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DISSERTATION ABSTRACT

Jeremiah David Bartz

Doctor of Philosophy

Department of Mathematics

June 2013

Title: Multinets in P2 and P3

In this dissertation, a method for producing multinets from a given net in P3 is

presented. Multinets play an important role in the study of resonance varieties of the

complement of a complex hyperplane arrangement and very few examples are known.

Implementing this method, numerous new and interesting examples of multinets are

identified. Each of these examples is the degeneration of a net, supporting the

conjecture of Pereira and Yuzvinsky that all multinets are degenerations of nets.

Also, a complete description is given of proper weak multinets, a generalization of

multinets.
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CHAPTER I

INTRODUCTION

The study of resonance varieties of the complement of a complex hyperplane

arrangement is an area of current research. The initial allure of these varieties stems

from their connections with the jumping loci of the cohomology with local coefficients

of the complement. More recently, resonance varieties have played a role in other

areas of arrangement theory such as the cohomology of Milnor fibers and roots of

b-functions.

Resonance varieties can be defined for general topological spaces.

Definition 1.1. Let X be a connected topological space and A(X) = ⊕i≥0Ai denote

its graded cohomology algebra over C. Each a ∈ A1 yields a cochain complex

(A(X), a) given by

0 −→ A0
·a−→ A1

·a−→ A2
·a−→ . . .

The first-degree resonance variety of X is

R1(X) = {a ∈ A1 : H1(A, a) 6= 0}

= {a ∈ A1 : ∃b ∈ A1 where b 6= λa, λ ∈ C, and ab = 0}.

The complement of a complex hyperplane arrangement A is one type of

topological space for which deeper results on its resonance varieties are known. For

example, the main result in [6] is that the existence of a nontrivial resonance variety

R1(A) is equivalent to several different properties. One of these is that A is a certain

special configuration of points and lines in the complex projective plane P2 called

nets and multinets. Another is the existence of a connected pencil of plane curves
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with irreducible generic fiber and at least three completely reducible fibers. These

equivalences provide motivation to study nets and multinets.

The notation introduced here is standard in arrangement theory. A complex

hyperplane arrangement A is a finite collection of hyperplanes in Cn or Pn. When

n = 2, the arrangement is referred to as a line arrangement and denoted L. For an

arrangement A in Pn, each hyperplane H ∈ A can be specified by a homogeneous

linear form αH , up to a multiplicative constant, via H = kerαH . It is convenient to

write αH
·

= α′H if αH = cα′H for some c ∈ C×. The product Q(A) =
∏

H∈A αH is

called a defining polynomial ofA and referred to simply as Q when no confusion arises.

The intersection poset of A, denoted L = L(A), is the set of nonempty intersections of

elements of A with partial ordering given by reverse inclusion. Two arrangements are

lattice equivalent if there is an order preserving bijection between their intersection

posets. An arrangement A is central if
⋂
H∈AH 6= ∅. It is well-known that the

intersection poset of a central arrangement is a geometric lattice with rank given by

codimension. For this reason, L(A) is referred to as the intersection lattice when A

is central. All arrangements considered below are central.

In this dissertation, the main objects of study are nets and multinets, certain line

arrangements in P2. There has been significant developments in the theory of nets as

seen in [1], [8], [9], [14], [15], and [16]. On the other hand, less progress has been made

regarding multinets, the generalization of nets obtained by allowing multiplicities of

points and lines. Notable advances related to multinets occured in [5], [6], [13], and

[17]. Nevertheless, there remains very few known general results and examples of

multinets.

A generalization of multinets called weak multinets was introduced in [6]. In

Chapter II, the relationships between nets, multinets, and a weak mulitnets are
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explored using definitions, basic properties, and a few other tools. Several examples

are given. The main result of this chapter is a complete description of the types of

proper weak multinets.

In Chapter III, a method for obtaining multinets from a given net in P3 is

presented. This is done by intersecting the net by a certain choice of hyperplane.

The procedure is implemented in one case, and the resulting multinets are classified

up to equivalence.

In Chapter IV, an invariant of multinets called graph type is introduced as an

aid to distinguish nonisomorphic multinets. The method from the previous chapter

for obtaining multinets is applied to additional cases, and the resulting multinets

are classified up to graph type. These efforts are rewarded with interesting and

unexpected new examples of multinets, several of which are discussed in greater depth

at the end of the chapter. Appendix A provides examples of each graph type found

in the investigated cases and gives a complete compilation of multinets known at this

time. Each of these multinets is a degeneration of a net, supporting the conjecture

in [13] that every multinet is a degeneration of a net.
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CHAPTER II

WEAK MULTINETS, MULTINETS, AND NETS

Nets have a long association with finite geometries, latin squares, quasigroups,

and loops which is discussed in [3]. More recently, it was discovered that nets and

their generalization, multinets, play a special part in the study of resonance varieties

of complements of complex hyperplane arrangements. Nets initially appeared in this

latter context implicitly in [9] and explicity in [16]. Multinets are a fresh notion and

were first defined in [6].

In this chapter, the relationships between weak multinets, multinets, and nets are

explored using definitions, basic properties, and a few other tools. Several examples

are given. The main result is a complete description of proper weak multinets.

2.1. Definitions

Let L be a line arrangement in P2 and m : L → Z>0 be a function assigning

each line ` ∈ L a positive integer m(`) called the multiplicity of the line. The pair

(L,m) is referred to as a multi-arrangement. A multiple point is a point which lies on

at least three lines of L.

Definition 2.1. A weak k-multinet on a multi-arrangement (L,m) is a pair (N ,X )

where N is a partition of L into k ≥ 3 classes L1, . . . ,Lk, and X is a set of multiple

points called the base locus satisfying the following conditions:

(i)
∑

`∈Lim(`) is independent of i;

(ii) for every ` ∈ Li and `′ ∈ Lj with i 6= j, the point ` ∩ `′ ∈ X ;

(iii) for each p ∈ X ,
∑

`∈Li,p∈`m(`) is independent of i.
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A k-multinet is a weak k-multinet satisfying the additional condition:

(iv) for each 1 ≤ i ≤ k and any `, `′ ∈ Li, there is a sequence of ` = `0, `1, . . . , `r = `′

such that `j−1 ∩ `j 6∈ X for 1 ≤ j ≤ r.

It is useful to have a geometrical interpretation of these conditions. The first

says that each class Li contains the same amount of lines when multiplicities are

considered. The second states that any two lines from distinct classes intersect at

a point in the base locus X . The third condition establishes that for each point

p ∈ X , the number of lines ` ∈ Li incident with p is independent of the choice of class

when considering multiplicities. The last condition can be viewed as a connectivity

condition in the following way. It says that each class of a multinet is connected when

the multinet is blown up at its base locus X .

It will be convenient to suppress notation and refer to a weak multinet or multinet

simply as L when no confusion will arise. The common number
∑

`∈Lim(`), denoted

d, is called the degree of the weak k-multinet. A weak k-multinet of degree d is often

referred to as a weak (k, d)-multinet. Similar statements are made for multinets.

Remark 2.2. Given any weak (k, d)-multinet (N ,X ) on (L,m), multiplying all m(`)

by a positive integer c defines a weak (k, cd)-multinet with same L, N , and X . It will

be assumed that d is always minimal. In other words, the multiplicities of the lines

are assumed to be mutually relatively prime.

Remark 2.3. The base locus X of a weak multinet L is determined by its partition

N , namely X = {` ∩ `′ : ` ∈ Li, `′ ∈ Lj, i 6= j}. If L is a multinet, X conversely

determines the partition of L. To see this, construct a graph Γ with vertex set L and

an edge from ` to `′ if ` ∩ `′ 6∈ X . Then the classes Li are the components of Γ.
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For each point p ∈ X , the multiplicity of p is the common number
∑

`∈Li,p∈`m(`)

and labeled as np.

Definition 2.4. A net is a multinet with np = 1 for all p ∈ X .

In particular, nets necessarily have m(`) = 1 for all ` ∈ L by condition (iii)

of Definition 2.1. That is, the multiplicity of each line of a net is one. There are

other implications of the condition np = 1. For instance, conditions (i) and (iv) of

Definition 2.1 are direct consequences of the remaining conditions and np = 1. After

reinterpretating condition (iii), the definition for nets can be restated as follows.

Definition 2.5. A k-net in P2 is a pair (L,X ) where L is a finite collection of lines

in P2 partitioned into k ≥ 3 classes L1, . . . ,Lk, and X is a finite set of points called

the base locus satisfying the following conditions:

(i) for every ` ∈ Li and `′ ∈ Lj with i 6= j, the point ` ∩ `′ ∈ X ;

(ii) for every p ∈ X and every i (i = 1, . . . , k), there exists a unique ` ∈ Li such

that p ∈ `.

The next proposition is one of the few general results on weak multinets.

Originally appearing in [6], it identifies relationships between the various numerical

quantities of a weak multinet. Its proof uses the definition and counting arguments.

Proposition 2.6. Let L be a weak (k, d)-multinet. Then

(i)
∑

`∈Lm(`) = dk;

(ii)
∑

p∈X n
2
p = d2;

(iii) For each ` ∈ L,
∑

p∈X∩` np = d.
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It is immediate from these definitions that all nets are multinets, and all multinets

are weak multinets. The next objective is understanding the effects of each additional

condition imposed when transitioning from weak multinets to multinets to nets. With

this goal in mind, the following terminology is introduced. A proper weak multinet

is a weak multinet which is not a multinet. A proper multinet is a multinet which is

not a net. The first issue to address is existence.

Question 2.7. Do proper weak multinets exist?

Question 2.8. Do proper multinets exist?

2.2. Examples of Proper Weak Multinets

Proper weak multinets exist, and two types of examples were exhibited in [6].

Descriptions of these examples are given below after the following definition.

Definition 2.9. A weak multinet is trivial if |X | = 1.

Remark 2.10. Alternatively, a weak multinet is trivial if it is equivalent to a

hyperplane arrangement in P1.

Example 2.11. A trivial weak multinet is a proper weak multinet if there exists

at least one class containing two distinct lines. In this situation, condition (iv) of

Definition 2.1 fails for the distinct lines lying in the same class. For example,

Q = [x2][y2][(x− y)(x+ y)]

defines a proper weak (3, 2)-multinet. The three classes are distinguished via brackets,

and exponents indicate the multiplicity of each line. The depiction of this arrangement

in RP2 is given in Figure 2.1(a).

7



To create this proper weak multinet, at least one class contained two distinct lines

of the trivial weak multinet. Then multiplicities of lines were appropriately chosen to

satisfy the conditions of a weak multinet. This type of construction is always possible

when the trivial weak multinet contains at least four distinct lines.

Example 2.12. The Hessian arrangement is a well-known (4, 3)-net. Denote its

classes by C0, C1, C2, and C3 and let ξ be a primitive third root of unity. The Hessian

arrangement is defined by Q = C0C1C2C3 where

C0 = xyz

C1 = (x+ y + z)(x+ ξy + ξ2z)(x+ ξ2y + ξz)

C2 = (x+ y + ξz)(x+ ξy + z)(x+ ξ2y + ξ2z)

C3 = (x+ y + ξ2z)(x+ ξy + ξz)(x+ ξ2y + z).

Then Q′ = [C0C1][C2
2 ][C2

3 ] defines a proper weak (3, 6)-multinet. Again, the three

classes are distinguished via brackets, and exponents indicate the multiplicities of

each line.

In the construction of this proper weak multinet, two classes of the (4,3)-net are

combined. Then appropriate multiplicities are assigned to the remaining classes to

meet the conditions of a weak multinet. To see this weak multinet is proper, take

` ∈ C0 and `′ ∈ C1. In Definition 2.1, it follows from condition (ii) that no such

sequence in condition (iv) exists.

The Hessian arrangement is a complex arrangement which cannot be realized in

RP2. A diagram of this arrangement appears in Figure 2.1(b). The four classes are

indicated by different styled lines. More information about the Hessian arrangement

can be found in [2].
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(a) (b)

FIGURE 2.1. Examples of proper weak multinets.

Remark 2.13. The curves C0, C1, C2, and C3 are four completely reducible fibers of

the Hesse pencil of plane curves, namely u(x3 + y3 + z3) + t(xyz) where [u : t] ∈ P1.

These curves are the fibers of the pencil corresponding to [0, 1], [1 : −3], [1 : −3ξ],

and [1 : −3ξ2], respectively, where ξ is a primitive third root of unity. Pencils of plane

curves and their connection with multinets are discussed in Chapter IV.

2.3. The Matrix Q and Refinements

A useful tool in studying weak multinets is its associated matrix Q. This matrix

first appeared in [9] in the study of nets and reappeared in [6]. The following is a

summary of the ideas from these two papers relevelent to the current investigations.

These results are used to establish a new theorem regarding the types of examples of

proper weak multinets.

Suppose L is a weak multinet. Let J be its |X | × |L| incidence matrix (ap,`).

That is, ap,` = 1 if p ∈ ` and ap,` = 0 otherwise. The matrix Q associated to L is

9



defined to be the |L| × |L| matrix given by Q = JTJ − E where E is the |L| × |L|

matrix with every entry 1.

The matrix Q is a generalized Cartan matrix, symmetric with integers on the

main diagonal and −1 or 0 off of the main diagonal. Consequently, there is a block

direct sum decomposition Q = Q1 ⊕ · · · ⊕Qk with each Qi indecomposable of affine

type with regards to Vinberg’s classification. Define a graph Γ with vertex set L and

edge connecting ` and `′ if ` ∩ `′ 6∈ X . Then the indecomposable blocks are precisely

the restriction of Q to the connected components of Γ. More information on Vinberg’s

classification can be found in [7].

A refinement of a weak multinet (N ,X ) on (L,m) is a weak multinet (N ′,X )

on (L,m′) where N ′ is a refinement of N . Note that m′ may be different from m.

That is, multiplicities are permitted to be changed in a refinement. Also, there are

numerous refinements of a given weak multinet.

The following result appeared in [6].

Proposition 2.14. Any weak k-multinet refines to a k′-multinet where k′ ≥ k.

In the subsequent work on multinets, the following observation will be useful.

Proposition 2.15. Any trivial weak k-multinet refines to a (k′, 1)-net with k′ ≥ k.

Proof. Let L be a trivial weak k-multinet. Let N ′ be the partition of L consisting

of one line in each equivalence class and m′ be the multiplicity function assigning

multiplicity one to each line. Then (N ′,X ) is a (k′, 1)-net and a refinement of L. •

2.4. Results on Proper Weak Multinets

Examples 2.11 and 2.12 exhibit the only two types of proper weak multinets that

occur. This is the main result on proper weak multinets and established below.
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Lemma 2.16. A proper weak k-multinet refines to a k′-multinet with k′ ≥ k + 1.

Proof. By failure of condition (iv) in Definition 2.1, a proper weak multinet

necessarily has a class whose corresponding block in the matrix Q decomposes into

at least two indecomposable blocks in the refinement. •

Theorem 2.17. Any proper weak multinet is either trivial or obtained by combining

classes of a proper 4-net.

Proof. Suppose L is a proper weak k-multinet and consider its k′-multinet

refinement. Since k ≥ 3, it follows that k′ ≥ 4 by Lemma 2.16. If k′ > 4, then

the multinet refinement of L is necessarily a net, and any k′-net with k′ > 4 is trivial

by results in [17]. Since X is preserved during refinement, L is a trivial weak multinet.

If k′ = 4, then the refined multinet is a 4-net by [17]. Again noting that X is preserved

during refinement, a proper weak 3-multinet only occurs by combining two classes of

the 4-net and assigning appropriate multiplicities to the other two classes. •

Remark 2.18. The Hessian arrangement is the only known example of a 4-net. It

is conjectured that no other 4-nets exist. If this conjecture is true, then the only

examples of weak proper multinets with |X | > 1 are constructed from the Hessian

arrangement.

2.5. Past Examples of Proper Multinets

With a complete understanding of the types of examples of proper weak

multinets, the focus shifts to proper multinets. Falk and Yuzvinsky identified several

examples of proper multinets in [6]. These were the first and only known examples

of proper multinets prior to the subsequent work in this dissertation. A summary of

these past examples of proper multinets is given below.
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In Chapters III and IV, a method of producing multinets from nets in P3 is

introduced and implemented. This results in the discovery of numerous new examples

of proper multinets.

Example 2.19. The first example is a (3, 4)-multinet with all lines of multiplicity 1,

one point of X of multiplicity 2, and remaining points of X with multiplicity 1. This

arrangement is realizable in RP2 and depicted in Figure 2.2(a). In Chapter IV, it will

be shown that this arrangement has graph type G1(2) and fits into an infinite family

of examples.

Example 2.20. The collection of arrangements defined by

Qn = [(xn − yn)zn][(xn − zn)(yn − 2nzn)][(yn − zn)(xn − 2nzn)]

where n ≥ 2 gives an infinite family of proper multinets. Each n defines a proper

(3, 2n)-multinet which has a unique line of multiplicity n. The remaining lines have

multiplicity 1. Also, two points of X have multiplicity n while all other points of X

have multiplicity 1. Figure 2.2(b) gives a depiction in RP2 of this arrangement when

n = 2. Later, it will be shown that these arrangements have graph types G2(n).

Example 2.21. The collection of arrangements defined by

Qn = [(xn − yn)zn][(xn − zn)yn][(yn − zn)xn]

where n ≥ 2 gives another infinite family of proper multinets. Each n defines a

proper (3, 2n)-multinet which has three lines of multiplicity n. The remaining lines

have multiplicity 1. Also, three points of X have multiplicity n while all other points
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of X have multiplicity 1. A depiction in RP2 of this arrangement when n = 2 is given

in Figure 2.2(c). These arrangements will be shown to have graph types G3(n).

(a) (b) (c)

FIGURE 2.2. Past examples of proper (3,4)-multinets.
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CHAPTER III

MULTINETS FROM NETS IN P3

The central idea in this dissertation is a method to produce multinets from nets in

P3. The definition of nets in P2 given in Definition 2.5 involves conditions on lines and

points, objects of rank one and rank two, respectively, in the intersection lattice. It

can be naturally extended to define nets in Pn for n > 1 by replacing these conditions

on lines and points with analogous ones involving hyperplanes and intersections of

hyperplanes. In both situations, the defining conditions of a net depend on rank one

and rank two elements of the intersection lattice of the arrangement.

An element of the intersection lattice of an arrangement A is called multiple if

it is contained in at least three hyperplanes of A.

Definition 3.1. Let n > 1. A k-net in Pn is a pair (A,X ) where A is a finite

collection of hyperplanes in Pn partitioned into k ≥ 3 classes A1, . . . ,Ak, and X is

a set of rank two multiple elements of the intersection lattice called the base locus

satisfying the following conditions:

(i) for every H ∈ Ai and H ′ ∈ Aj with i 6= j, the element H ∩H ′ ∈ X

(ii) for every P ∈ X and every i (i = 1, . . . , k), there exists a unique H ∈ Ai such

that P ⊆ H.

Again, it is often convenient to suppress notation and refer to a k-net simply

as A when no confusion will arise and the space Pn is clear from context. The next

proposition generalizes a result for nets in P2.

Proposition 3.2. Suppose A is a k-net in Pn. Then |Ai| is independent of i.
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Proof. The definition of k-net in Pn implies that |Ai| = |H ∩ X | for every i and

every H ∈ A. •

Extending conventions established earlier, the common number |Ai| is denoted

d and called the degree of the k-net. Again, a k-net of degree d is often referred to as

a (k, d)-net.

The method for producing multinets presented in this dissertation utilizes nets

in P3. It was shown in [13] that there are no nontrivial nets in Pn for n > 4. In

addition, there are no nontrivial proper multinets Pn for n > 2. In this context, a

net or multinet is considered nontrivial if it cannot be realized in a lower dimensional

space. Currently, there are no known nontrivial nets in P4 and only one known family

of nontrivial nets in P3 which appeared in [13].

Let n ∈ Z>0. Consider the arrangement in P3 given by

Qn = [(xn − yn)(zn − wn)][(xn − zn)(yn − wn)][(xn − wn)(yn − zn)].

It was shown in [13] that this arrangement supports a (3, 2n)-net in P3. In addition,

it was observed that intersecting this arrangement by a generic hyperplane produces

a (3, 2n)-net in P2. On the other hand, intersecting by the hyperplane defined by

w = 0 yields the family of multinets

Q′n = [xn(yn − zn)][yn(xn − zn)][zn(xn − yn)],

one multinet for each n. These multinets are proper when n > 1 and can be viewed as

limits of nets through a deformation process. This family was previously mentioned

in Example 2.21. A closer examination reveals that other examples of multinets can
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be obtained by intersecting the arrangement Qn with different choices of hyperplanes.

This is the seminal observation for producing additional examples of proper multinets.

The following terminology will be used throughout the remainder of the

dissertation. The process of intersecting a net in P3 with a hyperplane will be called

slicing. The intersecting hyperplane will be referred to as the slicing hyperplane. The

line arrangement in P2 obtained by slicing will be called the slice.

It will be shown that most choices of the slicing hyperplane produce multinets

in P2. However, some choices lead to pathological cases and should be avoided.

Consequently, care must be taken in selecting the slicing hyperplane.

If n = 1, it will be seen that any choice of slicing hyperplane can be made

and yields either the unique (3, 2)-net or an arrangement which refines to a trivial

multinet. When n > 1, a sufficient condition to obtain a multinet is that the classes of

hyperplanes in the original multinet structure of Qn are preserved during slicing. This

condition ensures that slicing is done in a manner such that two lines from distinct

classes of Qn do not become identified in the slice. In particular, the slicing hyperplane

cannot be one of the hyperplanes of Qn for n > 1. If the hyperplane satisfies these

restrictions on the slicing hyperplane, it will be called allowable. Otherwise, it will

be called forbidden. These notions will be discussed further in Chapter IV.

The overall goal of the upcoming analysis is to extract as many examples of

multinets as possible from allowable slices of Qn. The intersection lattice Ln of the

arrangement Qn plays a prominent role in this endeavor. The description of Ln

naturally separate into two cases, n = 1 and n > 1. As a result, the analysis of slicing

Qn occurs in two phases. Slices of Q1 is the focus for the remainder of this chapter,

and slices of Qn for n > 1 are discussed in the next chapter.

16



3.1. The Intersection Lattice L1

The arrangement defined by

Q1 = [(x− y)(z − w)][(x− z)(y − w)][(x− w)(y − z)]

is the well-known braid arrangement with Coxeter group of type A3. It is convenient

to impose a linear order on the hyperplanes of Q1 and establish some conventions.

Let

H1 = y − z H3 = x− y H5 = x− z

H2 = x− w H4 = z − w H6 = y − w.

There is a one-to-one correspondence between points and hyperplanes in P3 given

by projective duality. The bijection associates the point [a : b : c : d] ∈ P3 to the

hyperplane ax+ by+ cz+dw = 0. Consequently, a hyperplane in P3 can be described

by its associated point in P3 under this correspondence. It will be clear from context

whether [a : b : c : d] ∈ P3 indicates a point or hyperplane in P3.

It is common to describe elements of the intersection lattice using set notation

and the arbitrary linear order chosen on the hyperplanes of the arrangement. Let

the singleton {i} denote the hyperplane Hi, and let the subset {i1, . . . , ik} denote

the intersection of Hi1 , . . . , Hik . Each element of the intersection lattice L1 of Q1 are

described in Proposition 3.3 in two ways, algebraically and via set notation. Arrows

indicate equivalent descriptions.

The symmetric group S4 acts on {x, y, z, w} by permutation. This extends to an

action on C[x, y, z, w] which fixes Q1 and induces an action of S4 on the intersection

lattice L1. The groupings used in the description of L1 correspond to the orbits of

this latter action. The choice of names assigned was motivated by the role each orbit

plays in slicing.
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Proposition 3.3. The intersection lattice L1 of Q1 in P3 has rank 3. Its elements

consist of P3, hyperplanes, lines, and points. More precisely,

• There are 6 hyperplanes, namely

H1 = [0 : 1 : −1 : 0] ↔ {1}

H2 = [1 : 0 : 0 : −1] ↔ {2}

H3 = [1 : −1 : 0 : 0] ↔ {3}

H4 = [0 : 0 : 1 : −1] ↔ {4}

H5 = [1 : 0 : −1 : 0] ↔ {5}

H6 = [0 : 1 : 0 : −1] ↔ {6}.

• There are 7 lines which consist of the following two types.

◦ There are 4 locus lines given by

[1 : 0 : 0 : 0]u+ [0 : 1 : 1 : 1]t ↔ {1, 4, 6}

[0 : 1 : 0 : 0]u+ [1 : 0 : 1 : 1]t ↔ {2, 4, 5}

[0 : 0 : 1 : 0]u+ [1 : 1 : 0 : 1]t ↔ {2, 3, 6}

[0 : 0 : 0 : 1]u+ [1 : 1 : 1 : 0]t ↔ {1, 3, 5}

where [u : t] ∈ P1.

◦ There are 3 double lines given by
[1 : 0 : 0 : 1]u+ [0 : 1 : 1 : 0]t ↔ {1, 2}

[1 : 1 : 0 : 0]u+ [0 : 0 : 1 : 1]t ↔ {3, 4}

[1 : 0 : 1 : 0]u+ [0 : 1 : 0 : 1]t ↔ {5, 6}

where [u : t] ∈ P1.

• There is a unique point P , namely

P = [1 : 1 : 1 : 1] ↔ {1, 2, 3, 4, 5, 6}.
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Proof. This is a straightforward computation. Nevertheless, a check is performed.

The Poincaré polynomials of braid arrangements are well-known. Using the

description of L1 given in the proposition, the Poincaré polynomial of Q1 is computed

directly from its definition and checked for agreement with the its listing in [12].

Considered as a central arrangement in C4 in [12], the Poincaré polynomial of

Q1 is

π(Q1, t) = 6t4 + 17t3 + 17t2 + 7t+ 1

= (1 + t)2(1 + 2t)(1 + 3t).

On the other hand, it follows from the description given in the proposition that L1

has the properties found in Table 3.1.

TABLE 3.1. Properties of L1.

Lattice element Rank r Number Value of Möbius function µ

P3 0 1 +1

hyperplanes 1 6 −1

locus lines 2 4 +2

double lines 2 3 +1

unique point 3 1 −6

The values of the Möbius function µ of the lattice element X are determined from

the recurrence relation ∑
Y≤X

µ(Y ) = 0
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with initial condition µ(P3) = 1. The definition of the Poincaré polynomial, namely

π(A, t) =
∑
X∈L

µ(X)(−t)r(X)

is used to see

π(Q1, t) = 6t3 + 11t2 + 6t+ 1

= (1 + t)(1 + 2t)(1 + 3t).

These two Poincaré polynomials differ by a factor of 1 + t, reflecting the well-known

effect on the Poincaré polynomial of projectivizing a central arrangement. •

Remark 3.4. The arrangement A defined by Q1 supports the structure of a (3,2)-net

in P3 with classes A1 = {H1, H2}, A2 = {H3, H4}, and A3 = {H5, H6}. It’s base locus

X consists of the four locus lines.

3.2. Isomorphisms of Multinets

The groundwork for the investigation of slices of Q1 continues by making precise

the notion of sameness of a pair of weak multinets or multinets.

Definition 3.5. Let L1 and L2 be two weak multinets. A weak multinet isomorphism

φ : L1 → L2 is a bijection sending N1 to N2 that satisfies the following condition: for

every p ∈ X1, the point ∩i∈Spφ(`i) ∈ X2 where Sp = {i : p ∈ `i}.

It is apparent from this definition that weak multinet isomorphisms preserve all

the combinatorial data of weak multinets, namely classes, line multiplicities, and line

intersection relations from the base locus. Also, the collection of weak multinets and

weak multinet isomorphisms forms a category.

Isomorphisms between multinets are of particular interest for the purposes of

this dissertation. As mentioned in Remark 2.3, the partition N of L can be recovered
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from X when L is a multinet via components of the graph Γ. Since φ preserves the

intersection relations of the base locus from X1 to X2, the map from Γ1 to Γ2 induced

by φ gives a bijection between components of Γ1 and Γ2, hence a bijection between

N1 and N2. This simplifies the definition of weak mulinet isomorphisms between two

multinets.

Definition 3.6. Let L1 and L2 be two multinets in P2. A multinet isomorphism

φ : L1 → L2 is a bijection that satisfies the following condition; for every p ∈ X1, the

point ∩i∈Spφ(`i) ∈ X2 where Sp = {i : p ∈ `i}.

It is not difficult to see that the collection of multinets and multinet isomorphisms

forms a full subcategory of the category of weak multinets and weak multinets

isomorphisms. Now the notion of sameness of a pair of weak multinets or multinets

is made precise.

Definition 3.7. Two weak multinets are isomorphic if there exists a weak multinet

isomorphism between them. Two multinets are isomorphic if there exists a multinet

isomorphism between them. In particular, two nets are isomorphic if there is a

multinet isomorphism between them.

Remark 3.8. Two arrangements that differ by a change of coordinates are called

equivalent. The map induced between two weak multinets or multinets by a change

of coordinates is an isomorphism of weak multinets or multinets, respectively.

3.3. Identifications from Slicing

The structure of the slice depends on the choice of slicing hyperplane H. The slice

is a line arrangement, consisting of points and lines along with the slicing hyperplane

acting as P2. Its lines are formed from the intersections of H with hyperplanes of Q1
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distinct from H. Its points consist of the intersections of H with lines of L1 which are

not contained in H. There are several ways for identifications to occur during slicing.

If H is one of the six hyperplanes of Q1, then H will act as P2 in the slice. The

other hyperplanes of Q1 become lines in the slice with possibly identifications being

made. The hyperplanes of Q1 distinct from H containing a particular locus line or

double line are identified as the same line in the slice exactly when H contains that

particular locus or double line, respectively.

The point P is contained in every hyperplane of Q1. When H contains P , any

lines formed from slicing pass through the image of P in the slice. In other words,

the resulting line arrangement consists of concurrent lines. If H does not contain P ,

the seven lines of L1 intersect H in distinct points, resulting in seven distinct points

in the slice.

3.4. Classification of Slices of Q1

A complete description of the slices of Q1 can now be made up to equivalence.

The key observation is that the identifications made during slicing are completely

determined by the elements of L1 contained in the slicing hyperplane. Consequently,

it suffices to identify all possible combinations of coplanar lattice elements.

Theorem 3.9. There are five slices of the arrangement defined by Q1 up to

equivalence. A slice of Q1 supports either the unique (3, 2)-net or a (k, 1)-net where

k = 3, 4, 5, or 6.

Proof. Assume that the slicing hyperplane H is given by [a : b : c : d] ∈ P3. Using the

same notation as in Proposition 3.3, Table 3.2 gives algebraic conditions describing

when elements of L1 are contained in H.
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TABLE 3.2. Conditions for elements of L1 to be in slice.

Element of L1 Type Condition to be in Slice

{1, 2} double line a+ d = 0, b+ c = 0

{3, 4} double line c+ d = 0, a+ b = 0

{5, 6} double line b+ d = 0, a+ c = 0

{1, 3, 5} locus line a+ b+ c = 0, d = 0

{1, 4, 6} locus line b+ c+ d = 0, a = 0

{2, 3, 6} locus line a+ b+ d = 0, c = 0

{2, 4, 5} locus line a+ c+ d = 0, b = 0

{1, 2, 3, 4, 5, 6} point a+ b+ c+ d = 0

If H contains P , the slice consists of concurrent lines and supports a (k, 1)-

net structure by Proposition 2.15. To determine the possible values of k, it is only

necessary to know the possible number of lines that can appear in the slice. This

depends on the identifications made in the slicing process.

If H contains a double line or locus line, it also necessarily contains P . There

are limitations on the number of locus and double lines contained in H. If H contains

three locus lines or three double lines, then a = b = c = d = 0 and H is not a valid

slice. Consequently, H contains at most two locus lines and at most two double lines.

Each case is considered separately.

Since H = [a : b : c : d] ∈ P3, at least one of a, b, c, and d is nonzero and can be

assumed to be 1 by scaling. By permuting the coordinates if necessary, assume d = 1.

Permuting the coordinates is a change of coordinates which respects Q1, hence any

slice is equivalent to a slice with d = 1.
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Suppose H contains P and no locus lines. Then a, b, c 6= 0 by Table 3.2. In

particular, H is not a hyperplane of Q1. Under these conditions, H contains no

double lines exactly when a, b, c 6= −1. To see this last assertion, note that a = −1

and a+ b+ c+ 1 = 0 (H contains P ) implies b+ c = 0, so H contains a double line.

This direction now follows from symmetrical arguments when b = −1 or c = −1. If

H contains a double line, then at least one of a, b, and c is −1 by Table 3.2 since

d = 1 is assumed. With no double lines and no locus lines contained in the slice, no

hyperplanes are identified during slicing. The slice consists of 6 concurrent lines and

supports a (6, 1)-net.

If H contains no locus lines and precisely one double line, then exactly one of

a, b, and c is −1. Without loss of generality assume c = −1. Since H contains P ,

it follows that a + b = 0, so H = [a : −a : −1 : 1] where a 6= 0,±1. The only

identification in the slice occurs from the double line which glues two of the original

hyperplanes. Thus, the slice has five concurrent lines and supports a (5, 1)-net.

If H contains no locus lines and two double lines, then exactly two of a, b, and

c is −1. Without loss of generality, assume that a = b = −1. Since H contains P ,

it follows that c = 1 and H = [−1 : −1 : 1 : 1]. The two double lines contained in

H identify disjoint pairs of hyperplanes of Q1. As a result, the slice consists of four

concurrent lines and supports a (4, 1)-net.

Next suppose H contains exactly one locus line. Then exactly one of a, b, and

c is zero. In particular, H is not one of the hyperplanes of Q1. Without loss of

generality, suppose a = 0. Then H = [0 : b : c : 1] with b, c 6= 0 and subject to the

condition b + c + 1 = 0 as H contains P . No double lines are possible in this case.

The only identification occurs from the locus line which identifies three hyperplanes

of Q1. This slice has four lines and supports a (4, 1)-net.
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Now suppose H contains exactly two locus lines. Then exactly two of the a, b,

and c are zero. Without loss of generality, assume a = b = 0. Since H contains P , it

follows that c = −1 so H = [0 : 0 : −1 : 1], one of the hyperplanes of Q1. There is

exactly one double line contained in H. Using the set notation for lattice elements of

L1, H = {4} contains the two locus lines given by {1, 4, 6} and {2, 4, 5} as well as the

double line {3, 4}. In the slice, H4 will act as P2 and each disjoint pair of hyperplanes

H1, H6 and H2, H5 are identified, producing two lines in the slice. Lastly, the double

line {3, 4} will produce one more line in the slice. Thus, this slice has three concurrent

lines and supports a (3, 1)-net.

Lastly, suppose H does not contain P . Then H does not contain any locus or

double lines, and it is not a hyperplane of Q1. There are no identifications in the

slicing process. This slice contains six lines with seven intersections points, namely

four locus points and three double points. It supports a (3, 2)-net using the classes

and base locus obtained by intersection each hyperplane and locus line with H. This

establishes the result. •

Depictions of the slices of Q1 in RP2 up to equivalence are given in Figure 3.1.

The slices of Qn for n > 1 are the focus of the next chapter.
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(a) (b) (c)

(d) (e)

FIGURE 3.1. Slices of Q1.
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CHAPTER IV

SLICES OF QN FOR N > 1

The main objective of this chapter is to extract as many examples of multinets

as possible from slices of Qn for n > 1. With more combinatorial data to

navigate, complete analysis up to equivalence is only achieved for certain special

slices. The majority of the chapter focuses on obtaining results for small n where the

combinatorial data is manageable. These efforts are rewarded with interesting and

unexpected new examples of proper multinets.

4.1. The Intersection Lattice Ln

Let n > 1. The arrangement defined by

Qn = [(xn − yn)](zn − wn)][(xn − zn)(yn − wn)][(xn − wn)(yn − zn)]

is the complex reflection arrangement of the monomial group G(n, n, 4). This group

is an irreducible reflection group. It contains the reflections xi 7→ xj for i 6= j and

xi 7→ ξkxi where ξ is a primitive nth root of unity. In the descriptions of these

reflections, the xi are a relabeling of x, y, z, and w. More information about this

arrangement can be found in [12].

The group G(n, n, 4) has a natural action on the intersection lattice Ln of Qn.

The groupings used in the upcoming description of the lattice correspond to the

orbits of this action. The choice of names assigned to elements of Ln was motivated

by the role each orbit plays in slicing. It is convenient to impose a linear order on the

hyperplanes of Qn.
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Fix n ∈ Z>0 and let ξ be a primitive nth root of unity. Put

H1 = y − z H2n+1 = x− y H4n+1 = x− z

H2 = y − ξz H2n+2 = x− ξy H4n+2 = x− ξz

H3 = y − ξ2z H2n+3 = x− ξ2y H4n+3 = x− ξ2z

...
...

...

Hn = y − ξn−1z H3n = x− ξn−1y H5n = x− ξn−1z

Hn+1 = x− w H3n+1 = z − w H5n+1 = y − w

Hn+2 = x− ξw H3n+2 = z − ξw H5n+2 = y − ξw

Hn+3 = x− ξ2w H3n+3 = z − ξ2w H5n+3 = y − ξ2w

...
...

...

H2n = x− ξn−1w H4n = z − ξn−1w H6n = y − ξn−1w.

As in Chapter III, elements of the intersection lattice are described in two ways,

algebraically and via set notation. Again, arrows indicated equivalent descriptions.

Proposition 4.1. Let n > 1 and ξ be a primitive nth root of unity. The intersection

lattice Ln of Qn in P3 has rank 3. Its elements consists of P3, hyperplanes, lines, and

points. More precisely,

• There are 6n hyperplanes, namely

H1 = [0 : 1 : −1 : 0] ↔ {1} H3n+1 = [0 : 0 : 1 : −1] ↔ {3n+ 1}

H2 = [0 : 1 : −ξ : 0] ↔ {2} H3n+2 = [0 : 0 : 1 : −ξ] ↔ {3n+ 2}

H3 = [0 : 1 : −ξ2 : 0] ↔ {3} H3n+3 = [0 : 0 : 1 : −ξ2] ↔ {3n+ 3}
...

...

Hn = [0 : 1 : −ξn−1 : 0] ↔ {n} H4n = [0 : 0 : 1 : −ξn−1] ↔ {4n}
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Hn+1 = [1 : 0 : 0 : −1] ↔ {n+ 1} H4n+1 = [1 : 0 : −1 : 0] ↔ {4n+ 1}

Hn+2 = [1 : 0 : 0 : −ξ] ↔ {n+ 2} H4n+2 = [1 : 0 : −ξ : 0] ↔ {4n+ 2}

Hn+3 = [1 : 0 : 0 : −ξ2] ↔ {n+ 3} H4n+3 = [1 : 0 : −ξ2 : 0] ↔ {4n+ 3}
...

...

H2n = [1 : 0 : 0 : −ξn−1] ↔ {2n} H5n = [1 : 0 : −ξn−1 : 0] ↔ {5n}

H2n+1 = [1 : −1 : 0 : 0] ↔ {2n+ 1} H5n+1 = [0 : 1 : 0 : −1] ↔ {5n+ 1}

H2n+2 = [1 : −ξ : 0 : 0] ↔ {2n+ 2} H5n+2 = [0 : 1 : 0 : −ξ] ↔ {5n+ 2}

H2n+3 = [1 : −ξ2 : 0 : 0] ↔ {2n+ 3} H5n+3 = [0 : 1 : 0 : −ξ2] ↔ {5n+ 3}
...

...

H3n = [1 : −ξn−1 : 0 : 0] ↔ {3n} H6n = [0 : 1 : 0 : −ξn−1] ↔ {6n}.

• There are 7n2 + 6 lines which consist of the following three types.

◦ There are 4n2 locus lines given by

[1 : 0 : 0 : 0]u+ [0 : ξi+j−2 : ξj−1 : 1]t ↔ {i, 3n+ j, 5n+ k1}

[0 : 1 : 0 : 0]u+ [ξi−1 : 0 : ξj−1 : 1]t ↔ {n+ i, 3n+ j, 4n+ k2}

[0 : 0 : 1 : 0]u+ [ξi+j−2 : ξi−1 : 0 : ξj−1]t ↔ {n+ i, 2n+ j, 5n+ k2}

[0 : 0 : 0 : 1]u+ [ξi+j−2 : ξi−1 : 1 : 0]t ↔ {i, 2n+ j, 4n+ k1}

where [u : t] ∈ P1, 1 ≤ i, j, k1, k2 ≤ n, and

k1 = i+ j − 1 (mod n)

k2 = i− j + 1 (mod n).

◦ There are 3n2 double lines given by

[0 : ξi−1 : 1 : 0]u+ [ξj−1 : 0 : 0 : 1]t ↔ {i, n+ j}

[ξi−1 : 1 : 0 : 0]u+ [0 : 0 : ξj−1 : 1]t ↔ {2n+ i, 3n+ j}

[ξi−1 : 0 : 1 : 0]u+ [0 : ξj−1 : 0 : 1]t ↔ {4n+ i, 5n+ j}

where 1 ≤ i, j ≤ n and [u : t] ∈ P1.
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◦ There are six n-lines given by

[1 : 0 : 0 : 0]u+ [0 : 0 : 0 : 1]t ↔ {1, 2, . . . , n}

[0 : 1 : 0 : 0]u+ [0 : 0 : 1 : 0]t ↔ {n+ 1, n+ 2, . . . , 2n}

[0 : 0 : 1 : 0]u+ [0 : 0 : 0 : 1]t ↔ {2n+ 1, 2n+ 2, . . . , 3n}

[1 : 0 : 0 : 0]u+ [0 : 1 : 0 : 0]t ↔ {3n+ 1, 3n+ 2, . . . , 4n}

[0 : 1 : 0 : 0]u+ [0 : 0 : 0 : 1]t ↔ {4n+ 1, 4n+ 2, . . . , 4n}

[1 : 0 : 0 : 0]u+ [0 : 0 : 1 : 0]t ↔ {5n+ 1, 5n+ 2, . . . , 6n}

where [u : t] ∈ P1.

• There n3 + 6n+ 4 points of L consist of the following three types.

◦ There are n3 double points

[ξi+j+k−3 : ξi+k−2 : ξk−1 : 1]↔ {i, n+ k3, 2n+ j, 3n+ k, 4n+ k4, 5n+ k5}

where 1 ≤ i, j, k, k3, k4, k5 ≤ n and

k3 = i+ j + k − 2 (mod n)

k4 = i+ j − 1 (mod n)

k5 = i+ k − 1 (mod n).

◦ There are 6n intraclass points

[ξi−1 : 1 : 0 : 0] ↔ {2n+ i, 3n+ 1, . . . , 4n}

[ξi−1 : 0 : 1 : 0] ↔ {4n+ i, 5n+ 1, . . . , 6n}

[ξi−1 : 0 : 0 : 1] ↔ {1, . . . , n, n+ i}

[0 : ξi−1 : 1 : 0] ↔ {i, n+ 1, . . . , 2n}

[0 : ξi−1 : 0 : 1] ↔ {4n+ 1, . . . , 5n, 5n+ i}

[0 : 0 : ξi−1 : 1] ↔ {2n+ 1, . . . , 3n, 3n+ i}

where 1 ≤ i ≤ n.
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◦ There are four n-points

[1 : 0 : 0 : 0] ↔ {1, . . . , n, 3n+ 1, . . . , 4n, 5n+ 1, . . . 6n}

[0 : 1 : 0 : 0] ↔ {n+ 1, . . . , 2n, 3n+ 1, . . . , 4n, 4n+ 1, . . . 5n}

[0 : 0 : 1 : 0] ↔ {n+ 1, . . . , 2n, 2n+ 1, . . . , 4n, 5n+ 1, . . . 6n}

[0 : 0 : 0 : 1] ↔ {1, . . . , n, 2n+ 1, . . . , 3n, 4n+ 1, . . . 5n}.

Proof. This is a straightforward computation. As before, a check is conducted. The

Poincaré polynomials of reflection groups are well-known. Using the given description

of Ln in the proposition, the Poincaré polynomial of Qn is computed directly from its

definition and checked for agreement with the its listing in [12].

It follows from the description given in the proposition that the intersection

lattice has the properties presented in Table 4.1.

TABLE 4.1. Properties of Ln for n > 1.

Lattice element Rank r Number Value of Möbius function µ

P3 0 1 +1

hyperplane 1 6n −1

locus line 2 4n2 +2

double line 2 3n2 +1

n-line 2 6 +(n− 1)

double point 3 n3 −6

intraclass point 3 6n −(n− 1)

n-point 3 4 −(2n2 − 2)
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It follows from the definition of the Poincaré polynomial that

π(Qn, t) = (6n3 + 3n2 − 6n− 3)t3 + (11n2 − 5)t2 + (6n− 1)t+ 1

= (1 + (n+ 1)t)(1 + (2n+ 1)t)(1 + (3n− 3)t).

On the other hand, the Poincaré polynomial of Qn, considered as a central

arrangement in C4, is known to be

π(Qn, t) = (6n3 + 3n2 − 6n− 3)t4 + (6n3 + 14n2 − 6n− 8)t3

+(11n2 + 6n− 6)t2 + (6n)t+ 1

= (1 + t)(1 + (n+ 1)t)(1 + (2n+ 1)t)(1 + (3n− 3)t).

These two Poincaré polynomials differ by a factor of 1 + t. Again, this reflects

the well-known effect on the Poincaré polynomial when projectivizing a central

arrangement. •

Remark 4.2. For each n > 1, the arrangement defined by Qn supports a (3, 2n)-

net in P3 with classes {H1, . . . , H2n}, {H2n+1, . . . , H4n}, and {H4n+1, . . . , H6n}. Its

base locus X consists of the 4n2 locus lines. Each class breaks naturally into

two blocks, giving the six blocks {H1, . . . , Hn}, {Hn+1, . . . , H2n}, {H2n+1, . . . , H3n},

{H3n+1, . . . , H4n}, {H4n+1, . . . , H5n}, and {H5n+1, . . . , H6n}. These blocks will be

referred to below.

Remark 4.3. The actions of reflection groups on the intersection lattice of their

reflection arrangements have been studied in connection with questions regarding

freeness of restriction arrangements. The orbits of these action were computed for

irreducible Coxeter groups and unitary reflection groups in [11] and [10], respectively.
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4.2. Allowable Slices and Identifications

As mentioned in Chapter III, there are some choices of slicing hyperplane which

lead to pathological cases when n > 1 and should be avoided. A sufficient condition

to ensure a slice yields a multinet is that the classes of the multinet structure of Qn

are preserved during slicing. That is, the slice is made in a manner such that two lines

from distinct classes of Qn do not become identified in the slice. These observations

motivate the following definitions.

Definition 4.4. Fix n > 1. A hyperplane in P3 is called forbidden if it contains a

locus line of Qn. Otherwise, it is called allowable.

In this new language, it will be shown that allowable slicing hyperplanes always

yield multinets. Forbidden slicing hyperplanes lead to pathological cases and will not

be investigated here. The next observation identifies a restriction on the possible

combination of lattice elements contained in an allowable slice.

Proposition 4.5. Let n > 1. An allowable slice of Qn cannot contain an n-point

and a double point of Ln.

Proof. Let ξ be a primitive nth root of unity. Suppose the slice contains a double

point P = [ξi : ξj : ξk : 1] for some 0 ≤ i, j, k < n and the n-point Q = [1 : 0 : 0 : 0].

It follows that the slice contains the line spanned by P and Q, hence the point

R = [0 : ξj : ξk : 1]. The line Qu+Rt where [u : t] ∈ P3 is a locus line, so the slice is

forbidden. The result follows by making symmetric arguments for the other choices

of the n-point Q. •

Similar to the situation with Q1, the structure of the line arrangement in P2

obtained from slicing Qn when n > 1 depends on the lattice elements of Ln contained
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in the slicing hyperplane H. With H acting as P2, the lines and points appearing in

the slice are formed from the intersections of H with hyperplanes and lines of Ln not

contained in H, respectively. There are several ways for identifications to occur in

the slicing process.

Suppose H is allowable. Then hyperplanes of Qn containing a particular double

or n-line are identified as the same line in the slice exactly when H contains that

particular double line or n-line, respectively, of Ln. These situations result in lines

of multiplicity 2 or n in the slice. These lines are also referred to as double lines

and n-lines, respectively. Two lines of Ln which intersect and are not contained in H

are identified as same point in the slice when H contains their intersection point. In

particular, points of multiplicity 2 and n occur in the slice when H contains double

points and n-points, respectively, of Ln. Such points of the slice are also referred to

as double points and n-points, respectively.

With the goal of understanding the multinet structure obtained from allowable

slices, the focus is primarily placed on the possible identifications of hyperplanes and

locus lines in the slicing process. These are the identifications which create lines and

points with multiplicity greater than one in the resulting multinet.

4.3. Ceva Pencils of Plane Curves

In this section, the main result is that a slice of Qn obtained from an allowable

hyperplane is a line arrangement which supports a global multinet structure. To

establish this assertion, an equivalent property to the existence of a multinet structure

is used, namely the existence of a certain pencil of plane curves. The equivalence

between these two notions was identified in [6]. A summary of those ideas is given

below.
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Identify a homogeneous polynomial in three variables with the projective plane

curve it defines and refer to either as a curve. A pencil of plane curves is a line in the

projective space of homogeneous polynomials in three variables of a fixed degree d.

Let C1 and C2 be any pair of distinct curves in a given pencil. Then the pencil can

be described as the set of curves of the form uC1 + tC2 where [u : t] ∈ P1. A pencil

has no fixed components if C1 and C2 have no common factors. Equivalently, C1 and

C2 intersect at a finite set of points, X = C1∩C2, called the base of the pencil. Every

pair of distinct curves in the pencil intersect precisely at X .

The two curves C1 and C2 determine a rational map π : P2 � P1 given by

p 7→ [C2(p) : −C1(p)] whose indeterminacy locus is the base of the pencil. The curve

uC1 + tC2 is the closure of the fiber of π over [u : t]. Each point outside the base

locus lies in a unique such curve. The map π is uniquely determined by the pencil up

to a linear change of coordinates in P1 and referred to as a pencil when no confusion

will result.

A curve of the form
∏q

i=1 α
mi
i where αi is a linear form and mi ∈ Z>0 is called

completely reducible. Let ϕ : S → P2 be the blow-up of P2 at the points of X . The

rational map π : P2 � P1 lifts to a regular mapping π̃ : S → P1. The fibers of π̃ are

the proper transforms of the fibers of π under the blow-up ϕ.

A pencil π is called connected if every fiber of π̃ is connected. Equivalently, π

is connected if each completely reducible fiber of π is not the union of finitely many

proper subvarieties meeting only in the base locus. A pencil of Ceva type or Ceva

pencil is a connected pencil of plane curves with no fixed components and at least

three completely reducible fibers. Lastly, a component R of R1(L) is called a global

resonance component if R is not contained in any coordinate hyperplane in A1. Here is
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the main result of [6] which establishes the relationships between resonance varieties,

multinets, and pencils of plane curves.

Theorem 4.6. Let L be a line arrangement in P2. The following are equivalent:

(i) L supports a global resonance component of dimension k − 1.

(ii) L supports a (k, d) multinet in P2 for some d.

(iii) L is the set of components of k ≥ 3 completely reducible fibers in a Ceva pencil

of degree d curves, for some d.

It is useful to illustrate how to obtain the multinet structure on L from a given

Ceva pencil with completely reducible fibers C1, . . . , Ck. The class Li consists of the

lines defined by the factors of Ci. Each line ` ∈ L is assigned the multiplicity m(`)

equal to the multiplicity of its corresponding linear factor in Ci. The base locus X of

the multinet is the base of the pencil.

Here is the main result of the section.

Theorem 4.7. Let n > 1. The line arrangement in P2 obtained from intersecting

Qn with an allowable hyperplane supports a (3, 2n)-multinet structure.

Proof. Let H = [a : b : c : d] be an allowable slicing hyperplane. Then at least one

of these coefficients is nonzero. By scaling if needed, assume one of the coefficients

has value −1, say d = −1. Then H is the hyperplane given by w = ax + by + cz.

Consider the pencil π given by

u[(xn − yn)(zn − (ax+ by + cz)n)] + t[(xn − zn)(yn − (ax+ by + cz)n)]

where [u : t] ∈ P1. There are three singular values: [1 : 0], [0 : 1], and [−1 : 1]. The

corresponding fibers
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C1 = (xn − yn)(zn − (ax+ by + cz)n)

C2 = (xn − zn)(yn − (ax+ by + cz)n)

C3 = (xn − (ax+ by + cz)n)(yn − zn)

are completely reducible and define the arrangement in the slice via Q = C1C2C3.

Observe that the pencil of space curves in P3 given by

u[(xn − yn)(zn − wn)] + t[(xn − zn)(yn − wn)]

where [u : t] ∈ P1 has no fixed components. Since classes are preserved during an

allowable slice, it follows that π also has no fixed components.

Lastly, the pencil π is connected. To see this, suppose ` and `′ are from the same

class Li of Q and p = ` ∩ `′ ∈ X . From the structure of Ln, p is a double point or an

n-point. If p is an n-point, ` and `′ are from the same block of Li. (See Remark 4.2.)

For any choice of `′′ ∈ Li in the other block, the sequence of `, `′′, `′ satisfies condition

(iv) in Definition 2.1.

If p is a double point, then ` and `′ lie in different blocks of Li. Examining

the structure of the intersection lattice, there are restrictions on identifications in the

slice made by H containing intraclass points. If H contains a double point, then it

can contain at most two intraclass points impacting each class. Assume H contains

intraclass points impacting Li. Then H contains the double line `′′ ∈ Li passing

through these points, and the sequence of `, `′′, `′ satisfies condition (iv).

If H contains one intraclass point impacting Li, then all lines of Li have

multiplicity one. Due to the identifications resulting from the interclass point, all

the lines in one block and exactly one line, say `′′ ∈ Li, from the other block are

concurrent at a point outside of X . The sequence of `, `′′, `′ satisfies condition (iv).
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Lastly, assume H contains no intraclass points impacting Li. Then the slice has

no double lines and no n-lines. If there are `′′, `′′′ ∈ Li lying in distinct blocks of ` and

`′, respectively, with `′′ ∩ `′′′ 6∈ X , the sequence `, `′′, `′′′, `′ satisfies condition (iv). If

no such `′′ and `′′′ exist, the completely reducible fiber of the pencil corresponding to

Li is not connected in the blow up at X . As a result, the line arrangement in the slice

supports a proper weak multinet structure. This refines to a multinet structure by

assigning multiplicity two to the blocks of Li and any other classes with disconnected

blocks. It follows that the slice supports a k-multinet structure with k = 4, 5, or

6. By [13], the slice must be a 4-net. Since classes in a net must contain the same

number of lines, this situation is impossible. •

Combining Theorem 4.7, Proposition 4.5, and the observations made about

identifications in allowable slices gives the next two results.

Proposition 4.8. Let n > 1. An allowable slice of Qn supports a (3, 2n)-multinet

with locus points of multiplicity 1, 2, or n. Moreover, none of these multinets can

contain both a double point and an n-point simultaneously.

Proposition 4.9. Let n > 1. For multinets obtained from allowable slices of Qn,

every point of X on a line ` with m(`) > 1 has the multiplicity m(`).

4.4. Generic Slices of Qn

It was observed in [16] that every (3, d)-net in P2 can be associated with a d× d

latin square in the following way. Let L1, L2, and L3 denote the three classes of

the 3-net. There is a pairing L1 × L2 → L3 given by (`, `′) 7→ `′′ where `′′ is the

unique line from L3 containing the point ` ∩ `′ ∈ X . Identify each class with the set

G = {1, . . . , d}. Then this pairing defines a binary operation on G and gives it the
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structure of a quasigroup whose Cayley table is a latin square. Identifications can

always be made so that G is a loop, an algebraic structure where all group axioms hold

except possibly associativity. See [3] for additional information regarding quasigroups,

loops, and latin squares.

Since the Cayley table of any finite group is a latin square, there has been interest

in which groups can be realized by 3-nets in P2. Building on the results from [13], [15],

and [16], it was shown in [8] that the groups realizable by 3-nets in P2 are precisely

Zn, Zn ⊕ Zm, D2n, and the quaternion group Q8. On the other hand, it was shown

in [14] that there exists a 3-net whose associated latin square is not the Cayley table

of a group.

The pairing used in associating a latin square to a 3-net in P2 utilizes only

combinatorial data. It generalizes naturally to 3-nets in higher dimensional projective

space using codimension one and two objects in lieu of lines and points. As a result,

every 3-net can be associated to a latin square regardless of its ambient projective

space Pk for k > 1. In particular, the latin square associated to the (3, 2n)-net Qn in

P3 is computed below. It was mentioned in [1] that the arrangement defined by Qn

appearing in [13] defines a net realizing D2n. This assertion is proven below and used

to give explicit equations of a net realizing D2n in Example 4.13.

Proposition 4.10. The arrangement in P3 defined by Q1 realizes the group Z2.

Proof. Let Z2 = 〈g〉. Using the linear ordering imposed on the hyperplanes of Q1 in

Chapter III, the identifications e↔ {1, 3, 5} and g ↔ {2, 4, 6} give the result. •

Proposition 4.11. Let n > 1. The (3, 2n)-net in P3 defined by Qn realizes the

dihedral group of 2n elements, namely D2n = 〈r, s : rn = s2 = 1, sris = r−i for all i〉.

Proof. Using the linear ordering imposed on Qn in Proposition 4.1, the classes of

the net are {1, . . . , 2n}, {2n + 1, . . . , 4n}, and {4n + 1, . . . , 6n}. Make the following
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associations between hyperplanes in Qn and elements of D2n:

ri−1 ↔ {i}, {2n+ i}, {4n+ i}

ri−1s ↔ {n+ i}, {3n+ i}, {5n+ i}

where 1 ≤ i ≤ n. Then the group operations agree with the description given of locus

lines which comprises the base locus X of the net. Explicitly,

ri−1 × rj−1 = ri+j−2 ↔ {i, 2n+ j, 4n+ k1}

ri−1 × rj−1s = ri+j−2s ↔ {i, 3n+ j, 5n+ k1}

ri−1s× rj−1 = ri−j ↔ {n+ i, 2n+ j, 5n+ k2}

ri−1s× rj−1s = ri−j ↔ {n+ i, 3n+ j, 4n+ k2}

where

k1 = i+ j − 1 (mod n)

k2 = i− j + 1 (mod n)

and 1 ≤ i, j, k1, k2 ≤ n. •

Theorem 4.12. Slicing Qn by a generic allowable hyperplane yields a (3, 2n)-net in

P2 realizing D2n.

Proof. A generic allowable hyperplane does not contain any lattice elements of

Ln. Such a slice exists since there are only finitely many lattice elements and

infinitely many allowable slicing hyperplanes. By Theorem 4.7, the slice supports

a (3, 2n)-multinet structure. Each line and point of X has multiplicity one because

no identifications are made, hence the slice is a (3, 2n)-net. The pairing used in

associating the Latin square to Qn remains the same in the slice. The result now

follows from Proposition 4.11. •
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Example 4.13. Let n > 1. The slicing hyperplane given by w = 2x + 4y + 8z

is allowable and generic since it does not contain any lattice elements of Ln. By

Theorem 4.12,

Q = [(xn−yn)](zn−(2x+4y+8z)n)][(xn−zn)(yn−(2x+4y+8z)n)][(xn−(2x+4y+8z)n)(yn−zn)]

realized the group D2n. These arrangements will be shown to have graph type G0.

4.5. Graph Types of Multinets

It is convenient to develop a way to distinguish nonisomorphic multinets without

wading too deeply through their defining combinatorial data. This provides the

motivation to pioneer an invariant of multinets dubbed graph type.

Each multinet can be assigned a graph with weighted vertices and weighted,

colored edges. Vertices correspond to points P ∈ X of the multinet with m(P ) > 1

and are assigned the weight m(P ). There is an edge between two vertices if the pair

of associated points in the multinet lie on a common line ` of the arrangement. The

edge is colored according to which class contains ` and assigned the weight weight

m(`). By convention, a net is assigned the empty graph, the graph consisting of no

vertices and no edges. Also, graphs differing only by the choice of coloring of the

edges are considered to be the same.

In Table 4.2, several graphs are presented. It will be shown that each of these is

the graph type of certain slices of Qn. To simplify these graphs, several conventions

are employed. Circles and squares indicate vertices of weight 2 and n, respectively. A

single edge between circles signifies the multinet contains two double points which lie

on a common line of the arrangement. A double edge between circles signals that the

double points lie on a double line of the multinet. For the graphs G5(n) and G6(n),
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TABLE 4.2. Some graph types of Qn.

G0
G9(4) G17

G1(n) G9(5) G18(6)

G2(n) G9(6) G19

G3(n) G10 G20

G4
G11 G21

G5(n) G12 G22

G6(n)

(n even)

G13 G23

G6(n)

(n odd)

G14 G24

G7
G15 G25

G8
G16
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only two of the n vertices on each double line are depicted. Edges of weight one

are suppressed in G6(n). Lastly, a triple line appearing between squares indicates

the multinet has n-points which lie on an n-line of the arrangement. There are no

suppressed vertices in this case. Edges are colored based on the class to which their

associated lines belong.

These graphs encode a sufficient amount of combinatorial data to be an effective

invariant. Clearly, multinets with different graph types are nonisomorphic multinets.

However, nonisomorphic multinets can have the same graph type. For example, the

(3, 2)-nets realizing Z4 and Z2⊕Z2 both have the empty graph as their graph type, but

are nonisomorphic as multinets since their latin squares are not main class isotopic.

4.6. Infinite Families of Multinets

An infinite family of multinets with graph type G0 was presented in Example

4.13. In this section, infinite families of multinets with other graph types obtained

from slices of Qn for n > 1 are identified. There is much interest in examples of

multinets which contain at least one line ` with m(`) > 1 due to recent papers such

as [4].

Definition 4.14. A multinet L is called heavy if there is a line ` ∈ L with m(`) > 1.

If m(`) = 1 for all ` ∈ L, the multinet is said to be light.

Theorem 4.15. Let n > 1. Multinets obtained from allowable slices of Qn with at

least one n-point have graph types G1(n), G2(n), and G3(n).
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Proof. Let n > 1 and consider a multinet obtained from Qn by an allowable slicing

hyperplaneH with at least one n-point. Since the four n-points of Ln are not coplanar,

H contains at most three n-points.

If H has three n-points, then it is equivalent to H = [0 : 0 : 0 : 1] by a

permutation of coordinates. The resulting multinet contains three n-lines, no double

lines, and no double points. Its graph type is G3(n).

If H has two n-points, then H is equivalent by a permutation of coordinates and

scaling to [0 : 0 : 1 : a] with a 6= 0. There is another condition on a. For H to be

allowable, a 6= −ξi where ξ is a primitive nth root of unity and i = 0, . . . , n − 1. In

this case, H contains one n-line, no double lines, and no double points. The graph

type of this multinet is G2(n).

If H has one n-point, then H is equivalent by a permutation of coordinates and

scaling to [0 : 1 : a : b] with a, b 6= 0. Allowability implies a and b cannot satisfy

1 + ξia + ξjb = 0 for any i, j. It follows that b 6= (−1 − ξia)/ξj or equivalently

b 6= −ξia− ξj for some (different) i, j. In this case, H contains no n-lines, no double

lines, and no double points. Its graph type is G1(n). •

Examples of infinite families of heavy multinets with graph type G2(n) and G3(n)

are produced by choosing the slicing hyperplanes w = 2z and w = 0, respectively.

Scaling Q in the former situation yields the two families of multinets exhibited in

Example 2.20 and Example 2.21. The following infinite family of light multinets is

new and constructed using observations from the proof of Theorem 4.15.

Example 4.16. Let n > 1. Slicing Qn by the hyperplane w = x + 3y produces a

(3, 2n)-multinet with graph type G1(n) defined by

Q = [(xn− yn)(zn− (x+ 3y)n)][(xn− zn)(yn− (x+ 3y)n)][(xn− (x+ 3y)n)(yn− zn)].
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This multinet has one n-point, namely [0 : 0 : 1], and m(`) = 1 for all lines `. This

example was given in [6] for the case n = 2. The n = 4 case is examined further in

Example 4.33.

One consequence of Theorem 4.15 is that heavy multinets obtained from Qn with

at least one n-line have graph types G2(n) and G3(n). The situation is less clear for

heavy multinets with at least one double line. However, some general statements

can be made. The next sequence of results establishes a maximum on double lines

contained in an allowable slice. Examples will follow, showing these maximums are

attainable.

Proposition 4.17. Let n > 1. An allowable slice of Qn can contain at most two,

respectively three, double lines if n is odd, respectively even. Furthermore, if the slice

contains two double lines and n is even, it also contains a third double line.

Proof. Suppose H is an allowable slice and contains two double lines. It follows

from Proposition 4.1 that the double lines intersect at a point of Ln of the form

[ξi : ξj : ξk : 1]. By a sequence of rotations and reflections fixing Ln, it can be

assumed that the two double lines intersect at P = [1 : 1 : 1 : 1]. There are three

double lines through P , namely


L1 : [1 : 0 : 0 : 1]u+ [0 : 1 : 1 : 0]t

L2 : [1 : 1 : 0 : 0]u+ [0 : 0 : 1 : 1]t

L3 : [1 : 0 : 1 : 0]u+ [0 : 1 : 0 : 1]t.

These lines are not coplanar, so H cannot contain all three. Assume H contains L1

and L2. Then H = [−1 : 1 : −1 : 1]. Since H is allowable, any additional double line
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in H must belong to the third class and have the form:

Li,j : [ξi−1 : 0 : 1 : 0]u+ [0 : ξj−1 : 0 : 1]t

where [u : t] ∈ P for some 0 < i, j ≤ n. Observe that H contains Li,j exactly when

ξi−1 = −1 and ξj−1 = −1. Both conditions are satisfied for a unique i and j if n is

even. If n is odd, −1 is not a root of unity and there is no solution. •

Example 4.18. Let n > 1. Slicing Qn by the hyperplane defined by w = x + y − z

produces the heavy (3, 2n)-multinet defined by

Q = [(xn−yn)(zn−(x+y−z)n)][(xn−zn)(yn−(x+y−z)n)][(xn−(x+y−z)n)(yn−zn)].

If n is odd, this slice contains two double lines, 2n− 1 double points, no n-lines, and

no n-points. If n is even, it contains three double lines, 3n − 3 double points, no

n-lines, and no n-points. These multinets have graph type G6(n). The case n = 4 is

discussed in Example 4.36.

There are two additional infinite families of multinets of certain graph types that

can be easily described.

Example 4.19. Let n > 1. Slicing Qn by the hyperplane w = x+πy−πz yields the

heavy (3, 2n)-multinet specified by

Q = [(xn−yn)(zn−(x+πy−πz)n)][(xn−zn)(yn−(x+πy−πz)n)][(xn−(x+πy−πz)n)(yn−zn)].

This slice contains one double line, n double points, no n-lines, and no n-points. Its

graph type is G5(n). The case n = 4 is examined in Example 4.35.
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Example 4.20. Let n > 1. Slicing Qn by the hyperplane w = −x− y+ 3z produces

a light (3, 2n)-multinet given by

Q = [(xn−yn)(zn− (−x−y+3z)n)][(xn−zn)(yn− (−x−y+3z)n)][(xn− (−x−y+3z)n)(yn−zn)].

This slice contains exactly one double point of multiplicity two, namely P = [1 : 1 : 1],

and no other points or lines of multiplicity greater than one. Its graph type is G4.

The case n = 4 is treated in Example 4.34.

As will be seen later, there exists heavy multinets which have exactly one double

line, say `, and double points not on `. The next two results explore this situation by

showing at least two or four double points which are not on ` can occur. Examples

involving these situations appear as graph types G9 and G18, respectively.

By a sequence of rotations and reflections fixing Ln, one may take the unique

double line contained in the allowable slice H to be [1 : 0 : 0 : 1]u + [0 : 1 : 1 : 0]t

where [u : t] ∈ P1. Then H = [−1 : a : −a : 1] with a ∈ C×. The proofs of these next

two propositions are direct verifications.

Proposition 4.21. Let n = 2p + 1 with p ≥ 1 and ξ be a primitive nth root of

unity. Suppose H = [−1 : a : −a : 1] and contains the point [ξi : ξj : ξk : 1] where

0 ≤ i, j, k < n, i 6= 0, and j 6= k. Then H also contains the point [ξ−i : ξk−i : ξj−i : 1].

Proposition 4.22. Let n = 2p with p ≥ 1 and ξ be a primitive nth root of unity.

Suppose H = [−1 : a : −a : 1] and contains the point [ξi : ξj : ξk : 1] where

0 ≤ i, j, k < n, i 6= 0, and j 6= k. Then H also contains the (not necessarily distinct)

points [ξ−i : ξk−i : ξj−i : 1], [ξi : ξk+p : ξj+p : 1], and [ξ−i : ξj−i+p : ξk−i+p : 1].
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4.7. Classifying Slices of Qn

The ultimate goal is to classify multinets obtained from Qn up to isomorphism.

This was accomplished for n = 1 in Chapter III. When n > 1, the first step in

this direction is taken by classifying multinets up to graph type, a weaker notion of

equivalence than isomorphism.

Many choices of allowable slicing hyperplane produce isomorphic multinets from

Qn. More precisely, the monomial group G(n, n, 4) acts naturally on the intersection

lattice Ln and induces an action on the collection C of linearly closed sets of coplanar

elements of Ln. Associate to each set S ∈ C the collection of slicing hyperplanes which

contain the elements of S and no additional elements of Ln. Two slicing hyperplanes

associated to a given S ∈ C produce line arrangements which are lattice equivalent.

If S does not contain any locus lines, then these line arrangements are isomorphic

multinets by Theorem 4.7.

To classify line arrangements obtained from slicing Qn up to lattice equivalence,

it suffices to choose a set of representatives for the orbits of C, say {Si}. Then

select exactly one slicing hyperplane Hi associated to each Si and analyze the

resulting line arrangements. Unfortunately, the orbits of C under this action are

not completely understood at this time. In particular, it is unknown how to select a

set of representatives for the orbits of C in a pragmatic way.

On the other hand, the interest in this dissertation lies in classifying multinets

obtained from allowable slices of Qn up to isomorphism, a weaker notion than lattice

equivalence. This classification can be achieved using a closely related group action.

Let L′n be the sublattice of Ln formed by excluding the intraclass points. Then

G(n, n, 4) acts naturally on L′n and induces an action on the collection C ′ of linearly

closed sets of coplanar elements of L′n which do not contain any locus lines. As before,
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associate to each set S ∈ C ′ the collection of slicing hyperplanes which contain the

elements of S and no additional elements of Ln. Two slicing hyperplanes associated

to a given S ∈ C ′ yield line arrangements which are isomorphic multinets.

To classify multinets obtained from Qn by allowable slicing hyperplanes up to

isomorphism, it is sufficient to choose a set of representatives for the orbits of C ′, say

{Si}. Then select exactly one slicing hyperplane Hi associated to each Si and analyze

the resulting multinets. There are issues from implementing this approach. The orbits

of C ′ under this action are also not well understood at this time. It is unknown how

to efficiently select a set of representatives for the orbits of C ′. Moreover, determining

whether or not two arbitrary multinets are isomorphic directly from the definition is

cumbersome.

As a preliminary step, the aforementioned procedure is modified to obtain a

classification up to graph type, giving a practical way to investigate multinets from Qn

for small n. This is accomplished by generating a list of elements of C ′ which contains

representatives from sufficiently many of the orbits of C ′ to capture all possible graph

types of the associated multinets. The remainder of this section concentrates on the

procedural details regarding classification up to graph type. This method will be

implemented for small n in the subsequent sections.

As a consequence of Proposition 4.8, a set S ∈ C ′ cannot contain both double

points and n-points. Slices of Qn associated to S containing at least one n-point were

considered in Theorem 4.15 and produce multinets with graph types of G1(n), G2(n),

and G3(n). Furthermore, slices of Qn associated to the empty set were examined in

Theorem 4.12 and yield multinets with graph type of G0. It remains to investigate

situations where S contains at least one double point.
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Since a plane is determined by three non-collinear points, there are three cases

to consider for S ∈ C ′ containing at least one double point. Each set S is the linear

closure of either one, two, or three double points. The group action of G(n, n, 4) on C ′

is useful to limit the S ∈ C ′ needed to be considered for determining all possible graph

types. Let ξ be a primitive nth root of unity. Two types of linear transformations of P3

which leave Ln invariant are the rotations ρki : xi 7→ ξkxi and reflections σi,j : xi ↔ xj

where x1, x2, x3, x4 have been identified with x, y, z, w, respectively. All rotations and

reflections mentioned below in this section refer to linear transformations of P3 of the

form ρki and σi,j, respectively. Any pair of sets of C ′ related by a sequence of rotations

and reflections produce multinets with the same graph type.

For convenience, impose an order on Zn by [0] < [1] < · · · < [n−1] and write i for

the equivalence class of [i]. Using these conventions, the ordering becomes expressed

as 0 < 1 < · · · < n− 1, and statements such as 1 < −1 are made for n > 2.

Suppose S is the linear closure of one double point. That is, S consists of exactly

one double point and no other elements of L′n. Applying a sequence of rotations, this

point can be taken to be P1 = [1 : 1 : 1 : 1]. By cardinality, there exists an allowable

hyperplane containing P1 and no other elements of L′n. This shows S ∈ C ′ and

produces a multnet with graph type G4.

Next suppose S is the linear closure of two double points, P1 and P2. Two

situations arise. The corresponding double points of the associated multinet either

lie on a line formed from a hyperplane from Qn or do not. If they lie on such a

line, S can be taken to be the linear closure of the points P1 = [1 : 1 : 1 : 1] and

P2 = [1 : ξj : ξk : 1] with 1 ≤ j ≤ bn+1
2
c and 1 ≤ j ≤ k by a sequence of rotations

and reflections. Thus, P1 and P2 lie on the line in the slice obtained from x − w of

Qn. Note that j = 0 and k 6= 0 produce forbidden slices.
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There are other ways to reduce the number of sets S to consider in this situation.

Applying the rotations ρ−j2 and ρ−k3 followed by the reflection σ2,3 takes the points P1

and P2 to the points P ′1 = [1 : ξ−k : ξ−j : 1] and P ′2 = [1 : 1 : 1 : 1], respectively, where

−k ≤ −j. This shows that the two corresponding sets lie in the same orbit of C ′,

hence only one needs to be considered. This is accomplished by taking j < k ≤ −j.

Also, all points with j = k appear on a common double line of L′n. Consequently, it

suffices to consider only j = k = 1 in this situation.

If S contains no pair of double points which lie on a common hyperplane of Qn,

then one can take P1 = [1 : 1 : 1 : 1] and P2 = [ξi : ξj : ξk : 1] with 0 < i, j, k < n by

a sequence of rotations and reflections. The condition that P1 and P2 do not lie on a

common hyperplane of Qn implies i, j, and k are pairwise distinct. Using a sequence

of reflections, it is sufficient to consider 0 < i < j < k < n.

Lastly, suppose S is the linear closure of three non-collinear double points, namely

P1, P2, and P3. These points completely specify the slicing hyperplane. There are

two situations to consider in this case. The set S either does or does not contain a

pair of double points which lie on common hyperplane of Qn.

Suppose S contains a pair of double points, say P1 and P2, which lie on common

hyperplane of Qn. Let ` denote the corresponding line in the associated multinet and

refer to this situation as the collinear case. The multiplicity of ` is one or two.

If m(`) = 2, then ` can be taken to be [1 : 0 : 0 : 1]u + [0 : 1 : 1 : 0]t where

[u : t] ∈ P1 using a sequence of rotations and reflections. This is the double line

spanned by P1 = [1 : 1 : 1 : 1] and P2 = [1 : ξ : ξ : 1]. Necessary conditions on

P3 = [ξi : ξj : ξk : 1] to ensure the slice is allowable include i 6= 0 and j 6= k.

There are additional reductions. Applying a sequence of rotations which fix `, the

double points on ` are permuted and P3 becomes [ξi : 1 : ξk
′

: 1]. The condition
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k′ 6= 0 is required so that the slice is not forbidden. This shows that it is sufficient

to consider P3 with j = 0. Also, the reflection σ1,4 preserves ` and sends a double

point P3 = [ξi : 1 : ξk : 1] off of ` to the point P ′3 = [ξ−i : ξ−i : ξk−i : 1]. Applying

another sequence of rotations which fix `, the point P ′3 becomes P ′′3 = [ξ−i : 1 : ξk
′
: 1]

where k′ 6= 0. As a result, it is sufficient when m(`) = 2 to only consider P3 with

1 ≤ i ≤ bn
2
c, j = 0, and k 6= 0.

When m(`) = 1, one can take P1 = [1 : 1 : 1 : 1] and P2 = [1 : ξj : ξk : 1]

with 1 ≤ j < bn+1
2
c and j < k ≤ −j by a sequence of rotations and reflections.

Note that j = k = 1 implies S contains a double line and was considered previously.

There are conditions on P3 = [ξa : ξb : ξc : 1] necessary to obtain an allowable slice

including a 6= 0. In addition, P3 cannot lie on any n-line passing through P1 and P2 by

Proposition 4.8. This implies P3 is not one of the points: [ξt : 1 : 1 : 1], [ξt : ξt : ξt : 1],

[ξi+t : ξj : ξk : 1], [ξi : ξj+t : ξk : 1], [ξi : ξj : ξk+t : 1], or [ξi+t : ξj+t : ξk+t : 1] where

t = 0, 1, . . . , n − 1. Any remaining choices for a, b, and c produce allowable slices.

Observe the reflection σ1,4 sends the point P3 = [ξi : ξj : ξk : 1] with i 6= 0 to

P ′3 = [ξ−i : ξj−i : ξk−i : 1] and also fixes P1 and P2. These define S which lie in the

same orbit of C ′, so it is sufficient to consider only one of them.

Finally, suppose S contains at least three double points with the property that

there is no pair of double points lie on a common hyperplane of Qn. Refer to this

situation as the noncollinear case. By a sequence of rotations and reflections, one can

take P1 = [1 : 1 : 1 : 1] and P2 = [ξi : ξj : ξk : 1] with 0 < i < j < k < n. The third

point and resulting additional points cannot have the property that any two lie on a

line in Qn since those situations were already considered. Thus, it is only necessary

to consider S where each hyperplane of Qn contains at most one of the points: P1,

P2, and P3.
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Remark 4.23. Using the above approach results in superfluous slices being

investigated, however it is the most efficient way known at the present time. Further

reductions are possible using the full strength of the group action induced by the

monomial group G(n, n, 4) on the intersection lattice Ln.

4.8. Slices of Q2: (3,4)-Multinets

The method of classifying slices of Qn up to graph type discussed in the

previous section is now implemented for small n. The following conventions are used

throughout these investigations. Bold numbers are used to indicated the choices of

P3 needed during analysis of the collinear case with m(`) = 2. The images of the

points in the slice lying off of the line [1 : 0 : 0 : 1]u+ [0 : 1 : 1 : 0]t where [u : t] ∈ P1

under the reflection σ1,4 are identified as reflection points in the upcoming tables.

Definition 4.24. Write ijk for the point [ξi : ξj : ξk : 1].

Theorem 4.25. Allowable slices of Q2 yield (3, 4)-multinets with the following graph

types: G0, G1(2), G2(2), and G3(2).

Proof. Here ξ = −1. Theorem 4.12 shows generic slices produce (3, 4)-nets. These

give multinets with graph type G0. From Theorem 4.15, allowable slices containing

at least one 2-point yield (3, 4)-multinets with graph types G1(2), G2(2), and G3(2).

It remains to investigate linearly closed sets S ∈ C ′ with at least one double point.

By Example 4.20 and Example 4.19, there are slices yielding graph types

G4 and G5(2), respectively. Each choice of P2 needed in the method

lies on a double line of Ln passing through P1. There is only one case

to investigate when S contains at least three double points. The results

are summarized in Table 4.3. All slices in the table contain the point

P1 = [1 : 1 : 1 : 1]. The second point P2 is indicated in the table using the short-hand
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TABLE 4.3. Collinear case for n = 2.

P2 Additional Points Slice Graph Type

011 101 [−1 : −1 : 1 : 1] G6(2)

notation introduced in Definition 4.24. The third point and any additional points

are indicated in the column labeled Additional Points. The result now follows from

observing G1(2) = G4, G2(2) = G5(2), and G3(2) = G6(2). •

Each multinets obtained from Q2 is realizable in RP2. Depictions of the

proper (3, 4)-multinets obtained from Q2 are given in Table 4.4. Different intraclass

structures occur for slices of graph type G1(2) by choosing slicing hyperplanes

containing different number of intraclass points of L2. This gives three arrangements

which support a multinet structure with graph type G1(2), but have non-isomorphic

intersection lattices. These three examples are equivalent to slices formed using the

slicing hyperplanes w = −x− 2y + 4z, w = −2x− 3y + 6z, and w = −x− y + 3z.

4.9. Slices of Q3: (3,6)-Multinets

Theorem 4.26. Allowable slices of Q3 yield (3, 6)-multinets with the following graph

types: G0, G1(3), G2(3), G3(3), G4, G5(3), G6(3), G7, and G8.

Proof. Let ξ be a primitive third root of unity. Theorem 4.12 shows generic slices

produce (3, 6)-nets. These give multinets with graph type G0. From Theorem 4.15,

allowable slices containing at least one 3-point yield (3, 6)-multinets with graph types

G1(3), G2(3), and G3(3). It remains to investigate linearly closed sets S ∈ C ′ with at

least one double point.
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TABLE 4.4. Types of (3, 4)-multinets.

G1(2)

G2(2)

G3(2)

By Example 4.20 and Example 4.19, there are slices yielding graph type G4 and

G5(3), respectively. For additional graph types of slices involving P1 and P2, only

the collinear situation via a line of multiplicity 1 is possible. Appendix A gives an

example of such a slice with graph type G7. Next consider S with at least three

double points. Only the collinear case is possible and needs to be considered for P3.

A summary of the findings in the collinear case is given in Table 4.5. This completes

the analysis and gives the result. •
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TABLE 4.5. Collinear case for n = 3.

P2 Additional Points Reflection Points Slice Graph Type

011 022, 101, 202 - [−1 : −1 : 1 : 1] G6(3)

011 022, 102, 212 - [−1 : ξ : −ξ : 1] G6(3)

012 102 221 [−1 : −1 : −ξ : ξ + 2] G8

012 121 210 [ξ − 1 : −ξ − 1 : 1 : 1] G8

4.10. Slices of Q4: (3,8)-Multinets

Theorem 4.27. Allowable slices of Q4 yield (3, 8)-multinets with the following graph

types: G0, G1(4), G2(4), G3(4), G4, G5(4), G6(4), G7, G8, G9(4), G10, G11, G12, and

G13.

Proof. Let ξ be a primitive fourth root of unity. Theorem 4.12 shows generic slices

produce (3, 8)-nets. These give multinets with graph type G0. From Theorem 4.15,

allowable slices containing at least one 4-point yield (3, 8)-multinets with graph types

G1(4), G2(4), and G3(4). It remains to investigate linearly closed sets S ∈ C ′ with at

least one double point.

By Example 4.20 and Example 4.19, there are slices yielding graph type G4 and

G5(4), respectively. For additional graph types of slices involving P1 and P2, the

collinear via a line of multiplicity 1 and noncollinear situations are both possible.

Examples of such slices are given in Appendix A and have graph types G7 and G10,

respectively.

Lastly, consider S with at least three double points. Table 4.6 gives a summary

of the analysis for the collinear case. It is necessary to check if three double points
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TABLE 4.6. Collinear case for n = 4.

P2 Additional Points Reflection Points Slice Graph Type

011 022, 033, 101, 132, 202, - [−1 : −1 : 1 : 1] G6(4)

303, 312

011 022, 033, 102, 313 - [−ξ − 1 : −1 : 1 : ξ + 1] G9(4)

011 022, 033, 103,112, 213, - [−1 : ξ : −ξ : 1] G6(4)

310, 323

011 022, 033, 201, 232 - [−ξ + 1 : −1 : 1 : ξ − 1] G9(4)

011 022, 033, 203, 212 - [−1 : ξ − 1 : −ξ + 1 : 1] G9(4)

012 101, 133, 202, 303 110, 220, 322, 330 [−1 : −ξ − 1 : 1 : ξ + 1] G9(4)

012 102 331 [2 : 2 : ξ − 1 : −ξ − 3] G8

012 103, 313 120, 332 [1 : −ξ + 1 : ξ : −2] G13

012 113, 210, 311, 323 122, 130, 232, 302 [1 : −ξ − 1 : 1 : ξ − 1] G9(4)

012 121 310 [2ξ − 1 : −ξ − 1 : 1 : −ξ + 1] G8

012 131 320 [ξ − 2 : −ξ − 1 : 1 : 2] G12

012 132 321 [−2 : −ξ − 1 : 1 : ξ + 2] G12

012 201, 233 211, 223 [ξ : −2 : −ξ + 1 : 1] G13

012 203 221 [−2 : −ξ − 1 : 1 : ξ + 2] G12

012 213 231 [1 : −2ξ : ξ + 1 : ξ − 2] G12

013 101, 112, 123, 130, 110, 211, 220, 301, [ξ : −1 : −ξ : 1] G6(4)

202, 233, 303 312, 323, 330

013 102, 133 322, 331 [−ξ + 1 : 1 : ξ : −2] G13

013 103 332 [1 : 1 : ξ : −ξ − 2] G8

013 121 310 [ξ − 2 : −ξ : 1 : 1] G8

013 122, 131 311, 320 [−2 : −ξ : 1 : ξ + 1] G13

013 132 321 [−ξ − 2 : −ξ : 1 : 2ξ + 1] G11

013 201, 212, 223, 230 201, 212, 223, 230 [1 : ξ − 1 : −ξ − 1 : 1] G9(4)

013 203 221 [1 : ξ + 1 : ξ − 1 : −2ξ − 1] G8

013 210 232 [1 : −ξ − 1 : −ξ + 1 : 2ξ − 1] G8
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of L4 exist with the property of being pairwise noncollinear in Q4. Table 4.7 identifies

candidates for this situation.

TABLE 4.7. Candidates for P3 in noncollinear case for n = 4.

P Noncollinear Points with P

000 123, 132, 213, 231, 312, 321

123 000, 031, 202, 211, 310, 332

Inspecting Table 4.7, there is no point in L4 which is noncollinear with both

points [1 : 1 : 1 : 1] and [ξ : ξ2 : ξ3 : 1] simultaneously. Thus, there does not exist a

set of three double points with the property that no pair lies on a line of Q4. This

completes the analysis and gives the result. •

4.11. Slices of Q5: (3,10)-Multinets

Theorem 4.28. Allowable slices ofQ5 yield (3, 10)-multinets with the following graph

types: G0, G1(5), G2(5), G3(5), G4, G5(5), G6(5), G7, G8, G9(5), G10, G11, G12, G13,

G14, G15, G16, and G17.

Proof. Let ξ be a primitive fifth root of unity. Theorem 4.12 shows generic slices

produce (3, 10)-nets. These give multinets with graph type G0. From Theorem 4.15,

allowable slices containing at least one 5-point yield (3, 10)-multinets with graph types

G1(5), G2(5), and G3(5). It remains to investigate linearly closed sets S ∈ C ′ with at

least one double point.

By Example 4.20 and Example 4.19, there are slices yielding graph type G4 and

G5(5), respectively. For additional graph types of slices involving P1 and P2, the
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collinear via a line of multiplicity 1 and noncollinear situations are both possible.

Examples of such slices are given in Appendix A and have graph types G7 and G10,

respectively.

Next consider S with at least three double points. A summary of the analysis

for the collinear case is given in Table 4.8.

TABLE 4.8. Collinear case for n = 5.

P2 Additional Points Reflection Points Slice Type

011 022, 033, 044, 101, 202, - [−1 : −1 : 1 : 1] G6(5)

303, 404

011 022, 033, 044, 102, 414 - [−ξ + 1 : 1 : −1 : −ξ − 1] G9(5)

011 022, 033, 044, 103, 424 - [ξ2 + ξ + 1 : 1 : −1 : −ξ2 − ξ − 1] G9(5)

011 022, 033, 044, 104, 214, - [−ξ4 : 1 : −1 : ξ4] G6(5)

324, 434

011 022, 033, 044, 201, 343 - [1 : ξ + 1 : −ξ − 1 : −1] G9(5)

011 022, 033, 044, 143, 203, - [ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G6(5)

313, 423

011 022, 033, 044, 204, 323 - [ξ2 + 1 : 1 : −1 : −ξ2 − 1] G9(5)

012 101, 144, 202, 303, 404 110, 220, 330, 433, 440 [1 : ξ + 1 : −1 : −ξ − 1] G9(5)

012 102 441 [1 : 1 : ξ3 + ξ : −ξ3 − ξ − 2] G8

012 103, 414 120, 442 [−ξ2 − x− 1 : −ξ − 1 : 1 : ξ2 + 2x + 1] G13

012 104, 314 231, 443 [ξ4 : −ξ − 1 : 1 : −ξ4 + ξ] G14

012 113, 214, 310, 411, 423 122, 134, 232, 342, 402 [ξ2 : ξ + 1 : −1 : −ξ2 − ξ] G9(5)

012 114, 320, 422, 434 133, 140, 242, 403 [−ξ3 − ξ2 : −ξ − 1 : 1 : ξ3 + ξ2 + ξ] G17

012 121 410 [ξ2 + 2ξ : −ξ − 1 : 1 : −ξ2 − ξ] G8

012 124, 331 203, 413 [−ξ3 + ξ : −ξ − 1 : 1 : ξ3] G14

012 130 424 [ξ3 + 2ξ2 + 2ξ + 1 : −ξ − 1 : 1 : −ξ3 − 2ξ2 − ξ − 1] G12

012 131 420 [ξ3 + 2ξ2 + 2ξ : −ξ − 1 : 1 : −ξ3 − 2ξ2 − ξ] G12

012 132 421 [ξ3 + 2ξ2 + ξ : −ξ − 1 : 1 : −ξ3 − 2ξ2] G12

012 141 430 [ξ3 + ξ2 + ξ − 1 : −ξ − 1 : 1 : −ξ3 − ξ2 + 1] G12

012 142 431 [ξ3 + ξ2 − 1 : −ξ − 1 : 1 : −ξ3 − ξ2 + ξ + 1] G12

012 143 432 [ξ3 − 1 : −ξ − 1 : 1 : −ξ3 + ξ + 1] G12

012 201, 244 322, 334 [1 : ξ2 + 2ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G15

012 204, 313 230, 332 [−ξ2 − 1 : −ξ − 1 : 1 : ξ2 + ξ + 1] G13

012 210 343 [1 : −ξ − 1 : 1 : ξ − 1] G8

012 211, 223 301, 344 [ξ : −ξ2 − 2ξ − 1 : ξ + 1 : ξ2] G13

012 213 341 [ξ2 : ξ2 + 2ξ + 1 : −ξ − 1 : −2ξ2 − ξ] G12

012 221 304 [ξ2 + 2ξ : −ξ2 − 2ξ − 1 : ξ + 1 : −ξ] G12

012 224 302 [−ξ2 + ξ : −x− 1 : 1 : ξ2] G8

012 233, 240 311, 323 [ξ3 + ξ2 + ξ : −ξ2 − 2ξ − 1 : ξ + 1 : −ξ3] G13

012 241 324 [−ξ4 + ξ3 + ξ : −ξ − 1 : 1 : ξ4 − ξ3] G11

012 243 321 [ξ3 − 1 : −ξ2 − 2ξ − 1 : ξ + 1 : −ξ3 + ξ2 + ξ + 1] G11

013 101, 202, 244, 303, 404 110, 220, 322, 330, 440 [1 : ξ2 + ξ + 1 : −1 : −ξ2 − ξ − 1] G9(5)

013 102, 144 433, 441 [ξ + 1 : ξ2 + ξ + 1 : −1 : −ξ2 − 2ξ − 1] G13
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TABLE 4.8. Continued from previous page.
P2 Additional Points Reflection Points Slice Type

013 103 442 [ξ4 + ξ3 : ξ4 + ξ3 : 1 : −2ξ4 − 2ξ3 − 1] G8

013 104, 414 120, 443 [ξ4 : ξ4 + ξ3 : 1 : −2ξ4 − ξ3 − 1] G13

013 112, 240, 302, 344 211, 224, 323, 401 [ξ2 : −ξ2 − ξ − 1 : 1 : ξ] G17

013 114, 210, 311, 324, 412 123, 233, 241, 343, 403 [ξ3 : ξ2 + ξ + 1 : −1 : −ξ3 − ξ2 − ξ] G9(5)

013 121 410 [ξ3 + 2ξ2 + 2ξ : −ξ2 − ξ − 1 : 1 : −ξ3 − ξ2 − ξ] G8

013 122, 130 411, 424 [ξ3 + 2ξ2 + ξ : −ξ2 − ξ − 1 : 1 : −ξ3 − ξ2] G15

013 131 420 [ξ3 + 2ξ2 + ξ − 1 : −ξ2 − ξ − 1 : 1 : −ξ3 − ξ2 + 1] G12

013 132 421 [ξ3 + 2ξ2 − 1 : −ξ2 − ξ − 1 : 1 : −ξ3 − ξ2 + ξ + 1] G11

013 133, 141 422, 430 [ξ3 + ξ2 − 1 : −ξ2 − ξ − 1 : 1 : −ξ3 + ξ + 1] G13

013 134, 242 320, 423 [ξ2 − 1 : −ξ2 − ξ − 1 : 1 : ξ + 1] G14

013 140, 243 321, 434 [ξ3 + ξ2 : −ξ2 − ξ − 1 : 1 : −ξ3 + ξ] G14

013 142 431 [ξ3 + ξ2 − ξ − 1 : −ξ2 − ξ − 1 : 1 : −ξ3 + 2ξ + 1] G11

013 143 432 [ξ3 − ξ − 1 : −ξ2 − ξ − 1 : 1 : −ξ3 + ξ2 + 2ξ + 1] G12

013 201 334 [1 : −ξ4 + ξ2 + ξ : −ξ − 1 : ξ4 − ξ2] G12

013 203 331 [ξ2 + ξ + 1 : −ξ4 + ξ2 + ξ : −ξ − 1 : ξ4 − 2ξ2 − ξ] G8

013 204 332 [ξ2 + 1 : ξ2 + ξ + 1 : −1 : −2ξ2 − ξ − 1] G12

013 212, 301 223, 340 [ξ2 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ + 1 : ξ3 + ξ2 + ξ] G15

013 214 342 [ξ3 : ξ3 + 2ξ2 + 2ξ + 1 : −ξ − 1 : −2ξ3 − 2ξ2 − ξ] G12

013 221 304 [ξ3 + 2ξ2 + 2ξ : −ξ3 − 2ξ2 − 2ξ − 1 : ξ + 1 : −ξ] G12

013 231 314 [ξ3 + ξ2 + 2ξ : −ξ2 − ξ − 1 : 1 : −ξ3 − ξ] G12

013 232 310 [ξ3 + 2ξ2 − 1 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ + 1 : ξ + 1] G8

013 234 312 [ξ2 − 1 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ + 1 : ξ3 + ξ2 + ξ + 1] G12

014 101, 124, 202, 234, 303 110, 211, 220, 312, 330 [1 : −ξ4 : −1 : ξ4] G6(5)

344, 404 413, 440

014 102, 134 423, 441 [ξ + 1 : −ξ4 : −1 : ξ4 − ξ] G14

014 103, 144 433, 442 [ξ2 + ξ + 1 : −ξ4 : −1 : ξ4 − ξ2 − ξ] G13

014 104 443 [ξ4 : ξ4 : 1 : −2ξ4 − 1] G8

014 112, 130, 233, 242 311, 320, 401, 424 [ξ3 + ξ2 : ξ4 : 1 : ξ] G17

014 113, 140, 203, 244 322, 331, 402, 434 [ξ3 : ξ4 : 1 : ξ2 + ξ] G17

014 121 410 [−ξ4 − 2 : ξ4 : 1 : 1] G8

014 122, 131 411, 420 [ξ3 + ξ2 − 1 : ξ4 : 1 : ξ + 1] G13

014 123, 141 412, 430 [ξ3 − 1 : ξ4 : 1 : −ξ4 − ξ3] G14

014 132 421 [ξ3 + ξ2 − ξ − 1 : ξ4 : 1 : 2ξ + 1] G11

014 133, 142 422, 431 [ξ3 − ξ − 1 : ξ4 : 1 : ξ2 + 2ξ + 1] G16

014 143 432 [5ξ3 + 3ξ2 + 4ξ + 3 : −ξ3 − ξ2 − 3 : ξ2 − 2ξ + 1 : −4ξ3 − 3ξ2 − 2ξ − 1] G11

014 201, 224, 313, 340 212, 230, 302, 334 [1 : ξ3 + ξ2 + ξ : −ξ − 1 : −ξ3 − ξ2] G17

014 204 332 [ξ2 + 1 : −ξ4 : −1 : ξ4 − ξ2] G8

014 210 343 [ξ2 + 1 : ξ4 : 1 : −ξ4 − ξ2 − 2] G8

014 213, 240 323, 341 [ξ3 : −ξ3 − ξ2 − ξ : ξ + 1 : ξ2 − 1] G14

014 221 304 [−ξ4 − 2 : ξ4 + 1 : ξ + 1 : −ξ] G8

014 223, 241 301, 324 [ξ3 − 1 : ξ4 + 1 : ξ + 1 : ξ2] G14

014 232 310 [ξ2 − 1 : ξ4 : 1 : −ξ4 − ξ2] G8

014 243 321 [5ξ3 + 3ξ2 + 4ξ + 3 : −ξ3 − 2ξ − 2 : ξ3 − ξ2 − ξ + 1 : −5ξ3 − 2ξ2 − ξ − 2] G11

023 101, 133, 202, 243, 303, 110, 124, 220, 321, 330 [ξ + 1 : ξ2 + ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G6(5)

404, 413 422, 440

023 102, 143 432, 441 [ξ2 + 2ξ + 1 : ξ2 + ξ + 1 : −ξ − 1 : −2ξ2 − 2ξ − 1] G14

023 103 442 [ξ3 + 2ξ2 + 2ξ + 1 : ξ2 + ξ + 1 : −ξ − 1 : −ξ3 − 3ξ2 − 2ξ − 1] G8

023 104, 113, 410, 424 121, 130, 402, 443 [−ξ2 − ξ − 1 : ξ3 + ξ2 : −ξ3 − ξ2 − ξ : ξ2 + 2ξ + 1] G17
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TABLE 4.8. Continued from previous page.
P2 Additional Points Reflection Points Slice Type

023 112, 144, 304, 313 221, 230, 401, 433 [ξ : ξ2 + ξ + 1 : −ξ − 1 : −ξ2 − ξ] G17

023 114 403 [ξ3 − 1 : ξ2 + ξ + 1 : −ξ − 1 : −ξ3 − ξ2 + 1] G8

023 120 414 [ξ3 + 2ξ2 + 2ξ + 1 : −ξ2 − ξ − 1 : ξ + 1 : −ξ3 − ξ2 − 2ξ − 1] G8

023 122, 140, 302, 343 210, 224, 411, 434 [ξ3 + ξ2 : −ξ2 − ξ − 1 : ξ + 1 : −ξ3] G17

023 131 420 [ξ3 + 2ξ2 − 1 : −ξ2 − ξ − 1 : ξ + 1 : −ξ3 − ξ2 − 1] G8

023 132, 141 421, 430 [ξ3 + ξ2 − ξ − 1 : −ξ2 − ξ − 1 : ξ + 1 : −ξ3 + ξ + 1] G14

023 142 431 [ξ3 − 2ξ − 1 : −ξ2 − ξ − 1 : ξ + 1 : −ξ3 + ξ2 + 2ξ + 1] G11

023 201, 233 311, 334 [1 : ξ2 + ξ + 1 : −ξ − 1 : −ξ2 − 1] G13

023 203 331 [ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ − 1 : −2ξ2 − ξ − 1] G8

023 204, 213 332, 341 [ξ3 + ξ2 + 1 : ξ2 : −ξ3 − ξ2 − ξ − 1 : −ξ2 + ξ] G14

023 211, 234 312, 344 [ξ2 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ2 + 2ξ + 1 : ξ3] G16

023 212, 244 322, 340 [ξ : ξ3 + 2ξ2 + 2ξ + 1 : −ξ2 − 2ξ − 1 : −ξ3 − ξ2 − ξ] G13

023 214 342 [ξ3 − 1 : ξ3 + 2ξ2 + 2ξ + 1 : −ξ2 − 2ξ − 1 : −2ξ3 − ξ2 + 1] G11

023 231 314 [ξ3 + 2ξ2 − 1 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ2 + 2ξ + 1 : −ξ2 + 1] G11

023 232, 241 310, 324 [ξ3 + ξ2 − ξ − 1 : −ξ3 − 2ξ2 − 2ξ − 1 : ξ2 + 2ξ + 1 : ξ + 1] G14

023 242 320 [ξ2 − ξ − 1 : −ξ2 − ξ − 1 : ξ + 1 : ξ + 1] G8

It is necessary to check if three double points of L5 exist with the property of being

pairwise noncollinear in Q5. Table 4.9 identifies candidates for this situation.

TABLE 4.9. Candidates for P3 in noncollinear case for n = 5.

P Reflection Points Noncollinear Points with P

000 - 123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243,

312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432

123 124, 134, 234 000, 004, 030, 031, 041, 044, 200, 202, 210, 211, 241, 242,

302, 314, 311, 314, 331, 332, 410, 414, 430, 432, 442, 444

Only combinations of three points which are pairwise noncollinear in Q5 need

to be analyzed. These result from finding common entries in the last column in the

two rows of Table 4.9. For example, 241 is common in the third column to the rows

corresponding to 000 and 123. This indicates 000, 123, and 241 are three double

points which are pairwise noncollinear in Q5. Thus, the slice specified by the three
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points [1 : 1 : 1 : 1], [ξ : ξ2 : ξ3 : 1], and [ξ2 : ξ4 : ξ : 1] is analyzed. A summary of

such slices are given below in Table 4.10.

TABLE 4.10. Noncollinear case for n = 5.

P2 Additional Points Slice Type

123 013, 233, 241, 343, 403 [ξ3 + 2ξ2 + 2ξ : −ξ2 − 2ξ − 2 : ξ2 + 1 : −ξ3 + 1] G9(5)

123 034, 144, 204, 314, 424 [ξ3 + 2ξ2 + ξ + 1 : ξ3 + ξ2 + 2ξ + 1 : −ξ2 − 2ξ − 2 : −2ξ3 − 2ξ2 − ξ] G9(5)

123 110, 220, 330, 432, 440 [ξ3 + 2ξ2 + 2ξ : −ξ3 − 2ξ2 − 2ξ : ξ3 + 2ξ2 + ξ + 1 : −ξ3 − 2ξ2 − ξ − 1] G9(5)

This completes the analysis and gives the result. •

4.12. Slices of Q6: (3,12)-Multinets

Theorem 4.29. Allowable slices ofQ6 yield (3, 12)-multinets with the following graph

types: G0, G1(6), G2(6), G3(6), G4, G5(6), G6(6), G7, G8, G9(6), G10, G11, G12, G13,

G14, G15, G16, G17, G18(6), G19, G20, G21, G22, G23, G24, and G25.

Proof. Let ξ be a primitive sixth root of unity. Theorem 4.12 shows generic slices

produce (3, 12)-nets. These give multinets with graph type G0. From Theorem 4.15,

allowable slices containing at least one 6-point yield (3, 12)-multinets with graph types

G1(6), G2(6), and G3(6). It remains to investigate linearly closed sets S ∈ C ′ with at

least one double point.

By Example 4.20 and Example 4.19, there are slices yielding graph type G4 and

G5(6), respectively. For additional graph types of slices involving P1 and P2, the

collinear via a line of multiplicity 1 and noncollinear situations are both possible.

Examples of such slices are given in Appendix A and have graph types G7 and G10,

respectively.

Next consider S with at least three double points. A summary of the analysis

for the collinear case is given in Table 4.11.
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TABLE 4.11. Collinear case for n = 6.

P2 Additional Points Reflection Points Slice Type

011 022, 033, 044, 055, 101, - [−1 : −1 : 1 : 1] G6(6)

143, 202, 253, 303, 404,

413, 505, 523

011 022, 033, 044, 055, 102, - [ξ + 1 : 1 : −1 : −ξ − 1] G18

153, 515, 524

011 022, 033, 044, 055, 103, - [2ξ : 1 : −1 : −2ξ] G9(6)

525

011 022, 033, 044, 055, 104, - [2ξ − 1 : 1 : −1 : −2ξ + 1] G18

113, 520, 535

011 022, 033, 044, 055, 105, - [ξ − 1 : 1 : −1 : −ξ + 1] G6(6)

123, 215, 224, 325, 420,

435, 521, 545

011 022, 033, 044, 055, 201, - [−1 : −ξ − 1 : ξ + 1 : 1] G18

243, 412, 454

011 022, 033, 044, 055, 203, - [−2ξ : −ξ − 1 : ξ + 1 : 2ξ] G9(6)

414

011 022, 033, 044, 055, 112, - [−ξ : −1 : 1 : ξ] G6(6)

154, 204, 213, 314, 415,

424, 510, 534

011 022, 033, 044, 055, 205, - [−ξ : ξ − 2 : −ξ + 2 : ξ] G18

223, 410, 434

011 022, 033, 044, 055, 301, - [−1 : −2ξ : 2ξ : 1] G9(6)

343

011 022, 033, 044, 055, 302, - [−ξ − 1 : −2ξ : 2ξ : ξ + 1] G9(6)

353

011 022, 033, 044, 055, 304, - [−ξ − 1 : −2 : 2 : ξ + 1] G9(6)

313

011 022, 033, 044, 055, 305, - [−ξ : −2 : 2 : ξ] G9(6)

323

012 101, 155, 202, 254, 303, 110, 124, 220, 330, 432 [1 : ξ + 1 : −1 : −ξ − 1] G18

404, 505, 513 440, 544, 550

012 102, 154, 514 125, 543, 551 [ξ + 1 : ξ + 1 : −1 : −2ξ − 1] G23

012 103, 515 120, 552 [ξ2 + x+ 1 : ξ + 1 : −1 : −ξ2 − 2ξ − 1] G22

012 104, 510, 524 121, 135, 553 [ξ − 2 : 2ξ − 1 : −ξ : −2ξ + 3] G23

012 105, 113, 214, 315, 410, 122, 134, 232, 240, 342, [ξ − 1 : ξ + 1 : −1 : −2ξ + 1] G18

63



TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

424, 511, 523 452, 502, 554

012 114, 420, 522, 534 133, 145, 242, 503 [ξ − 2 : ξ + 1 : −1 : −2ξ + 2] G24

012 115, 430, 533, 545 144, 150, 252, 504 [−2 : ξ + 1 : −1 : −ξ + 2] G24

012 130 525 [4ξ − 2 : −ξ − 1 : 1 : −3ξ + 2] G12

012 131 520 [4ξ − 3 : −ξ − 1 : 1 : −3ξ + 3] G12

012 132, 140 521, 535 [3ξ − 3 : −ξ − 1 : 1 : −2ξ + 3] G25

012 141 530 [3ξ − 4 : −ξ − 1 : 1 : −2ξ + 4] G12

012 142 531 [2ξ − 4 : −ξ − 1 : 1 : −ξ + 4] G12

012 143, 151 532, 540 [ξ − 3 : −ξ − 1 : 1 : 3] G25

012 152 541 [−3 : −ξ − 1 : 1 : ξ + 3] G12

012 153 542 [−ξ − 2 : −ξ − 1 : 1 : 2ξ + 2] G12

012 201, 255 433, 445 [1 : 3ξ : −ξ − 1 : −2ξ] G22

012 203 441 [2ξ : 3ξ : −ξ − 1 : −4ξ + 1] G12

012 204, 414 230, 442 [ξ : ξ + 1 : −1 : 2ξ] G13

012 205, 213 443, 451 [−ξ : −3 : −ξ + 2 : 2ξ + 1] G25

012 210, 224, 422, 434 244, 250, 402, 454 [1 : −ξ − 1 : 1 : ξ − 1] G17

012 211, 223 401, 455 [ξ : −3ξ : ξ + 1 : ξ − 1] G13

012 215 453 [−2 : 3ξ : −ξ − 1 : −2ξ + 3] G12

012 221, 235 405, 413 [3ξ − 1 : −3ξ : ξ + 1 : −ξ] G25

012 225 403 [−2ξ − 1 : 3ξ : −ξ − 1 : 2] G12

012 231 415 [4ξ − 3 : −3ξ : ξ + 1 : −2ξ + 2] G12

012 233, 245 411, 423 [2ξ − 2 : −3ξ : ξ + 1 : 1] G22

012 241 425 [3ξ − 4 : −3ξ : ξ + 1 : −ξ + 3] G11

012 243, 251 421, 435 [ξ − 3 : −3ξ : ξ + 1 : ξ + 2] G20

012 253 431 [−ξ − 2 : −3ξ : ξ + 1 : 3ξ + 1] G11

012 301, 355 322, 334 [1 : 4ξ − 2 : −2ξ : −2ξ + 1] G15

012 302, 354 321, 335 [ξ + 1 : 4ξ − 2 : −2ξ : −3ξ + 1] G21

012 304 331 [−ξ − 1 : −2ξ − 2 : 2 : 3ξ + 1] G12

012 305, 313 332, 340 [−ξ : −2ξ − 2 : 2 : 3ξ] G15

012 310, 324 343, 351 [ξ + 1 : −4ξ + 2 : 2ξ : ξ − 3] G21

012 311, 323 344, 350 [ξ : −4ξ + 2 : 2ξ : ξ − 2] G15

012 314 341 [ξ − 2 : 4ξ − 2 : −2ξ : −3ξ + 4] G12

012 320 353 [3ξ : −4ξ + 2 : 2ξ : −ξ − 2] G12

012 325 352 [−2ξ − 1 : 4ξ − 2 : −2ξ : 3] G12

013 101, 202, 255, 303, 404 110, 220, 330, 433, 440, [1 : 2ξ : −1 : −2ξ] G9(6)
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TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

505 550

013 102, 155 544, 551 [ξ + 1 : 2ξ : −1 : −3ξ] G22

013 103 552 [2ξ : 2ξ : −1 : −4ξ + 1] G8

013 104, 515 120, 553 [2ξ − 1 : 2ξ : −1 : −4ξ + 2] G15

013 105, 415 231, 554 [ξ − 1 : 2ξ : −1 : −3ξ + 2] G14

013 112, 350, 402, 455 211, 224, 323, 501 [ξ − 1 : −2ξ : 1 : ξ] G17

013 114, 215, 310, 411, 424, 123, 233, 240, 343, 453, [−1 : 2ξ : −1 : −2ξ + 2] G9(6)

512 503

013 115, 320, 422, 435 244, 251, 353, 504 [−ξ − 1 : 2ξ : −1 : −ξ + 2] G24

013 121 510 [4ξ − 3 : −2ξ : 1 : −2ξ + 2] G8

013 122, 135 511, 524 [3ξ − 3 : −2ξ : 1 : −ξ + 2] G22

013 125, 442 204, 514 [−3ξ + 1 : 2ξ : −1 : ξ] G14

013 130 525 [4ξ − 4 : −2ξ : 1 : −2ξ + 3] G12

013 131 520 [4ξ − 5 : −2ξ : 1 : −2ξ + 4] G12

013 132 521 [3ξ − 5 : −2ξ : 1 : −ξ + 4] G11

013 133, 140 522, 535 [2ξ − 4 : −2ξ : 1 : 3] G15

013 134, 242 420, 523 [2ξ − 3 : −2ξ : 1 : 2] G14

013 141 530 [2ξ − 5 : −2ξ : 1 : 4] G12

013 142 531 [ξ − 5 : −2ξ : 1 : ξ + 4] G12

013 143 532 [−4 : −2ξ : 1 : 2ξ + 3] G12

013 144, 151 533, 540 [−3 : −2ξ : 1 : 2ξ + 2] G15

013 145 534 [ξ − 3 : −2ξ : 1 : ξ + 2] G11

013 150, 253 431, 545 [−2 : −2ξ : 1 : 2ξ + 1] G14

013 152 541 [−ξ − 3 : −2ξ : 1 : 3ξ + 2] G11

013 153 542 [−2ξ − 2 : −2ξ : 1 : 4ξ + 1] G12

013 154 543 [−2ξ − 1 : −2ξ : 1 : 4ξ] G12

013 201 445 [1 : 4ξ − 2 : −ξ − 1 : −3ξ + 2] G12

013 203 441 [2ξ : 4ξ − 2 : −ξ − 1 : −5ξ + 3] G8

013 205, 414 230, 443 [−ξ : −2ξ − 2 : −ξ + 2 : 4ξ] G22

013 210, 423 245, 454 [2ξ : −4ξ + 2 : ξ + 1 : ξ − 3] G21

013 212, 401 223, 450 [ξ − 1 : −4ξ + 2 : ξ + 1 : 2ξ − 2] G15

013 214 452 [−1 : 4ξ − 2 : −ξ − 1 : −3ξ + 4] G12

013 221 405 [4ξ − 3 : −4ξ + 2 : ξ + 1 : −ξ] G12

013 225, 434 250, 403 [−3ξ + 1 : 4ξ − 2 : −ξ − 1 : 2] G21

013 232 410 [3ξ − 5 : −4ξ + 2 : ξ + 1 : 2] G8
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TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

013 234 412 [2ξ − 3 : −4ξ + 2 : ξ + 1 : ξ] G12

013 241 425 [2ξ − 5 : −4ξ + 2 : ξ + 1 : ξ + 2] G11

013 243 421 [−4 : −4ξ + 2 : ξ + 1 : 3ξ + 1] G12

013 252 430 [4ξ − 1 : 2ξ − 4 : −2ξ + 1 : −4ξ + 4] G12

013 254 432 [3ξ − 2 : 2ξ − 4 : −2ξ + 1 : −3ξ + 5] G11

013 301 334 [1 : 4ξ − 4 : −2ξ : −2ξ + 3] G12

013 302, 355 322, 335 [ξ + 1 : 4ξ − 4 : −2ξ : −3ξ + 3] G22

013 304 331 [−ξ + 2 : 4 : 2ξ − 2 : −ξ − 4] G12

013 305 332 [1 : 4 : 2ξ − 2 : −2ξ − 3] G12

013 311, 324 344, 351 [2ξ − 1 : −4ξ + 4 : 2ξ : −3] G22

013 312 345 [ξ − 1 : −4ξ + 4 : 2ξ : ξ − 3] G12

013 314 341 [−1 : 4ξ − 4 : −2ξ : −2ξ + 5] G12

013 315 342 [−ξ − 1 : 4ξ − 4 : −2ξ : −ξ + 5] G12

013 321 354 [4ξ − 3 : −4ξ + 4 : 2ξ : −2ξ − 1] G11

013 325 352 [−3ξ + 1 : 4ξ − 4 : −2ξ : ξ + 3] G11

014 101, 113, 202, 250, 303, 110, 220, 322, 330, 434, [1 : 2ξ − 1 : −1 : −2ξ + 1] G18

355, 404, 505 440, 502, 550

014 102, 150, 254 432, 545, 551 [ξ + 1 : 2ξ − 1 : −1 : −3ξ + 1] G23

014 103, 155 544, 552 [2ξ : 2ξ − 1 : −1 : −4ξ + 2] G15

014 104 553 [2ξ − 1 : 2ξ − 1 : −1 : −4ξ + 3] G8

014 105, 515 120, 554 [ξ − 1 : 2ξ − 1 : −1 : −3ξ + 3] G13

014 112, 124, 234, 240, 344, 115, 210, 311, 325, 412, [ξ − 2 : −2ξ + 1 : 1 : ξ] G18

352, 454, 504 424, 501, 513

014 121 510 [3ξ − 4 : −2ξ + 1 : 1 : −ξ + 2] G8

014 122, 130 511, 525 [2ξ − 4 : −2ξ + 1 : 1 : 2] G15

014 123, 135, 242 420, 512, 524 [ξ − 3 : 2ξ + 1 : 1 : ξ + 1] G23

014 131 520 [2ξ − 5 : −2ξ + 1 : 1 : 3] G12

014 132 521 [ξ − 5 : −2ξ + 1 : 1 : ξ + 3] G11

014 133, 141 522, 530 [−4 : −2ξ + 1 : 1 : 2ξ + 2] G22

014 134, 140 523, 535 [−3 : −2ξ + 1 : 1 : 2ξ + 1] G25

014 142 531 [−ξ − 4 : −2ξ + 1 : 1 : 3ξ + 2] G11

014 143 532 [5ξ − 2 : ξ − 2 : −ξ : −5ξ + 4] G11

014 144, 152 533, 541 [−2ξ − 2 : −2ξ + 1 : 1 : 4ξ] G22

014 145, 151 534, 540 [3ξ − 1 : ξ − 2 : −ξ : −3ξ + 3] G25

014 153 542 [4ξ − 3 : ξ − 2 : −ξ : −4ξ + 5] G11
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TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

014 154 543 [−3ξ : −2ξ + 1 : 1 : 5ξ − 2] G12

014 201, 213 445, 451 [1 : 3ξ − 3 : −ξ − 1 : −2ξ + 3] G25

014 203, 255 433, 441 [2ξ : 3ξ − 3 : −ξ − 1 : −4ξ + 4] G22

014 204 442 [ξ : 2ξ − 1 : −1 : −3ξ + 2] G8

014 205 443 [1 : 3 : 2ξ − 1 : −2ξ − 3] G12

014 211, 225 403, 455 [2ξ − 2 : −3ξ + 3 : ξ + 1 : −2] G13

014 212, 224, 402, 450 212, 224, 402, 450 [ξ − 1 : −2ξ + 1 : 1 : ξ − 1] G17

014 215 453 [−ξ : 3ξ − 3 : −ξ − 1 : −ξ + 4] G12

014 221 405 [3ξ − 4 : −3ξ + 3 : ξ + 1 : −ξ] G12

014 223, 235 401, 413 [ξ − 3 : −3ξ + 3 : ξ + 1 : ξ + 1] G25

014 231 415 [2ξ − 5 : −3ξ + 3 : ξ + 1 : 1] G12

014 232 410 [2ξ − 3 : −2ξ + 1 : 1 : 1] G8

014 233, 241 411, 425 [−4 : −3ξ + 3 : ξ + 1 : 2ξ] G22

014 243 421 [5ξ − 2 : −3 : −2ξ + 1 : −3ξ + 4] G11

014 244, 252 422, 430 [−2 : −2ξ + 1 : 1 : 2ξ] G13

014 245, 251 423, 435 [3ξ − 1 : −3 : −2ξ + 1 : −ξ + 3] G20

014 253 431 [4ξ − 3 : −3 : −2ξ + 1 : −2ξ + 5] G11

014 301, 313 334, 340 [1 : 2ξ − 4 : −2ξ : 3] G15

014 302, 350 323, 335 [ξ + 1 : 2ξ − 4 : −2ξ : −ξ + 3] G21

014 304 331 [−ξ − 1 : −4ξ + 2 : 2 : 5ξ − 3] G8

014 305 332 [1 : 2ξ + 2 : 2ξ − 2 : −4ξ − 1] G12

014 310 343 [−ξ − 1 : 4ξ − 2 : −2 : −3ξ + 5] G8

014 312, 324 345, 351 [ξ − 2 : −2ξ + 4 : 2ξ : −ξ − 2] G21

014 315 342 [−ξ : 2ξ − 4 : −2ξ : ξ + 4] G12

014 320 353 [3ξ − 3 : −2ξ + 4 : 2ξ : −3ξ − 1] G12

014 321 354 [ξ + 3 : −2ξ − 2 : −2ξ + 2 : 3ξ − 3] G12

015 101, 125, 202, 213, 224, 110, 211, 220, 312, 330, [1 : ξ − 1 : −1 : −ξ + 1] G6(6)

235, 240, 251, 303, 345, 402, 413, 424, 435, 440,

404, 455, 505 451, 514, 550

015 102, 113, 124, 135, 140, 422, 431, 502, 513, 524, [ξ + 1 : ξ − 1 : −1 : −2ξ + 1] G18

151, 244, 253 535, 540, 551

015 103, 145 534, 552 [2ξ : ξ − 1 : −1 : −3ξ + 2] G14

015 104, 155 544, 553 [−ξ + 2 : 1 : ξ : −3] G13

015 105 554 [ξ − 1 : ξ − 1 : −1 : −2ξ + 3] G8

015 112, 130, 233, 242 411, 420, 501, 525 [−2 : −ξ + 1 : 1 : ξ] G17
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TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

015 114, 150, 204, 255 433, 442, 503, 545 [−ξ : −ξ + 1 : 1 : 2ξ − 2] G17

015 121 510 [ξ − 3 : −ξ + 1 : 1 : 1] G8

015 122, 131 511, 520 [−3 : −ξ + 1 : 1 : ξ + 1] G13

015 123, 141 512, 530 [−ξ − 2 : −ξ + 1 : 1 : 2ξ] G14

015 132 521 [4ξ − 1 : −1 : −ξ : −3ξ + 2] G11

015 133, 142 522, 531 [4ξ − 2 : −1 : −ξ : −3ξ + 3] G16

015 134, 152 523, 541 [3ξ − 2 : −1 : −ξ : −2ξ + 3] G20

015 143 532 [4ξ − 3 : −1 : −ξ : −3ξ + 4] G11

015 144, 153 533, 542 [−3ξ : −ξ + 1 : 1 : 4ξ − 2] G16

015 154 543 [2ξ − 3 : −1 : −ξ : −ξ + 4] G11

015 201, 225, 414, 450 212, 230, 403, 445 [1 : ξ − 2 : −ξ − 1 : 2] G24

015 203, 245 423, 441 [−2ξ + 2 : ξ + 1 : 2ξ − 1 : −ξ − 2] G14

015 205 443 [−ξ : −2ξ + 1 : −ξ + 2 : 4ξ − 3] G8

015 210, 401, 425 223, 241, 454 [−ξ : 2ξ − 1 : ξ − 2 : −2ξ + 3] G23

015 214, 250, 405 221, 434, 452 [−ξ : −ξ + 2 : ξ + 1 : ξ − 3] G23

015 232 410 [4ξ − 1 : −ξ − 1 : −2ξ + 1 : −ξ + 1] G8

015 234, 252 412, 430 [3ξ − 2 : −ξ − 1 : −2ξ + 1 : 2] G14

015 243 421 [4ξ − 3 : −ξ − 1 : −2ξ + 1 : −ξ + 3] G11

015 254 432 [2ξ − 3 : −ξ − 1 : −2ξ + 1 : ξ + 3] G11

015 301, 325 334, 352 [−ξ : 2ξ : 2ξ − 2 : −3ξ + 2] G14

015 302, 313, 324, 335, 340, 302, 313, 324, 335, 340, [−2ξ + 1 : 2ξ : 2ξ − 2 : −2ξ + 1] G9(6)

351 351

015 304, 355 322, 331 [−ξ + 2 : 2ξ : 2ξ − 2 : −3ξ] G13

015 305 332 [−ξ : −2ξ + 2 : 2 : 3ξ − 4] G8

015 310 343 [−ξ : 2ξ − 2 : −2 : −ξ + 4] G8

015 311, 320 344, 353 [ξ + 1 : −2ξ : −2ξ + 2 : 3ξ − 3] G13

015 314, 350 323, 341 [−ξ : 2 : 2ξ : −ξ − 2] G14

015 321 354 [2ξ + 1 : −2ξ : −2ξ + 2 : 2ξ − 3] G11

023 101, 144, 202, 303, 404, 110, 220, 330, 440, 533, [ξ + 1 : 2ξ : −ξ − 1 : −2ξ] G9(6)

505 550

023 102 551 [3ξ : 2ξ : −ξ − 1 : −4ξ + 1] G12

023 103 552 [−4ξ + 2 : −2ξ : ξ + 1 : 5ξ − 3] G8

023 104, 525 130, 553 [3ξ − 3 : 2ξ : −ξ − 1 : −4ξ + 4] G22

023 105, 425 241, 554 [ξ + 1 : −2ξ + 2 : 2ξ − 1 : −ξ − 2] G14

023 112, 155, 313, 405 221, 340, 501, 544 [ξ : 2ξ : −ξ − 1 : −2ξ + 1] G24
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TABLE 4.11. Continued from previous page.

P2 Additional Points Reflection Points Slice Type

023 113, 510 121, 502 [2ξ − 2 : 2ξ : −ξ − 1 : −3ξ + 3] G13

023 114, 535 140, 503 [ξ − 3 : 2ξ : −ξ − 1 : −2ξ + 4] G21

023 115 504 [−ξ − 2 : 2ξ : −ξ − 1 : 3] G12

023 120, 543 154, 515 [4ξ − 2 : −2ξ : ξ + 1 : −3ξ + 1] G21

023 122, 145, 343, 402 224, 310, 511, 534 [ξ − 2 : −2ξ : ξ + 1 : 1] G24

023 124, 225, 320, 421, 522, 133, 150, 243, 353, 403, [−ξ − 1 : 2ξ : −ξ − 1 : 2] G9(6)

545 513

023 125 514 [−3ξ : 2ξ : −ξ − 1 : 2ξ + 1] G12

023 131 520 [3ξ − 5 : −2ξ : ξ + 1 : −2ξ + 4] G8

023 132 521 [ξ − 4 : −2ξ : ξ + 1 : 3] G12

023 135, 442 204, 524 [−3ξ + 2 : 2ξ : −ξ − 1 : 2ξ − 1] G14

023 141 530 [ξ − 5 : −2ξ : ξ + 1 : 4] G12

023 142 531 [−ξ − 4 : −2ξ : ξ + 1 : 2ξ + 3] G11

023 143 532 [−2ξ − 2 : −2ξ : ξ + 1 : 3ξ + 1] G12

023 151 540 [−ξ − 3 : −2ξ : ξ + 1 : 2ξ + 2] G12

023 152 541 [−3ξ − 2 : −2ξ : ξ + 1 : 4ξ + 1] G11

023 153 542 [−4ξ : −2ξ : ξ + 1 : 5ξ − 1] G12

023 201, 244 422, 445 [1 : 2ξ : −ξ − 1 : −ξ] G13

023 203 441 [2ξ : 2ξ : −ξ − 1 : −3ξ + 1] G8

023 205, 424 240, 443 [−ξ : −2 : −ξ + 2 : 2ξ] G13

023 210 454 [2ξ : −4ξ + 2 : 3ξ : −ξ − 2] G12

023 211, 234 412, 455 [ξ − 1 : −4ξ + 2 : 3ξ : −1] G16

023 212, 255 433, 450 [ξ : 4ξ − 2 : −3ξ : −2ξ + 2] G15

023 213 451 [2ξ − 2 : 4ξ − 2 : −3ξ : −3ξ + 4] G12

023 214 452 [ξ − 3 : 4ξ − 2 : −3ξ : −2ξ + 5] G11

023 215 453 [−ξ − 2 : 4ξ − 2 : −3ξ : 4] G12

023 230 414 [4ξ − 4 : −4ξ + 2 : 3ξ : −3ξ + 2] G12

023 231 415 [3ξ − 5 : −4ξ + 2 : 3ξ : −2ξ + 3] G11

023 232 410 [ξ − 4 : −4ξ + 2 : 3ξ : 2] G12

023 233, 250 411, 434 [−2 : −4ξ + 2 : 3ξ : ξ] G15

023 235 413 [−3ξ + 2 : 4ξ − 2 : −3ξ : 2ξ] G12

023 242 420 [ξ − 3 : −2ξ : ξ + 1 : 2] G8

023 251 435 [4ξ − 1 : 2ξ − 4 : −3ξ + 3 : −3ξ + 2] G11

023 252 430 [−3ξ − 2 : −4ξ + 2 : 3ξ : 4ξ] G12

023 253 431 [−4ξ : −4ξ + 2 : 3ξ : 5ξ − 2] G12
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P2 Additional Points Reflection Points Slice Type

023 254 432 [−3ξ + 1 : −4ξ + 2 : 3ξ : 4ξ − 3] G11

023 301, 344 311, 334 [ξ + 1 : 4ξ − 4 : −4ξ + 2 : −ξ + 1] G22

023 302 335 [3ξ : 4ξ − 4 : −4ξ + 2 : −3ξ + 2] G12

023 304 331 [−3ξ : −4ξ : 2ξ + 2 : 5ξ − 2] G12

023 305 332 [ξ + 1 : 4 : 2ξ − 4 : −3ξ − 1] G12

023 312, 355 322, 345 [ξ : 4ξ − 4 : −4ξ + 2 : −ξ + 2] G22

023 314 341 [ξ − 3 : 4ξ − 4 : −4ξ + 2 : −ξ + 5] G11

023 315 342 [−3ξ + 1 : −4 : −2ξ + 4 : 5ξ − 1] G11

023 321 354 [3 : −4 : −2ξ + 4 : 2ξ − 3] G11

023 324 351 [−ξ − 1 : 4ξ − 4 : −4ξ + 2 : ξ + 3] G12

023 325 352 [−3ξ : 4ξ − 4 : −4ξ + 2 : 3ξ + 2] G12

024 101, 112, 123, 134, 145, 110, 125, 220, 321, 330, [1 : ξ : −1 : −ξ] G6(6)

150, 202, 244, 303, 354, 422, 440, 501, 512, 523,

404, 505, 514 534, 545, 550

024 102, 144 533, 551 [ξ + 1 : ξ : −1 : −2ξ] G13

024 103, 154 543, 552 [2ξ : ξ : −1 : −3ξ + 1] G14

024 104 553 [2ξ − 1 : ξ : −1 : −3ξ + 2] G8

024 105, 114, 510, 525 121, 130, 503, 554 [ξ − 1 : ξ : −1 : −2ξ + 2] G17

024 113, 155, 204, 515 120, 442, 502, 544 [ξ : ξ : −1 : −2ξ + 1] G17

024 115, 420, 511, 535 122, 140, 242, 504 [−1 : ξ : −1 : −ξ + 2] G17

024 131 520 [2ξ − 3 : −ξ : 1 : −ξ + 2] G8

024 132, 141 521, 530 [ξ − 3 : −ξ : 1 : 2] G14

024 133, 151 522, 540 [−2 : −ξ : 1 : ξ + 1] G13

024 142 531 [−3 : −ξ : 1 : ξ + 2] G11

024 143, 152 532, 541 [−ξ − 2 : −ξ : 1 : 2ξ + 1] G20

024 153 542 [−2ξ − 1 : −ξ : 1 : 3ξ] G11

024 201, 212, 223, 234, 245, 211, 235, 401, 412, 423, [1 : 2ξ − 1 : −ξ − 1 : −ξ + 1] G18

250, 413, 455 434, 445, 450

024 203, 254 432, 441 [2ξ : 2ξ − 1 : −ξ − 1 : −3ξ + 2] G14

024 205, 214, 415 231, 443, 452 [ξ − 1 : 2ξ − 1 : −ξ − 1 : −2ξ + 3] G23

024 210, 225, 411, 435 233, 251, 403, 454 [ξ : −2ξ + 1 : ξ + 1 : −2] G24

024 213, 255, 405, 414 221, 230, 433, 451 [ξ : 2ξ − 1 : −ξ − 1 : −2ξ + 2] G24

024 215, 410, 425 232, 241, 453 [−1 : 2ξ − 1 : −ξ − 1 : −ξ + 3] G23

024 243, 252 421, 430 [−ξ − 2 : −2ξ + 1 : ξ + 1 : 2ξ] G14

024 253 431 [−2ξ − 1 : −2ξ + 1 : ξ + 1 : 3ξ − 1] G11
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024 301, 312, 323, 334, 345, 301, 312, 323, 334, 345, [1 : 2ξ − 2 : −2ξ : 1] G9(6)

350 350

024 302, 344 311, 335 [ξ + 1 : 2ξ − 2 : −2ξ : −ξ + 1] G13

024 304 331 [−ξ − 1 : −2ξ : 2 : 3ξ − 1] G8

024 305, 314 332, 341 [ξ + 1 : 2ξ + 2 : 2ξ − 4 : −5ξ + 1] G14

024 310, 325 343, 352 [ξ : −2ξ + 2 : 2ξ : −ξ − 2] G14

024 313, 355 322, 340 [ξ : 2ξ − 2 : −2ξ : −ξ + 2] G13

024 315 342 [−1 : 2ξ − 2 : −2ξ : 3] G11

024 320 353 [2ξ − 1 : −2ξ + 2 : 2ξ : −2ξ − 1] G8

It is necessary to check if three double points of L6 exists with the property of

being pairwise noncollinear in Q6. Table 4.12 identifies candidates for this situation.

Reflection points indicate other double points obtained from P2 by reflections fixing

P1 = [1 : 1 : 1 : 1]. Consequently, slices involving these double points are equivalent

to the one involving P3.

Only combinations of three points which are pairwise non-collinear in Q6 need to

be analyzed. A summary of such slices is given below in Table 4.13. This completes

the analysis and gives the result. •

4.13. Conjectures on Heavy Multinets from Qn

The current method used to classify multinets obtained from Qn becomes more

cumbersome as n increases. Due to the current interest in heavy multinets, these

situations are investigated for n = 7, 8, 9, and 10. A summary of analysis of such

slices is given in the tables found in Appendix B.

The infinite families of heavy multinets identified in this dissertation have graph

types of G2(n), G3(n), G5(n), and G6(n). There are two other types of heavy nets

which appear, namely G9 and G18. It is suspected that these examples fit into another
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TABLE 4.12. Candidates for P3 in noncollinear case for n = 6.

P2 Reflection Points Noncollinear Points with P

000 - 123, 124, 125, 132, 134, 135, 142, 143, 145, 152, 153, 154,

213, 214, 215, 231, 234, 235, 241, 243, 245, 251, 253, 254,

312, 314, 315, 321, 324, 325, 341, 342, 345, 351, 352, 354

412, 413, 415, 421, 423, 425, 431, 432, 435, 451, 452, 453

512, 513, 514, 521, 523, 524, 531, 532, 534, 541, 542, 543

123 125, 145, 345 000, 004, 005, 030, 031, 035, 040,041, 044, 051, 054, 055,

200,202, 205, 210, 211, 215, 240, 241, 242, 251, 252, 255

300, 302, 304, 310, 311, 314, 330, 331, 332, 351, 352, 354,

402, 414, 415, 411, 414, 415, 431, 432, 435, 441,442, 444,

510, 514, 515, 530, 532, 535, 540, 542, 544, 552, 554, 555

124 135, 234, 245 000, 001, 005, 030, 031, 032, 041, 042, 045, 050, 052, 055,

200, 201, 203, 210, 211, 212, 241, 242, 243, 250, 252, 253,

301, 303, 305, 311, 312, 315, 331, 332, 333, 352, 353, 355,

400, 403, 405, 410, 412, 415, 430, 432, 433, 442, 443, 445,

510, 511, 515, 530, 531, 533, 541, 543, 545, 550, 553, 555

134 235 000, 002, 005, 010, 011, 015, 040, 041, 042, 051, 052, 055,

200, 202, 203, 210, 211, 213, 220, 221, 222, 251, 252, 253,

302, 303, 305, 311, 313, 315, 321, 322, 325, 341, 342, 343,

410, 413, 415, 420, 422, 425, 440, 442, 443, 452, 453, 455,

500, 503, 505, 520, 521, 525, 540, 541, 543, 551, 553, 555

72



TABLE 4.13. Noncollinear case for n = 6.

P2 Additional Points Slice Graph Type

123 011, 022, 033, 044, 055, [2ξ − 3 : ξ + 2 : −ξ − 2 : −2ξ + 3] G6(6)

105, 215, 224, 325, 420,

435, 521, 545

123 241 [5ξ − 4 : −3ξ − 1 : −ξ + 2 : −ξ + 3] G19

123 251 [3ξ − 4 : −3ξ − 1 : −ξ + 3 : ξ + 2] G19

123 314 [3ξ − 2 : 3ξ − 1 : −3ξ − 1 : −3ξ + 4] G19

123 351 [3ξ − 4 : −5ξ + 1 : ξ + 2 : ξ + 1] G19

123 352 [2ξ − 5 : −5ξ + 2 : ξ + 2 : 2ξ + 1] G19

123 024, 101, 112, 134, 145, [−ξ − 2 : −3ξ + 1 : ξ + 2 : 3ξ − 1] G6(6)

150, 202, 244, 303, 354,

404, 505, 514

123 415 [2ξ − 3 : 3ξ − 2 : −4ξ + 1 : −ξ + 4] G19

123 431 [5ξ − 2 : −5ξ + 3 : 3ξ − 2 : −3ξ + 1] G19

123 432 [4ξ − 3 : −5ξ + 4 : 3ξ − 2 : −2ξ + 1] G19

123 532 [4ξ − 3 : −3ξ + 4 : 2ξ − 3 : −3ξ + 2] G19

123 542 [4ξ − 5 : −3ξ + 4 : ξ − 2 : −2ξ + 3] G19

124 241 [4ξ − 5 : −4ξ + 1 : −ξ + 2 : ξ + 2] G19

124 243 [ξ − 5 : −3ξ + 2 : −ξ + 2 : 3ξ + 1] G19

124 015, 102, 113, 124, 135, [−ξ − 4 : −3ξ + 2 : −ξ + 3 : 5ξ − 1] G18

140, 151, 244, 253

124 312 [ξ − 2 : −5ξ + 4 : 3ξ + 1 : ξ − 3] G19

124 315 [ξ − 2 : 3ξ − 2 : −3ξ − 1 : −ξ + 5] G19
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TABLE 4.13. Continued from previous page.

P2 Additional Points Slice Graph Type

124 014, 112, 234, 240, 344, [ξ − 5 : −5ξ + 4 : ξ + 2 : 3ξ − 1] G18

352, 454, 504

124 412 [ξ − 2 : −4ξ + 5 : 4ξ − 1 : −ξ − 2] G19

124 415 [ξ − 2 : 2ξ − 3 : −4ξ + 1 : ξ + 4] G19

124 012, 110, 220, 330, 432, [4ξ − 5 : −4ξ + 5 : 3ξ − 2 : −3ξ + 2] G18

440, 544, 550

124 011, 022, 033, 044, 055, [4ξ + 1 : −3ξ + 1 : 3ξ − 1 : −4ξ − 1] G18

115, 531, 540

124 541 [5ξ − 1 : −3ξ + 1 : 2ξ − 1 : −4ξ + 1] G19

124 543 [5ξ − 4 : −4ξ + 3 : 2ξ − 1 : −3ξ + 2] G19

134 213 [3ξ − 1 : 3ξ − 2 : −3ξ − 1 : −3ξ + 4] G19

134 251 [4ξ − 3 : −ξ − 3 : −2ξ + 3 : −ξ + 3] G19

134 253 [−3ξ − 2 : −3ξ + 2 : ξ + 2 : 5ξ − 2] G19

134 045, 155, 205, 224, 315, [ξ − 3 : 3ξ − 2 : −5ξ + 1 : ξ + 4] G18

425, 510, 535

134 321 [3ξ − 2 : −5ξ + 3 : 5ξ − 2 : −3ξ + 1] G19

134 325 [−ξ − 2 : 3ξ − 2 : −5ξ + 2 : 3ξ + 2] G19

134 341 [5ξ − 2 : −3ξ − 2 : ξ + 2 : −3ξ + 2] G19

134 012, 122, 232, 240, 342, [2ξ − 1 : −ξ − 1 : 1 : −ξ + 1] G18

452, 502, 554

134 413 [3ξ − 1 : 3ξ − 5 : −5ξ + 3 : −ξ + 3] G19

134 415 [3ξ − 2 : 3ξ − 1 : −3ξ − 2 : −3ξ + 5] G19
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P2 Additional Points Slice Graph Type

134 453 [2ξ − 5 : −5ξ + 2 : 2ξ + 1 : ξ + 2] G19

134 521 [3ξ − 2 : −2ξ + 3 : 3ξ − 4 : −4ξ + 3] G19

134 541 [5ξ − 2 : −3ξ + 1 : 3ξ − 2 : −5ξ + 3] G19

134 543 [3ξ − 4 : −4ξ + 3 : 3ξ − 2 : −2ξ + 3] G19

two infinite families. Table 4.14 identifies the corresponding graphs associated to

examples found of this type. This gives support for the following conjectures.

Conjecture 4.30. There is an infinite family of heavy multinets obtained from slices

of Qn with graph type G9(n) for n ≥ 4.

Conjecture 4.31. There is an infinite family of heavy multinets obtained from slices

of Qn with graph type G18(n) for even n ≥ 6.

Conjecture 4.32. For n > 1, any heavy multinet obtained from slices of Qn has one

of the following graph types: G2(n), G3(n), G5(n), G6(n), G9(n), or G18(n).

4.14. Selected Examples of Multinets

Examples of multinets with the graph type found from the investigated slices of

Qn = [(xn − yn)](zn − wn)][(xn − zn)(yn − wn)][(xn − wn)(yn − zn)]

can be expressed via equations using the tables found in Appendix A. In this section,

seven of the new examples are given explicitly.
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TABLE 4.14. Additional graph types of Qn.

G9(4) G9(5)

G9(6) G9(7)

G9(8) G9(9)

G9(10) G18(6)

G18(8) G18(10)

Example 4.33. Slicing Q4 by w = x + 3y produces a light (3, 8)-multinet of graph

type G1(4) with defining polynomial

Q = [(x4 − y4)(z4 − (x+ 3y)4)][(x4 − z4)(y4 − (x+ 3y)4)][(x4 − (x+ 3y)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− iy)(x+ iy)(x+ 3y − z)(x+ 3y + z)(x+ 3y − iz)(x+ 3y + iz)

C2 = (x+ 2y)(x+ 4y)(x+ (3− i)y)(x+ (3 + i)y)(x− z)(x+ z)(x− iz)(x+ iz)

C3 = y(2x+ 3y)((1− i)x+ 3y)((1 + i)x+ 3y)(y − z)(y + z)(y − iz)(y + iz).
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Each class consists of eight lines of multiplicity 1. Its base locus X has 48 points of

multiplicity 1 and a unique point of multiplicity 4, namely P = [0 : 0 : 1]. There are

exactly four lines from each class passing through P .

Example 4.34. Slicing Q4 by w = −x − y + 3z produces a light (3, 8)-multinet of

graph type G4 with defining polynomial

Q = [(x4 − y4)(z4 − (−x− y + 3z)4)][(x4 − z4)(y4 − (−x− y + 3z)4)][(x4 − (−x− y + 3z)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− iy)(x+ iy)(x+ y − 2z)(x+ y − 4z)(x+ y + (−3− i)z)(x+ y + (−3 + i)z)

C2 = (x− z)(x+ z)(x− iz)(x+ iz)(x+ 2y − 3z)(x− 3z)(x+ (1− i)y − 3z)(x+ (1 + i)y − 3z)

C3 = (y − z)(y + z)(y − iz)(y + iz)(2x+ y − 3z)(y − 3z)((1 + i)x+ y − 3z)((1− i)x+ y − 3z).

Each class contains eight lines of multiplicity 1. Its base locus X has 60 points of

multiplicity 1 and a unique double point, namely P = [1 : 1 : 1]. There are exactly

two lines from each class passing through P .

Example 4.35. Slicing Q4 by w = x+ 3y produces a heavy (3, 8)-multinet of graph

type G5(4) with defining polynomial

Q = [(x4 − y4)(z4 − (x+ πy − πz)4)][(x4 − z4)(y4 − (x+ πy − πz)4)][(x4 − (x+ πy − πz)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− iy)(x+ iy)(x+ πy − (π − 1)z)(x+ πy − (π + 1)z)(x+ πy − (π − i)z)(x+ πy − (π + i)z)

C2 = (x− z)(x+ z)(x− iz)(x+ iz)(x+ (π + 1)y − πz)(x+ (π − 1)y − πz)(x+ (π − i)y − πz)(x+ (π + i)y − πz)

C3 = (y − z)2(y + z)(y − iz)(y + iz)(2x+ πy − πz)((1− i)x+ πy − πz)((1 + i)x+ πy − πz).

One class has one double line and six lines of multiplicity 1. The other two classes

consist of eight lines of multiplicity 1. Its base locus X has 48 points of multiplicity

1 and four double points. The latter points are: [1 : 1 : 1], [−1 : 1 : 1], [i : 1 : 1], and

[−i : 1 : 1].
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Example 4.36. Slicing Q4 by w = x + y − z produces a heavy (3, 8)-multinet of

graph type G6(4) with defining polynomial

Q = [(x4 − y4)(z4 − (x+ y − z)4)][(x4 − z4)(y4 − (x+ y − z)4)][(x4 − (x+ y − z)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)2(x− iy)(x+ iy)(x+ y − 2z)(x+ y + (−1 + i)z)(x+ y + (−1− i)z)

C2 = (x− z)2(x+ z)(x− iz)(x+ iz)(x+ 2y − z)(x+ (1 + i)y − z)(x+ (1− i)y − z)

C3 = (y − z)2(y + z)(y − iz)(y + iz)(2x+ y − z)((1− i)x+ y − z)((1 + i)x+ y − z).

Each class is composed of one double line and six lines of multiplicity 1. Its base

locus X has 28 points of multiplicity 1 and nine double points. The latter points are:

[1 : 1 : 1], [1 : −1 : 1], [1 : i : 1], [1 : −i : 1], [−1 : 1 : 1], [i : 1 : 1], [i : −i : 1], [−i : 1 : 1], and [−i : i : 1].

Example 4.37. Slicing Q4 by w = x + y + (2 + i)z produces a light (3, 8)-multinet

of graph type G8 with defining polynomial

Q = [(x4 − y4)(z4 − (x+ y + (2 + i)z)4)][(x4 − z4)(y4 − (x+ y + (2 + i)z)4)][(x4 − (x+ y + (2 + i)z)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− iy)(x+ iy)(x+ y + 2z)(x+ y + (2 + 2i)z)(x+ y + (1 + i)z)(x+ y + (3 + i)z)

C2 = (x− z)(x+ z)(x− iz)(x+ iz)(x+ (2 + i)z)(x+ 2y + (2 + i)z)(x+ (1− i)y + (2 + i)z)(x+ (1 + i)y + (2 + i)z)

C3 = (y − z)(y + z)(y − iz)(y + iz)(y + (2 + i)z)(2x+ y + (2 + i)z)(2x+ (1 + i)y + (1 + 3i)z)(2x+ (1− i)y + (3− i)z).

Each class has eight lines of multiplicity 1. Its base locus X has 52 points of

multiplicity 1 and three double points. The latter points are:

[−1 : −1 : 1], [−1 : −i : 1], and [−i : −1 : 1].

There are exactly two lines from each class passing through these double points.
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Example 4.38. Slicing Q4 by the hyperplane w = x + (1 + i)y + (1 + i)z produces

a heavy (3, 8)-multinet of graph type G9(4) with defining polynomial

Q = [(x4 − y4)(z4 − (x+ (1 + i)y + (1 + i)z)4)][(x4 − z4)(y4 − (x+ (1 + i)y + (1 + i)z)4)][(x4 − (x+ (1 + i)y + (1 + i)z)4)(y4 − z4)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− iy)(x+ iy)(x+ (1 + i)y + z)(x+ (1 + i)y + iz)(x+ (1 + i)y + (1 + 2i)z)(x+ (1 + i)y + (2 + i)z)

C2 = (x− z)(x+ z)(x− iz)(x+ iz)(x+ y + (1 + i)z)(x+ iy + (1 + i)z)(x+ (1 + 2i)y + (1 + i)z)(x+ (2 + i)y + (1 + i)z)

C3 = (y − z)(y + z)2(y − iz)(y + iz)(x+ y + z)(x+ iy + iz)(2x+ (1 + i)y + (1 + i)z).

One class has one double line and six lines of multiplicity 1. The other two

classes are composed of eight lines of multiplicity 1. Its base locus X has 40 points

of multiplicity 1 and six double points. The latter points are:

[1 : −1 : 1], [−1 : −1 : 1], [i : −1 : 1], [−i : −1 : 1], [−1 : −i : 1], and [−i : i : 1].

Example 4.39. Let ξ be a primitive sixth root of unity. Slicing Q6 by the hyperplane

w = x + (1 + ξ)y + (1 + ξ)z produces a heavy (3, 12)-multinet of graph type G18(6)

with defining polynomial

Q = [(x6 − y6)(z6 − (x+ (1 + ξ)y + (1 + ξ)z)6)][(x6 − z6)(y6 − (x+ (1 + ξ)y + (1 + ξ)z)6)][(x6 − (x+ (1 + ξ)y + (1 + ξ)z)6)(y6 − z6)]

·
= C1C2C3

where

C1 = (x− y)(x+ y)(x− ξy)(x+ ξy)(x− ξ2y)(x+ ξ2y)(x+ (1 + ξ)y + ξz)(x+ (1 + ξ)y + (2 + ξ)z) · · ·

(x+ (1 + ξ)y + z)(x+ (1 + ξ)y + (1 + 2ξ)z)(x+ (1 + ξ)y + 2z)(x+ (1 + ξ)y + 2ξz)

C2 = (x− z)(x+ z)(x− ξz)(x+ ξz)(x− ξ2z)(x+ ξ2z)(x+ ξy + (1 + ξ)z)(x+ (2 + ξ)y + (1 + ξ)z) · · ·

(x+ y + (1 + ξ)z)(x+ (1 + 2ξ)y + (1 + ξ)z)(x+ 2y + (1 + ξ)z)(x+ 2ξy + (1 + ξ)z)

C3 = (y − z)(y + z)2(y − ξz)(y + ξz)(y − ξ2z)(y + ξ2z)(x+ y + z)(x+ ξy + ξz) · · ·

(2x+ (1 + ξ)y + (1 + ξ)z)(x+ (−1 + 2ξ)y + (−1 + 2ξ)z)(x+ (2− ξ)y + (2− ξ)z).

One class has one double line and ten lines of multiplicity 1. The other two classes

have twelve lines of multiplicity 1. Its base locus X has 104 points of multiplicity 1

and ten double points. Noting that ξ2 − ξ + 1 = 0, the latter points are: [1 : −1 : 1],

[−1 : −1 : 1], [ξ : −1 : 1], [−ξ : −1 : 1], [ξ2 : −1 : 1], [−ξ2 : −1 : 1], [−1 : −ξ : 1],

[−ξ : ξ2 : 1], [ξ2 : −ξ : 1], and [−ξ2 : ξ2 : 1].

79



APPENDIX A

SUMMARY OF EXAMPLES OF MULTINETS FROM QN

This appendix summarizes the various examples of multinets found from the

investigated slices of

Qn = [(xn − yn)](zn − wn)][(xn − zn)(yn − wn)][(xn − wn)(yn − zn)].

The infinite families of multinets appear in Table A.1. The remaining sporadic

examples of multinets are listed in Table A.2. These tables include examples of

all of the proper multinets known at this time. In Table A.2, ξ denotes a primitive

nth root of unity where n is listed for each example.

TABLE A.1. Examples of multinets from infinite families.

n Graph Type Slice

n ≥ 2

G0 w = 2x+ 4y + 8z

G1(n) w = x+ 3y

G2(n) w = 2z

G3(n) w = 0

n ≥ 3

G4 w = −x− y + 3z

G5(n) w = x+ πy − πz

G6(n) w = x+ y − z
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TABLE A.2. Examples of sporadic multinets.

n Graph Type Slice

3 G7 w = −x+ 2y − (ξ + 2)z

3 G8 w = −x− y − (ξ − 1)z

4 G7 w = 3x+ (ξ + 1)y − (ξ + 3)z

4 G8 w = x+ y + (ξ + 2)z

4 G9(4) w = x+ (ξ + 1)y + (ξ + 1)z

4 G10 w = 2x+ (ξ − 3)y + (2ξ + 3)z

4 G11 w = x+ (ξ + 2)y + (2ξ + 1)z

4 G12 w = 2x+ (ξ + 1)y + (ξ + 2)z

4 G13 w = x+ 2y + (ξ + 1)z

5 G7 w = 2x+ (ξ + 1)y − (ξ − 2)z

5 G8 w = −x+ (ξ + 1)y + (ξ − 1)z

5 G9(5) w = x+ (ξ + 1)y − (ξ + 1)z

5 G10 w = −2x+ (ξ3 + ξ − 2)y − (2ξ3 + 2ξ + 3)z

5 G11 w = (ξ + 1)x− (ξ − 1)y + (ξ3 − ξ2 − 1)z

5 G12 w = (ξ + 1)x+ (ξ + 2)y − (x2 + 2ξ + 1)z

5 G13 w = −x− (ξ + 1)y + (ξ2 + 2ξ + 1)z

5 G14 w = −x+ (ξ + 1)y + (ξ2 − 1)z

5 G15 w = (ξ + 1)x+ (ξ2 + ξ + 1)y − (ξ2 + 2ξ + 1)z

5 G16 w = −x− (ξ2 + 2ξ + 1)y − (ξ3 − ξ − 1)z

5 G17 w = (ξ + 1)x+ (ξ + 1)y − (ξ2 + ξ + 1)z

6 G7 w = 4x+ (ξ + 1)y − (ξ + 4)z

6 G8 w = 2x+ 2y + (ξ + 3)z
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TABLE A.2. Continued from previous page.

n Graph Type Slice

6 G9(6) w = x+ 2y − 2z

6 G10 w = −2x+ 1
2
(2ξ + 3)y + 1

2
(3ξ + 1)z

6 G11 w = x+ 3y + (ξ + 2)z

6 G12 w = 3x+ (ξ + 1)y + (ξ + 3)z

6 G13 w = x+ 2y + (ξ + 1)z

6 G14 w = x+ 2y + (ξ − 3)z

6 G15 w = 2x+ (ξ + 1)y + 2(ξ − 2)z

6 G16 w = x+ 3y + 2(2ξ − 1)z

6 G17 w = x+ y + (ξ − 2)z

6 G18(6) w = x+ (ξ + 1)y + (ξ + 1)z

6 G19 w = 1
7
(10ξ − 9)x+ 1

7
(5ξ + 6)y + 1

7
(5ξ − 8)z

6 G20 w = x+ (ξ + 2)y + (2ξ + 1)z

6 G21 w = 1
2
(ξ + 1)x+ 1

2
(ξ + 2)y + (ξ + 1)z

6 G22 w = 2x+ 3y + (ξ + 1)z

6 G23 w = (ξ + 1)x+ (ξ − 3)y + (2ξ − 1)z

6 G24 w = 2x+ (ξ + 1)y + (ξ − 2)z

6 G25 w = 3x+ (ξ + 1)y + (2ξ + 1)z

7 G9(7) w = x+ (ξ + 1)y − (ξ + 1)z

8 G9(8) w = w = x+ (ξ2 + 1)y + (ξ2 + 1)z

8 G18(8) w = x+ (ξ + 1)y − (ξ + 1)z

9 G9(9) w = x+ (ξ + 1)y − (ξ + 1)z

10 G9(10) w = 2x+ (ξ + 1)y + (ξ − 2)z
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TABLE A.2. Continued from previous page.

n Graph Type Slice

10 G18(10) w = x+ (2ξ3 + 2ξ)y − (2ξ3 + 2ξ)z
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APPENDIX B

ADDITIONAL COMPUTATIONS

This appendix contains the computations from investigating heavy multinets

obtained from Qn for n = 7, 8, 9, and 10.

TABLE B.1. Heavy multinet case for n = 7.

P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, 101, 202 [1 : 1 : −1 : −1] G6(7)

303, 404, 505, 606

011 022, 033, 044, 055, 066, 102, 616 [ξ + 1 : 1 : −1 : −ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 103, 626 [ξ2 + ξ + 1 : 1 : −1 : −ξ2 − ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 104, 636 [ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ3 − ξ2 − ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 105, 646 [ξ4 + ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 106, 216, [ξ5 + ξ4 + ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ5 − ξ4 − ξ3 − ξ2 − ξ − 1] G6(7)

326, 436, 546, 656

011 022, 033, 044, 055, 066, 201, 565 [1 : ξ + 1 : −ξ − 1 : −1] G9(7)

011 022, 033, 044, 055, 066, 203, 515 [ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 204, 525 [ξ2 + 1 : 1 : −1 : −ξ2 − 1] G9(7)

011 022, 033, 044, 055, 066, 165, 205, [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G6(7)

315, 425, 535, 645

011 022, 033, 044, 055, 066, 206, 545 [ξ4 + ξ2 + 1 : 1 : −1 : −ξ4 − ξ2 − 1] G9(7)

011 022, 033, 044, 055, 066, 301, 454 [1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −1] G9(7)

011 022, 033, 044, 055, 066, 302, 464 [ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 154, 264, [ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ − 1] G6(7)

304, 414, 524, 634

011 022, 033, 044, 055, 066, 305, 424 [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(7)

011 022, 033, 044, 055, 066, 306, 434 [ξ3 + 1 : 1 : −1 : −ξ3 − 1] G9(7)
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TABLE B.2. Heavy multinet case for n = 8.

P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, 077, 101, 154, 202, 264, [1 : 1 : −1 : −1] G6(8)

303, 374, 404, 505, 514, 606, 624, 707, 734

011 022, 033, 044, 055, 066, 077, 102, 164, 717, 735 [ξ + 1 : 1 : −1 : −ξ − 1] G18(8)

011 022, 033, 044, 055, 066, 077, 103, 174, 727, 736 [ξ2 + ξ + 1 : 1 : −1 : −ξ2 − ξ − 1] G18(8)

011 022, 033, 044, 055, 066, 077, 104, 737 [ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ3 − ξ2 − ξ − 1] G9(8)

011 022, 033, 044, 055, 066, 077, 105, 114, 730, 747 [ξ3 + ξ2 + ξ : 1 : −1 : −ξ3 − ξ2 − ξ] G18(8)

011 022, 033, 044, 055, 066, 077, 106, 124, 731, 757 [ξ3 + ξ2 : 1 : −1 : −ξ3 − ξ2] G18(8)

011 022, 033, 044, 055, 066, 077, 107, 134, 217, 235, [ξ3 + ξ2 : 1 : −1 : −ξ3 − ξ2] G6(8)

327, 336, 437, 530, 547, 631, 657, 732, 767

011 022, 033, 044, 055, 066, 077, 201, 254, 623, 676 [1 : ξ + 1 : −ξ − 1 : −1] G18(8)

011 022, 033, 044, 055, 066, 077, 203, 274, 616, 625 [ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G18(8)

011 022, 033, 044, 055, 066, 077, 204, 626 [ξ2 + 1 : 1 : −1 : −ξ2 − 1] G9(8)

011 022, 033, 044, 055, 066, 077, 205, 214, 627, 636 [ξ3 + ξ2 + ξ : ξ + 1 : −ξ − 1 : −ξ3 − ξ2 − ξ] G18(8)

011 022, 033, 044, 055, 066, 077, 123, 176, 206, 224, [ξ2 : 1 : −1 : −ξ2] G6(8)

316, 325, 426, 527, 536, 620, 646, 721, 756

011 022, 033, 044, 055, 066, 077, 207, 234, 621, 656 [ξ3 : ξ + 1 : −ξ − 1 : −ξ3] G18(8)

011 022, 033, 044, 055, 066, 077, 301, 354, 512, 565 [1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −1] G18(8)

011 022, 033, 044, 055, 066, 077, 302, 364, 513, 575 [ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ − 1] G18(8)

011 022, 033, 044, 055, 066, 077, 304, 515 [ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ − 1] G9(8)

011 022, 033, 044, 055, 066, 077, 112, 165, 213, 275, [ξ3 + ξ2 + ξ : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ] G6(8)

305, 314, 415, 516, 525, 617, 635, 710, 745

011 022, 033, 044, 055, 066, 077, 306, 324, 517, 535 [ξ3 + 1 : 1 : −1 : −ξ3 − 1] G18(8)

011 022, 033, 044, 055, 066, 077, 307, 334, 510, 545 [ξ3 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3] G18(8)

011 022, 033, 044, 055, 066, 077, 401, 454 [1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −1] G9(8)

011 022, 033, 044, 055, 066, 077, 402, 464 [1 : ξ2 + 1 : −ξ2 − 1 : −1] G9(8)

011 022, 033, 044, 055, 066, 077, 403, 474 [ξ2 + ξ + 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ2 − ξ − 1] G9(8)

011 022, 033, 044, 055, 066, 077, 405, 414 [ξ3 + ξ2 + ξ : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ] G9(8)

011 022, 033, 044, 055, 066, 077, 406, 424 [ξ2 : ξ2 + 1 : −ξ2 − 1 : −ξ2] G9(8)

011 022, 033, 044, 055, 066, 077, 407, 434 [ξ3 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ3] G9(8)

85



TABLE B.3. Heavy multinet case for n = 9.

P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, [1 : 1 : −1 : −1] G6(9)

077, 088, 101, 202, 303,

404, 505, 606, 707, 808

011 022, 033, 044, 055, 066, [ξ + 1 : 1 : −1 : −ξ − 1] G9(9)

077, 088, 102, 818

011 022, 033, 044, 055, 066, [ξ2 + ξ + 1 : 1 : −1 : −ξ2 − ξ − 1] G9(9)

077, 088, 103, 828

011 022, 033, 044, 055, 066, [ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 104, 838

011 022, 033, 044, 055, 066, [ξ4 + ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 105, 848

011 022, 033, 044, 055, 066, [ξ5 + ξ4 + ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ5 − ξ4 − ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 106, 858

011 022, 033, 044, 055, 066, [ξ5 + ξ4 + ξ2 + ξ : 1 : −1 : −ξ5 − ξ4 − ξ2 − ξ] G9(9)

077, 088, 107, 868

011 022, 033, 044, 055, 066, [ξ5 + ξ2 : 1 : −1 : −ξ5 − ξ2] G6(9)

077, 088, 108, 218, 328,

438, 548, 658, 768, 878

011 022, 033, 044, 055, 066, [1 : ξ + 1 : −ξ − 1 : −1] G9(9)

077, 088, 201, 787

011 022, 033, 044, 055, 066, [ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G9(9)

077, 088, 203, 717

011 022, 033, 044, 055, 066, [ξ2 + 1 : 1 : −1 : −ξ2 − 1] G9(9)

077, 088, 204, 727

011 022, 033, 044, 055, 066, [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 205, 737

011 022, 033, 044, 055, 066, [ξ4 + ξ2 + 1 : 1 : −1 : −ξ4 − ξ2 − 1] G9(9)

077, 088, 206, 747

011 022, 033, 044, 055, 066, [ξ5 + ξ4 + ξ2 + ξ : ξ + 1 : −ξ − 1 : −ξ5 − ξ4 − ξ2 − ξ] G6(9)

077, 088, 187, 207, 317,

427, 537, 647, 757, 867

011 022, 033, 044, 055, 066, [ξ4 − ξ3 + ξ2 : 1 : −1 : −ξ4 + ξ3 − ξ2] G9(9)

077, 088, 208, 767

011 022, 033, 044, 055, 066, [1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −1] G9(9)

077, 088, 301, 676

011 022, 033, 044, 055, 066, [ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ − 1] G9(9)

077, 088, 302, 686

011 022, 033, 044, 055, 066, [ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 304, 616

011 022, 033, 044, 055, 066, [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(9)

077, 088, 305, 626

011 022, 033, 044, 055, 066, [ξ3 + 1 : 1 : −1 : −ξ3 − 1] G6(9)

077, 088, 176, 286, 306,

416, 526, 636, 746, 856

011 022, 033, 044, 055, 066, [ξ5 + ξ4 + ξ2 + ξ : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ5 − ξ4 − ξ2 − ξ] G9(9)

077, 088, 307, 646

011 022, 033, 044, 055, 066, [ξ5 + ξ2 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ5 − ξ2] G9(9)

077, 088, 308, 656
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TABLE B.3. Continued from previous page.
P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, [1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −1] G9(9)

077, 088, 401, 565

011 022, 033, 044, 055, 066, [1 : ξ2 + 1 : −ξ2 − 1 : −1] G9(9)

077, 088, 402, 575

011 022, 033, 044, 055, 066, [ξ2 + ξ + 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ2 − ξ − 1] G9(9)

077, 088, 403, 585

011 022, 033, 044, 055, 066, [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G6(9)

077, 088, 165, 275, 385,

405, 515, 625, 735, 845

011 022, 033, 044, 055, 066, [ξ4 + ξ2 + 1 : ξ2 + 1 : −ξ2 − 1 : −ξ4 − ξ2 − 1] G9(9)

077, 088, 406, 525

011 022, 033, 044, 055, 066, [ξ5 + ξ4 + ξ2 + ξ : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ5 − ξ4 − ξ2 − ξ] G9(9)

077, 088, 407, 535

011 022, 033, 044, 055, 066, [ξ4 + 1 : 1 : −1 : −ξ4 − 1] G9(9)

077, 088, 408, 545
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TABLE B.4. Heavy multinet case for n = 10.

P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, 077, 088, [1 : 1 : −1 : −1] G6(10)

099, 101, 165, 202, 275, 303, 385,

404, 495, 505, 606, 615, 707, 725,

808, 835, 909, 945

011 022, 033, 044, 055, 066, 077, 088, [ξ + 1 : 1 : −1 : −ξ − 1] G18(10)

088, 099, 102, 175, 919, 946

011 022, 033, 044, 055, 066, 077, 088, [ξ2 + ξ + 1 : 1 : −1 : −ξ2 − ξ − 1] G18(10)

099, 103, 185, 929, 947

011 022, 033, 044, 055, 066, 077, 088, [ξ3 + ξ2 + ξ + 1 : 1 : −1 : −ξ3 − ξ2 − ξ − 1] G18(10)

099, 104, 195, 939, 948

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + 2ξ : 1 : −1 : −2ξ3 − 2ξ] G9(10)

099, 105, 949

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + 2ξ − 1 : 1 : −1 : −2ξ3 − 2ξ + 1] G18(10)

099, 106, 115, 940, 959

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + ξ − 1 : 1 : −1 : −2ξ3 − ξ + 1] G18(10)

099, 107, 125, 941, 969

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 − ξ2 + ξ − 1 : 1 : −1 : −2ξ3 + ξ2 − ξ + 1] G18(10)

099, 108, 135, 942, 979

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ2 + ξ − 1 : 1 : −1 : −ξ3 + ξ2 − ξ + 1] G6(10)

099, 109, 145, 219, 246, 329, 347,

439, 448, 549, 640, 659, 741, 769,

842, 879, 943, 989

011 022, 033, 044, 055, 066, 077, 088, [1 : ξ + 1 : −ξ − 1 : −1] G18(10)

099, 201, 265, 834, 898

011 022, 033, 044, 055, 066, 077, 088, [ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ2 − ξ − 1] G18(10)

099, 203, 285, 818, 836

011 022, 033, 044, 055, 066, 077, 088, [ξ2 + 1 : 1 : −1 : −ξ2 − 1] G18(10)

099, 204, 295, 828, 837

011 022, 033, 044, 055, 066, 077, 088, [ξ4 + ξ3 + ξ2 + ξ + 1 : ξ + 1 : −ξ − 1 : −ξ4 − ξ3 − ξ2 − ξ − 1] G9(10)

099, 205, 838

011 022, 033, 044, 055, 066, 077, 088, [ξ4 + ξ2 + 1 : 1 : −1 : −ξ4 − ξ2 − 1] G18(10)

099, 206, 215, 839, 848

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + ξ − 1 : ξ + 1 : −ξ − 1 : −2ξ3 − ξ + 1] G18(10)

099, 207, 225, 830, 858

011 022, 033, 044, 055, 066, 077, 088, [ξ3 : 1 : −1 : −ξ3] G6(10)

099, 134, 198, 208, 235, 318, 336,

428, 437, 538, 639, 648, 730, 758,

831, 868, 932, 978

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ2 + ξ − 1 : ξ + 1 : −ξ − 1 : −ξ3 + ξ2 − ξ + 1] G18(10)

099, 209, 245, 832, 878

011 022, 033, 044, 055, 066, 077, 088, [1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −1] G18(10)

099, 301, 365, 723, 787

011 022, 033, 044, 055, 066, 077, 088, [ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ − 1] G18(10)

099, 302, 375, 724, 797

011 022, 033, 044, 055, 066, 077, 088, [ξ3 + ξ2 + ξ + 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −ξ3 − ξ2 − ξ − 1] G18(10)

099, 304, 395, 717, 726

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + 2ξ : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −2ξ3 − 2ξ] G9(10)

099, 305, 727
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TABLE B.4. Continued from previous page.
P2 Additional Points Slice Graph Type

011 022, 033, 044, 055, 066, 077, 088, [ξ3 + 1 : 1 : −1 : −ξ3 − 1] G18(10)

099, 306, 315, 728, 737

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + ξ − 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −2ξ3 − ξ + 1] G6(10)

099, 123, 187, 224, 297, 307, 325,

417, 426, 527, 628, 637, 729, 747,

820, 857, 921, 967

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 − ξ2 + ξ − 1 : ξ2 + ξ + 1 : −ξ2 − ξ − 1 : −2ξ3 + ξ2 − ξ + 1] G18(10)

099, 308, 335, 720, 757

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ + 1 : 1 : −1 : −ξ3 + ξ − 1] G18(10)

099, 309, 345, 721, 767

011 022, 033, 044, 055, 066, 077, 088, [1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −1] G18(10)

099, 401, 465, 612, 676

011 022, 033, 044, 055, 066, 077, 088, [1 : ξ2 + 1 : −ξ2 − 1 : −1] G18(10)

099, 402, 475, 613, 686

011 022, 033, 044, 055, 066, 077, 088, [ξ2 + ξ + 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ2 − ξ − 1] G18(10)

099, 403, 485, 614, 696

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + 2ξ : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −2ξ3 − 2ξ] G9(10)

099, 405, 616

011 022, 033, 044, 055, 066, 077, 088, [ξ3 + ξ : ξ2 + 1 : −ξ2 − 1 : −ξ3 − ξ] G6(10)

099, 112, 176, 213, 286, 314, 396,

406, 415, 516, 617, 626, 718, 736,

819, 846, 910, 956

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + ξ − 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −2ξ3 − ξ + 1] G18(10)

099, 407, 425, 614, 636

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ2 + ξ : 1 : −1 : −ξ3 + ξ2 − ξ] G18(10)

099, 408, 435, 619, 646

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ2 + ξ − 1 : ξ3 + ξ2 + ξ + 1 : −ξ3 − ξ2 − ξ − 1 : −ξ3 + ξ2 − ξ + 1] G18(10)

099, 409, 445, 610, 656

011 022, 033, 044, 055, 066, 077, 088, [1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −1] G9(10)

099, 501, 565

011 022, 033, 044, 055, 066, 077, 088, [ξ + 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −ξ − 1] G9(10)

099, 502, 575

011 022, 033, 044, 055, 066, 077, 088, [ξ2 + ξ + 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −ξ2 − ξ − 1] G9(10)

099, 503, 585

011 022, 033, 044, 055, 066, 077, 088, [ξ3 + ξ2 + ξ + 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −ξ3 − ξ2 − ξ − 1] G9(10)

099, 504, 595

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + 2ξ − 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −2ξ3 − 2ξ + 1] G9(10)

099, 506, 515

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 + ξ − 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −2ξ3 − ξ + 1] G9(10)

099, 507, 525

011 022, 033, 044, 055, 066, 077, 088, [2ξ3 − ξ2 + ξ − 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −2ξ3 + ξ2 − ξ + 1] G9(10)

099, 508, 535

011 022, 033, 044, 055, 066, 077, 088, [ξ3 − ξ2 + ξ − 1 : 2ξ3 + 2ξ : −2ξ3 − 2ξ : −ξ3 + ξ2 − ξ + 1] G9(10)

099, 509, 545
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[15] G. Urzúa. On line arrangements with applications to 3-nets. ArXiv e-prints,
October 2009.

90



[16] S. Yuzvinsky. Realization of finite abelian groups by nets in P2. Compositio
Math., 140:1614–1624, 2004.

[17] S. Yuzvinsky. A new bound on the number of special fibers in a pencil of curves.
Proc. Amer. Math. Soc., 137:1641–1648, 2009.

91


	Introduction
	Weak Multinets, Multinets, and Nets
	  Definitions
	  Examples of Proper Weak Multinets
	  The Matrix Q and Refinements
	  Results on Proper Weak Multinets
	  Past Examples of Proper Multinets

	multinets from nets in P3 
	  The Intersection Lattice L1
	  Isomorphisms of Multinets
	  Identifications from Slicing
	  Classification of Slices of Q1

	 Slices of Qn for n>1
	  The Intersection Lattice Ln
	  Allowable Slices and Identifications
	  Ceva Pencils of Plane Curves
	  Generic Slices of Qn
	  Graph Types of Multinets
	  Infinite Families of Multinets
	  Classifying Slices of Qn
	  Slices of Q2: (3,4)-Multinets
	  Slices of Q3: (3,6)-Multinets
	  Slices of Q4: (3,8)-Multinets
	  Slices of Q5: (3,10)-Multinets
	  Slices of Q6: (3,12)-Multinets
	  Conjectures on Heavy Multinets from Qn
	  Selected Examples of Multinets

	   Summary of Examples of Multinets from Qn
	   Additional Computations
	REFERENCES CITED

