# THE EVOLUTION OF OCCLUSAL ENAMEL COMPLEXITY IN MIDDLE 

## MIOCENE TO RECENT EQUIDS (MAMMALIA: PERISSODACTYLA) OF NORTH

AMERICA

by<br>NICHOLAS ANTHONY FAMOSO


#### Abstract

A THESIS

Presented to the Department of Geological Sciences and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science


June 2013

Student: Nicholas Anthony Famoso
Title: The Evolution of Occlusal Enamel Complexity in Middle Miocene to Recent Equids (Mammalia: Perissodactyla) of North America

This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Science degree in the Department of Geological Sciences by:

Dr. Edward Davis
Dr. Qusheng Jin
Dr. Stephen Frost
and
Kimberly Andrews Espy Vice President for Research \& Innovation/Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.
Degree awarded June 2013
© 2013 Nicholas Anthony Famoso

# THESIS ABSTRACT 

Nicholas Anthony Famoso
Master of Science

Department of Geological Sciences
June 2013
Title: The Evolution of Occlusal Enamel Complexity in Middle Miocene to Recent Equids (Mammalia: Perissodactyla) of North America

Four groups of equids, "Anchitheriinae," Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, and only the Equini remains after 16 million years of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes controlling the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. I investigated two methods of quantitative analysis, Occlusal Enamel Index for shape and fractal dimensionality for complexity. I used analyses of variance and an analysis of co-variance to test hypotheses of process. Results suggest that enamel shape was controlled by phylogeny, tooth position, and climate. The lower taxonomic levels are shown to have a strong effect on complexity, suggesting behavior is driving complexity rather than overarching phylogenetic constraint.

NAME OF AUTHOR: Nicholas Anthony Famoso

## GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED

University of Oregon, Eugene, OR
South Dakota School of Mines and Technology, Rapid City, SD

## DEGREES AWARDED:

Master of Science, Geological Sciences, 2013, University of Oregon
Bachelor of Science, Geology, 2009, South Dakota School of Mines and Technology

## AREAS OF SPECIAL INTEREST:

Vertebrate Paleontology
Biostratigraphy
Conservation Paleobiology
Phylogeny of the Equidae

## PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, Geological Sciences, Eugene, OR, 2011 to present
Baldwin Museum Curation Research Fellow, Museum of Natural and Cultural History, Eugene, OR, 2011-2013

Assistant Paleontology Lab Manager, Badlands National Park, Interior, SD, 2012
Highway Salvage Preparator, University of Nebraska State Museum, Lincoln, NE, 2009-2011

Curation Assistant, South Dakota State Archaeological Research Center, Rapid City, SD, 2007-2009

Museum/Curation Assistant, Museum of Geology, Rapid City, SD, 2005-2009
Student Assistant, Ashfall Fossil Beds State Historical Park, Royal, NE, 2008

David B. Jones Intern, Ashfall Fossil Beds State Historical Park, Royal, NE, 2007

## GRANTS, AWARDS, AND HONORS:

Honorable Mention, National Science Foundation, Graduate Research Fellowship Program, 2013

Johnston Scholarship, University of Oregon, Department of Geological Sciences, 2012

Clarence and Lucille Dunbar Scholarship, University of Oregon, College of Arts and Sciences, 2012

Richard K. Bambach Award, Paleontological Society, 2012
Graduate Student Research Grant, Geological Society of America, 2012
Magna cum Laude, South Dakota School of Mines and Technology, 2009
Dean's List, South Dakota School of Mines and Technology, 2006-2009
Society of Vertebrate Paleontology Student Member Travel Grant, Jackson School of Geosciences, 2008

## PUBLICATIONS:

Famoso N. A., Feranec, R. S., Davis, E. B., in revision. The relationship between lophodonty, hypsodonty, body mass and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology.

Famoso, N.A., Pagnac, D. C., 2011. A Comparison of the Clarendonian Equid Assemblages from the Mission Pit, South Dakota and Ashfall Fossil Beds, Nebraska. Transactions of the Nebraska Academy of Sciences and Affiliated Societies 32, 98-107.

## ACKNOWLEDGMENTS

I would like to thank many people for their assistance, support, and cultivation of this project. This was a project that I became interested in while in my undergraduate at the South Dakota School of Mines working with Dr. Darrin Pagnac. After discussions with Dr. Samantha Hopkins and my current advisor Dr. Edward Davis I was pointed in the direction of Dr. Robert Feranec whose help was invaluable to this study.

I would like to specifically thank Dr. Feranec for providing part of my data set. I would also like to specifically thank R. G. Corner, G. Brown, R. Secord, R. Skolnick, S. Tucker, R. Otto, G. Boardman, P. Holroyd, J. Frankel, C. Sidor, B. Eng, J. and B. Orcutt, D. Pagnac, S. Shelton, J. and H. Carr, J. Samuals, C. Schierup, R. Evander, J. Galkin, J. Meng, S. K. Lyons, C. Ito, P. Wagner, and E. Scott for access to collections, hospitality, and important discussions. I would also like to thank Q. Jin and S. Frost, the members of my committee, for their feedback and suggestions on this project. The members of the UO Paleontology Group (past and present) have also contributed constructive feedback, advice, and hospitality related to this project.

Funding for this project was provided by the University of Oregon Museum of Natural and Cultural History, South Dakota School of Mines and Technology Department of Geology and Geological Engineering, Paleontological Society Richard K. Bambach Award, and Geological Society of America Graduate Student Grant. Data collected by Dr. Feranec was funded by the Museum of Vertebrate Zoology, University of California Museum of Paleontology, University of California, Berkeley Department of Integrative Biology, the Society of Vertebrate Paleontology, and NSF DDIG 0308770.

Personally I would like to thank my family in Oregon and New York for their continued support and hospitality. Thanks are extended to my non-paleontology graduate student friends, specifically H. Diettreich, J. K. Marks, S. Mordensky, R. Tuohy, and M. Haskin for keeping me grounded and not allowing me to get lost in my studies. And a special thank you to K. MacKenzie, my officemate. There are countless other people who I have not mentioned who have enriched not only my graduate experience, but this project.

## TABLE OF CONTENTS

Chapter ..... Page
I. INTRODUCTION ..... 1
Evolutionary Context ..... 2
Measures of Complexity ..... 5
Geography ..... 8
Tooth Position ..... 9
Questions ..... 10
Hypotheses ..... 11
Predictions ..... 11
II. METHODS ..... 13
Institutional Abbreviations ..... 14
Occlusal Enamel Index, OEI ..... 15
Fractal Dimensionality, $D$ ..... 21
III. RESULTS ..... 23
Occlusal Enamel Index, OEI ..... 23
Tooth Position ..... 23
Nested Multi-way Analysis of Variance ..... 23
ANOVA 1: OEI vs. Region within Each NALMA ..... 24
ANOVA 2: OEI vs. Tribe ..... 26
ANOVA 3: OEI vs. NALMA within Each Region ..... 27
ANOVA 4: OEI vs. Tribe within Each NALMA ..... 28
ANOVA 5: OEI vs. Tribe within Each Region ..... 29
Fractal Dimensionality, $D$ ..... 31
IV. DISCUSSION ..... 32
Occlusal Enamel Index, OEI. ..... 32
Fractal Dimensionality, $D$ ..... 38
Pitfalls and Further Analysis ..... 39
V. CONCLUSION ..... 41
APPENDICES
A. OEI RAW DATA TABLE. ..... 42
B. FRACTAL DIMENSIONALITY RAW DATA TABLE ..... 106
REFERENCES CITED ..... 108

## LIST OF FIGURES

Figure Page

1. Phylogeny of Equidae ..... 4
2. Representative Teeth of Each Tribal-level Group ..... 5
3. Examples of Fractal Dimensionality ..... 8
4. Tooth position of the left upper tooth-row of Equus caballus ..... 10
5. Geographic Distribution of Samples ..... 14
6. Examples of True Area and Occlusal Enamel Length (OEL) ..... 15
7. Consensus Physiographic Regions ..... 20

## LIST OF TABLES

Table Page

1. Results of Tooth Position ANOVA and Tukey-Kramer Test ..... 23
2. Results of the Nested Multi-way ANOVA ..... 24
3. Results of ANOVAs and Tukey-Kramer Tests for OEI by Region for NALMA ..... 26
4. Results of ANOVA and Tukey-Kramer Test for OEI by Tribe ..... 27
5. Significant results of ANOVAs and Tukey-Kramer Tests for OEI by NALMA for Region ..... 28
6. Results of ANOVAs and Tukey-Kramer Tests for OEI by Tribe for NALMA ..... 29
7. Results of ANOVAs and Tukey-Kramer for OEI by Tribe for Region ..... 30

## CHAPTER I

## INTRODUCTION

Horses have long been used as a primary example of evolution through adaptation to a changing environment (Osborn 1918, Simpson 1951, Franzen 2010). Horse adaptations to changing climates, specifically through dental evolution in response to an increasingly abrasive diet (grass phytoliths and grit from a drier environment), have been qualitatively analyzed, but rarely investigated quantitatively (Quinn 1955, MacFadden 1998, Famoso and Pagnac 2011, Famoso et al. in revision). Previous work on equid adaptation to an abrasive diet focused on changes in hypsodonty and enamel microstructure (Pfretzschner 1993, Strömberg 2006, Damuth and Janis 2011). Little work has been directed at the amount of occlusal (chewing surface) enamel and the complexity of its structure as adaptations to an abrasive diet (Rensberger et al. 1984, Famoso et al. in revision). An assessment of the evolution of enamel complexity in North American equids using Occlusal Enamel Index and Fractal Dimensionality has yet to be performed (Famoso et al. in revision). Evolution of horse teeth through an increase in hypsodonty (quantified by the ratio of mesostyle crown height and occlusal length [Forsten 1975, MacFadden 1984, 1988, Hulbert 1988a, b,] Unger 2010) has been documented in the Oligocene through Pleistocene fossil record, primarily for North America. Increased tooth height provides more resistive enamel over an animal's lifetime. These changes have been interpreted as an adaptation to feeding in open habitats as cooling and drying climates changed woodlands to grasslands, requiring horses to adapt to increased rates of tooth wear created by environmental grit and the phytoliths of grasses (Simpson 1951,

Strömberg 2006, Damuth and Janis 2011). Pfretzschner (1993) investigated changes in equid enamel microstructure, concluding that adaptation to increased tooth wear was in place by the rise of "Merychippus" at about 19 Ma . The prisms and interprismatic matrix that make up enamel at the cellular level stiffen enamel and the arrangement of these prisms strengthens it with respect to mechanical stress patterns from grinding against opposing teeth and food (Pfretzschner 1993).

## Evolutionary Context

Analyses of evolutionary adaptations must be investigated within the context of phylogeny (Felsenstein 1985). The current consensus on equid phylogeny includes three subfamilies, "Hyracotheriinae," "Anchitheriinae," and Equinae (MacFadden 1992, 1998, 2005) (Fig. 1). Within Equinae, there are two sub-clades, the tribes Hipparionini and Equini, and a basal grade mostly assigned to "Merychippus." This genus has long been considered a paraphyletic taxon, maintained through convenience to include all basal equines that do not possess apomorphies of either Equini or Hipparionini. Typical "Merychippus" have an upper dentition that maintains the plesiomorphic features of the basal "Anchitheriinae," a paraphyletic grade below Equinae (Fig. 2), but also share characters with derived Equinae (MacFadden and Hulbert 1988, Hulbert and MacFadden 1991, MacFadden 1998). Hipparionini and Equini have distinct tooth morphologies as well (Fig. 2). Members of the tribe Hipparionini are hypsodont, but relatively lower crowned and have more complicated enamel borders than their equin counterparts (Quinn 1955, MacFadden 1992, 1998). The two tribes of Miocene horses, Hipparionini and Equini, are diagnosed on the basis of differences of the structures formed by the folding of enamel on the occlusal surface of their teeth (Quinn 1955, MacFadden 1992, 1998,

2005, Famoso and Pagnac 2011,). The shape of the occlusal pattern was shown to be an important character in equin and hipparionin phylogeny (MacFadden 1994, 1998, Prado and Alberdi 1996). This leads me to question if complexity of occlusal enamel evolved differently because of phylogenetic constraint and/or climactic pressures between Equini and Hipparionini.

Because species are phylogenetically related to differing degrees, they cannot be considered as independent for statistical analysis (Felsenstein 1984). Felsenstein (1984) proposed using independent contrasts to compensate for the phylogenetic relationships. Ideally, a molecular tree-based method would be used for testing hypotheses of variations as a result of phylogeny, but current methods require known branch lengths and cannot yet be used with fossil-based morphological phylogenies (Stack et al. 2011, Cayuela et al. 2012). Nested variables in a multi-way analysis of variance (ANOVA) are an attempt at modeling phylogeny using the hierarchical taxonomic system as a proxy for phylogeney (Famoso et al. in revision). Using these nested variables in an ANOVA is not ideal for phylogeny, because it does not completely take the topology of a phylogenetic tree into account, but it is a coarse approximation.


Figure 1: Phylogeny of Equidae used in this study, with North American Land Mammal Ages indicated on the right (after MacFadden 2005). This study begins with the Barstovian to capture the most advanced Equinae with derived enamel prismatic structure.


Figure 2: Representative teeth of each Tribal-level group in this study: (A) Hipparionini, (B) Equini, (C) "Merychippini," and (D) "Anchitheriniini." Each tribe has a distinct enamel pattern; starting with the "Anchitheriniini" in the lower right and going clockwise the patterns increase in complexity.

## Measures of Complexity

Qualitative investigations have primarily been used to diagnose species and other
higher taxonomic groups in horses; a majority of equid diagnoses are based on the differences in pattern of occlusal enamel (Quinn 1955, MacFadden 1994). Famoso et al.
(in revision) introduced a numerical method to quantitatively measure and test the
differences in enamel complexity in ungulates called Occlusal Enamel Index (OEI). A complicated enamel pattern should have longer occlusal enamel length thus producing more enamel per unit surface area on the occlusal plane. This metric is calculated by taking the length of enamel and dividing it by the square root of the true area for each tooth and produces a unit-less value. True area is the area actually contained within the curves of the teeth in occlusal view as opposed to the more traditional technique, which multiplies the measured length and width of the occlusal surface. True area is a proxy for body size, and OEI removes the effects of absolute scale on complexity. However, the effects of body size are not completely removed, as it does not adjust for size related differences in complexity, i. e. allomety (Famoso et al. in revision). Famoso et al. (in revision) also showed that phylogenetic relationships among ungulates play a role in the complexity of enamel. Another metric which has been applied to rodents is the enamel index (EI) or the total enamel band length (EL) per unit occlusal surface area (OSA) or $E I=\frac{E L}{O S A}$ (Becerra et al. 2012). OEI differs from EI in that the occlusal area is treated differently; OEI produces a unitless metric while EI does not.

Similar work on occlusal enamel complexity has been done within the Order Artiodactyla (Heywood 2010, Kaiser et al. 2010). Heywood (2010) analyzed molar occlusal surfaces and characterized them based on length, thickness, and shape of the enamel bands to discriminate diet in modern bovids. Heywood (2010) also noted that plant toughness is a primary driver of occlusal enamel form in bovids. Kaiser et al. (2010) investigated the arrangement of occlusal enamel bands in the molars of ruminants with respect to diet and phylogeny. Larger ruminants or those with higher grass content
in their diet have a higher proportion of enamel ridges aligned at low angles to the direction of the chewing stroke (Kaiser et al. 2010).

Previous work on occlusal enamel patterns in equids has been limited to the observation that patterns change through wear stages (Skinner and MacFadden 1977, MacFadden 1998). Famoso and Pagnac (2011) suggested that the differences in occlusal enamel patterns through wear correspond to evolutionary relationships in Hipparionini. To date, attempts at quantifying the patterns of evolutionary change in occlusal enamel complexity between and within these equid tribes have been limited by small sample sizes (Famoso and Pagnac 2011, Famoso et al. in revision). Famoso et al. (in revision) created OEI to allow direct comparison between organisms of varying body size. They showed that effects of body size were not completely removed from by OEI because of important allometric scaling of enamel length.

Fractal dimensionality $(D)$ is a measure of complexity, comparing the way in which detail changes with scale (Mandelbrot 1983). Values of $D$ range between 1.0 and 2.0 for a line crossing a defined area. A single point has a $D$ of zero; a strait line a $D$ of 1 , while a line so convoluted that it appears to completely cover the surface has a $D$ closer to 2 (Fig. 3). An object with a $D$ of 3 is a solid volume. Fractal dimensionality has been used to assign a quantitative and comparable measure of complexity to objects (e.g. leaf venation, coast lines, etc.) that cannot be conventionally measured (Theiler 1990, Bruno et al. 2008). One efficient way of calculating $D$ is the box counting method, which breaks down a convoluted linear pattern into a series of boxes with increasingly diminishing dimensions (Feder 1988, Bruno et al. 2008). The box counting method looks at the pattern within the different boxes to investigate how the detail changes. The method is
based on the number of boxes of a specific size required to fill an entire area (Bruno et al. 2008). The smaller the size of the box, the more boxes are required to fill the area. The fractal dimension is calculated from the curviness of the line within each box. The curviness and the number of lines are used in tandem to calculate fractal dimensionality. The fractal dimension will assist in removing the effects of body size from studies of tooth complexity (Gilbert and Palmqvist 1995, Famoso et al. in revision).


Figure 3: Examples of fractal dimensionality, increasing in complexity from left to right. The middle examples are traces of horse teeth (left: MVZ 154358, Equus asinus; right: AMNH F:AM 71891, Cormohipparion quinni). The examples at either end are generalized representations of a simple line and a convoluted line.

## Geography

Physiographic regions in North America are associated with specific environments. For example in modern ecosystems, grasslands are characteristic of the Great Plains, pine dominated rainforests are typical of the Pacific Northwest, and boreal forests are representative of the Polar region (Molles 2008). Each region, then, has different ecosystems and thus likely different environmental pressures applied to populations allowing regional differences to serve as a proxy for paleoenvironmental differences. These regional paleoenvironmental pressures should manifest as differences in abrasiveness of diet. If the climatic differences were big enough in the climate factors
that affect openness of habitat, then there would be changes in abrasiveness that would lead to changes in morphology in the dentition. Open habitats (e.g. grasslands) are relatively rich in abrasives in the form of grass phytoliths and grit from soils and windblown dust (Damuth and Janis 2011). Each region will change in climate through time and each time period will have different climates represented the regions. Evidence of a cooling and drying climate would be more noticeable in the regions far from the equator while the tropical regions (e.g. Gulf Coast and Central America) would see little change as those regions are more resistant to cooling. Nested variables, Region within NALMA, will also serve as a proxy for regional climatic variations through time.

## Tooth Position

Beyond the pressures of the environment, tooth position is another aspect of enamel evolution that links back to phylogeny. It has been demonstrated that each tooth position develops differently and consequently has a distinct shape and enamel pattern (Famoso et al. in revision). The P2 and M3 are teeth that are easily identifiable in isolation. The P2 has a mesially pointed occlusal surface while the M3 is tapered distally (Fig. 4). The middle four teeth (P3-M2) are more difficult to identify as they have square occlusal surfaces. Premolars tend to be larger than molars within a single tooth-row (Fig. 4). A majority of identifiable fossil equid material tends to be isolated teeth, as teeth are composed of highly resistant materials (enamel, dentine, and cementum) in comparison to the surrounding cranial bone. In many cases, some taxa are only known from isolated teeth (MacFadden 1994, 1998). Because of their relative abundance in each tooth-row, a majority of isolated teeth tend to be the more difficult to distinguish P3 to M2 from the middle of the tooth row. Including isolated teeth would increase geographic and
taxonomic diversity. Optimizing the sample size in my study design makes it important to identify whether tooth position has a significant effect on OEI for P3-M3.


Figure 4: Tooth position of the left upper tooth-row of Equus caballus (UOMNCH B8700). The second premolar and third molar have a very distinct occlusal shape compared to the four middle teeth.

## Questions

Given current hypotheses of horse phylogeny and diversification in response to environmental changes and the extremely large available sample size (>2,581 known North American localities with fossil equids), I can use equid occlusal enamel band length and complexity of the occlusal surface to investigate the evolution of morphology in response to an increasingly abrasive diet. These observations lead to a series of questions: Do equids change their enamel complexity from the Miocene through the Recent? If so, is this change consistent with increasing adaptation to an abrasive diet? Is there a difference in enamel complexity between equid tribes, especially hipparionini and equine? If the evolution of enamel complexity is consistent with dietary adaptation, are there compromises between hypsodonty and enamel complexity? If so, do different tribes make different compromises?

## Hypotheses

I hypothesize that an increase in the resistive cutting area for food processing, as expressed in occlusal enamel complexity, during mastication in equid teeth was in response to increased abrasion in their diet.

I will test this hypothesis by statistical analysis of enamel complexity derived from images of fossil horse teeth. If the statistical analysis shows a distinct pattern then equids responded to increased abrasion through an increase in occlusal enamel complexity, providing an increased resistive cutting area for food processing during mastication. If the statistical analysis shows a pattern indistinguishable from random, I will be unable to reject the null hypothesis of no unifying adaptive significance to changes in occlusal enamel complexity or that some other process that I have not tested is controlling occlusal enamel complexity.

## Predictions

Occlusal enamel complexity will vary based on phylogenetic constraint and changes to regional ecosystems through time. The complexity of enamel on the occlusal surface of equid teeth should change through time, tracking changes in the abrasiveness in diet as climates changed through the Neogene. The complexity of enamel should also differ significantly between differing environments of North America if the environments are distinct in abrasiveness. Hipparionini and Equini will be structurally different from other Equinae or "Anchitheriinae."

If different lineages of horses find different compromises between hypsodonty and enamel evolution for their adaptation to tooth abrasion, then I would expect each tribe to have adapted differently from phylogenetic constraint. I expect Hipparionini to
have the most complicated occlusal enamel followed by Equini and then the "Merychippus" grade horses and "Anchitheriinae" will have the lowest complexity. These predictions come from observations of tooth morphology and the relationship to diet (Heywood 2010, Kaiser et al. 2010, Famoso et al. in revision).

## CHAPTER II

## METHODS

The primary data of my analysis consists of scaled, oriented digital photographs of the occlusal surface of fossil and modern equid upper dentitions. Equid taxa from 16 Ma to recent ranging across North America were sampled. I measured a total of 800 teeth from a broad selection of Miocene through Recent equids (Appendix A). Photographs were taken with Kodak DC290, Fujifilm Finepix A345, Olympus Stylus Tough, and Canon Digital EOS Rebel SLR cameras. Samples were collected from the following museums: American Museum of Natural History, Smithsonian National Museum of Natural History, University of Nebraska State Museum, South Dakota School of Mines and Technology Museum of Geology, University of Washington Burke Museum of Natural History and Culture, John Day Fossil Beds National Monument, University of California Museums of Paleontology and Vertebrate Zoology, and the University of Oregon Museum of Natural and Cultural History. Some images from the University of California Museum of Paleontology were taken with permission from the online catalog. Care was taken to select individuals in medial stages of wear (no deciduous premolars and no teeth in extreme stages of wear). Skulls and complete to nearly complete tooth rows were preferred because I can be more confident in taxonomic identification. Isolated teeth were also photographed when more complete tooth-rows were not available from a geographic region or taxon. Geographic regions were sampled as evenly as possible, but this was constrained by the regional representation in museum collections (Fig. 5).


Figure 5: Geographic distribution of samples. Shaded regions represent a political area containing at least one sample for the (A) Barstovian, (B) Clarendonian, (C) Hemphillian, (D) Blancan, and (E) Irvingtonian and Rancholabrean North American Land Mammal Ages. Collecting and preservation biases result in some areas being more consistently sampled through geologic time than others.

Institutional Abbreviations
UNSM = University of Nebraska State Museum; UOMNCH = University of Oregon Museum of Natural and Cultural History; UCMP = University of California Museum of Paleontology; MVZ = University of California Museum of Vertebrate Zoology; AMNH F:AM = Frick Collection, American Museum of Natural History;

AMNH FM = American Museum of Natural History; UF = University of Florida Museum of Natural History; JODA = John Day Fossil Beds National Monument; CIT = California Institute of Technology; $\mathbf{U W B M}=$ University of Washington Burke Museum of Natural History and Culture; SDSM = South Dakota School of Mines and Technology Museum of Geology; USNM = United States National Museum of Natural History.

## Occlusal Enamel Index, OEI

The enamel length and true occusal surface area of each tooth were measured using the NIH image analysis program ImageJ. Site geology (formation and member), time period (epoch and North American Land Mammal Age [NALMA]), tooth position (if known), physiographic region, political region, and taxonomy (subfamily, tribe, genus, and species) were recorded for each specimen. Measurements and other data were stored in a Microsoft Excel 2010 spreadsheet. Occlusal Enamel Index (OEI) was calculated following Famoso et al. (in revision) by measuring occlusal enamel length (OEL) and true occlusal area (Fig. 6) where $O E I=O E L / \sqrt{\text { True Area }}$. Multi-way analysis of variance (ANOVA) and one-way ANOVAs were run on the data using JMP Pro 9 to determine whether the relationship between tooth size and enamel length fit predictions from my hypotheses. Raw data are presented in Appendix A.


Figure 6: Examples of True Area and Occlusal Enamel Length (OEL) taken on digital images of UNSM 96997. Figure is based on methodology presented by Famoso et al. (in revision).

I used a Shapiro-Wilk W test (Shapiro and Wilk 1965) to test whether OEI values were normally distributed. If OEI is normally distributed then the data will not violate the assumptions of the ANOVA and a parametric test can be performed. When data from all tooth positions were pooled, they did not display a normal distribution. Upon further investigation, I determined that all but one position in the tooth row was normally distributed and excluded the non-normal tooth (M3) from further analysis.

The ANOVA includes a wide array of statistical tests which are aimed at testing the equality of means (Zar 2010). One-way ANOVAs look at one numeric dependent variable and test the effects of only one independent factor. Multi-way ANOVAs have one dependent variable but test the effect of more than one independent factor. Nested (hierarchical) ANOVAs include levels of independent factors which occur in combination with levels of other independent factors. An analysis of co-variance (ANCOVA) is similar to an ANOVA but it also tests the covariance of two numeric categories in context with the independent factors. ANOVAs can only provide a test of all factors together, so a Tukey-Kramer test must be used to investigate how the data are breaking out into statistically different groupings (Zar 2010).

An analysis of tooth position was run on a subset of the data ( $\mathrm{n}=528$ teeth). This ANOVA was run to determine if there was a tooth position or group of tooth positions with indistinguishable OEI values, allowing me to limit the number of specimens to be measured for the subsequent analyses. The results of this analysis would provide a justification for the selection of a subset of teeth to consistently measure. I ran a multiway ANOVA with OEI as the dependent variable and tribe, region, NALMA, and tooth position as the independent factors. Previous statistical analysis by Famoso et al. (in
revision) has shown that tooth position is important for occlusal enamel complexity as represented by the OEI. It is clear that the P 2 and M 3 are distinct in their overall shape, and could be a source of variation that would cause significant differences among tooth positions for OEI. P2 and M3 were excluded as they have an overall different shape (Fig. 4) and are statistically different in OEI from the teeth from the middle of the tooth-row (Famoso et al. in revision). I additionally ran a one-way ANOVA with OEI as the dependent variable and tooth position excluding P2 and M3 as the independent factor. Tukey-Kramer tests (Kramer 1956) were also performed to investigate the origin of significance for independent factors. I also ran a one-way ANOVA with OEI as the dependent variable and tooth position excluding P2 and M3 for the subset of the data that only belonged to the genus Equus, the genus with the largest overall sample size. Using just one genus would eliminate any influence from higher level evolutionary relationships. I also ran a one-way ANOVA with OEI as the dependent variable and tooth position excluding P2 and M3 by tribe (just Equini, just Hipparionini, and just "Anchitheriinae") to test if variation in tooth position was consistent at this level of lineage. Tribal affiliations were used as a proxy for phylogenetic relationships, therefore all genera needed a tribal level affiliation to be included in the ANOVAs, but the basal members of the Equinae (members of the "Merychippus" grade) do not belong to the Hipparionini or Equini, so I applied the place-holder paraphyletic tribe "Merychippini". Similarly, for all members of the paraphyletic subfamily "Anchitheriinae", the place-holder name "Anchitheriini" was applied.

Running my analyses above the genus level limits the influence of lumping and splitting at the genus and species levels which arise from qualitative analysis of
characters found in isolated elements. While working through museum collections, I found several manuscript names assigned to specimens. To keep those potentially valid species names from being labeled nomen dubium, I assigned the specimens to the most appropriate, currently-established genus name and left the species as indeterminate. Even for published species of equids, there are ongoing controversies about the validity of names. Major problem areas include genera and species split from the paraphyletic form genus "Merychippus" (Stirton 1940, MacDonald et al. 1992, Kelly 1995, MacFadden 1998, Pagnac 2006) as well as the number and identity of Plio-Pleistocene and recent Equus species (MacDonald et al. 1992, Azzaroli and Voorhies 1993, MacFadden 1998, Weinstock et al. 2005). There has been controversy as to the validity of the number of genera and species that belong to Hipparionini (Stirton 1940, Skinner and MacFadden 1977, MacFadden 1984, Whistler 1991, Kelly 1995, MacFadden 1998, Hulbert and Whitmore 2006). Leaving the analysis above the genus level removes any effect taxonomic uncertainty at the generic and specific levels.

Limiting the taxonomy to the Tribe and above also allows a more robust sample size. Equid genera are typically diagnosed through a combination of dental and cranial characters (Eisenmann 1988, MacFadden 1994, 1998, Woodburne 2007). Teeth are made of strong enamel which is resistant to external stresses, unlike most cranial bone, making teeth much more likely to be preserved in the fossil record in isolation than in toothrows in skulls. Most isolated dental specimens can only be identified to genus because of the lack of diagnostic features, so a genus or tribal cutoff for my analysis allows me to access the rich supply of isolated teeth.

Geographic regions serve as a proxy for environmental differences in this study. Region selection for this study was based on a combination of work done by Barnosky et al. (2005) and volumes edited by Janis et al. (1998) and Woodburne (2004). Consensus regions were selected for this study (Fig. 7).

It was necessary to combine several of the regions as well as NALMAs to have sufficient sample size for the analyses used here. These combinations are not ideal as they eliminate a portion of the regional and temporal resolution of this study. I combined six regions into three (Fig. 7). The Rocky Mountain region was merged with the Great Plains as most of the localities in Montana are actually from the plains region of the state. I united the East Coast and the Eastern US because of their proximity. Central America was merged with the Gulf Coast as most of the localities were near the coast of the Gulf of Mexico. For the NALMAs, I only united the Irvingtonian and Rancholabrean. They are both part of the Pleistocene and the Irvingtonian was not well sampled. I was also able to include specimens from the Pleistocene into the Irvingtonian and Rancholabrean bin where their NALMA was not known.

To accurately investigate OEI through hierarchical taxonomic relationships and changing regions through time, it was necessary to use nested terms in my analyses. Nesting tests hypotheses about differences among samples which are placed in hierarchical groups. Nested factors are usually random-effects factors, or a factor with multiple levels but only a random sample of levels is included in the analysis. When applied to an ANOVA, it is considered a modified one-way ANOVA (Zar 2010) where one variable is the random-effects factor and the other is considered a subsample. Including nested factors accounts for within-groups variability.


Figure 7: Consensus physiographic regions included in this study. Each region was chosen based on climate similarities and geographic barriers. Shading indicates regions which were combined into three larger region bins for the analysis in this study.

To make a single overall test of my hypothesis, I constructed a multi-way ANOVA with OEI as the dependent variable and tooth position, nested taxonomy (tribe within subfamily), and chronostratigraphy (geographic region nested within NALMA) as independent factors. In addition, I ran five groups of one-way ANOVAs with TukeyKramer tests to test my hypotheses of climate and phylogeny as drivers of OEI. My oneway ANOVAs use OEI as the dependent variable. My first group of one-way ANOVAs uses region as the independent variable to explore regional variations in climate within each NALMA. My next test uses tribe as the independent variable to investigate how OEI differs between lineages. I then used NALMA as the independent variable for each region to examine how OEI changes in the context of climate changes through time within each specific region. Next, I used tribe as the independent variable and separated by NALMA to investigate whether the different lineages are distinct in OEI at different periods of time. Finally, I used tribe as the independent variable separated by region to see whether the lineages differ between regional ecosystems.

## Fractal Dimensionality, $D$

This is a pilot study for the method with a small sample size ( $\mathrm{n}=20$ ). I digitally traced twenty teeth using Adobe Illustrator for fractal analysis. The sample was split evenly between Hipparionini and Equini. This study was constrained to these two tribes to isolate effects from the larger phylogenetic signal. I restricted this analysis to the P3 to eliminate any effects from tooth position on the analysis. I then analyzed the traces using the fractal box method in ImageJ. Taxonomy (tribe, genus, and species), Fractal Dimension $(D)$, and true occlusal area were used as variables this analysis. A ShapiroWilk W test of $D$ revealed the data to be normally distributed. I then ran a nested two-
way analysis of co-variance (ANCOVA) with phylogeny as a nested independent factor, true occlusal area as an independent factor, and $D$ as the dependent factor in JMP Pro 9. ANCOVA is a combination of the ANOVA and a form of regression where a numeric dependent variable is tested by a numeric independent variable (Zar 2010). Raw data are presented in Appendix B.

## CHAPTER III

## RESULTS

## Occlusal Enamel Index, OEI

## Tooth Position

The one-way ANOVA with OEI as the dependent variable and tooth position (excluding P2 and M3) produced an F-test with $P=0.0093$. The Tukey-Kramer test indicates that P3, P4, and M2 are not significantly different from one another and P3, M1, and M2 are not significantly different from one another (Table 1). The P4 and M1 appear to be significantly different from each other. The one-way ANOVA with OEI as the dependent variable and tooth position (excluding P2 and M3) for Equus had the same overall result. The one-way ANOVAs with OEI (dependent variable) and tooth position (excluding P2 and M3) for each tribe resulted in tooth position not being significant.
Table 1: Results of Tooth Position
ANOVA and Tukey-Kramer Test

| Tooth Position | Group | Mean OEI |
| :---: | :---: | :---: |
| P4 | A | 17.67604 |
| M2 | AB | 16.41501 |
| P3 | AB | 16.35715 |
| M1 | B | 15.75491 |

Nested Multi-way Analysis of Variance
All independent variables are significant for OEI at the $\alpha=0.05$ level. Table 2 shows the $P$ values for each variable.

Table 2: Results of the Nested Multi-way ANOVA

| Dependent <br> Variable | NALMA | Region <br> [NALMA] | Tooth <br> Position | Subfamily | Tribe <br> [Subfamily] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OEI | $P<0.0001$ | $P=0.0134$ | $\mathrm{P}<0.0001$ | $\mathrm{P}<0.0001$ | $\mathrm{P}<0.0001$ |

## ANOVA 1: OEI vs. Region within Each NALMA

These analyses are exploring regional variations in climate during specific time intervals. All NALMAs have significant ANOVAs at the $\alpha=0.05$ level. See Table 3 for the results of the ANOVAs and Tukey-Kramer tests.

In the Barstovian $(P=0.0138)$ there are two groups of regions. The Columbia Plateau is distinct from California. The Columbia Plateau has the higher OEI values. The Great Plains and the Great Basin are both overlapping with all other regional groups. California has the lowest OEI values. The Clarendonian $(P=0.0009)$ has two groups as well. The Gulf Coast is a group. The Great Plains and California are the other group. The East Coast, Columbia Plateau, and Great Basin overlap and cannot be distinguished from either of the two groups. The Clarendonian has some regions with very low sample size: Eastern US, Columbia Plateau, Gulf Coast, and Great Basin all have a sample size under ten. There are two groupings in the Hemphillian $(P=0.0016)$. The Eastern US, Columbia Plateau, and the Gulf Coast clump together. California is its own group. The Great Basin and Great Plains overlap both groups cannot be distinguished. The Blancan ( $P=0.0233$ ) has many low sample size regions and none of the regions are significantly different from one another. In the Irvingtonian/Rancholabrean $(P=0.0001)$ there are two groups. The Eastern US and the Gulf Coast form a group. The Great Plains and the Great Basin are a
group. The Polar, Columbia Plateau, and California regions overlap the other groups and are indistinguishable.

There is some change in group membership through the Miocene NALMAs but California is consistently associated with group B and the Columbia Plateau is associated with group A. The Gulf Coast and Eastern US are consistently associated with group A from the Miocene through Pleistocene NALMAs.

Table 3: Results of ANOVAs and Tukey-Kramer Tests for OEI by Region for NALMA

| NALMA | Region | n | Group |
| :---: | :---: | :---: | :---: |
| Barstovian | Columbia Plateau | 57 | A |
| Barstovian | Great Plains | 68 | AB |
| Barstovian | Great Basin | 20 | AB |
| Barstovian | California | 15 | B |
| Clarendonian | Eastern US | 1 | AB |
| Clarendonian | Columbia Plateau | 1 | AB |
| Clarendonian | Gulf Coast | 5 | A |
| Clarendonian | Great Basin | 7 | AB |
| Clarendonian | Great Plains | 152 | B |
| Clarendonian | California | 10 | B |
| Hemphillian | Eastern US | 7 | A |
| Hemphillian | Columbia Plateau | 16 | A |
| Hemphillian | Gulf Coast | 24 | A |
| Hemphillian | Great Basin | 8 | AB |
| Hemphillian | Great Plains | 45 | AB |
| Hemphillian | California | 10 | B |
| Blancan | California | 6 | A |
| Blancan | Columbia Plateau | 25 | A |
| Blancan | Eastern US | 5 | A |
| Blancan | Great Basin | 4 | A |
| Blancan | Great Plains | 35 | A |
| Blancan | Gulf Coast | 1 | A |
| Irvingtonian/ Rancholabrean | Eastern US | 20 | A |
| Irvingtonian/ Rancholabrean | Gulf Coast | 24 | A |
| Irvingtonian/Rancholabrean | Polar | 20 | AB |
| Irvingtonian/ Rancholabrean | Columbia Plateau | 4 | AB |
| Irvingtonian/ Rancholabrean | Great Plains | 54 | B |
| Irvingtonian/ Rancholabrean | Great Basin | 11 | B |
| Irvingtonian/ Rancholabrean | California | 1 | AB |

## ANOVA 2: OEI vs. Tribe

This analysis investigates how OEI differs between lineages. This ANOVA was significant ( $P<0.0001$ ) (Table 4). Hipparionini and Equini are separate groups.
"Merychippini" is between the two Hipparionini and Equini. The "Anchitheriini" is in its own distinct group.

Table 4: Results of ANOVA and Tukey-Kramer Test for OEI by Tribe

| Tribe | n | Group |
| :---: | :---: | :---: |
| Hipparionini | 208 | A |
| "Merychippini" | 48 | AB |
| Equini | 423 | B |
| "Anchitheriini" | 37 | C |

## ANOVA 3: OEI vs. NALMA within Each Region

These analyses are aimed at investigating how OEI responds to climate changes through time in a specific region. Four ANOVAs in this group were significant (Table 5). The Columbia Plateau ( $P=0.1635$ ) and Great Basin $(P=0.0981)$ were not significant at the $\alpha=0.05$ level. The Great Plains was the only of these ANOVAs with a large sample size for all NALMAs. There are two groups of NALMAs in California ( $P=0.0211$ ). The Blancan and Barstovian form two groups. The Irvingtonian/Rancholabrean, Clarendonian, and Hemphillian are not significantly different and overlap the other two groups of NALMAs. None of the NALMAs were differentiated in the Eastern US ( $P=0.0386$ ). There appear to be three groupings in the Great Plains ( $P<0.0001$ ). The Irvingtonian/Rancholabrean and the Hemphillian form two groups. There is a third group which includes the Blancan, Clarendonian, and Barstovian but this group overlaps with the other two. The Blancan cannot be distinguished from the Irvingtonian/Rancholabrean, Clarendonian, or Barstovian. The Clarendonian and Barstovian are not significantly different from the Blancan or the Hemphillian. The Gulf Coast ( $P=0.0061$ ) has three groups. The Irvingtonian/Rancholabrean stands alone. The Blancan and Clarendonian are
not significantly different and are in the middle of the distribution of means. The Hemphillian is a distinct NALMA here.

The Miocene NALMAs tend to be associated with the lowest group (either B or C) in each region. The Blancan is usually in the middle group and the Irvingtonian/Rancholabrean is associated with the highest group (A). These tend to be true except for in the Eastern US where all NALMAs are in the same group.

Table 5: Significant results of ANOVAs and Tukey-Kramer
Tests for OEI by NALMA for Region

| Region | NALMA | n | Group |
| :---: | :---: | :---: | :---: |
| California | Irvingtonian/ Rancholabrean | 1 | AB |
| California | Blancan | 6 | A |
| California | Hemphillian | 10 | AB |
| California | Clarendonian | 10 | AB |
| California | Barstovian | 15 | B |
| Eastern US | Irvingtonian/ Rancholabrean | 20 | A |
| Eastern US | Blancan | 5 | A |
| Eastern US | Hemphillian | 7 | A |
| Eastern US | Clarendonian | 1 | A |
| Great Plains | Irvingtonian/ Rancholabrean | 54 | A |
| Great Plains | Blancan | 35 | AB |
| Great Plains | Hemphillian | 45 | C |
| Great Plains | Clarendonian | 152 | BC |
| Great Plains | Barstovian | 68 | BC |
| Gulf Coast | Irvingtonian/ Rancholabrean | 24 | A |
| Gulf Coast | Blancan | 1 | AB |
| Gulf Coast | Hemphillian | 24 | B |
| Gulf Coast | Clarendonian | 5 | AB |

## ANOVA 4: OEI vs. Tribe within Each NALMA

These analyses investigate at how the different lineages are distinct at different periods of time. All ANOVAs for NALMAs were significant. The results of the

ANOVAs are presented in Table 6. The Barstovian $(P<0.0001)$ had two statistical groupings; one group is the "Merychippini" and Hipparionini, and the other is the Equini and "Anchitheriini." The Clarendonian $(P<0.0001)$ had the same two groups. The Hemphillian $(P<0.0001)$ and the Blancan $(P=0.0013)$ both have two distinct groups, the Hipparionini and Equini. The groupings of tribes stay the same through time.

Table 6: Results of ANOVAs and Tukey-Kramer Tests for OEI by Tribe for NALMA

| NALMA | Tribe | n | Group |
| :---: | :---: | :---: | :---: |
| Barstovian | Hipparionini | 40 | A |
| Barstovian | "Merychippini" | 41 | A |
| Barstovian | Equini | 47 | B |
| Barstovian | "Anchitheriini" | 31 | B |
| Clarendonian | "Merychippini" | 5 | A |
| Clarendonian | Hipparionini | 107 | A |
| Clarendonian | Equini | 60 | B |
| Clarendonian | "Anchitheriini" | 4 | B |
| Hemphillian | Hipparionini | 48 | A |
| Hemphillian | Equini | 62 | B |
| Blancan | Hipparionini | 7 | A |
| Blancan | Equini | 69 | B |

ANOVA 5: OEI vs. Tribe within Each Region
The investigation in these ANOVAs is directed at how the lineages differ between regional ecosystems across time. The Eastern US was the only region which did not have a significant ANOVA with $P=0.5223$. This ANOVA had a small sample size ( $\mathrm{n}=10$ for Hipparionini and $\mathrm{n}=23$ for Equini) (Table 7). In California ( $P=0.0220$ ) there were two distinct groups, the Hipparionini and the Equini. The Columbia Plateau ( $P<0.0001$ ) had three groups. The "Merychippini" and "Anchitheriini" are distinct while Hipparionini and

Equini cannot be distinguished from one another. Though the Great Basin had a significant ANOVA ( $P=0.0238$ ), none of the tribes were distinguishable by the TukeyKramer test. The Great Plains ( $P<0.0001$ ) has three groupings. Hipparionini is distinct, as are "Anchitheriini" and Equini. "Merychippini" is not distinguishable from Equini or "Anchitheriini." The Gulf Coast ( $P=0.0050$ ) has two distinct groups, Equini and Hipparionini.

Hipparionini and Equini tend to be in two separate groups in each region with Hipparionini in the group with higher OEI except in the Columbia Plateau and Great Basin. "Anchitheriini" is almost always in the lowest group except in the Great Basin.

Table 7: Results of ANOVAs and Tukey-Kramer for OEI by Tribe for Region

| Region | Tribe | n | Group |
| :---: | :---: | :---: | :---: |
| California | Hipparionini | 5 | A |
| California | Equini | 37 | B |
| Columbia Plateau | "Merychippini" | 18 | A |
| Columbia Plateau | Hipparionini | 30 | B |
| Columbia Plateau | Equini | 36 | B |
| Columbia Plateau | "Anchitheriini" | 18 | C |
| Great Basin | Hipparionini | 14 | A |
| Great Basin | "Merychippini" | 8 | A |
| Great Basin | Equini | 27 | A |
| Great Basin | "Anchitheriini" | 1 | A |
| Great Plains | Hipparionini | 117 | A |
| Great Plains | Equini | 204 | B |
| Great Plains | "Merychippini" | 21 | BC |
| Great Plains | "Anchitheriini" | 17 | C |
| Gulf Coast | Equini | 25 | A |
| Gulf Coast | Hipparionini | 29 | B |

## Fractal Dimensionality, $D$

For this study $\alpha=0.05$. The independent variables which have a signficant relationship on complexity are genus ( $P=0.0428$ ) and species $(P=0.0148)$. True area ( $P=0.4116$ ) and tribe $(P=0.0666)$ show no significant relationship.

## CHAPTER IV

## DISCUSSION

## Occlusal Enamel Index, OEI

Tooth position does not significantly affect OEI for the middle four teeth (P3 M2) of the upper tooth row. My investigation into tooth position indicates that I can include isolated molariform teeth in my study without taking tooth position into account if I exclude the P2 and M3. These two teeth have been shown to be different from the molariform teeth (Famoso et al. in revision). I also found that my data were normally distributed when the P2 and M3 were excluded. My ANOVA also showed that there was more variation in the M1 and P4 than in the M2 and P3. Because of this result I focused on measuring the M 2 or P 3 to add consistency to my data. My investigation into tooth position also explored if the variation in OEI for the various tooth positions were the same within lineages. Within each tribe tooth position is not significant for the four square middle teeth. Tooth position OEI varies significantly between tribes, suggesting that each lineage is adapting differently for each tooth.

The results of my nested multi-way ANOVA suggest that geographic regions, time, tooth position and nested taxonomy are all significant factors driving the length of enamel in horse teeth. Each of the subsequent one-way ANOVAs I ran were designed to tease apart the details of the multi-way ANOVA result.

OEI generally varies significantly for regions, but there is no consistent pattern to which areas differ through time. The small sample size of some of the region-time-bin combinations does not make me fully confident in the results. I did not perform

ANOVAs with only one bin (e.g. only one NALMA represented in Polar region). Small sample sizes do not take into account all of the possible variation in the actual population. Larger sample sizes have a statistical confidence on the actual mean of the population that is much lower than in small sample sizes.

Some regions in an ANOVA, such as Great Plains in the Clarendonian, have a comparatively large sample ( $\mathrm{n}=152$ ) while others much smaller (ranging from 1 to 10 ). The Barstovian is more evenly sampled across regions, so that I have more confidence in the results for the Barstovian ANOVA and Tukey-Kramer test. To make the group of ANOVAs which test for climatic influence on OEI more powerful in future analysis, it will be necessary to increase the sample from regions in each NALMA with a low sample size. In the Barstovian I would like to collect more specimens from California, Great Basin, Gulf Coat, and Eastern US. More samples from the Clarendonian of Columbia Plateau and Eastern US ( $\mathrm{n}=1$ for both regions), as well as Gulf Coast, Great Basin, and California ( $\mathrm{n}<12$ for these regions) would be useful. I would also like to collect more samples in the Hemphillian from all regions except the Great Plains. There is one Blancan locality with horse material from Alaska, the Cape Deceit Fauna (Guthrie and Matthews 1971), which I would like to sample. Additionally I would like to sample more from California, Eastern US, Great Basin, and Gulf Coast. Regions needing a more robust sample in the Irvingtonain/Rancholabrean are Great Basin, Columbia Plateau, and California. Generally the Great Plains is very well sampled in this database because a majority of the collecting done by the museums I visited was done in the Great Plains. Adding these data would help in achieving more statistical confidence in these regions so I can better understand regional variations in climate during each time period and
response to climate changes through time in a specific region. Removing regions with very low sample size or combining those regions with other regions would strengthen the analysis but would remove some of the resolution.

In the Barstovian, equids from higher latitudes appear to have longer enamel than those from the southern latitudes. Longer enamel would suggest that there are more abrasive food stuffs in the northern latitudes than in the southern latitudes. The analysis on the Hemphillian suggests that that the longer enamel lengths are in the east and the lower lengths are in the west. This suggests that horses are feeding in environments with more abrasive ingesta in the eastern portion of the continent than in the western portions at this time period. The Pleistocene has higher enamel lengths in the Eastern US and the Gulf Coast. The lowest lengths are in the Great Plains and the Great Basin. The trend of lower lengths seems to match the Barstovian where there appears to be a latitudinal rather than a longitudinal relationship, a product of habitat and climate differences. The complex enamel in the Eastern US and Gulf Coast fit with qualitative observations; however I expected the Polar region to have the lowest enamel lengths, not the Great Plains and Great Basin.

When I investigated the NALMAs by region I see a slight pattern emerge. Generally the Irvingtonian/Rancholabrean has higher enamel lengths. It is important to note here that the Irvingtonian/Rancholabrean bin includes several periods of glacial and interglacial cycling. Glacial ice sheets moved across the landscape moving habitats north and south, expanding or compressing the ranges. What I am sampling is the combination of these range shifts. There is an increase in OEI from the Miocene NALMAs to the Pleistocene in most regions. As with the above group of ANOVAs there were some

NALMAs that were better sampled in each region than others. The enamel band changes may also be an effect of preferentially changing climates. Each region may have been affected differently by the overall cooling climate from the Mid Miocene Climactic Optimum (16 Ma) to recent (Zachos et al. 2008). OEI generally increases through the overall cooling from the Miocene to the Recent which suggests that as climate became cooler and dryer, and the abrasiveness of the equid diet increased, increased OEI provided a selective advantage. More variability in recent climates may explain the difficulty in distinguishing regions in the Pleistocene.

The overall analysis of OEI by tribes revealed a distinct pattern supporting the hypothesis that the tribes had distinct evolutionary responses in occlusal enamel evolution. The results of the Tukey-Kramer test very closely reflect the evolutionary relationships of the family. Hipparionini and Equini are sister taxa, and both are in distinct groups. "Merychippini" includes the common ancestor between these two within the subfamily and is grouped with both the Hipparionini and Equini as is expected in light of the phylogeny. "Anchitheriini" is from a different paraphyletic group that is the ancestor to "Merychippini." The "Anchitheriini" is in its own group statistically and has the lowest OEI. Members of "Anchitheriini" are either browsers or intermediate feeders with a low percentage of abrasive material in their diet. Browse comprises a larger portion of the diet for "Anchitheriini" than any of the other tribes, and should have lower OEI because of the lower percentage of ingested abrasive material.

ANOVAs for tribes by NALMAs indicate some consistent patterns. The relative enamel lengths do not become more distinct over time. Phylogeny seems to be a major driving factor for enamel length. When the four tribes are present, Hipparionini and
"Merychippini" are grouped together. Equini and "Anchitheriini" are also grouped. This pattern is only seen in the Barstovian and Clarendonian. Groupings may represent tribes which were competing within the groups. Hipparionini and "Merychippini" may have been competing for the same resources. Both tribes would have been utilizing the same adaptation and would appear similar in morphology. The sample for "Merychippini" may be dominated by ancestral forms of Hipparionini which would also yield this signal because more of the equin "Merychippus" have been split out into their own genera. It is possible that Equini could be an intermediate feeder and only partially competing with browsing "Anchitheriini" for resources. It is interesting to note that in the Great Plains Equini and "Anchitheriini" compose a small percentage of the relative abundance of horses in the Clarendonian (Famoso and Pagnac 2011). The similarity in OEI and relative abundance between these two groups suggests that these tribes were competing for resources and eventually Equini became more successful. Hipparionini were the most relatively successful tribe during the Clarendonian in the Great Plains, but were eventually outcompeted by the end of the Blancan. "Anchitheriini" and "Merychippini" go extinct by the Hemphillian leaving Equini and Hipparionini. The two tribes are statistically different in the Hemphillian and Blancan. Hipparionini are constrained to the southern latitudes during the Blancan and are extinct by the end of the Blancan. Hipparionini remain in regions closer to the equator where the effects of climate change are not as noticeable. In those regions they continue to have higher OEI than their equin counterparts. Hipparionini food source may have been restricted to warmer climates thus restricting the range of the tribe. The warmer regions may have served as refugia for North American hipparionin horses.

Within regions, "Anchiitheriini" consistently has the lowest OEI when present. The Great Plains and the Columbia Plateau have different tribes with the highest OEI, Hipparionini in the Great Plains and "Merychippini" in the Columbia Plateau. These differences suggest a difference in niche partitioning through food source, climate, and/or behavior. Niche partitioning may exist and be manifested in OEI where several species of horses from the same tribe co-occur in the same locality (e.g. Ashfall Fossil Beds). MacFadden et al. (1999) suggested that six sympatric species of contemporaneous hypsodont fossil horses of Florida were partitioning into browsers, intermediate feeders, and grazers based on isotope and microwear data. As ungulates with different feeding strategies have smaller OEI if they are browsers and larger if they are grazers (Famoso et al. in revision), it is possible that different tribes of horses were specializing in different feeding strategies. Furthermore, Maguire and Stigall (2008) suggest that Miocene climate change influenced the radiation of horses. Climate change has an impact on the location of food sources (grass vs. browse) giving a specific region a suite of vegetation which the local populations of horses feed upon.

Because regions serve as a proxy for environmental differences I can interoperate the results of this group of ANOVAs as the influence of climate on OEI. Each regional climate is behaving differently through time and the horses are adapting to the specific environment around them. The Great Plains had the only regional ANOVA at all similar to the overall tribe analysis. The Great Plains region may be dominating the signal in the overall analysis because of the larger sample of specimens from the region included in this study ( $\mathrm{n}=359$ for Great Plains out of a total $\mathrm{n}=661$ ). Collecting a random subsample
of the Great Plains from this data set that is equal in size to the other regions would prevent its ecological signal from dominating in the overall analysis.

Climate and phylogenetic lineages seem to be major drivers of OEI. The general OEI trend is an increase from the Miocene through Pleistocene. In every interval in this analysis, each lineage has a distinct OEI, suggesting that any phylogenetic constraint controlling OIE evolved early in the history of the lineages.

## Fractal Dimensionality, $D$

The results of my nested two-way ANOVA indicate that complexity is not significantly different between hipparionines and equines. However, I found a significant difference amongst each of the lower taxonomic levels. I only used taxa for this pilot study which were identified to the same genus, or very close relatives, within each tribe. I also used modern taxa which have species identifications which are supported by more than just morphological data. I am confident in these identifications especially when using them with a smaller data set. Differences in complexity suggest that variability is more important at the generic and specific levels. Specialization to a niche or behavior at the specific level may explain these differences in complexity. The specialization of each taxon has more of an effect on complexity than the evolutionary baggage they inherit from their ancestors. If I had the same level of confidence in the taxonomy in the OEI study, I would expect to see the same result. Because of experimental design, we can rule out any effects from tooth position and body size in this part of the study: Tooth position was accounted for by limiting the study to only P3, and I performed a test of significance for the correlation between true occlusal area and $D$ to test if $D$ was truly independent of size. As expected, true occlusal area had no significant correlation to $D$; as fractal
dimensionality of equid occlusal enamel is a metric that is clearly independent of body size. Results of this study suggest that species level behavior could represent response to climate differences.

## Pitfalls and Further Analysis

There are a series of pitfalls when using a nested factor to simulate phylogeny (Famoso et al. in revision). I only partially accounted for the effect of evolutionary relationships on OEI and $D$ when using nested factors. I believe that the analysis would be improved by a comparative method that completely accounts for the details of evolution (Stack et al. 2011, Cayuela et al. 2012). Taxonomy is a compartmental naming system that was created to explain how organisms are related to one another, and like most natural systems, phylogenetic relationships are more complicated than categories defined by man. The current phylogenetically-informed comparative methods utilize phylogenies with consistently-derived branch lengths, which are easy to calculate with a molecular phylogeny, but the method is not yet available with morphology-dependent fossil phylogeny.

In future analyses, I want to increase sample size for under-sampled regions and NALMAs for both OEI and $D$, to yield better results and better resolution. Randomly resampling and standardizing the sample size between the categories would assist in removing the effects of low sample size in some categories. I considered the removal of categories with extremely low sample size but chose not to, so that I could retain resolution. For future studies utilizing $D$, I would like to increase the number of variables and sample size to a level comparable to that of the OEI study. Including isotope and microwear data with the OEI dataset would allow analysis of niche partitioning with
respect to diet (MacFadden et al. 1999). I would also like to apply both of these methods to other megafauna which have adaptations to increased ingested abrasiveness, such as camels, rhinos, African large primates, and South American notoungulates. I would also like to test differences within Pio-Pleistocene Equus (e.g. caballine and stilt-legged horses), comparing them to Hipparionini genera to see if any equin horses are independently evolving complex enamel patterns similar to hipparionin horses.

I would also like to investigate more morphological characters in equid molars (Heywood 2010) as well as the arrangement of occlusal enamel bands with respect to phylogeny and diet (Kaiser et al. 2010) for horses and the other taxa mentioned earlier. These methods used along with OEI would better investigate not only the complexity, but the specific arrangement, shape, and thickness of occlusal enamel structures. Together these aspects of dental morphology can clarify how these animals adapted to increased ingested abrasion.

## CHAPTER V

## CONCLUSION

The results of my Occlusal Enamel Index (OEI) study suggest that the shape of the occlusal enamel of equid teeth is driven by evolutionary baggage, tooth position, time, and geography. The fractal dimensionality study suggests that the complexity of equid teeth is the product of behavior of the species. Equini seem to have an overall lower OEI than Hipparionini which supports the qualitative hypothesis that Equini have less occlusal enamel than Hipparionini.

This study shows that enamel band shapes are being driven by climate and controlled by evolutionary history. From the results of the fractal dimensionality pilot study, it appears complexity is driven by behavior at the species-level. Each species of horse fills different niches and has adaptations specific to those niches. Horses change their enamel complexity in response to increased tooth abrasion from the Miocene through the Recent.

## APPENDIX A

OEI RAW DATA TABLE

| Specimen \# | Subfamily | Tribe | Genus | Species | Element | Formation | Member |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 100077 | Equinae | Equini | Onohippidium | galushai | P3 | Big Sandy |  |
| AMNH F:AM 104769 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Valentine | Burge |
| AMNH F:AM 107596 | Anchitheriinae | "Anchitheriini" | Hypohippus | sp. | P3 | Valentine | Burge |
| AMNH F:AM 108233 | Equinae | Hipparionini | Cormohipparion | sphenodus | P3 | Tesuque |  |
| AMNH F:AM 109883 | Equinae | Hipparionini | "Hipparion" | sp. | P3 | San Jacinto |  |
| AMNH F:AM 110131 | Equinae | Equini | Parapliohippus | carrizoensis | P3 | Barstow |  |
| AMNH F:AM 110222 | Equinae | Equini | Merychippus | sp. | P3 | Barstow |  |
| AMNH F:AM 110234 | Equinae | Equini | Merychippus | sp. | P3 | Barstow |  |
| AMNH F:AM 110343 | Anchitheriinae | "Anchitheriini" | Hypohippus | equinus | P3 | Olcott |  |
| AMNH F:AM 111728 | Equinae | Equini | Protohippus | supremus | P3 | Clarendon |  |
| AMNH F:AM 114169 | Equinae | Equini | Protohippus | supremus | P3 | Clarendon |  |
| AMNH F:AM 116143 | Equinae | Equini | Equus | sp. | P3 | Itchetucknee River |  |
| AMNH F:AM 116148 | Equinae | Equini | Equus | sp. | M2 | Indio Hills |  |
| AMNH F:AM 116150 | Equinae | Equini | Equus | sp. | M2 |  |  |
| AMNH F:AM 116156 | Equinae | Equini | Equus | simplicidens | P3 |  |  |
| AMNH F:AM 116161 | Equinae | Equini | Equus | scotti | P3 | Las Cruces |  |
| AMNH F:AM 116164 | Equinae | Equini | Dinohippus | interpolatus | P3 | Ogallala |  |
| AMNH F:AM 116179 | Equinae | Equini | Equus | scotti | P3 |  |  |
| AMNH F:AM 116194 | Equinae | Equini | Dinohippus | leidyanus | P3 | Ogallala |  |
| AMNH F:AM 116792 | Equinae | Equini | Dinohippus | leidyanus | P3 | Ogallala |  |
| AMNH F:AM 116868 | Equinae | Hipparionini | Pseudhipparion | retrusum | P3 | Valentine |  |
| AMNH F:AM 117045 | Equinae | Hipparionini | Nannippus | sp. | P3 | Ash Hollow | Merrit Dam |
| AMNH F:AM 118223 | Equinae | Equini | Calippus | placidus | P3 | Ogallala |  |
| AMNH F:AM 125218 | Equinae | Equini | Calippus | martini | P3 | Ash Hollow |  |


| AMNH F:AM 125488 | Equinae | Equini | Calippus | martini | P3 | Ogallala |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 125995 | Equinae | "Merychippini" | Merychippus | calamarius | P3 | Pawnee Creek |  |
| AMNH F:AM 126899 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Valentine | Devils Gulch |
| AMNH F:AM 127207 | Equinae | Hipparionini | Protohippus | sp. | P3 | Sheep Creek |  |
| AMNH F:AM 127263 | Equinae | Equini | Scaphohippus | sumani | P3 | Barstow |  |
| AMNH F:AM 127569 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Ogallala |  |
| AMNH F:AM 127992 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Pawnee Creek |  |
| AMNH F:AM 128091 | Equinae | Equini | Astrohippus | ansae | P3 | Ogallala |  |
| AMNH F:AM 128092 | Equinae | Equini | Astrohippus | ansae | P3 | Ogallala |  |
| AMNH F:AM 128154 | Equinae | "Merychippini" | Merychippus | calamarius | P3 | Tesuque |  |
| AMNH F:AM 128270 | Equinae | Equini | Dinohippus | leidyanus | P3 | Ogallala |  |
| AMNH F:AM 128444 | Equinae | Equini | Dinohippus | leidyanus | P3 | Ogallala |  |
| AMNH F:AM 142515 | Equinae | Equini | Merychippus | n. sp. | P3 | Olcott |  |
| AMNH F:AM 143268 | Equinae | Hipparionini | Neohipparion | affine | P3 | Ogallala |  |
| AMNH F:AM 143273 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Tesuque |  |
| AMNH F:AM 14396 | Equinae | Equini | Equus | occidentalis | P3 | Rancho La Brea Asphalt |  |
| AMNH F:AM 20077 | Equinae | Equini | Equus | simplicidens | P3 | Blanco |  |
| AMNH F:AM 21085 | Anchitheriinae | "Anchitheriini" | Megahippus | sp. | P3 | Barstow |  |
| AMNH F:AM 30702 | Equinae | Equini | Equus | sp. | P3 | Fairbanks |  |
| AMNH F:AM 30703 | Equinae | Equini | Equus | sp. | P3 | Fairbanks |  |
| AMNH F:AM 42810 | Equinae | Equini | Equus | sp. | P3 | Papago Spring Cave |  |
| AMNH F:AM 42811 | Equinae | Equini | Equus | sp. | P3 | Papago Spring Cave |  |
| AMNH F:AM 60061 | Equinae | Equini | Equus | sp. | P3 | Fairbanks Creek |  |
| AMNH F:AM 60062 | Equinae | Equini | Equus | sp. | P3 | Fairbanks Creek |  |
| AMNH F:AM 60066 | Equinae | Equini | Equus | sp. | P3 | Fairbanks Creek |  |
| AMNH F:AM 60300 | Equinae | Equini | Merychippus | n. sp. | P3 | Ash Hollow |  |
| AMNH F:AM 60327 | Equinae | Equini | Merychippus | n . sp. | P3 | Clarendon |  |


| AMNH F:AM 60420 | Equinae | Equini | Calippus | regulus | P3 | Ogallala |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 60500 | Anchitheriinae | "Anchitheriini" | Hypohippus | n. sp. | P3 | Ash Hollow |  |
| AMNH F:AM 60561 | Anchitheriinae | "Anchitheriini" | Hypohippus | sp. | P3 | Valentine | Burge |
| AMNH F:AM 60618 | Anchitheriinae | "Anchitheriini" | Hypohippus | sp. | P3 | Olcott |  |
| AMNH F:AM 60627 | Anchitheriinae | "Anchitheriini" | Hypohippus | sp. | P3 |  |  |
| AMNH F:AM 60700 | Anchitheriinae | "Anchitheriini" | Megahippus | matthewi | P3 | Valentine | Burge |
| AMNH F:AM 60720 | Anchitheriinae | "Anchitheriini" | Megahippus | sp. | P3 | Pawnee Creek |  |
| AMNH F:AM 60878 | Equinae | Equini | Pliohippus | pernix | P3 | Clarendon |  |
| AMNH F:AM 60880 | Equinae | Equini | Pliohippus | sp. | P3 | Clarendon |  |
| AMNH F:AM 60904 | Equinae | Equini | Pliohippus | sp. | P3 | Clarendon |  |
| AMNH F:AM 60905 | Equinae | Equini | Pliohippus | sp. | P3 | Tesuque |  |
| AMNH F:AM 69500 | Equinae | "Merychippini" | Merychippus | coloradense | P3 | Tesuque | Chamael Rito |
| AMNH F:AM 69503 | Equinae | "Merychippini" | Merychippus | coloradense | P3 | Sante Fe |  |
| AMNH F:AM 69506 | Equinae | "Merychippini" | Merychippus | coloradense | P3 | Ogallala |  |
| AMNH F:AM 69550 | Equinae | "Merychippini" | Merychippus | sp. | P3 |  |  |
| AMNH F:AM 69560 | Equinae | Equini | Pliohippus | sp. | P3 | Olcott |  |
| AMNH F:AM 69604 | Equinae | Hipparionini | Merychippus | $\mathrm{n} . \mathrm{sp}$. | P3 | Ash Hollow |  |
| AMNH F:AM 70003 | Equinae | Hipparionini | Pseudhipparion | retrusum | P3 | Valentine | Burge |
| AMNH F:AM 70112 | Equinae | Hipparionini | Pseudhipparion | skinneri | P3 |  |  |
| AMNH F:AM 70439 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Ogallala |  |
| AMNH F:AM 71369 | Equinae | Equini | Pliohippus | sp. | P3 | Flint Creek Beds |  |
| AMNH F:AM 71377 | Equinae | Equini | Pliohippus | sp. | P3 |  |  |
| AMNH F:AM 71405 | Equinae | Equini | Equus | sp. | P3 | Gold Hill |  |
| AMNH F:AM 71463 | Equinae | Equini | Equus | sp. | P3 | Dome Creek |  |
| AMNH F:AM 71502 | Anchitheriinae | "Anchitheriini" | Desmatippus | integer | P3 | Olcott |  |
| AMNH F:AM 71508 | Anchitheriinae | "Anchitheriini" | Desmatippus | sp. | P3 | Olcott |  |
| AMNH F:AM 71592 | Anchitheriinae | "Anchitheriini" | Desmatippus | sp. | P3 | Pawnee Creek |  |


| AMNH F:AM 71887 | Equinae | Hipparionini | Hipparion | forcei | P3 | Snake Creek |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 71891 | Equinae | Hipparionini | "Cormohipparion" | quinni | P3 |  |
| AMNH F:AM 73940 | Equinae | Hipparionini | Cormohipparion | goorisi | P3 |  |
| AMNH F:AM 73950 | Equinae | Hipparionini | Hipparion | shirleyi | P3 |  |
| AMNH F:AM 73951 | Equinae | Hipparionini | Hipparion | shirleyi | P3 | San Jacinto |
| AMNH F:AM 74230 | Equinae | Equini | Astrohippus | ansae | P3 | Chamita |
| AMNH F:AM 74273 | Equinae | Equini | Astrohippus | stockii | P3 | Ogallala |
| AMNH F:AM 74274 | Equinae | Equini | Astrohippus | stockii | P3 | Ogallala |
| AMNH F:AM 74404 | Equinae | Hipparionini | Nannippus | lenticulare | P3 |  |
| AMNH F:AM 74416 | Equinae | Hipparionini | Nannippus | lenticulare | P3 |  |
| AMNH F:AM 8105 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Deep River |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | P2 | Ogallala |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | P3 | Ogallala |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | P4 | Ogallala |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | M1 | Ogallala |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | M2 | Ogallala |
| AMNH F:AM 87201 | Equinae | Equini | Dinohippus | leidyanus | M3 | Ogallala |
| AMNH F:AM 87301 | Equinae | Equini | Scaphohippus | intermontanus | P3 | Olcott |
| AMNH F:AM 87429 | Equinae | Equini | Equus | simplicidens | P3 | Keim |
| AMNH F:AM 92470 | Equinae | Equini | Equus | fraternus | P4 |  |
| AMNH F:AM 95588 | Equinae | Equini | Equus | fraternus | P3 | Pool Creek |
| AMNH F:AM 99247 | Equinae | Equini | Equus | simplicidens | P3 |  |
| AMNH FM 10584 | Equinae | Hipparionini | Nannippus | lenticulare | P3 | Clarendon |
| AMNH FM 10607 | Equinae | Equini | Equus | scotti | P3 | Rock Creek Beds |
| AMNH FM 10612 | Equinae | Equini | Equus | scotti | P3 | Rock Creek |
| AMNH FM 10628 | Equinae | Equini | Equus | scotti | P3 | Rock Creek |
| AMNH FM 10865 | Equinae | Hipparionini | Neohipparion | sp. | P3 |  |


| AMNH FM 109855 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Tesuque |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH FM 127671 | Equinae | Equini | Equus | sp. |  |  |  |
| AMNH FM 13714 | Equinae | Equini | Equus | sp. |  | Phosphate Workings |  |
| AMNH FM 13770 | Anchitheriinae | "Anchitheriini" | Parahippus | nebrascensis | P3 |  |  |
| AMNH FM 140736 | Equinae | Equini | Scaphohippus | sp. | P3 | Tesuque |  |
| AMNH FM 14180 | Equinae | "Merychippini" | Merychippus | sp. | P3 |  |  |
| AMNH FM 142647 | Equinae | Equini | Scaphohippus | sp. | P3 | Tesuque |  |
| AMNH FM 14296 | Equinae | Equini | Equus | complicatus | P2 | Gravel |  |
| AMNH FM 143258 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Barstow |  |
| AMNH FM 15549 | Equinae | Equini | Equus | sp. | M2 |  |  |
| AMNH FM 17224 | Equinae | Equini | Dinohippus | leidyanus | P3 |  |  |
| AMNH FM 18297 | Equinae | "Merychippini" | Merychippus | insignis | P3 | Olcott |  |
| AMNH FM 18299 | Equinae | "Merychippini" | Merychippus | insignis | P3 | Olcott |  |
| AMNH FM 18655 | Equinae | Equini | Equus | simplicidens | P3 |  |  |
| AMNH FM 18972 | Equinae | Equini | Dinohippus | leidyanus | P3 | Snake Creek |  |
| AMNH FM 22733 | Equinae | Equini | Equus | intermedius | P3 | Avery Island |  |
| AMNH FM 27834 | Equinae | Equini | Equus | complicatus |  | Avery Island |  |
| AMNH FM 32551 | Equinae | Equini | Equus | simplicidens | P3 | Glenns Ferry |  |
| AMNH FM 39407 | Equinae | Equini | Equus | complicatus | P3 |  |  |
| AMNH FM 55595 | Equinae | Equini | Equus | fraternus |  | Phosphate Workings |  |
| AMNH FM 8175 | Equinae | "Merychippini" | Acritohippus | sp. | P3 | Mascall |  |
| AMNH FM 8347 | Equinae | "Merychippini" | Merychippus | republicanus | P3 |  |  |
| AMNH FM 9201 | Equinae | Equini | Equus | sp. |  | Phosphate Workings |  |
| AMNH FM 9203 | Equinae | Equini | Equus | fraternus | P3 | Phosphate Workings |  |
| AMNH FM 9395 | Anchitheriinae | "Anchitheriini" | Hypohippus | osborni | P3 | Pawnee Buttes |  |
| AMNH FM 9400 | Equinae | Equini | Merychippus | n. sp. | P3 | Pawnee Creek |  |
| AMNH FM 9820 | Equinae | Equini | Protohippus | simus | P3 |  |  |


| AMNH FM 9967 | Equinae | Equini | Equus | sp. |  | Cave |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | P2 | Mascall |  |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | P3 | Mascall |  |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | P4 | Mascall |  |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | M1 | Mascall |  |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | M2 | Mascall |  |
| CIT 363 | Equinae | Hipparionini | Merychippus | seversus | M3 | Mascall |  |
| JODA 10014 | Equinae | Hipparionini | Hipparion | sp. |  | Juntura |  |
| JODA 10703 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| JODA 1079, A | Equinae | Hipparionini | Merychippus | seversus | P2 | Simtustus |  |
| JODA 1079, A | Equinae | Hipparionini | Merychippus | seversus | P3 | Simtustus |  |
| JODA 1079, A | Equinae | Hipparionini | Merychippus | seversus | P4 | Simtustus |  |
| JODA 1079, A | Equinae | Hipparionini | Merychippus | seversus | M1 | Simtustus |  |
| JODA 1079, A | Equinae | Hipparionini | Merychippus | seversus | M2 | Simtustus |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | P2 | Mascall |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | P3 | Mascall |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | P4 | Mascall |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | M1 | Mascall |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | M2 | Mascall |  |
| JODA 1316 | Equinae | Hipparionini | Merychippus | seversus | M3 | Mascall |  |
| JODA 1318 | Equinae | "Merychippini" | Merychippus | sp. | P3 | Mascall |  |
| JODA 1318 | Equinae | "Merychippini" | Merychippus | sp. | P4 | Mascall |  |
| JODA 1318 | Equinae | "Merychippini" | Merychippus | sp. | M1 | Mascall |  |
| JODA 1318 | Equinae | "Merychippini" | Merychippus | sp. | M2 | Mascall |  |
| JODA 1318 | Equinae | "Merychippini" | Merychippus | sp. | M3 | Mascall |  |
| JODA 1332 | Anchitheriinae | "Anchitheriini" | Archaeohippus | sp. | P3 | Mascall |  |
| JODA 1332 | Anchitheriinae | "Anchitheriini" | Archaeohippus | sp. | P4 | Mascall |  |


| JODA 1332 | Anchitheriinae | "Anchitheriini" | Archaeohippus | sp. | M1 | Mascall |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JODA 1332 | Anchitheriinae | "Anchitheriini" | Archaeohippus | sp. | M2 | Mascall |  |
| JODA 1332 | Anchitheriinae | "Anchitheriini" | Archaeohippus | sp. | M3 | Mascall |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | P2 | Rattlesnake |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | P3 | Rattlesnake |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | P4 | Rattlesnake |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | M1 | Rattlesnake |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | M2 | Rattlesnake |  |
| JODA 1333 | Equinae | Equini | Pliohippus | sp. | M3 | Rattlesnake |  |
| JODA 1979 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1980 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1981 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1982 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1987 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1988 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1990 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 1997 | Equinae | "Merychippini" | Merychippus | sp. | P2 | Mascall |  |
| JODA 1998 | Equinae | "Merychippini" | Merychippus | sp. | P2 | Mascall |  |
| JODA 2001 | Equinae | Hipparionini | Hipparion | sp. |  | Rattlesnake |  |
| JODA 2066 | Equinae | Hipparionini | Neohipparion | sp. |  | Rattlesnake |  |
| JODA 2069 | Equinae | Equini | Pliohippus | sp. |  | Rattlesnake |  |
| JODA 2072 | Equinae | Equini | Pliohippus | sp. | P2 | Rattlesnake |  |
| JODA 2402 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| JODA 2405 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| JODA 2406 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| JODA 2407 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| JODA 2408 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |


| JODA 2409 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. |  | Mascall |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JODA 2428 |  |  | ? |  |  | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | P2 | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | P3 | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | P4 | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | M1 | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | M2 | Mascall |  |
| JODA 2435 | Anchitheriinae | "Anchitheriini" | Parahippus | sp. | M3 | Mascall |  |
| JODA 2446 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 2564 | Equinae | Hipparionini | Cormohipparion | sp. |  | Rattlesnake |  |
| JODA 293 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 294 | Equinae | "Merychippini" | Merychippus | sp. |  | Mascall |  |
| JODA 561 | Equinae | Hipparionini | Neohipparion | sp. |  | Rattlesnake |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | P2 |  |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | P3 |  |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | P4 |  |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | M1 |  |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | M2 |  |  |
| MVZ 117884 | Equinae | Equini | Equus | quagga | M3 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | P2 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | P3 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | P4 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | M1 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | M2 |  |  |
| MVZ 117885 | Equinae | Equini | Equus | quagga | M3 |  |  |
| MVZ 117887 | Equinae | Equini | Equus | quagga | P2 |  |  |
| MVZ 117887 | Equinae | Equini | Equus | quagga | P3 |  |  |


| MVZ 117887 | Equinae | Equini | Equus | quagga | P4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MVZ 117887 | Equinae | Equini | Equus | quagga | M1 |  |  |
| MVZ 117887 | Equinae | Equini | Equus | quagga | M2 |  |  |
| MVZ 117887 | Equinae | Equini | Equus | quagga | M3 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | P2 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | P3 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | P4 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | M1 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | M2 |  |  |
| MVZ 117888 | Equinae | Equini | Equus | quagga | M3 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | P2 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | P3 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | P4 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | M1 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | M2 |  |  |
| MVZ 154358 | Equinae | Equini | Equus | asinus | M3 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | P2 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | P3 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | P4 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | M1 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | M2 |  |  |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | M3 |  |  |
| SDSM 12195 | Equinae | Equini | Equus | calobatus |  |  |  |
| SDSM 22027 | Equinae | Equini | Equus | simplicidens | P2 | Savage Island? Ringold? |  |
| SDSM 22032 | Equinae | Equini | Equus | simplicidens |  | Savage Island? Ringold? |  |
| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | P2 | Lower Snake Creek |  |
| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | P3 | Lower Snake Creek |  |


| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | P4 | Lower Snake Creek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | M1 | Lower Snake Creek |  |
| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | M2 | Lower Snake Creek |  |
| SDSM 505 | Equinae | "Merychippini" | Merychippus | c.f. sejunctus | M3 | Lower Snake Creek |  |
| SDSM 5057 | Equinae | "Merychippini" | Merychippus | sp. |  | Lower Snake Creek |  |
| SDSM 5057 | Equinae | "Merychippini" | Merychippus | sp. |  | Lower Snake Creek |  |
| SDSM 53217 | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53217 F1 | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-12 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-17 | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-3 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-30 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-31 | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-34 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-40 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-5 | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 53217-9 | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-D | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53217-E | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53218 E | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 53218 K | Equinae | Equini | Calippus | sp. | P2 | Ash Hollow |  |
| SDSM 53219 | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53219 AG | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53219 AR | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53219 CJ | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53219 CZ | Equinae | Hipparionini | Neohipparion | sp. |  | Ash Hollow |  |
| SDSM 53219 DS | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |


| SDSM 53219 X | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDSM 53219 Y | Equinae | Hipparionini | Pseudhipparion | sp. |  | Ash Hollow |  |
| SDSM 53220 | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 53220 A | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 53220 C | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 53220-01 | Equinae | Equini | Pliohippus | sp. |  | Ash Hollow |  |
| SDSM 5622 | Equinae | "Merychippini" | Merychippus | sp. |  | Lower Snake Creek |  |
| SDSM 5622 | Equinae | "Merychippini" | Merychippus | sp. |  | Lower Snake Creek |  |
| SDSM 577 Q | Equinae | Equini | Calippus | sp. |  | Ash Hollow |  |
| SDSM 577P-03 | Equinae | Equini | Calippus | sp. |  | Ash Hollow |  |
| SDSM 62281 | Equinae | Hipparionini | Pseudhipparion | sp. | P4 | Ash Hollow |  |
| SDSM 62281 | Equinae | Hipparionini | Pseudhipparion | sp. | M1 | Ash Hollow |  |
| SDSM 62281 | Equinae | Hipparionini | Pseudhipparion | sp. | M2 | Ash Hollow |  |
| SDSM 62290 | Equinae | Equini | Equus | sp. |  |  |  |
| SDSM 65125 | Equinae | Hipparionini | Merychippus | sp. | P2 | Lower Snake Creek |  |
| SDSM 65125 | Equinae | Hipparionini | Merychippus | sp. |  | Lower Snake Creek |  |
| SDSM 7861 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Ash Hollow |  |
| SDSM 7861 | Equinae | Hipparionini | Pseudhipparion | sp. | P4 | Ash Hollow |  |
| SDSM 7861 | Equinae | Hipparionini | Pseudhipparion | sp. | M1 | Ash Hollow |  |
| SDSM 7861 | Equinae | Hipparionini | Pseudhipparion | sp. | M2 | Ash Hollow |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | P2 | Mehrten |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | P3 | Mehrten |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | P4 | Mehrten |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | M1 | Mehrten |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | M2 | Mehrten |  |
| UCMP 124927 | Equinae | Equini | Pliohippus | sp. | M3 | Mehrten |  |
| UCMP 21422 | Equinae | Equini | Scaphohippus | sumani | P3 | Barstow |  |


| UCMP 21422 | Equinae | Equini | Scaphohippus | sumani | P4 | Barstow |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 21422 | Equinae | Equini | Scaphohippus | sumani | M1 | Barstow |  |
| UCMP 21422 | Equinae | Equini | Scaphohippus | sumani | M2 | Barstow |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | P2 | Mascall |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | P3 | Mascall |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | P4 | Mascall |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | M1 | Mascall |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | M2 | Mascall |  |
| UCMP 23088 | Equinae | Hipparionini | Merychippus | seversus | M3 | Mascall |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | P2 | Thousand Creek |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | P3 | Thousand Creek |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | P4 | Thousand Creek |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | M1 | Thousand Creek |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | M2 | Thousand Creek |  |
| UCMP 27126 | Equinae | Hipparionini | Neohipparion | leptode | M3 | Thousand Creek |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | P2 | Ogallala |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | P3 | Ogallala |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | P4 | Ogallala |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | M1 | Ogallala |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | M2 | Ogallala |  |
| UCMP 30200 | Equinae | Equini | Dinohippus | interpolatus | M3 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | P2 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | P3 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | P4 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | M1 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | M2 | Ogallala |  |
| UCMP 30225 | Equinae | Equini | Astrohippus | ansae | M3 | Ogallala |  |


| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | P2 | Ogallala |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | P3 | Ogallala |  |
| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | P4 | Ogallala |  |
| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | M1 | Ogallala |  |
| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | M2 | Ogallala |  |
| UCMP 30813 | Equinae | Equini | Dinohippus | interpolatus | M3 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | P2 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | P3 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | P4 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | M1 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | M2 | Ogallala |  |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | M3 | Ogallala |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | P2 | Mehrten |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | P3 | Mehrten |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | P4 | Mehrten |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | M1 | Mehrten |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | M2 | Mehrten |  |
| UCMP 31875 | Equinae | Equini | Pliohippus | tantalus | M3 | Mehrten |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | P2 | Ogallala |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | P3 | Ogallala |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | P4 | Ogallala |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | M1 | Ogallala |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | M2 | Ogallala |  |
| UCMP 32306 | Equinae | Equini | Pliohippus | cf. pernix | M3 | Ogallala |  |
| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | P4 | Valentine | Burge |
| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | M1 | Valentine | Burge |
| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | M2 | Valentine | Burge |


| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | M3 | Valentine | Burge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | P2 | Valentine | Burge |
| UCMP 32503 | Equinae | Hipparionini | Pseudhipparion | retrusum | P3 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | P2 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | P3 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | P4 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | M1 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | M2 | Valentine | Burge |
| UCMP 32504 | Equinae | Hipparionini | Pseudhipparion | retrusum | M3 | Valentine | Burge |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | P2 | Ogallala |  |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | P3 | Ogallala |  |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | P4 | Ogallala |  |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | M1 | Ogallala |  |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | M2 | Ogallala |  |
| UCMP 32773 | Equinae | Equini | Calippus | regulus | M3 | Ogallala |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | P2 | Laverne |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | P3 | Laverne |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | P4 | Laverne |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | M1 | Laverne |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | M2 | Laverne |  |
| UCMP 32814 | Equinae | Equini | Calippus | martini | M3 | Laverne |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | P2 | Ogallala |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | P3 | Ogallala |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | P4 | Ogallala |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | M1 | Ogallala |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | M2 | Ogallala |  |
| UCMP 33481 | Equinae | Equini | Pliohippus | sp. | M3 | Ogallala |  |


| UCMP 34032 | Equinae | Equini | Equus | simplicedens | P2 | Glenns Ferry |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 34032 | Equinae | Equini | Equus | simplicedens | P3 | Glenns Ferry |  |
| UCMP 34032 | Equinae | Equini | Equus | simplicedens | P4 | Glenns Ferry |  |
| UCMP 34032 | Equinae | Equini | Equus | simplicedens | M1 | Glenns Ferry |  |
| UCMP 34032 | Equinae | Equini | Equus | simplicedens | M2 | Glenns Ferry |  |
| UCMP 34032 | Equinae | Equini | Equus | simplicedens | M3 | Glenns Ferry |  |
| UCMP 34511 | Equinae | Hipparionini | Hipparion | sp. | P3 | Green Valley |  |
| UCMP 34511 | Equinae | Hipparionini | Hipparion | sp. | P4 | Green Valley |  |
| UCMP 34511 | Equinae | Hipparionini | Hipparion | sp. | M1 | Green Valley |  |
| UCMP 34511 | Equinae | Hipparionini | Hipparion | sp. | M2 | Green Valley |  |
| UCMP 34511 | Equinae | Hipparionini | Hipparion | sp. | M3 | Green Valley |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | P2 | Caliente |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | P3 | Caliente |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | P4 | Caliente |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | M1 | Caliente |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | M2 | Caliente |  |
| UCMP 50750 | Equinae | Equini | Scaphohippus | sumani | M3 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | P2 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | P3 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | P4 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | M1 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | M2 | Caliente |  |
| UCMP 50950 | Equinae | Equini | Scaphohippus | sumani | M3 | Caliente |  |
| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | P2 | Caliente |  |
| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | P3 | Caliente |  |
| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | P4 | Caliente |  |
| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | M1 | Caliente |  |


| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | M2 | Caliente |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 51000 | Equinae | Equini | Scaphohippus | sumani | M3 | Caliente |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | P2 | Green Valley |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | P3 | Green Valley |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | P4 | Green Valley |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | M1 | Green Valley |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | M2 | Green Valley |  |
| UCMP 56278 | Equinae | Equini | Pliohippus | sp. | M3 | Green Valley |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | P2 |  |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | P3 |  |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | P4 |  |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | M1 |  |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | M2 |  |  |
| UCMP 64609 | Equinae | Hipparionini | Neohipparion | floresi | M3 |  |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | P2 | Ricardo |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | P3 | Ricardo |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | P4 | Ricardo |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | M1 | Ricardo |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | M2 | Ricardo |  |
| UCMP 69575 | Equinae | Hipparionini | Hipparion | forcei | M3 | Ricardo |  |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | P2 | Valentine | Devil's Gulch |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | P3 | Valentine | Devil's Gulch |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | P4 | Valentine | Devil's Gulch |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | M1 | Valentine | Devil's Gulch |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | M2 | Valentine | Devil's Gulch |
| UCMP 97903 | Equinae | Equini | Protohippus | perditus | M3 | Valentine | Devil's Gulch |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | P2 | Love Bone Bed |  |


| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | P3 | Love Bone Bed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | P4 | Love Bone Bed |  |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | M1 | Love Bone Bed |  |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | M2 | Love Bone Bed |  |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | sp. | M3 | Love Bone Bed |  |
| UF 57343 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Bone Valley |  |
| UF 57343 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Bone Valley |  |
| UF 57343 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Bone Valley |  |
| UF 57343 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Bone Valley |  |
| UF 58311 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Ft Green Mine |  |
| UF 58311 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Ft Green Mine |  |
| UF 58311 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Ft Green Mine |  |
| UF 58311 | Equinae | Hipparionini | Pseudhipparion | simpsoni | P4 | Ft Green Mine |  |
| UNSM 113025 | Equinae | Equini | Equus | calobutus | M3 |  |  |
| UNSM 113026 | Equinae | Equini | Equus | calobutus | P4 |  |  |
| UNSM 113091 | Equinae | Equini | Equus | calobutus | M1 |  |  |
| UNSM 118794 | Equinae | Equini | Equus | calobutus | P2 |  |  |
| UNSM 118794 | Equinae | Equini | Equus | calobutus | P3 |  |  |
| UNSM 118794 | Equinae | Equini | Equus | calobutus | P4 |  |  |
| UNSM 118794 | Equinae | Equini | Equus | calobutus | M1 |  |  |
| UNSM 118794 | Equinae | Equini | Equus | calobutus | M2 |  |  |
| UNSM 123506 | Equinae | Equini | Equus | sp. |  | Loess |  |
| UNSM 123506 | Equinae | Equini | Equus | sp. |  | Loess |  |
| UNSM 123506 | Equinae | Equini | Equus | sp. |  | Loess |  |
| UNSM 123613 | Equinae | Equini | Equus | sp. |  | cave |  |
| UNSM 123657 | Equinae | Equini | Equus | spp. | M3 |  |  |
| UNSM 123658 | Equinae | Equini | Equus | spp. |  |  |  |


| UNSM 125528 | Equinae | Equini | Protohippus | perditus | P3 | Valentine |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 125529 | Equinae | Equini | Protohippus | perditus | P3 | Valentine |  |
| UNSM 125530 | Equinae | Hipparionini | Neohipparion | republicanus | P3 | Valentine |  |
| UNSM 125531 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Valentine |  |
| UNSM 125532 | Anchitheriinae | "Anchitheriini" | Hypohippus | sp. | P3 | Valentine |  |
| UNSM 125533 | Equinae | Hipparionini | Neohipparion | republicanus | P3 | Valentine |  |
| UNSM 125534 | Equinae | Equini | Calippus | placidus | P3 | Valentine |  |
| UNSM 129108 | Equinae | Equini | Equus | scotti |  |  |  |
| UNSM 133050 | Equinae | Equini | Equus | sp. |  | cave |  |
| UNSM 133051 | Equinae | Equini | Equus | sp. |  | cave |  |
| UNSM 133052 | Equinae | Equini | Equus | spp. |  |  |  |
| UNSM 133053 | Equinae | Equini | Equus | complicatus | M3 |  |  |
| UNSM 133054 | Equinae | Equini | Equus | spp. |  |  |  |
| UNSM 133055 | Equinae | Equini | Equus | spp. |  |  |  |
| UNSM 133056 | Equinae | Equini | Equus | scotti |  |  |  |
| UNSM 133057 | Equinae | Equini | Equus | scotti |  |  |  |
| UNSM 133058 | Equinae | Equini | Equus | sp. |  | High Terrace |  |
| UNSM 133059 | Equinae | Equini | Equus | excelsus | P2 |  |  |
| UNSM 133059 | Equinae | Equini | Equus | excelsus | P3 |  |  |
| UNSM 133059 | Equinae | Equini | Equus | excelsus | P4 |  |  |
| UNSM 133060 | Equinae | Equini | Equus | idahoensis | M2 | Long Pine |  |
| UNSM 133061 | Equinae | Equini | Equus | idahoensis | P3 | Long Pine |  |
| UNSM 133061 | Equinae | Equini | Equus | idahoensis | P4 | Long Pine |  |
| UNSM 133061 | Equinae | Equini | Equus | idahoensis | M1 | Long Pine |  |
| UNSM 133061 | Equinae | Equini | Equus | idahoensis | M2 | Long Pine |  |
| UNSM 133061 | Equinae | Equini | Equus | idahoensis | M3 | Long Pine |  |
| UNSM 133063 | Equinae | Equini | Equus | simplicidens | P2 | Broadwater |  |


| UNSM 133063 | Equinae | Equini | Equus | simplicidens | P3 | Broadwater |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 133063 | Equinae | Equini | Equus | simplicidens | P4 | Broadwater |  |
| UNSM 133063 | Equinae | Equini | Equus | simplicidens | M1 | Broadwater |  |
| UNSM 133063 | Equinae | Equini | Equus | simplicidens | M2 | Broadwater |  |
| UNSM 133063 | Equinae | Equini | Equus | simplicidens | M3 | Broadwater |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | P2 |  |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | P3 |  |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | P4 |  |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | M1 |  |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | M2 |  |  |
| UNSM 1349 | Equinae | Equini | Equus | scotti | M3 |  |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | P2 | Glenns Ferry |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | P3 | Glenns Ferry |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | P4 | Glenns Ferry |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | M1 | Glenns Ferry |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | M2 | Glenns Ferry |  |
| UNSM 1350 | Equinae | Equini | Equus | simplicidens | M3 | Glenns Ferry |  |
| UNSM 1352 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Valentine |  |
| UNSM 238941 | Equinae | Hipparionini | Neohipparion | affine | P3 | Ash Hollow |  |
| UNSM 2626 | Equinae | Hipparionini | Neohipparion | leptode |  | Ash Hollow |  |
| UNSM 2634 | Equinae | Equini | Protohippus | sp. | P3 | Ash Hollow |  |
| UNSM 2672 | Equinae | Hipparionini | Neohipparion | sp. | P3 | Valentine |  |
| UNSM 27799 | Equinae | Equini | Calippus | sp. | P3 | Ash Hollow |  |
| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | P2 | Ash Hollow | Cap Rock |
| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | P3 | Ash Hollow | Cap Rock |
| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | P4 | Ash Hollow | Cap Rock |
| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | M1 | Ash Hollow | Cap Rock |


| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | M2 | Ash Hollow | Cap Rock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 27845 | Equinae | Hipparionini | Pseudhipparion | gratum | M3 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | P2 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | P4 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | M1 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | M2 | Ash Hollow | Cap Rock |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | M3 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | P2 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | P4 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | M1 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | M2 | Ash Hollow | Cap Rock |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | M3 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | P2 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | P3 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | P4 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | M1 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | M2 | Ash Hollow | Cap Rock |
| UNSM 27864 | Equinae | Equini | Pliohippus | pernix | M3 | Ash Hollow | Cap Rock |
| UNSM 27865 | Equinae | Equini | Pliohippus | pernix | P2 | Ash Hollow | Cap Rock |
| UNSM 27865 | Equinae | Equini | Pliohippus | pernix | P3 | Ash Hollow | Cap Rock |
| UNSM 27865 | Equinae | Equini | Pliohippus | pernix | P4 | Ash Hollow | Cap Rock |
| UNSM 27865 | Equinae | Equini | Pliohippus | pernix | M1 | Ash Hollow | Cap Rock |
| UNSM 27865 | Equinae | Equini | Pliohippus | pernix | M2 | Ash Hollow | Cap Rock |
| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | P2 | Ash Hollow | Cap Rock |
| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | P3 | Ash Hollow | Cap Rock |


| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | P4 | Ash Hollow | Cap Rock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | M1 | Ash Hollow | Cap Rock |
| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | M2 | Ash Hollow | Cap Rock |
| UNSM 27875 | Equinae | Hipparionini | Pseudhipparion | gratum | M3 | Ash Hollow | Cap Rock |
| UNSM 2997 | Equinae | Hipparionini | Neohipparion | sp. | P3 | Ash Hollow |  |
| UNSM 33162 | Equinae | Equini | Equus | sp. |  |  |  |
| UNSM 33508 | Equinae | Equini | Equus | excelsus | P3 |  |  |
| UNSM 33508 | Equinae | Equini | Equus | excelsus | P4 |  |  |
| UNSM 33527 | Equinae | Equini | Equus | excelsus | M3 |  |  |
| UNSM 41996 | Equinae | Equini | Equus | simplicidens | P3 | Broadwater |  |
| UNSM 41996 | Equinae | Equini | Equus | simplicidens | P4 | Broadwater |  |
| UNSM 41996 | Equinae | Equini | Equus | simplicidens | M1 | Broadwater |  |
| UNSM 41996 | Equinae | Equini | Equus | simplicidens | M2 | Broadwater |  |
| UNSM 41996 | Equinae | Equini | Equus | simplicidens | M3 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | P2 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | P3 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | P4 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | M1 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | M2 | Broadwater |  |
| UNSM 42087 | Equinae | Equini | Equus | simplicidens | M3 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | P2 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | P3 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | P4 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | M1 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | M2 | Broadwater |  |
| UNSM 42346 | Equinae | Equini | Equus | simplicidens | M3 | Broadwater |  |
| UNSM 42351 | Equinae | Equini | Equus | simplicidens | P2 | Broadwater |  |


| UNSM 42351 | Equinae | Equini | Equus | simplicidens | P3 | Broadwater |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 42351 | Equinae | Equini | Equus | simplicidens | P4 | Broadwater |  |
| UNSM 42351 | Equinae | Equini | Equus | simplicidens | M1 | Broadwater |  |
| UNSM 42351 | Equinae | Equini | Equus | simplicidens | M2 | Broadwater |  |
| UNSM 42351 | Equinae | Equini | Equus | simplicidens | M3 | Broadwater |  |
| UNSM 42431 | Equinae | Equini | Calippus | placidus | P3 | Valentine |  |
| UNSM 42433 | Equinae | Equini | Pliohippus | sp. | P3 | Ash Hollow | Burge |
| UNSM 42440 | Equinae | Hipparionini | Neohipparion | affine | P3 | Valentine |  |
| UNSM 42442 | Equinae | Hipparionini |  |  | P3 | Valentine | $\begin{gathered} \hline \text { Crookston } \\ \text { Bridge } \\ \hline \end{gathered}$ |
| UNSM 42447 | Equinae | Hipparionini | Neohipparion | affine | P3 | Valentine |  |
| UNSM 42452 | Equinae | Hipparionini | Neohipparion | sp. | P3 | Valentine |  |
| UNSM 42453 | Equinae | Equini | Pliohippus | sp. | M2 | Ash Hollow | Burge |
| UNSM 42454 | Equinae | Equini | Pliohippus | sp. | P3 | Ash Hollow | Burge |
| UNSM 42456 | Equinae | Equini | Protohippus | sp. | P3 | Valentine |  |
| UNSM 42468 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Ash Hollow | Burge |
| UNSM 4289 | Equinae | Hipparionini | Neohipparion | sp. | P3 | Ash Hollow |  |
| UNSM 46810 | Equinae | Equini | Equus | idahoensis | M3 | Long Pine |  |
| UNSM 49318 | Equinae | Equini | Equus | scotti |  |  |  |
| UNSM 49417 | Equinae | Equini | Equus | hemionus | M3 |  |  |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | P2 | Ash Hollow | Cap Rock |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | P3 | Ash Hollow | Cap Rock |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | P4 | Ash Hollow | Cap Rock |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | M1 | Ash Hollow | Cap Rock |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | M2 | Ash Hollow | Cap Rock |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | M3 | Ash Hollow | Cap Rock |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | P2 | Ash Hollow | Cap Rock |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | Ash Hollow | Cap Rock |


| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | P4 | Ash Hollow | Cap Rock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | M1 | Ash Hollow | Cap Rock |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | M2 | Ash Hollow | Cap Rock |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | M3 | Ash Hollow | Cap Rock |
| UNSM 54835 | Equinae | Equini | Equus | idahoensis | M1 | Long Pine |  |
| UNSM 54837 | Equinae | Equini | Equus | idahoensis | M1 | Long Pine |  |
| UNSM 54839 | Equinae | Equini | Equus | idahoensis | M3 | Long Pine |  |
| UNSM 54840 | Equinae | Equini | Equus | idahoensis | P2 | Long Pine |  |
| UNSM 56653 | Equinae | Equini | Protohippus | sp. | P3 | Valentine |  |
| UNSM 59261 | Equinae | Equini | Calippus | sp. | P3 | Ash Hollow |  |
| UNSM 59443 | Equinae | Hipparionini | Neohipparion | sp. | M2 | Ash Hollow |  |
| UNSM 5978 | Equinae | Equini | Equus | excelsus | P2 |  |  |
| UNSM 5978 | Equinae | Equini | Equus | excelsus | P3 |  |  |
| UNSM 5978 | Equinae | Equini | Equus | excelsus | P4 |  |  |
| UNSM 5978 | Equinae | Equini | Equus | excelsus | M1 |  |  |
| UNSM 5978 | Equinae | Equini | Equus | excelsus | M2 |  |  |
| UNSM 6023 | Equinae | Equini | Equus | semiplicatus | P3 |  |  |
| UNSM 6023 | Equinae | Equini | Equus | semiplicatus | P4 |  |  |
| UNSM 6023 | Equinae | Equini | Equus | semiplicatus | M1 |  |  |
| UNSM 6023 | Equinae | Equini | Equus | semiplicatus | M2 |  |  |
| UNSM 6023 | Equinae | Equini | Equus | semiplicatus | M3 |  |  |
| UNSM 6027 | Equinae | Equini | Equus | fraternus | P4 |  |  |
| UNSM 6027 | Equinae | Equini | Equus | fraternus | M1 |  |  |
| UNSM 6027 | Equinae | Equini | Equus | fraternus | M2 |  |  |
| UNSM 6027 | Equinae | Equini | Equus | fraternus | M3 |  |  |
| UNSM 62895 | Equinae | Equini | Equus | idahoensis | M2 | Long Pine |  |
| UNSM 84000 | Equinae | Hipparionini | Neohipparion | republicanus | P3 | Valentine |  |


| UNSM 8515 | Equinae | Equini | Protohippus | perditus | P3 | Valentine |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 8633 | Equinae | Hipparionini | Neohipparion | sp. | P3 | Ash Hollow |  |
| UNSM 90576 | Anchitheriinae | "Anchitheriini" | Parahippus | cognatus | P3 | Valentine |  |
| UNSM 90641 | Equinae | Equini | Protohippus | sp. | P3 | Ash Hollow |  |
| UNSM 94445 | Equinae | Equini | Pliohippus | noblis |  | Ash Hollow |  |
| UNSM 96997 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | Valentine |  |
| UNSM 96999 | Equinae | Hipparionini | Pseudhipparion | sp. | P3 | Valentine |  |
| UNSM 9798 | Equinae | Equini | Protohippus | perditus | P3 | Valentine |  |
| UNSM 9800 | Equinae | Equini | Protohippus | perditus | M2 | Valentine |  |
| UNSM 98405 | Equinae | Equini | Pliohippus | mirabilis | M1 | Valentine |  |
| UNSM 98406 | Equinae | Equini | Pliohippus | mirabilis | M1 | Valentine |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | P2 |  |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | P3 |  |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | P4 |  |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | M1 |  |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | M2 |  |  |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | M3 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | P2 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | P3 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | P4 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | M1 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | M2 |  |  |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | M3 |  |  |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | P2 |  |  |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | P3 |  |  |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | P4 |  |  |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | M1 |  |  |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | M2 |  |  |


| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | M3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | P2 |  |  |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | P3 |  |  |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | P4 |  |  |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | M1 |  |  |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | M2 |  |  |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | M3 |  |  |
| UOMNCH F-21828 | Equinae | Equini | Equus | sp. |  | Fossil Lake |  |
| USNM 10314 | Equinae | Equini | Equus | sp. | P3 | Dragon Mountains |  |
| USNM 10482 | Equinae | Equini | Equus | "nevadanus" | P3 | Gravel |  |
| USNM 10571 | Equinae | Equini | Equus | leidyi |  | Tampa Bay |  |
| USNM 10622 | Equinae | Equini | Equus | leidyi | M3 | Tampa Bay |  |
| USNM 11160 | Equinae | Equini | Equus | lambei | P3 | Hunker Creek |  |
| USNM 11190 | Equinae | Equini | Equus | leidyi |  | Melbourne |  |
| USNM 11192 | Equinae | Equini | Equus | fraternus | P2 | Melbourne |  |
| USNM 11200 | Equinae | Equini | Equus | leidyi |  | Melbourne |  |
| USNM 11351 | Equinae | Equini | Equus | scotti |  | Sulpher Springs Valley |  |
| USNM 11372 | Equinae | Equini | Equus | complicatus |  |  |  |
| USNM 11374 | Equinae | Equini | Equus | complicatus | M3 |  |  |
| USNM 11412 | Equinae | Equini | Equus | leidyi | M3 |  |  |
| USNM 11623 | Equinae | Equini | Equus | complicatus |  |  |  |
| USNM 11658 | Equinae | Equini | Equus | sp. | P3 |  |  |
| USNM 1172 | Equinae | Equini | Equus | sp. |  | Phosphate Bed |  |
| USNM 11745 | Equinae | Hipparionini | Nannippus | phlegon |  | San Pedro Valley |  |
| USNM 11746 | Equinae | Hipparionini | Hipparion | sp. |  | San Pedro Valley |  |
| USNM 11819 | Equinae | Equini | Equus | leidyi |  | Savannah |  |
| USNM 11986 | Equinae | Equini | Equus | simplicidens | P3 | Glenns Ferry |  |


| USNM 12146 | Equinae | Equini | Equus | lambei | P3 | Sullivan Creek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 12804 | Equinae | Equini | Equus | lambei | P3 | Skull Cliff |  |
| USNM 12875 | Equinae | Equini | Equus | sp. |  | San Pedro Valley |  |
| USNM 13682 | Equinae | Equini | Equus | sp. |  | Lake Chetek |  |
| USNM 14417 | Equinae | Equini | Equus | sp. | P3 | Twin Falls |  |
| USNM 15219 | Equinae | Equini | Equus | leidyi |  | Lake Okechobee |  |
| USNM 15389 | Equinae | Equini | Equus | sp. |  |  |  |
| USNM 17082 | Equinae | Equini | Equus | sp. | P2 |  |  |
| USNM 171045 | Equinae | Hipparionini | Cormohipparion | emsliei |  | Maurilla |  |
| USNM 173623 | Equinae | Hipparionini | Neohipparion | eurystyle | P3 | Maurilla |  |
| USNM 17922 | Equinae | Equini | Equus | sp. | M3 | Cave |  |
| USNM 18205 | Equinae | Equini | Equus | sp. |  | Bone Valley |  |
| USNM 18206 | Equinae | Hipparionini | Nannippus | minor | M3 | Bone Valley |  |
| USNM 18207 | Equinae | Hipparionini | Nannippus | minor | P2 | Bone Valley |  |
| USNM 18208 | Equinae | Hipparionini | Nannippus | minor |  | Bone Valley |  |
| USNM 18212 | Equinae | Hipparionini | Neohipparion | phosphorum | M3 | Bone Valley |  |
| USNM 182197 | Equinae | Hipparionini | Nannippus | sp. |  | Lee Creek |  |
| USNM 18234 | Equinae | Hipparionini | Nannippus | minor | P2 | Bone Valley |  |
| USNM 18236 | Equinae | Hipparionini | Nannippus | minor |  | Bone Valley |  |
| USNM 18243 | Equinae | Hipparionini | Nannippus | minor |  | Bone Valley |  |
| USNM 18244 | Equinae | Hipparionini | Nannippus | minor |  | Bone Valley |  |
| USNM 18250 | Equinae | Hipparionini | Neohipparion | phosphorum |  | Bone Valley |  |
| USNM 187652 | Equinae | Equini | Equus | sp. |  |  |  |
| USNM 1907 | Equinae | Equini | Equus | complicatus |  | Lander's Mill |  |
| USNM 1932 | Equinae | Equini | Protohippus | fossulatus | M2 | Loup Fork |  |
| USNM 1933 | Equinae | Equini | Protohippus | mirabilis | P3 | Loup Fork |  |
| USNM 20105 | Equinae | Hipparionini | Neohipparion | phosphorum |  | Bone Valley |  |


| USNM 23892 | Equinae | Hipparionini | Hipparion | forcei |  | Santa Margarita SS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 23903 | Equinae | Equini | Equus | simplicidens | P3 | Glenns Ferry |  |
| USNM 244299 | Equinae | Hipparionini | Neohipparion | sp. |  | Valentine |  |
| USNM 25142 | Anchitheriinae | "Anchitheriini" | Archaeohippus | minimus | P3 | Madison Valley |  |
| USNM 25583 | Equinae | Equini | Equus | littoralis |  | Melbourne |  |
| USNM 25683 | Equinae | Equini | Equus | sp. |  | Pearl River |  |
| USNM 2572 | Equinae | Hipparionini | Hippotherium | sp. | P3 | Tesuque |  |
| USNM 2573 | Equinae | "Merychippini" | Merychippus | sp. | M2 | Pawnee Creek |  |
| USNM 262545 | Equinae | Equini | Equus | sp. | P3 | Lost Chicken Creek |  |
| USNM 26324 | Equinae | Equini | Equus | complicatus |  | Brunswick |  |
| USNM 299566 | Equinae | Hipparionini | Cormohipparion | sp. |  | Parker Creek |  |
| USNM 3292 | Equinae | Hipparionini | Hipparion | plicatile |  |  |  |
| USNM 330994 | Equinae | Equini | Protohippus | gidleyi | P2 | Maurilla |  |
| USNM 351924 | Anchitheriinae | "Anchitheriini" | Megahippus | mckennai | P4 | Valentine |  |
| USNM 390722 | Equinae | Hipparionini | Cormohipparion | emsliei |  | Maurilla |  |
| USNM 391594 | Equinae | Equini | Protohippus | gidleyi |  | Maurilla |  |
| USNM 391852 | Equinae | Hipparionini | Nannippus | phlegon |  | Neuse River |  |
| USNM 391854 | Equinae | Hipparionini | Nannippus | phlegon |  | Neuse River |  |
| USNM 391855 | Equinae | Hipparionini | Nannippus | phlegon |  | Neuse River |  |
| USNM 391856 | Equinae | Hipparionini | Nannippus | phlegon |  | Neuse River |  |
| USNM 391864 | Equinae | Hipparionini | Nannippus | phlegon |  | Neuse River |  |
| USNM 391865 | Equinae | Hipparionini | Nannippus | phlegon | M3 | Neuse River |  |
| USNM 413207 | Equinae | Hipparionini | Hipparion | sp. | M3 |  |  |
| USNM 413212 | Equinae | Hipparionini | Hipparion | sp. |  |  |  |
| USNM 413671 | Equinae | "Merychippini" | Merychippus | sp. | M2 | Willow Grove |  |
| $\begin{gathered} \hline \text { USNM 416338/UF } \\ 17570 \\ \hline \end{gathered}$ | Equinae | Hipparionini | Nannippus | minor | P3 | Bone Valley |  |
| USNM 420682 | Equinae | Hipparionini | Nannippus | gratus | P2 | Clarendon |  |


| USNM 4999 | Equinae | Equini | Equus | scotti | P3 | Hay Spring |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 520 | Equinae | Equini | Equus | leidyi |  |  |  |
| USNM 521290 | Equinae | Equini | Protohippus | gidleyi |  | Maurilla |  |
| USNM 540677 | Equinae | Equini | Equus | sp. | M3 | El Hatillo |  |
| USNM 5446 | Equinae | Hipparionini | Pseudhipparion | gratum | M3 |  |  |
| USNM 5447 | Equinae | Hipparionini | Pseudhipparion | gratum |  |  |  |
| USNM 555 | Equinae | Equini | Equus | sp. |  |  |  |
| USNM 557 | Equinae | Equini | Equus | pacificus | P3 | Summer Lake |  |
| USNM 569 | Equinae | Equini | Pliohippus | mirabilis |  | Valentine |  |
| USNM 573 | Anchitheriinae | "Anchitheriini" | Hypohippus | affinis |  | Valentine |  |
| USNM 584 | Equinae | Hipparionini | Hipparion | affine |  |  |  |
| USNM 587 | Equinae | Hipparionini | Pseudhipparion | gratum |  |  |  |
| USNM 619 | Equinae | Equini | Protohippus | perditus | M2 | Valentine |  |
| USNM 667 | Equinae | Equini | Equus | excelsus | M2 | Platte River Gravel |  |
| USNM 7084 | Equinae | Equini | Equus | complicatus |  | Avery Island |  |
| USNM 726 | Equinae | Equini | Equus | complicatus | P2 | Avery Island |  |
| USNM 7507 | Equinae | Equini | Protohippus | placidus | P3 | Ogallala |  |
| USNM 7514 | Equinae | Hipparionini | Cormohipparion | sp. |  | Ogallala |  |
| USNM 7530 | Equinae | Hipparionini | Neohipparion | affine |  | Ogallala |  |
| USNM 7700 | Equinae | Equini | Equus | scotti | P3 | Yukon River |  |
| USNM 7868 | Equinae | Equini | Equus | hatcheri | P3 | Hay Springs |  |
| USNM 7935 | Equinae | Equini | Equus | scotti |  |  |  |
| USNM 8265 | Equinae | Hipparionini | Hipparion | plicatile | M2 | Bone Valley |  |
| USNM 8268 | Equinae | Equini | Equus | sp. |  | Palmetto |  |
| USNM 8426 | Equinae | Equini | Equus | lambei | P3 |  |  |
| USNM 8642 | Equinae | Equini | Equus | holmesi | P3 | Sulpher Spring |  |
| USNM 876 | Equinae | Equini | Equus | scotti |  |  |  |


| USNM 8813 | Equinae | Equini | Equus | sp. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 882 | Equinae | Equini | Equus | fraternus |  |  |  |
| USNM 8945 | Equinae | Equini | Equus | leidyi |  |  |  |
| USNM 9464 | Equinae | Equini | Equus | pacificus |  |  |  |
| UWBM 17938 | Equinae | "Merychippini" | Merychippus | sp. |  | Virgin Valley |  |
| UWBM 19200 | Equinae | Equini | Equus | lambei |  |  |  |
| UWBM 19201 | Equinae | Equini | Equus | lambei |  |  |  |
| UWBM 19202 | Equinae | Equini | Equus | lambei |  |  |  |
| UWBM 19203 | Equinae | Equini | Equus | lambei |  |  |  |
| UWBM 22278 | Equinae | Equini | Equus | simplicidens | P2 | Tehama |  |
| UWBM 22296 | Equinae | Equini | Equus | simplicidens |  | Tehama |  |
| UWBM 22297 | Equinae | Equini | Equus | simplicidens | M2 | Tehama |  |
| UWBM 22298 | Equinae | Equini | Equus | simplicidens |  | Tehama |  |
| UWBM 22299 | Equinae | Equini | Equus | simplicidens | P3 | Tehama |  |
| UWBM 22300 | Equinae | Equini | Equus | simplicidens | P4 | Tehama |  |
| UWBM 28027 | Equinae | Equini | Equus | sp. |  |  |  |
| UWBM 28027 | Equinae | Equini | Equus | sp. |  |  |  |
| UWBM 40927 | Anchitheriinae | "Anchitheriini" | Desmatippus | sp. |  | Mascall |  |
| UWBM 40927 | Anchitheriinae | "Anchitheriini" | Desmatippus | sp. |  | Mascall |  |
| UWBM 42136 | Equinae | Equini | Equus | simplicedens |  | Ringold |  |
| UWBM 42323 | Equinae | Equini | Equus | simplicedens | M3 | Ringold |  |
| UWBM 42331 | Equinae | Equini | Equus | simplicedens |  | Ringold |  |
| UWBM 45033 | Equinae | Equini | Equus | simplicedens | M1 | Ringold |  |
| UWBM 45033 | Equinae | Equini | Equus | simplicedens | M2 | Ringold |  |
| UWBM 45033 | Equinae | Equini | Equus | simplicedens | M3 | Ringold |  |
| UWBM 45102 | Equinae | Equini | Equus | simplicedens |  | Ringold |  |
| UWBM 48724 | Equinae | Hipparionini | Hipparion | sp. |  | Shutler |  |


| UWBM 50008 | Equinae | Equini | Equus | sp. | M3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UWBM 50008 | Equinae | Equini | Equus | sp. | M3 |  |  |
| UWBM 58727 | Equinae | Equini | Equus | simplicedens |  | Glenns Ferry |  |
| UWBM 58727 | Equinae | Equini | Equus | simplicedens | P3 | Glenns Ferry |  |
| UWBM 58727 | Equinae | Equini | Equus | simplicedens | M1 | Glenns Ferry |  |
| UWBM 58727 | Equinae | Equini | Equus | simplicedens | M2 | Glenns Ferry |  |
| UWBM 58727 | Equinae | Equini | Equus | simplicedens | M3 | Glenns Ferry |  |
| UWBM 59241 | Equinae | Hipparionini | Nannippus | sp. | P3 | Dalles Group |  |
| UWBM 59241 | Equinae | Hipparionini | Nannippus | sp. | P4 | Dalles Group |  |
| UWBM 59241 | Equinae | Hipparionini | Nannippus | sp. | M2 | Dalles Group |  |
| UWBM 59241 | Equinae | Hipparionini | Nannippus | sp. | M3 | Dalles Group |  |
| UWBM 61573 | Equinae | Hipparionini | Nannippus | sp. | P2 | McKay |  |
| UWBM 71401 | Equinae | "Merychippini" | Merychippus | sp. |  | Flint Creek |  |
| UWBM 71401 | Equinae | "Merychippini" | Merychippus | sp. |  | Flint Creek |  |
| UWBM 75621 | Equinae | Equini | Equus | sp. |  | Fossil Lake |  |
| UWBM 80705 | Equinae | Equini | Equus | simplicedens |  | Ringold |  |
| UWBM 87138 | Equinae | Equini | Equus | sp. | P4 |  |  |
| UWBM 87138 | Equinae | Equini | Equus | sp. | M2 |  |  |
| UWBM 87138 | Equinae | Equini | Equus | sp. | M3 |  |  |


| Specimen \# | State | Region | Epoch | NALMA | True Area ( $\mathrm{cm}^{2}$ ) | Enamel Length (cm) | OEI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 100077 | Arizona | Great Basin | Miocene | Hemphillian | 6.997 | 24.462 | 9.248 |
| AMNH F:AM 104769 | Nebraska | Great Plains | Miocene | Clarendonian | 2.842 | 18.971 | 11.253 |
| AMNH F:AM 107596 | Nebraska | Great Plains | Miocene | Clarendonian | 6.41 | 19.674 | 7.771 |
| AMNH F:AM 108233 | New Mexico | Great Basin | Miocene | Barstovian | 5.315 | 23.296 | 10.105 |
| AMNH F:AM 109883 | Texas | Great Plains | Miocene | Barstovian | 3.411 | 18.36 | 9.941 |
| AMNH F:AM 110131 | California | Great Basin | Miocene | Barstovian | 2.561 | 16.218 | 10.134 |
| AMNH F:AM 110222 | California | Great Basin | Miocene | Barstovian | 5.547 | 23.636 | 10.036 |
| AMNH F:AM 110234 | California | Great Basin | Miocene | Barstovian | 3.169 | 17.18 | 9.651 |
| AMNH F:AM 110343 | Nebraska | Great Plains | Miocene | Barstovian | 4.804 | 17.822 | 8.131 |
| AMNH F:AM 111728 | Texas | Great Plains | Miocene | Clarendonian | 6.421 | 24.598 | 9.707 |
| AMNH F:AM 114169 | Texas | Great Plains | Miocene | Clarendonian | 6.218 | 23.545 | 9.442 |
| AMNH F:AM 116143 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 5.162 | 22.999 | 10.123 |
| AMNH F:AM 116148 | California | Great Basin | Pleistocene | Irv/Rancho | 5.962 | 22.424 | 9.184 |
| AMNH F:AM 116150 | Mexico | Gulf Coast | Pleistocene | Irv/Rancho | 7.347 | 20.957 | 7.732 |
| AMNH F:AM 116156 | Texas | Great Plains | Pleistocene | Irv/Rancho | 7.392 | 23.748 | 8.735 |
| AMNH F:AM 116161 | New Mexico | Great Basin | Pleistocene | Irv/Rancho | 8.871 | 25.924 | 8.704 |
| AMNH F:AM 116164 | Texas | Great Plains | Miocene | Hemphillian | 8.395 | 25.486 | 8.796 |
| AMNH F:AM 116179 | New Mexico | Great Basin | Pleistocene | Irv/Rancho | 9.934 | 30.75 | 9.756 |
| AMNH F:AM 116194 | Oklahoma | Great Plains | Miocene | Hemphillian | 4.572 | 22.46 | 10.504 |
| AMNH F:AM 116792 | Oklahoma | Great Plains | Miocene | Hemphillian | 7.816 | 29.622 | 10.596 |
| AMNH F:AM 116868 | Nebraska | Great Plains | Miocene | Barstovian | 2.653 | 17.784 | 10.918 |
| AMNH F:AM 117045 | Nebraska | Great Plains | Miocene | Clarendonian | 2.9 | 20.879 | 12.261 |


| AMNH F:AM 118223 | Texas | Great Plains | Miocene | Clarendonian | 2.33 | 13.004 | 8.519 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 125218 | South Dakota | Great Plains | Miocene | Clarendonian | 4.18 | 19.063 | 9.324 |
| AMNH F:AM 125488 | Texas | Great Plains | Miocene | Clarendonian | 6.066 | 22.353 | 9.076 |
| AMNH F:AM 125995 | Colorado | Great Plains | Miocene | Barstovian | 4.191 | 21.181 | 10.346 |
| AMNH F:AM 126899 | Nebraska | Great Plains | Miocene | Barstovian | 3.516 | 19.557 | 10.430 |
| AMNH F:AM 127207 | Nebraska | Great Plains | Miocene | Hemphillian | 1.799 | 11.825 | 8.816 |
| AMNH F:AM 127263 | California | Great Basin | Miocene | Barstovian | 4.39 | 17.063 | 8.144 |
| AMNH F:AM 127569 | Texas | Great Plains | Miocene | Clarendonian | 2.532 | 15.318 | 9.627 |
| AMNH F:AM 127992 | Colorado | Great Plains | Miocene | Clarendonian | 3.262 | 17.418 | 9.644 |
| AMNH F:AM 128091 | Oklahoma | Great Plains | Miocene | Hemphillian | 4.536 | 17.755 | 8.337 |
| AMNH F:AM 128092 | Oklahoma | Great Plains | Miocene | Hemphillian | 4.139 | 18.327 | 9.008 |
| AMNH F:AM 128154 | New Mexico | Great Basin | Miocene | Barstovian | 4.3 | 23.183 | 11.180 |
| AMNH F:AM 128270 | Oklahoma | Great Plains | Miocene | Hemphillian | 5.791 | 20.689 | 8.597 |
| AMNH F:AM 128444 | Oklahoma | Great Plains | Miocene | Hemphillian | 5.175 | 17.909 | 7.873 |
| AMNH F:AM 142515 | Nebraska | Great Plains | Miocene | Clarendonian | 3.044 | 16.464 | 9.437 |
| AMNH F:AM 143268 | Texas | Great Plains | Miocene | Clarendonian | 5.123 | 22.159 | 9.790 |
| AMNH F:AM 143273 | New Mexico | Great Basin | Miocene | Barstovian | 5.73 | 26.763 | 11.180 |
| AMNH F:AM 14396 | California | California | Pleistocene | Irv/Rancho | 8.263 | 28.303 | 9.846 |
| AMNH F:AM 20077 | Texas | Great Plains | Pliocene | Blancan | 11.899 | 28.732 | 8.329 |
| AMNH F:AM 21085 | California | Great Basin | Miocene | Barstovian | 6.117 | 18.358 | 7.423 |
| AMNH F:AM 30702 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.48 | 28.443 | 10.400 |
| AMNH F:AM 30703 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.128 | 25.975 | 10.493 |
| AMNH F:AM 42810 | Arizona | Great Basin | Pleistocene | Irv/Rancho | 5.789 | 25.17 | 10.461 |
| AMNH F:AM 42811 | Arizona | Great Basin | Pleistocene | Irv/Rancho | 6.068 | 22.448 | 9.113 |
| AMNH F:AM 60061 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.62 | 23.243 | 9.034 |


| AMNH F:AM 60062 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.638 | 26.301 | 10.208 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 60066 | Alaska | Polar | Pleistocene | Irv/Rancho | 8.271 | 31.574 | 10.979 |
| AMNH F:AM 60300 | South Dakota | Great Plains | Miocene | Clarendonian | 3.283 | 17.991 | 9.929 |
| AMNH F:AM 60327 | Texas | Great Plains | Miocene | Clarendonian | 2.142 | 15.248 | 10.418 |
| AMNH F:AM 60420 | Texas | Great Plains | Miocene | Clarendonian | 2.14 | 13.069 | 8.934 |
| AMNH F:AM 60500 | Nebraska | Great Plains | Miocene | Clarendonian | 11.457 | 26.081 | 7.705 |
| AMNH F:AM 60561 | Nebraska | Great Plains | Miocene | Clarendonian | 6.406 | 18.565 | 7.335 |
| AMNH F:AM 60618 | Nebraska | Great Plains | Miocene | Barstovian | 5.28 | 18.249 | 7.942 |
| AMNH F:AM 60627 | Texas | Great Plains |  |  | 3.389 | 15.931 | 8.654 |
| AMNH F:AM 60700 | Nebraska | Great Plains | Miocene | Clarendonian | 7.699 | 22.95 | 8.271 |
| AMNH F:AM 60720 | Colorado | Great Plains | Miocene | Barstovian | 4.452 | 18.377 | 8.710 |
| AMNH F:AM 60878 | Texas | Great Plains | Miocene | Clarendonian | 6.859 | 27.391 | 10.459 |
| AMNH F:AM 60880 | Texas | Great Plains | Miocene | Clarendonian | 5.003 | 24.383 | 10.901 |
| AMNH F:AM 60904 | Texas | Great Plains | Miocene | Clarendonian | 7.996 | 25.258 | 8.932 |
| AMNH F:AM 60905 | New Mexico | Great Basin | Miocene | Barstovian | 5.061 | 21.399 | 9.512 |
| AMNH F:AM 69500 | New Mexico | Great Basin | Miocene | Clarendonian | 4.275 | 21.225 | 10.265 |
| AMNH F:AM 69503 | New Mexico | Great Basin | Miocene | Clarendonian | 5.14 | 21.828 | 9.628 |
| AMNH F:AM 69506 | Colorado | Great Plains | Miocene | Barstovian | 2.872 | 14.885 | 8.783 |
| AMNH F:AM 69550 | Texas | Great Plains |  |  | 3.32 | 17.118 | 9.395 |
| AMNH F:AM 69560 | Nebraska | Great Plains | Miocene | Barstovian | 3.307 | 19.032 | 10.466 |
| AMNH F:AM 69604 | Nebraska | Great Plains | Miocene | Clarendonian | 3.505 | 17.432 | 9.311 |
| AMNH F:AM 70003 | Nebraska | Great Plains | Miocene | Clarendonian | 3.164 | 16.09 | 9.046 |
| AMNH F:AM 70112 |  |  |  |  | 1.954 | 12.615 | 9.025 |
| AMNH F:AM 70439 | Texas | Great Plains | Miocene | Clarendonian | 2.653 | 17.434 | 10.704 |
| AMNH F:AM 71369 | Montana | Great Plains | Miocene | Barstovian | 4.372 | 22.146 | 10.591 |


| AMNH F:AM 71377 | Nevada | Great Basin | Miocene | Hemphillian | 3.36 | 14.878 | 8.117 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 71405 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.374 | 25.384 | 10.054 |
| AMNH F:AM 71463 | Alaska | Polar | Pleistocene | Irv/Rancho | 5.265 | 23.796 | 10.371 |
| AMNH F:AM 71502 | Nebraska | Great Plains | Miocene | Barstovian | 3.735 | 15.75 | 8.150 |
| AMNH F:AM 71508 | Nebraska | Great Plains | Miocene | Barstovian | 1.854 | 12.793 | 9.395 |
| AMNH F:AM 71592 | Colorado | Great Plains | Miocene | Barstovian | 1.0094 | 9.528 | 9.484 |
| AMNH F:AM 71887 | Nebraska | Great Plains | Miocene | Clarendonian | 4.636 | 25.012 | 11.617 |
| AMNH F:AM 71891 |  |  |  |  | 4.587 | 19.43 | 9.072 |
| AMNH F:AM 73940 | Texas | Great Plains |  |  | 3.8 | 20.291 | 10.409 |
| AMNH F:AM 73950 |  |  |  |  | 2.482 | 18.552 | 11.776 |
| AMNH F:AM 73951 | Texas | Great Plains | Miocene | Barstovian | 2.192 | 15.083 | 10.187 |
| AMNH F:AM 74230 | New Mexico | Great Basin | Miocene | Hemphillian | 5.624 | 21.297 | 8.980 |
| AMNH F:AM 74273 | Texas | Great Plains | Miocene | Hemphillian | 3.866 | 16.185 | 8.232 |
| AMNH F:AM 74274 | Texas | Great Plains | Miocene | Hemphillian | 2.778 | 13.342 | 8.005 |
| AMNH F:AM 74404 | Texas | Great Plains | Miocene | Clarendonian | 3.271 | 15.811 | 8.742 |
| AMNH F:AM 74416 | Texas | Great Plains | Miocene | Clarendonian | 3.662 | 18.575 | 9.707 |
| AMNH F:AM 8105 | Montana | Great Plains | Miocene | Barstovian | 4.238 | 18.49 | 8.982 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 6.086 | 17.473 | 7.083 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 5.362 | 19.288 | 8.330 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 4.917 | 18.999 | 8.568 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 4.341 | 17.902 | 8.592 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 4.231 | 18.117 | 8.808 |
| AMNH F:AM 87201 | Kansas | Great Plains | Miocene | Hemphillian | 4.094 | 16.32 | 8.066 |
| AMNH F:AM 87301 | Nebraska | Great Plains | Miocene | Barstovian | 3.458 | 17.272 | 9.288 |
| AMNH F:AM 87429 | Nebraska | Great Plains | Pliocene | Blancan | 7.375 | 25.25 | 9.298 |


| AMNH F:AM 92470 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.43 | 18.242 | 8.667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH F:AM 95588 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 6.038 | 30.289 | 12.326 |
| AMNH F:AM 99247 | Florida | Gulf Coast | Pliocene | Blancan | 5.438 | 22.284 | 9.556 |
| AMNH FM 10584 | Texas | Great Plains | Miocene | Clarendonian | 3.963 | 19.236 | 9.663 |
| AMNH FM 10607 | Texas | Great Plains | Pleistocene | Irv/Rancho | 8.239 | 26.481 | 9.226 |
| AMNH FM 10612 | Texas | Great Plains | Pleistocene | Irv/Rancho | 7.566 | 22.859 | 8.310 |
| AMNH FM 10628 | Texas | Great Plains | Pleistocene | Irv/Rancho | 9.787 | 35.83 | 11.453 |
| AMNH FM 10865 | South Dakota | Great Plains |  |  | 5.769 | 25.951 | 10.804 |
| AMNH FM 109855 | New Mexico | Great Basin | Miocene | Barstovian | 4.364 | 17.045 | 8.159 |
| AMNH FM 127671 | Honduras | Gulf Coast | Pleistocene | Irv/Rancho | 5.968 | 26.764 | 10.956 |
| AMNH FM 13714 | South Carolina | Eastern US | Pleistocene | Irv/Rancho | 6.036 | 31.946 | 13.003 |
| AMNH FM 13770 |  |  |  |  | 6.972 | 19.189 | 7.267 |
| AMNH FM 140736 | New Mexico | Great Basin | Miocene | Barstovian | 4.165 | 18.888 | 9.255 |
| AMNH FM 14180 |  |  |  |  | 3.491 | 16.08 | 8.606 |
| AMNH FM 142647 | New Mexico | Great Basin | Miocene | Barstovian | 4.249 | 21.476 | 10.419 |
| AMNH FM 14296 | Mississippi | Gulf Coast | Pleistocene | Irv/Rancho | 9.368 | 34.475 | 11.264 |
| AMNH FM 143258 | California | Great Basin | Miocene | Barstovian | 4.612 | 17.28 | 8.046 |
| AMNH FM 15549 | Mexico | Gulf Coast | Pleistocene | Irv/Rancho | 4.671 | 23.741 | 10.985 |
| AMNH FM 17224 |  |  |  |  | 6.648 | 24.88 | 9.650 |
| AMNH FM 18297 | Nebraska | Great Plains | Miocene | Barstovian | 2.649 | 14.096 | 8.661 |
| AMNH FM 18299 | Nebraska | Great Plains | Miocene | Barstovian | 3.109 | 16.651 | 9.443 |
| AMNH FM 18655 | Arizona | Great Basin | Pliocene | Blancan | 10.924 | 30.577 | 9.251 |
| AMNH FM 18972 | Nebraska | Great Plains | Miocene | Hemphillian | 4.626 | 18.603 | 8.649 |
| AMNH FM 22733 | Louisiana | Gulf Coast | Pleistocene | Irv/Rancho | 6.657 | 27.172 | 10.531 |
| AMNH FM 27834 | Louisiana | Gulf Coast | Pleistocene | Irv/Rancho | 7.077 | 31.232 | 11.740 |


| AMNH FM 32551 | Idaho | Columbia Plateau | Pliocene | Blancan | 9.144 | 30.447 | 10.069 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMNH FM 39407 | Missouri | Great Plains | Pleistocene | Irv/Rancho | 6.081 | 27.783 | 11.267 |
| AMNH FM 55595 | South Carolina | Eastern US | Pleistocene | Irv/Rancho | 5.761 | 25.552 | 10.646 |
| AMNH FM 8175 | Oregon | Columbia Plateau | Miocene | Barstovian | 3.176 | 17.755 | 9.963 |
| AMNH FM 8347 | Nebraska | Great Plains | Miocene | Clarendonian | 4.007 | 21.534 | 10.758 |
| AMNH FM 9201 | South Carolina | Eastern US | Pleistocene | Irv/Rancho | 4.809 | 24.023 | 10.955 |
| AMNH FM 9203 | South Carolina | Eastern US | Pleistocene | Irv/Rancho | 5.461 | 28.599 | 12.238 |
| AMNH FM 9395 | Colorado | Great Plains | Pleistocene | Barstovian | 4.835 | 15.287 | 6.952 |
| AMNH FM 9400 | Colorado | Great Plains | Miocene | Clarendonian | 2.7 | 14.844 | 9.034 |
| AMNH FM 9820 | South Dakota | Great Plains |  |  | 5.233 | 19.251 | 8.415 |
| AMNH FM 9967 | Pennsylvania | Eastern US | Pleistocene | Irv/Rancho | 5.201 | 23.84 | 10.454 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 3.648 | 16.505 | 8.641 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 4.008 | 15.656 | 7.820 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 4.584 | 16.729 | 7.814 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 4.638 | 17.339 | 8.051 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 4.289 | 18.302 | 8.837 |
| CIT 363 | Oregon | Columbia Plateau | Miocene | Barstovian | 3.726 | 17.244 | 8.933 |
| JODA 10014 | Oregon | Columbia Plateau | Miocene | Clarendonian | 4.2 | 23.086 | 11.265 |
| JODA 10703 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.196 | 13.031 | 8.793 |
| JODA 1079, A | Oregon | Columbia Plateau | Miocene | Barstovian | 2.499 | 14.944 | 9.453 |
| JODA 1079, A | Oregon | Columbia Plateau | Miocene | Barstovian | 2.736 | 16.116 | 9.743 |
| JODA 1079, A | Oregon | Columbia Plateau | Miocene | Barstovian | 2.647 | 16.973 | 10.432 |
| JODA 1079, A | Oregon | Columbia Plateau | Miocene | Barstovian | 2.301 | 15.083 | 9.943 |
| JODA 1079, A | Oregon | Columbia Plateau | Miocene | Barstovian | 2.219 | 15.445 | 10.368 |
| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.478 | 14.645 | 9.303 |


| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.262 | 16.149 | 10.737 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.575 | 16.452 | 10.253 |
| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.263 | 15.504 | 10.306 |
| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.419 | 15.807 | 10.163 |
| JODA 1316 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.716 | 13.406 | 10.234 |
| JODA 1318 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.463 | 14.888 | 9.486 |
| JODA 1318 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.418 | 15.994 | 10.286 |
| JODA 1318 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.206 | 15.565 | 10.480 |
| JODA 1318 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.23 | 15.632 | 10.468 |
| JODA 1318 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.505 | 12.838 | 10.465 |
| JODA 1332 | Oregon | Columbia Plateau | Miocene | Barstovian | 0.965 | 7.41 | 7.543 |
| JODA 1332 | Oregon | Columbia Plateau | Miocene | Barstovian | 0.94 | 7.367 | 7.598 |
| JODA 1332 | Oregon | Columbia Plateau | Miocene | Barstovian | 0.92 | 9.343 | 9.741 |
| JODA 1332 | Oregon | Columbia Plateau | Miocene | Barstovian | 0.939 | 8.827 | 9.109 |
| JODA 1332 | Oregon | Columbia Plateau | Miocene | Barstovian | 0.391 | 5.176 | 8.278 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.674 | 19.134 | 8.850 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.908 | 20.646 | 9.319 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.658 | 21.212 | 9.828 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.534 | 19.822 | 9.309 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.232 | 20.688 | 10.056 |
| JODA 1333 | Oregon | Columbia Plateau | Miocene | Hemphillian | 2.843 | 17.237 | 10.223 |
| JODA 1979 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.538 | 17.451 | 10.954 |
| JODA 1980 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.337 | 15.78 | 10.322 |
| JODA 1981 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.336 | 15.001 | 9.815 |
| JODA 1982 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.425 | 16.656 | 10.696 |


| JODA 1987 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.292 | 16.437 | 10.857 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JODA 1988 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.689 | 20.008 | 12.201 |
| JODA 1990 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.689 | 20.008 | 12.201 |
| JODA 1997 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.072 | 13.926 | 9.675 |
| JODA 1998 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.802 | 16.977 | 10.142 |
| JODA 2001 | Oregon | Columbia Plateau | Miocene | Hemphillian | 3.19 | 19.583 | 10.964 |
| JODA 2066 | Oregon | Columbia Plateau | Miocene | Hemphillian | 3.776 | 19.548 | 10.060 |
| JODA 2069 | Oregon | Columbia Plateau | Miocene | Hemphillian | 5.142 | 20.243 | 8.927 |
| JODA 2072 | Oregon | Columbia Plateau | Miocene | Hemphillian | 3.937 | 17.621 | 8.881 |
| JODA 2402 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.922 | 13.412 | 9.674 |
| JODA 2405 | Oregon | Columbia Plateau | Miocene | Barstovian | 2 | 12.789 | 9.043 |
| JODA 2406 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.761 | 13.744 | 10.357 |
| JODA 2407 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.865 | 13.112 | 9.601 |
| JODA 2408 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.79 | 11.697 | 8.743 |
| JODA 2409 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.03 | 10.406 | 7.304 |
| JODA 2428 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.291 | 9.832 | 8.653 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.209 | 10.862 | 7.308 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.666 | 13.48 | 8.256 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.727 | 14.193 | 8.595 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.745 | 12.958 | 7.821 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.677 | 14.393 | 8.797 |
| JODA 2435 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.365 | 13.778 | 8.959 |
| JODA 2446 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.846 | 19.043 | 11.288 |
| JODA 2564 | Oregon | Columbia Plateau | Miocene | Hemphillian | 3.912 | 26.943 | 13.622 |
| JODA 293 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.373 | 17.1 | 11.101 |


| JODA 294 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.536 | 16.971 | 10.657 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JODA 561 | Oregon | Columbia Plateau | Miocene | Hemphillian | 3.793 | 20.189 | 10.366 |
| MVZ 117884 |  |  | Recent | Recent | 6.291 | 24.088 | 9.604 |
| MVZ 117884 |  |  | Recent | Recent | 6.295 | 23.219 | 9.254 |
| MVZ 117884 |  |  | Recent | Recent | 6.455 | 22.964 | 9.039 |
| MVZ 117884 |  |  | Recent | Recent | 5.423 | 19.163 | 8.229 |
| MVZ 117884 |  |  | Recent | Recent | 4.9 | 18.833 | 8.508 |
| MVZ 117884 |  |  | Recent | Recent | 3.854 | 17.201 | 8.762 |
| MVZ 117885 |  |  | Recent | Recent | 5.643 | 19.015 | 8.005 |
| MVZ 117885 |  |  | Recent | Recent | 5.594 | 19.55 | 8.266 |
| MVZ 117885 |  |  | Recent | Recent | 5.09 | 19.4 | 8.599 |
| MVZ 117885 |  |  | Recent | Recent | 4.301 | 16.554 | 7.982 |
| MVZ 117885 |  |  | Recent | Recent | 4.262 | 16.617 | 8.049 |
| MVZ 117885 |  |  | Recent | Recent | 3.596 | 15.598 | 8.225 |
| MVZ 117887 |  |  | Recent | Recent | 5.685 | 21.42 | 8.984 |
| MVZ 117887 |  |  | Recent | Recent | 5.307 | 20.327 | 8.824 |
| MVZ 117887 |  |  | Recent | Recent | 5.375 | 21.128 | 9.113 |
| MVZ 117887 |  |  | Recent | Recent | 4.307 | 17.864 | 8.608 |
| MVZ 117887 |  |  | Recent | Recent | 3.859 | 18.425 | 9.379 |
| MVZ 117887 |  |  | Recent | Recent | 3.316 | 16.325 | 8.965 |
| MVZ 117888 |  |  | Recent | Recent | 5.636 | 21.309 | 8.976 |
| MVZ 117888 |  |  | Recent | Recent | 5.596 | 20.438 | 8.640 |
| MVZ 117888 |  |  | Recent | Recent | 5.523 | 20.081 | 8.545 |
| MVZ 117888 |  |  | Recent | Recent | 5.397 | 19.094 | 8.219 |
| MVZ 117888 |  |  | Recent | Recent | 4.818 | 18.611 | 8.479 |


| MVZ 117888 |  |  | Recent | Recent | 3.569 | 16.92 | 8.956 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MVZ 154358 |  |  | Recent | Recent | 4.735 | 16.469 | 7.568 |
| MVZ 154358 |  |  | Recent | Recent | 5.159 | 17.936 | 7.897 |
| MVZ 154358 |  |  | Recent | Recent | 5.287 | 18.543 | 8.064 |
| MVZ 154358 |  |  | Recent | Recent | 4.483 | 16.168 | 7.636 |
| MVZ 154358 |  |  | Recent | Recent | 4.373 | 16.386 | 7.836 |
| MVZ 154358 |  |  | Recent | Recent | 4.059 | 16.384 | 8.132 |
| MVZ 55150 |  |  | Recent | Recent | 7.841 | 22.652 | 8.089 |
| MVZ 55150 |  |  | Recent | Recent | 7.595 | 23.764 | 8.623 |
| MVZ 55150 |  |  | Recent | Recent | 7.52 | 24.842 | 9.059 |
| MVZ 55150 |  |  | Recent | Recent | 6.464 | 20.978 | 8.251 |
| MVZ 55150 |  |  | Recent | Recent | 6.813 | 21.928 | 8.401 |
| MVZ 55150 |  |  | Recent | Recent | 6.016 | 20.629 | 8.411 |
| SDSM 12195 | South Dakota | Great Plains | Pleistocene | Irv/Rancho | 9.914 | 34.932 | 11.094 |
| SDSM 22027 | Washington | Columbia Plateau | Pliocene | Blancan | 5.788 | 24.504 | 10.185 |
| SDSM 22032 | Washington | Columbia Plateau | Pliocene | Blancan | 6.862 | 26.805 | 10.233 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 2.699 | 12.496 | 7.606 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 3.191 | 14.976 | 8.384 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 3.244 | 15.285 | 8.486 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 2.824 | 6.665 | 3.966 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 2.877 | 15.653 | 9.228 |
| SDSM 505 | Nebraska | Great Plains | Miocene | Barstovian | 3.023 | 15.418 | 8.868 |
| SDSM 5057 | Nebraska | Great Plains | Miocene | Barstovian | 2.939 | 14.295 | 8.338 |
| SDSM 5057 | Nebraska | Great Plains | Miocene | Barstovian | 3.022 | 15.582 | 8.963 |
| SDSM 53217 | South Dakota | Great Plains | Miocene | Clarendonian | 2.276 | 15.258 | 10.114 |


| SDSM 53217 F1 | South Dakota | Great Plains | Miocene | Clarendonian | 2.343 | 15.36 | 10.035 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDSM 53217-12 | South Dakota | Great Plains | Miocene | Clarendonian | 4.44 | 22.671 | 10.759 |
| SDSM 53217-17 | South Dakota | Great Plains | Miocene | Clarendonian | 5.392 | 24.991 | 10.762 |
| SDSM 53217-3 | South Dakota | Great Plains | Miocene | Clarendonian | 5.465 | 28.41 | 12.153 |
| SDSM 53217-30 | South Dakota | Great Plains | Miocene | Clarendonian | 5.356 | 24.968 | 10.789 |
| SDSM 53217-31 | South Dakota | Great Plains | Miocene | Clarendonian | 4.03 | 23.094 | 11.504 |
| SDSM 53217-34 | South Dakota | Great Plains | Miocene | Clarendonian | 4.147 | 25.026 | 12.289 |
| SDSM 53217-40 | South Dakota | Great Plains | Miocene | Clarendonian | 4.896 | 24.847 | 11.229 |
| SDSM 53217-5 | South Dakota | Great Plains | Miocene | Clarendonian | 3.349 | 16.655 | 9.101 |
| SDSM 53217-9 | South Dakota | Great Plains | Miocene | Clarendonian | 4.804 | 23.828 | 10.871 |
| SDSM 53217-D | South Dakota | Great Plains | Miocene | Clarendonian | 4.402 | 25.061 | 11.945 |
| SDSM 53217-E | South Dakota | Great Plains | Miocene | Clarendonian | 5.193 | 23.909 | 10.492 |
| SDSM 53218 E | South Dakota | Great Plains | Miocene | Clarendonian | 6.226 | 25.564 | 10.245 |
| SDSM 53218 K | South Dakota | Great Plains | Miocene | Clarendonian | 2.213 | 11.197 | 7.527 |
| SDSM 53219 | South Dakota | Great Plains | Miocene | Clarendonian | 2.269 | 15.472 | 10.271 |
| SDSM 53219 AG | South Dakota | Great Plains | Miocene | Clarendonian | 2.508 | 16.465 | 10.397 |
| SDSM 53219 AR | South Dakota | Great Plains | Miocene | Clarendonian | 2.768 | 17.726 | 10.654 |
| SDSM 53219 CJ | South Dakota | Great Plains | Miocene | Clarendonian | 2.564 | 15.743 | 9.832 |
| SDSM 53219 CZ | South Dakota | Great Plains | Miocene | Clarendonian | 4.24 | 23.264 | 11.298 |
| SDSM 53219 DS | South Dakota | Great Plains | Miocene | Clarendonian | 2.124 | 15.917 | 10.922 |
| SDSM 53219 X | South Dakota | Great Plains | Miocene | Clarendonian | 2.269 | 16.83 | 11.173 |
| SDSM 53219 Y | South Dakota | Great Plains | Miocene | Clarendonian | 2.658 | 16.033 | 9.834 |
| SDSM 53220 | South Dakota | Great Plains | Miocene | Clarendonian | 3.476 | 15.685 | 8.413 |
| SDSM 53220 A | South Dakota | Great Plains | Miocene | Clarendonian | 4.003 | 18.53 | 9.262 |
| SDSM 53220 C | South Dakota | Great Plains | Miocene | Clarendonian | 5.503 | 25.765 | 10.983 |


| SDSM 53220-01 | South Dakota | Great Plains | Miocene | Clarendonian | 3.56 | 18.638 | 9.878 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDSM 5622 | Nebraska | Great Plains | Miocene | Barstovian | 2.967 | 17.13 | 9.945 |
| SDSM 5622 | Nebraska | Great Plains | Miocene | Barstovian | 4.044 | 19.354 | 9.624 |
| SDSM 577 Q | South Dakota | Great Plains | Miocene | Clarendonian | 2.57 | 16.329 | 10.186 |
| SDSM 577P-03 | South Dakota | Great Plains | Miocene | Clarendonian | 2.165 | 13.712 | 9.319 |
| SDSM 62281 | South Dakota | Great Plains | Miocene | Clarendonian | 2.519 | 15.003 | 9.453 |
| SDSM 62281 | South Dakota | Great Plains | Miocene | Clarendonian | 2.125 | 11.108 | 7.620 |
| SDSM 62281 | South Dakota | Great Plains | Miocene | Clarendonian | 2.461 | 15.204 | 9.692 |
| SDSM 62290 | South Dakota | Great Plains | Pleistocene | Irv/Rancho | 8.639 | 33.401 | 11.364 |
| SDSM 65125 | Nebraska | Great Plains | Miocene | Barstovian | 3.697 | 18.294 | 9.514 |
| SDSM 65125 | Nebraska | Great Plains | Miocene | Barstovian | 3.052 | 18.611 | 10.653 |
| SDSM 7861 | South Dakota | Great Plains | Miocene | Clarendonian | 2.747 | 14.836 | 8.951 |
| SDSM 7861 | South Dakota | Great Plains | Miocene | Clarendonian | 2.602 | 15.268 | 9.465 |
| SDSM 7861 | South Dakota | Great Plains | Miocene | Clarendonian | 2.311 | 13.855 | 9.114 |
| SDSM 7861 | South Dakota | Great Plains | Miocene | Clarendonian | 2.201 | 13.748 | 9.267 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 5.674 | 18.883 | 7.927 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 5.84 | 19.645 | 8.129 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 5.63 | 19.837 | 8.360 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 5.642 | 20.009 | 8.424 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 5.785 | 20.807 | 8.651 |
| UCMP 124927 | California | California | Miocene | Hemphillian | 4.393 | 18.575 | 8.862 |
| UCMP 21422 | California | Great Basin | Miocene | Barstovian | 1.522 | 9.435 | 7.648 |
| UCMP 21422 | California | Great Basin | Miocene | Barstovian | 1.503 | 8.133 | 6.634 |
| UCMP 21422 | California | Great Basin | Miocene | Barstovian | 1.479 | 7.921 | 6.513 |
| UCMP 21422 | California | Great Basin | Miocene | Barstovian | 1.258 | 8.126 | 7.245 |


| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.72 | 14.885 | 9.025 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 3.297 | 16.699 | 9.197 |
| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 3.036 | 16.332 | 9.373 |
| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.829 | 16.115 | 9.581 |
| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.608 | 15.395 | 9.533 |
| UCMP 23088 | Oregon | Columbia Plateau | Miocene | Barstovian | 1.25 | 6.088 | 5.445 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 3.999 | 18.828 | 9.415 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 4.475 | 20.473 | 9.678 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 4.176 | 21.579 | 10.560 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 4.392 | 20.166 | 9.623 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 3.701 | 19.425 | 10.097 |
| UCMP 27126 | Nevada | Great Basin | Miocene | Hemphillian | 2.875 | 17.024 | 10.040 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 6.364 | 14.528 | 5.759 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 7.384 | 21.108 | 7.768 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 7.274 | 21.113 | 7.828 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 5.466 | 19.965 | 8.540 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 5.955 | 21.416 | 8.776 |
| UCMP 30200 | Texas | Great Plains | Miocene | Hemphillian | 6.075 | 21.705 | 8.806 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 3.398 | 14.722 | 7.986 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 3.653 | 16.034 | 8.389 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 3.747 | 16.514 | 8.531 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 3.311 | 15.199 | 8.353 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 3.091 | 15.504 | 8.818 |
| UCMP 30225 | Texas | Great Plains | Miocene | Hemphillian | 2.919 | 16.35 | 9.570 |
| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 5.277 | 18.648 | 8.118 |


| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 5.114 | 19.322 | 8.544 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 5.376 | 19.499 | 8.410 |
| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 4.691 | 16.918 | 7.811 |
| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 4.769 | 18.184 | 8.327 |
| UCMP 30813 | Texas | Great Plains | Miocene | Hemphillian | 3.967 | 16.435 | 8.252 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 3.497 | 13.939 | 7.454 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 4.028 | 16.736 | 8.339 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 4.433 | 17.531 | 8.326 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 3.534 | 15.626 | 8.312 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 4.23 | 17.247 | 8.386 |
| UCMP 31256 | Texas | Great Plains | Miocene | Clarendonian | 3.825 | 17.206 | 8.798 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 5.987 | 18.632 | 7.615 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 5.813 | 20.004 | 8.297 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 5.647 | 19.545 | 8.225 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 4.576 | 17.931 | 8.382 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 4.688 | 14.688 | 6.784 |
| UCMP 31875 | California | California | Miocene | Hemphillian | 4.334 | 18.705 | 8.985 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 4.41 | 18.003 | 8.573 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 4.923 | 19.868 | 8.954 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 4.893 | 21.376 | 9.664 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 4.11 | 17.154 | 8.461 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 4.506 | 19.244 | 9.066 |
| UCMP 32306 | South Dakota | Great Plains | Miocene | Clarendonian | 2.925 | 17.789 | 10.401 |
| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 2.9 | 14.972 | 8.792 |
| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 2.855 | 14.897 | 8.816 |


| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 2.94 | 15.468 | 9.021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 2.337 | 13.184 | 8.624 |
| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 2.95 | 17.147 | 9.983 |
| UCMP 32503 | Nebraska | Great Plains | Miocene | Clarendonian | 3.044 | 14.716 | 8.435 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 2.691 | 14.3 | 8.717 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 3.005 | 16.399 | 9.460 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 2.831 | 16.388 | 9.740 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 2.432 | 15.154 | 9.717 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 2.68 | 15.372 | 9.390 |
| UCMP 32504 | Nebraska | Great Plains | Miocene | Clarendonian | 1.73 | 11.071 | 8.417 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.179 | 8.685 | 7.999 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.505 | 9.169 | 7.474 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.68 | 9.572 | 7.385 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.464 | 8.664 | 7.161 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.33 | 9.539 | 8.271 |
| UCMP 32773 | Texas | Great Plains | Miocene | Clarendonian | 1.184 | 8.518 | 7.828 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 3.309 | 10.734 | 5.901 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 4.317 | 11.948 | 5.750 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 4.218 | 12.506 | 6.089 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 3.811 | 11.695 | 5.991 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 3.588 | 12.259 | 6.472 |
| UCMP 32814 | Oklahoma | Great Plains | Miocene | Clarendonian | 2.163 | 7.74 | 5.263 |
| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 5.213 | 16.8 | 7.358 |
| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 5.462 | 17.666 | 7.559 |
| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 5.294 | 18.05 | 7.845 |


| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 4.902 | 17.982 | 8.122 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 4.887 | 17.945 | 8.117 |
| UCMP 33481 | Texas | Great Plains | Miocene | Clarendonian | 3.973 | 16.327 | 8.191 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.035 | 25.654 | 9.050 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 9.273 | 29.776 | 9.778 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.787 | 27.985 | 10.029 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.075 | 26.64 | 9.375 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.912 | 28.047 | 9.971 |
| UCMP 34032 | Idaho | Columbia Plateau | Pliocene | Blancan | 4.446 | 14.428 | 6.843 |
| UCMP 34511 | California | California | Miocene | Clarendonian | 4.633 | 18.518 | 8.603 |
| UCMP 34511 | California | California | Miocene | Clarendonian | 4.411 | 18.855 | 8.978 |
| UCMP 34511 | California | California | Miocene | Clarendonian | 3.629 | 16.265 | 8.538 |
| UCMP 34511 | California | California | Miocene | Clarendonian | 4.251 | 18.28 | 8.866 |
| UCMP 34511 | California | California | Miocene | Clarendonian | 4.14 | 18.693 | 9.187 |
| UCMP 50750 | California | California | Miocene | Barstovian | 3.456 | 15.398 | 8.283 |
| UCMP 50750 | California | California | Miocene | Barstovian | 3.816 | 16.727 | 8.563 |
| UCMP 50750 | California | California | Miocene | Barstovian | 3.832 | 16.766 | 8.565 |
| UCMP 50750 | California | California | Miocene | Barstovian | 3.549 | 16.497 | 8.757 |
| UCMP 50750 | California | California | Miocene | Barstovian | 3.685 | 16.929 | 8.819 |
| UCMP 50750 | California | California | Miocene | Barstovian | 2.77 | 14.313 | 8.600 |
| UCMP 50950 | California | California | Miocene | Barstovian | 3.148 | 13.598 | 7.664 |
| UCMP 50950 | California | California | Miocene | Barstovian | 3.795 | 14.066 | 7.220 |
| UCMP 50950 | California | California | Miocene | Barstovian | 3.904 | 16.113 | 8.155 |
| UCMP 50950 | California | California | Miocene | Barstovian | 3.751 | 15.973 | 8.247 |
| UCMP 50950 | California | California | Miocene | Barstovian | 3.796 | 17.389 | 8.925 |


| UCMP 50950 | California | California | Miocene | Barstovian | 3.271 | 13.834 | 7.649 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 51000 | California | California | Miocene | Barstovian | 3.536 | 15.716 | 8.358 |
| UCMP 51000 | California | California | Miocene | Barstovian | 4.195 | 17.132 | 8.365 |
| UCMP 51000 | California | California | Miocene | Barstovian | 3.74 | 17.186 | 8.887 |
| UCMP 51000 | California | California | Miocene | Barstovian | 3.757 | 17.542 | 9.050 |
| UCMP 51000 | California | California | Miocene | Barstovian | 3.657 | 17.112 | 8.948 |
| UCMP 51000 | California | California | Miocene | Barstovian | 2.35 | 12.234 | 7.981 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 4.51 | 15.379 | 7.242 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 5.391 | 17.642 | 7.598 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 5.569 | 18.753 | 7.947 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 5.691 | 19.436 | 8.147 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 6.044 | 20.692 | 8.417 |
| UCMP 56278 | California | California | Miocene | Clarendonian | 5.754 | 22.146 | 9.232 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 3.335 | 17.131 | 9.381 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 3.728 | 19.838 | 10.274 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 3.633 | 18.174 | 9.535 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 3.155 | 18.025 | 10.148 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 3.024 | 16.323 | 9.387 |
| UCMP 64609 | Chihuahua | Gulf Coast | Miocene | Hemphillian | 2.365 | 15.862 | 10.314 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 2.627 | 14.236 | 8.783 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 3.272 | 19.468 | 10.763 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 3.362 | 19.839 | 10.820 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 2.872 | 17.222 | 10.162 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 2.871 | 17.385 | 10.260 |
| UCMP 69575 | California | Great Basin | Miocene | Clarendonian | 2.056 | 12.905 | 9.000 |


| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 3.805 | 13.47 | 6.905 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 4.114 | 16.076 | 7.926 |
| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 3.993 | 16.789 | 8.402 |
| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 3.436 | 15.435 | 8.327 |
| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 3.526 | 16.554 | 8.816 |
| UCMP 97903 | Nebraska | Great Plains | Miocene | Barstovian | 2.622 | 14.406 | 8.897 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 2.83 | 18.072 | 10.743 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 3.169 | 18.239 | 10.246 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 3.03 | 20.911 | 12.013 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 2.657 | 18.581 | 11.399 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 2.578 | 16.927 | 10.542 |
| UF 32300 | Florida | Gulf Coast | Miocene | Clarendonian | 2.086 | 15.56 | 10.773 |
| UF 57343 | Florida | Gulf Coast | Miocene | Hemphillian | 0.709 | 5.472 | 6.499 |
| UF 57343 | Florida | Gulf Coast | Miocene | Hemphillian | 0.627 | 5.207 | 6.576 |
| UF 57343 | Florida | Gulf Coast | Miocene | Hemphillian | 0.539 | 4.804 | 6.543 |
| UF 57343 | Florida | Gulf Coast | Miocene | Hemphillian | 0.608 | 4.925 | 6.316 |
| UF 58311 | Florida | Gulf Coast | Miocene | Hemphillian | 1.376 | 11.884 | 10.131 |
| UF 58311 | Florida | Gulf Coast | Miocene | Hemphillian | 1.23 | 11.149 | 10.053 |
| UF 58311 | Florida | Gulf Coast | Miocene | Hemphillian | 1.07 | 10.257 | 9.916 |
| UF 58311 | Florida | Gulf Coast | Miocene | Hemphillian | 1.035 | 9.762 | 9.596 |
| UNSM 113025 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.253 | 24.634 | 10.748 |
| UNSM 113026 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.149 | 32.2208 | 12.051 |
| UNSM 113091 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.778 | 28.878 | 11.092 |
| UNSM 118794 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 8.817 | 30.627 | 10.314 |
| UNSM 118794 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 9.832 | 33.214 | 10.593 |


| UNSM 118794 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 10.343 | 30.605 | 9.516 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 118794 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.646 | 27.591 | 9.978 |
| UNSM 118794 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.857 | 26.89 | 9.593 |
| UNSM 123506 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.857 | 22.864 | 10.375 |
| UNSM 123506 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.159 | 23.19 | 10.210 |
| UNSM 123506 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.225 | 20.43 | 9.939 |
| UNSM 123613 | New Mexico | Great Basin | Pleistocene | Irv/Rancho | 4.652 | 21.366 | 9.906 |
| UNSM 123657 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 5.215 | 26.164 | 11.457 |
| UNSM 123658 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 5.533 | 31.701 | 13.477 |
| UNSM 125528 | Nebraska | Great Plains | Miocene | Barstovian | 2.387 | 15.074 | 9.757 |
| UNSM 125529 | Nebraska | Great Plains | Miocene | Barstovian | 3.322 | 15.088 | 8.278 |
| UNSM 125530 | Nebraska | Great Plains | Miocene | Barstovian | 3.388 | 19.773 | 10.742 |
| UNSM 125531 | Nebraska | Great Plains | Miocene | Barstovian | 3.495 | 16.593 | 8.876 |
| UNSM 125532 | Nebraska | Great Plains | Miocene | Barstovian | 5.719 | 15.084 | 6.307 |
| UNSM 125533 | Nebraska | Great Plains | Miocene | Barstovian | 3.88 | 21.256 | 10.791 |
| UNSM 125534 | Nebraska | Great Plains | Miocene | Barstovian | 2.126 | 13.499 | 9.258 |
| UNSM 129108 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.769 | 27.855 | 11.597 |
| UNSM 133050 | New Mexico | Great Basin | Pleistocene | Irv/Rancho | 4.779 | 19.32 | 8.838 |
| UNSM 133051 | New Mexico | Great Basin | Pleistocene | Irv/Rancho | 5.321 | 23.11 | 10.019 |
| UNSM 133052 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 5.614 | 28.597 | 12.069 |
| UNSM 133053 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 7.211 | 31.546 | 11.748 |
| UNSM 133054 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 6.462 | 32.273 | 12.696 |
| UNSM 133055 | Kentucky | Eastern US | Pleistocene | Irv/Rancho | 6.65 | 30.48 | 11.820 |
| UNSM 133056 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.469 | 26.247 | 11.223 |
| UNSM 133057 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.044 | 26.549 | 10.799 |


| UNSM 133058 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.927 | 24.395 | 10.990 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 133059 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.027 | 27.261 | 11.104 |
| UNSM 133059 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.491 | 26.605 | 11.354 |
| UNSM 133059 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.889 | 28.128 | 11.591 |
| UNSM 133060 | Nebraska | Great Plains | Pliocene | Blancan | 6.399 | 28.45 | 11.247 |
| UNSM 133061 | Nebraska | Great Plains | Pliocene | Blancan | 7.212 | 26.901 | 10.017 |
| UNSM 133061 | Nebraska | Great Plains | Pliocene | Blancan | 6.897 | 26.204 | 9.978 |
| UNSM 133061 | Nebraska | Great Plains | Pliocene | Blancan | 5.787 | 22.399 | 9.311 |
| UNSM 133061 | Nebraska | Great Plains | Pliocene | Blancan | 5.645 | 25.108 | 10.568 |
| UNSM 133061 | Nebraska | Great Plains | Pliocene | Blancan | 4.17 | 19.709 | 9.652 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 10.43 | 28.693 | 8.885 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 11.529 | 32.158 | 9.471 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 9.804 | 31.031 | 9.910 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 7.411 | 24.451 | 8.982 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 8.276 | 26.452 | 9.195 |
| UNSM 133063 | Nebraska | Great Plains | Pliocene | Blancan | 6.113 | 23.021 | 9.311 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.601 | 22.292 | 8.676 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.298 | 24.724 | 9.852 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.236 | 26.128 | 10.463 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.803 | 22.956 | 9.529 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.788 | 23.472 | 9.756 |
| UNSM 1349 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.921 | 23.081 | 10.405 |
| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.757 | 25.928 | 8.762 |
| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 9.131 | 27.5 | 9.101 |
| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.907 | 28.051 | 9.399 |


| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.368 | 23.431 | 8.100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 9.177 | 28.251 | 9.326 |
| UNSM 1350 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.515 | 29.09 | 9.969 |
| UNSM 1352 | Nebraska | Great Plains | Miocene | Barstovian | 3.65 | 17.947 | 9.394 |
| UNSM 238941 | Nebraska | Great Plains | Miocene | Clarendonian | 3.835 | 21.407 | 10.931 |
| UNSM 2626 | Nebraska | Great Plains | Miocene | Hemphillian | 4.229 | 23.703 | 11.526 |
| UNSM 2634 | Nebraska | Great Plains | Miocene | Hemphillian | 3.382 | 16.582 | 9.017 |
| UNSM 2672 | Nebraska | Great Plains | Miocene | Barstovian | 4.58 | 21.52 | 10.056 |
| UNSM 27799 | Nebraska | Great Plains | Miocene | Hemphillian | 3.603 | 16.143 | 8.505 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 1.924 | 11.724 | 8.452 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 2.335 | 14.066 | 9.205 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 2.44 | 14.217 | 9.102 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 2.104 | 12.687 | 8.747 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 2.289 | 14.046 | 9.284 |
| UNSM 27845 | Nebraska | Great Plains | Miocene | Clarendonian | 2.173 | 13.864 | 9.405 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 3.846 | 17.352 | 8.848 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 4.338 | 21.65 | 10.395 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 4.203 | 21.84 | 10.653 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 3.923 | 18.596 | 9.389 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 3.829 | 18.925 | 9.671 |
| UNSM 27860 | Nebraska | Great Plains | Miocene | Clarendonian | 2.394 | 13.567 | 8.768 |
| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.459 | 16.751 | 9.007 |
| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.585 | 18.189 | 9.606 |
| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.913 | 19.402 | 9.808 |
| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.462 | 18.251 | 9.809 |


| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.505 | 18.281 | 9.765 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 27861 | Nebraska | Great Plains | Miocene | Clarendonian | 3.076 | 17.456 | 9.953 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 3.865 | 15.14 | 7.701 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 4.55 | 17.845 | 8.366 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 4.805 | 19.686 | 8.981 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 4.552 | 18.391 | 8.620 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 4.296 | 18.272 | 8.816 |
| UNSM 27864 | Nebraska | Great Plains | Miocene | Clarendonian | 2.568 | 13.973 | 8.720 |
| UNSM 27865 | Nebraska | Great Plains | Miocene | Clarendonian | 3.342 | 16.805 | 9.193 |
| UNSM 27865 | Nebraska | Great Plains | Miocene | Clarendonian | 3.897 | 18.678 | 9.462 |
| UNSM 27865 | Nebraska | Great Plains | Miocene | Clarendonian | 4.321 | 18.647 | 8.971 |
| UNSM 27865 | Nebraska | Great Plains | Miocene | Clarendonian | 3.372 | 16.576 | 9.027 |
| UNSM 27865 | Nebraska | Great Plains | Miocene | Clarendonian | 3.457 | 16.279 | 8.755 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 1.665 | 9.971 | 7.727 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 1.868 | 10.853 | 7.941 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 2.049 | 11.074 | 7.736 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 1.921 | 11.269 | 8.131 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 1.878 | 11.44 | 8.348 |
| UNSM 27875 | Nebraska | Great Plains | Miocene | Clarendonian | 2.035 | 13.396 | 9.391 |
| UNSM 2997 | Nebraska | Great Plains | Miocene | Hemphillian | 3.003 | 18.998 | 10.963 |
| UNSM 33162 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.185 | 30.42 | 12.232 |
| UNSM 33508 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.591 | 29.448 | 11.470 |
| UNSM 33508 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.375 | 28.127 | 10.357 |
| UNSM 33527 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 3.355 | 18.463 | 10.080 |
| UNSM 41996 | Nebraska | Great Plains | Pliocene | Blancan | 6.777 | 23.541 | 9.043 |


| UNSM 41996 | Nebraska | Great Plains | Pliocene | Blancan | 6.576 | 23.781 | 9.274 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 41996 | Nebraska | Great Plains | Pliocene | Blancan | 5.628 | 20.014 | 8.436 |
| UNSM 41996 | Nebraska | Great Plains | Pliocene | Blancan | 5.871 | 21.822 | 9.006 |
| UNSM 41996 | Nebraska | Great Plains | Pliocene | Blancan | 4.909 | 21.419 | 9.667 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 5.815 | 13.458 | 5.581 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 6.436 | 24.612 | 9.702 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 7.232 | 27.174 | 10.105 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 5.838 | 22.792 | 9.433 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 6.412 | 24.378 | 9.627 |
| UNSM 42087 | Nebraska | Great Plains | Pliocene | Blancan | 4.524 | 19.572 | 9.202 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 6.989 | 27.479 | 10.394 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 7.622 | 31.441 | 11.388 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 7.598 | 31.603 | 11.465 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 6.735 | 25.865 | 9.967 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 6.681 | 28.415 | 10.993 |
| UNSM 42346 | Nebraska | Great Plains | Pliocene | Blancan | 4.711 | 20.108 | 9.264 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 5.135 | 20.359 | 8.984 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 6.018 | 23.682 | 9.654 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 6.869 | 25.269 | 9.641 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 5.1418 | 21.688 | 9.564 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 5.667 | 27.741 | 11.653 |
| UNSM 42351 | Nebraska | Great Plains | Pliocene | Blancan | 4.822 | 20.675 | 9.415 |
| UNSM 42431 | Nebraska | Great Plains | Miocene | Barstovian | 2.037 | 13.86 | 9.711 |
| UNSM 42433 | Nebraska | Great Plains | Miocene | Clarendonian | 4.58 | 17.916 | 8.372 |
| UNSM 42440 | Nebraska | Great Plains | Miocene | Barstovian | 2.973 | 21.45 | 12.440 |


| UNSM 42442 | Nebraska | Great Plains | Miocene | Barstovian | 3.009 | 16.012 | 9.231 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 42447 | Nebraska | Great Plains | Miocene | Barstovian | 3.003 | 16.655 | 9.611 |
| UNSM 42452 | Nebraska | Great Plains | Miocene | Barstovian | 3.895 | 20.915 | 10.598 |
| UNSM 42453 | Nebraska | Great Plains | Miocene | Clarendonian | 5.217 | 22.147 | 9.696 |
| UNSM 42454 | Nebraska | Great Plains | Miocene | Clarendonian | 5.779 | 19.094 | 7.943 |
| UNSM 42456 | Nebraska | Great Plains | Miocene | Barstovian | 3.04 | 14.136 | 8.108 |
| UNSM 42468 | Nebraska | Great Plains | Miocene | Clarendonian | 2.795 | 15.288 | 9.144 |
| UNSM 4289 | Nebraska | Great Plains | Miocene | Hemphillian | 3.424 | 21.022 | 11.361 |
| UNSM 46810 | Nebraska | Great Plains | Pliocene | Blancan | 5.217 | 24.719 | 10.822 |
| UNSM 49318 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.638 | 27.494 | 11.579 |
| UNSM 49417 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 2.842 | 17.266 | 10.242 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 2.332 | 14.908 | 9.762 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 3.085 | 18.261 | 10.397 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 3.006 | 19.09 | 11.011 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 3.04 | 17.705 | 10.155 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 2.812 | 17.524 | 10.450 |
| UNSM 52296 | Nebraska | Great Plains | Miocene | Clarendonian | 1.514 | 11.201 | 9.103 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 5.167 | 21.221 | 9.336 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 6.255 | 25.137 | 10.051 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 5.929 | 23.798 | 9.773 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 4.575 | 20.463 | 9.567 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 4.743 | 20.255 | 9.300 |
| UNSM 52300 | Nebraska | Great Plains | Miocene | Clarendonian | 3.264 | 15.468 | 8.562 |
| UNSM 54835 | Nebraska | Great Plains | Pliocene | Blancan | 6.161 | 26.391 | 10.632 |
| UNSM 54837 | Nebraska | Great Plains | Pliocene | Blancan | 7.329 | 30.331 | 11.204 |


| UNSM 54839 | Nebraska | Great Plains | Pliocene | Blancan | 4.761 | 26.374 | 12.087 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 54840 | Nebraska | Great Plains | Pliocene | Blancan | 7.878 | 32.553 | 11.598 |
| UNSM 56653 | Nebraska | Great Plains | Miocene | Barstovian | 2.645 | 13.818 | 8.496 |
| UNSM 59261 | Nebraska | Great Plains | Miocene | Hemphillian | 2.93 | 13.946 | 8.147 |
| UNSM 59443 | Nebraska | Great Plains | Miocene | Clarendonian | 3.157 | 19.855 | 11.175 |
| UNSM 5978 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.728 | 27.9 | 10.036 |
| UNSM 5978 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.781 | 30.751 | 11.024 |
| UNSM 5978 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 7.892 | 30.884 | 10.994 |
| UNSM 5978 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.064 | 26.187 | 10.634 |
| UNSM 5978 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.807 | 26.597 | 11.037 |
| UNSM 6023 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.329 | 21.044 | 9.116 |
| UNSM 6023 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.508 | 21.446 | 9.138 |
| UNSM 6023 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.823 | 20.698 | 9.425 |
| UNSM 6023 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.616 | 19.858 | 9.243 |
| UNSM 6023 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 4.015 | 18.958 | 9.461 |
| UNSM 6027 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 8.711 | 31.912 | 10.812 |
| UNSM 6027 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.943 | 26.152 | 10.728 |
| UNSM 6027 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 6.511 | 25.838 | 10.126 |
| UNSM 6027 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.781 | 25.099 | 10.439 |
| UNSM 62895 | Nebraska | Great Plains | Pliocene | Blancan | 5.457 | 27.43 | 11.742 |
| UNSM 84000 | Nebraska | Great Plains | Miocene | Barstovian | 3.032 | 18.813 | 10.804 |
| UNSM 8515 | Nebraska | Great Plains | Miocene | Barstovian | 3.22 | 16.105 | 8.975 |
| UNSM 8633 | Nebraska | Great Plains | Miocene | Clarendonian | 4.631 | 21.703 | 10.085 |
| UNSM 90576 | Nebraska | Great Plains | Miocene | Barstovian | 2.874 | 14.401 | 8.495 |
| UNSM 90641 | Nebraska | Great Plains | Miocene | Hemphillian | 4.556 | 17.874 | 8.374 |


| UNSM 94445 | Nebraska | Great Plains | Miocene | Hemphillian | 5.461 | 21.227 | 9.083 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNSM 96997 | Nebraska | Great Plains | Miocene | Barstovian | 3.351 | 19.123 | 10.446 |
| UNSM 96999 | Nebraska | Great Plains | Miocene | Barstovian | 3.3048 | 16.548 | 9.103 |
| UNSM 9798 | Nebraska | Great Plains | Miocene | Barstovian | 3.308 | 14.611 | 8.033 |
| UNSM 9800 | Nebraska | Great Plains | Miocene | Barstovian | 3.294 | 17.569 | 9.680 |
| UNSM 98405 | Nebraska | Great Plains | Miocene | Barstovian | 4.047 | 19.148 | 9.518 |
| UNSM 98406 | Nebraska | Great Plains | Miocene | Barstovian | 3.912 | 21.466 | 10.853 |
| UOMNCH B-4028 |  |  | Recent | Recent | 8.465 | 27.161 | 9.335 |
| UOMNCH B-4028 |  |  | Recent | Recent | 9.055 | 30.412 | 10.106 |
| UOMNCH B-4028 |  |  | Recent | Recent | 10.14 | 31.826 | 9.995 |
| UOMNCH B-4028 |  |  | Recent | Recent | 8.101 | 27.276 | 9.583 |
| UOMNCH B-4028 |  |  | Recent | Recent | 7.386 | 27.331 | 10.057 |
| UOMNCH B-4028 |  |  | Recent | Recent | 5.458 | 24.13 | 10.329 |
| UOMNCH B-8698 |  |  | Recent | Recent | 7.816 | 25.708 | 9.196 |
| UOMNCH B-8698 |  |  | Recent | Recent | 8.367 | 30.399 | 10.509 |
| UOMNCH B-8698 |  |  | Recent | Recent | 8.798 | 30.154 | 10.166 |
| UOMNCH B-8698 |  |  | Recent | Recent | 7.844 | 24.385 | 8.707 |
| UOMNCH B-8698 |  |  | Recent | Recent | 6.738 | 22.629 | 8.718 |
| UOMNCH B-8698 |  |  | Recent | Recent | 5.56 | 20.289 | 8.604 |
| UOMNCH B-8700 |  |  | Recent | Recent | 7.057 | 24.985 | 9.405 |
| UOMNCH B-8700 |  |  | Recent | Recent | 7.362 | 27.931 | 10.294 |
| UOMNCH B-8700 |  |  | Recent | Recent | 7.184 | 26.809 | 10.002 |
| UOMNCH B-8700 |  |  | Recent | Recent | 6.234 | 23.325 | 9.342 |
| UOMNCH B-8700 |  |  | Recent | Recent | 6.488 | 23.265 | 9.134 |
| UOMNCH B-8700 |  |  | Recent | Recent | 5.781 | 25.048 | 10.418 |


| UOMNCH B-9092 |  |  | Recent | Recent | 4.427 | 19.043 | 9.051 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UOMNCH B-9092 |  |  | Recent | Recent | 5.298 | 21.686 | 9.422 |
| UOMNCH B-9092 |  |  | Recent | Recent | 4.834 | 21.042 | 9.570 |
| UOMNCH B-9092 |  |  | Recent | Recent | 4.25 | 19.849 | 9.628 |
| UOMNCH B-9092 |  |  | Recent | Recent | 4.509 | 20.263 | 9.543 |
| UOMNCH B-9092 |  |  | Recent | Recent | 4.667 | 19.273 | 8.921 |
| UOMNCH F-21828 | Oregon | Columbia Plateau | Pleistocene | Irv/Rancho | 6.654 | 29.935 | 11.605 |
| USNM 10314 | Arizona | Great Basin | Pleistocene | Irv/Rancho | 4.689 | 24.944 | 11.519 |
| USNM 10482 | Nevada | Great Basin | Pleistocene | Irv/Rancho | 4.676 | 21.491 | 9.938 |
| USNM 10571 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.755 | 24.37 | 11.176 |
| USNM 10622 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 6.013 | 30.443 | 12.415 |
| USNM 11160 | Yukon | Polar | Pleistocene | Irv/Rancho | 8.166 | 31.124 | 10.892 |
| USNM 11190 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.803 | 27.49 | 12.543 |
| USNM 11192 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.534 | 23.657 | 11.110 |
| USNM 11200 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 5.269 | 27.303 | 11.895 |
| USNM 11351 | Arizona | Great Basin | Pleistocene | Irv/Rancho | 5.808 | 28.364 | 11.769 |
| USNM 11372 | Texas | Great Plains | Pleistocene | Irv/Rancho | 6.901 | 32.304 | 12.297 |
| USNM 11374 | Texas | Great Plains | Pleistocene | Irv/Rancho | 4.64 | 22.998 | 10.677 |
| USNM 11412 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.542 | 23.409 | 10.984 |
| USNM 11623 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 6.733 | 32.206 | 12.412 |
| USNM 11658 | Alaska | Polar | Pleistocene | Irv/Rancho | 8.588 | 30.996 | 10.577 |
| USNM 1172 | South Carolina | Eastern US | Pleistocene | Irv/Rancho | 6.265 | 28.325 | 11.316 |
| USNM 11745 | Arizona | Great Basin | Pliocene | Blancan | 2.182 | 16.801 | 11.374 |
| USNM 11746 | Arizona | Great Basin | Pliocene | Blancan | 1.968 | 15.632 | 11.143 |
| USNM 11819 | Georgia | Eastern US | Pleistocene | Irv/Rancho | 6.98 | 30.435 | 11.520 |


| USNM 11986 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.926 | 24.138 | 8.574 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 12146 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.817 | 35.388 | 12.657 |
| USNM 12804 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.112 | 31.443 | 11.790 |
| USNM 12875 | Arizona | Great Basin | Pliocene | Blancan | 5.492 | 23.785 | 10.149 |
| USNM 13682 | Minnesota | Great Plains | Pleistocene | Irv/Rancho | 7.314 | 28.413 | 10.506 |
| USNM 14417 | Idaho | Columbia Plateau | Pleistocene | Irv/Rancho | 6.978 | 26.763 | 10.131 |
| USNM 15219 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.91 | 27.014 | 12.191 |
| USNM 15389 | Mexico | Gulf Coast | Pleistocene | Irv/Rancho | 6.19 | 25.455 | 10.231 |
| USNM 17082 | Maryland | Eastern US | Pleistocene | Irv/Rancho | 6.385 | 25.397 | 10.051 |
| USNM 171045 | Alabama | Eastern US | Miocene | Hemphillian | 3.956 | 22.812 | 11.469 |
| USNM 173623 | Alabama | Eastern US | Miocene | Hemphillian | 4.127 | 24.06 | 11.843 |
| USNM 17922 | Virginia | Eastern US | Pleistocene | Irv/Rancho | 4.67 | 23.62 | 10.930 |
| USNM 18205 | Florida | Gulf Coast | Miocene | Hemphillian | 6.435 | 29.224 | 11.520 |
| USNM 18206 | Florida | Gulf Coast | Miocene | Hemphillian | 1.374 | 11.705 | 9.986 |
| USNM 18207 | Florida | Gulf Coast | Miocene | Hemphillian | 1.378 | 10.223 | 8.709 |
| USNM 18208 | Florida | Gulf Coast | Miocene | Hemphillian | 1.983 | 9.304 | 6.607 |
| USNM 18212 | Florida | Gulf Coast | Miocene | Hemphillian | 2.931 | 18.765 | 10.961 |
| USNM 182197 | North Carolina | Eastern US | Miocene | Hemphillian | 2.413 | 15.618 | 10.054 |
| USNM 18234 | Florida | Gulf Coast | Miocene | Hemphillian | 1.687 | 14.003 | 10.781 |
| USNM 18236 | Florida | Gulf Coast | Miocene | Hemphillian | 1.82 | 13.991 | 10.371 |
| USNM 18243 | Florida | Gulf Coast | Miocene | Hemphillian | 1.601 | 14.354 | 11.344 |
| USNM 18244 | Florida | Gulf Coast | Miocene | Hemphillian | 1.74 | 16.787 | 12.726 |
| USNM 18250 | Florida | Gulf Coast | Miocene | Hemphillian | 3.314 | 20.943 | 11.504 |
| USNM 187652 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 4.321 | 24.762 | 11.912 |
| USNM 1907 | Mississippi | Gulf Coast | Pleistocene | Irv/Rancho | 6.005 | 34.736 | 14.175 |


| USNM 1932 | Texas | Great Plains | Miocene | Hemphillian | 6.639 | 21.733 | 8.435 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 1933 | Texas | Great Plains | Miocene | Hemphillian | 6.244 | 17.594 | 7.041 |
| USNM 20105 | Florida | Gulf Coast | Miocene | Hemphillian | 2.927 | 20.361 | 11.901 |
| USNM 23892 | California | California | Miocene | Clarendonian | 2.968 | 19.233 | 11.164 |
| USNM 23903 | Idaho | Columbia Plateau | Pliocene | Blancan | 9.704 | 30.219 | 9.701 |
| USNM 244299 | Nebraska | Great Plains | Miocene | Barstovian | 3.958 | 21.166 | 10.639 |
| USNM 25142 | Montana | Great Plains | Miocene | Barstovian | 1.302 | 9.409 | 8.246 |
| USNM 25583 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 3.943 | 21.335 | 10.744 |
| USNM 25683 | Mississippi | Gulf Coast | Pleistocene | Irv/Rancho | 5.133 | 24.286 | 10.719 |
| USNM 2572 | New Mexico | Great Basin | Miocene | Barstovian | 4.17 | 21.958 | 10.753 |
| USNM 2573 | New Mexico | Great Basin | Miocene | Barstovian | 2.336 | 16.456 | 10.767 |
| USNM 262545 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.947 | 27.203 | 10.321 |
| USNM 26324 | Georgia | Eastern US | Pleistocene | Irv/Rancho | 4.636 | 24.602 | 11.426 |
| USNM 299566 | Maryland | Eastern US | Miocene | Clarendonian | 2.713 | 19.747 | 11.989 |
| USNM 3292 | Florida | Gulf Coast |  | Irv/Rancho | 3.34 | 22.075 | 12.079 |
| USNM 330994 | Alabama | Eastern US | Miocene | Hemphillian | 3.724 | 16.33 | 8.462 |
| USNM 351924 | Nebraska | Great Plains | Miocene | Barstovian | 6.87 | 17.952 | 6.849 |
| USNM 390722 | Alabama | Eastern US | Miocene | Hemphillian | 3.043 | 19.763 | 11.329 |
| USNM 391594 | Alabama | Eastern US | Miocene | Hemphillian | 3.442 | 17.956 | 9.678 |
| USNM 391852 | North Carolina | Eastern US | Pliocene | Blancan | 2.405 | 16.402 | 10.576 |
| USNM 391854 | North Carolina | Eastern US | Pliocene | Blancan | 1.743 | 14.294 | 10.827 |
| USNM 391855 | North Carolina | Eastern US | Pliocene | Blancan | 2.673 | 17.695 | 10.823 |
| USNM 391856 | North Carolina | Eastern US | Pliocene | Blancan | 1.783 | 15.32 | 11.473 |
| USNM 391864 | North Carolina | Eastern US | Pliocene | Blancan | 1.999 | 13.835 | 9.785 |
| USNM 391865 | North Carolina | Eastern US | Pliocene | Blancan | 1.6 | 12.426 | 9.824 |


| USNM 413207 | Virginia | Eastern US | Miocene | Hemphillian | 2.887 | 19.11 | 11.247 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 413212 | Texas | Great Plains | Miocene | Hemphillian | 2.235 | 14.183 | 9.487 |
| USNM 413671 | Nevada | Great Basin | Miocene | Barstovian | 5.867 | 20.777 | 8.578 |
| USNM 416338/UF 17570 | Florida | Gulf Coast | Miocene | Hemphillian | 2.109 | 14.72 | 10.136 |
| USNM 420682 | Texas | Great Plains | Miocene | Clarendonian | 2.474 | 14.787 | 9.401 |
| USNM 4999 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.553 | 27.559 | 11.695 |
| USNM 520 | Tennessee | Eastern US | Pleistocene | Irv/Rancho | 4.348 | 23.763 | 11.396 |
| USNM 521290 | Alabama | Eastern US | Miocene | Hemphillian | 4.537 | 21.855 | 10.260 |
| USNM 540677 | Panama | Gulf Coast | Pleistocene | Irv/Rancho | 4.314 | 19.901 | 9.582 |
| USNM 5446 | Nebraska | Great Plains | Miocene | Clarendonian | 1.477 | 11.107 | 9.139 |
| USNM 5447 | Nebraska | Great Plains | Miocene | Clarendonian | 2.169 | 16.088 | 10.924 |
| USNM 555 | Massachusetts | Eastern US | Pleistocene | Irv/Rancho | 7.905 | 31.311 | 11.136 |
| USNM 557 | Oregon | Columbia Plateau | Pleistocene | Irv/Rancho | 9.331 | 30.913 | 10.120 |
| USNM 569 | Nebraska | Great Plains | Miocene | Barstovian | 3.793 | 18.338 | 9.416 |
| USNM 573 | Nebraska | Great Plains | Miocene | Barstovian | 4.779 | 18.253 | 8.350 |
| USNM 584 | Nebraska | Great Plains | Miocene | Clarendonian | 3.652 | 21.514 | 11.258 |
| USNM 587 | Nebraska | Great Plains | Miocene | Clarendonian | 2.704 | 18.996 | 11.552 |
| USNM 619 | Nebraska | Great Plains | Miocene | Barstovian | 3.364 | 17.823 | 9.717 |
| USNM 667 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 5.469 | 23.23 | 9.933 |
| USNM 7084 | Louisiana | Gulf Coast | Pleistocene | Irv/Rancho | 5.72 | 29.615 | 12.383 |
| USNM 726 | Louisiana | Gulf Coast | Pleistocene | Irv/Rancho | 8.442 | 31.737 | 10.923 |
| USNM 7507 | Kansas | Great Plains | Miocene | Hemphillian | 3.851 | 18.801 | 9.581 |
| USNM 7514 | Kansas | Great Plains | Miocene | Hemphillian | 4.013 | 26.216 | 13.087 |
| USNM 7530 | Kansas | Great Plains | Miocene | Hemphillian | 4.778 | 22.604 | 10.341 |
| USNM 7700 | Alaska | Polar | Pleistocene | Irv/Rancho | 6.281 | 26.964 | 10.759 |


| USNM 7868 | Nebraska | Great Plains | Pleistocene | Irv/Rancho | 9.62 | 32.958 | 10.626 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| USNM 7935 | West Virginia | Eastern US | Pleistocene | Irv/Rancho | 5.647 | 27.879 | 11.732 |
| USNM 8265 | Florida | Gulf Coast | Miocene | Hemphillian | 4.561 | 24.063 | 11.267 |
| USNM 8268 | Florida | Gulf Coast | Pleistocene | Irv/Rancho | 7.125 | 30.659 | 11.486 |
| USNM 8426 | Yukon | Polar | Pleistocene | Irv/Rancho | 6.783 | 23.639 | 9.076 |
| USNM 8642 | Oklahoma | Great Plains | Pleistocene | Irv/Rancho | 7.816 | 29.251 | 10.463 |
| USNM 876 | Ohio | Eastern US | Pleistocene | Irv/Rancho | 6.996 | 32.143 | 12.152 |
| USNM 8813 | Massachusetts | Eastern US | Pleistocene | Irv/Rancho | 7.27 | 30.109 | 11.167 |
| USNM 882 | Massachusetts | Eastern US | Pleistocene | Irv/Rancho | 5.155 | 25.301 | 11.144 |
| USNM 8945 | Tennessee | Eastern US | Pleistocene | Irv/Rancho | 4.931 | 23.046 | 10.378 |
| USNM 9464 | Iowa | Great Plains | Pleistocene | Irv/Rancho | 8.203 | 29.532 | 10.311 |
| UWBM 17938 | Nevada | Columbia Plateau | Miocene | Barstovian | 2.882 | 18.289 | 10.773 |
| UWBM 19200 | Alaska | Polar | Pleistocene | Irv/Rancho | 11.58 | 41.886 | 12.309 |
| UWBM 19201 | Alaska | Polar | Pleistocene | Irv/Rancho | 13.691 | 44.684 | 12.076 |
| UWBM 19202 | Alaska | Polar | Pleistocene | Irv/Rancho | 8.364 | 32.009 | 11.068 |
| UWBM 19203 | Alaska | Polar | Pleistocene | Irv/Rancho | 11.159 | 38.905 | 11.646 |
| UWBM 22278 | California | California | Pliocene | Blancan | 7.424 | 23.709 | 8.702 |
| UWBM 22296 | California | California | Pliocene | Blancan | 7.71 | 24.128 | 8.689 |
| UWBM 22297 | California | California | Pliocene | Blancan | 6.723 | 24.19 | 9.329 |
| UWBM 22298 | California | California | Pliocene | Blancan | 6.247 | 23.428 | 9.373 |
| UWBM 22299 | California | California | Pliocene | Blancan | 7.31 | 25.304 | 9.359 |
| UWBM 22300 | California | California | Pliocene | Blancan | 7.066 | 24.902 | 9.368 |
| UWBM 28027 | Texas | Great Plains | Pleistocene | Irv/Rancho | 6.529 | 25.526 | 9.990 |
| UWBM 28027 | Texas | Great Plains | Pleistocene | Irv/Rancho | 6.219 | 26.252 | 10.527 |
| UWBM 40927 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.936 | 15.508 | 9.051 |


| UWBM 40927 | Oregon | Columbia Plateau | Miocene | Barstovian | 2.433 | 14.235 | 9.126 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UWBM 42136 | Washington | Columbia Plateau | Pliocene | Blancan | 7.239 | 27.111 | 10.076 |
| UWBM 42323 | Washington | Columbia Plateau | Pliocene | Blancan | 6.024 | 22.834 | 9.303 |
| UWBM 42331 | Washington | Columbia Plateau | Pliocene | Blancan | 6.575 | 24.067 | 9.386 |
| UWBM 45033 | Washington | Columbia Plateau | Pliocene | Blancan | 5.405 | 21.273 | 9.150 |
| UWBM 45033 | Washington | Columbia Plateau | Pliocene | Blancan | 6.178 | 22.001 | 8.852 |
| UWBM 45033 | Washington | Columbia Plateau | Pliocene | Blancan | 5.873 | 23.006 | 9.493 |
| UWBM 45102 | Washington | Columbia Plateau | Pliocene | Blancan | 8.604 | 29.27 | 9.979 |
| UWBM 48724 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.828 | 25.305 | 11.517 |
| UWBM 50008 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.57 | 27.424 | 9.967 |
| UWBM 50008 | Alaska | Polar | Pleistocene | Irv/Rancho | 8.153 | 28.723 | 10.059 |
| UWBM 58727 | Idaho | Columbia Plateau | Pliocene | Blancan | 6.423 | 20.238 | 7.985 |
| UWBM 58727 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.582 | 24.732 | 8.982 |
| UWBM 58727 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.246 | 24.758 | 9.197 |
| UWBM 58727 | Idaho | Columbia Plateau | Pliocene | Blancan | 8.452 | 25.832 | 8.885 |
| UWBM 58727 | Idaho | Columbia Plateau | Pliocene | Blancan | 7.615 | 26.954 | 9.768 |
| UWBM 59241 | Oregon | Columbia Plateau | Miocene | Hemphillian | 2.134 | 11.866 | 8.123 |
| UWBM 59241 | Oregon | Columbia Plateau | Miocene | Hemphillian | 2.407 | 10.314 | 6.648 |
| UWBM 59241 | Oregon | Columbia Plateau | Miocene | Hemphillian | 1.804 | 11.847 | 8.820 |
| UWBM 59241 | Oregon | Columbia Plateau | Miocene | Hemphillian | 2.072 | 13.339 | 9.267 |
| UWBM 61573 | Oregon | Columbia Plateau | Miocene | Hemphillian | 4.927 | 25.024 | 11.274 |
| UWBM 71401 | Montana | Great Plains | Miocene | Barstovian | 2.907 | 16.794 | 9.850 |
| UWBM 71401 | Montana | Great Plains | Miocene | Barstovian | 2.778 | 14.755 | 8.853 |
| UWBM 75621 | Oregon | Columbia Plateau | Pleistocene | Irv/Rancho | 11.445 | 34.799 | 10.286 |
| UWBM 80705 | Washington | Columbia Plateau | Pliocene | Blancan | 7.642 | 27.365 | 9.899 |


| UWBM 87138 | Alaska | Polar | Pleistocene | Irv/Rancho | 8.836 | 30.716 | 10.333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UWBM 87138 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.029 | 27.93 | 10.535 |
| UWBM 87138 | Alaska | Polar | Pleistocene | Irv/Rancho | 7.219 | 30.635 | 11.402 |

## APPENDIX B

FRACTAL DIMENSIONALITY RAW DATA TABLE

| Specimen \# | Subfamily | Tribe | Genus | Species | Tooth Position | $D$ | True Area <br> $\left(\mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UOMNCH B-4028 | Equinae | Equini | Equus | caballus | P3 | 1.396 | 9.055 |
| UOMNCH B-8698 | Equinae | Equini | Equus | caballus | P3 | 1.457 | 8.367 |
| UOMNCH B-8700 | Equinae | Equini | Equus | caballus | P3 | 1.506 | 7.362 |
| UOMNCH B-9092 | Equinae | Equini | Equus | caballus | P3 | 1.39 | 5.298 |
| MVZ 55150 | Equinae | Equini | Equus | grevyi | P3 | 1.276 | 7.595 |
| MVZ 117884 | Equinae | Equini | Equus | quagga | P3 | 1.264 | 6.295 |
| MVZ 117885 | Equinae | Equini | Equus | quagga | P3 | 1.223 | 5.594 |
| MVZ 117887 | Equinae | Equini | Equus | quagga | P3 | 1.254 | 5.307 |
| MVZ 117888 | Equinae | Equini | Equus | quagga | P3 | 1.252 | 5.596 |
| MVZ 154358 | Equinae | Equini | Equus | asinus | P3 | 1.229 | 5.159 |
| F:AM 71891 | Equinae | Hipparionini | Cormohipparion | quinni | P3 | 1.445 | 4.587 |
| F:AM 73940 | Equinae | Hipparionini | Cormohipparion | goorisi | P3 | 1.415 | 3.8 |
| UCMP 31256 | Equinae | Hipparionini | Neohipparion | eurystyle | P3 | 1.298 | 4.028 |
| UF 32300 | Equinae | Hipparionini | Cormohipparion | ingenuus | P3 | 1.317 | 3.169 |
| UNSM 27860 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | 1.337 | 4.338 |
| UNSM 27861 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | 1.309 | 3.585 |
| UNSM 52296 | Equinae | Hipparionini | Neohipparion | affine | P3 | 1.314 | 3.085 |
| UNSM 52300 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | 1.38 | 6.255 |
| UNSM 96997 | Equinae | Hipparionini | Cormohipparion | occidentale | P3 | 1.371 | 3.351 |
| F:AM 108233 | Equinae | Hipparionini | Cormohipparion | sphenodus | P3 | 1.427 | 5.315 |

## REFERENCES CITED

Azzaroli, A., Voorhies, M. R., 1993. The genus Equus in North America. The Blancan species. Palaeontographia Italica 80, 175-198.

Barnosky, A. D., Carrasco, M. A., Davis, E. B., 2005. The impacts of the species-area relationship on estimates of paleodiversity. PLoS Biology 3(8), e266.

Becerra, F., Vassallo, A. I., Echeverría, A. I., Casinos, A., 2012. Scaling and adaptations of incisors and cheek teeth in Caviomorph rodents (Rodentia, Hystricognathi). Journal of Morphology 273, 1150-1162.

Bruno, O. M., Plotze, R. d. O., Falvo, M., de Castro, M., 2008. Fractal dimension applied to plant identification. Information Science 178, 2722-2733.

Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S., Golicher, D. J., 2012. Taxonstand: An r package for species names standardization in vegetation databases. Methods in Ecology and Evolution 3, 1078-1083.

Damuth, J., Janis., C. M., 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews 86, 733-758.

Eisenmann, V., Alberdi, M. T., DeGiuli, C., Staesche, U., 1988. Methodology, in: Woodburne, M. O., Sondarr, P. (Eds.), Studying fossil horses, pp. 1-71.

Famoso, N. A., Feranec, R. S., Davis, E. B., in revision. The relationship between lophodonty, hypsodonty, body mass and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology.

Famoso, N. A., Pagnac, D., 2011. A comparison of the Clarendonian Equid assemblages from the Mission Pit, South Dakota and Ashfall Fossil Beds, Nebraska. Transactions of the Nebraska Academy of Sciences 32, 98-107.

Feder, J., 1983. Fractals. Plenum Press, New York.

Felsenstein, J., 1984. Phylogenies and the comparative method. The American Naturalist 125(1), 1-15.

Forsten, A., 1975. Fossil horses of the Texas Gulf Coastal Plain: A revision. PierceSellards Series, Texas Memorial Museum 22, 1-86.

Franzen, J. L., 2010. The rise of horses: 55 million years of evolution. The Johns Hopkins University Press, Baltimore.

Gilbert, J., Palmqvist, P., 1995. Fractal analysis of the Orce skull sutures. Journal of Human Evolution 28, 561-575.

Guthrie, R. D., Matthews, Jr., J. V., 1971. The Cape Deceit fauna-Early Pleistocene mammalian assemblage from the Alaskan Circle. Quaternary Research 1(4), 474510.

Heywood, J. J. N., 2010. Functional anatomy of bovid upper molar occlusal surfaces with respect to diet. Journal of Zoology 281, 1-11.

Hulbert, R. C., 1988a. Calippus and Protohippus (Mammalia, Perissodactyla, Equidae) from the Miocene (Barstovian-Early Hemphillian) of the gulf coastal plain. Bulletin of the Florida State Museum, Biological Sciences 32, 221-340.

Hulbert, R. C., 1988b. Cormohipparion and Hipparion (Mammalia, Perissodactyla, Equidae) from the late Neogene of Florida. Bulletin of the Florida State Museum, Biological Sciences 33, 229-338.

Hulbert, R. C., MacFadden, B. J., 1991. Morphological transformation and cladogenesis at the base of the adaptive radiation of Miocene hypsodont horses. American Museum Novitates, 3000, 1-61.

Hulbert, R. C., Whitmore F. C., 2006. Late Miocene mammals from the Mauvilla Local Fauna, Alabama. Bulletin of the Florida Museum of Natural History 46(1), 1-28.

Janis, C. M., Scott, K. M., Jacobs, L. L., Eds, 1998. Evolution of Tertiary Mammals of North America, v.1: Cambridge University Press, New York.

Kaiser, T. M., Fickel, J., Streich, W. J., Hummel, J., Clauss, M., 2010. Enamel ridge alignment in upper molars of ruminants in relation to their diet. Journal of Zoology 281, 12-25.

Kelly, T. S., 1995. New Miocene Horses from the Caliente Formation, Cuyama Valley Badlands, California. Contributions in Science 445, 1-33.

Kramer, C. Y., 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12, 307-310.

MacDonald, J. R., MacDonald, M. L., Toohey, L. M., eds., 1992. The species, genera, and tribes of the living and extinct horses of the world 1758-1966: Dakoterra 4, 1429.

MacFadden, B. J., Hulbert, R. C., 1988. Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature 33(1), 466-468.

MacFadden, B. J., Solounias, N., Cerling, T. E., 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283, 824-827.

MacFadden, B. J., 2005. Fossil Horses--Evidence for Evolution. Science 307, 1728-1730.
MacFadden, B. J., 1998. Equidae In: Janis, C. M., Scott, K. M., Jacobs, L. L. (Eds.), Evolution of Tertiary Mammals of North America, v.1: Cambridge University Press, New York, pp. 537-559.

MacFadden, B. J., 1992. Fossil horses: systematics, paleobiology, and evolution of the family Equidae. Cambridge University Press, New York.

MacFadden, B. J., 1988. Fossil horses from "Eohippus" (Hyracotherium) to Equus; 2. Rates of dental evolution revisited. Biological Journal of the Linnean Society 35, 37-48.

MacFadden, B. J., 1984. Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the New World. Bulletin of the American Museum of Natural History 179, 1-195.

Maguire, K. C., Stigall, A. I., 2008. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology 267, 175-184.

Mandelbrot, B. B., 1983. The fractal geometry of nature. W. H. Freeman and Co., New York.

Molles Jr., M. C., 2008. Ecology: concepts and applications. $4^{\text {th }}$ edition, McGraw Hill, Boston.

Osborn, H. F., 1918. Equidae of the Oligocene, Miocene, and Pliocene of North America, iconographic type revision: Memoirs of the American Museum of Natural History 2, 1-217.

Pagnac, D., 2006. Scaphohippus, a new genus of horse (Mammalia: Equidae) from the Barstow Formation of California. Journal of Mammalian Evolution 13, 37-61.

Pfretzschner, H. U., 1993. Enamel microstructure in the phylogeny of the Equidae. Journal of Vertebrate Paleontology 13, 342-349.

Prado, J. L., Alberdi, M. T., 1996. A cladistics analysis of the horses of the Tribe Equini. Palaeontology 39, 663-680.

Quinn, J. H., 1955. Miocene Equidae of the Texas Gulf Coastal Plain. University of Texas Publication 5516, 1-102.

Rensberger, J. M., Forsten, A., Fortelius, M., 1984. Functional evolution of the cheek tooth pattern and chewing direction in Tertiary horses. Paleobiology 10, 439-452.

Shapiro, S. S., Wilk, M. B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611.

Simpson, G. G., 1951. Horses: the horse family in the modern world and through sixty million years of history: New York, Oxford University Press.

Skinner, M. F., MacFadden, B. J., 1977. Cormohipparion n. gen. (Mammalia, Equidae) from the North American Miocene (Barstovian-Clarendonian). Journal of Paleontology 51, 912-926.

Stack, J. C., Harmon, L. J., O'Meara, B., 2011. RBrownie: an R package for testing hypotheses about rates of evolutionary change. Methods in Ecology and Evolution 2, 660-662.

Stirton, R. A., 1940. Phylogeny of North American Equidae. University of California Publications, Bulletin of the Department of Geological Sciences 25, 165-198.

Strömberg, C. A. E., 2006. Evolution of hypsodonty in Equids: testing a hypothesis of adaptation. Paleobiology 32, 236-258.

Theiler, J., 1990. Estimating Fractal Dimension. Journal of the Optical Society of America 7, 1055-1073.

Ungar, P. S., 2010. Mammal teeth: origin, evolution, and diversity. The Johns Hopkins University Press, Baltimore.

Weinstock, J., Willerslev, E., Sher, A., Tong, W., Ho, S. Y. W., Rubenstein, D., Storer, J., Burns, J., Martin, L., Bravi, C., Prieto, A., Froese, D., Scott, E., Xulong, L., Cooper, A., 2005. Evolution, Systematics, and Phylogeography of Pleistocene Horses in the New World: A Molecular Perspective. PLoS Biol 3(8), e241.

Whistler, D. P., 1991. Geologic history of the El Paso Mountains region. San Bernardino County Museum Association Quarterly 38(3), 108-113

Woodburne, M. O., 2007. Phyletic diversification of the Cormohipparion occidentale complex (Mammalia, Perissodactyla, Equidae), late Miocene, North America, and the origin of the Old World Hippotherium datum. Bulletin of the American Museum of Natural History, 306, 3-138.

Woodburne, M. O., ed., 2004. Late Cretaceous and Cenozoic mammals of North America. Columbia University Press, New York.

Zachos, J. C., Dickens, G. R., Zeebe, R. E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283.

Zar, J. H., 2010. Biostatistical analysis, 5th Edition. Pearson Prentice-Hall, Upper Saddle River.

