subjects at rest breathing this FIO2 (89). Subjects 

were then given a 45 min break breathing room air before the infusion of 10mg 

Propranolol at an infusion rate of 1mg/min. After performing TTSCE in these subjects 
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while still breathing room air, subjects again breathed an FIO2=0.10 for 30 min with 

TTSCE performed at 10 min intervals.  

Statistics 

All statistical calculations were made using GraphPad Prism statistical software 

(v5.0d) and significance was set to p<.05. Bubble scores for all EPI infusions in subjects 

breathing room air and 100% oxygen were analyzed using a Friedman’s test with Dunn’s 

multiple comparison posttest. Bubble scores obtained before and during all DA infusion 

rates and those obtained in subjects breathing hypoxic gas mixtures were analyzed in the 

same manner. Mean cardiac output and PASP measured during each infusion rate were 

analyzed using a one-way ANOVA with Tukey posttest. 

RESULTS 

Subject Characterization and Lung Function 

Anthropometric, pulmonary function, and diffusion capacity data were within 

normal limits for all subjects and are presented in Table 4.1.  

Bubble Scores  

Bubble scores for every subject breathing room air and 100% oxygen before and 

during the infusion of EPI and DA are presented in Fig. 4.1 and representative 

echocardiograms are presented in Fig. 4.2. In subjects breathing room air during EPI 

infusion of 80, 160, and 320ng•kg-1•min-1, bubble scores were significantly greater 

compared to both 0 and 20ng•kg-1•min-1. However, during EPI infusions in subjects 

breathing 100% oxygen the bubble scores never increased compared to 0ng•kg-1•min-1. 

Thus, the bubble scores during EPI infusions from 80-320ng•kg-1•min-1 were  
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significantly lower in subjects breathing 100% oxygen compared to room air. In subjects 

breathing room air, IPAVA were open in 5/7 subjects at the highest infusion rate of DA, 

however this set of scores was not significantly greater than the set of bubble scores seen 

at 0µg•kg-1•min-1. When breathing 100% oxygen the bubble scores during 8 and 

16µg•kg-1•min-1 were significantly lower than scores when breathing room air. 

Breathing an FIO2=0.10 led to increased bubble scores, as expected, and these 

were not reduced after the infusion of propranolol (Fig. 4.3). 

Cardiac Output and PASP 

Mean cardiac output and PASP before and during each infusion rate of EPI and 

DA in subjects breathing room air and 100% oxygen are presented in Fig. 4.4. There 

Table 4.1. Anthropometrics, pulmonary function, and DLCO data. 
Height, cm 184.9 ± 6.6  

   Weight, kg 81.0 ± 6.9  
   Age, yrs 27.8 ± 7.6  
   BMI, kg•m-2 23.7 ± 1.3  
   FVC, L 5.52 ± 1.06  (95.1 ± 7.4) 

FEV1, L 4.52 ± 0.74  (95.4 ± 6.5) 
FEV1/FVC 0.82 ± 0.06  (99.3 ± 5.9) 
FEF 25-75%, L·sec-1 4.51 ± 0.89  (95.6 ± 16.6) 
SVC, L 5.57 ± 1.06  (96.7 ± 6.6) 
IC, L 3.45 ± 0.90  (94.4 ± 16.0) 
ERV, L 2.11 ± 0.56  (101.1 ± 25.2) 
FRC, L 3.83 ± 0.78  (104.7 ± 13.9) 
RV, L 1.68 ± 0.64  (98.9 ± 10.8) 
TLC, L 7.34 ± 1.51  (100.0 ± 10.8) 
DLCO, ml·min-1·mmHg-1 37.4 ± 6.8  (107.8 ± 11.5) 
DLco/VA, ml·min-1·mmHg-1·L-1 5.4 ± 11.5   (111.9 ± 12.3) 
Note. Values are means±SD (percent predicted±SD). 
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were no differences in either cardiac output or PASP between room air and 100% oxygen 

conditions for any infusion rate. The infusion of EPI at 40 ng•kg-1•min-1 through 

320ng•kg-1•min-1 resulted in significant increases in cardiac output compared to 0ng•kg-

1•min-1. DA infusion resulted in a significant increase in cardiac output only at the highest 

infusion rate of 16µg•kg-1•min-1. Of note, cardiac output measured during the EPI 

infusion of 40ng•kg-1•min-1 was the same as cardiac output measured during the DA 

infusion of 16µg•kg-1•min-1 (6.17 ± 0.65 L•min-1 vs. 6.16 ± 0.91 L•min-1, respectively) 

and the bubble scores were the same (Fig. 4.1). 

Figure 4.1. Bubble Scores. Individual bubble scores during EPI infusion in 
subjects breathing (A) room air (circles) or (B) 100% oxygen (squares) and during 
DA infusion in subjects breathing (C) room air (triangles) or (D) 100% oxygen 
(diamonds). Closed symbols, IPAVA are closed; open symbols, IPAVA are open. 
*p<.05 vs. 0 and 20 ng•kg-1•min-1. † p<.05 vs. room air (Friedman’s test, Dunn’s 
posttest). 
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There was a significant increase in PASP during the infusion of EPI at 80 through 

320 ng•kg-1•min-1 while DA did not result in a significant increase in PASP for 

any infusion rate. Similar to cardiac output measurements, PASP measurements 

were the same during the infusion of EPI at 40ng•kg-1•min-1 and during the infusion of 

DA at 16µg•kg-1•min-1 (32.0 ± 6.1 mmHg vs. 31.8 ± 4.5 mmHg, respectively) and bubble 

scores were essentially identical. 

  

Pre-infusion
EPI

(160 ng•kg-1•min-1)
DA

(16 µg•kg-1•min-1)

Pre-infusion
EPI

(320 ng•kg-1•min-1)
DA

(16 µg•kg-1•min-1)

Figure 4.2. Representative Echocardiograms. Upper row. One subject breathing 
room air at rest (A) before EPI or DA infusion, score=0; (B) during EPI infusion (160 
ng•kg-1•min-1), score=3; and (C) during DA infusion (16 µg•kg-1•min-1), score=2. Bottom 
row. A different subject breathing room air at rest (D) before EPI or DA infusion, 
score=0; (E) during EPI infusion (160 ng•kg-1•min-1), score=3; and (F) during DA 
infusion (16 µg•kg-1•min-1), score=2. 
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Figure 4.3. Bubble Scores Before and 
After Propranolol Infusion. Individual bubble 
scores in subjects breathing an FIO2=0.10 for 30 
min (A) Pre- and (B) Post-infusion of 10 mg 
Propranolol. *p<.05 vs. 0 min. Note: 1 subject 
stopped each hypoxic bout after 20 min because 
SpO2 was ≤65%. 

 

Figure 4.4. Cardiac Output and PASP. Mean cardiac output before and during 
each infusion concentration of (A) EPI and (B) DA in subjects breathing room air and 
100% oxygen. Mean PASP before and during each infusion concentration of (C) EPI and 
(D) DA in subjects breathing room air and 100% oxygen. Circles and squares indicate 
subjects breathing room air and 100% oxygen during EPI infusions, respectively. 
Triangles and diamonds indicate subjects breathing room air and 100% oxygen during 
DA infusions, respectively. * p<.05 vs 0 ng•kg-1•min-1 or 0 µg•kg-1•min-1, respectively. 
NS, no significant difference between room air and 100% oxygen. 
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Figure 4.5 demonstrates PASP as a function of cardiac output for all subjects 

breathing room air before and during all infusion rates of EPI and DA and identified 

bubble scores <2 versus scores ≥2, revealing a potential cardiac output/PASP threshold 

that resulted in open IPAVA.  

DISCUSSION 

The main finding of this study was that the intravenous infusion of EPI caused 

IPAVA to open in healthy humans at rest breathing room air, while the infusion of DA 

did not result in a significant increase in bubble score for any infusion rate. Additionally, 

β-blockade did not prevent hypoxia-induced opening of IPAVA. Cardiac output during 

EPI infusions ≥40 ng•kg-1•min-1 was significantly greater than pre-infusion, while DA 

only increased cardiac output during a DA infusion of 16µg•kg-1•min-1. PASP also 

increased significantly during EPI infusions ≥80 ng•kg-1•min-1, but did not increase for 

 Figure 4.5. Cardiac Output vs. PASP. Cardiac output vs. PASP before and 
during the infusions of EPI and DA in subjects breathing room air. Closed symbols 
represent bubble scores of 0 or 1, open symbols represent bubble scores of 2, 3, or 4 as 
indicated in Fig. 4.1. 
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any DA infusion rate. However, both the cardiac output and PASP measured during the 

DA infusion of 16µg •kg-1•min-1 were the same as those achieved during the infusion of 

EPI at 40 ng•kg-1•min-1 (Fig. 4.2) and the bubble scores for these infusion rates were the 

same (Fig. 4.1). Conversely, when subjects breathed 100% oxygen while receiving the 

same infusions of EPI or DA as they did breathing room air, IPAVA were prevented from 

opening despite similar cardiac output and PASP measurements.  

Saline Contrast Echocardiography 

The limitations of the use of saline contrast echocardiography have been 

extensively discussed in previous manuscripts (32, 35, 89, 94, 97, 159). While neither the 

size of the bubbles, nor the quantification of blood flow through IPAVA can be 

determined using this technique, the minimum size of bubbles entering the pulmonary 

microcirculation has been estimated to be 60- to 90-µm in diameter in order for the 

bubbles to be stable enough to survive and be visualized in the left ventricle (32). We 

have also shown that neither the internal, nor the external partial pressure gas 

composition of the bubbles affect the ability of TTSCE to detect patent IPAVA (35). 

Furthermore, extensive anatomical evidence using solid microspheres supports the 

existence of large diameter pathways existing in the pulmonary circulation (115, 129, 

151, 170, 172). More recently, 50-µm microspheres have been shown to pass through the 

pulmonary circulation of isolated human and baboon lungs ventilated and perfused under 

physiologic conditions (99) and 70-µm microspheres pass through the pulmonary 

circulation of rats breathing hypoxic gas mixtures (10). Finally, the data obtained in the 

current study using saline contrast echocardiography are directly supported by anatomical 

work using 15- to 30-µm albumin microspheres by Nomoto, et al (116) in which 
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increasing the infusion of EPI led to increases in the percentage of blood flowing through 

large diameter intrapulmonary arteriovenous anastomoses. Thus, evidence obtained with 

TTSCE supporting the dynamic regulation of IPAVA in healthy humans continues to 

accumulate and is identical to data obtained with microspheres in animals and isolated 

lungs. 

Epinephrine and Dopamine Effects on Pulmonary Vasculature 

EPI and DA each have the ability to mediate pulmonary vascular dilation or 

constriction through their respective α, β, or dopaminergic receptor mediated pathways. 

Thus, if β-adrenergic receptors are located on IPAVA, EPI could have theoretically 

directly induced vasodilation. Conversely, if α-receptors are located on IPAVA, EPI 

infusion could have induced vasoconstriction of these vessels, potentially limiting even 

greater flows through IPAVA. At the highest DA infusion rate, IPAVA opened in 5/7 

subjects, however as a group the bubble scores were not significantly increased for any 

DA infusion rate. This suggests that the dopaminergic receptors stimulated at low doses 

of DA infusion probably do not induce vasodilation of IPAVA, while the higher 

concentrations that stimulate α-adrenergic receptors could theoretically be preventing 

IPAVA from fully opening. This seems unlikely however because the DA concentration 

used in the current study has not been shown to cause pulmonary vasoconstriction (65) 

and is not expected to significantly increase flow or pressure (60), which is supported by 

our data. 

Hypoxia and Beta-Blockade 

We chose to investigate the role of β-receptors in the hypoxia-induced opening of 

IPAVA during a subsequent visit in five subjects. If the hypoxia-induced opening of 
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IPAVA occurred via a β-receptor mediated pathway, then IPAVA would have remained 

closed during the second period of hypoxia. However, all five subjects demonstrated 

increased bubble scores while breathing an FIO2=0.10 after β-receptor blockade (Fig. 

4.3). This suggested to us that the mechanism opening IPAVA during EPI or DA infusion 

was not via a β-receptor mediated pathway, but rather could be due to the secondary 

effects of these catecholamine infusions on cardiopulmonary hemodynamics. 

Because IPAVA are open in human subjects and rats breathing hypoxic gas 

mixtures at rest (10, 89) and during exercise (94), this suggests that blood flow entry into 

these vessels is occurring upstream of the small pulmonary resistance arteries which 

constrict in hypoxic environments and thus may branch from the large conducting vessels 

which demonstrate a lesser degree of hypoxic pulmonary vasoconstriction (103). This 

permissive or passive opening could allow for a reduction in total pulmonary vascular 

resistance in the face of increased pulmonary blood flow and help attenuate increases in 

pressure at the pulmonary capillary or right ventricular afterload as originally suggested 

by Stickland, et al (159). Indeed, La Gerche, et al. (87) has demonstrated that individuals 

demonstrating a greater degree of agitated saline contrast bubbles traversing the 

pulmonary circulation have a lower pulmonary resistance compared with those who 

demonstrate a low degree of left sided contrast. Future work is needed to determine the 

role of changes in blood flow, pressure, and hypoxic pulmonary vasoconstriction in the 

recruitment of IPAVA. 

Cardiac and PASP Effects Due to Epinephrine and Dopamine 

If the opening of IPAVA during EPI or DA infusions are not due to the active 

binding to receptor-linked vasomotor pathways, it may be due to the secondary effects of 
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increased cardiac output and/or PASP. We demonstrated an increase in cardiac output 

during the infusion of 40, 80, 160, and 320ng•kg-1•min-1 of EPI and the three highest EPI 

infusion rates produced bubble scores that were significantly greater than scores at 0ng•-

1kg•min-1. During DA infusions, cardiac output was only significantly increased from rest 

at the highest infusion concentration of 16µg•kg-1•min-1 and resulted in the same cardiac 

output as that achieved during the infusion of EPI at 40ng•kg-1•min-1 (Fig. 4.4a, b). Thus, 

when bubble scores achieved during the infusion of EPI at 40ng•kg-1•min-1 were 

compared to those achieved during the infusion of DA at 16µg•kg-1•min-1 (Fig. 4.1) the 

bubble scores were the same. We demonstrated an increase in PASP from baseline in 

subjects breathing room air when EPI was infused at 80, 160, and 320ng•-1kg•-1min, 

while DA infusions did not result in significant increases in PASP. The minimal response 

by IPAVA to DA infusion may be the result of the minimal increases in cardiac output or 

PASP compared to those increases that occurred during EPI infusions, as the slopes of 

the cardiac output versus PASP relationship were not significantly different between the 

EPI and DA infusions.  

If a bubble score of 1, which represents only 1-3 bubbles appearing in the left 

ventricle over the twenty cardiac cycles after the opacification in the right ventricle, is 

considered to be insignificant, then a bubble score of 2 or greater can define when blood 

begins to flow through open IPAVA. In Fig. 4 PASP is plotted as a function of cardiac 

output for every bubble injection throughout the EPI and DA infusions in subjects 

breathing room air and indicates the combinations of flow and pressure that induced 

IPAVA to open. This demonstrates that there may be some critical combination of 

pressure and/or flow that opens IPAVA in healthy human subjects at rest. Additionally, if 
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large diameter IPAVA branch from pulmonary arteries proximal to the resistance 

arterioles, catecholamine-induced increases in pulmonary vascular resistance may 

increase the backpressure at the entrance to IPAVA, helping to direct flow through these 

vessels even at the relatively low cardiac outputs measured in this study. 

Effect of Breathing 100% Oxygen During EPI and DA Infusions on Blood Flow Through 

IPAVA 

In subjects breathing 100% oxygen in the current study, we demonstrated no 

increase in bubble scores during the infusion of either EPI or DA. This resulted in bubble 

scores that were significantly less than those occurring in subjects breathing room air for 

EPI infusions of 40 through 320 ng•kg-1•min-1 and for DA infusions of 8 and 16 µg•kg-

1•min-1 despite no differences in cardiac output or PASP between the room air and 100% 

oxygen conditions. Of note, we have previously demonstrated that neither breathing 

100% oxygen, nor the duration of breathing 100% oxygen affects the detection of saline 

contrast microbubbles in vivo (35). 

In subjects breathing 100% oxygen during exercise, the increased arterial oxygen 

content can allow cardiac output to be slightly reduced (~10%) while maintaining a 

relatively constant oxygen delivery. However, the ~10% fall in cardiac output still results 

in higher flows than occur during low to moderate exercise when IPAVA are known to 

be patent (32, 94). These data suggest that the effect of hyperoxia on IPAVA is not 

simply due to a reduction in pulmonary artery blood flow. This is supported by data from 

the current study in which the increases in cardiac output and PASP were the same in 

subjects breathing room air or 100% oxygen. Furthermore, the reduction in bubble scores 

during hyperoxic exercise is probably not due to a reduction in the plasma concentration 
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of EPI or DA because in the current study we infused EPI and DA at the same rate in 

subjects breathing room air and 100% oxygen.  

These data suggest that the effect of breathing 100% oxygen on preventing 

IPAVA from opening is not simply due to reductions in cardiac output, PASP, or reduced 

plasma catecholamine concentration; rather, there may be a separate mechanism that 

actively closes IPAVA or prevents them from opening. The active closure of IPAVA by 

hyperoxia is an attractive hypothesis because oxygen has been shown to induce 

constriction in other vascular beds such as increasing systemic vascular resistance (59), 

coronary vascular resistance (36), and has been implicated in hyperoxia-induced retinal 

vasoconstriction (27, 61, 167, 205). In the fetal circulation, the ductus arteriosus closes in 

response to increased oxygen tension (37) which may be mediated by oxygen sensitive 

K+ channels (176). Microsphere data indicate that pulmonary blood flow is redistributed 

in sheep ventilated with 100% oxygen to a similar degree as occurs during hypoxic 

ventilation (110), which may further suggest active vasomotor activity in response to 

100% oxygen. Additional microsphere data demonstrate that ventilating lungs with 100% 

oxygen reduces the number of large diameter microspheres collected from the pulmonary 

venous effluent (115). Together, these data lend further support to indicate that oxygen 

could be directly and actively preventing blood flow through IPAVA as we have 

previously suggested (89). However, the mechanism(s) regulating the hyperoxic closure 

of IPAVA remain elusive. 

Similarities Between IPAVA and Supernumerary Arteries  

At rest, IPAVA are not perfused, but we have shown that increases in cardiac 

output and/or PASP may recruit these vessels. This is supported by previous work in 
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which Stickland, et al (159) suggested such passive recruitment. Interestingly, the 

supernumerary arteries first described by Elliott and Reid (34) were also described as 

being closed under resting conditions, but could be recruited during increases in flow. 

Because supernumerary arteries branch at right angles from the conventional arteries, 

blood flow may preferentially follow the more direct conventional artery branching 

pattern unless increases in pressure and/or flow, such as during exercise or when 

breathing hypoxic gas mixtures, direct blood flow through them. Recaverran (133) also 

described the recruitment of ‘preterminal arterioles’ as branching from pulmonary 

arteries at a ninety-degree angle, being closed at rest, and recruited with increases in 

pulmonary artery pressure (Fig. 4.6). Shaw, et al. (148) further described the dynamic 
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Figure 2
Blood pressure at branch of the pulmonary artery, preterminal arteriole and capillary bed, at
rest and at exercise.

have further significance; the elevated pres-
sure in the pulmonary arterial system may
be transferred unaltered into capillary net-
work (fig. 2). The existence of pulmonary
capillary hypertension during exercise9 pro-
vides a second point of support for our hy-
pothesis. In catheterization experiments in
exercising high-altitude natives, 17 of 35 sub-
jects showed increases of capillary pressure,
some of them registering rises of over 100 per
cent.

High-Altitude Pulmonary Edema and
the Preterminal Arterioles

High-altitude pulmonary edema appears in
young people native to or residing at high al-
titudes for long periods of time when these
individuals return to high altitudes after a
brief period in the lowlands.'2 Hemodynamic
Circulation, Volume XXXIII, February 1966

studies performed in these individuals have
shown higher pulmonary arterial pressure lev-
els than in ordinary high-altitude subjects;
there are increased desaturation of the periph-
eral arterial blood and an apparently normal
pulmonary capillary pressure.13
The degree of pulmonary arteriolar mus-

cularization'2 that these patients exhibited
correlates closely with the level of pulmonary
hypertension that appeared during the attack
of pulmonary edema.

It appears also that the hypertension is
sufficient to open the preterminal arterioles
and thus permit the pulmonary arterial hy-
pertension to be transmitted into the exten-
sive pulmonary capillary bed. The resulting
increment in capillary hydrostatic pressure
and the increased capillary permeability, sec-
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Figure 4.6. Schematic of ‘Preterminal Arteriole’. Modified schematic of a 
‘preterminal arteriole’ branching at a right angle from a pulmonary artery that is 
closed under resting conditions, but opens due to increased PASP and/or cardiac 
output and delivers a portion of the blood flow to the distal end of the pulmonary 
capillary bed, effectively acting as an arteriovenous anastomoses. B.P.A., medium 
sized branch of the pulmonary artery; a, pulmonary arteriole; P.A., preterminal 
arteriole; P.V., pulmonary venule; Art.Cp., arterial capillary; V.Cp., venous 
capillary; Cp.Bed, capillary bed. (Reproduced with permission from: Recavarren. 
Circulation. 33(2):177-180, 1966.) 
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opening of supernumerary arteries as occurring when the conventional artery from which 

they branch is physically stretched. Increases in cardiac output and/or PASP would 

accomplish this physical distension of conventional arteries and thus open the baffle 

valve at the entrance of supernumerary arteries. Additional anatomical evidence for the 

opening of large diameter IPAVA is provided in a study by Berk, et al (18) in which the 

opening of large “angioid structures” were visualized in lung biopsies taken during 

epinephrine infusion, but appeared closed in biopsies taken prior to and after the end of 

EPI infusion. Furthermore, they suggested that EPI caused a change in pulmonary 

resistance, which redistributed pulmonary blood flow and would fit with our data 

suggesting a role for changes in cardiac output and/or PASP. 

Summary 

We have demonstrated for the first time that EPI opens IPAVA in healthy humans 

at rest which supports previous anatomic work in dogs in which EPI infusions caused an 

increase in the transpulmonary passage of radioactive microspheres (116). While a direct 

effect of EPI or DA on IPAVA smooth muscle is a possibility, β-receptor mediated 

dilation of IPAVA appears unlikely. Rather, it appears more likely that the resulting 

catecholamine-induced increases in cardiac output and/or PASP due to EPI or DA 

infusions may be passively opening IPAVA, as first proposed by Stickland, et al (159). 

IPAVA are prevented from opening in subjects breathing 100% oxygen during either EPI 

or DA infusions, which suggests that the hyperoxic closure mechanism is independent 

from the opening mechanism and requires further investigation. 
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In Chapter V I shift to quantify blood flow through IPAVA using nuclear 

medicine imaging and determine if the lack of bubbles in subjects breathing 100% 

oxygen truly represents a reduction in blood flow through IPAVA, as we have suggested.  
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CHAPTER V 

BREATHING 100% OXYGEN DURING EXERCISE REDUCES BLOOD FLOW 

THROUGH INDUCIBLE INTRAPULMONARY ARTERIOVENOUS 

ANASTOMOSES IN HEALTHY HUMANS 

This chapter is in preparation for publication in Journal of Applied Physiology 

and Randall D. Goodman, Dixie Aaring, Thomas Voelkel, Scott Stewart, Toni Bamford, 

Igor M. Gladstone, Mathews I. Fish, and Andrew T. Lovering will be coauthors. I 

developed all the protocols, including the filtering of MAA, and performed all data 

analysis. The coauthors assisted with protocol development and data collection. The 

writing is entirely mine and co-authors provided editorial assistance.  

INTRODUCTION 

“It is now generally accepted that arterio-venous anastomoses exist in the lungs.” 

– M. Sirsi and K Bucher, 1953 (151) 

Studies of the pulmonary circulation using large diameter solid microspheres have 

definitively demonstrated the existence of intrapulmonary arteriovenous anastomoses 

(IPAVA) in humans, dogs, cats, rabbits, and baboons (99, 115, 129, 131, 151, 156, 170, 

172). Recently, the dynamic regulation of large diameter (>50µm) IPAVA that bypass 

the pulmonary capillaries has reemerged in the scientific literature because of data 

obtained using microspheres in exercising dogs (156) as well as data obtained using 

transthoracic saline contrast echocardiography (TTSCE) in exercising healthy humans 

(32, 35, 157).  

In addition to exercise, Niden and Aviado (115) appear to be the first to suggest 

that ventilating lungs with hypoxic gas mixtures increased blood flow through large 
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diameter anastomoses, determined using glass microspheres, which has recently been 

confirmed using large diameter microspheres in the rat (10), and demonstrated in healthy 

humans breathing hypoxic gas mixtures at rest and during exercise using TTSCE (89, 

94). Conversely, Niden and Aviado also demonstrated that ventilating lungs with 100% 

oxygen reduced the number of large diameter microspheres retrieved from the venous 

effluent of the pulmonary vasculature, which is also supported by TTSCE data in humans 

breathing 100% oxygen during exercise (35, 97). 

While TTSCE offers a simple, noninvasive technique for detecting the opening 

and closing of IPAVA under a variety of conditions, this technique is unable to quantify 

the percentage of cardiac output flowing through these large diameter anastomoses and 

no studies have quantified if the reduction or absence of saline contrast microbubbles in 

the left ventricle during exercise in healthy human subjects breathing 100% oxygen is 

actually the result of a reduction (or prevention) of blood flow through IPAVA. However, 

Technetium-99m (99mTc)-labeled macroaggregated albumin (99mTc-MAA) has been used 

to quantify the percentage of blood flow, known as the shunt fraction, bypassing the 

pulmonary microcirculation (100, 160, 162). This technique has been used to quantify 

small increases in blood flow through IPAVA in exercising humans (96, 197), however 

the use of commercially available MAA includes a percentage of MAA that are small 

enough to have the potential to travel through pulmonary capillaries which would 

overestimate the transpulmonary passage through IPAVA. In the current study we 

improved the quantification of blood flow through MAA by developing a procedure to 

filter out the small MAA and thus remove this source of error from the absolute 

quantification of shunt fraction.  
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The purpose of this study was to use filtered MAA to determine if there was a 

reduction in blood flow through IPAVA in subjects exercising breathing 100% oxygen 

compared to exercise breathing room air.  

METHODS 

This project was approved by the University of Oregon Office for Protection of 

Human Subjects and the PeaceHealth Institutional Review Board. Written informed 

consent was obtained from subjects prior to their participation in the study. 

Echocardigraphic Screening, Lung Function, and VO2peak Testing 

An initial echocardiographic screening and bubble study were performed with and 

without Valsalva maneuver on five subjects. A single subject demonstrated bubbles in the 

left heart within 3 cardiac cycles and was excluded from participation due to presence of 

a PFO. The remaining four male subjects performed spirometry including FVC and SVC 

according to ATS/ERS standards and whole body plethysmography to determine lung 

volumes and capacities (111, 188). The single-breath, breath-hold technique was used for 

determination of lung diffusion capacity for carbon monoxide (80, 102). During a 

separate visit, subjects performed a graded exercise test to exhaustion to determine peak 

oxygen uptake and max power output at VO2peak (MedGraphics Ultima CardiO2 

metabolic system, Lode Excalibur Sport cycle ergometer). 

MAA Filtering and Technetium-99m Labeling 

A vial containing ~4 million lyophilized macroaggregated albumin (MAA) 

particles was reconstituted with 8ml of sterile saline (DraxImage, >90% of particles are 

10-70µm, Kirkland, Quebec). After allowing the contents to settle for 1 min, 4ml of 

solution were drawn off the top through a sterile 20µm nylon net filter (20µm x 25mm 
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nylon net filter; Millipore, MA) and 2ml of sterile saline flushed back through the filter. 

After allowing this solution to settle for 1 min, the filtering procedure removing 4ml of 

solution and replacing with 2ml of sterile saline was repeated 2 additional times resulting 

in a 2ml suspension of filtered MAA. Samples of reconstituted MAA taken from a 

sample prior to and after filtering were placed on a hemacytometer to measure and count 

the MAA in the reconstituted samples. The hemacytometer had grooves spaced 5µm 

apart and a microscope was used to photograph the MAA on the slide. Using the grooves 

as a reference, the number and length of MAA were determined using four samples from 

non-filtered and filtered reconstituted MAA. The four samples from each the non-filtered 

and filtered procedures were pooled (n≈1,000 particles pre filtering) to represent an 

average distribution of the size of MAA pre and post filtering. These data revealed 17.7% 

of MAA particles were <20µm prior to filtering, whereas after filtering this was reduced 

to 6.5% of MAA <20µm. The percentage of MAA <15µm was reduced from 12.9% 

before filtering, to 2.2% after filtering. After filtering, the median length MAA particle 

was 35µm, with a mean of 35.3µm.  

After the filtering procedure was conducted, a dose of 99mTc-pertechnetate was 

added to this vial to radiolabel the MAA. This entire solution was pulled through the 

filter a fourth time and 2 ml of sterile saline flushed back through the filter to remove any 

free 99mTc-pertechnetate. Quality control (QC) was conducted to ensure >99.5% labeling 

efficiency using a Tec-Control Chromatography kit (Biodex, New York) and 0.057 

mCi/kg 99mTc-MAA was drawn up for injection into each subject resulting in a 

standardized dose based on subject body weight and a dose that was less than a standard 

clinical dose to help minimize total radioactive exposure (96).  
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Study Conditions 

Subjects reported to the Nuclear Medicine Department at the Oregon Heart & 

Vascular Institute in Springfield, OR on 5 occasions, each separated by a minimum of 7 

days. Each subject performed the following protocols while seated in the cycle ergometer 

in the forward leaning, aerobar position: (1) rest breathing room air, followed by a 

SPECT/CT scan; (2) exercise breathing room air followed by a SPECT/CT scan; (3) rest 

breathing room air, followed by a planar scan; and (4) exercise breathing room air, 

followed by a planar scan. The SPECT protocols were conducted before the planar scan 

visits, but the order of rest and exercise visits were random between subjects. The final 

visit for all subjects was (5) exercise breathing 100% oxygen, followed by a planar scan. 

Subjects breathed 100% oxygen for 5-10 min prior to the MAA injection and continued 

breathing 100% oxygen throughout the duration of the planar scan. Exercise consisted of 

2 min at 50% of the power output (warm up) obtained at VO2peak and then continued for 

an additional 3 min at 85% of peak power output. A bubble study was performed 2 min 

into the 85% workload using 3 ml of sterile saline and 1 ml of room air during 

echocardiography of an apical 4-chamber view of the heart; this was immediately 

followed by the 99m Tc-MAA injection. Immediately after the 99m Tc-MAA injection, the 

intravenous catheter was removed and the subject moved to the bed of the SPECT/CT 

scanner located in the same room. During SPECT/CT scans, an initial scout CT scan and 

a dose-modulated CT scan resulted in ~7-9 mins total between MAA injection and start 

of SPECT data acquisition. During planar scans, the scanning began within 3 min 

following the 99m Tc-MAA injection. The syringe, stopcock, extension set, and 
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intravenous catheter were placed in the scintillation counter to determine residual 

radioactivity and thus determine the net injected dose.  

Imaging 

All imaging was performed on a dual-headed Philips Precedence 16P SPECT/CT 

camera (Philips Medical Systems, The Netherlands). For the SPECT/CT protocols (Visits 

1 & 2), a low dose, dose-modulated whole body CT scan was performed using a 16x slice 

helical CT scanner (140kV, 50mAs/slice maximum, 0.5-s rotation time) during a breath 

hold at total lung capacity. SPECT imaging acquisition occurred using a step-and-shoot 

mode over 32 stops per camera at 10 sec per stop and was repeated over a total of 4 

sections of the body in order to acquire SPECT data from head to toe. During the first 

two sections, which completely spanned the lungs, subjects performed a 10 sec breath 

hold at functional residual capacity during SPECT acquisition in order to limit respiratory 

lung motion and were verbally coached to inhale and exhale back to FRC as the Gamma 

camera rotated to the next stop. SPECT datasets were acquired with a 10% symmetric 

energy window centered on 140 keV, which is the energy emitted by 99mTc. The total 

scan time including pauses during camera movements was ~28min. 

During visits 3-5, whole body planar scanning (PLANAR) was conducted using 

anterior and posterior Gamma cameras to capture emitted photons in a continuous scan 

protocol that began at the head and was completed in 17 min 15 sec. To estimate the rate 

of 99mTc unbinding from the MAA, we repeated the PLANAR scan protocol 30 min and 

60 min post 99mTc-MAA injection after the rest and exercise bouts in subjects breathing 

room air. The labeling efficiency of 99mTc-MAA remaining in the initial vial was again 

determined at the conclusion of the 30 min and 60 min planar scans.  
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Post-processing Data Reconstruction and Analysis 

The raw SPECT data were reconstructed in Autospect+ using the Astonish 

reconstruction algorithm (2 iterations, 16 subsets, Hanning filter max 1.20) (Philips 

Healthcare), which is a three dimensional ordered subsets expectation maximization 

reconstruction that applies the attenuation map derived from the low-dose CT to correct 

each voxel for attenuation and compensates for the blurring effects of the collimator built 

into the reconstruction (177). This is intended to allow for greater resolution recovery and 

improve the signal-to-noise ratio. An objective region of interest (ROI) using a minimum 

threshold of 5 counts per cm2 was drawn on each transverse slice through the lung of the 

attenuation-corrected SPECT reconstruction data and the sum of the counts from these 

ROIs determined the total lung ROI. Sagittal and coronal slices through the image were 

also used to determine if the lung counts varied depending on the slices used to determine 

the ROI. Because of high counts appearing in the kidneys and splanchnic region, the 

objective lung ROI needed to be manually adjusted to remove splanchnic counts from the 

lung ROI. The CT data was used to objectively determine the attenuation-corrected 

whole body ROI. When significant counts from the bladder, kidneys, or salivary glands 

appeared in the images, they were assumed to represent free-99mTc that had come 

unbound from the MAA and been filtered from the blood and attempts were made to 

remove these counts from the whole body ROI. Despite these efforts, the large number of 

counts visualized in the splanchnic region required a subjective determination of the lung 

ROI. This made differentiating counts believed to be due to free-99mTc from those still 

bound to MAA not possible. 
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PLANAR data was analyzed using the MultiViewer (Philips). ROIs were 

determined from anterior and posterior images and used to calculate geometric mean 

counts (GMT) by taking the square root of the product of anterior and posterior counts 

(23). The whole body ROI was determined by drawing a box around the entire body 

because the edge along the extremities of the whole-body MAA image was difficult to 

identify. Mean background counts (counts per cm2) were determined from a region above 

the right shoulder and to the right of the head and these counts per cm2 subtracted from 

all ROIs. The lung ROI was drawn at the edge of the lung border by maximizing the 

contrast at the edge of the lung border using the color map Step20 with Gamma = 0.6. 

For all scanning procedures, the raw shunt fraction was calculated using the 

standard lung-to-whole body ratio as follows: [Total body counts – lung counts] / total 

body counts. 

Correction for Free-99mTc in the Blood 

A venous blood sample was drawn at the conclusion of each PLANAR scan. One 

ml of this blood sample was placed in a scintillation counter to determine the counts per 

minute, which were corrected for time decay by standardizing back to time zero when the 

MAA injection occurred using the equation At=A0 * e^{[-0.693(t)]/[t1/2]}, where At = the 

counts determined t minutes after MAA injection, A0 = the corrected counts, t = number 

of minutes after MAA injection, and t1/2 = the half life of 99mTc (361.2 min). After 

converting the counts per minute to mCi using the counting efficiency of the scintillation 

counter (avg. 79%), the percent free radioactivity in the blood was calculated by 

extrapolating the mCi in 1ml of blood to an estimated total blood volume (114) and 

dividing by the net injected dose. This percentage of free-99mTc was determined for each 
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visit and subtracted from the raw shunt fraction to determine the shunt fraction due to the 

passage of large MAA through IPAVA.  

Statistics 

Bubble scores were analyzed using a Friedman’s test with Dunn’s multiple 

comparison posttest. Difference in shunt fractions were determined using a reapeated 

measures ANOVA with Tukey posttest. 

RESULTS 

Anthropometrics, pulmonary function, diffusion capacity for carbon monoxide, 

and exercise capacity data are presented in Table 5.1. Labeling of MAA with 99mTc 

occurred immediately prior to every study and resulted in >99.5% binding efficiency 

before every scan and these data are presented in Table 5.2, along with the binding 

efficiency determined after PLANAR scans. 

The use of SPECT/CT imaging provides the unique ability to co-register data 

acquired from SPECT imaging with CT data, without needing to move the subject from 

the bed to acquire both data sets, and is used to create a non-uniform attenuation-

coefficient map for the correction of Gamma radiation interacting with variable density 

tissue before being captured by the Gamma camera. This technique has shown promise in 

improving the accuracy in the enhancement of diagnostic pulmonary imaging (161, 163) 

and we initially attempted to use this new technology to improve the quantification of 

blood flow through IPAVA. The first problem we encountered was that the length of time 

needed to acquire CT data and SPECT data covering the entire body resulted in the 

accumulation of activity in the kidneys, bladder, salivary glands, thyroid, and stomach of 

many subjects, suggesting the in vivo unbinding of 99mTc from MAA, as seen in  
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Table 5.1. Anthropometrics, pulmonary function, diffusion capacity for 
CO, and peak exercise capacity data. 

Height, cm 185.4 ± 7.2 
   Weight, kg 79.7 ± 4.8 
   Age, yrs 32.0 ± 7.3 
   BMI, kg•m-2 23.2 ± 1.1 
          FVC, L 6.16 ± 0.82 (103.3 ± 6.9) 

FEV1, L 4.81 ± 0.68 (100.0 ± 9.5) 
FEV1/FVC 78.00 ± 2.94 (95.5 ± 4.2) 
FEF 25-75%, L·sec-1 4.275 ± 0.92 (92.0 ± 19.0) 
SVC, L 5.93 ± 0.72 (101.3 ± 7.3) 
IC, L 3.57 ± 0.90 (95.0 ± 22.1) 
ERV, L 2.36 ± 0.41 (113.8 ± 24.2) 
FRC, L 3.99 ± 0.80 (106.8 ± 15.9) 
RV, L 1.65 ± 0.51 (90.0 ± 22.7) 
TLC, L 7.58 ± 0.98 (101.5 ± 6.9) 
DLCO, ml·min-1·mmHg-1 38.5 ± 6.6 (107.0 ± 14.8) 
DLCO/VA, ml·min-1·mmHg-1·L-1 5.3 ± 0.6 (109.0 ± 12.7) 
       VO2peak, L·min-1 4.55 ± 0.79 

   VO2peak, ml·kg-1·min-1 58 ± 7.3 
   Workload at VO2peak, W 380 ± 95       

Note. Values are means±SD (percent predicted±SD). 

    

Table 5.2. Ex vivo binding efficiency of 99mTc-MAA 

   Binding efficiency 

Activity Scan 
Type FIO2 

Pre Scan 
1 

Post Scan 
1 

Post Scan 
2 

Post Scan 
3 

Rest Planar 0.21 99.9±0.3 99.5±1.0 99.2±1.2 99.3±0.7 

Exercise Planar 0.21 99.6±0.3 99.3±0.6 98.9±0.7 98.8±0.9 

Exercise Planar 1.00 99.9±0.1 99.9±0.1     

Note. Values are means±SD. 
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reconstructed images (Fig. 5.1). A second problem was the possible inaccuracies 

involved in the Philips proprietary reconstruction algorithm (Astonish) in quantifying 

total radioactive counts. This algorithm was designed to create clearer pictures during 

myocardial stress perfusion studies (9, 55, 177) and may have artificially adjusted the 

quantification of radioactive counts during reconstruction of our data despite providing 

the clearest pictures for determining the lung ROI. A third problem was the difficulty to 

objectively determining the lung ROI despite minimizing breathing artifact by having 

subjects conduct a breath hold at functional residual capacity during SPECT data 

acquisition. The attenuation-corrected image created from the SPECT/CT data was 

reconstructed from the 32 views surrounding the body into a three-dimensional image 

and the lung ROI could be determined from coronal, transverse, or saggital slices, each of 

which resulted in different total counts.  

A. B.

Figure 5.1. SPECT/CT Reconstructions. Representative SPECT/CT 
reconstructions of a single subject after 99mTc-MAA injection (A) at rest and (B) during 
85%max exercise. Note the significant uptake of free-99mTc in the salivary glands of (A) 
as well as the kidneys and bladder in both images. The purple and blue color indicates 
freely-circulating 99mTc in the blood. 
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Ito, et al. quantified a mean shunt fraction at rest in healthy subjects of 6.6% using 

planar imaging and the lung-to-whole body ratio as we did, although without filtering the 

MAA or correcting for free 99mTc, and suggested a 10% shunt be used for the cutoff value 

for normal versus abnormal shunt fraction. Phantom and in vivo studies also suggest that 

the error using SPECT reconstruction for absolute quantifications may range from 2-10% 

(138). In our SPECT images, which required ~17 min longer acquisition time than the 

PLANAR scans, the unbinding and uptake of free 99mTc by the liver, kidneys, bladder, 

stomach, and salivary glands in addition to the free 99mTc circulating in the blood 

prevented us from accurately quantifying blood flow through IPAVA, even when 

attenuation-correction was incorporated into the reconstruction algorithm.  

Because of these problems that emerged in our attempt to use SPECT/CT imaging 

to quantify blood flow through large diameter IPAVA, we chose to use PLANAR 

imaging to quantify blood flow through inducible IPAVA in healthy humans and 

improved upon previous research by (1) using filtered MAA and (2) correcting for free-

99mTc circulating in the blood to determine the shunt fraction in subjects at rest and 

during exercise breathing room air and during exercise breathing 100% oxygen. 

Bubble scores determined prior to the three PLANAR scans, presented in Figure 

5.2, increased from rest to 85%max exercise breathing room air, and were reduced during 

exercise breathing 100% oxygen. The mean shunt fractions calculated from PLANAR 

data after removing contributions due to free-99mTc increased from -0.11% ± 0.45% at 

rest to 0.83% ± 0.58% at 85%max exercise breathing room air, and was reduced to -

0.24% ± 0.99% during exercise breathing 100% oxygen (p=.0843) and are shown in 

Figure 5.3. The data are plotted to show the raw shunt fraction without correcting for 
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free-99mTc and the corrected shunt fraction that removed our calculation of free-99mTc 

based on the blood sample taken immediately at the conclusion of each scan. The 

calculated contribution from free-99mTc during the planar scans are shown for each 

individual in Figure 5.4 and demonstrates variability between subjects, between FIO2, 

and an increasing percentage of unbinding at 30 and 60 min that exceeds the free-99mTc 

detected using the QC kits (Table 5.2). However, even when the free-99mTc is removed 

from the raw shunt fractions, increasing the length of time for the completion of the scan  

 

Figure 5.2. Bubble Scores. Bubble 
scores for each individual at rest and 
during 85%max exercise breathing room 
air and during 85%max exercise breathing 
100% oxygen. *p<.05 vs Rest, 21% O2 
(Friedman’s test, Dunn’s posttest). 

Figure 5.3. Shunt Fractions. 
Mean shunt fraction determined from 
planar imaging in subjects breathing room 
air at rest and during 85% max exercise, 
and while breathing 100% oxygen during 
85% max exercise. Open circles represent 
shunt fractions without removing estimate 
of free 99mTc (Raw shunt fraction), closed 
squares represent shunt fractions after 
removal of free 99mTc (Corrected shunt 
fraction), p=.08 (repeated measures 
ANOVA). 
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increases the counts outside of the lung, resulting in an overestimation of the shunt 

fraction (Fig. 5.5). 

 

 

Figure 5.4. Free-99mTc. In vivo 
calculated percentage of free-99mTc from blood 
samples taken 20, 48, and 78 min after 99mTc-
MAA injection in subjects (A) at rest breathing 
21% oxygen, (B) during exercise breathing 21% 
oxygen, and (C) during exercise breathing 100% 
oxygen. Each bar represents an individual 
subject. 

Figure 5.5. Timing 
Effect on Shunt Fraction. 
Mean shunt fractions determined 
from PLANAR imaging 
beginning immediately, 30, and 
60 min after 99mTc-MAA 
injection at rest or during 
85%max exercise. 
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DISCUSSION 

The main finding from this study was that we quantified an increase in the shunt 

fraction using PLANAR imaging from -0.11% ± 0.45% at rest to 0.83% ± 0.58% at 

85%max exercise breathing room air, which was reduced to -0.24% ± 0.99% during 

exercise breathing 100% oxygen (p=.0843) using filtered MAA and correcting for free-

99mTc in the blood (Fig. 5.3). These quantified shunt fractions follow the increase in 

bubble scores from rest to exercise breathing room air, which were reduced during 

exercise breathing 100% oxygen (Fig. 5.2). 

Filtering of MAA 

The first methodological advancement in this study was the development of a 

filtering procedure of reconstituted MAA from a standard clinical kit through a 20µm 

filter that reduced the percentage of MAA <20µm in the sample from 17.7% to 6.5% and 

the percentage of MAA <15µm from 12.9% to 2.2%. However, the actual percentage of 

MAA <20µm was probably even less because the radiolabeled MAA were filtered one 

additional time to remove any free-99mTc remaining after the labeling procedure. This 

resulted in >99.5% labeling efficiency for all scans.  

Quantification of Free-99mTc 

The second major methodological advancement from this study was due to the 

finding that there was significant unbinding of 99mTC from the MAA in vivo throughout 

the first ~78 mins after the injection of 99mTc-MAA, while the ex vivo unbinding of 99mTc 

from MAA determined from the QC kit did not occur to the same degree (Table 5.2, Fig. 

5.4). The percentage of free-99mTc varied between subjects and varied based on the FIO2. 

While the cause of the intersubject variability in unbinding of 99mTc is not entirely clear, 
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accounting for this and the intrasubject variability that occurs due to changes in the FIO2 

is absolutely necessary in order to accurately quantify blood flow through large diameter 

IPAVA.  

The time-dependent unbinding of 99mTc from MAA presents a problem for 

accurately calculating the right-to-left shunt fraction, which assumes that all counts 

detected outside of the lung represent the passage of MAA through large diameter 

IPAVA. Our attempts to use SPECT/CT imaging to quantify blood flow through IPAVA 

revealed problems associated with the time necessary to acquire SPECT/CT data 

spanning the entire length of the body. Because our calculation of free-99mTc can only 

determine the radioactivity circulating in the blood, it is insensitive to free-99mTc once it 

is removed from the blood by the salivary and thyroid glands, and through the kidneys to 

be excreted in urine. Longer scans, such as our attempts to use SPECT/CT imaging, as 

well as our 30 and 60 min PLANAR scans, demonstrated radioactive counts outside of 

the lung due to free-99mTc that had been removed from the blood and could not be 

corrected using our calculation of free-99mTc in the blood and these counts became part of 

the quantified shunt fraction. Thus, any delays between MAA injection and the start of 

the PLANAR scan will increase the probability of measuring free-99mTc outside of the 

lung that is not due to blood flow through large diameter IPAVA. Thus, by minimizing 

the total time from MAA injection to the conclusion of our first PLANAR scan we feel 

confident that we have minimized sources of error due to free-99mTc in quantifying the 

absolute shunt fraction through large diameter IPAVA. 
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Consistencies Between TTSCE and MAA Data 

Transthoracic saline contrast echocardiography has been used to detect blood flow 

through IPAVA in healthy humans during exercise breathing room air (32, 158, 159). 

These data are supported by data obtained using solid MAA that quantified an increase in 

shunt fraction in exercising humans (96, 197), which was confirmed in the present study 

even when small particles from the MAA kit were removed and the unbinding of 99mTc 

from MAA was accounted for. TTSCE has also detected the transpulmonary passage of 

microbubbles at rest and during exercise in subjects breathing hypoxic gas mixtures (89, 

94), which is supported by data obtained using large diameter solid microspheres in rats 

ventilated with hypoxic gas mixtures (10). Finally, TTSCE has demonstrated a reduction 

or prevention of saline contrast microbubbles from passing through large diameter 

IPAVA in exercising subjects breathing 100% oxygen (35, 97). However, some have 

raised the concern that changing the partial pressure environment of the microbubbles by 

altering the FIO2 may alter bubble dynamics and their lifespan (66). We have shown that 

neither the FIO2, nor the bubble gas composition affect the stability of in vivo 

microbubbles (35). The current study is now the first to demonstrate a reduction in the 

shunt fraction using solid MAA in exercising subjects breathing 100% oxygen, 

supporting the results obtained using TTSCE that 100% oxygen reduces blood flow 

through large diameter IPAVA. 

Summary 

This study improved the accuracy and sensitivity of nuclear medicine imaging for 

quantifying blood flow through anatomical right-to-left intrapulmonary arteriovenous 
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anastomoses by first filtering a reconstituted kit of MAA and second accounting for the in 

vivo unbinding of 99mTc from MAA occurring during the scanning procedure. 

We have shown that in order for nuclear medicine imaging to accurately quantify 

blood flow through IPAVA, the scan must be completed as quickly as possible after the 

injection of 99mTc-MAA so that the unbinding of 99mTc from MAA can be quantified 

while it is still circulating in the blood. Once the free-99mTc begins to be taken up by 

various organs, these counts will be quantified as part of the shunt fraction, but do not 

represent the passage of large diameter MAA through IPAVA. Using this technique we 

quantified an increase in the shunt fraction during exercise in subjects breathing room air 

when saline contrast microbubbles also passed through the pulmonary circulation; 

however, the shunt fraction was not increased in subjects exercising at the same absolute 

intensity breathing 100% oxygen when the bubble scores were reduced. 

Future work using this new technique that removes small MAA particles from a 

standard kit and accounts for free-99mTc in the blood due to unbinding from MAA that 

occurs in vivo needs to be conducted to quantify the shunt fractions that occur in subjects 

demonstrating bubble scores of 4 and 5 when bubbles completely fill the left ventricle. 

This chapter has demonstrated that there is an increase in blood flow through 

large diameter IPAVA in healthy humans during exercise, which does not occur during 

exercise breathing 100% oxygen. However, the role of increasing blood flow through 

these vessels in affecting pulmonary gas exchange efficiency still remains a controversial 

topic that has not been resolved. Chapter VI of this dissertation directly investigates the 

role for IPAVA in affecting pulmonary gas exchange efficiency. 
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CHAPTER VI 

THE CONTRIBUTION OF INDUCIBLE INTRAPULMONARY ARTERIOVENOUS 

ANASTOMOSES TO PULMONARY GAS EXCHANGE EFFICIENCY DURING 

EXERCISE IN HEALTHY HUMANS 

This chapter is in preparation for submission to the Journal of Applied Physiology 

and will be coauthored with Jonathan E. Elliott, Kara M. Beasley, Randall D. Goodman, 

Igor M. Gladstone, Jerold M. Hawn, and Andrew T. Lovering. Drs. I.M. Gladstone and 

J.M. Hawn placed the radial artery catheters in all subjects. All coauthors assisted in data 

collection. A.T. Lovering helped develop the protocols and provided editorial assistance. 

INTRODUCTION 

“Physiologically, pulmonary arteriovenous shunting is commonly defined as the 

passage of blood through the lungs without taking part in gas exchange; an incomplete 

exchange of gas is usually not considered.” – Genovesi, et.al. (1976) 

The reduction in pulmonary gas exchange efficiency, as defined and quantified by 

the alveolar-to-arterial oxygen difference (AaDO2) that occurs with increased exercise 

intensity, can be caused by diffusion limitation, ventilation-perfusion (V̇/Q̇) 

heterogeneity, and/or all sources of shunt (30). Recent work by our group and others has 

demonstrated the transpulmonary passage of saline contrast bubbles through 

intrapulmonary arteriovenous anastomoses (IPAVA) during exercise, which the authors 

have proposed may represent an intrapulmonary shunt (35, 94, 96, 97, 159). However, as 

pointed out by Hopkins, Olfert & Wagner (66, 71), it has yet to be directly demonstrated 

that the transpulmonary passage of saline contrast bubbles represents a true ‘shunt’ that 

negatively impacts pulmonary gas exchange efficiency. Instead, they suggest that 
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intrapulmonary shunt does not occur in healthy humans based on data obtained using the 

multiple inert gas elimination technique (MIGET) (58, 136, 144, 173, 182).  

Furthermore, Wagner and colleagues (178) have suggested that their data using 

the 100% oxygen technique also demonstrates that there is no significant contribution of 

shunt to pulmonary gas exchange inefficiency. The use of 100% O2 is important to note 

because in subjects breathing 100% O2, the contributions of diffusion limitation and V̇/Q̇ 

heterogeneity are prevented leaving only shunt, assuming that there is no effect of 

breathing 100% O2 on the patency of IPAVA which have the potential to act as a shunt. 

Interestingly, we have demonstrated that breathing 100% O2 during exercise does in fact 

prevent the transpulmonary passage of saline contrast bubbles (35, 97). Thus, if the 

transpulmonary passage of saline contrast bubbles is occurring through IPAVA which act 

as a true shunt, then it would not be detected in subjects breathing 100% O2. Accordingly, 

it would be necessary to eliminate diffusion limitation and V̇/Q̇ heterogeneity without 

affecting the patency of inducible intrapulmonary arteriovenous anastomoses in order to 

make definitive statements regarding their contribution as a shunt to pulmonary gas 

exchange efficiency during exercise.  

The purpose of this study was to determine the contribution of blood flow through 

IPAVA in determining pulmonary gas exchange efficiency during exercise in healthy 

humans. We hypothesized that breathing 40% O2 during exercise would allow for blood 

to flow through IPAVA, but eliminate diffusion limitation and V̇/Q̇ heterogeneity as 

potential contributors to the AaDO2 during exercise, leaving the only possible 

contributing factor as shunt. Thus, any measured AaDO2 in a subject breathing 40% O2 
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who demonstrate open IPAVA would be caused solely by the contribution of 

postpulmonary and intrapulmonary shunt.  

METHODS 

The University of Oregon Office of Protection for Human Subjects approved this 

study, and all subjects provided written informed consent before beginning study 

procedures.  All studies were performed according to the declaration of Helsinki.   

Echocardigraphic Screening, Lung Function, and VO2peak Testing 

An initial echocardiographic screening and bubble study were performed with and 

without Valsalva maneuver. Six subjects demonstrated bubbles in the left heart within 3 

cardiac cycles and were excluded from participation due to presence of a PFO. The 

remaining 16 subjects (3 female) completed spirometry including FVC and SVC 

maneuvers according to ATS/ERS standards (111) and underwent whole body 

plethysmography to determine lung volumes and capacities (188). The single-breath, 

breath-hold technique was used for determination of lung diffusion capacity for carbon 

monoxide (80, 102). During a separate visit, subjects performed a graded exercise test to 

exhaustion on a cycle ergometer (Lode Excalibur Sport) to determine peak oxygen uptake 

and power output at VO2peak (MedGraphics CardioO2, St. Paul, MN). 

Subject Instrumentation 

A radial artery catheter (Arrow International, USA) was placed under local 

anesthesia (1% lidocaine, 2% by volume nitroglycerine (5 mg/ml) to minimize 

vasospasm). During Protocol 1 core temperature was determined using an ingested 

temperature pill (CorTemp Ingestible Sensor, HQInc, Palmetto, FL), while an esophageal 

temperature probe (Mon-a-them General Purpose, 9 Fr) was placed for monitoring core 
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body temperature during Protocol 2. These temperature measurements were used to 

temperature-correct blood gases. A 22G intravenous catheter was placed in the 

antecubital fossa for injection of saline contrast microbubbles.  

Exercise Protocols 

We conducted two different protocols to investigate the patency of IPAVA in 

exercising subjects breathing various fractions of inspired oxygen (FIO2s) and to 

ascertain the role open IPAVA play in determining pulmonary gas exchange efficiency.  

Protocol 1:The first protocol determined the patency of IPAVA at various 

relative workloads (25%, 50%, and 75% of max) in 5 male and 3 female subjects 

breathing an FIO2=0.21, 0.60, and 0.14. Subjects exercised continuously for 4 min at 

each relative intensity workload while breathing each FIO2 and a 45 min break separated 

each FIO2 bout.  

Protocol 2: A second protocol investigated 8 male subjects exercising at three 

absolute (100W, 200W, and 300W) and one relative (85% of max) workload breathing 

an FIO2=0.21 and 0.40. Subjects exercised continuously for 4-5 min each at 100W, 

200W, and 300W breathing room air. They then took a 10 min break before exercising 

for 4-5 min at 85% of their peak wattage obtained during the VO2peak test. After a 45 

min break the same exercise protocol was repeated breathing 40% oxygen. Subjects 

breathed 40% oxygen for 15 min at rest before resting measurements were obtained and 

throughout the 10 min break prior to the 85% max exercise bout. 

Pulmonary Gas Exchange Efficiency 

Pulmonary gas exchange efficiency was quantified as the difference between the 

alveolar O2 partial pressure (PAO2) and the arterial O2 partial pressure (PaO2). The PAO2 
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was estimated using the ideal gas equation using the arterial partial pressure of CO2 

(PaCO2) obtained from the radial artery blood draw, RER measured during the arterial 

blood draw, and corrected for body temperature,  

PAO2 = [(PB - e(0.05894809*Tc+1.688589)) * FIO2] – PaCO2*[FIO2 + (1 - FIO2)/RER] (3). At 

rest and 3 (Protocol 1) or 3.5 min (Protocol 2) into each exercise bout a 3-5ml sample of 

radial artery blood was drawn anaerobically over 10-20 seconds for direct measurements 

of arterial oxygen saturation (OSM-3, Radiometer) and arterial PO2, PCO2 and pH with a 

blood-gas analyzer (Siemens 248). Prior to each study, 3 samples of blood were aerated 

with known concentrations of O2 and CO2 that spanned the range of expected PaO2 

values for the normoxic and hypoxic exercise bouts. In Protocol 2 a second set of gases 

was tonometered to span the PaO2 exected to result during the hyperoxic exercise bouts. 

These data sets were used to tonometry correct the blood samples collected during the 

study for any bias introduced by the blood gas analyzer. 

Saline Contrast Echocardiography for Detection of IPAVA 

At rest and 3 min (Protocol 1) or 3.5 min (Protocol 2) into each exercise bout 

(acquired simultaneously during arterial blood draw) saline contrast echocardiography 

was performed as previously described (35, 89, 97). Briefly, 3ml of sterile saline was 

agitated with 1 ml of air and forcefully injected into a peripheral arm vein. Twenty 

cardiac cycles were recorded after initial appearance of bubbles in the right heart and a 0-

5 score assigned based on the greatest number and spatial distribution of bubbles in the 

left heart in a single frame (35, 89, 97).  
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Pulmonary Artery Systolic Pressure  

Pulmonary artery systolic pressure (PASP) was calculated using the peak velocity 

of the tricuspid regurgitation and an estimate of right atrial pressure based on guidelines 

from the American Society for Echocardiography (142, 204). Because this measurement 

can be difficult, especially during exercise, we injected a small bolus of saline contrast 

microbubbles to help the sonographer visualize the envelope of the tricuspid regurgitation 

velocity and average of three velocities was used to calculate PASP. The same 

sonographer, with >25 years experience and 5 years research experience with our group, 

made all ultrasound measurements. 

Statistics 

Significance was set to p<.05 for all tests. Bubble scores were compared using a 

Friedman’s Test with Dunns multiple comparison post test. Difference in the AaDO2 

between rest and exercise intensities in subjects breathing room air was determined using 

a one-way ANOVA with Tukey posttest, and was rerun for the AaDO2 measured at rest 

and during exercise in subjects breathing 40% oxygen.  

RESULTS 

Anthropometric, lung function, volumes, and capacities, and exercise capacity are 

presented in Table 6.1. Metabolic, blood gas, and hemodynamic data at rest and during 

exercise for Protocol 1 are presented in Table 6.2 and for Protocol 2 in Table 6.3. There 

were no differences in resting or exercise metabolic data between the different FIO2 

concentrations (Table 6.2). Bubble scores for each subject prior to and during each 

exercise bout in Protocol 1 breathing an FIO2=0.21, 0.60, and 0.14 are presented in Fig. 

6.1, while bubble scores from Protocol 2 are presented in Fig. 6.2.  
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Table 6.1. Anthropometrics, pulmonary function, diffusion capacity for CO, and peak 
exercise capacity data. 

 Protocol 1   Protocol 2 
Age, yrs 26.6 ± 6.3  24.0 ± 3.2 

Height, cm 173.5 ± 8.6  181.4 ± 8.4 

Weight, kg 67.2 ± 10.2  81.2 ± 7.3 

VO2max, ml·kg-1·min-1 53.8 ± 4.8  53.9 ± 6.9 

VO2max, L·min-1 3.62 ± 0.48  4.4 ± 0.7 

Workload at VO2max, W 316.9 ± 47.3  381.3 ± 67.5 
    

FVC, L 4.94 ± 1.01  
(101 ± 15.3)  5.9 ± 0.6  

(98.1 ± 8.2) 

FEV1, L 3.99 ± 0.86  
(98.1 ± 0.86)  4.9 ± 0.4  

(98.8 ± 8.3) 

FEV1/FVC, % 80.63 ± 6.28  
(97.1 ± 8.1)  82.6 ± 4.3  

(99.3 ± 4.7) 

FEF 25-75%, L·sec-1 3.81 ± 1.35  
(91.1 ± 28.9)  5.0 ± 0.7  

(100.4 ± 15.9) 

SVC, L 
5.1 ± 0.9  

(109 ± 16.7)  6.1 ± 0.3  
(102.4 ± 4.9) 

IC, L 
2.6 ± 0.6  

(87.0 ± 17.2)  3.9 ± 0.6  
(103.5 ± 15.9) 

ERV, L 
2.5 ± 0.5  

(148.4 ± 29.7)  2.2 ± 0.5  
(100.6 ± 24.2) 

FRC, L 
3.77 ± 075  

(124.4 ± 22.0)  3.6 ± 0.6  
(97.9 ± 14.5) 

RV, L 
1.36 ± 0.3  

(94.9 ±17.7)  1.3 ± 0.6  
(77.7 ± 34.5) 

TLC, L 
6.32 ± 1.1  

(15.8 ± 15.8)  7.5 ± 0.8  
(100.6 ± 9.8) 

    
DLCO, ml·min-1·mmHg-1 33.61 ± 6.66  

(111.8 ± 12.4)  41.3 ± 4.7  
(115.6 ± 12.7) 

DLCO/VA, ml·min-1·mmHg-1·L-1 5.49 ± 0.84  
(116.1 ± 21.9)    5.6 ± 0.4  

(114.4 ± 9.3) 

Note. Data are mean±SD (percent predicted±SD).   
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Table 6.2. Metabolic, blood gas, and hemodynamic data at rest and during 
exercise [Protocol 1]. 

 FIO2  
Pre-

Exercise  25%  50%  75% 

VO2 0.21  0.31±0.07  1.31±0.27  2.03±0.34  2.86±0.42 
 0.60  0.31±0.06  1.39±0.23  2.13±0.29  3.08±0.41 
 0.14  0.28±0.04  1.31±0.22  2.09±0.30  2.85±0.50 
          
VCO2 0.21  0.31±0.14  1.08±0.23  1.92±0.29  3.19±0.51 
 0.40  0.26±0.08  0.95±0.18  1.78±0.25  2.99±0.53 
 0.14  0.39±0.38  1.09±0.37  2.21±0.33  3.44±0.48 
          
RER 0.21  0.88±0.07  0.83±0.06  0.95±0.07  1.11±0.07 
 0.40  0.83±0.18  0.68±0.04  0.84±0.06  0.97±0.11 
 0.14  0.90±0.08  0.90±0.08  1.06±0.07  1.24±0.06 
          
VE 0.21  14.4±6.3  31.4±6.8  48.1±7.0  78.8±14.1 
 0.40  14.1±4.8  29.9±5.6  47.0±5.6  72.5±14.0 
 0.14  13.4±2.5  41.4±7.3  69.6±12.0  114.0±22.6 
          
PaO2 0.21  99.4±5.3  94.5±4.7  98.7±5.4  105.4±6.7 
 0.40  354.4±17.1  344.6±14.1  342.5±17.7  343.4±20.5 
 0.14  54.1±6.4  44.0±4.4  41.6±4.3  43.1±4.0 
          
PaCO2 0.21  37.1±7.5  39.8±3.8  42.3±3.8  40.5±4.8 
 0.40  37.5±7.8  41.0±4.9  43.6±3.4  44.6±3.9 
 0.14  35.7±6.4  35.0±4.5  34.2±3.7  32.6±5.4 
          
pH 0.21  7.435±0.063  7.403±0.042  7.376±0.019  7.336±0.023 
 0.40  7.433±0.071  7.397±0.037  7.368±0.018  7.328±0.026 
 0.14  7.453±0.053  7.454±0.025  7.422±0.027  7.354±0.031 
          
Tcore 0.21  37.0±0.5  37.1±0.6  37.1±0.4  37.3±0.5 
 0.40  37.1±0.5  37.1±0.5  37.1±0.5  37.3±0.6 
 0.14  37.1±0.4  37.1±0.4  37.2±0.4  37.4±0.4 
          
PASP 0.21  28.7±4.1  30.3±2.9  31.0±5.4  31.5±4.9 
 0.40  28.7±4.8  29.2±4.2  30.5±1.8  30.7±5.0 
  0.14   30.1±3.3   28.8±2.7   29.9±3.6   31.1±3.6 
Note. Values are means±SD.       
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Table 6.3. Metabolic, blood gas, and hemodynamic data at rest and during exercise 
[Protocol 2]. 

 FIO2 
Pre-

Exercise 100W 200W 300W 85% max 

VO2 0.21 0.46±0.06 1.72±0.16 3.03±0.27 4.07±0.28 4.59±0.77 
 0.40 0.48±0.09 1.89±0.18 3.19±0.26 4.29±0.36 4.64±0.83 
       
VCO2 0.21 0.40±0.05 1.65±0.33 3.09±0.39 4.75±0.52 4.65±1.66 
 0.40 0.38±0.08 1.57±0.20 3.17±0.49 4.71±0.66 4.43±1.64 
       
RER 0.21 0.87±0.08 0.91±0.07 1.02±0.08 1.17±0.12 1.12±0.06 
 0.40 0.78±0.10 0.83±0.08 0.99±0.11 1.10±0.16 1.06±0.13 
       
VE 0.21 13.4±3.0 41.7±7.2 76.4±13.6 127.5±26.4 155.6±20.4 
 0.40 13.9±2.0 41.9±6.2 79.5±16.9 125.4±25.9 137.4±25.8 
       
PaO2 0.21 98.5±7.6 92.3±4.4 89.6±6.0 89.6±9.8 95.6±11.4 
 0.40 219.1±8.6 215.3±9.5 219.2±8.0 224.3±9.1 227.4±9.3 
       
PaCO2 0.21 37.1±4.0 40.8±1.7 40.8±2.6 37.7±4.0 33.9±5.0 
 0.40 37.1±3.3 40.7±2.1 41.1±3.9 38.5±4.8 36.5±4.4 
       
pH 0.21 7.432±0.019 7.400±0.014 7.371±0.027 7.327±0.040 7.291±0.069 
 0.40 7.418±0.024 7.393±0.019 7.365±0.024 7.331±0.036 7.300±0.052 
       
Tesoph 0.21 36.6±0.1 36.6±0.2 37.1±0.4 37.6±0.3 37.9±0.3 
 0.40 36.6±0.2 36.8±0.1 37.3±0.3 37.7±0.2 37.9±0.2 
       
PASP 0.21 27.5±5.0 38.3±7.6 43.4±14.1 56.2±12.2 70.0±16.7 
  0.40 27.0±3.2 38.1±9.1 48.5±9.3 59.3±20.3 52.8±16.5 
Note. Values are means±SD.     

 

In Protocol 1 increasing the FIO2 to 0.60 caused a reduction in bubble scores at 

during exercise in some subjects, while reducing the FIO2 to 0.14 increased the bubble 

scores compared to those achieved breathing an FIO2=0.21. Conversely, Protocol 2 

demonstrated no difference in bubble scores at any given exercise intensity between an 



 103 

FIO2=0.21 and 0.40 (Fig. 6.2b). Pulmonary gas exchange efficiency, as quantified by the 

AaDO2, during exercise in Protocol 1 and Protocol 2 are presented in Fig. 6.3. In both 

protocols, increasing exercise intensity led to an increased AaDO2 breathing an 

FIO2=0.21. Lowering the oxygen tension resulted in a greater AaDO2 at all workloads 

compared to the AaDO2 at rest, while exercise breathing an FIO2=0.60 did not result in 

an increase in the AaDO2. In Protocol 2 breathing an FIO2 of 0.21 again increased the 

AaDO2 while it did not increase in subjects breathing an FIO2=0.40 despite nearly 

identical bubble scores. 

Figure 6.1. Protocol 1 Bubble Scores. Bubble scores from individual subjects 
before and during exercise breathing (A) 21% oxygen, (B) 60% oxygen, and (C) 14% 
oxygen. * p<.05 vs Pre (Friedman's test, Dunn's posttest). 
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DISCUSSION 

We demonstrated that in subjects breathing room air, bubble scores increased with 

increasing exercise intensity and that breathing an FIO2=0.14 tended to augment the 

bubble scores. Additionally, while increasing the FIO2 to 0.40 did not reduce the bubble 

Figure 6.2. Protocol 2 Bubble Scores. Bubble scores from individual subjects before 
and during exercise breathing (A) 21% oxygen, (B) 40% oxygen. * p<.05 vs Pre (Friedman's 
test, Dunn's posttest). 

Figure 6.3. AaDO2. Mean AaDO2 in subjects at rest and during exercise breathing 
(A) 21% oxygen (solid circles), 60% oxygen (open squares), and 14% oxygen (open 
triangles) [Protocol 1] and (B) 21% oxygen (solid circles) and 40% oxygen (open squares) 
[Protocol 2]. All statistical test compared AaDO2 between rest and all exercise workloads 
within a given percent oxygen (one-way ANOVA, Tukey posttest). (A) * p<.05 (21%), † 
p<.05 (14%). (B) * p<.05 vs. Pre 21%.There were no significant differences for any exercise 
workload when breathing 60% or 40% oxygen. 
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scores, bubble scores tended to be reduced when the FIO2 was increased to 0.60, but not 

eliminated as occurs when the FIO2 is increased to 1.0 (35, 97). This suggests that blood 

flow through IPAVA is the same in subjects breathing an FIO2 of 0.21 and 0.40, but may 

be reduced or increased when the FIO2 is increased or decreased beyond these levels, 

respectively (Fig. 6.1 and 6.2). 

As expected, pulmonary gas exchange efficiency as quantified by the AaDO2 

worsened in subjects breathing an FIO2=0.21 or 0.14 as exercise intensity increased in 

Protocol 1. In Protocol 2 the AaDO2 also widened with increasing exercise intensity in 

subjects breathing an FIO2=0.21; however, when breathing an FIO2=0.40, the AaDO2 did 

not increase with increases in exercise intensity (Fig. 6.3). This suggests that the factor(s) 

causing pulmonary gas exchange to worsen with increasing exercise intensity when 

breathing an FIO2=0.21, are prevented from occurring when the FIO2 is increased to 0.40. 

The potential interpretations of these data are discussed below.  

First, data obtained using the MIGET and the 100% oxygen technique suggest 

that the widening of the AaDO2 during exercise in subjects breathing 21% oxygen are 

due to V̇/Q̇ mismatch and diffusion limitation, while intrapulmonary shunt has no 

significant contribution. Therefore, these data obtained using MIGET would imply that 

blood flow through IPAVA is not acting like a shunt and contributing to the AaDO2. As 

such, one interpretation of the data presented in this study is that the widening of the 

AaDO2, which occurs in all subjects during exercise breathing room air, is not due to the 

increase in blood flowing through IPAVA, which also occurs in all subjects, acting like a 

shunt, but rather due to V̇/Q̇ and diffusion limitation. Thus, the AaDO2 remained constant 

throughout increasing exercise intensity because V̇/Q̇ heterogeneity and diffusion 
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limitation were eliminated as contributing factors to pulmonary gas exchange inefficiency 

in exercising subjects breathing 40% oxygen. This would suggest that the AaDO2 

measured in exercising subjects breathing 40% oxygen was due entirely to post 

pulmonary shunt, such as the Thebesian drainage. 

Interestingly, errors associated with measuring arterial blood gases with high PO2 

values result in an increased AaDO2, which would be interpreted as a pulmonary gas 

exchange inefficiency. In subjects exercising breathing 40% oxygen in the current study, 

we did not measure an increase in the AaDO2 with increasing exercise intensity, despite 

the relatively high PO2 values. We interpret these data to reflect only contributions from 

the Thebesian drainage and that the high PO2 gradient led to nearly perfect gas exchange 

within the lung. Using an estimate of cardiac output and our measures of PaO2 and V̇O2, 

we calculated a venous admixture in subjects breathing an FIO2=0.40 at 85%max 

exercise of ~0.35% of the cardiac output to account for this AaDO2 which remained 

constant throughout increasing exercise intensity. Using these measures from the 

85%max exercise bout in subjects breathing room air, we calculated a total venous 

admixture of 1.21%. If we assume the contribution from the Thebesian drainage is 

constant regardless of the FIO2, these calculations would indicate a gas exchange 

inefficiency within the pulmonary circulation that could be accounted for by a venous 

admixture of 0.86%. This is nearly identical to the ~0.9% shunt fraction measured during 

85%max exercise using 99mTc-MAA in Chapter V due to blood flow through IPAVA.  

Could Blood Flowing Through IPAVA Act Like a Shunt?  

We have demonstrated that with increasing exercise intensity in subjects 

breathing an FIO2=0.21 bubble scores increase, suggesting increased blood flow through 
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IPAVA, and these scores are amplified in subjects breathing hypoxic gas mixtures and 

dampened when the FIO2 is raised to 0.60. Previously, it was estimated that the minimum 

size bubble required to survive long enough to reach the left ventricle would be 60-90µm 

in diameter (32). This estimate is supported by the fact that 50µm microspheres can pass 

through the pulmonary circulation of human and baboon lungs (99), there is an increase 

in the number of 25µm microspheres passing through the pulmonary circulation of 

exercising dogs (156), and microspheres up to 70µm in diameter can pass through the 

pulmonary circulation of rats ventilated with hypoxic gas mixtures (10). Together, these 

data suggest that IPAVA have a diameter that is significantly larger than the largest 

diameter ever measured of a pulmonary capillary of 13µm (45). Additionally, in Chapter 

V I showed an increase in the shunt fraction during exercise based on the passage of 

MAA with a mean length of 35µm. As such, the diffusion distance to the core of blood 

flowing through IPAVA is significantly greater than any distance occurring at the 

alveolar capillary interface where the majority of pulmonary gas exchange is believed to 

occur, and this distance could limit the ability for the core of blood flowing through 

IPAVA to fully participate in pulmonary gas exchange. 

Genovesi and colleagues studied a patient with familial hemoragic tenangiactasia, 

a disorder characterized by grossly distended capillaries throughout the lung parenchyma, 

and reported venous admixture calculations using a gas exchange method (100% oxygen 

technique) and an anatomical based method (99mTc-MAA) of 13% and 45%, respectively 

(43). The large difference in venous admixture determined by these two methods 

represents the major problem with using a gas exchange method versus an anatomical 

method when determining the percentage of blood that could be acting like a shunt. The 
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net effect of quantifying blood flow through pathologically distended capillaries or 

IPAVA would be the same. When blood flows through a normal pulmonary capillary, the 

diameter is just wide enough for red blood cells to travel through in a single file manner 

and the diffusion distance from alveoli to the center of a capillary would be ~3-5 µm. 

However, an IPAVA with a diameter >50µm would create a much larger diffusion 

distance in which the outer ring may become oxygenated, however a core of blood may 

travel through IPAVA without participating in gas exchange. This ‘rim’ of oxygenated 

blood is exactly what Conhaim and Staub demonstrated in excised cat pulmonary 

arterioles ventilated with various oxygen concentrations, definitely demonstrating the 

occurrence of pre capillary gas exchange (25). This core of blood would meet the 

definition of a ‘shunt’. However, the reversal of gas exchange inefficiency during 

exercise in subjects breathing 40% oxygen could be argued to be the definition of very 

low V̇/Q̇. Of course, the semantics one chooses to define ‘shunt’ may be at the crux of the 

disagreement over the role of ‘shunt’ in pulmonary gas exchange efficiency. In an 

editorial by Robin, et al. (139) the term ‘shunt’ was described as having many meanings 

by pulmonary physiologists. It may be that the ‘shunt’ attempting to be measured by 

MIGET, in which V̇/Q̇=0 is different than a shunt caused by a vascular communication 

between the pulmonary arterial and venous circulation which some may wish to classify 

as creating a diffusion limitation or as having a very low V̇/Q̇.  

Beyond arguments over semantics, inconsistencies in data obtained with MIGET, 

as well as concerns related to the statistical issues and assumptions chosen for use with 

MIGET (91, 92), raise the possibility that assigning the components of pulmonary gas 

exchange inefficiency to V̇/Q̇ heterogeneity and diffusion limitation may represent a 
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limitation with the MIGET technique to detect blood flow through IPAVA that could be 

acting like a shunt. Thus, an alternative explanation for the data presented above could be 

that increasing blood flow through IPAVA in exercising subjects breathing 21% oxygen 

causes a significant widening of the AaDO2 because of blood flowing through the center 

of a large diameter IPAVA, which fails to completely participate in pulmonary gas 

exchange, and enters the pulmonary veins as venous admixture. Yet, in subjects breathing 

40% oxygen, the increased driving pressure gradient of oxygen is sufficiently large to 

fully oxygenate even the core blood flowing through large diameter IPAVA, such that all 

of the blood flowing through IPAVA fully participates in pulmonary gas exchange and 

does not enter the pulmonary veins as venous admixture. Below I describe how MIGET 

may be incorrectly assigning the contributing factors to pulmonary gas exchange 

inefficiency to V̇/Q̇ mismatch and diffusion limitation, opening the possibility that blood 

flow through IPAVA could be negatively affecting pulmonary gas exchange efficiency.  

Inconsistencies in data obtained using MIGET 

The classical theory of the factors contributing to pulmonary gas exchange 

inefficiency, quantified as the AaDO2, include (1) incomplete diffusion between alveolar 

gas and pulmonary capillary blood; (2) the direct contribution of mixed venous blood 

which fails has not participated in pulmonary gas exchange, termed shunt; and (3) the 

imperfect matching between pulmonary ventilation and pulmonary capillary blood flow, 

termed V̇/Q̇ mismatch (137). Data from the MIGET have crafted the accepted 

understanding that in healthy humans, V̇/Q̇ contributes to the entirety of the AaDO2 at 

rest through submaximal exercise, and at higher levels of exercise intensity a diffusion 

contribution occurs, while shunt does not occur. Recently, the term shunt has been used 
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to describe the opening of large diameter IPAVA in healthy humans (32, 35, 89, 94, 97, 

158, 159) and, understandably, the semantics of this description as a shunt has been met 

with resistance (70, 71). However, inconsistencies in data obtained with MIGET call into 

question if increasing V̇/Q̇ heterogeneity and diffusion limitation are the most appropriate 

classifications for the worsening of pulmonary gas exchange efficiency that occurs with 

increasing exercise intensity. 

MIGET determines contributions from V̇/Q̇ mismatch and shunt to pulmonary gas 

exchange inefficiency by quantifying the distribution of retention and excretion of six 

inert gases of varying solubilities (180, 183-185). Theoretically, these gases should be 

retained and excreted in a predictable pattern that only depends on the V̇/Q̇ heterogeneity 

of the lung, including regions of shunt. An iterative mathematical modeling technique 

determines the best fit of a continuous distribution curve for pulmonary blood flow and 

alveolar ventilation spanning 48 possible V̇/Q̇ ratios and extrapolates down to shunt (V̇/Q̇

=0) and up to deadspace (V̇/Q̇=∞). By applying the contributions of this quantified V̇/Q̇ 

distribution to measured cardiac output, mixed venous PO2, and ventilation data, a 

predicted AaDO2 is calculated. If the measured AaDO2 exceeds that predicted by V̇/Q̇ 

and shunt, the assumption is put forth that the remainder of the AaDO2 is caused by a 

combination of postpulmonary (bronchial and Thebesian) shunt and diffusion limitation 

because the MIGET cannot detect these contributions which will, without a doubt, cause 

the AaDO2 to widen.  

At sea level, the total AaDO2 attributed to the combined effects of postpulmonary 

shunt and diffusion limitation increase with increasing exercise intensity in select studies 

(58, 136, 173). To separate postpulmonary shunt contributions from V̇/Q̇ mismatch and 
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diffusion limitation contributions, the 100% oxygen technique have been used to 

eliminate V̇/Q̇ mismatch and intrapulmonary shunt, thus leaving only postpulmonary 

shunt. Unfortunately, this is technically difficult due to the high measurement errors 

associated with measuring high PO2 values and has led to a range of measured values 

with an experimental error spanning the range of the AaDO2 occurring at both rest and 

heavy exercise (58). Despite these difficulties, the assumption is put forth that any gas 

exchange inefficiency occurring at workloads >250W that is not explained by V̇/Q̇ 

mismatch can only be due to a diffusion limitation (58).  

Using this technique, in 1985 Gale, et al. (41) determined the slope of a 

regression line relating the dispersion of blood flow perfusion to VO2 at various levels of 

exercise in nine subjects; if the slope of this line was significantly different from zero, 

that would indicate increased V̇/Q̇ mismatch with increases in exercise intensity. Because 

of the wide variability between subjects, there was only a trend of worsening V̇/Q̇ 

mismatch as exercise intensity increased that was not statistically significant. In fact, 

when the AaDO2 data from these same subjects were displayed in a companion article, it 

became clear that the predicted AaDO2 from the V̇/Q̇ distribution determined by the 

MIGET regressions exceeded the measured AaDO2 in the majority of measurements for a 

V̇O2<3 L/min (173). Nevertheless, because these studies revealed a trend towards 

increasing V̇/Q̇ mismatch with increasing exercise intensity, Hammond, et al. employed 

MIGET in subjects exercising at sea level again and found a significant increase in the 

slope relating blood flow dispersion to V̇O2 (58). However, when investigating each 

workload, the measured AaDO2 at all levels of exercise was significantly greater than 

rest, but the AaDO2 predicted by V̇/Q̇ mismatch was only significantly increased at 
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higher levels of exercise (V̇O2>2.5 L/min), indicating a separation between the measured 

AaDO2 and that predicted by V/Q mismatch. In yet another study, sea-level exercise data 

obtained by Wagner, et al. show that the contribution from V̇/Q̇ mismatch to the total 

AaDO2 remained unchanged throughout all exercise intensities (182), but only when 

combined with data from a previous study (41) a modest, yet significant increase in V̇/Q̇ 

mismatch with increasing exercise intensity appeared. However, these data demonstrate 

no difference between the measured AaDO2 and that predicted by V̇/Q̇ mismatch for 

workloads up to 35 ml/kg/min (AaDO2 of ~10 Torr), thus leaving no room for 

contributions from the known anatomical postpulmonary shunt resulting from the 

Thebesian and bronchial drainage. Ultimately, even when the combination of data from 

multiple studies are extrapolated out to a V̇O2 of 4L/min V̇/Q̇ mismatch only predicts 

~1/3 of the measured AaDO2, a value that could be entirely accounted for by a 1.3% 

shunt (assuming body temperature increases to 38 degrees, mixed venous O2 of 19 

mmHg, see references (58, 182)). Of note, using 99mTc-MAA to quantify blood flow 

through open IPAVA during exercise, Lovering, et al. demonstrated a change of 1.2% in 

exercising subjects compared to the resting shunt fraction (96) and in Chapter V of this 

dissertation we demonstrated an increase in the shunt fraction from -0.11% at rest to 

0.83% at 85%max exercise and increase to ~0.9% of the cardiac output. Finally, Rice et 

al. demonstrated no change in V/Q mismatch from rest through heavy exercise despite a 

significant increase in the measured AaDO2 (136), while Sylvester et al. also determined 

that exercise did not alter the V̇/Q̇ distribution in exercising dogs (165). Consequently, a 

significant diffusion limitation was again inferred, however not directly measured. Again, 

this conclusion was reached indirectly due to the portion of the AaDO2 not predicted by 
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the MIGET even though the likelihood of a diffusion limitation, even at maximal 

exercise, seems improbable. Further support for this improbability comes from Hsia, et 

al. who demonstrated that exercising foxhounds maintained diffusion equilibrium at 

maximal exercise despite pnemonectomy of 42% of the lung (72-74).  

In summary, while V̇/Q̇ mismatch has been suggested to increase with exercise 

intensity at sea level, this often does not reach statistical significance, especially at lower 

workloads, while some subjects demonstrate no increase in V̇/Q̇ mismatch during 

exercise despite demonstrating an increase in the AaDO2 (122, 136, 144, 182). 

Consequently, the explanation for the widening of a significant portion of the AaDO2 

falls on the assumption of a diffusion limitation despite neither a direct measurement of 

such impairment, nor any other direct support that such diffusion limitation to oxygen at 

the alveolar-capillary interface could theoretically or even likely occur (154, 181). 

Intrapulmonary and postpulmonary shunt have been relegated to negligible or non-

contributing factors.  

Non Capillary Gas Exchange 

It is not entirely clear why the MIGET technique demonstrates such variable 

results regarding V̇/Q̇ mismatch or what could be causing the assumed diffusion 

limitation. An alternative explanation could be the large body of evidence suggesting the 

existence of large diameter IPAVA could be diverting blood flow away from the 

pulmonary gas exchange unit and acting as a shunt. One assumption employed by the 

MIGET is that the distribution of possible V̇/Q̇ units is constrained to a range of 50 

specified values and that the distribution between these values has only one unique 

solution; however, some have argued that this mathematical assumption is inaccurate 
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because using an infinite number of possible V̇/Q̇ distributions can result in more than 

one distribution (169). Of course, it may be that the ‘diffusion limitation’ deduced from 

data obtained with MIGET is actually reflecting the contributions of blood flow through 

IPAVA. If this is the case, the root of the controversy over the role of IPAVA in 

pulmonary gas exchange efficiency may come down to a semantics issue over whether 

the contributions of blood flow represent a ‘shunt’, a ‘diffusion limitation’, or some 

combination of these factors. 

Another potentially more problematic assumption inherent to the MIGET 

technique, is that the excretion of inert gases between pulmonary blood and pulmonary 

air only occurs at the alveolar-capillary interface (63). There is a substantial body of 

evidence demonstrating pulmonary precapillary or non-capillary gas exchange. 

Increasing the alveolar PO2 via a single breath of 100% oxygen or voluntary 

hyperventilation results in the rapid detection of oxygen in pulmonary arterioles, 

indicating the diffusion of gas through bronchiole and arteriole walls well before the 

alveolar-capillary interface (79, 152). Additionally, Conhaim and Staub demonstrated gas 

exchange occurring in pulmonary arteries ≥500µm in diameter in anesthetized cats 

ventilated with 100% oxygen (25), while Genovesi and colleagues reported oxygen 

saturation data obtained from the pulmonary artery and then the wedged catheter in a 

resting male breathing room air with a history of familial hemorrhagic telangiectasia that 

measured 69.0% and 96.0%, respectively (43). Clearly, increasing the mixed venous 

saturation to 96% before the alveolar-capillary interface would be considered pre-

capillary gas exchange. Thus, while the maximum rate of diffusion likely occurs at the 

alveolar-capillary interface, it is clear that gases can diffuse through arterioles well 
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proximal to the traditional site of pulmonary gas exchange. While this does not suggest 

that the complete exchange of oxygen is occurring in pulmonary arteries with a large 

diameter when the driving gradient is relatively low such as when breathing room air, the 

high driving gradient from 100% oxygen or the highly insoluble SF6 will create a very 

large diffusion gradient for these gases. Thus, SF6 may be excreted prior to reaching 

IPAVA rendering it useless for the detection of vessels downstream that may act as 

shunts for oxygen. Furthermore, the exchange of high-molecular weight gases, such as 

those used in MIGET, has been shown to occur as high up the airway tree as the trachea 

and conducting airways (164). The degree of such airway gas exchange is dependent on 

both diffusion and perfusion and thus, increases in bronchial blood flow led to increases 

in the perfusion of conducting airways and subsequent gas exchange within these 

airways. The positive correlation between blood flow and inert gas excretion highlight a 

potentially problematic assumption in the overall analysis of the excretion and retention 

pattern of the MIGET gases, which assumes it is only reflecting changes to the specific 

pattern of V̇/Q̇ heterogeneity present. MIGET does not account for bronchial blood flow 

exchanging gases with the airways that would influence the overall excretion and 

retention profile of inert gases (44, 153). This possibility of conducting airway gas 

exchange highlights the problem of attempting to quantify pulmonary gas exchange 

efficiency using a gas exchange-dependent technique, which must rely on assumptions 

about the locations of inert gas exchange, and may be incorrect. While it is not entirely 

clear how these potential flaws would affect the resulting V̇/Q̇ distribution predicted by 

MIGET, it is clear that these assumptions represent a real concern and has led to 

controversy (91) over a technique that has never been validated by an independent 
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method (169) in its ability to detect and categorize factors affecting pulmonary gas 

exchange of O2 and CO2. 

100% Oxygen Technique 

Another assumption used to support the lack of intrapulmonary shunt detection by 

the MIGET was by Vogiatzis, et al who attempted to quantify intrapulmonary shunt in 

subjects exercising while breathing 100% oxygen and apply that shunt fraction to 

normoxic exercise. The assumption was that breathing 100% oxygen was not causing any 

alteration to the pulmonary vasculature that could affect the quantification of shunt (143, 

178). However, hyperoxia dynamically closes IPAVA (97) and causes a redistribution in 

pulmonary blood flow, as measured with microspheres (110). In this situation, any 

potential contribution from IPAVA to the AaDO2 would not be detected because these 

large diameter vessels would not have blood flowing through them and thus the 100% 

oxygen technique could only detect post-pulmonary and intracardiac shunt contributions. 

To summarize, MIGET has been used to quantify the contributions from V̇/Q̇ 

mismatch and shunt to pulmonary gas exchange inefficiency and assumes that any gas 

exchange inefficiency not explained by these two factors can only be due to diffusion 

limitation. Anatomical data demonstrate that large diameter IPAVA exist in the 

pulmonary circulation that could theoretically act like a shunt, but the MIGET and the 

100% oxygen technique do not detect shunt as a contributing factor during exercise. 

Thus, the role of IPAVA acting as shunts remains a controversial, not yet proven 

hypothesis.  

We recognize that our argument that IPAVA have the potential to act as shunts 

directly challenges the prevailing understanding of factors contributing to pulmonary gas 
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exchange inefficiency. However, the inconsistencies presented above, from which the 

prevailing understandings rest, should highlight the possibility that another explanation 

for a contributing factor to pulmonary gas exchange inefficiency should and can be 

considered. 

Classifying Pulmonary Gas Exchange Inefficiency into Three Discrete Categories 

Part of the debate about the contributing factors to pulmonary gas exchange 

inefficiency may lie in the semantics used to describe the three discrete factors of V̇/Q̇ 

mismatch, diffusion limitation, and shunt. Wagner (181) has completely and eloquently 

described the role of diffusion in pulmonary gas exchange and in healthy subjects, the 

transit time of red blood cells through pulmonary capillaries presents more than adequate 

time for the complete diffusion of oxygen. The notion that is not considered, however, is 

if this exchange of oxygen is occurring in a vessel with a significantly larger diameter 

than a pulmonary capillary, such as an IPAVA, in which the diffusion distance is 

significantly larger. Thus, should blood flow through IPAVA be termed ‘shunt’ when the 

reason for the incomplete exchange of oxygen is due to a diffusion limitation? If so, then 

the classical categories contributing to pulmonary gas exchange inefficiency (V̇/Q̇ 

mismatch, diffusion limitation, and shunt) may represent categories that are too discrete 

for the true complexity of the pulmonary circulation.  

 If blood flow through large diameter IPAVA fails to fully participate in 

pulmonary gas exchange during exercise in subjects breathing an FIO2=0.21 due to the 

large diffusion distance from the rim to the core blood, then lowering the driving gradient 

due to alveolar hypoxia would be expected to result in even greater venous admixture 

when a greater percentage of blood flow through IPAVA would not participate in 
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pulmonary gas exchange. In Protocol 1 we measured the AaDO2 in eight subjects (3 

female) exercise at 25%, 50%, and 75% of their max while breathing an FIO2=0.21, and 

then repeated that breathing an FIO2=0.14. While the AaDO2 increased with increasing 

exercise intensity in both conditions, it was surprising that the AaDO2 widened to an even 

greater degree in subjects breathing an FIO2=0.14. Our calculations indicated the total 

venous admixture within the pulmonary circulation required to account for the AaDO2 at 

85%max exercise was ~17.5%. Because some of this could be due to a diffusion 

limitation, future research needs to be conducted to quantify the blood flow through 

IPAVA in subjects breathing hypoxic gas mixtures using solid MAA. Using that 

anatomical data with the calculated venous admixture required to account for the total 

AaDO2 will provide the best estimates of each factor contributing to pulmonary gas 

exchange inefficiency. 

Summary 

Our anatomical evidence for the opening of IPAVA with increasing exercise 

intensity occurs at workloads when the AaDO2 widens, suggesting that these vessels play 

a role in pulmonary gas exchange efficiency. Our data demonstrating no change in the 

AaDO2 in subjects exercising breathing an FIO2=0.40 suggests that changing the driving 

pressure gradient of oxygen influences the efficiency of pulmonary gas exchange via pre 

capillary gas exchange of the PvO2 which could include blood flowing through IPAVA. 

Finally, this would also suggest that during alveolar hypoxia, when the driving gradient 

of oxygen is reduced, the contribution by blood flowing through IPAVA on pulmonary 

gas exchange inefficiency would be even greater. Predictably, the venous admixture 

required to account for the AaDO2 during hypoxic exercise is significantly greater than 
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that required to account for the AaDO2 during normoxic exercise, while that during 

exercise with an FIO2=0.40 is less and only represents contributions from post pulmonary 

shunt.   

Jameson has suggested that the tradition view of where pulmonary gas exchange 

occurs within the lung should be reconsidered because the act of diffusion is not isolated 

to the alveolar-capillary interface, but rather begins to occur through pulmonary arteries 

before blood reaches the capillaries (79). We would agree and suggest that the original 

compartmentalization of three categories affecting pulmonary gas exchange (diffusion, 

shunt, and V̇/Q̇) have led to inappropriate oversimplifications regarding their potential 

interactions. Accordingly, because large diameter IPAVA respond to changing FIO2, they 

may not meet the strictest definition of a ‘shunt’, but rather may represent the source of 

pulmonary gas exchange inefficiency being derived by MIGET as V̇/Q̇ mismatch, despite 

improved V̇ and Q̇ homogeneity, or may represent the diffusion limitation inferred by 

MIGET. Furthermore, the belief of a diffusion limitation occurring at the alveolar-

capillary interface seems highly improbable due to the small diffusion distance and 

sufficient red blood cell transit time. However, the core of blood flowing through a large 

diameter IPAVA may present a diffusion distance large enough to prevent the complete 

(if any) equilibration of blood flowing through these vessels, especially during exercise 

when red blood cell transit time is reduced or when the FIO2 is decreased compared to 

sea level. As such, gas exchange may occur at the core of these vessels to varying 

degrees, ranging from some to none, depending on the PAO2, PvO2, and red blood cell 

transit time. Hence, while we believe blood flow though the core of IPAVA that does not 

participate in pulmonary gas exchange represents a source of mixed venous blood, it is 
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left to the reader to decide if blood flow through IPAVA should be categorized as a 

shunt, V̇/Q̇ heterogeneity, diffusion limitation, or some other description which may not 

be limited to these finite and potentially oversimplified classifications. Regardless of 

semantics, the contribution of blood flow through these vessels to pulmonary gas 

exchange inefficiency during normoxic exercise should be considered a real possibility, 

with increasing contributions when the FIO2 is reduced, and decreasing contribution 

when the FIO2 is increased. 
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CHAPTER VII 

CONCLUSIONS 

The dogmatic understandings of pulmonary physiology have taken wrong turns 

on more than one occasion throughout the course of history. From Galen’s theory on 

interventricular pores to Haldane’s hypothesis that the lung secreted oxygen, there have 

been decades and even centuries that have propagated these inaccuracies associated with 

the pulmonary vasculature and how oxygen ultimately enters our arterial blood. 

However, for the majority of these inaccuracies, history has ultimately fallen on the 

correct side of the story. We are now in the midst of another potentially historical 

inaccuracy in which many have chosen not to accept the existence of inducible large 

diameter intrapulmonary arteriovenous anastomoses (IPAVA) and their potential roles in 

both gas exchange and as an anatomical filter. This dissertation focused on furthering our 

anatomical and physiological understanding of the pulmonary vasculature and the 

regulation and significance of intrapulmonary arteriovenous anastomoses in healthy 

humans.  

MAIN FINDINGS 

IPAVA have consistently been shown to open in healthy human subjects 

exercising breathing room air, or at rest and during exercise breathing hypoxic gas 

mixtures. In Chapter IV I tested the hypothesis that the infusion of epinephrine or 

dopamine would open IPAVA in healthy human subjects at rest. The data demonstrated 

that while infusions of these catecholamines did open IPAVA, the mechanism appeared 

to be due to a secondary affect of these drugs causing an increase in pressure and/or 

blood flow through the pulmonary circulation acting as the stimulus to open IPAVA. 
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Conversely, the closure of these vessels by breathing 100% oxygen appears to be due to a 

different mechanism than that which opens IPAVA because in subjects breathing 100% 

oxygen, pressures and flows were equally elevated during epinephrine and dopamine 

infusions, yet IPAVA remained closed. The mechanism of hyperoxic-closure of IPAVA 

represents a significant area for future research. 

Of course, some have argued that the ‘closure’ of IPAVA in subjects breathing 

100% oxygen simply represents an alteration in the partial pressure environment 

surrounding saline contrast microbubbles, which is preventing their survival and thus 

their appearance in the left ventricle (66). Despite the fact that we have definitively 

shown this not to be the case by changing both the internal and external partial pressure 

environment of saline contrast microbubbles which did not affect our ability to detect 

them (35), anatomical proof using solid particles presents indisputable evidence. I 

developed a filtering technique to reduce the number of small MAA particles that could 

travel through pulmonary capillaries and developed a way to quantify and remove the 

variable contribution from free-99mTc to the quantification of the shunt fraction. Using 

this newly developed technique, I demonstrated anatomically for the first time that during 

exercise in subjects breathing 100% oxygen there is a reduction in blood flow through 

IPAVA compared to exercise when breathing 21% oxygen. Because of this study, data 

using solid microspheres or MAA now exist to support all data obtained using TTSCE 

regardless of exercise or the FIO2.  

Finally, in Chapter VI I addressed a concern that has been the focus of debate 

surrounding IPAVA: are they ‘shunts’? While the answer to this question is not easily 

determined, I believe reworking our model for where pulmonary gas exchange occurs 
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and critically reviewing long held assumptions about the roles of various contributing 

factors reveals one answer: yes, blood flow through IPAVA can act like a shunt. 

Anatomical data consistently support the existence of inducible large diameter IPAVA in 

healthy humans and an increased driving partial pressure gradient of oxygen to the core 

of that blood will affect the complete diffusion of oxygen to that core. As such, I showed 

that increasing the FIO2, and hence the partial pressure driving gradient, prevented 

pulmonary gas exchange from worsening with increases in exercise intensity. 

Conversely, when exercising at sea level or when the FIO2 is reduced, the diffusion 

gradient to the core of blood is not always sufficient to complete equilibration between 

the alveolar PO2 and the PO2 in the core of blood. Thus, a portion of the blood returns to 

the pulmonary venous circulation to enter the systemic circulation without completely 

participating in gas exchange. This represents a shunt. 

COMPARISONS BETWEEN EXERCISE-INDUCED AND HYPOXIA-INDUCED 

OPENING OF IPAVA 

A combination of both cardiac output and PASP is an attractive mechanism to 

explain the recruitment of IPAVA because these physiologic variables both increase to 

varying degrees during exercise, when breathing hypoxic gas mixtures, or during EPI 

infusion as demonstrated in Chapter IV, and all of these conditions result in open IPAVA. 

During exercise, cardiac output and left atrial pressure increase to help recruit and distend 

pulmonary capillaries (135) which helps to prevent excessive increases in driving 

pressure at the pulmonary alveolar-capillary interface. Alternatively, when breathing 

hypoxic gas mixtures at rest, left atrial pressure does not increase and cardiac output 

increases to a lesser degree and not above the flows demonstrated at the highest EPI 
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infusions in Chapter IV (31, 134, 182, 194), yet bubble scores of 4 and 5 are typically 

observed (89). When breathing hypoxic gas mixtures, hypoxic pulmonary 

vasoconstriction occurs in small pulmonary resistance arteries (103) and if this is 

occurring downstream from IPAVA, may provide an additional stimulus to preferentially 

direct blood flow through IPAVA. If IPAVA are located in more apical regions of the 

lung, as suggested by anatomical data (172), and exercise as well as hypoxic pulmonary 

vasoconstriction both cause blood flow to be redistributed to more apical regions of the 

lung (69), the perfusion of IPAVA may be in part related to downstream vasoactive 

mechanisms related to hypoxia that aid in directing blood flow through IPAVA.  

An interesting difference between exercise and breathing hypoxic gas mixtures at 

rest or during EPI infusion is that during exercise left atrial pressure increases at the onset 

of exercise to recruit and distend the pulmonary vasculature (135); however, this does not 

occur when breathing hypoxic gas mixtures (52) or during EPI infusion (199). During 

EPI infusion IPAVA may open during very small increases in cardiac output and/or 

PASP when a significant portion of the conventional pulmonary vasculature may not be 

recruited. However, during exercise, it may take a larger increase in cardiac output before 

flow through IPAVA occurs because a larger portion of the ‘normal’ pulmonary 

microvasculature may be recruited and thus limit the diversion of blood flow through 

IPAVA until a higher cardiac output is achieved. The modest increases in cardiac output 

achieved due to EPI infusion in Chapter IV, versus greater increases in cardiac output 

achieved during exercise, may have prevented complete perfusion of IPAVA and explain 

the lack of bubble scores of 4 and 5. However, we do not have any data to directly 

support this hypothesis. 
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IMPLICATIONS & FUTURE DIRECTIONS 

Research is already underway looking into how increasing the oxygen 

concentration may be modulating IPAVA and what role, if any, pulmonary vascular 

smooth muscle may play in their patency. We know from studies of the systemic 

vasculature that arteriole dysfunction is associated with the aging process (145) and 

pulmonary artery pressure increases with increasing age (85, 86). Preliminary data from 

our lab indicate that the aging process may negatively affect IPAVA as well. If blood 

flow through IPAVA is reduced with increasing age, what consequences, if any, are 

associated with this decline?  

It has been suggested that because of the large diameter of IPAVA, these vessels 

may play a role in controlling pulmonary vascular resistance to minimize large increases 

in pulmonary artery pressure during dynamic increases in pulmonary blood flow. If true, 

these vessels represent a possible target for treatments associated with pathologies, such 

as pulmonary artery hypertension or complications stemming from chronic obstructive 

pulmonary disease.  

Their contribution to pulmonary gas exchange inefficiency during exercise does 

not typically result in arterial hypoxemia in the majority of healthy humans who are able 

to mount a ventilatory response that allows for the maintenance of PaO2 in the face of a 

widening AaDO2. However, as the FIO2 decreases during ascent to high altitude or in 

patients with pathological disorders, the regulation of blood flow through IPAVA may 

represent a critical target for maintaining normal blood gases in the face of hypoxemia.  

Conversely, until we understand how oxygen affects IPAVA patency, as well as how 

oxygen affects the normal pulmonary vasculature, a full understanding of the 
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consequences associated with the use of supplemental oxygen in critical care settings will 

be incomplete, at best.  

Because we have shown that IPAVA are dynamically regulated large diameter 

pathways, future research should be conducted to determine what role patent IPAVA play 

in breaching the pulmonary microcirculation sieve. If emboli are traversing the 

pulmonary circulation through IPAVA and gaining entry to the systemic circulation, 

IPAVA may play a previously underappreciated role in migraines, transient ischemic 

attacks, and/or stroke.  

Significant advancements in our understanding of the regulation and significance 

of IPAVA have been made over the past decade as research has been conducted 

specifically addressing questions about these vessels. However, now that we are 

beginning to gain a better understanding of the dynamic regulation of these vessels, 

research using an animal model and/or isolating IPAVA ex vivo will be necessary to fully 

characterize the pathways involved in the regulation of these vessels. Data from Tobin 

and Zariquiey (172) suggest these vessels may be predominantly located in the apices of 

the lungs. We have data currently in preparation for publication that would support this 

anatomical location of IPAVA because bubble scores can be reduced or eliminated in 

subjects moving from supine to upright posture. Interestingly, exercise and hypoxia, 

which both recruit IPAVA, lead to a redistribution of pulmonary blood flow towards the 

apices of the lung (69). These data, combined with the similarities between IPAVA and 

supernumerary arteries provide ample evidence to at least begin the search for IPAVA by 

searching for supernumerary arteries located in the apices of the lung and determining if 

an arteriovenous connection can by found. 
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Ironically, Galen’s theory about interventricular ‘pores’ had no anatomical 

support, yet was widely held as truth for centuries; conversely, anatomical evidence for 

the existence and potential importance of IPAVA as part of the normal pulmonary 

vasculature continues to accumulate, yet has been disregarded, ignored, and diminished 

in importance because it doesn’t fit the accepted ‘model’ of the lung. Despite much 

resistance to displace long-held theories and accept these new data, the time has come to 

acknowledge the oversimplification in categorizing the lung into a three-compartment 

model and appreciate the complexities of the pulmonary circulation. I hope the scientific 

data presented in this dissertation helps direct history to land on the correct side of the 

story. 
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