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DISSERTATION ABSTRACT 

 

Adriana E. Martinez  

 

Doctor of Philosophy 

 

Department of Geography 

 

June 2013 

 

Title: The Geomorphic Effects of Native and Invasive Riparian Vegetation:  Sprague 

River, Oregon 

 

 

Numerous studies have addressed the role of stream geomorphology on vegetation 

distribution.  These studies have shown that channel morphology, including depositional 

and erosional processes, influence vegetation colonization.  However, few studies have 

addressed the impact of vegetation on the geomorphic processes of streams.  Vegetation 

has the ability to stabilize channel banks and alter stream hydrology and stream power.  

Little research has addressed the impact of invasive vegetation and its ability to change 

river channel processes.  My research addresses the impact of the highly invasive Phalaris 

arundinacea and quantifies its influence on the stream channel form of the Sprague River, 

Oregon.  I conducted field research that included root density and root strength surveys to 

determine the below ground influences of vegetation in terms of added bank cohesion 

provided by the invasive and  two similar native species: Eleocharis palustris and Carex 

vesicaria. To ascertain differences between the species above ground characteristics and 

influences, I measured stem density and elasticity to calculate their roughness (Manning’s 

n) and determine their potential impact on stream velocity.  Finally, I used these vegetation 

characteristics to model stream velocity, water depth, and bed shear stress within the 2-D 

model MD-SWMS.  Differences in root size were significant with C. vesicaria having the 
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largest root diameters, largest root area ratio, and largest bank cohesion provided by roots.  

This was followed by the invasive and then E. palustris.  E. palustris had the highest stem 

density,  followed by C. vesicaria and P. arundinacea. The invasive had the highest stem 

stiffness.  E. palustris was associated with the highest roughness value, closely followed by 

the invasive and C. vesicaria.  Using modeling I found the presence of the invasive 

increased velocity compared to E. palustris and increased bed shear stress compared to C. 

vesicaria. Therefore, changes in species composition, such as a shift from either of the 

natives to the invasive, could affect channel morphology over time.  By comparing the 

impact of this invasive to that of native grasses and sedges, this research provides insight 

into how further spread of the invasive may affect the Sprague River and other riparian 

ecotones.
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CHAPTER I 

 

INTRODUCTION 

 

Invasive species can cause major shifts in ecosystem dynamics, outcompete 

native species, and possibly produce other changes not recognized at present.  With 

stream restoration efforts increasing across the United States, it is imperative that we 

understand the impact of invasive species.  If an invasive species cannot be eliminated, 

for example, it may be impossible to restore a stream to its historical condition or even to 

reestablish some ecosystem functions.  This doctoral research documents the impact of 

the invasive species Phalaris arundinacea (reed canarygrass) on the geomorphology of 

the low-energy, meandering Sprague River in eastern Oregon. Until recently, little 

research has focused on analyzing the influences of small, flexible vegetation on the 

geomorphic processes of fluvial systems.  This project identifies and evaluates the 

vegetative and geomorphic processes taking place on the Sprague River.  I use 

biogeomorphic techniques to answer three research questions (1) How does the stream 

bank stability provided by P. arundinacea compare to that provided by native vegetation 

Eleocharis palustris (creeping spikerush) and Carex vesicaria (inflated sedge)? (2) How 

does P. arundinacea impact stream velocity and deposition and does this differ from 

native vegetation? and (3) What is the potential impact of P. arundinacea on channel 

morphology? With restoration along the Sprague River underway and further projects 

planned, results from this study can affect how the invasive is addressed in these projects.  

In addition, with the pending removal of four Klamath dams downstream of the Sprague 
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River, historical salmon spawning habitat may return and the geomorphology and habitat 

characteristics of the stream are of extreme importance.   

In Chapter II I examine the below-ground influences of the invasive and native 

vegetation.  Understanding of the role invasive species play in geomorphic processes is 

important because riparian vegetation provides added bank stability and cohesion through 

its root matrix.  Here I examine the geomorphic effect of P. arundinacea along the 

Sprague River, Oregon, and compare its effect with two species it is outcompeting in the 

area:  E palustris and C. vesicaria.  Root distribution values and root tensile strengths 

were used to determine the role P. arundinacea plays in bank cohesion and stability via 

two methods:  the traditional Wu et al. (1979) method and the fiber bundle model 

RipRoot (Pollen and Simon, 2005).  Root size distribution analyses show the invasive 

plant has a large amount of small diameter roots.  Tensile strength values for all three 

species decrease with increasing root diameter, which is consistent with previous studies.  

In addition, the Wu et al. (1979) method overestimates cohesion when compared to 

RipRoot for the three species.  Modeled cohesion is greatest for C. vesicaria and 

therefore this species provides higher levels of bank stability and resistance to erosion 

compared to the invasive.  In addition, the invasive provides greater bank cohesion when 

compared to E. palustris. 

In Chapter III I examine the above-ground influences of riparian vegetation along 

the Sprague River.  Quantifying roughness in terms of riparian vegetation has largely 

been ignored or listed as a secondary characteristic on roughness reference tables.  In 

methods used to calculate roughness mathematically, the added component of vegetation 

roughness is lacking.  However, in instances where vegetation plays a dominant role in 
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the riparian landscape and forms an important mechanism to reduce water velocity at 

high flows, its roughness is critical.  I calculated vegetation roughness based on 

measurements of plant stem elasticity, plant frontal area, stem density and stem area of 

three dominant herbaceous plants along the Sprague River, Oregon:  the invasive P. 

arundinacea, and natives E. palustris, and C. vesicaria.  Results show slightly lower 

roughness values than those predicted for vegetation using reference tables.  In addition, 

E. palustris and P. arundinacea exhibit higher and similar roughness values whereas C. 

vesicaria exhibits values lower than the other two species.  These findings are of 

particular importance where the invasive P. arundinacea is outcompeting native C. 

vesicaria because with such colonization, roughness is increasing in channel zones and 

therefore is likely changing channel processes.  Direct depositional measurements show 

similar results within stands of the invasive and E. palustris.   

In Chapter IV I used the roughness values, stem density and plant height values 

calculated in Chapter III, as well as topography gathered along the Sprague using LiDAR 

and bathymetric methods, to model the channel changes associated with the three species 

of interest.  Modeling is accomplished via two methods.  First, current conditions are 

modeled by populating the channel banks with roughness, plant density and height of 

patches of vegetation mapped out during a raft trip down a representative reach of the 

Sprague.  Next, modeling is carried out along the same reach with future conditions 

where the banks are populated by only one of the species.  Modeling results for the two 

native species are then compared to results for the invasive to determine differences in 

water depth, velocity and bed shear stress.  Current conditions show that the patches 

mapped have minimal interaction with the 10- and 25-year recurrence interval flow and 
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further work should be conducted regarding the influence of the placement of vegetation.  

Idealized condition model runs show that plant density and roughness causes the native 

E. palustris to have the highest impact on stream velocity and bed shear stress.  This is of 

particular importance where the invasive is outcompeting E. palustris.  Such changes 

could cause increases in velocity and less stable bank surfaces. 

Research of this nature has previously focused on large, woody species such as 

Tamarix (Graf, 1978).  This research is one of the first studies to investigate the influence 

of a non-woody, but highly invasive vegetation species.  Here I demonstrate that the 

invasive is significantly different in terms of above-ground and below-ground influences 

when compared to the natives.  These differences, according to depositional 

measurements and modeling, can affect channel processes.  With this study, we are only 

beginning to understand the impact of invasive species on stream geomorphology.  To 

attempt to circumvent the negative impacts of invasive species, we must learn how to 

control them and reverse the changes already set in motion.  This study begins to bridge 

the gap and discover how invasives may be altering geomorphic processes.  
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CHAPTER II 

ROOT SIZE DISTRIBUTION AND ROOT TENSILE STRENGTH OF INVASIVE 

AND NATIVE RIPARIAN VEGETATION 

 

1.  Introduction 

The encroachment of invasive species has become an increasingly apparent 

problem throughout ecosystems in North America.  Invasives are often highly 

competitive and quickly take advantage of available habitat and resources.  For this 

reason, invasive plant species are very well adapted for rapid dispersal and establishment 

in locations prone to disturbance (Sher et al. 2000; Tickner et al. 2001).  For example, 

flood disturbances on river systems that remove native vegetation can accelerate the 

proliferation of competitive invasive vegetation (Cowell and Dyer 2002; Tickner et al. 

2001; Sher et al. 2002).   

Invasive and native vegetation has the ability to stabilize channel banks and alter 

stream hydrology, erosion, and deposition.  Above ground biomass intercepts rainfall and 

interrupts streamflow, decreasing stream velocities and thus shear stress (Pollen et al. 

2004; Hickin 1984; Corenblit et al. 2007; Bennett et al. 2007).  Bank stability is enhanced 

by the roots of riparian vegetation that directly strengthens bank sediment and thus 

prevents instances of mass failure (Murray et al. 2008; Tal and Paola 2007).  Stability of 

bank material is, in part, a function of root density distribution, root depth, root diameter 

and root tensile strength (e.g. Pollen and Simon 2005); other factors include soil 

moisture, sediment size, and soil cohesion.  Roots enhance the tensile strength and 

elasticity of soils, distributing stresses throughout, allowing for increased shear strength, 

and creating failure resistant zones (Gran and Paola 2001; Murray et al. 2008; Perucca et 
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al. 2007; Tal et al. 2004).  Often, these zones form islands where flow is diverted in other, 

less resistant directions and thus they alter stream channel dimensions, sinuosity, and 

other characteristics (Nanson and Knighton 1996). Tamarisk was found to decrease 

channel widths by 27% along the Green River, Utah (Graf 1978) by stabilizing bar and 

bench surfaces.  Pollen and Simon (2005) applied a fiber bundle approach to measure the 

tensile strength of 12, primarily woody, riparian species.  Simon et al. (2006) found that 

Lemmons willow (Salix lemmonii) root reinforcement capabilities were an order of 

magnitude greater than that of lodgepole pine (Pinus contorta) along the Upper Truckee 

River, California, and therefore decreased the frequency of bank failure and delivery of 

fine grained sediment. 

 In addition to bank stability, vegetation provides protection against erosion by 

fluid forces both through its aboveground biomass and anchoring by roots (Murray et al. 

2008; Smith 1976).  Along the Alexandra River, Alberta, the roots of plants on vegetated 

banks were found to enhance erosion resistance up to 20,000 times more than 

unvegetated banks.  This caused a decrease in lateral channel migration (Smith 1976; 

Nanson and Knighton 1996; Graf 1978).   In the Northern Plains of Australia, various 

grasses were found to provide higher levels of stability and erosion protection than trees 

and shrubs due to their substantial biomass and continuous root networks (Tooth and 

Nanson 1999). In addition, De Baets et al. (2007; 2008) found that 6 out of the 7 grasses 

they tested in gully environments had a “High” to “Very High” erosion reducing potential 

whereas the majority of shrubs and trees tested in the study ranged from “Very Low” to 

“High” erosion reducing potential. These studies show that riparian vegetation influences 
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geomorphic processes, and these influences can be different depending on the species 

colonizing the channel banks. 

Understanding the physical effects of invasive species in the riparian zone is 

important because changes in plant species composition as invasive species colonize 

riparian areas may result in changes in bank stability and resistance to erosion.  Changes 

in these processes may lead to alterations in channel form and habitat characteristics.  

Therefore, objectives for this paper are to (1) determine the root characteristics of the 

invasive (Phalaris arundinacea) and two similar native species (Eleocharis palustris and 

Carex vesicaria) occupying similar areas along the Sprague River, Oregon and (2) 

determine the added bank cohesion the invasive and native species provide along the 

Sprague River using the Wu et al. (1979) method and the Pollen and Simon (2005) fiber 

bundle model RipRoot.   

 

2. Background 

 Root structure and architecture have long been recognized to influence bank and 

slope stability (Greenway 1987; Bethalahmy 1962; Bishop and Stevens 1964; Kaul 

1965).  Roots are strong in tension and weak in compression while soil is weak in tension 

and strong in compression.  These combined factors allow roots to provide reinforcement 

within the soil matrix (De Baets et al. 2007; De Baets et al. 2008; Pollen et al. 2004; 

Simon and Collison 2002; Simon et al. 2006; Greenway 1987). Root strength is a 

function of root diameter with finer roots exhibiting higher tensile strengths per unit root 

area than those with larger diameters (De Baets et al. 2008; Gray and Barker 2004; 

Operstein and Frydman 2000).  In addition to root strength, root distribution significantly 
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affects bank and slope stability.  Abernethy and Rutherford (2001) found interspecies 

differences in root distribution to affect bank stability more than interspecies differences 

in root tensile strength.  Several studies have suggested the use of Root Area Ratio (the 

ratio of root cross sectional area to soil cross sectional area; RAR) to estimate root 

contribution to soil strength (Abernathy and Rutherford 2001).  

 Estimations of bank reinforcement consider root cohesion as a factor of soil shear 

strength and thus incorporate it into the Coulomb equation (Waldron 1977; Wu et al. 

1979): 

                                                                       (1) 

where S is soil shearing resistance (kPa), c is cohesion (kPa),    is normal stress on the 

shear plane (kPa), and   is soil friction angle  (Pollen-Bankhead and Simon 2009).  

Waldron (1977) and others modified the equation to account for increased shear strength 

due to roots:   

                                                                      (2) 

where    is increased shear strength due to roots (kPa).     can be further estimated by 

accounting for the  tangential component resisting shear and the normal component 

increasing the confining pressure on the shear plane: 

       (             )(
  

 
)                                              (3) 

where Tr is average tensile strength of roots per unit area of soil (kPa),   is the angle of 

shear distortion in the shear zone, and Ar/A is root area ratio.  Work by Gray (1974) and 

Wu et al. (1979) further simplified this relationship by reporting that the effect of roots on 

the angle of internal friction is minor and the resulting shear strength due to roots is not 

sensitive to normal changes in   and  .  Therefore, the equation simplifies to: 
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        (
  

 
)                                                             (4) 

where the added cohesion due to roots is dependent on the size, distribution and strength 

of roots.  This type of model is considered “static” (Pollen and Simon 2005) because it 

captures root reinforcement for a single moment in time and assumes all roots reach their 

maximum tensile strength simultaneously (Greenway 1987).   

Subsequent studies have found the Wu et al. (1979) model overestimates soil 

shear strength by up to 91% (Pollen et al. 2004) and the values are often used as 

maximums (De Baets et al. 2008; Simon and Pollen 2006).  More recently, Pollen et al. 

(2004) developed a fiber bundle model, RipRoot, that adopts the global load sharing 

(GLS) approach to account for the progressive breakage of roots within the soil matrix 

(Pollen and Simon 2005; Pollen et al. 2004; Simon and Pollen 2006).  As one root breaks, 

the stress is redistributed to the remaining roots within the soil matrix.  In addition, 

RipRoot accounts for two overlooked mechanisms within soil shearing and root strength, 

that of root breaking and root pullout.  Therefore, recent versions of the RipRoot model 

now account for root pullout forces, a function of the bond between the roots and soil, 

and the soil moisture (Pollen-Bankhead and Simon 2009).  To demonstrate this 

empirically, I chose the Sprague River, Oregon, which exhibits large stands of the 

invasive P. arundinacea and other similar native species. 

 

3. Study Site 

The Sprague River, a tributary of the Upper Klamath River, (Figure 2.1.) lies at 

1270 to 1350 m elevation on the volcanic plateau east of the Cascade Range in southern 

Oregon.  The flow regime is snowmelt dominated with cold, wet winters and mild, dry 
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summers.  High flow predominates from February to May and low flows from July to 

September (Hay et al. 2009; Risley et al. 2005).  Precipitation averages approximately 50 

cm per year (Loy et al. 2001).  The area has shifted to a wetter climate over the last 500 

years (likely leading to increases in discharge) with a warming and drying period 

occurring in the last 150 years (Briles et al. 2008).  Historical land uses include irrigated 

agriculture, cattle grazing, ranching, and timber production (Friedrichsen 1997).  Because 

the growing season is too short for most crops, riparian areas continue to be used mainly 

for summer pasture.  The Sprague River has broad floodplains dominated by herbaceous 

meadows and wetlands (O'Connor et al. forthcoming 2013).  Snowmelt floods regularly 

inundate parts of the floodplain during late spring.  Shrub and tree cover on the floodplain 

is very low, except in a few narrow valley reaches, which support several willow species 

and quaking aspen (Populus tremuloides).  The floodplains are dominated by native 

herbs, including Eleocharis palustris (spikerush), Mentha sp. (mint), Polygonum sp. 

(smartweed), P. arundinacea (reed canarygrass), Solidago sp. (goldenrod), Epilobium sp., 

and a variety of Juncaceae (rushes), and Cyperaceae (sedges, eg. Carex vesicaria) 

(Rasmussen 2011).  The three dominant riparian species typically inundated during high 

flows are P. arundinacea, E. palustris, and C. vesicaria.  P. arundinacea and E. palustris 

dominate Site 1 and the invasive and C. vesicaria dominate sites 2 and 3 (Figure 2.1).  

Work regarding the geomorphic influence of vegetation on this river is of particular 

importance due to the pending removal of four dams on the Klamath River downstream 

of the Sprague, which would reopen the river to salmon.  Therefore, there is particular 

concern about river channel and habitat characteristics and any future alterations in 

geomorphic characteristics due to invasive plants. 
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Figure 2.1. Sprague River Basin and three study sites used in this study. 

 

 

4. Plant Species 

4.1. Reed Canarygrass (Phalaris arundinacea L.) 

P. arundinacea (Figure 2.2a.), recognized as one of the most invasive plants in 

North American wetlands (Lavoie et al. 2005), is a cool season, sod forming, perennial 

grass found in wetlands, riparian areas, and prairies throughout North America.  P. 

arundinacea was first introduced by Euro-American settlers in the Pacific Northwest for 

stream channel stabilization, erosion control, wastewater treatment, and forage in 1918 

(Anderson 1961; Marten and Heath 1973; Naglich 1994).  Reproduction occurs both 

sexually and through rhizomatous propagation with the rhizomes accounting for over 

70% of new shoot growth (Antieau, 2004).  In the Sprague River basin, P. arundinacea is 
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taller (up to 1.5 m) than the native riparian herbaceous species (0.3 m).  P. arundinacea 

invades vegetated areas after significant hydrological alterations (Galatowitsch et al. 

1999).  It outcompetes native vegetation by having a high tolerance for inundation, 

reproducing competitively, and developing a thick sod layer from the previous season 

leaf growth.  This sod layer decreases available habitat for native species.  Its ability to 

grow rapidly early in its life cycle and tolerance for anoxic soil conditions also provide an 

advantage for survival (Antieau 2004; Apfelbaum and Sams 1987; Foster and Wetzel 

2005; Kercher and Zedler 2004) and its presence has been correlated with decreases in 

vegetation species richness (Fierke and Kauffman 2006).  Studies have suggested P. 

arundinacea can reduce stream velocity, decrease suspended sediment, and increase 

sediment deposition (Tourbier and Westmacott 1981).  Along the Sprague River,  P. 

arundinacea occupies elevations up to 1m vertical from bankfull and up to 5m 

horizontally away from the bankfull line.  Native species E. palustris and C. vesicaria 

occupy areas similar to the invasive.  All three sites used in this study (Figure 2.1.) 

contain stands of the invasive species. 

 

4.2. Creeping Spikerush (Eleocharis palustris L.) 

E. palustris (Figure 2.2b.) occurs in wet meadows, vernal pools, fields, pastures, 

brackish tidal marshes and shallow water globally (Pojar and MacKinnon 1994).  Stems 

are typically 10-30 cm tall and leaves are primarily basal sheaths.  Along the Sprague 

River, E. palustris inhabits areas continually inundated with water but can survive further 

from the channel in areas not inundated during low flows (Guard 1995; Pojar and 

MacKinnon 1994).  Along the Sprague River, E. palustris inhabits elevations up to 0.3m 
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vertically from Bankfull and often immediately along the channel water line.  All three 

sites (Figure 2.1.) contain stands of E. palustris, though it is more dominant of the natives 

at Site 1. 

 

4.3. Inflated Sedge (Carex vesicaria L.)  

C. vesicaria (Figure 2.2c.) inhabits wetlands, ponds, lake shores, and river 

margins throughout eastern Oregon and Washington.  As is typical of other Carex 

species, it has 1.8-6.5 mm wide leaves extending from the base of the plant and can be up 

to 60 cm tall.  Along the Sprague River, C. vesicaria occupies shallow water areas 

directly adjacent to the channel and is often inundated during low flows.  These areas are 

can be up to  0.3m higher in elevation than the bankfull line and within 1m horizontal 

from the bankfull line.  P. arundinacea has been known to outcompete C. vesicaria in 

areas where water table lowering has occurred (Wilson et al. 2008).  Sites 2 and 3 (Figure 

2.1.) contain stands of C. vesicaria. 

(a)      (b)             (c) 

         
Figure 2.2.  Root and stem systems of partial plants (a) P. arundinacea, (b) E. palustris, 

and (c) C. vesicaria.  Squares on the scale are centimeters. 
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5. Methods 

5.1. Root Distribution and Root Area Ratio 

Root distribution was assessed at three locations for each species using the wall 

profile method described in Bohm (1979).  In this study, each wall profile (hereafter 

referred to as a pit) represents the root characteristics of one plant.  I selected the sites 

located along the banks within plant stands likely to be inundated during winter high 

flows.  In addition, sites had to contain plants stands that were dominated by the species 

of interest with few or no other species present.  Three soil pits were dug for each species 

of interest.  Soil pits were dispersed among the three sites based on species dominance 

and where the team had permission to dig.  The three soil pits for each of the P. 

arundinacea and E. palustris species were located at Site 1.  Two soil pits for C. 

vesicaria were located at Site 2 and one at Site 3.  Soil pits measured 0.5 x 0.5 x 0.5 m, 

which allowed the recording of the location (depth) and size of all roots that intersected 

the vertical profile wall.  Root diameters were measured and recorded according to their 

distance from the ground surface (depth).  Then the root diameter and location for each 

species at 10cm depth increments were used to calculate RAR, or the ratio between the 

sum of the cross-sectional area of roots intersecting the profile wall and the area of the 

profile wall (Abernathy and Rutherford 2001; Gray and Leiser 1982). 

Root distribution, strength, and added cohesion due to roots can vary greatly 

according to moisture content, growing season, root bark characteristics, nutrient 

availability, and the angle of the root relative to the trench wall (Pollen and Simon 2005; 

Greenway 1987).  For these reasons, sampling was carried out in the riparian 

environment where I am addressing the stabilizing effects of vegetation.  Therefore, 
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moisture and nutrient values should be typical of other riparian locations along the 

Sprague River.  In addition, sampling was conducted during the same period of the 

season for all plants and pits.  Root bark characteristics likely vary by species and not by 

site or season and care was taken to pull the roots at the angle they were oriented to the 

pit wall.  Therefore sampling is representative of the conditions I am attempting to 

capture in this study. 

 

5.2. Root Strength 

Root strength was measured using the methods outlined in Abernethy and 

Rutherford (2001) and Pollen and Simon (2005).  A 100 lb load cell was attached to a 

root exposed on the same profile wall of pits previously dug for root distribution surveys.  

Approximately 30-50 roots per profile wall were tested for each plant depending on the 

number of available roots and their condition after digging.  Individual roots were pulled 

to their breaking point and the peak force required to break each root was recorded.  In 

addition, the diameter of the root at the breaking point was recorded.  I tested 98, 82, and 

119 roots for P. arundinacea, E. palustris, and C. vesicaria, respectively.  The peak force 

required to break each root of known diameter was then used to calculate tensile strength 

(Bischetti et al. 2005): 

   
    

 
  

 

                                                                   (5) 

Where Fmax is the peak force (N) needed to break the root, and D is the root diameter (m) 

at the breaking point.  These values were used to develop power relationships for each 

species relating root tensile strength to root diameter to input into the model RipRoot.   
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5.3. Cohesion Due to Roots 

Previous studies have observed that root strength per unit area of root decreases 

with increasing root diameter (e.g., Pollen and Simon 2005).  This is due to higher 

cellulose content in smaller roots making them stronger per unit area than larger roots of 

the same species (Pollen and Simon 2005; De Baets et al. 2008; Greenway et al. 1984; 

Wu 1976; Burroughs and Thomas 1977; Bischetti et al. 2005).  The relationship takes the 

form of a power law: 

Tr = a D
-b

                                                             (6) 

Where Tr is root tensile strength and D is root diameter.  The power relationship 

coefficients for each of the three species, along with root diameter distributions (number 

and diameter of roots present), and soil type (moderate silt), were input into the model 

RipRoot (Pollen and Simon 2005; Pollen-Bankhead and Simon 2009) to quantify the 

added cohesion provided by each species tested.   

For comparative purposes, root tensile strength measurements were also used to 

calculate cohesion using the Wu et al. (1979) method (equation (4)).  This method 

simplifies the tangential component resisting shear and the normal component increasing 

the confining pressure on the shear plane (equation (3)) and assumes all roots break 

simultaneously.   

 

6. Results 

6.1. Root Distribution and Root Area Ratio 

Root size distributions show variability within species (Figure 2.3.), but general 

trends are apparent.  The residuals of the sizes of the three species were not normally  
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Table 2.1.  Roots per pit and root diameter size for three species. 

  # Roots/Pit Median Root Diameter (mm) 

P. arundinacea Pit 1 292 0.03 

P. arundinacea Pit 2 268 0.12 

P. arundinacea Pit 3 165 0.1 

Average 241.67 0.08 

   

E. palustris Pit 1 127 0.22 

E. palustris Pit 2 113 0.11 

E. palustris Pit 3 73 0.17 

Average 104.33 0.17 

   C. vesicaria Pit 1 89 0.4 

C. vesicaria Pit 2 146 0.49 

C. vesicaria Pit 3 333 0.49 

Average 189.33 0.46 

 

distributed, therefore I used the Mann-Whitney-Wilcox statistical test to determine 

whether root sizes were significantly different between species.  The three species have 

significantly different root sizes (p<0.001, Table 2.1).   

 

Root Area Ratio distribution with depth for the three species is shown in Figure 

2.4.  RAR values per soil depth class are average values over the 3 plants for that species.  

Overall, roots of all three species occupy less than 0.05% of the soil area. As expected, 

the RAR decreases with depth for each species.  C. vesicaria has a higher RAR than the  

other two species.  Standard errors for the measurements range from 1.05 x 10
-9

 to 2.13 x 

10
-4

.  The three species have different RAR values in the upper 0.3m of soil where most 

root strength lies with little to no overlap among the species, given the standard 

 

error.  C. vesicaria has the highest potential for cohesion based on RAR alone, whereas 

the invasive and native E. palustris have lower RAR. 
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Figure 2.3.  Root diameter histogram for three species of interest 

 

 
Figure 2.4.  RAR distribution by depth for P. arundinacea, E. palustris, and C. vesicaria.  Standard errors of RAR are 

presented by the extending lines. 
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6.2. Root Strength and Cohesion 

Statistical tests (Mann-Whitney-Wilcox) show that P. arundinacea and E. palustris 

tensile strengths (Table 2.2) are significantly different (p<0.01).  P. arundinacea and C. 

vesicaria tensile strengths are not significantly different (p=0.086).  As found in previous 

studies (Pollen and Simon 2005; De Baets et al. 2007; De Baets et al. 2008), root tensile 

strength per unit root area decreases with increasing root diameter in the form of a power 

relationship for each of the three species.  Table 2.3 lists the parameters (a and b), root 

diameter range, tensile strength range, R
2
 values for each power relationship, and the  

number of roots tested for each species.  Power relationship curves for each species are 

shown in Figure 2.5.  

 The power relationships for each species, in addition to root size distribution for 

each of the three plants per species, were input into the model RipRoot to obtain cohesion 

values for each respective plant (Table 2.4).  For comparison purposes, additional 

cohesion provided by roots was also calculated using the Wu et al. (1979) method.  Using 

RipRoot, the results show that C. vesicaria, with an average of 0.88 kPa has the highest 

added cohesion due to roots.  P. arundinacea, closely follows this with an average of 

0.81 kPa.  Both these values are much higher than E. palustris, which averages 0.30kPa.  

In addition, cohesion calculated using the Wu et al. model are greater for all excavated 

pits and species when compared to the RipRoot values.   
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Table 2.2. Root diameter and root tensile strength distributions for three species of 

interest  

    Root Diameter (mm)   Root Tensile Strength (Mpa) 

Species 

 

Median SD Max Min 

 

Median SD Max Min 

P. arundinacea 

 

0.44 0.27 1.26 0.08 

 

24.36 30.88 156.83 1.92 

E. palustris 

 

0.25 0.17 0.90 0.07 

 

32.55 79.69 567.61 0.80 

C. vesicaria   0.50 0.40 1.88 0.01 

 

24.88 92.98 635.28 1.56 
SD=Standard Deviation 

 

 

 

Table 2.3.  Diameter and tensile strength power relationship variables for three species of 

interest 

 

 

 

 

 

 

Table 2.4.  RipRoot and Wu et al. value comparisons of added cohesion due to roots. 

Species 

RipRoot, 

kPa 

Wu et al., 

kPa 

RipRoot/Wu 

et al. 

Wu et. al 

Overestimation (%) 

P. arundinacea Pit 1 0.59 2.99 0.20 408.67 

P. arundinacea Pit 2 0.96 4.91 0.20 411.93 

P. arundinacea Pit 3 0.88 4.54 0.19 417.49 

E. palustris Pit 1 0.30 0.76 0.39 157.59 

E. palustris Pit 2 0.36 0.93 0.38 160.79 

E. palustris Pit 3 0.25 0.63 0.39 155.81 

C. vesicaria Pit 1 1.14 7.70 0.15 577.46 

C. vesicaria Pit 2 0.52 3.58 0.14 591.16 

C. vesicaria Pit 3 0.99 6.67 0.15 571.93 

 

7. Discussion 

Median and mean values of root diameter reported for similar grass species in 

other studies (Table 2.5) are larger than diameters reported in this study.  In addition, 

previous work does not show significant differences in tree and herbaceous (grass) 

vegetation root diameters.  The smaller root sizes reported here could be attributed to  

Plant Species 

Vegetation 

type a  b  n R
2
 

P. arundinacea Grass 0.0027 1.160 98 0.5352 

E. palustris Sedge 0.0003 1.732 82 0.5346 

C. vesicaria Sedge 0.0107 1.012 119 0.6536 
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Figure 2.5.  Root diameter and root tensile strength power relationship for P. arundinacea, E. palustris, and C. vesicaria 
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both species differences and environmental differences like nutrient and water 

availability, and soil type.  Previous studies have shown that erosion resistance is highly 

influenced by fine root density (<5mm).   

The overall trend in RAR is a general decrease with depth for the three species in 

question, with most of the RAR in the upper 30 cm of soil.  Previous work shows a 

general decrease in RAR with depth, although woody species and some herbaceous 

species show more roots below 30 cm than the species in this study.  For example, a 

number of tree and shrub species studied in DeBaets et al. (2007) showed roots to a depth 

of 0.4 to 0.8m.  Similar to findings in this study, grass, herb, and reed species in De Baets 

et al. (2007) showed roots to depths of 0.15 to 0.35m.  Young lodgepole pine showed 

roots to 0.85m deep (Simon et al. 2006) and Wynn et al. (2004) found herbaceous 

vegetation root volume ratios (a value comparable to RAR) up to 0.9m deep.   Each of 

the species examined in this study shows a slight increase in RAR between 0.1-0.2m 

deep.  Other studies have also shown a slight increase in RAR below the surface layer, 

followed by a decrease in RAR with increasing depth.  For example, beech trees had a 

slight increase in RAR to 0.3m deep and then a gradually decrease to 1.10m deep.  In 

addition, Norway spruce increased to 0.2m and then decreased to 1m below the surface 

(Bischetti et al. 2005).  Other studies have found no patterns in RAR with depth 

(Abernathy and Rutherford 2001; Simon et al. 2006).  As with root diameter, RAR with 

depth can depend on soil characteristics and nutrient availability. 

Previous studies regarding root tensile strength have shown similar results to 

those presented here for herbaceous plants (Table 2.5, switchgrass and gamma grass).  
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According to these other studies, tree species have higher root tensile strength values than 

herbaceous species and grasses.  

When compared to previous studies, the three species in this study show slightly 

lower cohesion values both when using the RipRoot model and the Wu et al. (1979) 

method (Table 2.6).  The Wu et al. overestimation is consistent with previous literature 

(e.g. Pollen et al. 2004) and is due to the static model’s inability to account for the 

progressive breakage of roots.  

Many of the species previously studied are trees, though grass cohesion values 

reported in other studies are also higher than those found in this study.  This may be due 

to the large number of small diameter roots found in this study.  Also, unlike previous 

studies, roots in this study are not present in great numbers at depths greater than 0.35m, 

which likely deflates cohesion values (De Baets et al. 2007).  Although small roots 

provide the most cohesion, the absence of larger roots could be significant and therefore 

affect overall cohesion.  In addition, we used the pit excavation method and did not 

measure all roots present within a plant, which could underestimate total cohesion 

provided by roots.  Further work should be conducted involving complete plant 

excavation.  

 

 7.1. Cohesion Due to Roots  

Cohesion is a function of three factors:  root size distribution, RAR, and the 

tensile strength of individual roots.  Root size distributions show the invasive P. 

arundinacea is dominated by the smallest root sizes.  E. palustris is dominated by roots 

of medium-small size whereas C. vesicaria has the widest range of root diameters and, 
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unlike the other two species, is dominated by medium sized roots.  RAR for the invasive 

P. arundinacea lies between that ofnative E. palustris and C. vesicaria with the latter 

exhibiting much higher RAR values at depths not exceeding 0.2 m.  Therefore, in areas 

where the invasive is outcompeting native species, it is increasing RAR compared to E. 

palustris and decreasing RAR compared to C. vesicaria. 

Within the power law equation for root tensile strength the exponent b, relating 

tensile strength and root diameter, controls the rate of the decline of strength with 

diameter, and the constant a is a scale factor in the relationship (Bischetti et al. 2005).  

The species with the highest scale factor and lowest decay rate, C. vesicaria, is the 

species that provides most resistance to failure and erosion.  The less resistant species, or 

that species with the lowest scale factor and highest exponent, is E. palustris.  Therefore, 

the power equations show that for a given root diameter, C. vesicaria has the highest 

tensile strength.  This is closely followed by the invasive P. arundinacea and the native 

E. palustris.   

 

Table 2.5.  Root diameter and strength of other species 

Species Name Vegetation Type Diameter (mm) 

Root Tensile Strength 

(Mpa) 

Fagus sylvatica
a
 Tree 1.33 57.47 

Salix purpurea
a 

Tree 1.28 51.47 

Salix caprea
a 

Tree 1.42 47.8 

Fraxinus 

excelsa
a
 Tree 1.95 36.86 

Larix decidua
a
 Tree 1.68 66.14 

Switchgrass
b
 Grass 1.3 19 

Gamma grass
b
 Grass 1.4 27.7 

Swamp 

Paperbark
c
 Tree 7.4 14.3 

River Red Gum
c
 Tree 5.7 19.4 

a
 Bischetti et al. 2005, 

b
 Simon and collision 2002, 

c
 Abernethy and Rutherford 2001 
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Table 2.6.  Vegetation type and cohesion of other species 

Species Name 

Vegetation 

Type 

Cohesion 

(RipRoot, kPa) 

Cohesion  

(Wu et al, kPa) 

Variety of Grasses
a
 Grass 

 

100 - 244 

Juncus acutus
a
 Rush 

 

304 

Anthyllis cytisoides 
a
 Shrub 

 

< 160 

River birch
b
 Tree 1.75 28.9 

Black Willow
b
 Tree 1.75 20 

Sycamore
b
 Tree 1.75 24.9 

Switchgrass
b
 Grass 1.85 50.5 

Longleaf pine
b
 Tree 1.75 14.2 

Norway Spruce
c
 Tree 

 

14.3 - 58.6 

European beech
c
 Tree 

 

40 - 100 

European larch
c
 Tree 

 

15 - 60 

Sweet Chestnut
c
 Tree 

 

6.4 - 19.0 

European hop-

hornbeam
c
 Tree 

 

5.4 - 30 

Sweetgum
d
 Tree 

 

4 

Eastern gamma grass
d
 Grass 

 

6 

Switch grass
d
 Grass 

 

18 

Tamarisk
e
 Tree 0 - 6.9 

 Russian-olive
e
 Tree 0  -14.2   

a
 De Baets et al. 2008, 

b
 Pollen and Simon 2005, bank height is 1m, 

c
 Bischetti et al. 

2009, conversion factor used to prevent Wu et al 1979 overestimation, 
d
 Simon and 

Collison 2002, 
e
 Pollen-Bankhead et al. 2009 

 

Regarding cohesion obtained from the model RipRoot, the high cohesion values 

for C. vesicaria result from a combination of the medium density of large roots and the 

largest RAR.  P. arundinacea exhibits a high cohesion value as well due to the presence 

of a large number of small roots.  E. palustris plants provide the lowest amount of soil 

cohesion due to roots because, although its roots exhibit large tensile strengths, it has the 

lowest number of roots and they are small in diameter.   
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7.2. Restoration Implications 

Quantifying the root cohesion of riparian species is important because shifts in 

species dominance may change bank stability and bank erosion processes.  Reaches 

occupied by the invasive that were previously inhabited by the native E. palustris are 

experiencing up to three times increased bank stability and resistance to erosion.  

Measurements conducted in this study primarily focus resistance to erosion via roots.  

However, the aboveground biomass of the vegetation also has the ability to cause 

geomorphological changes by altering roughness and trapping sediment.  P. arundinacea, 

unlike the native species studied here, develops a sod layer that protects bank surfaces 

from erosion.  In future work, the aboveground structures of the species should be 

examined to address this question.  This may include quantification of sod layer 

properties and differences between the species using laboratory flume methods or field 

measurements. 

Changes in bank stability and bank erosion resulting from vegetation species shift 

can lead to changes in channel form.  Expansion of P. arundinacea may reduce the 

ability of floods to uproot vegetation along the channel margin and therefore reduce the 

erosional effectiveness of floods.  Increasing bank stability and decreasing erosion in 

these areas means channel width is more likely to remain static or even decrease (Myers 

and Swanson 1992, 1996; Duff 1977; Overton et al. 1994).  With narrower channels, 

increased shear stress on the channel bed may result in incision, and increased stream 

depth that may ultimately affect fish habitat. 

Changes in channel form, either decreased channel width or increased channel 

depth, may help to decrease stream temperatures (Matthews 1996; White and Brynildson 



 

 

27 

1967).  With the pending removal of dams downstream of the Sprague River and the 

potential for salmon presence in the future, changes in channel form that affect habitat, 

particularly water temperature, are important.  Currently, the Sprague River exceeds 

summer water temperature standards, and decreasing water temperatures may be 

important for salmon survival (Beschta et al. 1987; Bjornn and Reiser 1991; Boyd and 

Kasper 2002).  Ultimately, decreases in stream temperatures will result in more 

hospitable conditions for salmon in this area (Boyd and Kasper 2002).   

Values reported here for the Sprague River are likely applicable across different 

locations in some instances.  Tensile strength measurements and power relationships are 

consistent within species; however, root distribution can be highly variable depending on 

substrate and local nutrient and water availability (see model RipRoot and Pollen and 

Simon 2005).  Soil pits for this study were located on depositional surfaces and therefore 

close to the water table where roots were not required to extend to great depths.  I have 

observed that when occupying cutbanks, the invasive has developed longer, deeper root 

systems to reach water levels and would therefore likely have different root distributions 

than when inhabiting depositional surfaces.  Therefore, care should be taken when 

comparing results across habitats and watersheds.   

 

8. Conclusions 

Few studies have examined the impact of small, non-woody riparian vegetation 

on stream bank stability and resistance to erosion.  We have shown that differences in 

root size, root distribution, root strength, and root cohesion exist between the invasive P. 

arundinacea and natives E. palustris and C. vesicaria, the most significant of which is 
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the high bank stability and resistance to erosion properties of P. arundinacea compared to 

the native E. palustris.  The increased level of cohesion in areas where the invasive is 

outcompeting the native species may be leading to zones of decreased erosion.  The 

change in bank cohesion is likely to cause the most effect in areas where P. arundinacea 

is outcompeting E. palustris because the cohesion values of the invasive are almost three 

times greater.  Such changes in bank stability could lead to channel narrowing and other 

channel form water temperature regime changes that would improve salmon habitat 

which is critical given the planned removal of four Klamath River dams Therefore, it is 

important to determine the past and predict the future effect of the invasive P. 

arundinacea on channel morphology.   
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CHAPTER III 

 

QUANTIFYING ROUGHNESS:  FLEXIBLE RIPARIAN 

VEGETATION AND MANNING’S n 

 

1. Introduction 

Manning’s n is used to quantify hydraulic resistance to flow, determine flow 

velocities, and calculate discharge.  However, accurately estimating this parameter is a 

difficult task.  Roughness can be influenced by vegetation, bedforms, sinuosity, 

obstructions (e.g. wood), bedrock outcrops, and skin friction (Simon and Castro, 2003; 

Gilley and Finkner, 1991; Roberson and Crowe, 1993).  Researchers have continually 

modified and developed methods, the majority of which are based on statistical 

relationships with other hydraulic variables or based on the topographic characteristics of 

the channel, to combat the uncertainties in roughness calculations.  However, few of 

these account for the added roughness provided by plant stands.   

Riparian vegetation passively engineers rivers (Viles, 1988)  by increasing 

roughness through above ground biomass (Gurnell et al., 2010; McKenney et al., 1995; 

Perucca et al., 2007).  The degree to which vegetation influences flow velocities is 

dependent on the density and height of plants and their stiffness, or resistance to flow 

(Gleason et al., 1979; Gran and Paola, 2001).  Aquatic macrophyte shoot density and 

shape were found to influence flow velocity and therefore sediment deposition (Asaeda et 

al., 2010; Clarke et al., 2004; Schulz et al., 2003).  Submerged bur-reed shoots with 

simple stems and no leaves increased fine sediment deposition within the vegetation 

stand.  Within Callitriche cophacarpa stands, Sand-Jensen and Mebus (1996) found an 

eleven-fold decrease in stream velocity due to the establishment of dense stands and 
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shoots.  Within tidal marsh landscapes, grasses were found to decrease velocity and near-

bed turbulence (Leonard and Luther, 1995), cause sediment deposition and divert flow 

around vegetation patches (Reinhardt et al., 2010; Temmerman et al., 2006; Van Hulzen 

et al., 2007).   

Small changes in deposition and erosion brought on by vegetation can lead to 

changes in channel form (Corenblit et al., 2008; Gurnell, 1997; Perucca et al., 2007).  

Spartina anglica (common cordgrass) in a tidal marsh landscape both increased 

deposition by reducing velocities within the plant stand and caused scour outside the 

stand by diverting flow outside of the canopy (Van Hulzen et al., 2007). In rivers, 

channel width and wetted perimeter values are lower in channels with banks that contain 

a high percent of vegetation cover while depth tends to increase with increased levels of 

vegetation cover (Hey and Thorne, 1986; Millar and Quick, 1998).  Studies show that 

channel widths in rivers lined with grass can be up to three times as wide for a given 

discharge as those covered with trees (Millar and Quick, 1998). In addition, vegetation 

can control channel planform and pattern (Millar, 2000; Millar, 2005; Nevins, 1969; Tal 

and Paola, 2007) and can shift braided channels to single thread channels (Murray et al., 

2008; Tal and Paola, 2010).   Therefore, quantifying vegetation roughness can be useful 

for predicting deposition, erosion, and channel planform changes. 

Changes in species composition and the subsequent change in roughness values is 

of particular importance where invasive species are rapidly outcompeting native species 

and establishing monocultures.  Along the Sprague River in southeastern, Oregon, the 

invasive Phalaris arundinacea (reed canarygrass) occupies similar microsites as those 

occupied by dominant natives  Eleocharis palustris (creeping spikerush), and Carex 
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vesicaria (inflated sedge) and is outcompeting these species within the riparian zone.  If 

these species have different roughness values, changes in species composition can change 

deposition and erosion along the stream channel and thus alter channel morphology and 

aquatic habitat.   

 Our goal is to determine differences in plant characteristics and roughness 

properties of P. arundinacea and native species C. vesicaria and E. palustris.  Here I  

measure the stem stiffness and other plant characteristics of multiple individuals of each 

of the three species.  These variables are used to calculate the associated roughness 

values for the three species to predict changes in roughness where the invasive is 

outcompeting native species.  In addition, I directly measured deposition within plant 

stands in riparian areas using deposition pins and mats.   

 

2. Methods 

2.1. Site Selection 

 I chose sites located on depositional surfaces below bankfull stage that contained 

representative plant stands dominated by the three species of interest.  Plant stands were 

located approximately 1m above the channel bed (thalweg) and vegetation roughness, or 

nveg, was calculated for partially submerged vegetation.  Twelve, 10, and 8 plants for P. 

arundinacea, E. palustris, and C. vesicaria, respectively were chosen at three main sites 

within the Sprague River Basin (Figure 2.1.).  Sites were selected based on location 

access and presence of dominant plant stands that contained few or no other species 

within the stand.  In addition, all sites were located on depositional surfaces at similar 
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elevations along the banks of the river where high flows would interact with the 

vegetation.   

 

2.2. Plant Characteristics and Other Variables 

I measured the modulus of plant stiffness (Es, N/m
2
), plant area (m

2
), plant density 

(#plants/ m
2
), plant frontal area (m

2
), stem density (#stems/ m

2
), and total cross-sectional 

area of all the stems of an individual plant, (m
2
) for each of the three species. The 

modulus of plant stiffness, Es (Rahmeyer et al., 1999; Kouwen, 1988), or stem stiffness, 

was measured by securing a 100lb load cell at half the height of the vegetation stem to 

determine the force required to bend to an angle of  45°.  Ten plants with a total of 137 

stems were tested for E. palustris, eight plants with a total of 160 stems were tested for C.  

vesicaria,  and 12 plants with a total of 181 stems were tested for P. arundinacea.  I 

converted this load to Newtons and input it into the equation (Freeman et al., 2000; 

Rahmeyer et al., 1999: refer to Table 3.1 for variables): 

          
    

 

  
          (1) 

to calculate the modulus of plant stiffness (Es, N/m
2
). A high Es value would mean higher 

stiffness, or lower flexibility, of the plant stem.   

 

I estimated roughness based on the above discussed stem stiffness for each of 

these plant stands, and the total plant area occupied by each individual plant and 

determined plant density (number of plants/m
2
).  Plant frontal area was measured using a 

50cm x 1.5m coverboard (Sage et al., 2004; Nudds, 1977; Griffith and Youtie, 1988).  

Plant frontal area was recorded as the percent cover of each 50cm x 10cm panel for each 

of the 10cm height increments from the ground up to the height of the plant.  Percent was 
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then converted to area of coverage to determine total plant frontal area for the plant at 

80% of its height (input required for partially submerged vegetation).  Plant area was 

measured as total canopy cover. 

Table 3.1.  Variables for equations and associated descriptions. 

Variable Description 

n   Manning’s roughness term 

H    Average undeflected plant height, m 

Ai
*
 Net submerged frontal area of partially submerged plant, m2 

As   
Total cross-sectional area of all the stems of an individual plant, 

m2 

Ds Stem diameter, at a height of H/2, m 

Es   Modulus of plant stiffness, N/m2 

F45  Horizontal force to bend stem 45°, N 

Kn   Unit conversion factor 1.0m1/3/sec 

M   Relative plant density, m2 

 p Fluid density, 1000 kg/m3 

Rh   Hydraulic radius, m 

S    Slope 

V* Shear velocity, m/s 

v Fluid dynamic viscosity, m2/s,  

 

 Additionally, I measured stem density by counting the number of stems within a 

0.1 x 0.1 m sampling plot.  I measured stem diameter at ¼ the height from the ground for 

each stem, as is required according to equation protocol.  Total cross sectional area of 

stems was measured within this plot by summing the stem diameters and extrapolating 

this to the total size of the plant, per equation protocol.   

 

2.3. Calculating Roughness 

 In addition to the above measured variables, standard variables were determined 

for this river system using accepted hydraulic values and measurements on topographic 

maps, sonar data, and digital elevation models.  These include:  hydraulic radius (Rh, 
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1m), fluid density (   1000 kg/m
3
), slope (0.0002 m/m), shear velocity, (  , 0.0443 m/s), 

and fluid dynamic viscosity (   1 m
2
/s).      

For each plant of each of the three species of interest, roughness with regard to 

vegetation alone (ignoring channel characteristics), nveg, for partially submerged 

vegetation (inundating the vegetation up to 80% of its height) was calculated using 

equation (2)  (Rahmeyer et al., 1999) and the median Es value for that plant stand.  This 

resulted in a unitless roughness value for each plant stand of interest (refer to section 6 

for variables).   

                
   (

    

   
   
 )
     

(   
 )      (

    

 
)
     (  

   
    )

  
  (2) 

 

2.4. Measuring Deposition 

To directly measure deposition with invasive and native plants stands, I set up 

four sampling stations for sediment deposition rates from mid October 2011 to late July 

2012 using two methods: deposition pins and mats (Gurnell et al., 2006a; Gurnell and 

Petts, 2006).  Each station consisted of 1 stand of the invasive species and a nearby stand 

of a native species at a similar bank elevation (Figure 3.1.). Two stations consisted of a 

pairing of the invasive P. arundinacea and E. palustris and two stations of P. 

arundinacea and C. vesicaria.  Within each of the plant stands, I used two types of 9cm x 

6cm mat pieces to minimize flow interruption within the plant stand:  artificial turf and a 

rubber mat.  In addition, at each stand, I inserted six deposition pins and the distance 

from the top of the pin to the current ground level was recorded for each pin.  Both the 

mats and deposition pins were left in place through the flood season (Figure 3.2.) to 

determine sediment deposition after significant flows.  Sites were inundated with up to 
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Figure 3.1.  Deposition pin (yellow circles) and mat (green=turf mats, black=rubber mats) 

setup along the banks of the Sprague River (light blue polygon). 

 

 

 

 
 

Figure 3.2.  Stage heights for period of time deposition pins and turf mats were in place.  

Stage data obtained from Oregon Water Resources Department (OWRD) gage station 

11497500 near Beatty, Oregon.  

 

1.5m of water given that they were placed approximately 1m above the channel bed.  I 

collected the mats after the flood season and separated the sediment.  Sediment was dried, 

weighed, and converted to volume using a bulk density of 1.3g/cm
3
.  Deposition pins 

were measured and recorded with regard to the current ground level after the flood 

season.   
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3. Results 

3.1. Plant Characteristics 

I measured 43 stem density plots for P. arundinacea, 33 for E. palustris, and 36 

for C. vesicaria.  Median stem density values were 800, 4800, and 2850 stems per m
2
, for 

P. arundinacea, E. palustris, and C. vesicaria, respectively (Figure 3.3.).  Overall, E. 

palustris showed the highest stem density and the invasive P. arundinacea showed 

consistently lower stem densities than the two natives. The invasive had significantly 

different stem density values compared to each of the native species (p<0.001).   

Stem stiffness values varied greatly for each species (Figure 3.4).  I tested a total 

of 270, 214, and 230 stems for P. arundinacea, E. palustris, and C. vesicaria, 

respectively.  Stem stiffness was highest for the invasive.  This was followed by E. 

palustris and then C. vesicaria.  P. arundinacea had significantly different stem stiffness 

compared to both of the native species (p<0.001). 

Table 3.2. shows the total plant area, plant density based on plant area, and plant 

frontal area for the three species.  P. arundinacea, on average, had the largest frontal 

area.  This is followed by C. vesicaria, and then E. palustris, which had the smallest 

frontal area.  Additionally, cross sectional area of stems for all three species are displayed 

on Table 3.2.  P. arundinacea and C. vesicaria averaged similar cross sectional areas 

while E. palustris averaged a much higher cross sectional area.   

 

3.2. Roughness   

Vegetation roughness values for each plant within each species were calculated with the 

median stem stiffness values of that plant and their respective variables including plant 
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area, plant density, plant frontal area and stem cross sectional area, along with the 

standard variables established for hydraulic radius, slope, shear velocity and fluid 

dynamic viscosity, using equation (2).  A boxplot of the associated vegetation roughness 

for each species is shown in Figure 3.5.  E. palustris showed the highest vegetation 

roughness values with a median of 0.000323.  It also had the largest range of values, 

which is due to its high range in stem stiffness.  The invasive had a roughness median of 

0.000304 and had a smaller range of values.  E. palustris and P. arundinacea roughness 

values were not significantly different (Mann-Whitney-Wilcox, p=0.6277).  C. vesicaria 

had the lowest roughness values with a median of 0.000132 and was significantly 

different from the invasive (p<0.001). 

 

 

Figure 3.3.  Box plots of stem density.  The bold line represents median values and the 

top and bottom box edges represent the 75
th

 and 25
th

 percentiles, respectively.  Whiskers 

represent the range of data. 
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Figure 3.4.  Stem stiffness for three species of interest.  The bold line represents the 

median value and the top and bottom box edges represent the 75
th

 and 25
th

 percentiles, 

respectively.  Whiskers represent the upper and lower quartiles to the nearest data point 

not beyond 1.5 times the inter-quartile range.  Outliers are shown as open circles beyond 

the whiskers. 
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Table 3.2.  Frontal and cross-sectional area characteristics for three species 

  
Total 

Plant 

Plant 

density 

Plant Frontal 

Area 

Cross Sectional 

Area  

  Area (m
2
) ( #plants/m

2
) 

(m
2
, 80% height 

of plant) 

of Stems (m
2
, whole 

plant) 

P. arundinacea 

 

  

 Plant A 3.46 0.29 0.62 0.03 

Plant B 3.46 0.29 0.62 0.02 

Plant C 5.04 0.20 1.60 0.03 

Plant D 5.04 0.20 1.60 0.04 

Plant E 9.00 0.11 0.83 0.04 

Plant F 2.00 0.50 0.56 0.04 

Plant G 9.00 0.11 0.81 0.04 

Plant H 14.00 0.07 0.81 0.04 

Plant I 6.00 0.17 0.96 0.04 

Plant J 12.00 0.08 1.86 0.04 

Plant K 2.50 0.40 0.71 0.04 

Plant L 9.00 0.11 1.31 0.04 

Median 5.52 0.18 0.82 0.04 

     E. palustris 

    Plant A 4.35 0.23 0.49 0.16 

Plant B 4.35 0.23 0.49 0.01 

Plant C 0.06 16.67 0.04 0.0005 

Plant D 0.03 31.25 0.02 0.0002 

Plant E 3.90 0.26 0.33 0.05 

Plant F 3.90 0.26 0.33 0.02 

Plant G 0.75 1.33 0.11 0.21 

Plant H 0.50 2.00 0.21 0.21 

Plant I 10.00 0.10 0.36 0.21 

Plant J 14.00 0.07 0.71 0.21 

Median 3.90 0.26 0.33 0.13 

  

    C. vesicaria 

    Plant A 2.34 0.43 0.78 0.08 

Plant B 2.34 0.43 0.78 0.03 

Plant C 3.65 0.27 0.77 0.04 

Plant D 3.65 0.27 0.77 0.02 

Plant E 1.38 0.72 0.77 0.02 

Plant F 1.38 0.72 0.77 0.01 

Plant G 6.00 0.17 0.37 0.03 

Plant H 9.00 0.11 0.71 0.03 

Median 3.00 0.35 0.77 0.03 
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Figure 3.5.  Vegetation roughness values for three species.  The bold line represents 

median values and the top and bottom box edges represent the 75
th

 and 25
th

 percentiles, 

respectively.  Whiskers represent the range of data. 

 

3.3. Deposition 

Deposition likely occurred during the receding limb of the hydrograph from late 

April to late July (Figure 3.2.) and consisted of fine-grained sediment (silts and sands).  

Pin measurements showed a dominance in deposition within all plant stands with the 

exception of the C. vesicaria stand in Plant Stand D (Figure 3.6.).  Deposition depths 

were similar within stands of the invasive and E. palustris and greater within the invasive 

when compared to C. vesicaria.  Turf mat volumes were standardized by the area of the 

turf mat (volume of sediment divided by 54cm
2
).  Sediment deposited on the mats 

showed some patterns (Figure 3.7).  P. arundinacea stands showed similar deposition 

values as those in E. palustris stands.  In addition, P. arundinacea stands showed higher 

deposition values than C. vesicaria in Plant Stand C.  Plant stand D seems to be 

P. arundinacea     E. palustris    C. vesicaria  

 

   
   

   
2

x1
0

-4
   

   
   

  4
x1

0
-4

   
   

    
  6

x1
0

-4
   

   



 

 

41 

anomalous given that the deposition values obtained from the pins and mats disagree.  

There did not appear to be a significant difference between mat types (turf mats are bars 

1, 2, and 3 while rubber mats are bars 3, 4 and 5 in each cluster of species, Figure 3.7.)   

 

 
Figure 3.6.  Deposition (+) and erosion (-) depths for plant stands using pins. Horizontal 

bars represent average for the species within that plant stand. 

 

 

 

 
Figure 3.7.  Deposition using turf mats for four plant stands.  Horizontal bars represent 

average for the species within that plant stand. 
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4. Discussion 

4.1. Plant Characteristics 

 P. arundinacea showed the lowest stem densities of the three species of interest.  

C. vesicaria stems exhibited low to medium stem densities while E. palustris exhibited 

the highest stem densities of all three species.  Therefore, solely based on stem densities, 

E. palustris has a higher ability than the other species to interrupt flow, which may lead 

to higher roughness numbers and increased sediment deposition within plant stands.   

 Stem stiffness values for E. palustris were the highest among the three species 

followed by P. arundinacea and C. vesicaria.  P. arundinacea, though it exhibited mid-

range stiffness values, also exhibited a large number of higher range values.  Therefore, 

solely due to stem stiffness, P. arundinacea has a higher ability to interrupt flow.  Stem 

stiffness values found in this study are an order of magnitude larger than those of woody 

species (Table 3.3).  This is due to the smaller stem diameters present in the denominator 

of the Es equation (equation 1), which inflates stiffness values.   

 

Table 3.3.  Stem stiffness values for woody species published in previous work.   

Species Stem Stiffness, Es (N/m
2
x10

8
) 

Yellow Twig dogwood
1
 3.210 

Berried Elderberry
1
 0.526 

Purpleleaf Euonymus
1
 4.140 

Red Twig Dogwood
1
 10.200 

Yellow Twig Dogwood
1
 29.900 

Mulefat
1
 5.950 

Alder
1
 17.000 

Valley Elderberry
1
 16.500 

Willow (Salix exigua)
2
 1.470 

Willow (Salix lasiandra)
2
 0.747 

Composite Willow
2
 1.390 

1Values based on Freeman et al.(2000), 2Values based on Freeman et al (1998) 
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On average, P. arundinacea had the highest plant frontal area (m
2
) values of the 

three species.  This was followed by C. vesicaria and then E. palustris.  Observations in 

the field coincide with this measurement.  Often the invasive occupied the largest area 

and was the tallest.  E. palustris on the other hand, was the smallest plant in terms of 

height and, unlike the invasive, has no leaves which would create higher plant frontal 

area measurements.  C. vesicaria, had a large frontal area but is often no taller than 0.5m. 

In terms of its impact on roughness values based on frontal area, the invasive has a higher 

potential to interrupt flow and create larger obstructions to flow, thus causing deposition.  

In contrast to this, stem cross sectional area was highest in stands of E. palustris.  This 

was followed by P. arundinacea and C. vesicaria which exhibited very similar values.   

 Overall, E. palustris exhibited values for stem density, and cross sectional area of 

stems that will lead to the increased possibility of flow interruption and therefore the 

highest numbers in roughness values based on plant characteristics.  P. arundinacea, on 

the other hand, exhibited the highest values for stem stiffness and plant frontal area 

because it was the tallest and occupied the largest area.   

Values presented here for the Sprague may be highly correlated with substrate 

characteristics, and nutrient and water availability, and therefore may not be applicable in 

other locations.  In addition, measured variables, including stem stiffness, may differ 

depending on the season data is gathered.  For example, new stems may be smaller with 

lower biomass and therefore lower plant frontal area. In addition, these stems may be 

more flexible than what would be encountered later in the season.  Further work should 

take care, as this study did, to observe and record plant characteristics similar to those 



 

 

44 

that will be present during flows in which the vegetation is inundated.  Additional work 

could be conducted that compared the variables in different growth stages. 

 

4.2. Roughness 

 P. arundinacea and E. palustris vegetation roughness values are not significantly 

different though in some cases E. palustris may exhibit higher roughness (Figure 3.5.).  

The invasive and C. vesicaria show significant differences in roughness.  If P. 

arundinacea dominates and replaces E. palustris, roughness values will likely remain the 

same or only decrease slightly.  However, if P. arundinacea is dominating C. vesicaria, 

roughness values will be significantly higher than previously.  Differences in stem 

elasticity and stem cross-sectional area seem to have the largest influence on vegetation 

roughness.  High stem densities within E. palustris (Figure 3.3.) likely account for its 

high roughness values while the low stem stiffness of C. vesicaria (Figure 3.4.) likely 

accounts for its low vegetation roughness.   

These roughness values account for only vegetation roughness.  To fully predict 

channel changes, a composite roughness should be calculated.  Values for portions of 

stream banks occupied by the invasive or native vegetation, the vegetation roughness 

much be treated as an added factor and combined with other roughness factors for the 

reach of interest.  Previous work has illustrated the concept of an additive roughness 

value by establishing a roughness base value and adding roughness values for surface 

irregularities, channel shape and size, obstructions, vegetation, and meandering 

(Arcement and Schneider, 1989; Cowan, 1956; Chow, 1959; Aldridge and Garrett, 1973).  

Using this method, low gradient, sinuous reaches of the Sprague River in this study 
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would yield roughness values displayed in Table 3.4.  The median roughness values for 

each species were added to this roughness value to obtain a composite channel roughness 

value which yields a roughness 0.0238 for areas occupied by P. arundinacea, 0.0240 for 

E. palustris, and 0.0235 for C. vesicaria.   

 

Table 3.4.  Additive roughness values for the Sprague River. 

Roughness Component Sprague River Value Description 

nb: base roughness 0.012 

smallest sand size, straight 

uniform channel 

n1: surface irregularities 0.002 

carefully degraded channel with 

slightly eroded or scoured 

sideslopes (0.001-0.005) 

n2: variations in channel 

shape 0.002 

large and small cross sections 

alternate occasionally, main flow 

shifts from side to side (0.001-

0.005) 

n3: obstructions 0.002 

obstructions occupy <5% of 

cross section area (0-0.004) 

m: meandering correction 1.3 sinuosity >1.5 

 

 The roughness values established here are comparable to those established in 

previous studies (Table 3.5).  With regard to nveg, all species are comparable to previously 

established nveg values (Gordon et al., 2004; Jarrett, 1984).  The vegetation roughness for 

all three species falls below the “small” composite n value for vegetation ranging from 

0.002-0.010 (Arcement and Schneider, 1989).  The “small” level corresponds with dense 

growth of flexible turf grass and though our species are similar to turf grass, stem density 

is not as high and the three species would therefore have lower roughness values.  In 

addition, additive roughness values estimated in this study are comparable to roughness 

values for streams similar to the Sprague River in published photo reference guides 

(Table 3.6). 
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4.3. Deposition 

Deposition depths measured with deposition pins within P. arundinacea and E. 

palustris plant stands shows similar patterns.  P. arundinacea plant stands show higher 

deposition values than their comparable C. vesicaria plant stands.   

Deposition measured on turf mats within P. arundinacea and E. palustris plant 

stands are also similar and correlate with the deposition pin findings.  In addition, they 

are comparable to previous studies on other rivers (Gurnell et al., 2006b).  Deposition 

values within Plant Stand C comparing the invasive and C. vesicaria are comparable to 

the pin results showing more deposition within the invasive.  However, in Plant Stand D, 

C. vesicaria shows a higher deposition value based on the mats being deposited than P. 

arundinacea and these findings disagree with the deposition pin findings at the same 

plant stand.  According to previous studies, deposition mats can accurately capture 

deposition but not erosion occurring on a site because they provide surface roughness that  

 Table 3.5. Previously established roughness values for other vegetation 

Description/Species Minimum 

Additive vegetation values
1
:  

 Supple seedlings or dense grass/weeds  0.0005-0.010 

Brushy growths, no growth in streambed; grass height of flow 0.01-.025 

Young trees intergrown with weeds; grass twice depth of flow 0.025-0.05 

Brushy growth on banks, dense growth in stream; trees with weeds; full foliage 0.05-0.1 

Yellow Twig dogwood
2
 0.043 

Purpleleaf Euonymus
2
 0.041 

Red Twig Dogwood
2
 0.07 

Yellow Twig Dogwood
2
 0.053 

Mulefat
2
 0.035 

Alder
2
 0.07 

Valley Elderberry
2
 0.072 

Composite willow (Salix exigua & lasiandra)
3
 0.138 

51 cm Dogwood
4
 0.034 (nveg) 

71 cm Elderberry
4
 0.033 (nveg) 

97cm Dogwood
4
 0.079 (nveg) 

1Values based on Gordon et al. (2004) which establishes values based on Cowan (1956) and Jarrett (1984)., 2Freeman 

et al. (2000), 3Freeman et al. (Freeman et al., 1998), 4Rahmeyer et al. (1999) 
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Table 3.6.  Rivers similar to the Sprague River and their associated roughness values via 

photo reference guides. 

River and Location Roughness Value 

Oakden Canal at Oakden Culvert (68521)
1
 0.033 

Loganburn at Gorge Downstream (74347)
1 

0.020 

Piako at Paeroa-Tahuna Bridge (9140)
1
 0.030 

Indian Bend Wash above Curry Road
2 

0.036 

Verge River near Paulden
2 

0.029 

Onondoga Creek at Dorwin Ave
3 

0.027 

Champlin Creek near Colorado City, Tx
4 

0.027 

Clearwater River at Kamiah, Idaho
4 

0.033 
1 values based on Hicks and Mason (1998), 2 values based on Phillips and Ingersoll (1998), 3 values based on Coon 

(1998), 4 values based on Barnes (1967) 

 

 

traps sediment (Steiger et al., 2003).  It is possible that erosion, and not deposition is the 

dominant processes with C. vesicaria at this site.  However, deposition pin results may be 

anomalous given that the field crew observed possible evidence of heave or disruption of 

the pins by cattle and the invasive and C. vesicaria stands are at significantly different 

elevations, unlike the other plant stands.  Further study is required to ascertain a complete 

picture on the amount of deposition occurring within C. vesicaria stands.   

 Deposition depths via the pin and mat method correlate adequately well with 

roughness calculations conducted for this study.  P. arundinacea roughness values (nveg), 

although smaller than E. palustris, fall within the range of the native.  Depositions are 

similarly comparable with one stand showing on average more deposited sediment in the 

invasive (Plant Stand A) and one stand showing less (Plant Stand B).  C. vesicaria 

roughness values fall below the other two species as is reflected in Plant Stand C where 

deposition depths based on the mats are lower in the native stand.  Therefore, the 

roughness values correlate with observed deposition and further emphasize the point that 

Plant Stand D may be anomalous due to hydraulic differences in stand placements.  
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Given these depositions and conditions over time, including flow levels, and sod layer 

conditions, these results would likely mean aggrading banks on these depositional 

surfaces on the order of 1cm per year for P. arundinacea and E. palustris.  Over time, 

this may cause a narrowing of the channel in areas where the invasive has outcompeted 

C. vesicaria.   

 

5. Conclusion  

Quantifying roughness is a complicated, multi-dimensional problem within river 

science.  However, it is necessary for indirectly estimating discharge, channel capacity 

and water surface elevations, among many other variables of use.  In addition, accounting 

for the influence of vegetation further complicates the determination of Manning’s n and 

estimations regarding this complication are almost nonexistent (Copeland, 2000).  

However, few are attempting to determine how vegetation affects channel flows and thus 

channel processes.  Research regarding the effect of vegetation on channel processes has 

primarily considered riparian zones dominated by trees (e.g. Gurnell and Petts, 2006) and 

large woody shrubs such as Tamarix (e.g. Graf, 1978), rather than weaker and more 

flexible herbaceous vegetation. Previously, flume studies on groundcover plants 

(Rahmeyer et al., 1999), small trees and shrubs (Copeland, 2000; Freeman et al., 2000) 

have been conducted to determine resistance due to vegetation.  Non-woody species, such 

as P. arundinacea, may have the ability to alter river channel form and process when 

present in extensive stands, particularly in a low energy river such as the Sprague.  

Furthermore, invasive vegetation may influence geomorphic processes differently than 

native vegetation because of its ability to outcompete other vegetation, its tendency to 
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develop monocultures, and the difficulty encountered in its removal.  In this case, P. 

arundinacea has a significantly higher roughness value than the native C. vesicaria 

which means river channel processes are being altered in areas where it is outcompeting 

the native.  

Boyd and Kasper (2002) suggested that past channel widening along the Sprague 

River has been associated with negative effects on water temperature and fish habitat.  

However, the findings presented here reveal that areas with established invasive stands 

may begin to narrow.  With the potential removal of Klamath dams downstream of the 

Sprague and the reopening of salmon habitat, it is important to determine the past and 

predict the future effect of the invasive on channel morphology.  Establishing 

measurements of plant characteristics and roughness values is the first step in this 

endeavor.  Future research includes modeling the effect of these roughness differences on 

channel morphology as well as long term monitoring of channel characteristics and 

channel changes.   
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CHAPTER IV 

 

INVASIVE AND NATIVE RIPARIAN VEGETATION: MODELING  

CHANNEL HYDRAULICS WITH CURRENT AND  

FUTURE VEGETATION CONDITIONS 

 

 

1. Introduction 

Vegetation along stream banks has the ability to change channel morphology 

characteristics by altering velocity patterns and changing deposition and erosion.  Recent 

research has focused on quantifying the effects of woody, rigid species (Petryk and 

Bosmajian, 1975; Pasche and Rouve, 1985; Musleh and Cruise, 2006), rather than 

flexible vegetation (Kouwen and Unny, 1973; Kouwen et al., 1969; Carollo et al., 2005) 

or a combination of the two (Freeman et al., 2000; Järvelä, 2004).  However, in low 

gradient streams, dominant flexible vegetation can affect deposition when little to no 

rigid species are present.  Here I examine the impact of the invasive and flexible Phalaris 

arundinacea L. (reed canarygrass) on channel morphology of the low-energy, 

meandering, Sprague River in eastern Oregon by modeling its effect on water depth, 

velocity, and bed shear stress within the 2-D model MD-SWMS (Multi-Dimensional 

Surface-Water Modeling System). In addition, I compare its geomorphic effect to that of 

native Eleocharis palustris (creeping spikerush) and Carex vesicaria (inflated sedge). In 

the near future, four dams along the Klamath River, downstream of the Sprague, will be 

removed and will open the area to salmon.  Any trends in geomorphic processes that may 

develop or have developed in the past as a result of invasive species colonization are 

critical to understanding this system. 
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2. Background 

Investigating the effect of invasive riparian vegetation is critical because invasive 

species can cause major shifts in ecosystem dynamics, outcompete native species, and 

produce many other changes of which we are still not yet aware.  This is of particular 

importance when the species has the potential to become an ecosystem engineer.  

Ecosystem engineers are organisms that control the availability of resources by causing 

changes in biotic or abiotic materials (Jones et al., 1994; Jones et al., 1997; Corenblit et 

al., 2008).  Rather than directly supply these resources, ecosystem engineers are those 

organisms that adjust or transform them.  Ecosystem engineers can control energy, 

materials, space, food organisms, or any combination of these resources.  

Within fluvial geomorphology, researchers study two aspects of vegetation 

ecosystem engineers:  those vegetation characteristics that modify the environment either 

actively or passively (Corenblit et al., 2009).  Riparian vegetation actively modifies the 

environment by establishing root systems that influence the cohesive properties of 

channel bed and bank materials (Prosser et al., 1995; De Baets et al., 2006).  Vegetation 

passively modifies the environment by providing roughness within the channel bed or 

along the banks, decreasing flow velocity and increasing sediment deposition (Corenblit 

et al., 2009).   

 Roughness can manifest itself and alter the river system in multiple ways.  Here I 

provide some insight into studies regarding flexible vegetation though more work is 

available regarding rigid woody species (e.g., Gran and Paola, 2001; Edwards et al., 

1999; Graf, 1978).  Macrophyte shoot density and shape influence flow velocity and 

therefore, deposition (Schulz et al., 2003; Clarke et al., 2004; Asaeda et al., 2010).  For 
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example, submerged Sparganium erectum shoots were found to increase fine sediment 

deposition within the vegetation stand.  Following increased growth in the spring the 

shoots emerged from the water column which raised the water level and subsequently 

reduced water velocities (Asaeda et al., 2010). Gurnell et al. (2010) examined multiple 

macrophytes across 467 British rivers and found they have the ability to trap fine 

sediment and cause channel form changes.  Within Callitriche cophacarpa stands, Sand-

Jensen and Mebus (1996) found an eleven-fold decrease in stream velocity due to the 

establishment of dense stands and shoots. 

Various studies have also examined bank and island vegetation.  On the Northern 

Plains of Australia, various grasses along channel banks and floodplains were found to 

provide higher levels of stability and erosion protection than trees and shrubs in the area 

due to their substantial biomass and expansive root networks (Tooth and Nanson, 1999). 

Carex nudata in California creates substrate upon which other species can colonize as 

well.  Although Carex occupied only 33.05% of the channel area on the South Fork Eel 

River, California, the 13 most common species had an average of 84% of their 

individuals on Carex tussocks.  Therefore, the substrate stabilization of Carex was vitally 

important to the survival of other species (Levine, 2000).   

 The small changes in depositional and erosional processes brought on by the 

active and passive abilities of vegetative ecosystem engineers can lead to changes in 

channel form (Perucca et al., 2007; Corenblit et al., 2008; Gurnell, 1997).  The deposition 

and erosion brought on by roughness and flow velocity around riparian trees and wood 

are critical in developing island dominated, anabranching rivers (Gurnell and Petts, 2006; 

Tooth and Nanson, 2000; Tooth and Nanson, 1999).  Often, an initial deposit is formed 
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downstream of a tree or other roughness feature.  Vegetation then begins to colonize this 

feature and additional deposition occurs enabling the formation of a ridge or island 

(Tooth and Nanson, 2000).  Vegetation also has the ability to narrow stream channels.  

After a large flood, Plum Creek, Colorado, experienced significant widening.  Multiple 

years of low flow following a major flood allowed vegetation to establish along stream 

banks creating stable, erosion resistant channels (Friedman et al., 1996).  Using flume 

experiments, Tal et al. (2004) found that vegetation decreases channel width, braiding 

index and mobility.   

 Despite these studies, when compared to woody riparian species, flexible channel 

bank and island vegetation and their effect on channel morphology and processes have 

been largely neglected.  In particular, the geomorphic effect of an invasive species is 

important because they tend to dominate the landscape developing monocultures that 

outcompete native vegetation.  One such species is P. arundinacea along the Sprague 

River, Oregon. 

  

3. Methods 

3.1. MD-SWMS (Multi-Dimensional Surface-Water Modeling System) 

MD-SWMS is a two dimensional depth-averaged hydraulic model developed by 

the USGS to model surface water hydraulics (McDonald et al., 2005).  A two 

dimensional model was chosen because it can produce downstream velocity, depth, and 

shear stress at each point within a grid or mesh throughout the channel.  In addition, two 

dimensional models are ideal for noting changes in water depth or velocity in and around 

two dimensional features like bars and islands (Nelson et al., 2003).  I used Morpho 2D 
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within MD-SWMS because Morpho-2D accounts for vegetation characteristics, a 

variable that few models incorporate into their calculations.  Vegetation can be 

represented in the model either as vegetation height and density inputs, or within the 

roughness values.  When modeling with roughness inputs, the model produces output on 

bed shear stress in addition to water depth and velocity. Morpho-2D mimics the 

interaction between mixed grain sediment and vegetation (Nelson and McDonald, 2010).  

It calculates two-dimensional horizontal velocity and flow depth for grid nodes (built via 

a mesh) defined by the user (Nelson et al., 2003).  The model does not alter bed 

morphology.   

 The Klamath Tribes Research Station gathered Lidar and bathymetric topography 

data at a 0.5m resolution for the site of interest (Figure 4.1a.) along the Sprague River in 

the spring of 2005.  For the purposes of modeling smaller portions of the channel, one 

straight reach was chosen (Figure 4.1.).  This straight reach was chosen based on its close 

proximity to a gaging station and because it was located in an area with minimal 

interference with adjacent meanders.  In addition, this reach contains stands of all three 

species of interest.  For input into MD-SWMS, the topography data in the form of a DEM 

was converted to point data and imported into MD-SWMS.  A mesh grid was created 

within MD-SWMS by digitizing a channel centerline and establishing grid parameters 

(Table 4.1.).  Topography was mapped to the grid to create initial conditions upon which 

the model could operate.   
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Figure 4.1.  Sprague River Basin and associated study site: (a) Basin and sample reach, 

(b) Lidar and bathymetry showing channel topography, (c) current vegetation patches 

mapped in the field, (d) future scenario vegetation patches.  Arrow indicates flow 

direction. 

 

N 

a b 

c d 
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 Polygons representing current vegetation condition in the reach were developed 

by mapping stands on the channel banks of 2 m
2
 or more in area in the field using aerial 

photographs (Figure 4.1.).  This mapping only encompassed the banks and did not extent 

onto the floodplain.  Then I applied the measured vegetation height, density and 

roughness (Chapter 3) to the polygons for use in the model.  Roughness values were 

calculated by first establishing a base roughness value for the channel without vegetation 

using the additive procedure outline in Arcement and Schneider (1989) and others.  A 

roughness value for vegetation was then added to this value using the nveg equation in 

Rahmeyer et. al. (1999), which incorporates vegetation density, frontal area and stem 

flexibility (Table 4.3., Martinez, 2013). In addition, three future scenarios of vegetation 

occupation were created to simulate channel changes when channel banks were 

dominated completely by one of the three species (Figure 4.1d.).  In these scenarios, 

vegetation polygons that extended approximately ¼ of the way into and out of the 

channel banks from the bank-full line were developed.  In areas outside of the mapped 

patches and outside of the channel, a medium roughness was used along with a 

vegetation density and height for basic turf grass (Other value in Table 4.3.; Maurer et al., 

2001).  For the future scenarios, results for P. arundinacea were subtracted from each of 

the native species to determine differences between the invasive and each native species 

for each of the outputs:  depth, velocity, and bed shear stress. 

The model was run at two different discharges, 10yr and 25yr recurrence intervals 

to capture circumstances under which the vegetation would be inundated.  In addition, the 

model was run for current conditions and future conditions for each of the three species 

of interest:  P. arundinacea, E. palustris, and C. vesicaria.  Discharge data were obtained 
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from the closest gaging station to the site (Table 4.2.; Station 11497500; OWRD, 2013).  

This set of runs was carried out once to determine outputs (velocity and depth) with 

regard to each species’ roughness (section 4.1. below), and then again with regard to each 

species height and density (section 4.2. below), for a total of 16 runs.  In addition, median 

sediment size from a nearby location was used as input into the model:  d50= 1mm (T. 

LaGreca, Klamath Tribes Research Station, personal communication).   

Table 4.1.  Model grid parameters 

  Reach Size   Grid Cell Spacing 

# Grid 

Cells   
Length 

(m) 

Width 

(m)   

Stream-wise 

(m) 

Stream-

normal (m) 

Straight Reach 520 180 

 

3 2 2400 

 

Table 4.2.  Discharge and associated boundary conditions. 

Recurrence 

Interval 

Discharge 

(cms) 

Downstream Channel 

Bottom Elevation (m) 

Stage 

(m) 

10 yr 89.34 1313 2.9 

25yr 113.00 1313 3.2 

50yr 191.26 1313 3.85 

 

Table 4.3.  Roughness, vegetation height and density for each species. 

 

 

 

 

3.2.  Modeling with Roughness   

To model changes in hydraulic conditions due to the effects of each species , I 

varied roughness (Manning’s n), according to changing species cover.  The model was 

run using current condition vegetation stands and future condition vegetation stands with 

the respective roughness for each of the three species of interest.     

 

Species Mannings n 

Vegetation 

Density (m2/m2) 

Vegetation 

Height (m) 

P. arundinacea 0.018328 0.04 0.92 

E. palustris 0.018431 0.13 0.54 

C. vesicaria 0.018135 0.03 0.74 

Other 0.018300 0.90 0.30 
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3.3.  Modeling with Vegetation Density and Height 

 Vegetation height and density values for each species were obtained through 

previous field work (Martinez, 2013).  Vegetation height is the average height (meters) 

for each plant and vegetation density is the percentage of area occupied by stems.  For 

areas outside of the patches mapped in the field (Fig. 1c), height and density of turf grass 

was used (Maurer et al., 2001).  As above, the model was run for current conditions and 

for future conditions for each species, at each of the two recurrence intervals.  These 

outputs were differenced to obtain the marginal effect of the invasive relative to each 

native species.     

Validation data for 10- and 25-year flows were not available, so a validation could 

not be carried out.  However, comparison among species and not validation of specific 

hydraulic conditions is the goal for this study. 

 

4. Results 

 Overall, MD-SWMS provided a useful platform upon which to model vegetation 

characteristic changes on hydraulic conditions.  Given that the model is two dimensional, 

it provided the ability to model along a reach with various features and changes in 

channel width and depth.  Results for depth and velocity were generally consistent and, 

for the most part, the model followed the general rules of at-a-station hydraulic 

relationships.  However, some limits were reached when modeling high flows.  At the 50 

year recurrence interval, a ponding effect occurred where, despite increases in depth, and 

therefore discharge, velocity decreased.  This problem with Morpho-2D has been 

previously noted (R. McDonald, USGS, personal communication). In addition, edges 
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were not adequately represented within the model.  This seemed to be limited to 50 - 75m 

from the upstream and downstream edge of the modeled reach.  Despite this, the middle 

portion of the reach followed the expected hydraulic relationships well, the results of 

which will be the bulk of the discussion here.    

 

4.1.  Current Conditions 

4.1.1. Modeling based on vegetation density and height 

 In the 10-year flow, velocities within vegetation patches were on the order of 0.6 

m/s to 0.7m/s (Figure 4.2 a2.).  High velocities on the order of 0.8m/s and 1.2 m/s were 

exhibited towards the downstream end of the channel within P. arundinacea and C. 

vesicaria patches, respectively, though these anomalously high results were likely due to 

edge effects.  In the 25-year flow, velocities in the invasive were as high as 1.07 m/s 

within the center of the channel (Figure 4.2 b2.).    

 

4.1.2.  Modeling based on vegetation roughness 

Water depth values were on the order of 0.1 to 0.2 m lower than those depths 

obtained from the vegetation density and height runs (Figure 4.3 a1 and b1).  A similar 

range in velocity was obtained in the roughness runs as those observed in the vegetation 

height and density runs.  However, some limited areas experienced higher velocity values 

in the roughness runs.  These were present within the center of the channel and away 

from vegetation patches (4.3 b1 and b2).  In addition to velocity and depth outputs, the 

roughness runs allowed for bed shear stress mapping.  Similar shear stresses are exhibited 

in the 10 and 25-year flows with the exception of slight increases in high shear stress  
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Figure 4.2.  Current conditions modeled given vegetation height and density under 10 

year (a1 and a2), and 25-year recurrence interval flows (b1 and b2).   

a1. b1. 

b2. a2. 
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Figure 4.3.  Current conditions modeled given vegetation roughness under 10-year 

recurrence interval (a1, b1, c1) and 25-year recurrence interval (a2, b2, c2).   

 

 

a1. 
a2. 

b1. 
b2. 

c1. c2. 
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areas in the 25-year flow (4.3 c1 and c2).  These were concentrated toward the center of 

the channel and ranged from 3.76 to 4.24 N/m
2
. 

 

4.2. Future Conditions 

4.2.1.  Modeling based on vegetation density and height  

Hereafter, I will mainly focus on how flows within vegetation patches differ with 

regard to species.  Velocity values in the 10-year flow were higher within P. arundinacea 

stands than E. palustris (Figure 4.4 b1.) by up to 0.09m/s.  This value was large 

considering velocities along these areas at the channel margins were fairly low (0.6-

1m/s).  Velocity under the invasive and C. vesicaria stands were similar (Fig. 4.4 b2).  In 

the 25-year flow, velocity results were similar between the invasive and natives.   

Regarding water depth within the vegetation patches, P. arundinacea and E. 

palustris performed similarly in the 10-year flow (Figure 4.4 a1.). On the other hand, 

flow depths under C. vesicaria were slightly shallower (0.007 to 0.01m shallower) than 

when the invasive was modeled (Figure 4.4 a2.).  This was most pronounced at the 

upstream portion of the reach, which may be anomalous due to edge effects, but 

continued through the center of the channel for much of the reach.  When compared to C. 

vesicaria, the invasive affected the overall hydraulics of flow through the channel, but 

this is not evident when the invasive is compared to E. palustris.  In the 25-year flow, 

results showed that the flow depth within the invasive was shallower than either of the 

two natives (Figure 4.5 a1. and a2.).  Some differences existed between the invasive and 

C. vesicaria at the upstream end of the reach, but this may be due to edge effects.  There 

is little difference in velocity between the invasive and either of the native species.   
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Figure 4.4.  Future conditions modeled given vegetation height and density under 10-year 

recurrence interval flow:  P. arundinacea – E. palustris (a1 and b1), P. arundinacea – C. 

vesicaria (a2 and b2). 

 

4.2.2.  Modeling based on vegetation roughness 

In the 10-year flow, velocity results showed generally faster values for the 

invasive than the two native species, though these results were patchy and not banded as 

they were in the vegetation height and density runs (Figure 4.6 b1. and b2.).  Bed shear 

stresses in were higher in E. palustris stands than the invasive and were lower within C. 

a1. a2. 

b1. b2. 
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 Figure 4.5.  Future conditions modeled given vegetation height and density under 25-

year recurrence interval flow: P. arundinacea – E. palustris (a1, and b1), P. arundinacea 

– C. vesicaria (a2 and b2). 

 

vesicaria stands than the invasive (Figure 4.6 c1. and c2.).  Differences in depth were 

confined to edges and backwater areas (Figure 4.6 a1. and a2.).   

In the 25-year flow, the effect of the vegetation was less pronounced and depth 

and velocity results were similar between the invasive and natives (Figure 4.7 a1., a2., b1. 

and b2.).  Bed shear stress was highest in E. palustris stands, intermediate in P. 

arundinacea, and lowest in C. vesicaria.   

a1. a2. 

b1. b2. 
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Figure 4.6.  Future conditions modeled given roughness under 10-year recurrence interval 

flow: P. arundinacea – E. palustris (a1, b1, c1), P. arundinacea – C. vesicaria (a2, b2, 

c2). 

 

a1. a2. 

b1. 
b2. 

c1. c2. 
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Figure 4.7.  Future conditions modeled given roughness under 25-year recurrence interval 

flow:  P. arundinacea – E. palustris (a1, b1, c1), P. arundinacea – C. vesicaria (a2, b2, 

c2). 

 

 

 

a1. a2. 

b1. b2. 

c1. c2. 
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5. Discussion 

5.1.  Model Performance   

In general, the model produced realistic results regarding water depth, velocity 

and bed shear stress.  Similarly realistic results were also produced within the vegetation 

patches.  For example, the 10-year recurrence interval flow results agree, showing a 

decrease in bed shear stress (Figure 4.4.) and an increase in velocity (Figure 4.3.) with a 

switch in species composition from E. palustris to the invasive given roughness 

conditions (Figure 4.2.) and vegetation height and density (Figure 4.3.), respectively.  

The magnitude of the results in the vegetation runs were comparable to results obtained 

in the future condition model runs.  According to sampling via ADV (Acoustic Doppler 

Velocimeter, M. Dawson, Klamath tribes Research Station, personal communication), 

velocities along the Sprague at these flows are similar to those modeled.  In addition, 

shear stress results are consistent with what would be expected in this environment.  In 

the shift from the 10-year to 25-year flow, an increase in discharge was accommodated 

by increases in both water depth and velocity, though depth increased more than velocity.   

The most realistic results were likely those run with the roughness calculations 

because these roughness values incorporate vegetation characteristics such as vegetation 

height and density as well as general channel characteristics.  The roughness runs also 

provide the user with an additional output, bed shear stress, which can be useful when 

studying a particular system.  However, anomalies were evident when comparing the 

vegetation height and density runs to the roughness runs.  For example, vegetation height 

caused a significant difference in water depth when comparing the invasive and C. 

vesicaria in the 10-year flow.  However, this difference was not present in the roughness 
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runs.  Similarly, vegetation density altered velocity more significantly within E. palustris 

stands compared to P. arundinacea but this difference was not apparent in roughness 

runs.  

 

5.2. Interpretation of Results 

5.2.1. Modeling based on vegetation height and density 

 When modeling hydraulic conditions under 10-year flows, water depths within C. 

vesicaria stands were lower than those found in the invasive.  This was likely due to the 

invasive’s greater height which enhanced water flow interruption compared to the shorter 

C. vesicaria.  Thus, the invasive caused the water to adjust vertically, creating higher 

water depths when it was occupying the channel.  In this case, depths modeled with the 

invasive were on average 0.2m higher than those in the native.  Both species were 

inundated within the main channel boundaries and less inundated with increasing 

distance from the thalweg and were likely to be partially bent down by the flow, though 

the model has no way to account for stem flexibility.  Velocities were not significantly 

different.   

When comparing the invasive and E. palustris stands at the 10-year flow, the 

native experienced higher velocities, due to its lower density, but little to no difference in 

water depth.  The model likely adjusted water depth given differences in vegetation 

height, thus accounting for higher vegetation stands and their interruption to the water 

flow by extending the water surface vertically.  Velocity, which is primarily affected by 

the density of stems and plants within a stand, decreased more in regions where density 

was higher.  I saw greater differences between the invasive and E. palustris stands than 
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between the invasive and C. vesicaria stands because vegetation density is more 

influential in the model than plant height.  According to Gran and Paola (2001), the 

degree to which vegetation influences flow velocities is dependent on the density of 

plants and stems.  Results from this model are consistent with this idea.  In the future, a 

decrease in stem density resulting from a shift from E. palustris to the invasive may mean 

a decrease in flow interruption that will likely result in increases in velocity.  Such 

changes in velocity could lead to decreased deposition and enhanced erosion.  

 

5.2.2. Modeling based on vegetation roughness 

P. arundinacea had higher shear stress than C. vesicaria with differences on the 

order of 0.10 N/m
2
.  This was due to a higher roughness within P. arundinacea stands.  

Differences in bed shear stress when comparing the invasive and E. palustris were small, 

at a maximum, 0.02 N/m
2
 different.  Therefore, according to changes in shear stress, if 

the invasive outcompetes E. palustris, shear stresses are likely to remain similar or 

decrease only slightly and geomorphic processes will continue to operate as they are 

currently.  However, if the invasive outcompetes C. vesicaria, shear stress will increase, 

leading to lower velocities and possibly deposition within the invasive stand.  Deposition 

could form higher banks that are less resistant to erosion, which may translate to 

increased channel bed erosion creating deeper, narrower channels in areas where C. 

vesicaria has been overtaken by the invasive. 

In the 25-year flow, differences in bed shear stress still existed but were less 

marked which was likely due to a dampening effect as discharge increased; as discharge 

and water depth increased, plants became fully submerged in the water column and had 
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less of an impact on velocity and shear stress within the channel (Wu et al., 1999).  In 

effect, vegetation was felt less as flow conditions overcame the height of the vegetation 

patch.  Depth was approximately 0.3m deeper in the 25-year flow which was fairly 

consistent throughout the channel.  Velocity showed more scatter in difference and was 

anywhere from 5 to 30% greater in the 25-year flow.   

Finally, some attention should be placed on the location, rather than just the mere 

presence of particular species given that the invasive occupies specific areas along the 

channel banks (Figure 4.8.).  This could be important given that the channel experiences 

higher velocities closer to the thalweg.  If the invasive continues to occupy areas 

previously occupied by natives, it will begin encroaching further into the channel and 

decreasing velocity in these areas due to its higher roughness compared to C. vesicaria.  

Furthermore, the dominant native in the upper reaches of the Sprague (near the study site, 

Figure 4.1a) is C. vesicaria, while E. palustris is the primary dominant native in lower 

reaches of the river.  In addition, previous work regarding the bank cohesion provided by 

roots for these three species has shown that P. arundinacea and C. vesicaria have 

similarly high cohesive properties.  However, E. palustris has much lower cohesion 

abilities.  Therefore, in areas where the invasive is outcompeting E. palustris, it is 

increasing bank stability and resisting erosion by fluid forces.  This could mean more 

stable surfaces in these areas.  Further work must be conducted to fully understand these 

processes.    
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Figure 4.8.  P. arundinacea, C. vesicaria and E. palustris occupying typical channel 

locations (left bank), and conditions if the invasive outcompetes both of the natives (right 

bank). 

 

6. Conclusion  

Differences in vegetation characteristics such as density, height, and roughness, 

can cause changes in stream channel velocity and bed shear stress that may lead to 

changes in channel morphology as a result of invasive species occupation.  Along the 

Sprague River, Oregon, P. arundinacea is outcompeting native species E. palustris and 

C. vesicaria.  Previous work regarding the effect of vegetation on channel processes has 

primarily considered woody vegetation.  However, dominant, herbaceous, flexible 

vegetation, in low gradient streams such as the Sprague can influence roughness and 

therefore channel processes.  In systems dominated by flexible vegetation, species 

composition changes from native plants to the invasive P. arundinacea, can affect 

channel morphology in the future.  With a shift from native E. palustris to P. 

arundinacea a decrease in vegetation density will increase water velocities.  A shift from 

C. vesicaria to the invasive will increase roughness.  Based on the results, this shift will 

manifest itself as an increase in bed shear stress.  These vegetation characteristics and 

hydraulic changes will cause changes in channel morphology that will affect habitat and 

therefore, must be taken into account as the invasive continues to expand in this 

environment.  
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CHAPTER V 

SUMMARY 

 

In this dissertation, I examined the above ground and below ground influences of 

native and riparian herbaceous vegetation on the geomorphology of the Sprague River, 

Oregon.  Previous research of this nature has focused on large, woody species such as 

Tamarix.  This research is one of the first studies to investigate the influence of a small, 

but highly invasive vegetation.  Despite its similarity to the native species E. palustris 

and C. vesicaria, the invasive P. arundinacea has the potential to influence erosional and 

depositional processes differently than the native species.  This could be causing an 

alteration in geomorphic processes where the invasive is outcompeting the natives.   

 In Chapter II, I evaluated the below ground effects of the invasive and native 

species using traditional root distribution surveys, root tensile strength measurements, 

and the model RipRoot to estimate added bank cohesion due to roots.  All three species in 

this study had smaller root diameters than comparable species in previous research.  Root 

depths in this study, however, were comparable to other studies that have examined 

herbaceous vegetation.  Root Area Ratio values showed general trends that have been 

observed in previous work as well.  Among the three species, the native C. vesicaria 

exhibited the largest root sizes and largest RAR.  C. vesicaria had the highest tensile 

strength associated with its roots.  This was followed by P. arundinacea and E. palustris.  

Cohesion, which is highly influenced by root size distribution, was highest for C. 

vesicaria and was followed by P. arundinacea and E. palustris.  The additional cohesion 

provided by the invasive when compared to E. palustris means that roots are enhancing 
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bank stability in areas where the invasive has outcompeted the native.  This could mean a 

decrease in lateral channel migration, a decrease in the likelihood of channel widening, 

and may lead to increased shear stress on the channel bed that will result in incision and 

increased stream depth.  This may enhance salmon habitat since water temperature, 

which is highly influenced by channel depth, is of concern.    

 The above ground influences of the invasive and native species were addressed in 

Chapter III.  In the field, I measured stem density, stem stiffness, plant density, height, 

and frontal area for input into an equation to determine roughness provided by the 

invasive and native species.  Stem density was significantly higher in stands of the native 

E. palustris and was followed by C. vesicaria and P. arundinacea.  Measured stem 

stiffness was highest for the invasive.  The native E. palustris had the highest roughness 

which was likely due to its high stem density values.  This was followed by the invasive 

which had high stem stiffness values.  C. vesicaria had the lowest vegetation roughness 

value and was significantly different than the other two species.  The roughness values 

obtained via this method were slightly smaller but still comparable to other roughness 

values calculated for similar vegetation.  To obtain a complete channel roughness, I used 

the additive approach to determine base channel roughness and then added the calculated 

vegetation roughness.  Deposition was also directly measured within the plant stands and 

correlates with calculated roughness values.  Given these roughness values and observed 

deposition, these results would mean aggrading banks on depositional surfaces on the 

order of 1cm per year for the invasive and E. palustris.  Over time, this may cause 

narrowing of the channel in areas where the invasive has outcompeted C. vesicaria.   
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 In Chapter IV, I utilize the data gathered in Chapter III to model channel depth, 

water velocity and bed shear stress along two reaches of the Sprague River to simulate 

changes over time due to vegetation colonization.  I modeled water depth and velocity by 

first occupying the channel with vegetation heights and densities currently present.  

Another set of runs was completed under future conditions involving complete 

colonization by each of the three species along the banks to determine changes in depth 

and velocity if one species completely colonizes the channel banks.  I also preformed 

separate runs in which I varied roughness for the current and future conditions.  E. 

palustris, given its high vegetation density and roughness, had the greatest ability to alter 

stream velocity and bed shear stress.  Therefore, if the invasive continues to occupy and 

overtake areas previously inhabited by E. palustris, increases in velocity and decreases in 

bed shear stress will result.   

Overall, I have found that the invasive differs significantly in both above ground 

and below ground characteristics when compared to native species.  Therefore, its 

geomorphic effects over time could be significant.  These include a strengthening of 

channel banks against erosion when the invasive occupies areas previously occupied by 

E. palustris.  In addition, channel roughness, and therefore likely deposition, will increase 

in areas where the invasive is outcompeting C. vesicaria.  Finally, I showed via modeling 

that differences in vegetation density and roughness cause changes in water velocity and 

bed shear stress.   

With the number of restoration projects increasing throughout the United States 

and elsewhere, an understanding of the role invasive species play in our stream systems is 

important.  Human modifications have changed streams so drastically that returning them 
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to their historical conditions is not possible.  The introduction of invasive species is one 

such modification.  In ecosystems like the Sprague River, it is no longer feasible to 

completely remove the invasive vegetation.  Instead, its past and future effects on the 

channel must be understood to incorporate this knowledge into restoration planning.  

Only then can sustainable restoration practices have the potential to be successful. 
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