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THESIS ABSTRACT 
 
Jesse Wil McAlpine 
 
Master of Science 
 
Department of Biology 
 
June 2013 
 
Title: The Role of Yeasts in the Pollination Success of a Neotropical Orchid 
 
 

The Neotropical cloud forest inhabiting orchid Dracula felix has long been 

postulated to be a fungal mimic due to the form of its lower labellum and attraction to it 

by drosophilid flies that are often found feeding on fungal fruiting bodies in the 

surrounding area.  The low number of co-occurring flowers in the area combined with the 

high number of fruiting fungi appears to have driven the evolution of the orchid genus 

Dracula to mimic these co-occurring fungi so that pollinators may be recruited.  Over 

several years of working with these orchids we have noticed a particular lapping behavior 

by the pollinating flies on the labella and sepals of the Dracula flowers.  In this study we 

have first surveyed floral yeasts and molds associated with Dracula flowers and then 

investigated the role of these fungi in attracting pollinators and offering a food reward to 

retain them for pollination purposes. In addition to the floral yeasts, leaf endophytes and 

root associated fungi were cultured and identified, and their frequencies were determined. 



 

v 

CURRICULUM VITAE 
 
NAME OF AUTHOR:  Jesse Wil McAlpine 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene 
 Evergreen State College, Olympia WA 
  
  
 
 
DEGREES AWARDED: 
 
 Master of Science, Biology, 2013, University of Oregon 
 Bachelor of Science, Biology, 2008, Evergreen State College 
  
  
 
 
AREAS OF SPECIAL INTEREST: 
 
 Ecology 
 
  
 
 
PROFESSIONAL EXPERIENCE: 
 
 Graduate Teaching Fellow, University of Oregon, 2010-13 
 
 Restoration Technician, Walama Restoration Project, 2008-10  
 
 
  
 



 

vi 

ACKNOWLEDGMENTS 
 

Without the guidance and persistence of Bitty Roy, much of this thesis would be 

ongoing, possibly to infinity. Bryn Dentinger was also instrumental in my development, 

both in molecular technique training and troubleshooting, as well as by siring Oban, 

without which I would not have gotten involved in this project. George Carroll has also 

been an important guide in laboratory skills and enthusiasm for obscure fungi. Tobias 

Policha, Roo Vandegrift, Ashley Ludden and the rest of the Roy lab have been 

indispensible in assistance, advice and encouragement. Debra Falkenberg, Matt Davis, 

and Kate Hirst all assisted with collections and observations the field site. Kate has also 

provided countless hours of support and encouragement for me to continue on this path. 

Funding was provided by the National Geographic Society (No. 8317-07 to B.A. Roy and 

B.T.M. Dentinger) and the National Science Foundation (DEB-0841613 to B.A. Roy and 

B.T.M. Dentinger). Thanks to J. DeCoux at the Los Cedros Biological Reserve for 

facilitating our work there (www.reservaloscedros.org), and our collaborators at the 

Museo Ecuatoriano de Ciencias Naturales and Escuela Politécnica Nacional in Quito for 

helping with the necessary permits to work in Ecuador through the Ministerio del 

Ambiente de Ecuador (No. 001-07 IC-F-DRCI-MA, No. 02-10-IC-FLO-DPAI/MA, No. 

03-09-IC-FAU-DPAI/MA, No. 07-2010-IC-FAU-DPAI/MA and No. 03-2011-IC-FLO-

DPAI/MA. 

 

 

 

 
 



 

vii 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. INTRODUCTION .................................................................................................... 1 

II. METHODS .............................................................................................................. 3 

 Field Site ................................................................................................................ 3 

      Flowers ..............................................................................................................      3 

      DNA Extraction ..................................................................................................... 4 

      PCR and Sequencing  ............................................................................................. 4 

      Behavioral Assay ..................................................................................................      5 

      Statistical Analysis ......................................................................................      6 

III. RESULTS .............................................................................................................. 8 

IV. DISCUSSION ........................................................................................................ 16 

APPENDICES ............................................................................................................. 20 

A. YEAST IDENTITIES BASED ON ITS AND D1/D2     
                 SEQUENCES AND BLAST QUERY RESULTS .....................................    20 

            B. FUNGI FROM LEAVES AND ROOTS OF DRACULA ORCHIDS  ....... 24 
 
 
REFERENCES CITED ................................................................................................ 46 



 

viii 

LIST OF FIGURES 
 
Figure Page 
 
 
1.   Percent of cultures from each substrate (labellum or sepal) with  
      surface fungi present .............................................................................................. 14 
 
2. Yeasted models attracted flies at the same rate as real Dracula felix .................... 15 
 
3. Flies were not attracted to unrewarding model flowers (the same  
     model flowers without yeast painted on them) as they were to real D. felix ..........  15



 

ix 

LIST OF TABLES 
 
Table Page 
 
 
1. Presence (1) or absence (0) of yeast species (in alphabetical order) from  
      all substrates (flowers, flies and mushrooms) sampled.  Sample size for each  
      substrate is the final line of the table.  Presence is highlighted. ............................ 10 
 
2. Presence (1) or absence (0) of non-yeast species (in alphabetical order) from all      
      substrates (flowers, flies and mushrooms) sampled.  Sample size for each  
      substrate is the final line of the table.  Presence is highlighted ............................. 11 
 
3. Frequency and sample size (in parentheses) of only those yeasts found on  
      Dracula felix labella and sepals, as well as flies visiting D. felix. The table is  
      ordered by shared taxa. Cells with yeasts present are highlighted so the pattern  

of shared species is obvious. Differences in frequencies across substrates were                  
assessed with log-likelihood analysis. Significant P-values are in bold type ........ 12 
 

4. Frequency and sample size (in parentheses) of only those non-yeasts found on       
      Dracula felix labella and sepals, as well as flies visiting D. felix. The table is  
      ordered by shared taxa.  Cells with yeasts present are highlighted so the  
      pattern of shared species is obvious.  Differences in frequencies across  
      substrates were assessed with log-likelihood analysis. Significant P-values are  
      in bold type ............................................................................................................ 13 
 



 1 

CHAPTER I 

INTRODUCTION 

The Dracula genus of orchids has long intrigued botanists with its peculiar shape 

and odor, which has led to the hypothesis that it is a fungal mimic (Luer 1978, Kaiser 

2000). The lower labellum strongly resembles the pileus of a small white gilled 

mushroom (Luer 1978, Dentinger and Roy 2010), which attracts drosophilid flies that are 

often found associated with nearby fungi. These flies move pollinia, the pollen packages 

of orchids, from flower to flower within populations of Dracula orchids and sometimes 

land on real fungal fruitbodies in the process (Endara et al. 2010). This deceptive mating 

system is successful at attracting flies, sometimes in large numbers to the Dracula 

blooms, though often in the case of some of the more solitarily blooming species the 

pollinators are few and far between.   

While observing the pollinators, we noticed that the flies appeared to be lapping at 

the surface of the floral parts, as described by Grimaldi (1987) when observing 

Zygothrica aggregating on mushrooms, and that they continued to exhibit this behavior as 

they moved deeper into the flower where, occasionally, the flower would attach a pollinia 

packet to their backs. I hypothesized that the flies were attracted to, and consuming yeasts 

that were growing on the surface of the flowers. Drosophilid flies are well known to be 

both dispersants and consumers of yeasts (Starmer and Fogleman 1986) and different 

species have been shown to prefer largely different groupings of yeasts (Heed et al. 

1976). The goals of this study were to determine which yeasts were growing on the 

flowers and in the guts of the flies.  Those of us studying this system have often 

wondered why sometimes the flowers are very attractive and are swarmed with flies, and 
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other times they seem not to be at all attractive since there are no visitors.  Might the flies 

be sensitive to the presence of particular yeasts? I therefore also gathered some 

preliminary data on the attraction of the pollinating flies to one of the yeasts.   

Most previous floral yeast work has been centered on nectar-inhabiting yeasts 

(Sandhu and Waraich 1985, Herrera et al. 2008, Belisle et al. 2012, Peay et al. 2012). 

However, Dracula, like many orchids, do not produce nectar (Endara et al. 2010) and 

thus do not have the fermenting of sugars to attract a certain set of pollinators (Tremblay 

et al. 2005). The pollinators that they do attract seem to have a more savory palate, being 

associated with fresh mushrooms in the fungal-rich moist cloud forest environment that 

harbors this unique system.  

 

 

 

 

 

 

 

 

 



 3 

CHAPTER II 

METHODS 

Field Site- Field work was carried out at Los Cedros Biological Reserve (00°18’31.0”N, 

78°46’44.6”W), a 6,900 hectare private reserve located in the province of Imbabura, 

Ecuador that serves as a buffer to the 300,000 hectare Cotacachi-Cayapas Ecological 

reserve located to the north of Los Cedros. Los Cedros consists mostly of intact primary 

montane cloud forest that is typical of the southern end of the Chocó phytogeographical 

zone, an area considered to be one of the most biologically diverse habitats on earth 

(Myers et al. 2000). Rainfall is heavy and frequent at this elevation (1250-2200m) on the 

western slope of the Andes, on average 2.9m per year (data collected from 1995-2009 by 

station manager Jose DeCoux). Work was carried out between January and March of 

2012 during the peak of the rainy season, coinciding with the bloom of Dracula orchids 

as well as an abundant fruiting of co-occurring mushrooms.  

Flowers- Flowers were harvested and placed in fishing tackle boxes that had been 

sterilized by wiping with a 5% sodium hypochlorite solution then left to air dry under the 

flow of a HEPA filter. Flowers were brought back to the field station and under HEPA 

laminar flow plated on modified YM Acid Agar.  This is a solution of 500ml water, 1.5g 

yeast extract, 1.5g malt extract, 2.5g bacto tryptone, 5g dextrose, 10g agar and pH 

adjusted to 4 by the addition of 40 drops of juice from lemons at the field station. 

Contents were autoclaved, plates were poured and cooled under laminar flow from a 

HEPA-SEP filter model # STD12-12-12-05PEADC50. Sepals and labella were 

individually removed  from each of the harvested flowers with sterilized forceps, pressed 
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to the surface of the agar media once, and removed.  Co-occurring mushrooms and 

flowers were also harvested and pressed to the surface of the media in the same manner 

as the Dracula flowers. The plates were then labeled and wrapped with plastic wrap to 

minimize contamination, then checked daily for fungal growth.  As yeasts (indistinct 

edges to colonies, not hyphal) and molds (hyphal) began to grow, they were transferred 

as somewhat recognizable single isolates onto fresh dishes under the laminar flow hood.  

These isolated cultures were allowed to grow until they had covered the plate 

(approximately a month) and sufficient amounts could be harvested for DNA extraction 

or behavioral experiments.  

DNA Extraction- The matured cultures were transferred with a sterile scalpel to 

Whatman® FTA® Plant Saver cards and smashed into the fiber matrix of the cards with 

the blunt force of a hammer as in (Dentinger et al. 2010).  The cards were dried rapidly 

by placing them in an airtight box containing silica desiccant. They were then transported 

to our laboratory in Eugene, OR where a Harris MicroPunch with a 2mm tip was used to 

remove sections of encrusted fibers.  The punch was cleansed between each sample by 

punching out three disks from sterile filter paper (Dentinger et al. 2010).  The sample 

punches were placed into 96 well plates and 25 µL of extraction buffer from the Sigma 

Extract-n-Amp Plant PCR kit was added to each well before a 10 minute incubation in a 

95 OC thermocycler. Following incubation 25 µL of Dilution solution from the Sigma kit 

was added to the samples. From this a 1:29 dilution with sterile DI water was made.   

PCR and Sequencing- PCR reactions were carried out in 10µL reactions with 2µL of the 

1:29 diluted sample extract added to 8µL of the following mixture: 1µL of buffer, 1µL of 
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a 25mM MgCl2 solution, 0.2µL of 10mM dNTPs, 0.2 µL Taq (2.5 units/µL), 0.2 µL of 

each primer (10 µM), and 5.6 µL sterile water.  The primer pair ITS 4 and ITS 5 (White 

et al. 1990) were used to amplify the ITS region of the ribosomal RNA and the primer 

pair ITS 1(White et al. 1990) and LR3R (Vilgalys 1990) were used to amplify the D1/D2 

region of the 26S region of rRNA.    

Thermal cycling was completed on an Applied Biosystems Veriti (model 9902) with the 

following parameters as in (Dentinger et al. 2010): denaturation at 95 oC for 2 min, five 

cycles of denaturation 95 oC for 30 sec, annealing at 60 oC for 30sec and extension at 72 

oC for 1min; followed by 25 cycles of denaturation at 95 oC for 30 sec annealing at 55 oC 

for 30 sec and extension at 72 oC for 1 min; a final extension at 72 oC for 10 min and 

indefinate refrigeration at 4 oC. After visualization of positive PCR products on a 1.5% 

agarose gel, samples were cleaned with 2.8 µL of a master mix that when prepared for a 

96 well plate contained 1.3 µL of Exonuclease I, 26 µL shrimp alkaline phosphatase, and 

221 µL water. The solutions were mixed and incubated for 15 minutes at 37oC and then 

for 15 minutes at 80oC in the thermal cycler. Sequencing was carried out at Functional 

Biosciences on an ABI 3730xl DNA Sequencer with 50cm arrays. 

Sequences were viewed, aligned and edited using the Geneious v5.6.4 software package. 

Nucleotide collection databases at GenBank were queried with the Basic Local 

Alignment Search Tool (Altschul SF 1990) to look for named species with DNA 

sequences matching those obtained for our isolates. A matrix of possible matches was 

created by ranking the top ten hits each for Pairwise ID, Bitscore, and Query Cover, then 

comparing the most abundant species from each category. The top scoring species that 
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was most prevalent amongst these three categories was chosen as the sample’s 

identification.  See Appendix A. 

 

Behavioral Assay- Over a period of three days in February of 2012 a series of 

observations were made with cultured yeasts painted on flower models.  Surgical silicone 

models were formed on site using real D. felix flowers by an artist (Melinda Barnadas). 

These replicas were positioned within 5cm of flowering D. felix plants and a thin layer of 

yeast cultured from nearby flowers (ultimately found to be Debaryomyces hansenii) was 

applied to the lower sepal area of the flower models. Observers recorded all approaches 

and landings on the model as well as a nearby flower for 30-minute sessions several 

times per day during the morning dry period that correlates with high fly activity. 

Observers were rotated among the three stations to reduce observer bias. Fly approaches 

(defined as obvious orientation towards the flower within 10 cm of the flower) and 

landings were observed.  These data were compared with data from a separate experiment 

in which attraction to the unscented models was compared to real flowers and a material 

control.  

Statistical Analysis-.  To determine whether or not the frequencies of surface dwelling 

fungi were statistically different on labella versus sepals, we used Fisher's exact test with 

substrate (labellum or sepal) as the explanatory variable and presence/absence as the 

response variable).  To determine whether there were significant differences in the 

frequency of the different species on D. felix labella, sepals and in flies caught from D. 

felix, we performed contingency table analysis on frequencies using the Likelihood Ratio 
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Chisquare as the test statistic.  To determine whether the pollinator flies visited real 

flowers and yeast painted model flowers at the same rate, I used ANOVA with number of 

visits per hour (log transformed) as the dependent variable, and treatment (yeast model or 

true flower) as the explanatory variable.  In a separate experiment I examined the 

differences in visitation rate among real flowers, model flowers without yeast, and model 

material control, which was a blob of silicone not in flower form.  This experiment was 

also analyzed with ANOVA. 
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CHAPTER III 

RESULTS 

Yeasts and molds were cultured out of several different substrates, including flies, 

flowers and mushrooms.  The yeast species found are listed in Table 1 by presence or 

absence on a particular substrate.  The non-yeast species are listed in Table 2 by presence 

or absence on a particular substrate. We found 22 species from three different fungal 

classes; twelve Ascomycota, seven Basidiomycota, and three Zygomycota.  Most of the 

yeasts and molds were found on more than one substrate (Tables 1,2). 

 A total of seventeen yeast and mold species were found on D. felix (Tables 3,4).  

Since I had samples sizes of >15 from D. felix flies, sepals and labella, but small samples 

sizes (5 or fewer) from the rest of the substrates, I performed statistical analyses only on 

the D. felix-associated surface fungi. Six species inhabited both the labellum of D. felix 

flowers as well as the guts of the insects, and two more species were found both in flies 

and on D. felix sepals (Tables 3, 4). Nearly half (8/20) of the species found on D. felix 

flowers were shared with flies (Tables 3, 4). Only one of the yeast species was found 

more often on one of the substrates; Bullera ninhbinhesis was only found on D. felix 

labella, and not on sepals or in flies.   There were significantly fewer species cultured 

from the sepals than the labellum (Fig. 1; Tables 3, 4).  Due to the way I sampled, the 

maximum number of species recovered from any substrate was one.  The communities 

depended on whether labella or sepals were examined; we recovered surface dwelling 

fungi more often from labella than from sepals (Fig. 1, 2-tailed Fisher's Exact Test, 

P=0.0008). 



 9 

 I cultured eleven species of surface dwelling fungi from the sixteen flies captured 

while visiting D. felix (Table 2).  Of these, eight were also found on D. felix flowers 

(either on labella or sepals).  Only two of the eleven fly-gut associated species were not 

found on D. felix flowers (Ceriporia lacerata and Verticillium fungicola).  Only one 

mold, P. corylophilium, was found on all the D. felix substrates.   

For comparative purposes, I also cultured yeasts and molds from five co-

occurring mushrooms, two Masdevallia flowers, one Marantaceae (c.f. Stromanthe) 

flower, and a sepal and labellum from one D. lafleurii flower.  While these sample sizes 

were small, they were nonetheless informative (Fig. 1).  The additional flowers shared 

yeasts and molds with those already found on flowers or flies.  Two of the species found 

on the mushrooms, however, were only found on mushrooms: Hanseniaspore uvarum 

and Phanerocaete sordida. 

 Finally, to determine whether or not the yeasts were attractive to the pollinator 

flies, I performed an experiment in which Debaryomyces hansenii was cultured from D. 

felix flowers and then painted on to a silicone model. There was no difference in 

visitation rates to yeasted model flowers and real flowers (Fig. 2.).  A separate 

experiment performed by T. Policha and B. Roy showed that unyeasted model flowers 

received significantly fewer visits than real flowers did (Fig. 3.)  
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Table 1.  Presence (1) or absence (0) of yeast species (in alphabetical order) from all 
substrates (flowers, flies and mushrooms) sampled.  Sample size for each substrate is the 
final line of the table.  Presence is highlighted. 

Phylum Class Species 
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Basidiomycota Tremellomycetes Bullera 
ninhbinhensis 1 0 0 0 0 0 0 0 

Ascomycota Saccaromycetes Candida 
restingae 1 0 0 0 0 0 0 0 

Ascomycota Saccaromycetes Debaryomyces 
hansenii 1 0 1 0 0 1 0 0 

Ascomycota Saccaromycetes Hanseniaspora 
uvarum 0 0 0 0 0 1 0 0 

Basidiomycota Exobasidiomycetes Malassezia 
restricta 0 1 0 1 0 0 0 0 

Basidiomycota Exobasidiomycetes Malassezia 
uncultured 0 0 1 0 0 0 0 0 

Basidiomycota Urediniomycetes Rhodotorula 
mucilaginosa 1 0 0 0 0 1 1 1 

    N 20 20 16 5 2 5 2 1 
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Table 2.  Presence (1) or absence (0) of non-yeast species (in alphabetical order) from all 
substrates (flowers, flies and mushrooms) sampled.  Sample size for each substrate is the 
final line of the table.  Presence is highlighted. 

Phylum Class Species 
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Ascomycota Sordariomycetes Bionectria 
ochroleuca 1 0 1 0 0 0 0 0 

Basidiomycota Basidiomycetes Ceriporia 
lacerata 0 0 1 0 0 0 0 0 

Ascomycota Sordariomycetes Cosmospora 
consors 0 1 0 0 0 0 0 0 

Basidiomycota Basidiomycetes Grammothele 
sp. 1 0 0 1 0 0 0 0 

Zygomycota Trichomycetes Mucor fragilis 1 0 0 0 0 0 0 0 

Zygomycota Trichomycetes Mucor 
nederlandicus 1 0 1 0 0 0 0 0 

Zygomycota Trichomycetes Mucor 
nidicola 1 1 0 1 0 0 0 0 

Ascomycota Eurotiomycetes Penicillium 
brocae 0 1 1 0 0 0 0 0 

Ascomycota Eurotiomycetes Penicillium 
corylophilum 1 1 1 0 1 0 1 0 

Ascomycota Eurotiomycetes Penicillium 
roqueforti 0 1 1 1 0 0 0 0 

Ascomycota Eurotiomycetes Penicillium 
sumatrense 1 0 0 0 0 0 0 0 

Basidiomycota Agaricomycetes Phanerocaete 
sordida 0 0 0 0 0 1 0 0 

Ascomycota Sordariomycetes Pochonia 
bulbillosa 1 0 1 0 0 0 0 0 

Ascomycota Sordariomycetes Verticillium 
fungicola 0 0 1 0 1 0 0 0 

Ascomycota Sordariomycetes Volutella 
ciliata 1 0 1 0 0 0 0 0 

    N 20 20 16 5 2 5 2 1 
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Table 3.  Frequency and sample size (in parentheses) of only those yeasts found on 
Dracula felix labella and sepals, as well as flies visiting D. felix. The table is ordered by 
shared taxa.  Cells with yeasts present are highlighted so the pattern of shared species is 
obvious.  Differences in frequencies across substrates were assessed with log-likelihood 
analysis. Significant P-values are in bold type. 

Species %
D
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P 
Debaryomyces hansenii 12.5 (2) 5 (1) 0 3.40 0.1827 
Malassezia uncultured 6.25 (1) 0 0 2.55 0.2792 
Rhodotorula mucilaginosa 0 5 (1) 0 2.09 0.3513 
Bullera ninhbinhensis 0 20 (4) 0 8.80 0.0123 
Candida restingae 0 10 (2) 0 4.25 0.1192 
Malassezia restricta 0 0 5 (1) 2.09 0.3513 
            
N 16 20 20     
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Table 4.  Frequency and sample size (in parentheses) of only those non-yeasts found on 
Dracula felix labella and sepals, as well as flies visiting D. felix. The table is ordered by 
shared taxa.  Cells with yeasts present are highlighted so the pattern of shared species is 
obvious.  Differences in frequencies across substrates were assessed with log-likelihood 
analysis. Significant P-values are in bold type. 

Species %
D
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 (N
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%
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. f
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P 
Bionectria ochroleuca 6.25 (1) 5 (1) 0 1.84 0.3996 
Mucor nederlandicus 6.25 (1) 5 (1) 0 1.84 0.3996 
Pochonia bulbillosa 6.25 (1) 5 (1) 0 1.84 0.3996 
Volutella ciliata 6.25 (1) 5 (1) 0 1.84 0.3996 
Penicillium corylophilum 25    (4) 10 (2) 15 (3) 3.26 0.1960 
Mucor nidicola 0 5 (1) 5 (1) 1.38 0.5280 
Penicillium brocae 6.25 (1) 0 5 (1) 1.84 0.3996 
Penicillium roqueforti 6.25 (1) 0 5 (1) 1.84 0.3996 
Ceriporia lacerata 12.5 (2) 0 0 5.20 0.0743 
Malassezia uncultured 6.25 (1) 0 0 2.55 0.2792 
Verticillium fungicola 6.25 (1) 0 0 2.55 0.2792 
Grammothele sp. 0 10 (2) 0 4.25 0.1192 
Mucor fragilis 0 5 (1) 0 2.09 0.3513 
Penicillium sumatrense 0 5 (1) 0 2.09 0.3513 
Cosmospora consors 0 0 5 (1) 2.09 0.3513 
N 16 20 20     
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Figure 1.  Percent of cultures from each substrate (labellum or sepal) with surface fungi 
present. 
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Figure 2. Yeasted models attracted flies at the same rate as real Dracula felix 

 F= 11.60 4,100  P<0.0001 

Figure 3. Flies were not attracted to unrewarding model flowers (the same model flowers 
without yeast painted on them) as they were to real D. felix. 

 

F=	  0.79	  1,79	  P=0.3769 
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CHAPTER IV 

DISCUSSION 

In the behavioral assay I found that when yeasts were present on a silicone flower 

model, visitation was indistinguishable from that of true flowers. These results suggest 

that the flies consume yeasts as they feed on what they perceive to be a mushroom and in 

the process accidentally perform pollination services for the flowers. These yeasts are not 

nectar inhabiting since the Dracula flowers, as with many orchids, are not nectar 

producing plants (Endara et al. 2010) instead relying on mimicry for visual attraction of 

pollinators.  

How do the yeasts get to the flowers?  The yeasts and molds could be brought to 

the flowers by the initial visitors when the flowers open, and/or they may be carried to 

the flowers through air currents. The second possibility is less likely as the air is rather 

still in the dense cloud forest and the flowers have a downward-facing bell shaped form, 

making airborne inoculation unlikely. The observation that unopened flowers when 

opened in the laminar flow of the HEPA filter did not yield any cultivable fungi (albeit a 

small sample size of 5 flowers) suggests that the fungi are introduced to the flowers after 

they open. This inoculation can be beneficial for the pollination success of the orchids, 

but it also runs the risk of being detrimental in that pathogenic fungi, once introduced, 

may shorten the time that the flower is viable.  

An earlier study on a different Dracula species suggested that the mimicry could 

be chemical as well as visual, since fragrance compounds known to occur in mushrooms 

were detected in the flowers (Kaiser 2006). More recently, T. Policha has been analyzing 
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the Dracula species at my field sites and has consistently found four "mushroom" 

associated volatile compounds: oct-1-en-3-ol, octan-3-one and octan-3-ol, and oct-1-en-

3-one.  At least one of the fungi that I isolated, Penicillium roquefortii, produces the same 

"mushroom" volatives (Chalier and Crouzet 1993).What is the contribution of yeasts and 

molds to the floral odors of D. felix?  My results suggest that the source of the fungal 

odor could either be the plant, the yeasts, or that the fragrances produced by the plant are 

supplemented by the odors produced by the yeasts.  Using GCMS, T. Policha (pers. 

comm.) was able to show that the fragrance of the yeast I used in the behavioral assay 

(Debaromyces hanseni) is different than that of the D. felix flowers he tested, but we 

don't know what the contribution of other fungi was to the floral fragrances he has 

isolated.  However, the fact that the initial fungal fragrance work on these species (Kaiser 

2006) was done with greenhouse plants suggests that either the floral yeasts are non-

specific, or, more likely that the flower is producing the odors.  Nonetheless, when fungi 

colonize these surfaces, they are likely to add to or change the odor “bouquet” in 

someway. 

Yeast mediated pollination is not a new concept (Sandhu and Waraich 1985), 

although often overlooked in the framework of more traditional concepts of pollinator 

recruitment such as nectar rewards and mimicry. As yeasts are often ubiquitous in the 

environment they may add another layer of reward for the pollinator, or may be a goal 

unto themselves for the pollinator to consume. Plants have even been shown to mimic the 

volatiles produced by yeasts to entice fly pollinators to visit the blooms (Goodrich et al. 

2006, Stokl et al. 2010). In the situation of the Dracula orchids the yeasts may be adding 

a nutritional reward to the already duped scenario that the Drosophilid flies have found 
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themselves in. The appearance of yeasts on the already putative fungal mimics add a 

nutritional reward to the system wherein the flies are able to be retained for a longer 

period of time while lapping at the yeasts, resulting in a greater chance of pollen transfer. 

My experiment of adding yeast to a scentless flower model suggested that flies were 

likely to land and spend time on the model than those flies that were simply given a 

scentless model. Visual attraction plays a significant role in the recruitment of flies to the 

flowers (Policha and Roy, Pers. Comm.), but without fragrance (yeast or plant made) 

they are unlikely to remain long enough to pick up or deposit pollinia.  The suggestive 

evidence  that they also eat the yeast is likely to increase the time they spend on flowers. 

The wide diversity of yeast and mold species found on the flowers as well as the 

fly guts speaks to the lack of strong specificity that exists in this relationship. These fungi 

are commonly isolated from environmental substrates (Morais et al. 1995, Fleet 2001, 

Hsieh et al. 2010, Glushakova et al. 2011, Chi et al. 2012), including flowers (Lachance 

et al. 2003, Mushtaq et al. 2007, Herrera et al. 2008, Stokl et al. 2010, Pozo et al. 2011, 

Belisle et al. 2012, Vadkertiova et al. 2012), and were also isolated from other species of 

flowers in the study area (Table 1). One explanation for the low diversity and the 

commonness of the species observed could have been my methods; the sampling 

technique limited the number isolated to a maximum of one per sample, and culturing 

and isolating could skew the results towards easily cultivatable species. Culturing was 

chosen due to financial and logistical constraints and could be improved upon in the 

future by utilizing tape lifts to parse out separate colonies on the flowers, then picking 

colonies off of the tape to culture in the lab. This would help elucidate the diversity 

existing in the floral structure instead of the presence/absence data that was gathered in 
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this study. This community analysis could also be achieved by incorporating next-

generation sequencing techniques, although this was prohibitively expensive at the time 

of the study.  Time spent observing flowers and yeasted models could be expanded as 

well, as it was relatively small due to an order of operations for other workers utilizing 

these flowers.  

In conclusion, floral surface dwelling fungi may have a role in the pollination 

efficiency of Dracula felix through the attraction and retention of flies, providing a 

“reward” for visiting these putative deceptive mushroom mimics. The flowers contain a 

broad array of yeasts and molds that may be introduced to the flowers by the pollinating 

flies or by airborne means. Given the diversity of fungi I uncovered, it is unlikely that the 

flies are attracted specifically to one species of surface fungi, but are more likely to be 

more cosmopolitan in their dining habits.   
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APPENDIX A 

YEAST IDENTITIES BASED ON ITS AND D1/D2 SEQUENCES AND BLAST 

QUERY RESULTS 

Sample 
Name ITS 4/5 ID 

ITS 4/5 
Pairwis
e ID 

D1/D2 
Pairwise ID  

ITS 4/5 
Pairwise 
ID Dracula sp. Substrate 

Brl 2.4 fly 
1 

Grammothele 
sp. 96.3 

Polyporaceae 
sp. 99.6 Lefleur Fly 

Brl 2.4 fly 
2 

Grammothele 
sp. 96.3 

Polyporaceae 
sp. 98.5 Lefleur Fly 

BRL 2.4.1 
Verticillium 
fungicola 100 

Debaryomyce
s hansenii 99.6 Lefleur Sepal 

BRL 2.4.1 
lab 

Penicillium 
corylophilum 99.8 

Penicillium 
corylophilum 100 Lefleur Labellum 

Filo Riv 1 
Hanseniaspor
a uvarum 99.1 

Hanseniaspor
a uvarum 99.3 Filoboletus 

Mushroo
m 

Filo riv 2 
Phanerochaet
e sordida 99.5 

Phanerochaet
e sordida 99.3 Filoboletus 

Mushroo
m 

fpg fly 3 
Uncultured 
Malassezia 98.7 

Malassezia 
restricta 99 Felix Fly 

FPG L3 
Mucor 
nidicola 98.7 

Rhizomucor 
variabilis 98.8 Felix Labellum 

FPG L5 
Mucor 
fragilis 100 

Mucor 
fragilis 98.7 Felix Labellum 

FPG s6 
Cosmospora 
consors 99.3 

Cosmospora 
consors 100 Felix Sepal 

FPGS5 
Cosmospora 
consors 99 

Cosmospora 
consors 100 Felix Sepal 

I 10 F fly 1 
Penicillium 
corylophilum 100 

Penicillium 
corylophilum 100 Felix Fly 

I 10 Flfy2 
Debaryomyce
s hansenii 93.9 

Debaryomyce
s hansenii 99.8 Felix Fly 

I 10 fly 1 
Penicillium 
corylophilum 100 

Penicillium 
corylophilum 100 Felix Fly 

I 10 Lab 
Volutella 
ciliata 99 

Volutella 
ciliata 99 Felix Labellum 
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I 26 Lab 
Penicillium 
sumatrense 100 

Penicillium 
chrysogenum 100 Felix Labellum 

I 34.1 fly 1 
Ceriporia 
lacerata 98.9 

Penicilium 
atramentosu
m 99.8 Felix Fly 

I 34.1 lab 
Bullera 
ninhbinhensis 92.6 

Bullera 
ninhbinhensis 92.2 Felix Labellum 

I 7 lab 
Candida 
restingae 96.4 

Candida 
restingae 92.6 Felix Labellum 

I10 S 
Penicillium 
brocae 100 

Penicillium 
brocae 96.4 Felix Sepal 

I34.1Lab 
Rhodotorula 
mucilaginosa 99.8 

Rhodotorula 
mucilaginosa 100 Felix Labellum 

Marant Fl1 
Rhodotorula 
mucilaginosa 99.8 

Rhodotorula 
mucilaginosa 96.3 Marantaceae Sepal 

Mas RG 
1.4 

Rhodotorula 
mucilaginosa 99.8 

Rhodotorula 
mucilaginosa 96.3 Masdevallia Sepal 

Mas RG 
1.4 

Penicillium 
corylophilum 100 

Penicilium 
toxicarium 100 Masdevallia Sepal 

Oso 12.1 
lab 2 

Bionectria 
ochroleuca 99.8 Candida sp. 100 Felix Labellum 

Oso 12.1 
lab 3 

Mucor 
nederlandicus 96.8 

Debaryomyce
s hansenii 99.8 Felix Labellum 

Oso 12.1L 
Debaryomyce
s hansenii 100 

Debaryomyce
s hansenii 99.8 Felix Labellum 

Oso 
18.12.1 lab 

Candida 
restingae 97.4 Candida sp. 96.8 Felix Labellum 

Oso 
18.12.2 lab 

Bullera 
ninhbinhensis 92.7 

Bullera 
ninhbinhensis 98.9 Felix Labellum 

Oso 
18.12.3 lab 

Bullera 
ninhbinhensis 92.8 

Bullera 
ninhbinhensis 100 Felix Labellum 

Oso 18.14 
lab 

Bullera 
ninhbinhensis 92.2 

Bullera 
ninhbinhensis 98.7 Felix Labellum 

Oso 48.1 
lab 

Pochonia 
bulbillosa 99.8 

Pochonia 
bulbillosa 100 Felix Labellum 

Oso 51.1 F 
Fly 2 

Penicillium 
corylophilum 100 

Penicillium 
corylophilum 98.9 Felix Fly 

oso 51.1 F 
Fly 3 

Bionectria 
ochroleuca 99.8 

Bionectria 
ochroleuca 96.9 Felix Fly 
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Oso 51.1 
Ffly 1 

Penicillium 
corylophilum 100 

Penicillium 
corylophilum 100 Felix Fly 

Oso 51.1 
Fly 4 

Penicillium 
roquefortii 99.9 

Penicillium 
roquefortii 99.8 Felix Fly 

Oso 51.1 
lab 1 

Grammothele 
sp. 96.3 

Grammothele 
sp. 99.9 Felix Labellum 

Oso 51.1 
lab 2 

Grammothele 
sp. 96.3 

Geotrichum 
carabidarum 100 Felix Labellum 

Oso 51.1 
lab 3 

Penicillium 
corylophilum 100 

Candida 
intermedia 96.3 Felix Labellum 

Oso 51.1 
S1 

Penicillium 
corylophilum 100 

Penicillium 
corylophilum 96.3 Felix Sepal 

Oso 51.1 
S2 

Penicillium 
roqueforti 100 

Debaryomyce
s hansenii 100 Felix Sepal 

Oso F com 
gar 

Penicillium 
corylophilum 100 

Penicillium 
corylophilum 93.9 Felix Sepal 

PG FF 10 
Verticillium 
fungicola 100 

Lecanicillium 
fusisporum 97.4 Felix Fly 

pg FF 9 
Volutella 
ciliata 99 

Dactylaria 
longispora 92.7 Felix Fly 

PG FF1 
Debaryomyce
s hansenii 100 

Debaryomyce
s hansenii 92.8 Felix Fly 

PG FF8 
Penicillium 
brocae 99.6 

Penicillium 
brocae 99.8 Felix Fly 

PG LF 2 
Penicillium 
roquefortii 99.6 

Penicillium 
roquefortii 99.6 Lefleur Fly 

PG LF 4 
Mucor 
nidicola 98.5 

Mucor 
nidicola 99 Lefleur Fly 

Pg LF 7 
Malassezia 
restricta 99.6 

Malassezia 
restricta 100 Lefleur Fly 

pgf fly 5 
Ceriporia 
lacerata 98.9 

Ceriporia 
lacerata 99.6 Felix Fly 

PGF fly 6 
Mucor 
nederlandicus 96.9 

Mucor 
ellipsoideus 99.8 Felix Fly 

PGF S3 
Malassezia 
restricta 99.3 

Malassezia 
restricta 99.8 Felix Sepal 

Plut Riv 
CG 4 

Rhodotorula 
mucilaginosa 99.8 

Rhodotorula 
mucilaginosa 99.8 Pluteus 

Mushroo
m 
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Plut RV 
CG 3 

Debaryomyce
s hansenii 99.8 

Debaryomyce
s hansenii 100 Pluteus 

Mushroo
m 

Pluteus 
River CG 1 

Rhodotorula 
mucilaginosa 99.6 

Rhodotorula 
mucilaginosa 99.8 Pluteus 

Mushroo
m 

Poo gar F 
Fly 7 

Pochonia 
bulbillosa 99.8 

Pochonia 
bulbilosa 99.1 Felix Fly 

Poo gar 
sepal F1 

Mucor 
nidicola 99.3 

Rhizomucor 
variabilis 99.5 Felix Sepal 
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APPENDIX B 

 FUNGI FROM LEAVES AND ROOTS OF DRACULA ORCHIDS 

Introduction 

All orchids are mycoheterophillic organisms and are completely dependent on resident 

fungal hyphae to obtain the nutrients needed for germination on their substrate. Some 

maintain a connection to these fungi as they mature into photosynthetic plants and these 

become either mycorrhizal partners with the plant, endophytic inhabitants of their tissue, 

or pathogenic saprobes.  I set out to determine what fungi might be associating with the 

Dracula orchids both in their roots and in their leaves and how that may shift amongst 

species of these orchids that are reasonably restricted to certain microhabitats.  Roots and 

leaves from three separate species, D. lefleur, D. felix, D. pubescens representing low, 

mid, and high elevation respectively were cultured under sterile conditions to isolate 

fungi that were inhabiting the plant’s tissues.  

Root methods- Two roots of each orchid were cross-sectioned to make a disk of 

approximately 0.5mm in thickness.  Several disks were immersed in analine blue for 1 

minute, then taken out of the dye, excess dye was absorbed with Kimwipes and the root 

disks were immersed in DI water to wash off any excess dye.  Slides were prepared with 

this material and viewed under a 60X light microscope for fungal pelotons.  After 

recognizing the root surface patterns that often correlated with peloton presence three 

2cm sections of roots that appeared to harbor infection were sliced, velamen removed and 

surface sterilized by 1 minute immersion in 2% sodium hypochlorite followed by 1 
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minute immersion in 95% ethanol followed by two consecutive baths in autoclaved 

water.  These roots were allowed to dry on autoclaved filter paper under the clean flow of 

air from a HEPA filter and then plated on 2% malt agar.  Plates were labeled and 

wrapped with plastic wrap to minimize contamination, then checked daily for fungal 

growth.  As fungi began to emerge, they were transferred onto fresh dishes under the 

laminar flow hood for isolated growth.  These isolated cultures were allowed to grow for 

several weeks to a month until they had covered the plate and sufficient amounts could be 

harvested for DNA extraction.   

Leaf methods- Three 1cm diameter punches of Dracula leaves were taken and surface 

sterilized by 1 minute immersion in 2% sodium hypochlorite followed by 1 minute 

immersion in 95% ethanol followed by two consecutive baths in autoclaved water.  These 

leaf punches were allowed to dry on autoclaved filter paper under the clean flow of air 

from a HEPA filter and then plated on 2% malt agar.  Plates were labeled and wrapped 

with plastic wrap to minimize contamination, then checked daily for fungal growth.  As 

fungi began to emerge, they were transferred onto fresh dishes under the laminar flow 

hood for isolated growth.  These isolated cultures were allowed to grow for several weeks 

to a month until they had covered the plate and sufficient amounts could be harvested for 

DNA extraction.   

DNA extraction- The matured cultures were unwrapped and the mycelium scraped with 

a sterile scalpel, then transferred to Whatman FTA Plant Saver cards and smashed into 

the fiber matrix of the cards with the blunt force of a hammer as in Dentinger (2009). 

These cards were immediately dried by placing them in an airtight box containing silica 

desiccant for several days. They were then transported to our laboratory in Eugene, OR 
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where a Harris MicroPunch with a 2mm tip was used to remove sections of encrusted 

fibers.  The punch was cleansed between each sample by punching out three disks from 

sterile filter paper.  The sample punches were placed into 96 well plates and 25 µL of 

extraction buffer from the Sigma Extract-n-Amp Plant PCR kit was added to each well 

before a 10 minute incubation in a 95 OC thermocycler. Following incubation 25 µL of 

Dilution solution from the Sigma kit was added to the samples. From this a 1:29 dilution 

with sterile DI water was made.   

PCR and sequencing- PCR reactions were carried out in 10µL reactions with 2µL of the 

1:29 diluted sample extract added to 8µL of the following mixture: 1µL of buffer, 1µL of 

a 25mM MgCl2 solution, 0.2µL of 10mM dNTPs, 0.2 µL Taq (2.5 units/µL), 0.2 µL of 

each primer (10 µM), and 5.6 µL water.  Primers pairs used for these reactions were the 

ITS 1-F and ITS 4.  

Thermal cycling was completed on an Applied Biosystems Veriti (model 9902) with the 

following parameters as in Dentinger et al. (2009): denaturation at 95 oC for 2 min, five 

cycles of denaturation 95 oC for 30 sec, annealing at 60 oC for 30sec and extension at 72 

oC for 1min; followed by 25 cycles of denaturation at 95 oC for 30 sec annealing at 55 oC 

for 30 sec and extension at 72 oC for 1 min; a final extension at 72 oC for 10 min and 

indefinate refrigeration at 4 oC. After visualization of positive PCR products on a 1.5% 

agarose gel, samples were cleaned with 2.8 µL of a master mix that when prepared for a 

96 well plate contained 1.3 µL of Exonuclease I, 26 µL shrimp alkaline phosphatase, and 

221 µL water. The solutions were mixed and incubated for 15 minutes at 37oC and then 
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for 15 minutes at 80oC  in the thermal cycler. Sequencing was carried out at Functional 

Biosciences on an ABI 3730xl DNA Sequencer with 50cm arrays. 

Sequences were viewed, edited and searched against the BLAST database using the 

Geneious v5.6.4 software package. A matrix of possible matches was created by ranking 

the top ten hits each for Pairwise ID, Bitscore, and Query Cover, then comparing the 

most abundant species from each category. The top scoring species that was most 

prevalent amongst these three categories was chosen as the sample’s identification. 

 

 

Results 

Figure B1 shows the endophytic fungi.  Within leaves the endophytic fungi in the genus 

Colletotrichium is ubiquitously distributed throughout the landscape and was the 

dominant group of fungi found. The roots, however , contain a wider range of inhabitants, 

most of which are pathogenic and decomposer fungi. Figure B2 illustrates the frequency 

of various ascomycetes in the roots and Figure B3 shows the basiomycetes and 

zyogomycetes.  Few true mycorrrhizal associates were found. 
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Appendix B Figure B1. Frequency of leaf endophytes amongst the three species of 
Dracula orchids 
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Appendix B Figure B2. Frequency of Ascomycetous root associating fungi amongst the 
three species of Dracula. 
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Appendix B Figure B3. Frequency of Basidiomycetous and Zygomycetous root 
associating fungi in the three Dracula species
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Appendix B Table B1. Endophytic fungi isolated from the leaves. 

Sa
m
ple 
# 

Organi
sm / 
Pairwis
e ID 

H
i
t
s
-
I
D 

Pai
rwi
se 
ID 

Acce
ssion
# ID 

Organism
/ Bit score 

H
i
t
s
-
b
i
t 

Bit 
score 

Acce
ssion
# Bit 

Organism
/ Query 
cover 

H
it
s-
q
u
e
r
y 

Query 
Cover 

Acce
ssion
#Que
ry 

Dra
cula 
sp. 

B 
1.3
.1 

Colletot
richium 
kahawa
e 4 99.8 

JX01
0229 

Colletotri
chum 
gloeospori
oides 2 

980.5
16 

AJ30
1907 

Colletotri
chum 
gloeospori
oides 3 100 

JX25
8693 

Lefl
eur 

B 
1.3
.3 

Colletot
richum 
bonnine
nse 5 98.1 

JX01
0292 

Fungal 
endophyte 3 

1058.
06 

HM5
3704
4 

Colletotri
chum 
gloeospori
oides 1 99.84 

AJ30
1974 

Lefl
eur 

B 
16.
37.
1 

Colletot
richium 
constric
tum 1 99 

JQ00
5238 

Colletotri
chum sp. 1 

940.8
41 

AJ30
1939 

Fungal 
endophyte 3 99.65 

HM537
033 

Lefl
eur 

B 
16.
37.
2 

Colletot
richium 
constric
tum 1 98.5 

JQ00
5238 

Colletotri
chum 
boninense 4 

944.4
48 

JX01
0292 

Colletotri
chum 
boninense 8 100 

JQ93
6175 

Lefl
eur 

B 
2.2
.1 

Colletot
richum 
bonnine
nse 5 100 

JX25
8799 

Fungal 
endophyte 3 

1113.
96 

HM5
3704
4 

Colletotri
chum 
boninense 6 99.84 

EU8
2280
2 

Lefl
eur 

B 
2.2
.2 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Fungal 
endophyte 3 

1041.
83 

HM5
3704
4 

Colletotri
chum 
gloeospori
oides 1 99.84 

AJ30
1974 

Lefl
eur 

B 
2.2
.3 

Colletot
richum 
bonnine
nse 4 100 

JX25
8799 

Fungal 
endophyte 1 

1090.
52 

HM5
3704
4 

Fungal 
endophyte 2 99.67 

HM5
3704
4 

Lefl
eur 

B 
2.4
.1 

Penicili
um 
christen
seniae 1 100 

JN61
7674 

Penicilliu
m 
manginii 1 

762.3
08 

JN90
3566 

Penicilliu
m 
manginii 1 100 

JN90
3566 

Lefl
eur 

B 
2.4
.2 

Colletot
richum 
bonnine
nse 

1
0 100 

FN56
6869 

Fungal 
endophyte 3 

1108.
55 

HM5
3704
4 

Colletotri
chum 
boninense 5 99.52 

EU8
2280
3 

Lefl
eur 

B 
2.6
.2 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Fungal 
endophyte 2 

955.2
68 

HM5
3704
4 

Colletotri
chum 
boninense 5 99.83 

EU8
2280
3 

Lefl
eur 
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B 
2.7
.1 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum 
boninense 4 

1023.
8 

JX01
0292 

Colletotri
chum 
boninense 5 99.67 

JX25
8700 

Lefl
eur 

B 
5.1
.1 

Colletot
richium 
constric
tum 1 99 

JQ00
5238 

Colletotri
chum 
boninense 3 

931.8
25 

JX01
0292 

Colletotri
chum 
boninense 6 99.82 

DQ2
8617
0 

Lefl
eur 

B 
5.1
.2 

Colletot
richum 
bonnine
nse 3 100 

JX62
4301 

Colletotri
chum 
boninense 4 

1005.
76 

JX01
0292 

Colletotri
chum 
boninense 5 100 

EU8
2280
2 

Lefl
eur 

B 
5.1
.3 

Colletot
richum 
bonnine
nse 7 100 

JX62
4301 

Fungal 
endophyte 1 

1002.
16 

HM5
3704
4 

Colletotri
chum 
boninense 7 99.82 

JX25
8675 

Lefl
eur 

B 
5.1
.3 

Colletot
richum 
gloeosp
orioides 4 100 

GU0
6667
1 

Colletotri
chum 
gloeospori
oides 4 

1000.
35 

JN71
5837 

Colletotri
chum 
gloeospori
oides 2 99.8 

GU0
6667
1 

Lefl
eur 

C 
4.1
3.1 

Colletot
richum 
bonnine
nse 6 97.6 

JX01
0292 

Fungal 
endophyte 3 

1052.
65 

HM5
3704
4 

Fungal 
endophyte 3 99.84 

HM5
3703
3 

Pub
esce
ns 

C 
4.1
3.2 

Colletot
richum 
bonnine
nse 7 99 

JX62
4301 

Colletotri
chum 
boninense 2 

1013.
34 

AJ30
1939 

Colletotri
chum 
boninense 7 100 

AJ30
1939 

Pub
esce
ns 

C 
4.1
3.3 

Colletot
richium 
constric
tum 6 98.6 

JQ00
5238 

Colletotri
chium 
constrictu
m 3 

936.1
85 

JQ00
5238 

Colletotri
chium 
constrictu
m 3 99.84 

JQ00
5238 

Pub
esce
ns 

C 
4.2
0.1 

Colletot
richum 
bonnine
nse 9 99.8 

EU4
8221
0 

Colletotri
chum sp. 4 

985.9
26 

AJ30
1939 

Colletotri
chum 
boninense 8 100 

JX25
8768 

Pub
esce
ns 

C 
4.2
0.2 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum 
boninense 4 

1032.
81 

JX01
0292 

Colletotri
chum 
boninense 3 100 

EU8
2280
1 

Pub
esce
ns 

C 
4.2
1.1 

Colletot
richum 
bonnine
nse 4 97.6 

JX01
0292 

Fungal 
endophyte 2 

1040.
03 

HM5
3704
4 

Colletotri
chum 
boninense 6 100 

JX25
8729 

Pub
esce
ns 

C 
4.2
1.2 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum 
boninense 6 

1027.
4 

JX01
0292 

Colletotri
chum 
gloeospori
oides 1 99.67 

AJ30
1974 

Pub
esce
ns 

C 
4.2

Colletot
richium 

2 98.7 
JQ00

Colletotri
chium 

3 
1045. JQ00

Colletotri
chium 

4 99.84 
JQ00

Pub
esce
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2.1 constric
tum 

5238 constrictu
m 

458 5238 constrictu
m 

5238 ns 

C 
4.2
2.2 

Colletot
richium 
constric
tum 3 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 

936.2
93 

JQ00
5238 

Colletotri
chium 
constrictu
m 5 100 

JQ00
5238 

Pub
esce
ns 

C 
4.2
2.3 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 

934.2
23 

JQ00
5238 

Colletotri
chium 
constrictu
m 3 100 

JQ00
5238 

Pub
esce
ns 

C 
4.3
.1 

Colletot
richium 
constric
tum 7 98.4 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 

945.8
56 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 99.52 

JQ00
5238 

Pub
esce
ns 

C 
4.4
.1 

Colletot
richum 
bonnine
nse 3 100 

JX62
4301 

Colletotri
chum 
boninense 1 

993.1
39 

AJ30
1939 

Colletotri
chum 
boninense 3 99.6 

AJ30
1939 

Pub
esce
ns 

C 
4.4
.2 

Colletot
richum 
bonnine
nse 4 99.8 

JX62
4301 

Colletotri
chum 
boninense 5 

980.5
16 

AJ30
1939 

Colletotri
chum 
boninense 2 99.8 

AJ30
1939 

Pub
esce
ns 

C 
4.5
.1 

Colletot
richium 
kahawa
e 4 99.9 

JX01
0229 

Colletotri
chum 
gloeospori
oides 2 

993.1
39 

AJ30
1907 

Colletotri
chum 
gloeospori
oides 2 99.8 

JX25
8693 

Pub
esce
ns 

C 
4.5
.2 

Colletot
richum 
bonnine
nse 1 99.6 

JX25
8799 

Colletotri
chum sp. 6 

996.7
46 

AJ30
1939 

Colletotri
chum 
boninense 7 100 

JQ93
6175 

Pub
esce
ns 

C 
4.6
.1 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum 
gloeospori
oides 2 

1023.
8 

JX25
8743 

Colletotri
chum 
boninense 6 99.67 

JX25
8700 

Pub
esce
ns 

C 
4.6
.2 

Colletot
richum 
bonnine
nse 4 99.5 

JX01
0292 

Colletotri
chum 
boninense 7 

1034.
62 

EU8
2280
2 

Colletotri
chum 
gloeospori
oides 2 100 

AJ30
1974 

Pub
esce
ns 

C 
5.1
.1 

Colletot
richium 
constric
tum 1 98.6 

JQ00
5238 

Colletotri
chum 
boninense 5 

1021.
99 

JX01
0292 

Colletotri
chum sp. 1 99.67 

FJ46
6723 

Pub
esce
ns 

C 
5.1
.2 

Colletot
richium 
constric
tum 1 98.6 

JQ00
5238 

Fungal 
endophyte 2 

1031.
01 

HM5
3704
4 

Fungal 
endophyte 2 99.52 

HM5
3703
1 

Pub
esce
ns 

C 
5.1
.3 

Colletot
richium 
constric

1 98.6 
JQ00
5238 

Fungal 
endophyte 2 

1031.
01 

HM5
3704
4 

Colletotri
chum 
gloeospori

1 99.52 
AJ30
1974 

Pub
esce
ns 
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tum oides 

I 
13.
1 

Leptosp
haeria 
sp. 2 100 

EN3
8476
2 

Leptospha
eria sp. 4 

1008.
23 

EN3
8476
2 

Leptospha
eria sp. 3 98.1 

EN3
8476
2 

Feli
x 

I 
21.
1 

Ascoch
yta 
fabae 1 99.1 

PB00
4378 

Ascochyta 
fabae 4 

1031.
78 

PB00
4378 

Ascochyta 
fabae 1 98.6 

PB00
4378 

Feli
x 

I 
24.
1 

Ascoch
yta 
fabae 2 99.5 

PB00
4378 

Ascochyta 
fabae 3 

944.3
8 

PB00
4380 

Ascochyta 
fabae 1 99.3 

PB00
4378 

Feli
x 

I 
26.
1 

Colletot
richium 
constric
tum 6 100 

JQ00
5238 

Colletotri
chium 
constrictu
m 5 

923.3
45 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 98.6 

JQ00
5238 

Feli
x 

I 
26.
2 

Colletot
richium 
constric
tum 6 98.6 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 

1039.
5 

JQ00
5238 

Colletotri
chium 
constrictu
m 6 99.6 

JQ00
5238 

Feli
x 

I 
31.
1 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 6 

1035.
45 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 99.82 

JQ00
5238 

Feli
x 

I 
31.
1.1 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum sp. 1 

955.2
68 

AJ30
1939 

Colletotri
chum sp. 1 99.83 

AJ30
1939 

Feli
x 

I 
31.
1.2 

Colletot
richium 
constric
tum 1 98.7 

JQ00
5238 

Colletotri
chum 
boninense 6 

1027.
4 

JX01
0292 

Colletotri
chum 
boninense 6 99.67 

JX01
0292 

Feli
x 

I 
31.
2 

Colletot
richium 
constric
tum 3 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 6 

986.4
96 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 100 

JQ00
5238 

Feli
x 

I 
34.
1 

Colletot
richium 
constric
tum 2 98.5 

JQ00
5238 

Colletotri
chium 
constrictu
m 5 

978.3
45 

JQ00
5238 

Colletotri
chium 
constrictu
m 1 99.67 

JQ00
5238 

Feli
x 

I 
34.
2 

Xylaria 
sp. 5 90 

TF39
8642 

Xylaria 
sp. 1 

931.8
25 

TF39
8642 

Xylaria 
sp. 6 99.8 

TF39
8642 

Feli
x 

I 
40.
1 

Colletot
richium 
constric
tum 8 99.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 

980.5
67 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 100 

JQ00
5238 

Feli
x 

I 
9.2 

Ascoch
yta 
fabae 2 99.5 

PB00
4378 

Ascochyta 
fabae 5 

1028.
85 

PB00
4379 

Ascochyta 
fabae 3 99.6 

PB00
4378 

Feli
x 
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O 
1.1 

Xylaria 
fissilis 3 98 

TF39
7612 

Xylaria 
sp. 3 

940.8
41 

TF39
7612 

Xylaria 
fissilis 3 99.6 

TF39
7612 

Feli
x 

O 
18.
10.
1 

Colletot
richium 
constric
tum 7 98.6 

JQ00
5238 

Colletotri
chium 
constrictu
m 1 

993.6
52 

JQ00
5238 

Colletotri
chium 
constrictu
m 1 100 

JQ00
5238 

Feli
x 

O 
18.
10.
2 

Colletot
richum 
bonnine
nse 2 98.1 

JX62
4301 

Colletotri
chum 
boninense 3 

1058.
06 

AJ30
1941 

Colletotri
chum 
boninense 4 98.6 

AJ30
1941 

Feli
x 

O 
18.
12.
2 

Colletot
richum 
bonnine
nse 1 98.6 

JX62
4301 

Colletotri
chum 
boninense 3 

1108.
55 

AJ30
1941 

Colletotri
chum 
boninense 1 99 

AJ30
1941 

Feli
x 

O 
18.
12.
3 

Xylaria 
sp. 3 98.7 

DS27
6591 

Xylaria 
sp. 2 

945.8
56 

DS27
6591 

Xylaria 
sp. 4 100 

DS27
6591 

Feli
x 

O 
18.
13 

Colletot
richium 
constric
tum 7 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 1 

1039.
35 

JQ00
5238 

Colletotri
chium 
constrictu
m 4 100 

JQ00
5238 

Feli
x 

O 
18.
14.
1 

Colletot
richium 
constric
tum 5 98.6 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 

1036.
352 

JQ00
5238 

Colletotri
chium 
constrictu
m 3 100 

JQ00
5238 

Feli
x 

O 
18.
2.1 

Colletot
richum 
bonnine
nse 1 100 

JX62
4301 

Colletotri
chum 
boninense 2 

1113.
96 

AJ30
1941 

Colletotri
chum 
boninense 4 99.8 

AJ30
1941 

Feli
x 

O 
18.
2.2 

Colletot
richium 
kahawa
e 5 100 

JX01
0229 

Fungal 
endophyte 3 

1013.
34 

JX01
0229 

Colletotri
chium 
kahawae 2 100 

JX01
0229 

Feli
x 

O 
18.
9.1 

Colletot
richum 
bonnine
nse 4 99.8 

JX62
4301 

Colletotri
chum 
boninense 3 

1090.
52 

AJ30
1941 

Colletotri
chum 
boninense 6 100 

AJ30
1941 

Feli
x 

O 
21.
1.1 

Colletot
richium 
constric
tum 3 98.4 

JQ00
5238 

Colletotri
chium 
constrictu
m 5 

983.3
56 

JQ00
5238 

Colletotri
chium 
constrictu
m 6 99.8 

JQ00
5238 

Feli
x 

O 
3.1 

Colletot
richium 
constric
tum 6 98.7 

JQ00
5238 

Colletotri
chium 
constrictu
m 2 

1034.
67 

JQ00
5238 

Colletotri
chium 
constrictu
m 3 99.8 

JQ00
5238 

Feli
x 
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Appendix B Table B2. Fungi isolated from Dracula orchid roots. 

Sam
ple 
Nam
e 

Dracul
a sp. 

Organism
-Pairwise 

H
i
t
s 

Pairwise 
ID 

Organism-
Bitscore 

H
i
t
s 

Bit 
score 

Organism
-Query 
cover 

H
i
t
s 

Query 
Cover 

P
ri
m
e
r 

P
ri
m
e
r 

B 
1.3.1 Lefleur 

Hypocrea 
rufa 7 100.00% 

Hypocrea 
rufa 4 

936.1
85 

Hypocrea 
rufa 6 

98.10
% 

I
T
S 
1 

I
T
S 
4 

B 
1.3.2 Lefleur 

Pestalotio
psis 
microspor
a 6 99.80% 

Pestalotiopsis 
microspora 2 

1021.
99 

Pestalotio
psis 
microspor
a 2 

99.20
% 

I
T
S 
1 

I
T
S 
4 

B 
1.3.3 Lefleur 

Pestalotio
psis 
vismiae 4 99.70% 

Pestalotiopsis 
vismiae 4 

1008.
23 

Pestalotio
psis 
vismiae 1 

98.00
% 

I
T
S 
1 

I
T
S 
4 

B 
1.3.4 Lefleur 

Pestalotio
psis 
vismiae 1 100.00% 

Pestalotiopsis 
vismiae 1 

1031.
78 

Pestalotio
psis 
vismiae 6 

98.60
% 

I
T
S 
1 

I
T
S 
4 

B 
1.3.5 Lefleur 

Pestalotio
psis 
clavispora 1 99.80% 

Pestalotiopsis 
clavispora 3 

993.1
39 

Pestalotio
psis 
clavispora 3 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B 
1.3.6 Lefleur 

Trichoder
ma 
koningiop
sis 6 99.10% 

Trichoderma 
koningiopsis 6 

978.3
45 

Trichoder
ma 
koningiop
sis 5 

99.30
% 

I
T
S 
1 

I
T
S 
4 

B 
2.2.2 Lefleur 

Chaetomi
um sp. 5 98.00% 

Chaetomium 
sp. 1 

1108.
55 

Chaetomi
um sp. 5 

98.90
% 

I
T
S 
1
F  

I
T
S 
4 

B 
2.6.2 Lefleur 

Neonectri
a 
radicicola 3 98.60% 

Neonectria 
radicicola 5 

940.8
41 

Neonectri
a 
radicicola 3 

99.70
% 

I
T
S 
1 

I
T
S 
4 

B 
2.6.3 Lefleur 

Unculture
d 
Ceratobasi
diaceae 1 93.50% 

Uncultured 
Ceratobasidia
ceae 5 

1013.
34 

Unculture
d 
Ceratobas
idiaceae 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B 
2.6.4 Lefleur 

Ilyonectri
a 
cyclamini
cola 7 99.80% 

Ilyonectria 
cyclaminicola 7 

1027.
4 

Ilyonectri
a 
cyclamini
cola 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B 
2.6.5 Lefleur Neonectri

a 
5 100.00% 

Neonectria 
radicicola 5 

1036.
352 Neonectri

a 
1 

100.00
% 

I
T
S 

I
T
S 
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radicicola radicicola 1 4 

B 
2.7.1 Lefleur 

Bionectria 
sp. 6 97.10% Bionectria sp. 4 

944.4
48 

Bionectria 
sp. 4 

99.80
% 

I
T
S 
1 

I
T
S 
4 

B 
2.7.3 Lefleur 

Peniciliu
m 
christense
niae 1 100.00% 

Penicilium 
christenseniae 3 

1047.
23 

Peniciliu
m 
christense
niae 3 

98.70
% 

I
T
S 
1
F  

I
T
S 
4 

B 
3.1.4 Lefleur 

Neonectri
a 
radicicola 2 98.80% 

Neonectria 
radicicola 2 

1058.
06 

Neonectri
a 
radicicola 2 

98.60
% 

I
T
S 
1 

I
T
S 
4 

B 
3.1.5 Lefleur 

Neonectri
a 
radicicola 3 99.40% 

Neonectria 
radicicola 6 

945.8
56 

Neonectri
a 
radicicola 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B 
3.1.6 Lefleur 

Neonectri
a 
radicicola 2 99.40% 

Neonectria 
radicicola 4 

1028.
85 

Neonectri
a 
radicicola 5 

99.80
% 

I
T
S 
1 

I
T
S 
4 

B1.2 Lefleur 

Unculture
d 
Hypocreal
es 5 99.60% 

Uncultured 
Hypocreales 6 

1090.
52 

Unculture
d 
Hypocreal
es 3 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B2.2.
1 Lefleur 

Colletotric
hum 
constrictu
m 6 98.70% 

Colletotrichu
m constrictum 6 

1023.
8 

Colletotri
chum 
constrictu
m 5 

97.10
% 

I
T
S 
1 

I
T
S 
4 

B2.2.
3 Lefleur 

Xylaria 
adscenden
s 5 100.00% 

Xylaria 
adscendens 3 

983.3
56 

Xylaria 
adscenden
s 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B2.2
1.1 Lefleur 

Colletotric
hum 
constrictu
m 1 98.60% 

Colletotrichu
m constrictum 2 

931.8
25 

Colletotri
chum 
constrictu
m 7 

99.40
% 

I
T
S 
1 

I
T
S 
4 

B2.4.
1 Lefleur 

Pestalotio
psis 
mangifera
e 5 100.00% 

Pestalotiopsis 
mangiferae 5 

996.7
46 

Pestalotio
psis 
mangifera
e 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B2.4.
2 Lefleur 

Pestalotio
psis 
clavispora 2 100.00% 

Pestalotiopsis 
clavispora 2 

993.1
39 

Pestalotio
psis 
clavispora 2 

99.00
% 

I
T
S 
1 

I
T
S 
4 

B2.4.
3 Lefleur 

Coprinellu
s sp. 1 100.00% 

Coprinellus 
sp. 5 

1002.
16 

Coprinell
us sp. 4 

93.20
% 

I
T
S 

I
T
S 
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1 4 

B2.6.
1 Lefleur 

Unculture
d 
Ceratobasi
diaceae 1 95.00% 

Uncultured 
Ceratobasidia
ceae 3 

1113.
96 

Unculture
d 
Ceratobas
idiaceae 4 

99.80
% 

I
T
S 
1 

I
T
S 
4 

B2.7.
2 Lefleur 

Coprinellu
s sp. 2 99.80% 

Coprinellus 
sp. 5 

1005.
76 

Coprinell
us sp. 3 

100.00
% 

I
T
S 
1 

I
T
S 
4 

B3.1.
1 Lefleur 

Mucor 
circinelloi
des 1 99.80% 

Mucor 
circinelloides 2 

996.7
46 

Mucor 
circinelloi
des 2 

99.40
% 

I
T
S 
1 

I
T
S 
4 

B3.1.
3 Lefleur 

Neonectri
a 
radicicola 4 99.60% 

Neonectria 
radicicola 6 

978.3
45 

Neonectri
a 
radicicola 3 

99.60
% 

I
T
S 
1 

I
T
S 
4 

B5.1.
1 Lefleur 

Absidia 
heterospor
a 3 94.00% 

Absidia 
heterospora 4 

1058.
06 

Absidia 
heterospo
ra 4 

99.10
% 

I
T
S 
1 

I
T
S 
4 

C 
4.22.
1 

Pubesce
ns 

Trichoder
ma viride 4 99.90% 

Trichoderma 
viride 2 

1058.
06 

Trichoder
ma viride 3 

99.70
% 

I
T
S 
1 

I
T
S 
4 

C 
4.22.
3 

Pubesce
ns 

Ceratobasi
dium sp. 4 98.10% 

Ceratobasidiu
m sp. 5 

762.3
08 

Ceratobas
idium sp. 1 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C 
4.24.
1 

Pubesce
ns 

Pestalotio
psis 
mangifera
e 2 100.00% 

Pestalotiopsis 
mangiferae 5 

1034.
62 

Pestalotio
psis 
mangifera
e 1 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C 
4.24.
2 

Pubesce
ns 

Pestalotio
psis 
vismiae 4 100.00% 

Pestalotiopsis 
vismiae 3 

944.3
8 

Pestalotio
psis 
vismiae 2 

99.40
% 

I
T
S 
1 

I
T
S 
4 

C 
4.25.
1 

Pubesce
ns 

Neonectri
a 
radicicola 5 99.80% 

Neonectria 
radicicola 4 

1039.
35 

Neonectri
a 
radicicola 1 

98.90
% 

I
T
S 
1 

I
T
S 
4 

C 
4.25.
2 

Pubesce
ns 

Neonectri
a 
radicicola 6 100.00% 

Neonectria 
radicicola 5 

1113.
96 

Neonectri
a 
radicicola 6 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C 
4.25.
3 

Pubesce
ns 

Neonectri
a 
radicicola 6 99.80% 

Neonectria 
radicicola 5 

944.3
8 

Neonectri
a 
radicicola 4 

100.00
% 

I
T
S 
1 

I
T
S 
4 
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C 
4.25.
5 

Pubesce
ns 

Trichoder
ma viride 3 99.30% 

Trichoderma 
viride 3 

931.8
25 

Trichoder
ma viride 6 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

C 
4.5.2 

Pubesce
ns 

Neonectri
a 
radicicola 4 99.80% 

Neonectria 
radicicola 1 

1090.
52 

Neonectri
a 
radicicola 6 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C 
4.8.2 

Pubesce
ns 

Xylaria 
adscenden
s 1 99.30% 

Xylaria 
adscendens 3 

1034.
67 

Xylaria 
adscenden
s 2 

98.50
% 

I
T
S 
1 

I
T
S 
4 

C 
4.8.2 
PT 2 

Pubesce
ns 

Xylaria 
adscenden
s 3 100.00% 

Xylaria 
adscendens 1 

1047.
23 

Xylaria 
adscenden
s 4 

99.70
% 

I
T
S 
1 

I
T
S 
4 

C4.1
3.1 

Pubesce
ns 

Phomopsi
s sp. 1 99.00% Phomopsis sp. 2 

1035.
45 

Phomopsi
s sp. 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C4.1
3.2 

Pubesce
ns 

Trichoder
ma viride 1 99.40% 

Trichoderma 
viride 2 

1028.
85 

Trichoder
ma viride 3 

99.80
% 

I
T
S 
1 

I
T
S 
4 

C4.2
0.1 

Pubesce
ns 

Pestalotio
psis 
mangifera
e 3 100.00% 

Pestalotiopsis 
mangiferae 3 

1023.
8 

Pestalotio
psis 
mangifera
e 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C4.2
0.2 

Pubesce
ns 

Mortierell
a 
fimbricyst
is 5 99.70% 

Mortierella 
fimbricystis 6 

934.2
23 

Mortierell
a 
fimbricysti
s 3 

98.60
% 

I
T
S 
1 

I
T
S 
4 

C4.2
0.3 

Pubesce
ns 

Pestalotio
psis 
clavispora 2 100.00% 

Pestalotiopsis 
clavispora 3 

980.5
16 

Pestalotio
psis 
clavispora 1 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C4.2
0.4 

Pubesce
ns 

Mortierell
a turficola 2 99.70% 

Mortierella 
turficola 5 

993.1
39 

Mortierell
a turficola 6 

99.80
% 

I
T
S 
1 

I
T
S 
4 

C4.2
0.5 

Pubesce
ns 

Mortierell
a turficola 5 99.70% 

Mortierella 
turficola 1 

980.5
16 

Mortierell
a turficola 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C4.2
2.2 

Pubesce
ns 

Pestalotio
psis 
sydowiana 3 100.00% 

Pestalotiopsis 
sydowiana 5 

1031.
01 

Pestalotio
psis 
sydowiana 6 

98.20
% 

I
T
S 
1 

I
T
S 
4 
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C4.2
5.4 

Pubesce
ns 

Neonectri
a 
radicicola 6 100.00% 

Neonectria 
radicicola 1 

1035.
45 

Neonectri
a 
radicicola 4 

100.00
% 

I
T
S 
1 

I
T
S 
4 

C4.4.
1 

Pubesce
ns 

Neonectri
a 
radicicola 2 100.00% 

Neonectria 
radicicola 2 

1027.
4 

Neonectri
a 
radicicola 3 

99.80
% 

I
T
S 
1 

I
T
S 
4 

C4.5.
1 

Pubesce
ns 

Mortierell
a 
verticillata 3 100.00% 

Mortierella 
verticillata 4 

993.1
39 

Mortierell
a 
verticillat
a 4 

100.00
% 

I
T
S 
1 

I
T
S 
4 

D. 
and 
2.1 Andina 

Neonectri
a 
radicicola 3 100.00% 

Neonectria 
radicicola 1 

1039.
5 

Neonectri
a 
radicicola 7 

99.70
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
1.1.1 

Dodson
ii 

Nigrospor
a oryzae 5 100.00% 

Nigrospora 
oryzae 1 

983.3
56 

Nigrospor
a oryzae 3 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
3.1 

Dodson
ii 

Nigrospor
a sp. 6 100.00% 

Nigrospora 
sp. 7 

1034.
67 

Nigrospor
a sp. 2 

99.80
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
4.1 

Dodson
ii 

Rhexocerc
osporididu
m sp. 3 98.90% 

Rhexocercosp
orididum sp. 2 

1027.
4 

Rhexocerc
osporidid
um sp. 5 

93.50
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
6.1 

Dodson
ii 

Neonectri
a 
radicicola 1 100.00% 

Neonectria 
radicicola 6 

1008.
23 

Neonectri
a 
radicicola 2 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
7.1 

Dodson
ii 

Xylaria 
sp. 5 99.40% Xylaria sp. 6 

955.2
68 

Xylaria 
sp. 1 

99.80
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
7.1.2 

Dodson
ii 

Xylaria 
sp. 2 99.40% Xylaria sp. 6 

1023.
8 

Xylaria 
sp. 6 

98.70
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
dod 
8.1.1 

Dodson
ii 

Peniciliu
m 
corylophil
ium 3 100.00% 

Penicilium 
corylophilium 3 

1027.
4 

Peniciliu
m 
corylophil
ium 7 

100.00
% 

I
T
S 
1

I
T
S 
4 
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F  

D. 
sod 
1.1 Sodoroi 

Trichoder
ma 
koningiop
sis 1 98.50% 

Trichoderma 
koningiopsis 2 

986.4
96 

Trichoder
ma 
koningiop
sis 3 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
sod 
1.2.1 Sodoroi 

Neonectri
a 
radicicola 2 100.00% 

Neonectria 
radicicola 3 

1031.
78 

Neonectri
a 
radicicola 1 

99.40
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
ves 
1.1.1 

Vespert
illo 

Cylindrob
asidium 
sp. 5 98.20% 

Cylindrobasid
ium sp. 7 

1000.
35 

Cylindrob
asidium 
sp. 2 

99.80
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
ves 
1.2 

Vespert
illo 

Leptospha
erulina 
chartarum 1 100.00% 

Leptosphaerul
ina chartarum 2 

1045.
458 

Leptospha
erulina 
chartarum 5 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
ves 
1.2.1 

Vespert
illo 

Leptospha
erulina 
chartarum 5 100.00% 

Leptosphaerul
ina chartarum 3 

936.2
93 

Leptospha
erulina 
chartarum 2 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
ves 
2.5 
1.1 

Vespert
illo 

Pleurotus 
sp. 3 100.00% Pleurotus sp. 3 

955.2
68 

Pleurotus 
sp. 1 

98.90
% 

I
T
S 
1
F  

I
T
S 
4 

D. 
ves 
2.5 
1.1.1 

Vespert
illo 

Neonectri
a 
radicicola 2 99.20% 

Neonectria 
radicicola 2 

923.3
45 

Neonectri
a 
radicicola 5 

99.40
% 

I
T
S 
1
F  

I
T
S 
4 

I 13.1 Felix 
Trichoder
ma viride 1 98.60% 

Trichoderma 
viride 1 

1036.
352 

Trichoder
ma viride 6 

99.40
% 

I
T
S 
1 

I
T
S 
4 

I 24.1 Felix 
Pezicula 
sp. 4 98.00% Pezicula sp. 3 

923.3
45 

Pezicula 
sp. 1 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

I 
24.1.
1 Felix 

Pestalotio
psis 
sydowiana 2 100.00% 

Pestalotiopsis 
sydowiana 2 

1031.
01 

Pestalotio
psis 
sydowiana 2 

99.30
% 

I
T
S 
1 

I
T
S 
4 

I 
24.1.

Felix 
Mortierell

2 100.00% 
Mortierella 

5 
945.8 Mortierell

5 
100.00

I
T

I
T
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2 a sp. sp. 56 a sp. % S 
1 

S 
4 

I 
31.1.
1 Felix 

Hypocrea 
rufa 6 99.80% 

Hypocrea 
rufa 2 

1032.
81 

Hypocrea 
rufa 6 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I 
31.1.
2 Felix 

Hypocrea 
rufa 6 100.00% 

Hypocrea 
rufa 1 

1052.
65 

Hypocrea 
rufa 3 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I 33.2 Felix 
Trichoder
ma viride 5 99.00% 

Trichoderma 
viride 2 

945.8
56 

Trichoder
ma viride 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I 40.1 Felix 
Trichoder
ma viride 2 100.00% 

Trichoderma 
viride 6 

1108.
55 

Trichoder
ma viride 4 

99.80
% 

I
T
S 
1 

I
T
S 
4 

I 
40.1.
1 Felix 

Trichoder
ma viride 5 100.00% 

Trichoderma 
viride 2 

980.5
16 

Trichoder
ma viride 1 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

I 7.1 Felix 
Absidia 
repens 2 98.70% 

Absidia 
repens 2 

940.8
41 

Absidia 
repens 2 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

I 9.1 Felix 
Hypocrea 
rufa 3 100.00% 

Hypocrea 
rufa 1 

985.9
26 

Hypocrea 
rufa 4 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I 9.2 Felix 
Candida 
oloephila 3 99.50% 

Candida 
oloephila 6 

1090.
52 

Candida 
oloephila 6 

99.30
% 

I
T
S 
1 

I
T
S 
4 

I21.1 Felix 

Neonectri
a 
radicicola 6 100.00% 

Neonectria 
radicicola 1 

931.8
25 

Neonectri
a 
radicicola 5 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I26.2 Felix 

Ilyonectri
a 
cyclamini
cola 2 100.00% 

Ilyonectria 
cyclaminicola 6 

1040.
03 

Ilyonectri
a 
cyclamini
cola 5 

99.00
% 

I
T
S 
1 

I
T
S 
4 

I34.3 Felix 
Penicilliu
m paxilli 2 100.00% 

Penicillium 
paxilli 5 

945.8
56 

Penicilliu
m paxilli 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

I7.2 Felix Neonectri
a 

5 99.80% 
Neonectria 

1 
955.2

Neonectri
a 

5 
98.60

I
T

I
T
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radicicola radicicola 68 radicicola % S 
1 

S 
4 

I9.1 Felix 

Neonectri
a 
radicicola 3 100.00% 

Neonectria 
radicicola 5 

986.4
96 

Neonectri
a 
radicicola 3 

99.80
% 

I
T
S 
1 

I
T
S 
4 

Mas 
@ I2 

Masdev
allia 

Colletotric
hum 
bonninens
e 2 93.20% 

Colletotrichu
m bonninense 5 

955.2
68 

Colletotri
chum 
bonninens
e 5 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 1.2 Felix 

Peniciliu
m 
godlewski
i 6 99.00% 

Penicilium 
godlewskii 3 

1045.
458 

Peniciliu
m 
godlewskii 2 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 1.3 Felix 

Colletotric
hum 
constrictu
m 5 100.00% 

Colletotrichu
m constrictum 6 

1041.
83 

Colletotri
chum 
constrictu
m 3 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 
12.2 Felix 

Neonectri
a 
radicicola 3 100.00% 

Neonectria 
radicicola 2 

1023.
8 

Neonectri
a 
radicicola 6 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 
18.10
.3 Felix 

Phomopsi
s 
columnari
s 6 100.00% 

Phomopsis 
columnaris 5 

1039.
5 

Phomopsi
s 
columnari
s 6 

100.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 
18.12
.1 Felix 

Trichoder
ma viride 5 100.00% 

Trichoderma 
viride 1 

1039.
35 

Trichoder
ma viride 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

O 
18.14
.2 Felix 

Neonectri
a 
radicicola 2 100.00% 

Neonectria 
radicicola 6 

1034.
62 

Neonectri
a 
radicicola 2 

99.00
% 

I
T
S 
1
F  

I
T
S 
4 

O 
18.2.
1 Felix 

Neonectri
a 
radicicola 7 99.80% 

Neonectria 
radicicola 1 

1013.
34 

Neonectri
a 
radicicola 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

O 
18.2.
2 Felix 

Xylariales 
sp. 1 98.90% Xylariales sp. 3 

931.8
25 

Xylariales 
sp. 1 

100.00
% 

I
T
S 
1 

I
T
S 
4 

O 
21.1.

Felix Neonectri
a 

6 98.60% 
Neonectria 
radicicola 6 

993.6
52 Neonectri

a 
1 

100.00
% 

I
T
S 

I
T
S 
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1 radicicola radicicola 1 4 

O 
21.1.
2 Felix 

Neonectri
a 
radicicola 4 99.20% 

Neonectria 
radicicola 2 

1108.
55 

Neonectri
a 
radicicola 6 

94.00
% 

I
T
S 
1 

I
T
S 
4 

O 
21.1.
4 Felix 

Neonectri
a 
radicicola 6 100.00% 

Neonectria 
radicicola 3 

1021.
99 

Neonectri
a 
radicicola 3 

98.80
% 

I
T
S 
1
F  

I
T
S 
4 

O 
21.1.
4 Felix 

Neonectri
a 
radicicola 5 100.00% 

Neonectria 
radicicola 4 

1031.
01 

Neonectri
a 
radicicola 1 

99.90
% 

I
T
S 
1
F  

I
T
S 
4 

O 
21.4.
1 Felix 

Peniciliu
m 
nothofagi 5 100.00% 

Penicilium 
nothofagi 5 

934.2
23 

Peniciliu
m 
nothofagi 3 

99.50
% 

I
T
S 
1
F  

I
T
S 
4 

O 3.1 Felix 
Peniciliu
m lividum 4 99.80% 

Penicilium 
lividum 4 

936.2
93 

Peniciliu
m lividum 3 

99.80
% 

I
T
S 
1
F  

I
T
S 
4 

O 
42.1.
1 Felix 

Neonectri
a 
radicicola 2 99.30% 

Neonectria 
radicicola 3 

1031.
01 

Neonectri
a 
radicicola 5 

99.60
% 

I
T
S 
1
F  

I
T
S 
4 

O 
42.1.
2 Felix 

Trichoder
ma viride 3 98.90% 

Trichoderma 
viride 5 

980.5
67 

Trichoder
ma viride 6 

98.00
% 

I
T
S 
1
F  

I
T
S 
4 

O12.
3 Felix 

Bjerkande
ra adusta 1 98.70% 

Bjerkandera 
adusta 2 

1113.
96 

Bjerkande
ra adusta 1 

99.20
% 

I
T
S 
1 

I
T
S 
4 

O18.
10.2 Felix 

Trichoder
ma viride 6 100.00% 

Trichoderma 
viride 4 

940.8
41 

Trichoder
ma viride 2 

100.00
% 

I
T
S 
1 

I
T
S 
4 

O18.
14.1 Felix 

Trichoder
ma viride 3 100.00% 

Trichoderma 
viride 1 

993.6
52 

Trichoder
ma viride 1 

98.70
% 

I
T
S 
1 

I
T
S 
4 

O18.
14.3 Felix 

Neonectri
a 
radicicola 4 99.40% 

Neonectria 
radicicola 6 

980.5
67 

Neonectri
a 
radicicola 1 

100.00
% 

I
T
S 

I
T
S 
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1 4 

O56.
2.1 Felix 

Hypocrea 
rufa 2 100.00% 

Hypocrea 
rufa 1 

1013.
34 

Hypocrea 
rufa 6 

95.00
% 

I
T
S 
1 

I
T
S 
4 
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