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DISSERTATION ABSTRACT

Thomas Bell

Doctor of Philosophy

Department of Mathematics

June 2013

Title: Uniqueness of Conformal Ricci Flow and Backward Ricci Flow on
Homogeneous 4-Manifolds

In the first chapter we consider the question of uniqueness of conformal Ricci

flow. We use an energy functional associated with this flow along closed manifolds

with a metric of constant negative scalar curvature. Given initial conditions we use

this functional to demonstrate the uniqueness of the solution to both the metric

and the pressure function along conformal Ricci flow.

In the next chapter we study backward Ricci flow of locally homogeneous

geometries of 4-manifolds which admit compact quotients. We describe the long-

term behavior of each class and show that many of the classes exhibit the same

behavior near the singular time. In most cases, these manifolds converge to a

sub-Riemannian geometry after suitable rescaling.
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CHAPTER I

UNIQUENESS OF CONFORMAL RICCI FLOW

The uniqueness of Ricci Flow on closed manifolds was originally proven by

Hamilton [9]. Later on, Chen and Zhu proved the uniqueness on complete

noncompact manifolds with bounded curvature [5]. The method employed in [5]

utilizes DeTurck Ricci Flow. Recently Kotschwar used energy techniques to give

another proof of the uniqueness on complete manifolds [12]. Kotchwar’s proof does

not rely on DeTurck Ricci Flow. A natural question is whether similar techniques

can be applied to demonstrate the uniqueness of other geometric flows. One of

these flows we have in mind is Conformal Ricci Flow, introduced by Fischer [8].

Ricci Flow preserves many important properties of metrics, but it generally does

not preserve the property of constant scalar curvature. Conformal Ricci Flow is a

modification of Ricci Flow which is intended for this purpose and for this reason

it is restricted to the class of metrics of constant scalar curvature. Conformal

Ricci Flow is, like Ricci Flow, a weakly parabolic flow of the metric on manifolds,

except that Conformal Ricci Flow is coupled with an elliptic equation. Unlike Ricci

Flow, Conformal Ricci Flow is restricted to the class of metrics of constant scalar

curvature.

Let (Mn, g0) be a smooth n-dimensional Riemannian manifold with a metric g0
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of constant scalar curvature s0. Conformal Ricci Flow on M is defined as follows:
∂g

∂t
= −2Ricg(t) + 2

s0

n
g(t)− 2p(t)g(t)

s
(
g(t)

)
= s0

on M × [0, T ]. (I.1)

Here g(t), t ∈ [0, T ], is a family of metrics on M with g(0) = g0, s
(
g(t)

)
is the

scalar curvature of g(t), and p(t), t ∈ [0, T ], is a family of functions on M . In [8]

and [13] we see that (I.1) is equivalent to the following system:
∂g

∂t
= −2Ricg(t) + 2

s0

n
g(t)− 2p(t)g(t)(

(n− 1)∆g(t) + s0

)
p(t) = −

〈
Ricg(t) −

s0

n
g(t),Ricg(t) −

s0

n
g(t)

〉 (I.2)

Throughout this chapter we will use V to denote the following symmetric 2-

tensor:

V (t) = Ricg(t) −
s0

n
g(t) + p(t)g(t) (I.3)

In this chapter we use Kotchwar’s energy techniques to give a proof of the

uniqueness of Conformal Ricci Flow for closed manifolds with metrics of constant

negative scalar curvature. It is worth noting similarities to the study of certain

elliptic-hyperbolic systems done by Andersson and Moncrief in [1]. The existence

of solutions to Conformal Ricci Flow has been shown by Fischer /citeFi and by Lu,

Qing and Zheng, [13], the latter paper using DeTurck Conformal Ricci Flow. More

precisely we will prove the following uniqueness theorem of Conformal Ricci Flow:

2



Theorem I.1. Let (Mn, g0) be a closed manifold with constant negative scalar

curvature s0. Suppose
(
g(t), p(t)

)
and

(
g̃(t), p̃(t)

)
are two solutions of (I.1) on

M × [0, T ] with g̃(0) = g(0). Then
(
g̃(t), p̃(t)

)
=
(
g(t), p(t)

)
for 0 ≤ t ≤ T .

The Differences Between g(t) and g̃(t)

Let g(t) and g̃(t) be as in Theorem I.1. We will treat g as our background metric

and g̃ as our alternative metric. Let ∇, ∇̃ be the Riemannian connections of g and

g̃ respectively. Similarly, let R, R̃ represent the full Riemannian curvature tensors

of g and g̃ respectively.

Let h = g − g̃. Let A = ∇− ∇̃. Explicitly, Aijk = Γijk − Γ̃ijk where Γijk and Γ̃ijk

are the Christoffel symbols of ∇ and ∇̃ respectively. Also let S = R− R̃, q = p− p̃.

In this section we find bounds on h, A, S, q, ∇q and ∇∇q (see Propositions

I.2 and I.4). Throughout this chapter we will use the convention X ∗ Y to denote

any finite sum of tensors of the form X · Y . We use C(X) to denote a finite sum of

tensors of the form X.

Preliminary Calculations

First we calculate some useful expressions for quantities which will arise in the

proofs of Propositions I.2 and I.4. We calculate

gij − g̃ij = gik(g̃j`g̃k`)− g̃j`(gikgk`) = −gikg̃j`hk`,

i.e.

g−1 − g̃−1 = g̃−1 ∗ h.

3



If X is any tensor which is not a function we have

(
∇− ∇̃

)
X = A ∗X.

We check this when X is a (1, 1)-tensor. Calculating in local coordinates we see

(
∇i − ∇̃i

)
Xk
j = ∂iX

k
j − Γ`ijX

k
` + Γki`X

`
j − ∂iXk

j + Γ̃`ijX
k
` − Γ̃ki`X

`
j

= Aki`X
`
j − A`ijXk

` = A ∗X.

If f is a function however, then we have the following:

(
∇i − ∇̃i

)
f =

(
gij − g̃ij

)
∂jf = −gikg̃j`hk`∂jf = −gikhk`∇̃`f,

or in other words (
∇− ∇̃

)
f = h ∗ ∇̃f.

We now calculate

∇g̃−1 =
(
∇− ∇̃

)
g̃−1 = g̃−1 ∗ A.

The following calculation will also be important.

∇ihjk = ∇igjk −∇ig̃jk = −
(
∇i − ∇̃i

)
g̃jk.

Thus we have

∇h = g̃ ∗ A.

4



Now we are able to calculate the following for a function f .

∇
(
∇− ∇̃

)
f = ∇

(
h ∗ ∇̃f

)
= ∇h ∗ ∇̃f + h ∗

(
∇− ∇̃

)
∇̃f + h ∗ ∇̃∇̃f

= g̃ ∗ A ∗ ∇̃f + h ∗ A ∗ ∇̃f + h ∗ ∇̃∇̃f.

Now let

Ua
ijk` = gab∇bR̃ijk` − g̃ab∇̃bR̃ijk` (I.4)

= gab(∇b − ∇̃b)R̃ijk` +
(
gab − g̃ab

)
∇̃bR̃ijk`

= A ∗ R̃ + g̃−1 ∗ h ∗ ∇̃R̃,

and we may calculate

∇a

(
gab∇bR− g̃ab∇̃bR̃

)
= ∇a

(
gab∇bR̃− g̃ab∇̃bR̃

)
+ gab∇a∇b

(
R− R̃

)
= divU + ∆S.

We summarize the above calculations in the following Lemma:

5



Lemma I.1. Using the notation defined at the beginning of this section,

g−1 − g̃−1 = g̃−1 ∗ h (I.5)(
∇− ∇̃

)
X = A ∗X (I.6)(

∇− ∇̃
)
f = h ∗ ∇̃f (I.7)

∇g̃−1 = g̃−1 ∗ A (I.8)

∇h = g̃ ∗ A (I.9)

∇
(
∇− ∇̃

)
f = g̃ ∗ A ∗ ∇̃f + h ∗ A ∗ ∇̃f + h ∗ ∇̃∇̃f (I.10)

U = A ∗ R̃ + g̃−1 ∗ h ∗ ∇̃R̃ (I.11)

∇a

(
gab∇bR− g̃ab∇̃bR̃

)
= divU + ∆S (I.12)

where U is defined in (I.4).

Bounds on Time Derivatives of h, A and S

In this subsection we derive bounds on the time derivatives of h, A and S. In

particular we will prove the following proposition. Here, as well as throughout this

chapter, C will denote a constant dependent only upon n while N will denote a

constant with further dependencies.

Proposition I.2. Let
(
g(t), p(t)

)
and

(
g̃(t), p̃(t)

)
be two solutions of (I.1) on

M × [0, T ]. Using the notation defined at the beginning of this section, there exist

6



constants Nh, NA and NS such that∣∣∣∣ ∂∂th
∣∣∣∣ ≤ Nh|h|+ C

(
|S|+ |q|

)
(I.13)∣∣∣∣ ∂∂tA

∣∣∣∣ ≤ NA

(
|h|+ |A|

)
+ C

(
|∇S|+ |∇q|

)
(I.14)∣∣∣∣ ∂∂tS −∆S − divU

∣∣∣∣ ≤ NS

(
|h|+ |A|+ |S|+ |q|

)
+ C|∇∇q| (I.15)

where U is defined in (I.4).

Proof. We start with the time derivative of h. By (I.1) we have

∂

∂t
hij = −2(Rij − R̃ij) + 2

s0

n
(gij − g̃ij)− 2(p gij − p̃ g̃ij)

= −2Skkij + 2
s0

n
hij − 2

[
(p− p̃)gij + p̃(gij − g̃ij)

]
= −2Skkij + 2

s0

n
hij − 2q gij − 2p̃ hij.

Hence

∂

∂t
h = C(S) + C(s0h) + C(q) + p̃ ∗ h

and ∣∣∣∣ ∂∂th
∣∣∣∣ ≤ C

((
|s0|+ |p̃|

)
|h|+ |S|+ |q|

)
. (I.16)

This proves (I.13).

Recall the definition of V from (I.3):

V (t) = Ricg(t) −
s0

n
g(t) + p(t)g(t). (I.17)

We may define Ṽ similarly using our alternate metric g̃. Since V and Ṽ are

symmetric 2-tensors, then by [7, p. 108] we may calculate

∂

∂t
Akij = g̃k`

(
∇̃iṼj` + ∇̃jṼi` − ∇̃`Ṽij

)
− gk`

(
∇iVj` +∇jVi` −∇`Vij

)
. (I.18)

7



We proceed to calculate

g̃k`∇̃iṼj` − gk`∇iVj`

=g̃k`(∇̃iR̃j`)− gk`(∇iRj`) + g̃k`∇̃i(p̃ g̃j`)− gk`∇i(p gj`)

=
(
g̃k` − gk`

)
∇̃iR̃j` + gk`(∇̃i −∇i)R̃j` − gk`∇i(S

m
mj`) + δkj ∇̃ip̃− δkj∇ip

=g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) + h ∗ ∇̃p̃+ C(∇q), (I.19)

where we have used (I.7) to get the last equality. Similarly we find

g̃k`∇̃jṼi` − gk`∇jVi`

=g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) + h ∗ ∇̃p̃+ C(∇q). (I.20)

Now we consider

− g̃k`∇̃`Ṽij + gk`∇`Vij

=g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) + g̃k`g̃ij∇̃`p̃− gk`gij∇`p

=g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) +
(
g̃k` − gk`

)
g̃ij∇̃`p̃+ gk`

(
g̃ij − gij

)
∇̃`p̃

+ gk`gij(∇̃` −∇`)p̃+ gk`gij∇`(p̃− p)

=g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) + g̃−1 ∗ h ∗ g̃ ∗ ∇̃p̃+ h ∗ ∇̃p̃+ C(∇q). (I.21)

Hence by (I.18), (I.19), (I.20) and (I.21),

∂

∂t
A = g̃−1 ∗ h ∗ ∇̃R̃ + A ∗ R̃ + C(∇S) + h ∗ ∇̃p̃+ C(∇q) + g̃−1 ∗ h ∗ g̃ ∗ ∇̃p̃

and∣∣∣∣ ∂∂tA
∣∣∣∣ ≤ C

((
|g̃−1||∇̃R̃|+ |∇̃p̃|+ |g̃−1||g̃||∇̃p̃|

)
|h|+ |R̃||A|+ |∇S|+ |∇q|

)
. (I.22)

8



This proves (I.14).

By [7, eqn. (2.67)] we have

∂

∂t
R`
ijk = g`m

(
∇i∇kVjm −∇i∇mVjk −∇j∇kVim +∇j∇mVik

)
− g`m

(
Rr
ijkVrm +Rq

ijmVkq
)

= g`m
(
−∇i∇kRjm +∇i∇mRjk +∇j∇kRim −∇j∇mRik

)
+ g`m

(
−gjm∇i∇kp+ gjk∇i∇mp+ gim∇j∇kp− gik∇j∇mp

)
+ g`m

(
Rr
ijkRrm +Rr

ijmRkr

)
− s0

n
g`m
(
Rr
ijkgrm +Rr

ijmgkr
)
p

+ g`m
(
Rr
ijkgrm +Rr

ijmgkr
)
p. (I.23)

Following the calculations in [7, p. 119-120] we have

∆R`
ijk = gab∇a∇bR

`
ijk = gab

(
−∇a∇iR

`
jbk −∇a∇jR

`
bik

)
= gab

(
−∇i∇aR

`
jbk +Rm

aijR
`
mbk +Rm

aibR
`
jmk +Rm

aikR
`
jbm −R`

aimR
m
jbk

−∇j∇aR
`
bik +Rm

ajbR
`
mik +Rm

ajiR
`
bmk +Rm

ajkR
`
bim −R`

ajmR
m
bik

)
= g`m

(
−∇i∇kRjm +∇i∇mRjk +∇j∇kRim −∇j∇mRik

)
+ gmr

(
−RirR

`
jmk −RjrR

`
mik)

+ gab
(
Rm
aijR

`
mbk +Rm

aikR
`
jbm −R`

aimR
m
jbk

+Rm
ajiR

`
bmk +Rm

ajkR
`
bim −R`

ajmR
m
bik

)
. (I.24)
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Combining (I.23) and (I.24) we have

∂

∂t
R`
ijk = ∆R`

ijk + gmr
(
RirR

`
jmk +RjrR

`
mik

)
+ gab

(
−Rm

aijR
`
mbk −Rm

aikR
`
jbm +R`

aimR
m
jbk

−Rm
ajiR

`
bmk −Rm

ajkR
`
bim +R`

ajmR
m
bik

)
+ g`m

(
−gjm∇i∇kp+ gjk∇i∇mp+ gim∇j∇kp− gik∇j∇mp

)
+ g`m

(
Rr
ijkRrm +Rr

ijmRkr

)
− s0

n
g`m
(
Rr
ijkgrm +Rr

ijmgkr
)

+ g`m
(
Rr
ijkgrm +Rr

ijmgkr
)
p. (I.25)

Hence the evolution of S is

∂

∂t
S`ijk = ∆R`

ijk − ∆̃R̃`
ijk

+ gmr
(
RirR

`
jmk +RjrR

`
jmk

)
− g̃mr

(
R̃irR̃

`
jmk + R̃jrR̃

`
mik

)
+ gab

(
−Rm

aijR
`
mbk −Rm

aikR
`
jbm +R`

aimR
m
jbk

−Rm
ajiR

`
bmk −Rm

ajkR
`
bim +R`

ajmR
m
bik

)
− g̃ab

(
−R̃m

aijR̃
`
mbk − R̃m

aikR̃
`
jbm + R̃`

aimR̃
m
jbk

− R̃m
ajiR̃

`
bmk − R̃m

ajkR̃
`
bim + R̃`

ajmR̃
m
bik

)
+ g`m

(
−gjm∇i∇kp+ gjk∇i∇mp+ gim∇j∇kp− gik∇j∇mp

)
− g̃`m

(
−g̃jm∇̃i∇̃kp̃+ g̃jk∇̃i∇̃mp̃+ g̃im∇̃j∇̃kp̃− g̃ik∇̃j∇̃mp̃

)
+ g`m

(
Rr
ijkRrm +Rr

ijmRkr

)
− g̃`m

(
R̃r
ijkR̃rm + R̃r

ijmR̃kr

)
− s0

n
g`m
(
Rr
ijkgrm +Rr

ijmgkr
)

+
s0

n
g̃`m
(
R̃r
ijkg̃rm + R̃r

ijmg̃kr
)

+ g`m
(
Rr
ijkgrm +Rr

ijmgkr
)
p− g̃`m

(
R̃r
ijkg̃rm + R̃r

ijmg̃kr
)
p̃. (I.26)
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Looking at the individual components, we see

∆R− ∆̃R̃

=gab∇a∇bR− g̃ab∇̃a∇̃bR̃

=∇a(g
ab∇bR)−∇a(g̃

ab∇̃bR̃) + (∇a − ∇̃a)(g̃
ab∇̃bR̃)

=∇a

(
gab∇bR− g̃ab∇̃bR̃

)
+ g̃−1 ∗ A ∗ ∇̃R̃, (I.27)

while

g−1RR− g̃−1R̃R̃

=(g−1 − g̃−1)(R̃R̃) + g−1(RR− R̃R̃)

=g̃−1 ∗ h ∗ R̃ ∗ R̃ + g−1(R− R̃)R̃ + g−1(RR−RR̃)

=g̃−1 ∗ h ∗ R̃ ∗ R̃ + S ∗ R̃ + S ∗R, (I.28)

and

g−1g∇∇p− g̃−1g̃∇̃∇̃p̃

=(g−1 − g̃−1)g̃∇̃∇̃p̃+ g−1(g − g̃)∇̃∇̃p̃+ g−1g(∇∇p− ∇̃∇̃p̃)

=g̃−1 ∗ h ∗ g̃ ∗ ∇̃∇̃p̃+ h ∗ ∇̃∇̃p̃+ g−1g(∇− ∇̃)(∇̃p̃) + g−1g(∇∇p−∇∇̃p̃)

=g̃−1 ∗ h ∗ g̃ ∗ ∇̃∇̃p̃+ h ∗ ∇̃∇̃p̃+ A ∗ ∇̃p̃+ g−1g∇(∇− ∇̃)p̃+ g−1g∇∇(p− p̃)

=g̃−1 ∗ h ∗ g̃ ∗ ∇̃∇̃p̃+ h ∗ ∇̃∇̃p̃+ A ∗ ∇̃p̃+ h ∗ A ∗ ∇̃p̃+ C(∇∇q), (I.29)
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where in the last equality we used (I.10). We also have

g−1gR− g̃−1g̃R̃

=(g−1 − g̃−1)g̃R̃ + g−1(g − g̃)R̃ + g−1g(R− R̃)

=g̃−1 ∗ h ∗ g̃ ∗ R̃ + h ∗ R̃ + C(S), (I.30)

and lastly

g−1gRp− g̃−1g̃R̃p̃

=(g−1 − g̃−1)g̃R̃p̃+ g−1(g − g̃)R̃p̃+ g−1g(R− R̃)p̃+ g−1gR(p− p̃)

=g̃−1 ∗ h ∗ g̃ ∗ R̃ ∗ p̃+ h ∗ R̃ ∗ p̃+ S ∗ p̃+R ∗ q. (I.31)

Now by (I.26), (I.27), (I.28), (I.29), (I.30) and (I.31) we see

∂

∂t
S = ∇a

(
gab∇bR− g̃ab∇̃bR̃

)
+ g̃−1 ∗ A ∗ ∇̃R̃ + g̃−1 ∗ h ∗ R̃ ∗ R̃

+ S ∗ R̃ + S ∗R + g̃−1 ∗ h ∗ g̃ ∗ ∇̃∇̃p̃+ h ∗ ∇̃∇̃p̃+ A ∗ ∇̃p̃

+ h ∗ A ∗ ∇̃p̃+ C(∇∇q) + g̃−1 ∗ h ∗ g̃ ∗ R̃ + h ∗ R̃ + C(S)

+ g̃−1 ∗ h ∗ g̃ ∗ R̃ ∗ p̃+ h ∗ R̃ ∗ p̃+ S ∗ p̃+R ∗ q.
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Hence by (I.12) we have

∣∣∣∣ ∂∂tS −∆S − div U

∣∣∣∣
≤C
((
|g̃−1||R̃|2 + |g̃−1||g̃||∇̃∇̃p̃|+ |∇̃∇̃p̃|

+ |g̃−1||g̃||R̃|+ |R̃|+ |g̃−1||g̃||R̃||p̃|+ |R̃||p̃|
)
|h|

+
(
|g̃−1||∇̃R̃|+ |∇̃p̃|+ |h||∇̃p̃|

)
|A|

+
(
|R̃|+ |R|+ 1 + |p̃|

)
|S|+ |R||q|+ |∇∇q|

)
. (I.32)

This proves (I.15).

Remark I.3. Upon closer observation we notice the following dependencies:

Nh = Nh

(
n, s0, |p̃|

)
,

NA = NA

(
n, s0, |g̃|, |g̃−1|, |R̃|, |∇̃R̃|, |∇̃p̃|

)
,

NS = NS

(
n, s0, |g̃|, |g̃−1|, |h|, |R|, |R̃|, |∇̃R̃|, |p̃|, |∇̃p̃|, |∇̃∇̃p̃|

)
.

M is closed, so M × [0, T ] is compact. Thus, given two metrics g and g̃, all of these

quantities will be bounded.

Bounds on q and Its Spatial Derivatives

We turn our attention now to finding bounds on the differences between our

pressure functions p and p̃. We have the following proposition:

Proposition I.4. Let
(
g(t), p(t)

)
and

(
g̃(t), p̃(t)

)
be two solutions of (I.1) on M ×

13



[0, T ]. Then there exist constants Nq and N̂q such that

∫
M

|q|2dµ ≤ Nq

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ (I.33)∫

M

|∇q|2dµ ≤ Nq

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ (I.34)∫

M

|∇∇q|2dµ ≤ N̂q

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ (I.35)

Proof. We let f represent any smooth function or tensor. In particular we will let

f be represented by the function q, the difference of the pressure functions. Since

M is compact we have

∫
M

(
(n− 1)∆ + s0

)
(f) · f dµ

=s0

∫
M

|f |2dµ− (n− 1)

∫
M

〈
∇f,∇f

〉
dµ.

Since s0 < 0, taking the absolute value gives

∣∣∣∣∫
M

(
(n− 1)∆ + s0)(f) · fdµ

∣∣∣∣ = |s0|
∫
M

|f |2dµ+ (n− 1)

∫
M

|∇f |2dµ (I.36)

Now we deal specifically with p, p̃ and q. By (I.2) we have the following

equations for the pressure functions p and p̃:

(
(n− 1)∆ + s0

)
p = −

〈
Ric− s0

n
g,Ric− s0

n
g
〉

(I.37)

(
(n− 1)∆̃ + s0

)
p̃ = −

〈
R̃ic− s0

n
g̃, R̃ic− s0

n
g̃
〉
. (I.38)

14



Now we calculate

∆p− ∆̃p̃ = gab∇a∇bp− g̃ab∇̃a∇̃bp̃

= (g−1 − g̃−1)∇̃∇̃p̃+ g−1(∇− ∇̃)∇̃p̃+ g−1∇(∇− ∇̃)p̃+ ∆(p− p̃)

= g̃−1 ∗ h ∗ ∇̃∇̃p̃+ A ∗ ∇̃p̃+ h ∗ A ∗ ∇̃p̃+ ∆q. (I.39)

We also compute

−
〈

Ric− s0

n
g,Ric− s0

n
g
〉

+
〈

R̃ic− s0

n
g̃, R̃ic− s0

n
g̃
〉

=−
(
gikgj`RijRk` − g̃ikg̃j`R̃ijR̃k`

)
+ 2

s0

n

(
gijRij − g̃ijR̃ij

)
=− (g−1 − g̃−1)g̃−1R̃R̃− g−1(g−1 − g̃−1)R̃R̃− g−1g−1(R− R̃)R̃

− g−1g−1R(R− R̃) + 2
s0

n
(g−1 − g̃−1)R̃ + 2

s0

n
g−1(R− R̃)

=g̃−1 ∗ g̃−1 ∗ h ∗ R̃ ∗ R̃ + g̃−1 ∗ h ∗ R̃ ∗ R̃

+ S ∗ R̃ + S ∗R + g̃−1 ∗ h ∗ R̃ + C(S). (I.40)

Combining (I.37), (I.38), (I.39) and (I.40), we see that q satisfies the following

elliptic equation at each time t ∈ [0, T ]:

Lq =
(
(n− 1)∆ + s0

)
(q)

= g̃−1 ∗ h ∗ ∇̃∇̃p̃+ A ∗ ∇̃p̃+ h ∗ A ∗ ∇̃p̃+ g̃−1 ∗ g̃−1 ∗ h ∗ R̃ ∗ R̃

+ g̃−1 ∗ h ∗ R̃ ∗ R̃ + S ∗ R̃ + S ∗R + g̃−1 ∗ h ∗ R̃ + C(S) (I.41)

Hence

|Lq| =
∣∣((n− 1)∆ + s0

)
(q)
∣∣ ≤ N

(
|h|+ |A|+ |S|

)
. (I.42)
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To find estimates for q and ∇q, we combine (I.36) and (I.42):

|s0|
∫
M

|q|2dµ+ (n− 1)

∫
M

|∇q|2dµ

=

∣∣∣∣∫
M

(
(n− 1)∆ + s0

)
(q) · q dµ

∣∣∣∣
≤
∫
M

N
(
|h|+ |A|+ |S|

)
|q| dµ

≤|s0|
2

∫
M

|q|2dµ+N

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ.

Thus

|s0|
2

∫
M

|q|2dµ+ (n− 1)

∫
M

∣∣∇q|2dµ ≤ N

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ,

and we proved (I.33) and (I.34).

To find an appropriate bound for |∇∇q| we must turn to Interior Regularity

Theory for Elliptic PDE. From (I.41) we see that Lq = f is an Elliptic Equation.

We then have the following estimate from [15, p. 229].

|q|H2(W ) ≤ K
(
|Lq|L2(M) + |q|H1(M)

)
,

where W is any compactly supported open subset of M and K depends only upon

the coefficients of the operator L, the subset W and the manifold M . Since M is a

closed manifold we may in fact choose W = M . Thus we have

|q|H2(M) ≤ K
(
|Lq|L2(M) + |q|H1(M)

)
. (I.43)

Upon squaring both sides we observe∫
M

|∇∇q|2dµ ≤ |q|2H2(M) ≤ K2

(∫
M

|Lq|2dµ+ |q|2H1(M)

)
. (I.44)
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Now (I.33) and (I.34) imply that

|q|2H1(M) ≤ N

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ. (I.45)

Combining (I.42), (I.44) and (I.45) we have

∫
M

|∇∇q|2dµ ≤ N

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ,

and we proved (I.35).

Remark I.5. We observe the following dependencies:

Nq = Nq

(
n, s0, |g̃−1|, |h|, |R|, |R̃|, |∇̃p̃|, |∇̃∇̃p̃|

)
N̂q = N̂q

(
n, s0, |g̃−1|, |h|, |R|, |R̃|, |∇̃p̃|, |∇̃∇̃p̃|, K

)
where K is from (I.43).

Energy Estimates

Now we shall approximate the energy

E(t) =

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ. (I.46)
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We also define the following:

H(t) =

∫
M

|h|2dµ (I.47)

A(t) =

∫
M

|A|2dµ (I.48)

S(t) =

∫
M

|S|2dµ (I.49)

D(t) =

∫
M

|∇S|2dµ (I.50)

Note that E(t) = H(t)+A(t)+S(t). We now estimate the evolution of the energy

functional under Conformal Ricci Flow, E ′(t), by first estimating the evolutions of

H, A and S.

Evolution of H(t)

In [13], Lu, Qing and Zheng give the evolution of the volume element under

Conformal Ricci Flow:

∂

∂t
dµg(t) = −np(t)dµg(t) (I.51)

Hence by (I.13) and (I.47) we have

H′(t) ≤ N

∫
M

|h|2dµ+

∫
M

2

〈
∂h

∂t
, h

〉
dµ

≤ NH(t) +

∫
M

2|h|
∣∣∣∣∂h∂t

∣∣∣∣dµ
≤ NH(t) +N

∫
M

(
|S||h|+ |h|2 + |q||h|

)
dµ.
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Now we know that N
(
|S||h|+ |q||h|

)
≤ N

(
|h|2 + |S|2 + |q|2

)
. Hence

H′(t) ≤ NH(t) +N

∫
M

(
|S|2 + |q|2

)
dµ

≤ NH(t) +N

∫
M

(
|S|2 + |h|2 + |A|2

)
dµ

≤ NH(t) +NS(t) +NA(t) = NE(t). (I.52)

Evolution of A(t)

By (I.14), (I.48) and (I.51) we have

A′(t) ≤ NA(t) +

∫
M

2|A|
∣∣∣∣∂A∂t

∣∣∣∣dµ
≤ NA(t) +

∫
M

(
N |h||A|+N |A|2 + C|∇S||A|+ C|∇q||A|

)
dµ.

Now

N |h||A|+ C|∇S||A|+ C|∇q||A| ≤ N |h|2 +N |A|2 + |∇S|2 + |∇q|2.

hence we have that

A′(t) ≤ NA(t) +

∫
M

(
N |h|2 +N |A|2 + |∇S|2 + |∇q|2

)
dµ

≤ NA(t) +NH(t) +D(t) +N

∫
M

(
|h|2 + |A|2 + |S|2

)
dµ

≤ NA(t) +NH(t) +NS(t) +D(t) = NE(t) +D(t). (I.53)
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Evolution of S(t)

By (I.15), (I.49) and (I.51) we have

S ′(t) ≤ N

∫
M

|S|2dµ+

∫
M

2

〈
∂S

∂t
, S

〉
dµ

≤ NS(t) +

∫
M

(
2
〈
∆S + div V, S

〉
+N

(
|h|+ |A|+ |S|+ |q|

)
|S|+ C|∇∇q||S|

)
dµ

≤ NS(t) +

∫
M

(
2
〈
∆S + div V, S

〉
+N

(
|h|2 + |A|2 + |S|2 + |q|2 + |∇∇q|2

))
dµ.

Now by (I.33) and (I.35) we have

S ′(t) ≤ NS(t) +NH(t) +NA(t)

+

∫
M

(
2
〈
∆S + div V, S

〉
+N

(
|A|2 + |S|2 + |h|2

))
dµ

≤ NS(t) +NH(t) +NA(t) +

∫
M

2
〈
∆S + div V, S

〉
dµ.

Upon integrating by parts we get

S ′(t) ≤ NE(t)− 2

∫
M

〈
∇S + V,∇S

〉
dµ

≤ NE(t)− 2

∫
M

|∇S|2dµ+

∫
M

2|V ||∇S|dµ.

Now we know that

2|V ||∇S| ≤ |∇S|2 + |V |2 ≤ |∇S|2 +N
(
|h|2 + |A|2

)
,

hence

S ′(t) ≤ NE(t) +N

∫
M

(
|h|2 + |A|2

)
dµ−

∫
M

|∇S|2dµ ≤ NE(t)−D(t). (I.54)
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Proof of Main Theorem

Now we are ready to prove Theorem 1:

Proof. By (I.54), (I.52) and (I.53) we know that

H′(t) ≤ NE(t), A′(t) ≤ NE(t) +D(t), S ′(t) ≤ NE(t)−D(t),

so

E ′(t) ≤ NE(t).

Our initial condition g̃(0) = g(0) tells us that at t = 0 we have |h| = |A| =

|S| = 0. Therefore by the smoothness and integrability of our solutions we know

lim
t→0+
E(t) = 0,

so by Gronwall’s Inequality we know that E ≡ 0 on [0, T ]. Thus for t ∈ [0, T ] we

have that h ≡ 0 and g(t) ≡ g̃(t). Also, E ≡ 0 implies A ≡ 0 and S ≡ 0, so (I.33)

forces q ≡ 0. Thus p(t) ≡ p̃(t). Therefore
(
g̃(t), p̃(t)

)
=
(
g(t), p(t)

)
, t ∈ [0, T ].
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CHAPTER II

BACKWARD RICCI FLOW OF HOMOGENEOUS 4-GEOMETRIES

Ricci flow on a manifold, (M, g0) is an evolution equation on the metric tensor

given by

∂g

∂t
= −2Ricg(t). (II.1)

This equation was first introduced by Richard Hamilton in [9], where he

demonstrated that one can always expect short time existence as long as (M, g0) is

a smooth manifold. Backward Ricci flow is described by

∂g

∂t
= 2Ricg(t). (II.2)

In general, we cannot expect short time existence of solutions to this equation.

However, in the case of locally homogeneous manifolds, Ricci flow reduces to a

system of Ordinary Differential Equations. As mentioned in [4], this eliminates all

barriers to backward short-time existence of Ricci flow in these manifolds.

In [10], Isenberg and Jackson studied the behavior of solutions to Ricci flow

along locally homogeneous 3-manifolds. Later, in [11], Isenberg Jackson and Lu

studied Ricci flow along locally homogeneous 4-manifolds which admit compact
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quotients. Subsequently, in [4], Cao and Saloff-Coste used calculations from [6]

and [10] to study backward Ricci flow on the homogeneous 3-manifolds.

In this chapter we use many of the calculations in [11] to examine backward

Ricci flow of compact locally homogeneous geometries on 4-manifolds. The analysis

in this chapter is often very similar to that in [11], and we will use many of the

same calculations, some of which are included for completeness.

The classes of locally homogeneous manifolds are described in [11] and [14]. For

the geometries which are also Lie Groups we will choose a particular basis for the

Lie Algebra, {X1, X2, X3, X4}, that satisfies certain bracket relations. More detail

on these classes can be found in [14]. Letting {φi}4
i=1 be the frame of 1-forms dual

to {Xi} we can form a metric g0 = Aijφi ⊗ φj.

Our solutions will represent diagonalized Riemannian metrics. Thus they only

exist as long as all unknowns remain positive and finite. We denote by T0 the

postiive time at which the various solutions to (II.2) fail to exist.

We divide this chapter into two main sections. First is the non-trivial section

where we describe the Bianchi cases. The Lie Group structure has trivial Isotopy

group, so the manifold is in itself a Lie Group. In the next section we give a
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quick description of each of the 4-dimensional non-Bianchi cases. These are all

metrics of constant sectional or holomorphic bi-sectional curvature or products of

such metrics. The evolution of these metrics is well understood, but we include it

in this thesis for completeness. In the last section we summarize and compare the

behaviors under backward Ricci flow of the various geometries under.

The Bianchi Cases

The reduction of Ricci flow, equation (II.1), on the Bianchi classes of 4-

manifolds, to a system of ODE was done in [11] using the following Ricci curvature

formula for unimodular Lie groups from [2, p. 184]. Recall that the elemenets

X, Y, Z,W come from the Lie Algebra g of our Lie Group G which represents our

manifold.

Ric(W,W ) = −1

2

∑
i

∣∣[W,Yi]∣∣2 − 1

2

∑
i

〈[
W, [W,Yi]

]
, Yi
〉

+
1

2

∑
i<j

〈
[Yi, Yj],W

〉2
.

(II.3)

The only difference in calculating the system of ODE for backwards Ricci flow,

equation (II.2), is that the evolutions of the various metrics are negative of

those found in [11]. In this section I use these systems of ODE without further

explanation.

A formula to calculate the sectional curvature on Lie Groups, with corresponding
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Lie Algebras, is found in [2, p. 183]:

〈
R(X, Y )X, Y

〉
= −3

4

∣∣[X, Y ]
∣∣2 − 1

2

〈[
X, [X, Y ]

]
, Y
〉
− 1

2

〈[
Y, [Y,X]

]
, X
〉

+
∣∣U(X, Y )

∣∣2 − 〈U(X,X), U(Y, Y )
〉
, (II.4)

where U is defined by

〈
U(X, Y ), Z

〉
=

1

2

〈
[Z,X], Y

〉
+

1

2

〈
X, [Z, Y ]

〉
for all Z ∈ g. (II.5)

The classification notation I use comes from [14] and [11]. See [14] for more

details on this classification.

A1. Class U1b(1, 1, 1)c

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = 0

[X2, X3] = 0 [X2, X4] = 0 [X3, X4] = 0.

Our Lie Group structure is (M,G) = (R4,R4). The metric g is flat, hence also

Ricci flat and thus remains constant.

A2. Class U1b1, 1, 1c

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the
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Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = X1

[X2, X3] = 0 [X2, X4] = kX2 [X3, X4] = −(k + 1)X3.

When k = 0 this corresponds to the geometry (M,G) =
(

˜Sol3 × R, ˜Sol3 × R
)
.

When k = 1 this corresponds to the geometry (M,G) =
(
Sol40, Sol

4
0

)
.

If k 6= 0, 1 and there is some number α > 0 with β = kα, γ = −(k+ 1)α such that

eα, eβ and eγ are roots of λ3 − mλ2 + nλ − 1 = 0, then this corresponds to the

geometry (M,G) =
(
Sol4m,n, Sol

4
m,n

)
.

We diagonalize our initial metric g0 by letting Yi = UpsilonkiXk for constants

Υk
i . Now letting {θi} be the frame of 1-forms dual to {Yi} we may write the metric

as

g0 = λ1θ
2
1 + λ2θ

2
2 + λ3θ

2
3 + λ4θ

2
4.

In [11] we find outlines as to when exactly the Ricci tensor is also diagonal

under these same coordinates. This is exactly when the metric will remain diagonal

under Ricci flow and also backward Ricci flow. The property of a metric to remain

diagonal under this flow is essential to our calculations, and we will only consider

those families which satisfy this property. In each remaining subsection we will

describe a flow which is of the form

g(t) = A(t)θ2
1 +B(t)θ2

2 + C(t)θ2
3 +D(t)θ2

4,
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where

A(0) = λ1, B(0) = λ2, C(0) = λ3, and D(0) = λ4.

The systems of ODE governing the evolution of the quantities A, B, C and D

were calculated in [11].

In the class U1[(1, 1, 1)] we may diagonalize the metric by letting Yi = Υk
iXk

with

Υ =


1 0 0 0

a1 1 0 0

a2 a3 1 0

a4 a5 a6 1

 .
By Proposition 1 in [11], if k = 1 then the metric g(t) remains diagonal in the

basis Yi if and only if a1 = a2 = a3 = 0, and if k 6= 1 then g(t) remains diagonal in

the basis Yi if and only if a2 = a3 = 0. In either of these cases we find that {Yi}

satisfies the following bracket relations:

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y1, Y4] = Y1

[Y2, Y3] = 0 [Y2, Y4] = kY2 [Y3, Y4] = −(k + 1)Y3.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow (II.2) reduces to the following system of

equations by [11]:

dA

dt
=
dB

dt
=
dC

dt
= 0,

dD

dt
= −4

(
k2 + k + 1

)
.

(II.6)
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The solution is

A(t) = λ1

B(t) = λ2

C(t) = λ3

D(t) = λ4 − 4
(
k2 + k + 1

)
t.

(II.7)

It is clear that

T0 =
λ4

4

(
k2 + k + 1

)−1
, (II.8)

and that as t→ T0 the volume normalized flow will approach the hyperplane, R3.

The sectional curvatures, also calculated in [11], are as follows:

K(Y1, Y2) = − k
D

K(Y1, Y3) =
k + 1

D
K(Y1, Y4) =

k(k + 1)

D

K(Y2, Y3) = − 1

D
K(Y2, Y4) = −k

2

D
K(Y3, Y4) = −(k + 1)2

D
.

Thus, as D approaches 0 linearly in t we see that the non-zero curvatures approach

infinity with a singularity of the form (T0 − t)−1.

A3. Class U1bZ, Z̄, 1c

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = kX1 +X2

[X2, X3] = 0 [X2, X4] = −X1 + kX2c [X3, X4] = −2kX3.
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This corresponds to the geometry (M,G) = (R4, E(2) × R2). Here we diagonalize

the metric by letting Yi = Υk
iXk with

Υ =


1 a2 a3 0

0 1 a1 0

0 0 1 0

a4 a5 a6 1

 .
By Proposition 2 in [11], the metric g(t) remains diagonal in the basis Yi if and

only if a1 = a2 = a3 = 0. We find that {Yi} satisfies the following bracket relations:

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y1, Y4] = kY1 + Y2

[Y2, Y3] = 0 [Y2, Y4] = −Y1 + kY2 [Y3, Y4] = −2kY3.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

equations:

dA

dt
=
A2 −B2

BD

dB

dt
=
B2 − A2

AD

dC

dt
= 0

dD

dt
= −(A−B)2 + 12k2AB

AB
.

(II.9)

Clearly, C(t) = λ3. Also,

d

dt

(
A−B

)
=

(A+B)2

ABD
(A−B),

so the conditions A = B, A > B and A < B are all preserved.
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First assume λ1 = λ2. Then A = B for all time t, and our solution is

A(t) = λ1

B(t) = λ1

C(t) = λ3

D(t) = λ4 − 12k2t.

(II.10)

Thus

T0 =
λ4

12k2
, (II.11)

and it is clear that as t → T0, the volume normalized flow will approach the

hyperplane, R3.

Now assume λ1 6= λ2. By the symmetry of (II.9), we may assume that λ1 > λ2.

Then A(t) ≥ B(t) for all time t. Now,

d

dt

(
AB
)

= A
B2 − A2

AD
+B

A2 −B2

BD
= 0,

so AB = λ1λ2 is constant. It is also clear that T0 < ∞, because
dD

dt
< −12k2

implies T0 <
λ4

12k2
. With AB = λ1λ2, we see that

dA

dt
=
A4 − λ2

1λ
2
2

λ1λ2AD
,
dD

dt
= −

(
A−B

)2

λ1λ2

− 12k2,

hence

dD

dA
= −

(
A−B

)2
+ 12λ1λ2k

2

λ1λ2

· λ1λ2AD

A4 − λ2
1λ

2
2

,
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so

1

D

dD

dA
= −

[(
A− λ1λ2

A

)2
+ 12λ1λ2k

2
]
A

A4 − λ2
1λ

2
2

=
−A4 + (2− 12k2)λ1λ2A

2 − λ2
1λ

2
2

A(A+
√
λ1λ2)(A−

√
λ1λ2)(A2 + λ1λ2)

. (II.12)

Under the substitution Ã =
√
λ1λ2A, we have the following:

1

D

dD

dÃ
=
−Ã4 + (2− 12k2)Ã2 − 1

Ã(Ã+ 1)(Ã− 1)(Ã2 + 1)

=
1

Ã
− 3k2

Ã+ 1
− 3k2

Ã− 1
− 2(1− 3k2)Ã

Ã2 + 1
.

Solving this equation we find

D = Λ

(
Ã

Ã2 + 1

)(
Ã2 + 1

Ã2 − 1

)3k2

= Λ

( √
λ1λ2A

A2 + λ1λ2

)(
A2 + λ1λ2

A2 − λ1λ2

)3k2

, (II.13)

where

Λ = λ4

(
λ1 + λ2√
λ1λ2

)(
λ1 − λ2

λ1 + λ2

)3k2

. (II.14)

We see that D → 0 as t → T0 if and only if A → ∞ as t → T0. But since

AB is constant, we know that B → 0 if and only if A → ∞. Thus we know that

D → 0, B → 0 and A→∞ at the same time, T0 <
λ4

12k2
<∞.

As A→∞, we see that

D ≈ Λ
√
λ1λ2

A
=

Λ√
λ1λ2

B. (II.15)
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Now, as t→ T0, we may approximate

dA

dt
=
A2 −B2

BD
∼ A4

Λ(λ1λ2)3/2
. (II.16)

Thus

d

dt

(
1

A3

)
→ − 3

Λ(λ1λ2)3/2

as t→ T0. Since A→∞ as t→ T0, we see that

1

A3
=

3

Λ(λ1λ2)3/2
(T0 − t)

(
1 + o(T0 − t)

)
.

Thus

A =

(
3

Λ(λ1λ2)3/2
(T0 − t)

)−1/3 (
1 + o(T0 − t)

)−1/3

=
√
λ1λ2

(
3

Λ
(T0 − t)

)1/3 (
1 + o(T0 − t)

)
Now by (II.15) we have the following behavior as t→ T0:

A ≈
√
λ1λ2

(
3

Λ

(
T0 − t

))−1/3

B ≈
√
λ1λ2

(
3

Λ

(
T0 − t

))1/3

C = λ3

D ≈ Λ

(
3

Λ

(
T0 − t

))1/3

.

(II.17)

where Λ is given by (II.14).

The volume normalized solution will converge to the plane R2.
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The sectional curvatures are as follows:

K(Y1, Y2) = −
A
B

+ B
A
− 2− 4k2

4D
K(Y1, Y3) =

2k2

D

K(Y1, Y4) =
A
B
− 3B

A
+ 2− 4k2

D
K(Y2, Y3) =

2k2

D

K(Y2, Y4) =
−3A

B
+ B

A
+ 2− 4k2

D
K(Y3, Y4) = −4k2

D
.

Thus we see that the sectional curvatures perpendicular to Y3 approach infinity

at a rate of (T0 − t)−1. If k = 0 the sectional curvatures parallel to Y3 remain 0,

while if k 6= 0 then these curvatures approach infinity at a rate of (T0 − t)−1/3.

A4. Class U1b2, 1c, µ = 0

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = X2

[X2, X3] = 0 [X2, X4] = 0 [X3, X4] = 0.

This corresponds to the geometry (M,G) = (Nil3 × R, Nil3 × R). Here we

diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 a2 a3 0

0 1 0 0

0 a1 1 0

a4 a5 a6 1

 .
By Proposition 3 in [11], the metric g(t) remains diagonal in the basis Yi for all t.
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We find that {Yi} satisfies the following bracket relations:

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y1, Y4] = Y2

[Y2, Y3] = 0 [Y2, Y4] = −Y1 + kY2 [Y3, Y4] = −2kY3.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

equations:

dA

dt
= −B

D

dB

dt
=

B2

AD

dC

dt
= 0

dD

dt
= −B

A
.

(II.18)

We calculate

d

dt
(AB) = −BB

D
+ A

B2

AD
= 0

and

d

dt

(
A

D

)
=

1

D2

(
−DB

D
+ A

B

A

)
= 0.

Thus we have

B =
λ1λ2

A
, and D =

λ4

λ1

A, (II.19)

so

A2dA

dt
= −ABA

D
= −λ

2
1λ2

λ4

, (II.20)

hence

A3 = λ3
1 −

3λ2
1λ2

λ4

t. (II.21)
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Thus by (II.18), (II.19) and (II.21), we have the following solution to (II.18):

A = λ1

(
1− 3λ2

λ1λ4

t

)1/3

B = λ2

(
1− 3λ2

λ1λ4

t

)−1/3

C = λ3

D = λ4

(
1− 3λ2

λ1λ4

t

)1/3

.

(II.22)

We see that

T0 =
λ1λ4

3λ2

, (II.23)

and that the volume normalized solution will converge to the plane R2.

The sectional curvatures are as follows:

K(Y1, Y2) =
B

4AD
K(Y1, Y3) = 0 K(Y1, Y4) = − 3B

4AD

K(Y2, Y3) = 0 K(Y2, Y4) =
B

4AD
K(Y3, Y4) = 0.

Thus all non-zero curvatures will approach infinity near t = T0 at a rate of (T0−t)−1.

A5. Class U1b2, 1c, µ = 1

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = −1

2
X1 +X2

[X2, X3] = 0 [X2, X4] = −1

2
X2 [X3, X4] = X3.
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This does not correspond to any of the compact homogeneous geometries. Here

we diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 a2 a3 0

0 1 a1 0

0 0 1 0

a4 a5 a6 1

 .
By Proposition 4 in [11], the metric g(t) remains diagonal in the basis Yi if and

only if a1 = a3 = 0. We find that {Yi} satisfies the following bracket relations:

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y1, Y4] = −1

2
Y1 + Y2

[Y2, Y3] = 0 [Y2, Y4] = −1

2
Y2 [Y3, Y4] = Y3.

Let g(t) = A(t)θ2
1 + B(t)θ2

2 + C(t)θ2
3 + D(t)θ2

4 where A(0) = λ1, B(0) =

λ2, C(0) = λ3 and D(0) = λ4. Then backward Ricci flow reduces to the following

system of equations:

dA

dt
= −B

D

dB

dt
=

B2

AD

dC

dt
= 0

dD

dt
= −3− B

A
.

(II.24)

Since
dD

dt
< −3 we see that there is a maximal time T0 <

λ4

3
. Also,

d

dt
(AB) = A

(
B2

AD

)
+B

(
−B
D

)
= 0, (II.25)

so

AB = λ1λ2. (II.26)
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Thus (II.24) reduces to

dA

dt
= −λ1λ2

AD

B =
λ2

λ1

A

C = λ3

dD

dt
=
−3A2 − λ1λ2

A2
.

(II.27)

Now we calculate

dD

dA
=

3A2 + λ1λ2

A2
· AD
λ1λ2

,

1

D
· dD
dA

=
3

λ1λ2

A+
1

A
.

Solving gives us

D = Λ · Ae
(

3A2

2λ1λ2

)
, (II.28)

where

Λ =
λ4

λ1

e

(
− 3λ1

2λ2

)
. (II.29)

By (II.26) and (II.28) we see that A → 0, B → ∞ and D → 0 all together as

t→ T0.

To describe the behavior near t = T0 we observe that as A approaches 0, (II.24),

(II.26) and (II.28) tell us

A2dA

dt
→ −λ1λ2

Λ
,
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hence

A3 =
3λ1λ2

Λ
(T0 − t)

(
1 + o(T0 − t)

)
. (II.30)

Thus, by (II.24), (II.26) and (II.28), we have the following solutions to (II.24):

A ≈
(

3λ1λ2

Λ

(
T0 − t

))1/3

B ≈ λ1λ2

(
3λ1λ2

Λ

(
T0 − t

))−1/3

C = λ3

D ≈ Λ

(
3λ1λ2

Λ

(
T0 − t

))1/3

.

(II.31)

where Λ is given in (II.29). Again we notice that as t approaches T0 the renormalized

flow approaches the plane R2.

The sectional curvatures are as follows:

K(Y1, Y2) =
−1 + B

A

4D
K(Y1, Y3) =

1

2D
K(Y1, Y4) = −

1 + 3B
A

4D

K(Y2, Y3) =
1

2D
K(Y2, Y4) =

−1 + B
A

4D
K(Y3, Y4) = − 1

D
.

Thus curvatures perpendicular to Y3 will have a singularity t = T0 of the form

(T0− t)−1, while those parallel to Y3 will have a singularity of the form (T0− t)−1/3.

A6. Class U1b3c

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the
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Lie bracket is of the form

[X1, X2] = 0 [X1, X3] = 0 [X1, X4] = X2

[X2, X3] = 0 [X2, X4] = X3 [X3, X4] = 0.

This corresponds to the geometry (M,G) = (Nil4, Nil4).

Here we diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 a2 a3 0

0 1 0 0

0 a1 1 0

a4 a5 a6 1

 .
By Proposition 5 in [11], the metric g(t) remains diagonal in the basis Yi if and only

if a1 = a2. We find in this case that {Yi} satisfies the following bracket relations:

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y1, Y4] = Y2

[Y2, Y3] = 0 [Y2, Y4] = Y3 [Y3, Y4] = 0.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

equations:

dA

dt
= −B

D

dB

dt
=
B2 − AC
AD

dC

dt
=

C2

BD

dD

dt
= −B

A
− C

B
.

(II.32)
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We calculate

d

dt

(
ABC

)
= AB · C

2

BD
+ AC · B

2 − AC
AD

−BC · B
D

= 0

and

d

dt

(
A

CD

)
=
−CD · B

D
+ AC

(
B
A

+ C
B

)
− AD · C2

BD

C2D2
= 0,

so we have

ABC = λ1λ2λ3, (II.33)

A

CD
=

λ1

λ3λ4

. (II.34)

Now we define

E =
B

AD
F =

C

BD
. (II.35)

Then

dE

dt
=
AD · B2−AC

AD
+ AB

(
B
A

+ C
B

)
+BD · B

D

(AD)2
=

3B2

(AD)2
= 3E2, (II.36)

and

dF

dt
=
BD · C2

BD
+BC

(
B
A

+ C
B

)
− CD · B2−AC

AD

(BD)2
=

3C2

(BD)2
= 3F 2. (II.37)

Solving (II.36) and (II.37) gives us

E(t) =
E(0)

1− 3E(0)t
(II.38)
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and

F (t) =
F (0)

1− 3F (0)t
. (II.39)

Now by (II.32), (II.35) and (II.38) we have

1

A

dA

dt
= −E(t) =

E(0)

3E(0)t− 1
,

so

ln(A) =
1

3
ln
∣∣3E(0)t− 1

∣∣+ ln(λ1)

and

A = λ1

(
1− 3E(0)t

)1/3
. (II.40)

Similarly, by (II.32), (II.35) and (II.39), we have

1

C

dC

dt
= F (t) =

F (0)

1− 3F (0)t
, (II.41)

so

C = λ3

(
1− 3F (0)t

)−1/3
. (II.42)

Now using (II.33), (II.34) and (II.35) we have the following solution to (II.32):

A = λ1

(
1− 3λ2

λ3λ4

t

)1/3

B = λ2

(
1− 3λ2

λ3λ4

t

)−1/3(
1− 3λ3

λ2λ4

t

)1/3

C = λ3

(
1− 3λ3

λ2λ4

t

)−1/3

D = λ4

(
1− 3λ2

λ3λ4

t

)1/3(
1− 3λ3

λ2λ4

t

)1/3

.

(II.43)
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where

T0 = min

{
λ3λ4

3λ2

,
λ2λ4

3λ3

}
. (II.44)

The sectional curvatures are as follows:

K(Y1, Y2) =
B

4AD
K(Y1, Y3) = 0 K(Y1, Y4) =

−3B

4AD

K(Y2, Y3) =
C

4BD
K(Y2, Y4) =

B
A
− 3C

B

4D
K(Y3, Y4) =

C

4BD
.

If λ2 < λ3, then T0 =
λ2λ4

3λ3

, and as t→ T0 we have

A ≈ k1

B ≈ k2(T0 − t)1/3

C = k3(T0 − t)−1/3

D ≈ k4(T0 − t)1/3.

(II.45)

Also, K(Y1, Y2) will approach a positive constant, K(Y1, Y4) will approach a

negative constant, and all curvatures perpendicular to Y1 will have singularities of

the form (T0 − t)−1.

If λ2 > λ3, then T0 =
λ3λ4

3λ2

, and as t→ T0 we have

A = k1(T0 − t)1/3

B ≈ k2(T0 − t)−1/3

C ≈ k3

D ≈ k4(T0 − t)1/3.

(II.46)
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Here K(Y2, Y3) and K(Y3, Y4) will approach positive constants while each

curvature perpendicular to Y3 will have a singularity of the form (T0 − t)−1.

If λ2 = λ3, then T0 =
λ4

3
, and as t→ T0 we have

A = k1(T0 − t)1/3

B = λ2

C = k3(T0 − t)−1/3

D = k4(T0 − t)2/3.

(II.47)

Here all non-zero curvatures will have a singularity of the form (T0 − t)−1. It is

interesting to note that if 3λ1 = λ2 = λ3, then K(Y2, Y4) = 0 for all t, while in all

other cases it explodes near the singular time.

In all three cases the volume normalized solution approaches the plane R2.

A7. Class U3I0

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = −X3 [X1, X3] = −X2 [X1, X4] = 0

[X2, X3] = X4 [X2, X4] = 0 [X3, X4] = 0.

This corresponds to the geometry (M,G) = (Sol4, Sol4). Here we diagonalize the
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metric by letting Yi = Υk
iXk with

Υ =


1 a4 a5 a6

0 1 a2 a3

0 0 1 a1

0 0 0 1

 .
Let α = a2, β = a1a2 −3 −a4 and γ = a1 − a1a

2
2 + a2a3 + a2a4 − a5. Proposition

6 in [11], the metric g(t) remains diagonal in the basis Yi if and only if one of the

following hold:

(i) α = β = γ = 0
(ii) β = γ = 0 and λ2 = (1− α2)λ3

We analyze these cases separately.

A7(i)

Here we consider the case where α = β = γ = 0. We find that {Yi} satisfies the

following bracket relations:

[Y1, Y2] = −Y3 [Y1, Y3] = −Y2 [Y1, Y4] = 0

[Y2, Y3] = Y4 [Y2, Y4] = 0 [Y3, Y4] = 0.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of
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equations:

dA

dt
= −B

C
− C

B
− 2

dB

dt
= −C

A
− D

C
+
B2

AC

dC

dt
= −B

A
− D

B
+
C2

AB

dD

dt
=

D2

BC
.

(II.48)

By the symmetry of B and C in (II.48), we may assume that λ2 ≥ λ3. We

calculate

d

dt

(
BCD2

)
= 2BCD · D

2

BC
+ CD2

(
B2

AC
− C

A
− D

C

)
+BD2

(
C2

AB
− B

A
− D

B

)
= 0,

so

BCD2 = λ2λ3λ
2
4. (II.49)

Now we observe

dD

dt
=

D2

BC
=

D4

λ2λ3λ2
4

,

so

1

D4
· dD
dt

=
1

λ2λ3λ2
4

,

and

D = λ4

(
1− 3λ4

λ2λ3

t

)−1/3

. (II.50)
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We may also calculate

d

dt

(
AD(B − C)

)
= AD

(
B2

AC
− C

A
− D

C
+
B

A
+
D

B
− C2

AB

)
+ A(B − C) · D

2

BC
−D(B − C)

(
B

C
+
C

B
+ 2

)
= 0,

so

AD(B − C) = λ1λ4(λ2 − λ3). (II.51)

Now by (II.49) and (II.51) we have

(B − C)2

BC
A2 =

(
AD(B − C)

)2

BCD2
=
λ2

1(λ2 − λ3)2

λ2λ3

= 4k2. (II.52)

Now

dA

dt
= −(B + C)2

BC
= −

(
(B − C)2

BC
A2

)
· 1

A2
− 4 =

−4
(
k2 + A2

)
A2

, (II.53)

hence (
1− k2

A2 + k2

)
dA

dt
= −4, (II.54)

so

A− k tan−1

(
A

k

)
= −4t+ λ1 − k tan−1

(
λ1

k

)
, (II.55)

where k is given in (II.52). Now by (II.50) and (II.55) we have

T0 = min

{
λ2λ3

3λ4

,
λ1

4
− λ1(λ2 − λ3)

2
√
λ2λ3

tan−1

(
2
√
λ2λ3

λ2 − λ3

)}
= min

{
T1, T2

}
. (II.56)
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Using (II.49) and (II.51) we can calculate

B =
λ4

2AD

(
λ1(λ2 − λ3) +

√
λ2

1(λ2 − λ3)2 + 4A2λ2λ3

)
, (II.57)

and

C =
λ4

2AD

(
λ1(λ3 − λ2) +

√
λ2

1(λ2 − λ3)2 + 4A2λ2λ3

)
. (II.58)

Now we calculate

lim
A→0

(
A− k tan−1

(
A
k

)
A3

)
=

1

3k2
.

Thus by (II.55), near A = 0 we have

A ≈
(
12k2(T2 − t)

)1/3
, (II.59)

where k is given in (II.52).

The sectional curvatures are as follows:

K(Y1, Y2) =
B
C
− 3C

B
− 2

4A
K(Y1, Y3) =

C
B
− 3B

C
− 2

4A

K(Y1, Y4) = 0 K(Y2, Y3) =
B2 + C2 + 2BC − 3AD

4ABC

K(Y2, Y4) =
D

4BC
K(Y3, Y4) =

D

4BC
.

If T0 = T1 < T2, then we have the following behavior as t→ T0:

A ≈ k1

B ≈ k2(T0 − t)1/3

C ≈ k3(T0 − t)1/3

D = k4(T0 − t)−1/3.

(II.60)
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In this case the curvatures parallel to Y1 will approach constants while those

perpendicular to Y1 will have a singularity of the form (T0 − t)−1.

If T0 = T2 < T1 and λ2 = λ3, then as t→ T0,

A ≈ k1(T0 − t)1/3

B = C ≈ k2

D ≈ k4.

(II.61)

Here the curvatures perpendicular to Y4 will approach infinity at a rate of

(T0 − t)−1/3 while those curvatures parallel to Y4 will approach constants.

If T0 = T2 < T1 and λ2 > λ3, then as t→ T0,

A ≈ k1(T0 − t)1/3

B ≈ k2(T0 − t)−1/3

C ≈ k3(T0 − t)1/3

D ≈ k4.

(II.62)

In this case the curvatures perpendicular to Y4 will approach infinity at a rate

of (T0 − t)−1 while those curvatures parallel to Y4 will approach constants.
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If T0 = T1 = T2 and λ2 = λ3, then as t→ T0, AD → constant, so

A ≈ k1(T0 − t)1/3

B = C ≈ k2(T0 − t)1/3

D = k4(T0 − t)−1/3.

(II.63)

Here, K(Y1, Y2) and K(Y1, Y3) will have singularities at t = T0 of the form

(T0 − t)−1/3. All other non-zero sectional curvatures will have singularities of the

form (T0 − t)−1.

If T0 = T1 = T2 and λ2 > λ3, then as t→ T0, AD → constant, so

A ≈ k1(T0 − t)1/3

B ≈ k2

C ≈ k3(T0 − t)2/3

D = k4(T0 − t)−1/3.

(II.64)

Here, all non-zero curvatures will have singularities of the form (T0 − t)−1.

In the special case where both T0 = T2 < T1 and λ1 = λ2, the normalized

solution will approach the hyperplane R3. In all other cases the normalized solution

will approach R2.
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A7(ii)

Here we consider the case where β = γ = 0 and λ2 = (1− α2)λ3. We find that

{Yi} satisfies the following bracket relations:

[Y1, Y2] = −αY2 [Y1, Y3] = αY3 − Y2 [Y1, Y4] = 0

[Y2, Y3] = Y4 [Y2, Y4] = 0 [Y3, Y4] = 0.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

equations:

dA

dt
= −B

2 + 2(1 + α2)BC + (1− α2)2C2

BC

dB

dt
=
−AD +B2 − (1− α2)2C2

AC

dC

dt
=
−AD −B2 + (1− α2)2C2

AB

dD

dt
= − D

2

BC

λ2 = (1− α2)λ3.

(II.65)

We observe

d

dt

(
B − (1− α2)C

)
= 0,

so B = (1− α2)C is preserved under (II.65), which then reduces to

dA

dt
= −4

dB

dt
= −(1− α2)

D

B

B = (1− α2)C

dD

dt
= (1− α2)

D2

B2
.

(II.66)
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Now

d

dt

(
BD

)
= 0,

so

BD = λ2λ4. (II.67)

Thus

dB

dt
= −(1− α2)

λ2λ4

B2
,

so

1

3
B3 =

1

3
λ3

2 − (1− α2)λ2λ4t,

and we have the following solution to (II.65):

A = λ1 − 4t

B =
(
λ3

2 − 3(1− α2)λ2λ4t
)1/3

C =
1

1− α2

(
λ3

2 − 3(1− α2)λ2λ4t
)1/3

D = λ2λ4

(
λ3

2 − 3(1− α2)λ2λ4t
)−1/3

,

(II.68)

where

T0 = min

{
λ1

4
,

λ2
2

3(1− α2)λ4

}
= min

{
T1, T2

}
. (II.69)

The sectional curvatures are as follows:

K(Y1, Y2) = − 1

A
K(Y1, Y3) = − 1

A
K(Y1, Y4) = 0

K(Y2, Y3) =
4BC − 3AD

4ABC
K(Y2, Y4) =

D

4BC
K(Y3, Y4) =

D

4BC
.
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If T0 = T1 < T2, then near t = T0 we have

A = 4(T0 − t)

B ≈ k2

C ≈ k3

D ≈ k4.

(II.70)

In this case all sectional curvatures perpendicular to Y4 will have a singularity

at T0 of the form (T0− t)−1 while those parallel to Y4 will approach constants. The

normalized solution will converge to R3.

If T0 = T2 < T1, then near t = T0 we have

A ≈ k1

B ≈ k2(T0 − t)1/3

C ≈ k3(T0 − t)1/3

D ≈ k4(T0 − t)−1/3.

(II.71)

Here all sectional curvatures perpendicular to Y1 will have a singularity at T0

of the form (T0 − t)−1 while those parallel to Y1 will approach constants. The

normalized solution will converge to R2.
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If T0 = T1 = T2, then near t = T0 we have

A = 4(T0 − t)

B ≈ k2(T0 − t)1/3

C ≈ k3(T0 − t)1/3

D ≈ k4(T0 − t)−1/3.

(II.72)

Here all non-zero curvatures will have a singularity of the form (T0 − t)−1, and

the normalized solution will converge to a product metric M2 × R.

A8. Class U3I2

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = X3 [X1, X3] = −X2 [X1, X4] = 0

[X2, X3] = −X4 [X2, X4] = 0 [X3, X4] = 0.

This does not correspond to any of the compact homogeneous geometries.

Here we diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 a4 a5 a6

0 1 a2 a3

0 0 1 a1

0 0 0 1

 .
By Proposition 7 in [11], the metric g(t) remains diagonal in the basis Yi if and

only if a2 = 0, a1 = a5 and a3 = a4. We find in this case that {Yi} satisfies the
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following bracket relations:

[Y1, Y2] = Y3 [Y1, Y3] = −Y2 [Y1, Y4] = 0

[Y2, Y3] = −Y4 [Y2, Y4] = 0 [Y3, Y4] = 0.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

equations:

dA

dt
= −(B − C)2

BC

dB

dt
=
B2 − C2 − AD

AC

dC

dt
=
C2 −B2 − AD

AB

dD

dt
=

D2

BC
.

(II.73)

By the symmetry of B and C in (II.73) we may assume that λ2 ≥ λ3. Note also

that the equations for B,C and D are identical to those in (II.48), so by (II.49)

and (II.50) we have

BCD2 = λ2λ3λ
2
4 (II.74)

and

D = λ4

(
1− 3λ4

λ2λ3

t

)−1/3

. (II.75)

Similar calculations as those used to compute (II.51) show that

AD(B + C) = λ1λ4(λ2 + λ3). (II.76)
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Using (II.73) and (II.76), we can solve for A:

dA

dt
=
−4(k2 + A2)

A2
,

and

A2

k2 − A2
· dA
dt

= −4,

where

λ2
1(λ2 + λ3)2

λ2λ3

= 4k2. (II.77)

Now we integrate to find

k tanh−1

(
A

k

)
− A = −4t+ k tanh−1

(
λ1

k

)
− λ1, (II.78)

where k is given in (II.77). We then calculate

lim
A→0

k tanh−1
(
A
k

)
− A

A3
=

1

3k2
, (II.79)

hence near t = T0 we have

A ≈
(
12k2(T0 − t)

)1/3
. (II.80)

Using (II.74) and (II.76) we find

B =
λ4

2AD

(
λ1(λ2 + λ3) +

√
λ2

1(λ2 + λ3)2 − 4A2λ2λ3

)
, (II.81)

C =
λ4

2AD

(
λ1(λ2 + λ3)−

√
λ2

1(λ2 + λ3)2 − 4A2λ2λ3

)
, (II.82)

and

T0 = min

{
λ2λ3

3λ4

,
1

4

(
k tanh−1

(
λ1

k

)
− λ1

)}
. (II.83)
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The sectional curvatures are as follows:

K(Y1, Y2) =
B
C
− 3C

B
+ 2

4A
K(Y1, Y3) =

C
B
− 3B

C
+ 2

4A

K(Y1, Y4) = 0 K(Y2, Y3) =
B2 + C2 − 2BC − 3AD

4ABC

K(Y2, Y4) =
D

4BC
K(Y3, Y4) =

D

4BC
.

If T0 = T1 < T2, then we have the following behavior as t→ T0:

A ≈ k1

B ≈ k2(T0 − t)1/3

C ≈ k3(T0 − t)1/3

D = k4(T0 − t)−1/3.

(II.84)

In this case the curvatures parallel to Y1 will approach constants while those

perpendicular to Y1 will have a singularity of the form (T0 − t)−1.

If T0 = T2 < T1, then as t→ T0,

A ≈ k1(T0 − t)1/3

B ≈ k2(T0 − t)−1/3

C ≈ k3(T0 − t)1/3

D ≈ k4.

(II.85)

In this case the curvatures perpendicular to Y4 will approach infinity at a rate of

(T0 − t)−1 while those curvatures parallel to Y4 will approach constants.
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If T0 = T1 = T2, then as t→ T0, AD → constant, so

A ≈ k1(T0 − t)1/3

B ≈ k2

C ≈ k3(T0 − t)2/3

D = k4(T0 − t)−1/3.

(II.86)

Here, all non-zero curvatures will have singularities of the form (T0 − t)−1.

A9. Class U3S1

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = −X3 [X1, X3] = −X2 [X1, X4] = 0

[X2, X3] = X1 [X2, X4] = 0 [X3, X4] = 0.

This Lie Algebra structure is a direct sum sl2⊕R, and the Lie Group structure

structure is (M,G) = (ŜL(2,R)× R, ŜL(2,R)× R).

Here we diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 0 0 0

0 1 0 0

0 0 1 0

a1 a2 a3 1

 .
Remark II.1. There are initial metrics in this class which cannot be diagonalized
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so easy. However, the situations presented in these cases provide us with very

complicated situations which we will not address here. See [11, p. 376-377].

Here we calculate the curvatures of this diagonalized metric in general form

so that we can use it to the specific cases outlined below. First we calculate the

operator U using (II.5):

U(Yi, Yi) = 0 for all i

U(Y1, Y2) =
B − A

2C
Y3 +

a3(B − A)

2D
Y4

U(Y1, Y3) =
A+ C

2B
Y2 +

A2(A+ C)

2D
Y4

U(Y1, Y4) =
a3A

2B
Y2 −

a2A

2C
Y3

U(Y2, Y3) = −B + C

2A
Y1 −

a1(B + C)

2D
Y4

U(Y2, Y4) = −a3B

2A
Y1 +

a1B

2C
Y3

U(Y3, Y4) = −a2C

2A
Y1 +

a1C

2B
Y2.
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The sectional curvatures may then be calculated using (II.4):

K(Yi, Yi) = 0 for all i

K(Y1, Y2) =
1

4AB

[
−3C − 2B − 2A+ (A−B)2

(
1

C
+
a2

3

D

)]
K(Y1, Y3) =

1

4AC

[
−3B − 2C + 2A+ (A+ C)2

(
1

B
+
a2

2

D

)]
K(Y1, Y4) =

1

4AD

[
−3(a2

3B + a2
2C) + 2A(a2

3 − a2
2) + A2

(
a2

3

B
+
a2

2

C

)]
K(Y2, Y3) =

1

4BC

[
−3A− 2C + 2B + (B + C)2

(
1

A
+
a2

1

D

)]
K(Y2, Y4) =

1

4BD

[
−3(a2

3A+ a2
1C) + 2B(a2

3 − a2
1) +B2

(
a2

3

A
+
a2

1

C

)]
K(Y3, Y4) =

1

4CD

[
−3(a2

2A+ a2
1B)− 2C(a2

1 + a2
2) + C2

(
a2

2

A
+
a2

1

B

)]
.

(II.87)

Proposition 8 in [11] tells us that when g0 can in fact be diagonalized as above:

(i) If λ1 6= λ2, the metric remains diagonal if and only if a1 = a2 = a3 = 0

(ii) If λ1 = λ2, the metric remains diagonal if and only if a1 = a2 = 0.

A9(i)

Here we consider the case where λ1 6= λ2 and a1 = a2 = a3 = 0. In this case,

Υ = I, and the Lie Bracket relations remain the same. It also happens that this

metric is just the product metric S̃L(2,R)×R, so backwards Ricci flow reduces to

the case of the three dimensional flow on S̃L(2,R). The volume-normalized version

of this flow has been discussed in [4].
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In this case the non-zero curvatures are given by

K(Y1, Y2) =
1

4ABC

[
−3C2 − 2BC − 2AC + A2 − 2AB +B2

]
K(Y1, Y3) =

1

4ABC

[
−3B2 − 2BC + 2AB + A2 + 2AC + C2

]
K(Y2, Y3) =

1

4ABC

[
−3A2 − 2AC + 2AB +B2 + 2BC + C2

]
.

(II.88)

Let Yi = Xi, and let g(t) = A(t)θ2
1 + B(t)θ2

2 + C(t)θ2
3 + D(t)θ2

4 where A(0) =

λ1, B(0) = λ2, C(0) = λ3 and D(0) = λ4. Then backward Ricci flow reduces to

the following system of equations:

dA

dt
=
A2 − (B + C)2

BC

dB

dt
=
B2 − (A+ C)2

AC

dC

dt
=
C2 − (A−B)2

AB

dD

dt
= 0.

(II.89)

By the symmetry of the system we may assume that λ1 > λ2. We also have

d

dt
(A−B) =

2

ABC
(A−B)(A+B + C),

so A > B is preserved by (II.89).

We set

Q =
{

(λ1, λ2, λ3) ∈ R3
∣∣a ≥ b > 0, c > 0

}
. (II.90)

The result is that there exists a partition of Q into Q1, Q2, S0, with S0 a

hypersurface in R3 and Q1, Q2 open and connected such that:
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If (λ1, λ2, λ3) ∈ Q1, then

A(t) ≈ k1(T0 − t)1/3

B(t) ≈ k2(T0 − t)1/3

C(t) ≈ k3(T0 − t)−1/3

D(t) = λ4.

(II.91)

If (λ1, λ2, λ3) ∈ Q2, then

A(t) ≈ k1(T0 − t)−1/3

B(t) ≈ k2(T0 − t)1/3

C(t) ≈ k3(T0 − t)1/3

D(t) = λ4.

(II.92)

If (λ1, λ2, λ3) ∈ S0, then

A(t) ≈ k1

B(t) ≈ 4(T0 − t)

C(t) ≈ k1

D(t) = λ4.

(II.93)

In all three cases all the non-zero curvatures have a singularity at T0 of the

form (T0 − t)−1.
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We first define

Q1 =
{

(λ1, λ2, λ3) ∈ Q
∣∣C(t1) ≥ A(t1) for some time t1 ≥ 0

}
(II.94)

Q2 =
{

(λ1, λ2, λ3) ∈ Q
∣∣C(t1) ≤ A(t1)−B(t1) for some time t1 ≥ 0

}
(II.95)

S0 =
{

(λ1, λ2, λ3) ∈ Q
∣∣A(t)−B(t) ≤ C(t) ≤ A(t) for all time t ≥ 0

}
. (II.96)

Now, if C(t) ≥ A(t), then

d

dt

(
C − A

)
=

1

ABC

[
(C − A)

(
(C + A)2 −B2

)
+ 4ABC

]
> 4,

so C ≥ A is preserved.

Similarly, if C(t) ≤ A(t)−B(t), then

d

dt

(
A−B−C

)
=

1

ABC

[
(A−B−C)

(
A(A+ 2B+ 2C) + (B−C)2

)
+ 8ABC

]
> 8,

so C ≤ A−B is preserved.

Thus Q1, Q2 and S0 are mutually exclusive sets whose union is all of Q. The

facts that Q1 and Q2 are open and S0 is a hypersurface in Q are shown in [3].

These results are presented in [4] for the normalized Ricci flow, so we give an

un-normalized version here to better describe the behavior.

We first consider the set Q1, given by (II.94). Then C(t) ≥ A(t) for all t ≥ t1,

so we have

dA

dt
=
A2 − (B + C)2

BC
≤ −B − 2C

C
< −2,
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hence A is decreasing, and T0 < ∞. Since B < A < C, either lim
t→T0

C(t) = ∞ or

lim
t→T0

B(t) = 0. We show that in fact both of these situations happen at the same

time. Since A and B are decreasing, then for C large enough we have

d

dt
(AC) = 2(A+B − C) < 0. (II.97)

Thus AC is bounded above. Thus if C → ∞ at T0, then it must be the case

that A→ 0 at T0, hence also B → 0 since B < A. Now we observe

d

dt

(
B(C − A)

)
= 4B > 0, (II.98)

so
(
B(C − A)

)
is bounded below. Thus if B → 0 at T0, then C − A → ∞, hence

also C → ∞. Thus we see that A → 0, B → 0 and C → ∞ all together at time

t = T0. Now,

d

dt
(AC − AB) = 4A, (II.99)

which is positive and approaches 0 at t = T0 < ∞. Therefore we know that

AC − AB → kA > 0 as t→ T0. Since AB → 0, we see that

AC → kA. (II.100)

Similarly,

d

dt
(BC − AB) = 4B → 0 (II.101)
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implies that as t→ T0,

BC → kB > 0. (II.102)

Now by (II.89) we see that

dC

dt
∼ C2

AB
∼ kC4, (II.103)

hence by the same argument used to solve (II.16), we see

C ≈ k3(T0 − t)−1/3. (II.104)

Now combining (II.100), (II.102) and (II.104), we have the solution to (II.89):

A(t) ≈ k1(T0 − t)1/3

B(t) ≈ k2(T0 − t)1/3

C(t) ≈ k3(T0 − t)−1/3

D(t) = λ4.

(II.105)

The normalized solution will approach the plane R2.

Now we consider the set Q2 given by (II.95). Here there is some time t1 such

that for t ≥ t1 ≥ 0, (A − B) < C. We denote A1 = A(t1), B1 = B(t1) and

C1 = C(t1). We see that for t ≥ t1

dC

dt
=
C2 − (A+B)2

AB
< 0,

and

dA

dt
=
A2 − (B − C)2

BC
> 0,
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so C is decreasing and A is increasing. Thus, as t→ T0, either A→∞, B → 0 or

C → 0. We calculate

d

dt

(
A(B + C)

)
= −4B − 4C < 0, (II.106)

so
(
A(B + C)

)
is bounded above. Thus if A → ∞ as t → T0, then we know

(B + C)→ 0 at t = T0, hence B → 0 and C → 0. Now for t ≥ t1,

d

dt

(
B

C

)
=

2

A
(B + C)(B − C − A) < 0, (II.107)

so
B

C
is bounded above and if C → 0 then B → 0. Lastly,

d

dt

(
B(A−B − C)

)
=

2B

AC
(A2 + C2 −B2) > 0, (II.108)

so
(
B(A − B − C

)
is bounded below, and if B → 0 then (A − B − C) → ∞,

hence also A→∞. Thus we see that at t = T0 we have A→∞, B → 0 and C → 0.

Now by (II.108) we see that (AB − BC − B2) is increasing for t ≥ t1.Thus we

see that AB > B1(A1 −B1 − C1). However,

d

dt
(AB) = −2(A+B + C) < 0, (II.109)

so AB is decreasing and bounded below by a positive number. Thus at t→ T0, we

have

AB → kAB (II.110)

for some positive constant kAB. Now

d

dt
(AC) = 2(A−B − C) > 0, (II.111)
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so (AC) is increasing and bounded below. Thus, since B and C are approaching

0 and A is approaching infinity at T0, then by (II.89) and (II.110) there is some

positive number k such that

dA

dt
=
A2 − (B + C)2

BC
≤ kA4, (II.112)

hence we know

A <
(
A−3

1 − 3kt
)−1/3

. (II.113)

By (II.111) we see that

d

dt
(AC) < A <

(
A−3

1 − 3kt
)−1/3

. (II.114)

Upon integrating we discover

AC < A1C1 +
1

2A2
1

− 1

2k

(
A−3

1 − 3kt
)−1/3

<∞. (II.115)

Since AC is increasing, then we see that at t→ T0, we have

AC → kAC (II.116)

for some positive constant kAC . Now by (II.89), (II.110) and (II.116),

A ∼ kA4. (II.117)

Solving (II.117) the same way we solved (II.16), and then using (II.110) and
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(II.116), gives the following end behavior of the solutions to (II.89):

A(t) ≈ k1(T0 − t)−1/3

B(t) ≈ k2(T0 − t)1/3

C(t) ≈ k3(T0 − t)1/3

D(t) = λ4.

(II.118)

The normalized solution will approach the plane R2.

Now we consider the set S0 given by (II.96). Here we know

A(t)−B(t) < C(t) < A(t)

for all time 0 ≤ t < T0. Thus we have

dA

dt
=
A2 − (B + C)2

BC
< 0,

and

dC

dt
=
C2 − (A−B)2

AB
> 0,

so A is decreasing while C is increasing.

However, A(t) > C(t), so both A and C are approaching constants. Now

dB

dt
=
B2 − (A+ C)2

AC
< −2,

so B approaches 0 in finite time T0 < ∞. Since A − B < C < A, then in fact A

and C approach the same constant, k1, at time t = T0. Thus near t = T0 we have
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the approximation:

dB

dt
≈ −(A+ C)2

AC
≈ −4. (II.119)

Thus near t = T0 we have the following behavior:

A ≈ k1

B ≈ −4(t− T0)

C ≈ k1

D = λ4.

(II.120)

The normalized solution will approach R3.

A9(ii)

We find in this case that {Yi} satisfies the following bracket relations:

[Y1, Y2] = −Y3 [Y1, Y3] = −Y2 [Y1, Y4] = −a3Y2

[Y2, Y3] = Y1 [Y2, Y4] = a3Y1 [Y3, Y4] = 0.

Let g(t) = A(t)θ2
1+B(t)θ2

2+C(t)θ2
3+D(t)θ2

4 where A(0) = λ1, B(0) = λ2, C(0) = λ3

and D(0) = λ4. Then backward Ricci flow reduces to the following system of

68



equations:

dA

dt
=
A2 − (B + C)2

BC
+
A2 −B2

BD
a2

3

dB

dt
=
B2 − (A+ C)2

AC
+
B2 − A2

AD
a2

3

dC

dt
=
C2 − (A−B)2

AB

dD

dt
= −(A+B)2

AB
a2

3

λ1 = λ2.

(II.121)

We calculate

d

dt

(
A−B

)
=

[
1

ABC

(
−C2 + A2 + 2AB +B2

)
+

a2
3

ABD

(
A2 + 2AB +B2

)](
A−B

)
,

so A = B for all t.

Now (II.121) reduces to

dA

dt
= −C

A
− 2

B = A

dC

dt
=
C2

A2

dD

dt
= −4a2

3.

(II.122)

This equations for A, B and C in (II.122) are just a special case of the

corresponding equations in (II.89). However, in this special case we may derive

more explicit solutions.
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It is clear that D = λ4 − 4a2
3t, so T0 ≤

λ4

4a2
3

. Also, letting f ′ denote
df

dt
we have

A′′ =
−A

(
C2

A2

)
+ C

(
−C
A
− 2
)

A2

= −2C2

A3
− 2C

A

= − 2

A

(
(A′ + 2)2 − A′ + 2

)
= − 2

A

(
(A′ + 1)(A′ + 2)

)
,

hence

A′

(A′ + 1)(A′ + 2)
A′′ = − 2

A
A′.

Integrating gives

2 ln |A′ + 2| − ln |A′ + 1| = −2 ln |A|+ ln(Λ),

where

Λ =
λ2

3λ1

λ3 + λ1

. (II.123)

Solving for A′ gives us

A′ =
−Λ− 4A2 ±

√
Λ2 + 4ΛA2

2A2
. (II.124)

Comparing equations (II.122) and (II.124) at t = 0, we confirm in fact that

A′ = −Λ + 4A2 +
√

Λ2 + 4ΛA2

2A2
,

hence (
2A2

Λ + 4A2 +
√

Λ2 + 4ΛA2

)
A′ = −1. (II.125)
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Now we observe

2A2

Λ + 4A2 +
√

Λ2 + 4ΛA2
=

1

2
−

√
Λ

2
√

Λ + 4A2
,

so (
1

2
−

√
Λ

2
√

Λ + 4A2

)
A′ = −1,

and

A

2
−
√

Λ

4
sinh−1

(
2A√

Λ

)
= T2 − t. (II.126)

Now we calculate that

lim
A→0

A
2
−
√

Λ
4

sinh−1
(

2A√
Λ

)
A3

=
1

3eΛ
. (II.127)

Thus using (II.125) and (II.127) we find that near t = T2,

A ≈
(
3eΛ(T2 − t)

)1/3
. (II.128)

By (II.122) we know that C = −A
(
dA

dt
+ 2

)
. Thus near A = 0 we know that

C ≈ Λ (3Λ(T2 − t))−1/3 . (II.129)

We observe that

T0 = min

{
λ4

4a2
3

,
λ1

2
− λ3

4

√
λ1

λ1 + λ3

sinh−1

(
2

λ3

√
λ1(λ1 + λ3)

)}
(II.130)

= min
{
T1, T2

}
. (II.131)

We calculate the sectional curvatures using (II.87) with a1 = a2 = 0 and A = B:

K(Y1, Y2) = −4A+ 3C

4A2
K(Y1, Y3) =

C

4A2
K(Y1, Y4) = 0

K(Y2, Y3) =
C

4A2
K(Y2, Y4) = 0 K(Y3, Y4) = 0.
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If T0 = T1 < T2, then near t = T0 we have

A = B ≈ k1

C ≈ k3

D = k4(T0 − t).

(II.132)

Here all sectional curvatures will also approach constants as t → T0, and the

volume normalized solution will approach the hyperplane R3.

If T0 = T2 < T1, then near t = T0 we have

A = B ≈ k1(T0 − t)1/3

C ≈ k3(T0 − t)−1/3

D ≈ k4.

(II.133)

Here all non-zero sectional curvatures will have a singularity of the form

(T0 − t)−1. The volume normalized solution will approach the plane R2.

If T0 = T1 = T2, then near t = T0 we have

A = B ≈ k1(T0 − t)1/3

C ≈ k3(T0 − t)−1/3

D = k4(T0 − t).

(II.134)

Here all non-zero sectional curvatures will have a singularity of the form

(T0 − t)−1, and the volume normalized solution will approach a product metric
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M2 × R.

A10. Class U3S3

Here we may choose a basis for the Lie Albegra {X1, X2, X3, X4} such that the

Lie bracket is of the form

[X1, X2] = X3 [X1, X3] = −X2 [X1, X4] = 0

[X2, X3] = X1 [X2, X4] = 0 [X3, X4] = 0.

This Lie Algebra structure is a direct sum su(2) ⊕ R, and the Lie Group

structure structure is (M,G) = (S3 × R, SU(2)× R).

Here we diagonalize the metric by letting Yi = Υk
iXk with

Υ =


1 0 0 0

0 1 0 0

0 0 1 0

a1 a2 a3 1

 .
Here I calculate the curvatures of this diagonalized metric in general form so

that I can use it to the specific cases outlined below in Proposition 9. First I
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calculate the operator U using (II.5):

U(Yi, Yi) = 0 for all i

U(Y1, Y2) =
B − A

2C
Y3 +

a3(B − A)

2D
Y4

U(Y1, Y3) =
A− C

2B
Y2 +

A2(A− C)

2D
Y4

U(Y1, Y4) =
a3A

2B
Y2 −

a2A

2C
Y3

U(Y2, Y3) =
C −B

2A
Y1 +

a1(C −B)

2D
Y4

U(Y2, Y4) = −a3B

2A
Y1 +

a1B

2C
Y3

U(Y3, Y4) =
a2C

2A
Y1 −

a1C

2B
Y2.

The sectional curvatures may then be calculated using (II.4):

K(Yi, Yi) = 0 for all i

K(Y1, Y2) =
1

4AB

[
−3C + 2B + 2A+ (A−B)2

(
1

C
+
a2

3

D

)]
K(Y1, Y3) =

1

4AC

[
−3B + 2C + 2A+ (A− C)2

(
1

B
+
a2

2

D

)]
K(Y1, Y4) =

1

4AD

[
−3(a2

3B + a2
2C) + 2A(a2

2 + a2
3) + A2

(
a2

3

B
+
a2

2

C

)]
K(Y2, Y3) =

1

4BC

[
−3A+ 2C + 2B + (B − C)2

(
1

A
+
a2

1

D

)]
K(Y2, Y4) =

1

4BD

[
−3(a2

3A+ a2
1C) + 2B(a2

3 + a2
1) +B2

(
a2

3

A
+
a2

1

C

)]
K(Y3, Y4) =

1

4CD

[
−3(a2

2A+ a2
1B) + 2C(a2

1 + a2
2) + C2

(
a2

2

A
+
a2

1

B

)]
.

(II.135)

Proposition 9 in [11] breaks this down into three situations:
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(i) If λ1 = λ2 = λ3, them the metric remains diagonal for all choices of a1, a2

and a3.

(ii) If λi 6= λj = λk for some permutation {i, j, k} of {1, 2, 3}, then the metric

remains diagonal if and only if aj = ak = 0.

(iii) If λ1, λ2 and λ3 are all different, then the metric will remain diagonal if

and only if a1 = a2 = a3 = 0.

In all three of these cases, we have that backward Ricci flow reduces to the

system :

dA

dt
=
A2 − (B − C)2

BC

dB

dt
=
B2 − (A− C)2

AC

dC

dt
=
C2 − (A−B)2

AB

dD

dt
= 0.

(II.136)

Thus this reduces to 3 dimensions, and the normalized flow is analyzed in [4].

By symmetry, we may in fact assume λ1 ≥ λ2 ≥ λ3. Now

d

dt
(A−B) =

1

ABC
(A−B)

(
(A+B)2 − C2

)
, (II.137)

so the conditions A(t) ≥ B(t) and A(t) = B(t) are preserved under backwards Ricci

flow. Similarly, the conditions B(t) ≥ C(t) and B(t) = C(t) are preserved.
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A10(i)

If λ1 = λ2 = λ3, then A ≡ B ≡ C. Then (II.136) reduces to

dA

dt
=
dB

dt
=
dC

dt
= 1

dD

dt
= 0,

(II.138)

and the solution, which exists for all time, is

A(t) = B(t) = C(t) = λ1 + t,

D(t) = λ4.

(II.139)

Using (II.135) with A = B = C we find the non-zero curvatures are

K(Y1, Y2) = K(Y1, Y3) = K(Y2, Y3) =
1

4A
. (II.140)

Thus all non-zero curvatures approach 0 at a rate of 4t−1.

The solution here is actually just a product of an expanding 3-sphere with a

line. The volume normalized solution converges to the line, R.

A10(ii)

If λ1 = λ2 > λ3, then A(t) = B(t) > C(t) for all 0 < t < T0. Then (II.136)

reduces to
dA

dt
= 2− C

A

B = A

dC

dt
=
C2

A2

dD

dt
= 0.

(II.141)
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Denoting
df

dt
by f ′ we have

A′′ =
1

A2

(
C

(
2− C

A

)
− C2

A

)
=

1

A

(
(2− A′)A′ − (2− A′)2

)
= − 2

A
(A′ − 1)(A′ − 2),

hence

−A′

(A′ − 1)(A′ − 2)
A′′ =

2

A
A′,

and thus

ln

∣∣∣∣ A′ − 1

(A′ − 2)2

∣∣∣∣ = ln(A2) + ln(Λ), (II.142)

where

Λ =
λ1 − λ3

λ1λ2
3

. (II.143)

Since A′ > 1, (II.142) becomes

A′ − 1

(A′ − 2)2
= ΛA2.

Solving we have

A′ =
1 + 4ΛA2 −

√
1 + 4ΛA2

2ΛA2
. (II.144)

Note here that since A′ = 2− C

A
by (II.136), then

C =
−1 +

√
1 + 4ΛA2

2ΛA
. (II.145)

Continuing on, (II.144) becomes

2ΛA2

1 + 4ΛA2 −
√

1 + 4ΛA2
A′ = 1.
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Upon integrating we have

1

2
A+

1

4
√

Λ
sinh−1

(
2
√

ΛA
)

= t+
1

2
+

1

4
√

Λ
sinh−1

(
2
√

Λλ1

)
(II.146)

Now we observe that

lim
A→∞

1
2
A+ 1

4
√

Λ
sinh−1

(
2
√

ΛA
)

A
=

1

2
, (II.147)

so as A approaches infinity, t ≈ 1

2
A.

Now by equations (II.136) and (II.145), we have the following behavior as t→

∞:

A(t) = B(t) ≈ 2t

C(t)→ 1√
Λ

D(t) = λ4.

(II.148)

where Λ is given in (II.143).

Using (II.135) with a1 = a2 = 0 and A = B we find the non-zero curvatures are

given by

K(Y1, Y2) =
4A− 3C

4A2

K(Y1, Y3) =
C

4A2

K(Y2, Y3) =
C

4A2
.

(II.149)

Thus all non-zero curvatures parallel to Y3 approach 0 at a rate of t−2 while the

remaining nonzero curvatures approach 0 at a rate of t−1. The normalized solution
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will converge to the plane R2.

If λ1 > λ2 = λ3, then A(t) > B(t) = C(t) for all 0 < t < T0, and (II.136)

reduces to the following:

dA

dt
=
A2

B2

dB

dt
= 2− A

B

C = B

dD

dt
= 0.

(II.150)

Similarly to the case A = B > C we calculate

B′′ =
1

B2

(
A

(
2− A

B

)
− A2

B

)
=

1

B

(
(2−B′)B′ − (2−B′)2

)
= − 2

B
(B′ − 1)(B′ − 2),

hence

−B′

(B′ − 1)(B′ − 2)
B′′ =

2

B
B′,

and thus

ln

∣∣∣∣ B′ − 1

(B′ − 2)2

∣∣∣∣ = ln(B2) + k, (II.151)

where

Λ =
λ1 − λ2

λ2
1λ2

. (II.152)

Since B′ < 1, (II.151) becomes

1−B′

(B′ − 2)2
= ΛB2.
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Solving we have

B′ =
4ΛB2 − 1−

√
1− 4ΛB2

2ΛB2
. (II.153)

Note here that since B′ = 2− A

B
, then

A =
1 +
√

1− 4ΛB2

2ΛB
. (II.154)

Now (II.153) becomes

2ΛB2

4ΛB2 − 1−
√

1− 4ΛB2
B′ = 1.

Upon integrating we have

1

2
B − 1

4
√

Λ
sin−1

(
2
√

ΛB
)

= t− T0, (II.155)

where

T0 =
λ2

2
− λ1

√
λ2

4
√
λ1 − λ2

sin−1

(
2
√
λ2(λ1 − λ2)

λ1

)
. (II.156)

Now we calculate

lim
B→0

1
2
B − 1

4
√

Λ
sin−1

(
2
√

ΛB
)

B3
= −Λ

3
,

so as B approaches 0, we have t−T0 ≈ −
Λ

3
B3, so by equations (II.150) and (II.154),

we have the following behavior as t→ T0:

A(t) ≈ 1

Λ

(
3

Λ
(T0 − t)

)−1/3

B(t) = C(t) ≈
(

3

Λ
(T0 − t)

)1/3

D(t) = λ4.

(II.157)
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where Λ is given in (II.152), and T0 is given in (II.156).

With a2 = a3 = 0 and B = C, (II.135) tells us the non-zero curvatures are given

by

K(Y1, Y2) =
A

4B2

K(Y1, Y3) =
A

4B2

K(Y2, Y3) =
4B − 3A

4B2
.

(II.158)

Thus all non-zero curvatures are of the form (T0− t)−1. The volume normalized

solution will approach the plane R2.

A10(iii)

In the case λ1 > λ2 > λ3, we have by [4] that the end behavior near t = T0 is the

same as when λ1 > λ2 = λ3. However, we do not have more explicit solutions like

we do in the special case. Since the solutions in [4] are using normalized backward

Ricci flow, I shall present a slightly different argument here.

We know that for all t we have A(t) > B(t) > C(t). From (II.136) we calculate

dC

dt
=
C2 − A2 + 2AB −B2

AB
< 2− A

B
< 1, (II.159)
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so C(t) < λ3 + t. Now we may calculate

d

dt

(
A−B
C

)
=

2

ABC
(A−B)(A2 +B2 − C2)

>
2A2(A−B)

ABC2

> 2

(
A−B
C

)
· 1

C

> 2

(
A−B
C

)
· 1

t+ λ3

,

so

ln

(
A−B
C

)
> 2 ln(t+ λ3) + ln

(
λ1 − λ2

λ3

)
,

and we have that (
A−B
C

)
>

(
λ1 − λ2

λ3

)
(t+ λ3)2.

Therefore
A−B
C

increases at least quadratically. Thus either T0 < ∞ or

dC

dt
=
C2 − (A−B)2

AB
< 0 for all t large enough.

Either way, we know by (II.159) that C is bounded, hence C ≤ kC for some

0 < kC <∞. Now

d

dt

(
A

B

)
=

2(A−B)

B2C
(A+B − C)

>
2A(A−B)

kCB2

=
2

kC

(
A

B

)(
A

B
− 1

)
. (II.160)

Thus we see that
A

B
→ ∞ in finite time, so we know T0 < ∞. Since for all t
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we know A > B > C, then near t = T0 either A → ∞ or C → 0. Now we may

calculate

d

dt

(
B

C

)
=

2

AC2
(B − C)(B + C − A),

which is negative for t close enough to T0. Thus we know by monotone convergence

that

lim
t→T0

B

C
= kBC (II.161)

for some kBC ≥ 1. Thus if C → 0 then B → 0 as well. Now we observe

d

dt
(ABC) = −(A2 +B2 + C2) + 2(AB + AC +BC), (II.162)

which is negative for A large enough and B and C bounded. Thus if A → ∞ as

t→ T0, then ABC is bounded, hence C → 0. Similarly,

d

dt
(AC) = 2(A+ C −B), (II.163)

which is positive for B and C close enough to 0 and A bounded below. Hence if

C → 0 then also A→∞. Thus we know that as t→ T0 we have A→∞, B → 0

and C → 0.

Now by (II.136) we observe

dA

dt
=
A2 − (B − C)2

BC
<

A2

BC
. (II.164)
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Also, by (II.163) we know that AC is bounded from below. Similarly, AB is

bounded from below, so (II.164) becomes

dA

dt
< kA4,

hence

A(t) <
(
λ−3

1 − 3kt
)−1/3

. (II.165)

Now we have

d

dt
(AB) = 2(A+B − C) < k̃A < k̃

(
λ−3

1 − 3kt
)−1/3

. (II.166)

Integrating (II.166) gives us

AB < λ1λ2 +
k̃

2λ2
1

− k̃

2

(
λ−3

1 − 3kt
)2/3

.

hence

lim
t→T0

(AB) = kAB. (II.167)

for some 0 < kAB <∞. Combining (II.161) and (II.167) we conclude

lim
t→T0

(AC) =
kAB
kBC

. (II.168)

Thus we see that near t = T0,

BC ∼ k2
AB

kBCA2
,

hence (II.136) tells us

dA

dt
∼ kBC
k2
AB

A4. (II.169)
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Solving as we did for equation (II.16) gives

A ≈ k1(T0 − t)−1/3. (II.170)

Now using (II.167) and (II.168) we have the end behavior of (II.136) near t = T0:

A(t) ≈ k1(T0 − t)−1/3

B(t) ≈ k2(T0 − t)1/3

C(t) ≈ k3(T0 − t)1/3

D(t) = λ4.

(II.171)

From (II.135) with a1 = a2 = a3 = 0 we have that the non-zero curvatures are

K(Y1, Y2) =
1

4ABC
(−3C2 + 2AC + 2BC + A2 − 2AB +B2)

K(Y1, Y3) =
1

4ABC
(−3B2 + 2AB + 2BC + A2 − 2AC + C2)

K(Y2, Y3) =
1

4ABC
(−3A2 + 2AB + 2BC +B2 − 2BC + C2).

(II.172)

Thus all the non-zero curvatures have a singularity of the form (T0 − t)−1, and

the volume-normalized solution approaches R2.

The Non-Bianchi Cases

In this section we examine the compact locally homogeneous geometries whose

isotropy group is not trivial, so the dimension of the Lie Group is higher than the

dimension of the manifold. Again, these cases are well-understood, but I include

them here for completion. The following can be found in [11].
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B1. H3 × R

Any initial metric can be written as

g0 = R2gH3 + du2 (II.173)

for some R > 0. The solution to backward Ricci flow is given by

g(t) = (R2 − 4t)gH3 + du2, −∞ < t <
R2

4
. (II.174)

B2. S2 × R2

Any initial metric can be written as

g0 = R2gS3 + du2
1 + du2

2 (II.175)

for some R > 0. The solution to backward Ricci flow is given by

g(t) = (R2 + 2t)gS2 + du2
1 + du2

2, −R
2

2
< t <∞. (II.176)

B3. H2 × R2

Any initial metric can be written as

g0 = R2gH2 + du2
1 + du2

2 (II.177)
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for some R > 0. The solution to backward Ricci flow is given by

g(t) = (R2 − 2t)gH2 + du2
1 + du2

2, −∞ < t <
R2

2
. (II.178)

B4. S2 × S2

Any initial metric can be written as

g0 = R2
1gS2 +R2

2gS2 (II.179)

for some R1 > 0, R2 > 0. The solution to backward Ricci flow is given by

g(t) = (R2
1 + 2t)gS2 + (R2

2 + 2t)gS2 , −min

{
R2

1

2
,
R2

2

2

}
< t <∞. (II.180)

B5. S2 ×H2

Any initial metric can be written as

g0 = R2
1gS2 +R2

2gH2 (II.181)

for some R1 > 0, R2 > 0. The solution to backward Ricci flow is given by

g(t) = (R2
1 + 2t)gS2 + (R2

2 − 2t)gH2 , −R
2
1

2
< t <

R2
2

2
. (II.182)
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B6. H2 ×H2

Any initial metric can be written as

g0 = R2
1gH2 +R2

2gH2 (II.183)

for some R1, R2 > 0, R1 6= R2. The solution to backward Ricci flow is given by

g(t) = (R2
1 − 2t)gH2 + (R2

2 − 2t)gH2 , −∞ < t < min

{
R2

1

2
,
R2

2

2

}
. (II.184)

B7. CP 2

Any initial metric can be written as

g0 = R2gFS (II.185)

for some R > 0, where gFS is the Fubini-Study metric on complex projective space,

CP 2, with constant holomorphic bisectional curvature 1. The solution to backward

Ricci flow is given by

g(t) = (R2 + 6t)gFS, −R
2

6
< t <∞. (II.186)

B8. CH2

Any initial metric can be written as

g0 = R2gCH2 (II.187)
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for some R > 0, where gCH2 is the Kähler metric on complex hyperbolic space, CH2,

with constant holomorphic bisectional curvature −1. The solution to backward

Ricci flow is given by

g(t) = (R2 − 6t)gCH2 , −∞ < t <
R2

6
. (II.188)

B9. S4

Any initial metric can be written as

g0 = R2gS4 , (II.189)

for some R > 0. The solution to backward Ricci flow is given by

g(t) = (R2 + 6t)gS4 , −R
2

6
< t <∞. (II.190)

B10. H4

Any initial metric can be written as

g0 = R2gH4 (II.191)

for some R > 0. The solution to backward Ricci flow is given by

g(t) = (R2 − 4t)gH4 , −∞ < t <
R2

6
. (II.192)
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Conclusions

Our conclusion is that the end behavior of locally homogeneous manifolds under

backward Ricci flow is fairly consistent. In general however, the Bianchi classes have

very different, and more interesting, behavior than the non-Bianchi classes. Recall

that all of our solutions are Riemannian metrics of the form

g(t) = A(t)θ2
1 +B(t)θ2

2 + C(t)θ2
3 +D(t)θ2

4

where we call A,B,C and D the metric coefficients. Each class of manifolds studied

in this chapter has one of the following types of behavior near the end:

Expanding-1: All metric coefficients grow linearly for all time. The volume-

normalize metric approaches an Einstein metric with positive Ricci curvature.

Expanding-2: One metric coefficient approaches a constant while the other

three grow linearly for all time. The volume-normalized metric approaches the

span of the three two-forms whose coefficients grow linearly.

Expanding-3: Two metric coefficients approach constants while the other two

grow linearly for all time. The volume-normalized metric approaches the span of

the two two-forms whose coefficients grow linearly.
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Trivial: Each metric coefficient approaches a constant. Thus, the metric

approaches an Einstein metric with constant 0. Among the classes considered, this

only happens for trivial metrics which are just quotients of Euclidean Space.

Pancake-1: One metric coefficient approaches 0 linearly while the other three

approach constants. The volume-normalized solution will approach the sub-

riemannian geometry R3.

Pancake-2: One metric coefficient approaches 0 at a rate of (T0 − t)1/3, one

approaches a constant, and the last two approach infinity at a rate of (T0 − t)−1/3.

The volume-normalized solution will also approach R3.

Pancake-3: One metric coefficient approaches a constant, two approach 0 on the

order of (T0 − t)1/3, and the final approaches infinity on the order of (T0 − t)−1/3.

Here the volume-normalized solution will approach the plane R2.

Pancake-4: One metric coefficient approaches a constant, one approaches

infinity on the order of (T0 − t)−1/3, and the last two approach 0 on the order

of (T0 − t)1/3 and (T0 − t)2/3 respectively. The volume-normalized solution will

approach the plane R2. Nearby initial conditions exhibit Pancake-3 behavior.
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Pancake-5: Two metric coefficients approach 0 linearly while the other two

approach constants. The volume-normalized solution will approach the plane R2.

Line: One metric coefficient approaches a constant while the others approach 0

linearly. The volume-normalized solution will approach the line R.

Point: All metric coefficients approach 0 linearly. Any compact quotients will

collapse to a point at T0. Among the classes of manifolds we have considered, this

happens only for the Einstein manifolds CH2 and H4. Thus the volume-normalized

solutions are constant solutions.

Tube-1: One metric coefficient approaches 0 linearly while two others approach

0 at the rate of (T0 − t)1/3. The final metric coefficient is of the form (T0 − t)−1/3.

The volume-normalized solution will approach a product metric g = M2 × R.

Nearby initial conditions will exhibit Pancake-1 and Pancake-3 behavior.

Tube-2: Two metric coefficients approach constants, while the other two have

behaviors (T0 − t)1/3 → 0 and (T0 − t)−1/3 respectively. The volume-normalized

solution will approach a product metric g = M2 × R. Nearby initial conditions

exhibit Pancake-2 and Pancake-3 end behavior.
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Class Lie Group Structure End Behavior

A1 (R4,R4, {0}) Trivial

A2
(S̃ol

3 × R, S̃ol3 × R, e)
(Sol40, Sol

4
0, e)

(Sol4m,n, Sol
4
m,n, e)

Pancake-1

A3 (R4, E(2)× R2, e)
Pancake-1
Pancake-3

A4 (Nil3 × R, Nil3 × R, e) Pancake-3
A5 No Compact Geometries Pancake-3

A6 (Nil4, Nil4, e)
Pancake-3
Pancake-4

A7 (Sol4, Sol4, e)

Pancake-1
Pancake-2
Pancake-3
Pancake-4

Tube-1
Tube-2

A8 No Compact Geometries
Pancake-2
Pancake-3

Tube-2

A9 (ŜL(2,R)× R, ŜL(2,R)× R, e)
Pancake-1
Pancake-3

Tube-1

A10 (S3 × R, SU(2)× R, e)
Expanding-2
Expanding-3
Pancake-3

B1 (H3 × R, H(3)× R, SO(3)× {0}) Line
B2 (S2 × R2, SO(3)× R2, SO(2)× {0}) Expanding-3
B3 (H2 × R2, S0(3)× R2, SO(2)× {0}) Pancake-5
B4 (S2 × S2, SO(3)× SO(3), SO(2)× SO(2)) Expanading-1
B5 (S2 ×H2, S0(3)×H(2), SO(2)× SO(2)) Pancake-5
B6 (H2 ×H2, H(2)×H(2), SO(2)× SO(2)) Pancake-5
B7 (CP 2, SU(3), U(2)) Expanding-1
B8 (CH2, SU(1, 2), U(2)) Point
B9 (S4, SO(5), SO(4)) Expanding-1
B10 (H4, H(4), SO(4)) Point

Table 2.1. End Behavior of Backward Ricci Flow
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In the non-Bianchi cases, it is clear that the shrinking behavior under backward

Ricci flow of negatively curved spaces and the expanding behavior of positively

curved spaces is exactly opposite of that seen in forward Ricci flow. Similarly, the

behaviors in classes A10 and B1 are reversed.

In the Bianchi cases, we notice that in forward Ricci flow all solutions exist for

all time except for a certain case of A9: ŜL(2,R)×R, where the volume-normalized

solution collapses to a plane and exhibits pancake-like behavior. In contrast, the

backward Ricci flow produces finite-time singularities in all cases except for special

cases of A10: SU(2)× R, where the solution increases linearly for all time.

It is also worth mentioning that Pancake-1 type behavior in backward Ricci

flow occurs as a possibility in exactly the same classes of manifolds which exhibit

linear growth in one or more metric coefficient in forward Ricci flow.

In generic cases, end-behavior of solutions to the differential equations in forward

Ricci flow are of the forms kt±1/3, k or kt. Conversely, end-behavior of solutions to

the differential equations in backward Ricci flow are of the forms k(T0 − t)±1/3, k

or k(T0 − t).
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