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DISSERTATION ABSTRACT

Megan R. Ray

Doctor of Philosophy

Department of Physics

September 2013

Title: Verifying Optical Entanglement

We look at the problem of verifying optical entanglement for two types of states

relevant to quantum information processing. One type occurs in Hong-Ou-Mandel

interference and is relevant to quantum computing. The other type is time-frequency

entanglement which is useful for quantum key distribution. For these types of states

the conventional methods of entanglement verification do not work well, and we

develop new criteria and methods to verify entanglement of such states. Explicitly,

one method takes into account the possible multimode character of two photons, while

the other method takes into account the missing data that occur due to the finite

range of detectors.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

1.1. Einstein, Schrödinger, and entanglement

Entanglement was recognized as a counterintuitive property of quantum

mechanics, and as such disliked by, for example, Einstein and Schrödinger. It became

the subject of much disagreement and discussion. Einstein, Podolsky, and Rosen

(EPR) famously wondered if a quantum-mechanical description of physical reality

could be complete [1], and concluded that it could not. In their 1935 paper they

described, as an example highlighting their objections, a two-particle system with a

(non-normalizable, 1D) wavefunction

Ψ(x1, x2) =

∫ ∞
−∞

dp exp[(2πi/h)(x1 − x2 + x0)p]. (1.1)

The authors found it objectionable that for this state one could measure either the

position or momentum of one particle and then predict, with certainty, the value

of the same quantity of the other particle, despite the fact that the particles were

separated and no longer interacting. This seemed to imply that the other particle

already must have had a particular position and a particular momentum, even though

the quantum-mechanical wavefunction certainly cannot ascribe both values precisely

(position and momentum being described by non-commuting observables, according

to quantum mechanics). Hence, quantum mechanics (i.e., a description based on just

the wavefunction) must be incomplete, so concluded EPR.

Today we recognize the state Ψ as being entangled—and we call it the

EPR state!—but the term “entanglement” (or rather, its German counterpart,
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“Verschränkung”) was not coined until later that year by Schrödinger in response

to such discussions [2]. Schrödinger was also not satisfied with the implications of

entanglement:

Attention has recently been called to the obvious but very disconcerting

fact that even though we restrict the disentangling measurements to one

system, the representative obtained for the other system is by no means

independent of the particular choice of observations which we select for

that purpose and which by the way are entirely arbitrary. It is rather

discomforting that the theory should allow a system to be steered or

piloted into one or the other type of state at the experimenter’s mercy

in spite of his having no access to it.

We now know that quantum mechanics cannot be an incomplete version of any

local, realistic theory (where by “realistic” we mean that physical systems possess

properties independent of whether they are measured or not [3]). In 1964 John

Bell showed explicitly that local realism and quantum mechanics are incompatible

theories, and that, in some situations, a local hidden variable model and quantum

mechanics will offer different predictions of experimental outcomes [4]. This led to

experimentally testable inequalities (“Bell inequalities”) which any state described

by a local hidden variable model must satisfy, but which can be violated by certain

states described by quantum mechanics. Such states that violate the Bell inequalities

must be entangled. A loophole free demonstration of such a violation has not yet been

achieved, but so far the evidence is overwhelmingly in favor of quantum mechanics.

A modern use of Bell inequalities is as a way of verifying that a state is entangled,

although “Bell-nonlocality” is a stronger condition than being entangled in the sense

that not all entangled states will violate Bell-type inequalities.
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Bell-nonlocal

Steerable

Entangled

Separable

Wednesday, August 14, 13

FIGURE 1.1. The set of all states contains separable (yellow) and entangled (green)
states. The darker the shade of green the more assumptions are allowed in verifying
that class of states (e.g., verifying entanglement assumes the validity of quantum
mechanics and that the measurements of Alice and Bob are known, whereas to verify
Bell-nonlocality one cannot assume the validity of quantum mechanics, nor does one
assume to know what Alice and Bob measure). Each green set also contains all lighter
colored green sets. Not all properties are represented in this simplified depiction, but
it does convey the convexity of the sets. Namely, the set of all states and the set of
separable states are convex, while the set of entangled states is not.

The concept of steering first introduced by Schrödinger (see the above quote)

has since been formalized and experimentally demonstrated [5, 6]. This has also led

to “steering inequalities” [7], a violation of which indicates a state is steerable. Like

the Bell inequalities, they are only violated by entangled states and, therefore, can

be used to verify entanglement. The steering inequalities are weaker than the Bell

inequalities, i.e., there are states that will violate the steering inequalities but not the

Bell inequalities, but stronger than entanglement conditions. The set of all entangled

states contains the set of all steerable states which contains the set of all Bell-nonlocal

states. This is depicted in Figure 1.1.
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1.2. Entanglement in quantum information

With the advent of quantum information processing, entanglement was elevated

from a novel phenomenon and subject of debate to a valuable resource. Entanglement

is either provably helpful or believed to be necessary for many of the tasks of quantum

information such as quantum computing, teleportation, quantum key distribution,

and others. Quantum computing offers the ability to solve certain problems quickly1

which are not believed to be efficiently solvable by classical computation [8]. One

important example of this is Shor’s algorithm [9] which allows large numbers to be

factored quickly by a quantum computer, something which is not believed to be

possible with a classical computer [8]. This current inability to efficiently factor large

numbers is the source of security for most most modern cryptographic schemes, such

as RSA [10]. If a quantum computer were to be developed, these protocols would

no longer be secure and new cryptographic methods would have to be used. This

is a motivation for the development of quantum key distribution (QKD), which is

provably secure regardless of any advances in quantum computing.

With the increasing importance of entangled states came a need for ways to verify,

quantify, and characterize entanglement. Our interest is in the easiest of these tasks,

the verification of entanglement, specifically verification of bipartite entanglement.

Even this is still non-trivial as given a density matrix it is NP-hard to verify that it

is entangled [11]. We will focus on bipartite optical entanglement in this dissertation.

For many years polarization entangled photon pairs were a popular resource for

demonstrating Bell inequality violations [12], teleportation [13], QKD [14], steering

[6], etc. These states are easy to generate and well understood, but they aren’t ideally

1By ‘quickly’ and ‘efficiently’ we mean the time required to solve the problem is polynomial in
the size of the input (measured in bits).
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suited for all tasks. More recently there has been increasing interest in generating

and utilizing other forms of optical entanglement [15–17], for example to encode more

than one bit per photon.

1.2.1. The difficulty of verifying entanglement

The theoretical problem of deciding if a state specified by a given density matrix

is entangled is a hard problem, and experimental entanglement verification is made

even harder by the practical issues that arise in performing an experiment in a lab.

Applying the theoretical methods of entanglement verification to experiments is often

not as straightforward as one would initially think or hope. Indeed, some theoretical

methods of verifying entanglement have been inappropriately applied to experimental

results, leading to false claims of having verified entanglement (that is, all data could

be explained by unentangled states), as in, for example, Ref. [18]. Some methods

are simply too difficult to be feasible or practical (e.g. those that require full state

tomography for large dimensional systems), while others may on the surface seem easy

to apply, but rely on assumptions that are not warranted [19]. Ignoring these issues

is at best unwise, and at worst potentially dangerous. The danger is most obvious in

the cryptographic setting where the two parties (conventionally called Alice and Bob)

should abort their protocol if they cannot prove entanglement (and thereby security).

If they falsely believe they have security, they will not abort, leaving them vulnerable

to eavesdropping attacks.

1.3. Overview

This dissertation will explore the problem of entanglement verification for two

different kinds of photonic states relevant to quantum information processing for
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which conventional methods do not work well. One type of state occurs in Hong-

Ou-Mandel interference, the other concerns time-frequency entanglement. We will

develop new methods and criteria for these states, and we will attempt to do so in a

way that is straightforward and easy to experimentally implement.

This dissertation is structured as follows:

In Chapter II we briefly discuss the basics of entanglement needed for the

following chapters.

In Chapter III we look at verifying the entanglement of states similar to the

delocalized photon pair that occurs due to Hong-Ou-Mandel interference [20]. This

interference occurs when two photons (usually assumed to be identical in every way

except propagation direction, but for an interesting exception see [21]) are incident

on the two inputs of a 50/50 beam splitter and always exit together (thus revealing

the bosonic character of photons). This type of interference is important for quantum

computing schemes based on linear optics [22–24].

Chapter IV discusses continuous variable entanglement of photon pairs. We look

at the general problem of how to verify entanglement using measurements made with

detectors with finite range and how the data missed by these detectors affects our

ability to verify entanglement. As an example we look at a smoothed, normalized

version of the EPR state that we encountered in Eq. (1.1).

In Chapter V we apply the techniques developed in the previous chapter to

a recently proposed quantum key distribution scheme [25] based on time-frequency

entangled photon pairs as in that scheme missing data plays an important role. We

also examine how generic forms of noise affect our ability to verify entanglement in

this case.

6



Chapter VI summarizes the results of this dissertation, puts the results into

context, and briefly indicates what is new.

Chapter III was published and co-authored with S. J. van Enk. Chapter IV and

Chapter V have been submitted for publication and co-authored with S. J. van Enk.
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CHAPTER II

ENTANGLEMENT BASICS

Here we will provide some of the necessary background for the remaining chapters

by discussing several basic features of entanglement. We will restrict ourselves to the

case of bipartite entanglement.

2.1. Defining entanglement

The pure state of a bipartite system with spatially separated subsystems A and

B (held by Alice and Bob, respectively), denoted by |Ψ〉AB, is said to be separable if

it can be written as a product of states describing the subsystems A and B

|Ψ〉AB = |ψ〉A ⊗ |ψ
′〉B . (2.1)

If it cannot be written in such a form it is called entangled. A textbook example of

a pure, bipartite entangled state is the spin singlet state

|Ψ〉 = (|↑〉A |↓〉B − |↓〉A |↑〉B)/
√

2. (2.2)

The definitions of separable and entangled can be extended to mixed states as follows.

A mixed state, represented by a density matrix ρAB, is said to be separable if it can

be written as a probabilistic mixture of separable pure states

ρAB =
∑
i

pi ρ
i
A ⊗ ρiB, (2.3)

8



where

ρij = |ψi〉j〈ψi| (2.4)

for j = A,B, with
∑

i pi = 1 and pi ≥ 0. The pi’s can be interpreted as probabilities.

Such states may describe classically correlated systems. If a state can not be written

in such a form, it is called entangled.

2.2. What is it that’s entangled?

We will consider entangled states of electromagnetic fields. While it may be

tempting to think of such entanglement as being between photons (or more broadly

as between particles), that is not generally the case. The entanglement is actually

between modes1 [26]. Consider, for example, the state

|Ψ〉 = (|0〉A |1〉B + |1〉A |0〉B)/
√

2, (2.5)

where |n〉j are the number states of the spatially separated modes j = A,B. This state

only has a single (delocalized) photon, but the state is indeed entangled. Specifically,

modes A and B are entangled.

If the two separate locations each have a fixed number of photons then we can, for

convenience, refer to the entanglement as being between the photons. One example

of such an entangled state is the two-photon polarization entangled state

|Ψ〉 = (|l〉A |↔〉B − |↔〉A |l〉B)/
√

2, (2.6)

1’Mode’, briefly, is defined as follows: Expand ~E in some complete set of solutions. Each one
solution from this set corresponds to a mode.
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or, in Fock state notation,

|Ψ〉 = (|1〉A,H |0〉A,V |0〉B,H |1〉B,V − |0〉A,H |1〉A,V |1〉B,H |0〉B,V )/
√

2. (2.7)

In this case Alice’s and Bob’s modes each have exactly one photon in total, so it is

reasonable (but not necessary) to talk about the entanglement being between “photon

A” and “photon B.”

2.3. Entanglement criteria

Given a bipartite density matrix ρAB, how does one decide if it is separable or

entangled? This is, in general, a hard problem (NP hard, in fact [11]). For 2x2

and 2x3 dimensional systems, the positive partial transpose (PPT) criterion [27, 28]

is both necessary and sufficient for ρAB to be separable, but for higher dimensional

systems there is no known test that can conclusively identify any given state as being

either separable or entangled.

Given the choice between overestimating or underestimating entanglement, the

latter is strongly preferred. This is especially clear in the context of quantum

cryptography. While entanglement is not required for implementing quantum key

distribution, secure quantum key distribution requires the ability of the sender and

receiver to use their measurement results to prove the presence of entanglement in the

effective quantum state distributed between them [29]. Likewise, we are not interested

in trying to prove that we do not have entanglement, but rather prove that we do.

With this in mind, entanglement criteria classify a state as being either

a) entangled or b) possibly separable, possibly entangled. While for any given

entanglement criterion some entangled states will not be identified as such (assuming

10



the state is not of the low dimensions described above), when experimentally trying to

verify a state as entangled, the experimentalist typically knows what kind of entangled

state they hope to generate (since they presumably designed their experiment to

produce a specific kind of state). So they can improve their chances of successfully

verifying the entanglement of the state they have prepared (if it is actually entangled)

by choosing a criterion that would verify entanglement for the targeted ideal state.

2.4. The need for many copies

No measurement on a single copy of a state can verify entanglement.

Entanglement is not an observable. For example, for a pure state, entanglement

is quantified as

EAB = −TrρA ln ρA, (2.8)

where ρA = TrBρAB is the reduced density matrix for system A, which shows

entanglement is a nonlinear function of the state. One must have many copies and

make many measurements before anything definite can be said. A finite number of

measurements cannot say with 100 % certainty that a state is entangled, but rather

that it is with some probability. This is discussed in more detail in Ref. [30].

2.5. Local operations and classical communication

Entanglement is quantified in such a way that the amount of entanglement

of a state cannot, on average, increase due to local operations and/or classical

communication. We say “on average” because some measurement outcomes may

increase the amount of entanglement (and other outcomes then necessarily decrease

it). This fact about quantifying entanglement is relevant to the process of verifying

entanglement in that this allows Alice and Bob to perform local operations on their
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respective systems, A and B, and to communicate as much classical information as

they please without risking concluding incorrectly their shared state is entangled.
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CHAPTER III

VERIFYING ENTANGLEMENT IN THE HONG-OU-MANDEL DIP

This work was published as Verifying entanglement in the Hong-Ou-Mandel dip,

Physical Review A 83, 042318 (2011). It was initiated by S. J. van Enk and finished

jointly by Megan R. Ray and S. J. van Enk.

3.1. Introduction

Quantum interference effects that arise when single photons impinge on a beam

splitter are crucial to linear-optics quantum computing schemes [22–24], with the

other indispensable nonlinear ingredient provided by photon-counting measurements.

One such linear-optics quantum interference effect was observed for the first time in

1987, by Hong, Ou, and Mandel, and it still carries their name [20]. In the Hong-

Ou-Mandel interference (HOMi) effect, two photons in otherwise identical modes

impinge on two different input ports of a 50/50 beam splitter, and, thanks to bosonic

interference, always emerge together in one of the two output ports. More precisely,

the output state can be expressed in Fock states as

|Ψ〉AB = (|0〉A |2〉B − |2〉A |0〉B)/
√

2. (3.1)

Here A and B denote the two output modes, with identical polarizations, frequencies,

and transverse spatial quantum numbers, and differing only in their propagation

directions. Great progress has been made recently in building waveguide circuits

on chips, with which high-visibility interference fringes involving multi-photon states

with high purity such as |Ψ〉 can be observed [31].
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The aspect of the output state |Ψ〉AB that interests us here is that it, provided the

modes A and B are spatially separated, is entangled. For instance, the pure state |Ψ〉

can be shown to violate Bell-type inequalities [32]. What concerns us in particular, is

how one could verify the entanglement of noisy versions of the ideal state, containing,

e.g., phase noise and contaminations with states with different numbers of photons

(no photons at all, one photon in total, or more than two photons in total). As it

turns out, standard measurements and operations used in, e.g., [31] to characterize

and manipulate few-photon states are indeed sufficient for entanglement verification,

provided (but this is a far from trivial proviso) all photo detectors detect photons

only in particular modes. That is, if we assume our detectors are sensitive only to

one particular polarization, spectral amplitude, and transverse spatial mode, then the

method we present here will unambiguously detect entanglement even if the actual

input state (with arbitrary numbers of photons in it) has a multi-mode character.

Moreover, in this case we can construct lower bounds on the amount of entanglement

as well. The reason is that such a detection scheme is equivalent to a protocol where a

filtering operation is applied to the input state that keeps only photons in the desired

modes. Since this operation is local, the amount of entanglement of the resulting

filtered state cannot be larger, on average, than the entanglement present in the

input state.

On the other hand, if we drop the assumption about the single-mode character

of our detection devices, then the problem of verifying entanglement of a delocalized

two-photon state becomes much more involved, also when compared to the similar

problem of verifying entanglement of a delocalized single photon [33, 34]. We will

give the essential reason for this difference and present solutions for the multi-mode
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multi-photon entanglement verification problem that will work if the state under

investigation is sufficiently close to a single-mode entangled state.

It may be interesting to compare our entanglement verification scheme to a

scheme proposed in Refs. [35, 36], which likewise uses the HOM interference effect

(but in its fermionic version) to detect entanglement. The latter scheme detects

entanglement between electrons, and assumes the number of electrons in each input

port of a 50/50 beamsplitter is fixed and known, whereas we do not assume a fixed

photon number. Indeed, such an assumption is perfectly fine for first-quantized

electrons, but not for second-quantized photons. Moreover, we use the inverse HOM

effect to detect entanglement in a state: ideally, we have either two photons or no

photons in each input mode, whereas Refs. [35, 36] consider, in the ideal case, one

electron in each input mode, and then use the proper HOM effect for entanglement

detection.

Finally, we recall that the (proper) HOM effect has been used to detect

entanglement between two input photons (see, e.g., Ref. [37] and references therein).

It’s still true that the assumption that there is exactly one photon in each input

port is not warranted in general, but, for entanglement verification, it is an allowed

filtering operation, as it is local. In contrast, filtering on having two photons in total

in the two input ports (which operation we would like to perform for our case) would

be nonlocal.

3.2. Entanglement verification for single-mode states

3.2.1. Defining “single mode”

Let us first consider so-called single mode states, by which we mean states where

any photons present are in the same transverse spatial, spectral, and polarization
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modes, with the understanding that they can differ in their direction of propagation

(there are two such modes in our case, spatially separated, which we call modes A and

B). Since experiments typically must be repeated in time, we do allow the spectral

mode functions φ(ω) to differ by a phase factor exp(iωT ) with T a known delay time,

without the photons losing their single-mode character.

We could, in principle, perform tomography on the full state to determine

its density matrix and from this calculate a measure of entanglement, e.g., the

concurrence or negativity of the state, and thus determine whether the state is

entangled. However, since we shouldn’t assume anything about the Hilbert space

that the state lives in (since we want be able to verify the entanglement on noisy

versions of our ideal state), we would have an infinite number of matrix elements to

determine. Even if we were to make restrictive assumptions about the Hilbert space of

the state, it would still require numerous measurements to fully determine the state.

For example, if we assumed that the state did not contain more than two photons,

this would still leave a 6x6 density matrix to determine. If we are not interested in

fully characterizing the state, but merely in verifying its entanglement we do not need

to do so much work. Instead of trying to exactly calculate a measure of entanglement

of the state, we can instead calculate a lower bound which will allow verification of

entanglement of the state with far fewer measurements.

3.2.2. Local filtering

Let the state whose entanglement we are trying to verify be called ρ. A bound

on the entanglement can be found in the following way. Suppose we were to apply the

following local filtering operations: we ask about each of the two spatially separated
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modes A and B two questions

Filter “1” : Is there exactly 1 photon in the mode?

Filter “2” : Are there more than 2 photons in the mode?

We consider this filtering a success if the answer is “no” to both questions [cf.

Eq. (3.1)]. The probability then of successful filtering is P̃ = P0,0 +P0,2 +P2,0 +P2,2,

where Pi,j is the probability to find i photons in mode A and j photons in mode B

in the unfiltered state ρ. This filtering collapses our state to one living in the smaller

Hilbert space spanned by |0〉A|0〉B, |0〉A|2〉B, |2〉A|0〉B, and |2〉A|2〉B. At this point

we have a state represented by a density matrix with up to 16 nonzero elements. To

simplify calculations we can further bound the state’s entanglement by assuming we

apply another local operation, which in addition requires classical communication:

Local operation + classical communication : “phaseshift” :

apply the same random phase shift to both modes

thus destroying any coherence between states with different numbers of photons and

reducing the number of nonzero matrix elements to at most 6.
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3.2.3. Entanglement criterion

The end result of filtering is of the (normalized) form

ρ̃ =
1

P̃



P0 0 0 0

0 P0,2 d 0

0 d∗ P2,0 0

0 0 0 P2,2


(3.2)

Since concurrence is an entanglement monotone and ρ̃ is the result of only local

operations and classical communication applied to ρ, the concurrence of ρ̃ bounds the

concurrence of ρ: P̃C(ρ̃) ≤ C(ρ). The concurrence of ρ̃ is

P̃C(ρ̃) = max[ 0, 2|d| − 2
√
P0P2,2 ] (3.3)

which is greater than zero when

P0P2,2 < |d|2. (3.4)

Thus ρ̃ is provably entangled if ineq. (3.4) holds true, and so too is ρ. Similarly,

since negativity is also an entanglement monotone, the negativity of ρ̃ bounds the

negativity of ρ in the same way: P̃N (ρ̃) ≤ N (ρ). But calculating the negativity of ρ̃

results in exactly the same bound as found by calculating the concurrence: the state

is provably entangled if P0P2,2 < |d|2.

Now we must find a way to bound |d|2. Since d = P̃ 〈02|ρ̃|20〉 = 〈02|ρ|20〉 we don’t

need to physically perform any of the filtering mentioned above, as we can determine

the needed information, d, from the unfiltered state ρ. To do this, consider placing
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the two modes of ρ on the two input ports of a lossless 50/50 beamsplitter. We will

label the input modes A and B, and the output modes C and D. The transformation

between input mode creation operators and output creation operators can be written

as follows (after adding, for convenience, a π/2 phase shift to mode D to compensate

for the π/2 phase shift upon reflection)

a† → c† + d†√
2

and b† → c† − d†√
2

(3.5)

which allows us to calculate photo-detection probabilities Qi,j for the output modes,

where Qi,j is the probability to find i photons in mode C and j photons in mode D.

It can be shown that

Q1,1 =
1

2
(P2,0 + P0,2 − d− d∗) , (3.6)

which gives (
Q1,1 −

P2,0 + P0,2

2

)2

=

(
d+ d∗

2

)2

= <(d)2 ≤ |d|2. (3.7)

So when

P0P2,2 <

(
Q1,1 −

P2,0 + P0,2

2

)2

(3.8)

the state can be said to be provably entangled. Figure 3.1. plots both sides of our

inequality (3.8) for many randomly picked separable states, to show how this criterion

indeed verifies entanglement. Moreover, the figure caption identifies the states lying

on the borderline between separable and verifiably entangled.

3.2.4. An additional phase shift

Our condition (3.8) will not detect entanglement in an input state, even when

it is in fact present, when d is largely or purely imaginary. But if one were to apply
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FIGURE 3.1. Scatter plot of the right-hand side vs the left-hand side of our
entanglement criterion (3.8). Red dots lie on the boundary of entangled vs separable,
and correspond to pure separable states of the form (|0〉A+a|2〉A)⊗(|0〉B+b|2〉B) where
a and b are real. Blue triangles corresponds to mixtures of two randomly generated
separable states of the form (|0〉A + a1|1〉A + a2|2〉A)⊗ (|0〉B + b1|1〉B + b2|2〉B) (with
complex coefficients).

a phase shift to one of the modes before placing the state on the beam splitter and

vary that phase until Q1,1 was maximized (the same local operation with classical

communication as performed in [31]), this would maximize <(d)2, thus making

ineq. (3.4) equivalent to (3.8). In other words, such states then can be detected

by our criterion. Take, for instance, the state

ρ1 :=
1

6
|00〉 〈00|+ 1

3
(|20〉+ i |02〉)(〈20| − i 〈02|) +

1

6
|22〉 〈22| . (3.9)

For this state |d|2 = 1
9

and P0P2,2 = 1
36

so by ineq. (3.4) the state is in fact entangled.

However <(d)2 = 0, so ineq. (3.8) will not detect the entanglement. But if we apply a

phase shift of exp(iπ
2
) to one of the modes then d will become purely real (and so Q1,1

will be maximized), and ineq. (3.8) will detect the entanglement. As Figure 3.2. (top)

shows, for this state with a phase exp(iφ) applied to the first mode, entanglement
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will be detected when φ is between 1
6
π and 5

6
π or between 7

6
π and 11

6
π. A similar, but

more noisy state,

ρ2 :=
1

3
|00〉 〈00|+ 1

4
(|20〉+ i |02〉)(〈20| − i 〈02|) +

1

6
|22〉 〈22| , (3.10)

will have a smaller range of detectable entanglement, specifically when φ is between

.39π and .61π or between 1.39π and 1.61π (see Figure 3.2., bottom part).

FIGURE 3.2.
[
Q1,1 − 1

2
(P2,0 + P0,2)

]2
, that is, the right-hand side of inequality (3.8),

for the state ρ1 (top), defined in (3.9), and the more noisy ρ2 (bottom), defined in
(3.10), as a function of a phase shift exp(iφ) applied to the first mode. The shaded
region represents for which values of φ entanglement will be detected by ineq. (3.8)
[both states are entangled for any value of φ].
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3.2.5. Asymmetric beamsplitters

To bound d we placed our state on a 50/50 beamsplitter, but it is easy to

generalize our analysis to beam spitters which are not equally balanced. Suppose our

beam splitter has a (real) reflection coefficient r and a (real) transmission coefficient

t =
√

1− r2 such that the input creation operators transform as

a† → rc† + td† and b† → tc† − rd† (3.11)

Following the same analysis as before we find that if

P0P2,2 <

(
Q1,1 + P1,1(t2 − r2)

4r2t2
− P2,0 + P0,2

2

)2

(3.12)

the state is provably entangled.

3.2.6. Losses

We conclude this Section by noting that it is straightforward to take into account

the influence of losses and inefficient photo detectors. Namely, all our measurements

boil down to counting photons in the end (with the results being typically 0 or 1,

sometimes 2, and rarely 3). Provided all loss rates and detector inefficiencies are

known, one can infer the actual photon number distributions [to be used in inequalities

(3.8) or (3.12)] from the measured distributions by inversion.

3.3. Considerations concerning multi-mode multi-photon states

We made the assumption at the beginning of our analysis that any photons

present are in the same transverse spatial, spectral, and polarization mode. However
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if our detectors only detect a certain single mode we can drop the assumption of the

photons being in the same mode as this is equivalent to a local filtering. That is,

using single mode detectors is equivalent to an additional filtering performed on each

of the spatially separated modes, filtering out all photons not in the single mode of

interest before detection takes place. What if we drop the assumption of single-mode

detectors?

Suppose we have an input state in which the photons present are not all in

the same transverse spatial, spectral, and polarization mode. The entanglement

verification scheme described above did assume that the two photons in the filtered

state (after the local filtering operations “1” and “2”) are in the same mode, because

of the explicit assumption that there is interference (of the “inverse HOM” type)

taking place on a beam splitter. But this assumption does affect how we interpret

the results of the measurements: in particular, the quantity Q11 (which we would like

to be large) could be dangerously contaminated with contributions from those input

states that lead to larger values of Q11 for photons in different modes than for photons

in the same modes. For example, if we start with an output state with one photon

in each output port, but of different colors, then applying the inverse beam-splitter

transformation yields an input state that has this undesired property. The question

is to what extent we can avoid or correct for the presence of such input states.

3.3.1. A corrected entanglement criterion

One way of correcting for these unwanted states is to subtract the contribution

from the worst possible kind of state, i.e., one that maximizes the right hand side of
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Eq. (3.8) without HOM entanglement, such as the state mentioned above

(|10〉red + |01〉red)⊗ (|10〉blue − |01〉blue) /2 (3.13)

While this state has twice as much entanglement as the HOM state, it is not the type

of entanglement we are interested in trying to detect here. A state such as this with

a probability P o
2 of detecting two photons of different color will contribute at most

3P o
1,1/2 to the quantity being squared on the rhs of Eq. (3.8), so we will compensate

for this possible contribution by subtracting 3P o
1,1/2. For states close to the ideal state

the contamination of different colored photons will be small and thus the correction

will be small. We can also construct a bound that does not rely on measuring the

probability of detecting two photons of different colors, since it is always less than

or equal to the probability of detecting two photons of any color(P o
1,1 ≤ P1,1.) Using

this, our (conservative) condition for entanglement becomes

P0P2,2 < (max[Q1,1 − P1,1 − P2/2 , 0 ])2 (3.14)

3.3.2. Nonexistence of local filters for sameness of modes

It would be nice if we could find a local filtering operation that checks whether

two input photons propagating in one direction are in the same mode with respect to

the other quantum numbers or not. There is certainly no von Neumann measurement

that achieves that goal, as the target states are not all orthogonal. But, surprisingly,

we cannot even construct a positive-operator valued measure (POVM) that does the

trick: the reason is that even if we start with a state that contains two photons in

orthogonal modes, say described by creation operators a†1 and a†2, then we can view
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the same state as a superposition of two states, each with the two photons in identical

modes, as described by the creation operators a†± = (a†1 ± a
†
2)/
√

2. This results from

the identity

a†1a
†
2 =

(a†+)2 − (a†−)2

2
. (3.15)

This is then the essential difference between single-photon states and multi-photon

states, which makes entanglement verification much harder for two-photon states

than for single-photon states! Moreover, this also illustrates a difference between

bosons and fermions: in the case of two fermions there is an antisymmetric subspace,

and, e.g., we can certainly perform a measurement that checks whether two spin-1/2

systems have different spins (singlet state!) or not.

3.3.3. An alternative local operation

All is not quite lost, as we can still apply other sorts of local operations

that are useful for the analysis of entanglement of the input state. In particular,

suppose that our input state is some coherent superposition of, e.g., the desired state

(|0〉A |2〉B − |2〉A |0〉B)/
√

2 and an unwanted state |1〉A1
|1〉A2

|0〉B (with photons in

different modes). There is a local operation that transforms this superposition into

an incoherent mixture of these two states: to each pair of orthogonal modes Ak and Bk

(picked from some fixed basis: that’s the essential difference from the no-go statement

from the preceding subsection) apply a random k-dependent phase shift, and then

forget the precise phase shifts applied. This operation will only preserve the coherence

of superpositions of photons in the same spectral, polarization and transverse modes

in A and B. That is, by a local operation we can transform the input state into a

state of the form

ρ = Psρ
s + (1− Ps)ρ⊥, (3.16)
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where the first term denotes states that do display (inverse) HOM interference,

and the second term states that do not; Ps is the probability of observing HOM

interference, given ρ. The point is that we have now separated the input state in

two parts, the first part of which is the state for which our method demonstrates

entanglement (see below for further elaborations of this point). The second term

has no entanglement, since any superpositions in that term have been destroyed. Its

presence could imply the state ρ is not entangled, even if ρs is, namely if 1−Ps is too

large. We will not solve the (hard) general problem of identifying for what values of

Ps and for what states ρs, entanglement of the latter still implies entanglement of ρ.

Let us return to the statement that ρs is entangled, if our verification method

succeeded. We still have to discuss the fact that our method assumed that both

photons are in one particular mode, whereas for photons in ρs we only know they

are in the same mode, but not in which one. This does have consequences for the

amount of entanglement (see [38] for extensive discussions of this issue), but not for

the bare fact that the state is entangled. We can demonstrate this by showing that

the state ρs can be distilled (the following protocol is far from optimal, and one can

easily improve its efficiency; here its point is only an existence proof): just take two

copies of ρs; first determine a particular mode such that the projection of ρs onto that

mode is entangled; then perform on each of the A and B modes a joint measurement

that counts how many photons in that particular mode there are in total in the

two copies. If the answer is “2” for both A and B, we have an entangled state in

that one particular mode. In this highly inefficient protocol the average amount of

entanglement decreases (unless only a single mode is occupied), but it stays nonzero.

Hence ρs must be entangled.
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For clarity, let us add that the point of the distillation protocol is not that it

would be used in an actual entanglement verification experiment. Instead, it is just a

theoretical construct used to show that ρs must be entangled, by showing it contains a

nonzero amount of distillable entanglement. For that limited theoretical purpose, it is

sufficient to consider any suitable ideal protocol, including one that uses single-mode

photo detectors.

3.4. Summary

We demonstrated how the inverse HOMi effect can be used to verify the mode

entanglement present in a state of the form (|0〉 |2〉 − |2〉 |0〉)/
√

2, and noisy versions

thereof. If the photons in the state are all “single-mode”, that is, all have the same

polarization, the same transverse mode profile and the same spectral amplitude, then

our method easily bounds the amount of entanglement from below. That directly

gives a criterion, inequality (3.8), which, when satisfied for a given single-mode state,

is sufficient to prove entanglement. We analyzed how the applicability of the criterion

can be improved simply by applying an additional phase shift to one of the two modes.

The operations needed to verify entanglement can be implemented with linear optics,

and are just those demonstrated in the experiment of [31].

We discussed how the problem of verifying entanglement in the delocalized two-

photon state with the inverse HOMi effect becomes more “interesting” (a euphemism

for “complicated”) without this single-mode assumption [more precisely, when both

the input state and one’s photo detectors are multi-mode], and why a delocalized

single-photon state does not suffer from these complications. On the other hand, the

interpretation of violating a Bell inequality with unbalanced homodyne measurements

[32] is immune to the single-mode or multi-mode character of the input state, at the
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small cost of requiring phase-locked local oscillators, thus showing an advantage of

Bell inequalities in the context of entanglement verification.

We gave a simple solution to the full problem of inverse HOMi multi-mode multi-

photon mode entanglement, based on bounding the deviation of the actual state from

a single-mode state. This solution works well when that deviation is sufficiently

small. It yields an entanglement criterion (3.14), similar to, but more conservative

than (3.8).
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CHAPTER IV

MISSING DATA OUTSIDE THE DETECTOR RANGE: ITS IMPORTANCE FOR

CONTINUOUS VARIABLE ENTANGLEMENT VERIFICATION AND

QUANTUM CRYPTOGRAPHY

This work has been accepted for publication in Physical Review A. It was

initiated by S. J. van Enk and finished jointly by Megan R. Ray and S. J. van Enk.

4.1. Introduction

Secure quantum key distribution requires the ability of the sender and receiver to

use their measurement results to prove the presence of entanglement in the (effective1)

quantum state distributed between them [29]. The problem of how to decide whether

a given state is separable or entangled continues to be an area of active research [39].

In almost all applications it is important to avoid concluding there is entanglement

when there is, in fact, none. In other words, false positives are considered considerably

worse than false negatives.

There has been great interest in continuous-variable (CV) entanglement

for quantum information processing (for example, for a handful of very recent

experiments, see Refs. [40–44]). One reason is that within the research area of

quantum optics, CV states such as coherent states or two-mode squeezed states

are easier to generate than single-photon polarization states. Moreover, by using

1In the case of prepare and measure schemes using single photons with no entanglement, the
signal preparation process is equivalent (for the purpose of security analysis) to Alice preparing
an entangled two photon state of the form |Ψ〉AB =

∑
i

√
pi |αi〉 |φi〉. By then measuring the first

system (in the orthonormal |αi〉 basis), Alice is preparing the signal states |φi〉 with probabilities pi.
By pretending that their data comes from the equivalent two photon state, Alice and Bob should
be able to use their data to prove entanglement.
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continuous degrees of freedom (e.g., quadratures or time and frequency) rather than

polarization, a single photon can carry more information than just one (qu)bit. An

example especially relevant to our discussion—it in fact formed the inspiration for

this work—is the possibility of encoding and decoding multiple bits of information in

the time and frequency degrees of freedom of pairs of photons, as discussed in Ref. [25]

(see also [45]). An important ingredient of that work is a scheme for converting the

time measurement into a much more precise frequency measurement, at the cost of

losing some flexibility in choosing the range of detection.

In every entanglement verification or quantum cryptography experiment one has

to deal with missing data due to imperfect detectors. For missed counts inside the

detector range we typically assume that the missing data would follow the same

statistics as the recorded data. (When Bell inequalities are used to eliminate or refute

hidden-variable theories, no such assumption may be used. Imperfect detectors then

lead to the so-called detection loophole. But when using the same Bell inequalities

for entanglement verification the assumption is typically warranted [19].) Here, in

contrast, we worry about missed counts from outside one’s detector range. The

assumption that those counts would follow the same statistics as the recorded data

is meaningless. We will show that exactly how one should take into account missing

data of this type depends on what criterion one uses to verify entanglement (or to

prove cryptographic security) .

4.2. Detecting continuous-variable entanglement

4.2.1. Entanglement criteria

The best known and easiest to calculate separability criterion developed for

detecting discrete variable bipartite entanglement is the positive partial transpose
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(PPT) criterion [27]. The PPT criterion has been extended to bipartite CV systems

by Shchukin and Vogel [46] and by Miranowicz et al. [47], which encompasses previous

CV criteria by Duan et al. [48], Simon[49], Raymer et al.[50], Mancini et al.[51], and

others. For example the Mancini-Giovanetti-Vitali-Tombesi (MGVT) criterion states

that if U− = ua − ub and V+ = va + vb, where u and v are some dimensionless scaled

variables for particles a and b, with [uj, vj′ ] = iδj,j′ (j, j′ = a, b) then for all separable

states the variances of U− and V+ satisfy

σ2[U−]σ2[V+] ≥ 1. (4.1)

Violation of this condition on variances means that the underlying state is verifiably

entangled.

In experiments on down conversion photons are created in pairs, such that the

two photons are correlated in time (the two photons are created at the same time

by annihilation of a high-energy photon, up to a small difference in time allowed

by the time-energy uncertainty relation) but anti-correlated in frequency (because of

energy conservation, with imperfect anti-correlations arising from uncertainty in the

initial photon’s frequency). So, in our intended application, U− would be taken to be

the difference in detected times-of-arrival and V+ would be the sum of the detected

frequencies.

4.2.2. Coarse grained measurements

To use the criterion of Eq. (4.1) to verify continuous variable entanglement

of a state using experimental data, one must take into account how the detectors

are used to measure the observables û and v̂, and possibly modify the criterion
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accordingly. The first thing that must be considered is the coarse grained nature

of the measurements. While the variable being measured is continuous, our detectors

have finite resolution and our data is binned. Instead of measuring û and v̂ we are

measuring the observables

û∆ =
D∑
k=1

∫ uk+∆/2

uk−∆/2

du uk|u〉〈u|, (4.2)

v̂δ =
D∑
l=1

∫ vl+δ/2

vl−δ/2
dv vl|v〉〈v|, (4.3)

where uk = (k −D/2)∆ + u0 and vl = (l −D/2)δ + v0, and where ∆ and δ are the

resolutions of the u and v detectors, respectively. We assumed here, for simplicity,

the number of bins, D, to be the same for u and v measurements. The variances we

need to calculate are now given by

σ2[U∆
− ] = 〈(û∆

a − û∆
b )2〉 − 〈(û∆

a − û∆
b )〉2,

σ2[V δ
+] = 〈(v̂δa + v̂δb)

2〉 − 〈(v̂δa + v̂δb)〉2, (4.4)

Tasca et al. [52] modified the MGVT criterion for coarse grained measurements and

showed all separable states satisfy [52]

(
σ2[U∆

− ] +
∆2

12

)(
σ2[V δ

+] +
δ2

12

)
≥ 1, (4.5)

and so a violation of this inequality proves entanglement. This condition is harder

to violate than (4.1) because of the presence of the extra bin width dependent terms

on the left hand side. That is, the binning of the data loses information, and makes

it harder to verify entanglement. Although it is not clear from Ref. [52] to what
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variables this criterion is meant to be applied, we will proceed using this criterion

with the variances as we have defined in Eq. (4.4) as an example since our purpose

ultimately is not to suggest this (or any other variance based criteria) as a method to

verify entanglement. Rather, we aim to show that any variance based criteria is not

well suited for entanglement verification when taking into account the finite range

of the detectors, even if one were to overestimate the entanglement by ignoring the

binning of data completely.

4.2.3. Finite range detectors

The correction for coarse graining alone is not sufficient to properly verify

entanglement experimentally. An additional correction must be made to take into

account the finite detection range of the detectors. In general the wavefunction is not

zero outside the detection range, so there is some probability of “missed counts”—

events that occur when the particle arrives at the detector but is not detected because

it falls outside the detection range. (This is different than not being detected because

of transmission loss or detector inefficiency.)

To illustrate the importance of being earnest about the missed counts, let us first

consider a pure separable gaussian bipartite state, shared between Alice and Bob, of

the form

Ψ(va, vb) ∝ exp

(
−v2

a

2s2

)
exp

(
−v2

b

2s2

)
, (4.6)

with s chosen such that the particles’ wavefunction is well localized in the variables

va and vb. Hence, the value of V δ
+ is quite sharply defined, but, as a consequence,

the probability distribution for the complementary variables ua and ub is broad and

U∆
− is not sharply defined. For simplicity we will assume in our examples that Alice

and Bob are using detectors of the same resolution and range for both ua,b and va,b.
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Since the probability distribution in ua,b extends well beyond their detection range,

the probability of Alice and Bob both detecting a particle when measuring in the

ua,b basis will be small. For, e.g., s = 1/8 and a detection range of [−2, 2] this

probability is only about 7.6%, whereas in the va,b basis it is essentially 100%. From

now on, we always fix Alice’s and Bob’s detector ranges to [−2, 2](with the exception

of Figure 4.4. below, where we study the effect of varying the detector range).

Now consider a mixed state consisting of a 50/50 mixture of the separable state

we just examined and a similar separable state equally sharply peaked in ua and

ub. This mixed state will have sharp features in both u and v, while most of the

broad background distribution falls outside the detection window. The probability of

detecting both particles is only 53.8% for either basis. Ignoring the missed counts, U∆
−

and V δ
+ are mostly sharply defined, and look similar to what the results would be for an

entangled EPR-like state. After measuring the state with 32 bin resolution detectors,

naively normalizing the detected data to 100% as in Figure 4.1., and calculating

(σ2[V δ
+]+ δ2

12
)(σ2[U∆

− ]+ ∆2

12
) ≈ .04 < 1, the coarse grained MGVT criterion will “verify

entanglement” even though the underlying state clearly is separable.

4.3. Worst-case analysis

4.3.1. Assumptions

The preceding example shows we must account for the missed data in some

way. To do this we assume that we know what percentage of counts are missed

(this information could be obtained by using a detector of lower resolution but much

broader range). We also assume that we can set a cutoff beyond which counts can be

ignored. We return to this cutoff assumption below in Sec. 4.3.5.
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FIGURE 4.1. U∆
− for mixed separable state, where the missed counts outside the

detector range have been ignored (the graph for V δ
+ would look identical). We would

falsely conclude we have entanglement. Note the barely visible background level of
counts: in order to properly reach conclusions about entanglement, we would need to
know how far those background counts extend outside our detector range.

For our worst-case analysis we add additional bins to U∆
− and V δ

+ that correspond

to values that could have been measured outside our detector range, but inside the our

cutoff. In order to properly verify entanglement we must then add the missed counts

to our data in the worst way possible so that we will not be led to believe that we

have entanglement (or security) when we do not. For the MGVT criterion this means

we should maximize the variance of U∆
− and V δ

+, and so we add the missed counts to

the outermost bins of U∆
− and V δ

+ (the weighting depends on the experimental data

and the cutoffs. For symmetric experimental data and symmetric cutoffs, half of the

missed counts goes into each of the outermost bins, as depicted in Figure 4.2.a). To

attempt to verify entanglement for the mixed separable state example, we find that

by setting cutoffs at, say, −40 and 40 for the detectors of both Bob and Alice, they

would fail to both detect particles less than 10−9 percent of the time. The choice of

35



0

0.05

0.1

0.15

0.2

0.25

0.3

U
∆

−

0

0.05

0.1

0.15

0.2

0.25

0.3

U
∆

−

FIGURE 4.2. Left: Cartoon showing how to deal with missing data (red) outside our
detector range for a variance-based entanglement or security criterion. After having
determined a cutoff range beyond which we expect no counts, missed data are assigned
to the outside bins within the cutoff range. Right: Same for an entropic entanglement
or security criterion: missed data are as uniformly distributed as possible within the
cutoff range.

cutoff corresponds to adding 1216 bins for U∆
− and V δ

+, in the outermost of which we

place the missing data. The variances increase so much that we no longer come close

to concluding that we have entanglement.

4.3.2. Smoothed EPR state

Because of the necessity of adding the missing data in the worst way and the

strong dependence of the variance on the cutoff and amount of missed counts, the

MGVT criterion will often fail to detect entanglement when it is, in fact, present. For

example, consider an entangled gaussian state (“smoothed EPR” [53])

Ψ(ua, ub) ∝ exp

(
2
√
n̄(n̄+ 1)uaub − (n̄+

1

2
)(u2

a + u2
b)

)
, (4.7)

where for n̄ = 0 the state is separable and in the limit n̄→∞ we have the original

EPR state. For n̄ = 1 and a detection range of [−2, 2] (see Figure 4.3.a) the probability
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FIGURE 4.3. Left: |Ψ(ua, ub)|2 for the smoothed EPR state (4.7) with n̄ = 1; Right:
|Ψ(va, vb)|2 for the same smoothed EPR state as measured by detectors with a 32 bin
resolution

of both parties detecting a particle is about 86.9% For this case, without even adding

extra bins to U∆
− and V δ

+ and simply putting the missing data into the outermost of

the existing bins inside the detector range, we already fail to verify the entanglement

present in the state with the modified MGVT criterion, no matter what the cutoff

would be. Other variance-based criteria fare equally badly.

4.3.3. Renyi entropies

A better choice is to use a criterion that does not depend as strongly on

the location of the cutoff or the probability of missed counts. Instead of using

a variance-based criterion we will now look at an entropic criterion. Continuous

variable separability criteria have been developed using Shannon, Tsallis, smooth

and Renyi entropies [54–56]. We focus on Renyi entropies here, but will return to
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smooth entropies in Sec. 4.3.6. The Renyi entropy of order α for a binned probability

distribution is defined as

Hα[Bδb] =
1

1− α
ln(
∑
k

(Bδb
k )α). (4.8)

By following a proof of a separability criterion given in [55] for unbinned joint

variables, and then inserting the uncertainty relations derived in [57] for binned

variables, we obtain this inequality

Hα[U∆
− ] +Hβ[V δ

+] +
1

2

(
lnα

1− α
+

ln β

1− β

)
− ln

2π

∆δ
≥ 0, (4.9)

for 1/α + 1/β = 2, which is satisfied for any separable state. So if this equality

is violated for any such constrained pair of values α and β, the underlying state is

verifiably entangled. The criterion is optimized by minimizing the left-hand side over

the allowed values for α, β. The inequality (4.9) has the same form as Eq. (26) of

Ref. [55], but our inequality applies to the measurable binned observables (where Alice

and Bob bin their data, and then take the difference/sum of the binned outcomes),

whereas Eq. (26) of Ref. [55] applies to observables obtained by first taking the

difference/sum and then binning.

To deal with the missed counts when using this criterion we again add additional

bins to U∆
− and V δ

+ that correspond to values that could have been measured outside

our detector range, but inside a cutoff. We then must add the missing data such

that it maximizes the Renyi entropy. Since the Renyi entropy is maximized by a

uniform distribution, we will add the missed counts to the new empty bins and the

existing bins with few counts to make the distribution as uniform as possible, as
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shown in cartoon form in Figure 4.2.b We then optimize our criterion and hope we

verify entanglement.

4.3.4. Numerical examples

For a smoothed EPR state with n̄ = 1, Alice and Bob would only fail to both

detect a particle less than 10−12 percent of the time in the range [−10, 10], so they

could choose that as their cutoff range (adding those missed counts to the region

beyond the cutoff would make a negligible contribution). They add 256 bins to U∆
−

and V δ
+ and distribute the missing data in the most uniform way possible. After doing

this and optimizing the criterion, they do indeed verify entanglement. (Recall that

the variance criterion always fails for this case.) The Renyi entropy criterion depends
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FIGURE 4.4. Optimized Renyi criterion, N, for the smoothed EPR state with n̄ = 1
as a function of the number of bins inside the detection range. One needs a minimum
number of 7 bins to verify entanglement.

on the size of the bins both in the explicit bin width term and the Renyi entropy

terms. Fixing the detection range and cutoff, and varying the number of bins D of
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our detectors, we see in Figure 4.4. that in this instance entanglement will be verified

if we include at least 7 bins. If we have fewer bins, we throw too much information

away and can not be sure we have entanglement.
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FIGURE 4.5. Optimized criterion, N, for the smoothed EPR state with n̄ = 1 as a
function of the detection cutoff C, which assumes no detection events would occur
outside the interval [−C,C]). One needs C < 21.5 in order to be able to verify
entanglement.

The strength of the Renyi entropy criterion is its smaller sensitivity to the

location of the cutoff. In Figure 4.5. we see that entanglement will be verified for the

n̄ = 1 smoothed EPR state as long as the cutoff range does not exceed [−21.5, 21.5].

One might also wonder how the ability to verify entanglement depends on

the detection range. Figure 4.6. shows that, for a fixed outer cutoff of [-10,10],

entanglement will be verified if the detector range is larger than [-1.9,1.9]. For ranges

smaller than this, there is too much missing data that has to be distributed in the

worst way possible.
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FIGURE 4.6. Optimized criterion, N, for the smoothed EPR state with n̄ = 1
as a function of the detector range [−R,R] with a fixed outer cutoff of [-10,10].
Entanglement can only be verified when the detection range is larger than [-1.9,1.9].

4.3.5. The cutoff assumption

In order to obtain a finite estimate of a variance, we need to assume that there

is a cutoff beyond which detections can be safely ignored. This is, in fact, what

one always has to assume in any physics experiment that measures some in principle

unbounded quantity. Namely, consider an experiment measuring some observable X.

If even with a tiny probability p(X) a very large value could occur, then our reported

average value X̄ could be unreliable. Obviously, if p(X) decays sufficiently fast with

|X| then the effect of outliers on the average value will be negligible. But at the

same time (for instance, if p(X) ∝ 1/|X|2) the effect on the variance in our estimate

could still be substantial. We have assumed here that p(X) decays sufficiently fast

outside the cutoff region so as not to affect our estimate of the variance. A fortiori, it

affects our estimate of the entropy even less. This is one more reason to use entropic

criteria for verifying entanglement of continuous-variable states, or to test security in

continuous-variable protocols.

41



We also note that these considerations are in addition to the fact that a finite

experiment can only ever reach a probabilistic statement about entanglement. For

a discussion on how to quantify probabilistic evidence for entanglement in a finite

experiment, see [30].

Finally, we note that our assumption of a finite detector range within the cutoff

range is motivated by an actual experimental setup [25], in which there is a tradeoff

between number of bins, their width, and the accuracy of detections in a given bin.

In an ideal world, the cutoff would be set equal to the detection range.

4.3.6. Smooth entropies

For our entropic entanglement criterion we used an inequality based on the

Renyi entropy, since a nice and relatively simple necessary criterion for separability

exists, which in addition takes into account the binning of data [55]. But there are

alternatives. In particular, recent work on “smooth entropies” has shown that optimal

uncertainty relations can be obtained [56, 58], and that these relations can be used

to prove security of a continuous-variable quantum key distribution protocol [59]. In

principle, smooth entropies could be used for our purposes, too, and would, possibly,

lead to better criteria. For instance, in Ref. [59] the assumption of a cutoff was not

necessary. On the other hand, there one did make an assumption about the form

of the state, namely that it is a two-mode squeezed state. Much more complicated

maximizations would have to be performed to obtain state-independent bounds, and

it is not clear whether such bounds can be obtained without in the end resorting to

standard von Neumann entropies.
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4.4. Conclusions

We discussed a difficulty that arises in entanglement verification (or quantum

cryptography) experiments for continuous variable systems, which does not seem

to have been discussed in the literature yet: missing data outside one’s detector

range. We showed how to take those missing data into account, by distributing

them over the outside range in the worst possible way, given the criterion one uses

to verify entanglement (or prove security), as schematically pictured in Figures 4.2.a

and 4.2.b As a consequence, entropic entanglement (security) criteria turn out to

be much more forgiving than are variance-based criteria (including the well-known

Duan-Simon entanglement criteria).

We investigated mainly one criterion, which takes into account the binning of

data and is based on the Renyi entropy, but other criteria are worth investigating,

too: we mentioned smooth entropies [56, 58], and the Vogel-Shchukin [46] method of

moments looks promising as it, too, can take into account the binning of data.

In this chapter we discussed the general case of verifying continuous variable

entanglement and issues arising from performing measurements with detectors of

finite range. In the next chapter we will examine a specific case of interest motivated

by a recently proposed QKD scheme using time-frequency entangled photon pairs

[25].
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CHAPTER V

MISSING DATA OUTSIDE THE DETECTOR RANGE: APPLICATION TO

TIME-FREQUENCY ENTANGLEMENT

This work has been submitted for publication in Physical Review A. It was

initiated by S. J. van Enk and finished jointly by Megan R. Ray and S. J. van Enk.

5.1. Introduction

Time-frequency entangled photon pairs have recently become of interest for QKD

schemes due to their large information capacity (i.e. multiple bits per photon), ease

of preparation, and robustness against transmission noise [25, 60–62].

One previously proposed QKD protocol [63] used the time and frequency bases

for encoding information by using single photons (not entangled) with a prepare-

and-measure method. Here Alice randomly and controllably modulates either the

frequency or time delay (relative to a reference pulse) of a single photon that is sent to

Bob, who then randomly chooses to measure in either the time or frequency basis. The

required random and controlled modulation is difficult, making the protocol somewhat

impractical. Additionally, the density matrix of the photon sent to Bob will in practice

depend on the basis that Alice prepares in, possibly allowing an eavesdropper to

distinguish between preparation bases thereby compromising security. An alternative

to the single-photon prepare-and-measure method is to use time-frequency entangled

photon pairs, whose measurement results are naturally correlated. Moreover, the

density matrix of the photon propagating to Bob is guaranteed to be independent of

the basis Alice performs her measurement in.
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Spontaneous parametric down conversion (SPDC) and four wave mixing (FWM)

are well-known and established sources of time-frequency entangled photon pairs

with highly tailorable spectral/correlation properties [64–66]. In SPDC a pump

photon with frequency ωp traveling through a nonlinear crystal will, with some

small probability, be annihilated and simultaneously two (entangled) photons will

be created with frequencies ωA and ωB [67]. Conservation of energy results in the

downconverted pair being anti-correlated in frequency, since ωp = ωA + ωB to within

the bandwidth of the original pump photon. Because they are created at the same

time, the time of arrival of the two photons will be correlated. Similarly, in the

FWM process two photons, with frequencies ω1 and ω2, propagating in a non-linear

material (e.g. a photonic crystal fiber) are annihilated and at the same time two

photons with different frequencies, ωA and ωB, are created [68], leading again to

an entangled photon pair that is correlated in time and anti-correlated in frequency

(ω1 + ω2 ≈ ωA + ωB).

While there has been theoretical interest in entangled time-frequency QKD

protocols, this has not yet been experimentally demonstrated1. The technical

challenge in implementing an entangled time-frequency QKD protocol has been in

the ability to perform the measurements that would be required. It has not been

possible to perform measurements in both the time and frequency bases with sufficient

resolution and efficiency at the single photon level with current spectrometers and

time-resolving photodetectors, since high resolution detectors tend to be inefficient,

and since a broad spectral profile implies a narrow temporal profile, and vice versa.

A way around this problem was recently proposed in [25]. By performing

time to frequency (T2F) conversion, one can map the temporal profile of a photon

1Such states were used in a non-standard QKD protocol [69] which encoded only in a single
(temporal) basis. It’s not clear whether such a protocol is secure.
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to the frequency domain and then measure it with a spectrometer, allowing for

higher temporal resolution than could be obtained with a direct time measurement.

By implementing this technique, the authors of Ref. [25] believe that 4 bits per

photons would be achievable with currently available off the shelf components, and

larger alphabets would be possible in the future as the technologies used in the

T2F conversion improve. We will examine the ability to verify time-frequency

entanglement for the proposed system using the methods of the previous chapter.

5.2. Measurements

In each trial (that is, for each photon pair produced by the source) Alice and

Bob randomly and independently measure either the frequency or time of arrival of

their photon. We assume they have identical measurement devices, described below.

They perform many trials, a relatively small number of which will be used to evaluate

security (by verifying entanglement) and the rest of which will be used to ultimately

generate the secret key.

5.2.1. Frequency measurements

Alice and Bob measure in the frequency basis using photon counting

spectrometers. Each of their detectors have D bins of width δω, giving a detection

range of ∆ω = Dδω. The measurement is modeled in the same way as in the previous

chapter:

ω̂δω =
D∑
k=1

∫ ωk+δω/2

ωk−δω/2
dω ωk|ω〉〈ω|, (5.1)

where ωk = (k −D/2)δω + ω0 is the central frequency of the kth bin.
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5.2.2. Time measurements (using time to frequency conversion)

Rather than making direct time measurements, Alice and Bob each achieve a

high resolution time measurement by performing T2F conversion on their photon

before measuring frequency. The T2F conversion, as described in Refs.[70–73], is

implemented by passing the photon through a dispersive delay line (DDL) and an

electro-optic phase modulator (EOM). To see how this affects our state, we start

with a pure single-photon state described by

∣∣∣Ψ̃〉 =

∫
dt f̃(t) |t〉 , (5.2)

where |t〉 = (2π)−1/2
∫

dω a†(ω) exp(−iωt) |vac〉 and f̃(t) is normalized to∫
dt|f̃(t)|2 = 1. The DDL (which can simply be an ordinary silica fiber) acts in

the frequency domain as a multiplication by a frequency dependent phase factor

G(ω) = exp(iϕ(ω)), with ϕ(ω) = ϕ̈ω2/2, where ϕ̈ is the group velocity dispersion of

the fiber, a constant dependent on the length of the fiber, so that

f(ω)→ G(w)f(ω) = exp[
i

2
ϕ̈ω2]f(ω). (5.3)

This transformation can be expressed in the time domain as a convolution

f̃(t)→ (G̃ ∗ f̃)(t′) =
1√
−iϕ̈

∫
dt exp[

−i
2ϕ̈

(t− t′)2]f̃(t)

=
1√
−iϕ̈

exp[
−i
2ϕ̈
t′2]

∫
dt exp[

−i
2ϕ̈
t2] exp[

i

ϕ̈
tt′]f̃(t). (5.4)

The EOM acts as multiplication by a time-dependent phase factor H̃(t) = exp(iφ(t)),

with a phase φ(t) ∼= φ̈t2/2 near the peak modulation (t ≈ 0), where φ̈ is a constant
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related to the modulation depth. The modulation frequency must be chosen such

that the approximation φ(t) ∼= φ̈t2/2 is valid for the full duration of the signal.

This dictates the resolution that is achievable, as discussed in [25]. Advances in

modulator technology should allow for higher resolution measurements and thus a

larger alphabet. The combination of the two transformations yields

(G̃ ∗ f̃)(t′)→H̃(t′)(G̃ ∗ f̃)(t′)

= exp[
i

2
φ̈t′2](G̃ ∗ f̃)(t′)

=
1√
−iϕ̈

exp[
i

2
t′2(φ̈− 1

ϕ̈
)]

∫
dt exp[

−i
2ϕ̈
t2] exp[

i

ϕ̈
tt′]f̃(t). (5.5)

If the DDL and EOM parameters are chosen such that φ̈ϕ̈ = 1, the state that results

after applying both the DDL and EOM is

1√
−iϕ̈

∫
dt exp[

−i
2ϕ̈
t2] exp[

i

ϕ̈
tt′]f̃(t). (5.6)

The Fourier transform of this state can be evaluated as follows:

1

2π
√
−iϕ̈

∫ ∫
dt′dt exp[iωt] exp[

−i
2ϕ̈
t2] exp[

i

ϕ̈
tt′]f̃(t)

=
1√
−iϕ̈

∫
dt exp[

−i
2ϕ̈
t2]f̃(t)δ(ω − t

ϕ̈
)

=
1√
−iϕ̈

f̃(ϕ̈ω) exp[
−iϕ̈

2
ω2]. (5.7)

So we see when the DDL and EOM are chosen such that φ̈ϕ̈ = 1, their combined

action is to produce a Fourier transform of the original state, up to a scaling and

frequency dependent phase factor.
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After the T2F conversion, the state is measured with the same type of photon

counting spectrometer described above. The resolution of this measurement is δt =

ϕ̈δω = δω/φ̈ and the range is ∆t = Dδt = Dδω/φ̈ = ∆ω/φ̈.

5.2.3. Cutoff and missing data

As discussed in the preceding chapter, Alice and Bob must also make

measurements to determine an appropriate cutoff and how much data they are

missing. This can be done with spectrometers with a larger range but lower resolution.

5.3. Verifying entanglement

After completing many trials, Alice and Bob publicly announce their

measurement bases for each trial. After discarding measurements for trials when

they measured in different bases or when they failed to both detect a photon, they

randomly choose a subset of measurements that will be used to verify entanglement.

We will use a Renyi entropy criterion of the type discussed in the last chapter. The

continuous operators useful for verifying time-frequency entanglement with such a

criterion for states correlated in time and anti-correlated in frequency are

Ω̂+ = ω̂A + ω̂B, (5.8)

T̂− = t̂A − t̂B. (5.9)
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The discrete approximations of these, based on the measurements that Alice and Bob

make, are

Ωδω
+ = ω̂δωA + ω̂δωB (5.10)

T δt− = t̂δtA − t̂δtB (5.11)

As we saw in the last chapter, all separable states must satisfy

Hα[T δt− ] +Hβ[Ωδω
+ ] +

1

2

(
lnα

1− α
+

ln β

1− β

)
− ln

2π

δωδt
≥ 0, (5.12)

for any α, β chosen such that 1/α+ 1/β = 2. In the same way as in the last chapter,

we will denote the l.h.s of Eq.(5.12), minimized over the constrained values of α and

β, by M :

M := min
α,β:1/α+1/β=2

Hα[T δt− ] +Hβ[Ωδω
+ ] +

1

2

(
lnα

1− α
+

ln β

1− β

)
− ln

2π

δωδt
. (5.13)

Then we can say that if M < 0 the state is verifiably entangled.

After adding the missing data in the worst way possible (i.e. the way that makes

the distribution most uniform) Alice and Bob can calculate M and hope that it is

less than 0. If it is not, they abort the protocol and start again, since they cannot be

sure there is no eavesdropper.
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5.4. Ideal state

A general pure two-photon state, with the two photon frequencies written as

ωA + ω0 and ωB + ω0 (where ω0 is central frequency of the pair), can be described by

|Ψ〉 =

∫∫
dωA dωB f(ωA, ωB) |ωA, ωB〉 , (5.14)

where

|ωA, ωB〉 = a†(ωA)a†(ωB) |vac〉 (5.15)

and the joint spectral amplitude, f(ωA, ωB), can be chosen symmetric in its two

arguments without loss of generality, and is normalized as
∫ ∫

dωAdωA |f(ωA, ωB)|2 =

1. The central frequency for a SPDC process is ω0 = ωp/2, and for FWM it is

ω0 = (ω1 + ω2)/2.

The particular form of f proposed and analyzed in [25] is an idealized version of

the time-frequency entangled state resulting from FWM or SPDC [67, 74]:

f(ωA, ωB) = (πΛ+Λ−)−1/2 exp
(
−ω2
−/2Λ2

+ − ω2
+/2Λ2

−
)
, (5.16)

where ω± = (ωA±ωB)/
√

2 and Λ+, Λ− are the marginal and correlation bandwidths,

respectively. It is convenient to define these in terms of the bin width and detection

range of the spectrometers: Λ− = β−δω and Λ+ = β+∆ω. The joint temporal

amplitude corresponding to Equation (5.16) is

f̃(tA, tB) = (πσ+σ−)−1/2 exp
(
−t2−/2σ2

− − t2+/2σ2
+

)
, (5.17)
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where σ+ = 1/Λ− and σ− = 1/Λ+ and t± = (tA ± tB)/
√

2. The T2F setup is

designed such that the resolution of the time correlation matches that of the frequency

measurement, that is φ̈ is chosen to be φ̈ = δω/δt = β−β+δω
2D so that δt = σ−/β−.

For an experimentally feasible QKD system based on currently available

technology, the authors of [25] propose using spectrometers composed of 16 bins of

2nm width in the telecom region, and engineering their state so that β+ = 3/4 (this

provides a somewhat uniform detection probability amongst the detection channels)

and β− = 1/5 (this provides strong enough correlation that Ωδω
+ and T δt− are mostly

confined to one bin). Figure 5.1. shows the continuous joint spectral probability

distribution, |f(ωA, ωB)|2, and the binned joint temporal probability distribution,

|f̃(tA, tB)|2, for the state with these parameters.
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FIGURE 5.1. Left: Continuous joint spectral probability, |f(ωA, ωB)|2 for parameters
specified in [25] Right: Binned joint temporal probability, |f̃(tA, tB)|2, as measured
with detectors with D=16 bins.

52



The disadvantage in choosing β+ such that the detection probability amongst the

detection channels is somewhat uniform (as seen in Figure 5.2.) is that the probability

of not detecting the photons because they fall outside the range of the detector

becomes significant. For the choices of parameters given above, the probability of

both Alice and Bob detecting photons when measuring in the same basis is about 81%,

which means that about 19% of the data is missing and will need to be distributed

in the worst way possible, making it harder (less likely) to verify entanglement

We see in Figure 5.3. that entanglement will be verified as long as the cutoffs

are chosen to be less than [−4.8(∆
2

), 4.8(∆
2

)], (∆ = ∆ω,∆t). We will choose for

concreteness to use cutoff ranges [−3.5(∆
2

), 3.5(∆
2

)] for both ∆ω and ∆t, which

correspond to one or both parties failing to detect a photon with a probability of

order 10−6 when measuring in the same basis.

ω
δω
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∆ ω

2
0 ∆ ω

2

0

0.02

0.04

0.06

FIGURE 5.2. Probability of detection for each bin of Bob’s detector for parameters
specified in [25], conditioned on Alice also detecting a photon. β+ = 3/4 was chosen
such that this is “reasonably flat”[25].
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outer cutoffs less than [−4.8(∆
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5.5. Noise

Any actual experiment will suffer to some degree from losses, dark counts, and

noise, all of which can adversely affect the ability to verify entanglement and prove

security. Ref. [25] analyzes the effect of dark counts and transmission channel losses

on key size, so here we will do the complementary thing and look at the effect of a

generic form of noise on entanglement verification.

Since we assume that the source is located in Alice’s lab, after preparing the

photon pair Alice keeps one of the photons for herself and sends the other to

Bob through some transmission channel. If the transmission channel is noisy the

correlations between Alice and Bob’s measurements will probably decrease, thus

decreasing their ability to verify entanglement. Suppose the noise mechanism causes

a random shift in the time of arrival of the photon
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f̃(tA, tB)→ f̃(tA, tB + τi), (5.18)

which results in a mixed state

ρ =

∫
dτiP (τi)|Ψ̃(tA, tB + τi)〉〈Ψ̃(tA, tB + τi)|, (5.19)

where

P (τi) =
1

στ
√

2π
exp

(
− τ 2

i

2σ2
τ

)
(5.20)

is the probability density function of τi, with
∫

dτiP (τi) = 1.

This noise causes a gaussian broadening of Bob’s time measurement, as seen

in Figure 5.4.a This has two effects relevant to Alice and Bob’s ability to verify

entanglement. The first, and most significant, is that it causes a broadening in

T δt− (as seen in Figure 5.4.b), thereby increasing the Renyi entropy of T δt− which

makes it harder to verify entanglement using Eq. 5.13(or with any other criterion

mentioned in the preceding chapter). The broadening also has the effect of decreasing

the probability Bob will detect a photon when measuring in the time basis since

more of the probability distribution is falling outside his detection range. Since the

measurement results used to calculate T δt− are conditioned on both Alice and Bob

detecting photons, this means more counts must be distributed in the worst possible

way, also making it harder to detect entanglement. For our parameters the latter

effect leads to a relatively small change. For example, if στ = 1.5σ−, the probability

of both Alice and Bob detecting photons when measuring time drops from 81.3%

to 80.9%. Figure 5.5. shows the minimized entanglement criterion as a function of

στ/σ−. If the noise is too large (in this case στ & 1.17σ−), Alice and Bob will not be

able to verify the entanglement of their shared state.
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FIGURE 5.4. Left: Measured joint probability distribution for the state with time
of arrival noise with στ = 1.5σ− Right: T δt− . Blue represents the original state with
no noise, described by Eq. 5.16. Red is the state with time of arrival noise with
στ = 1.5σ−. While it may not appear that noisy, the red state will fail to be verified
by the criteria.

We can also consider an additional source of noise that affects Bob’s frequency

measurements. We will assume that this noise affects the state in a way analogous

to the time noise, namely by shifting the frequency of Bob’s photon by a random

amount wj

f(ωA, ωB)→ f(ωA, ωB + wj), (5.21)

which again results in a mixed state

ρ =

∫
dwjP (wj)|Ψ(ωA, ωB + wj)〉〈Ψ(ωA, ωB + wj)|, (5.22)
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FIGURE 5.5. Optimized entanglement criteria M as a function of στ/σ− for states
with time of arrival noise. Entanglement is verified when στ/σ− . 1.17.

where

P (wj) =
1

Λw

√
2π

exp

(
−

w2
j

2Λ2
w

)
(5.23)

is the probability density function of wj.

Figure 5.6. shows a contour plot of the minimized entanglement criteria M

for their state with noise affecting both the time and frequency of Bob’s photon.

Entanglement will be verified when the combined noise is sufficiently small, as

indicated by the colored region of the figure.

The state engineered and measured with the parameters chosen in [25] cannot

suffer much noise before entanglement will not be verified. We expect the noise of

transmission to be very small, as this is one of the advantages of using time-frequency

entangled states over, for example, states carrying information in polarization or

phase. Indeed, one would want to engineer the state to be sufficiently strongly

correlated and the noise small enough that Ωδω
+ and T δt− are confined to mostly one

bin or else the quantum bit error rate will be large.
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FIGURE 5.6. Optimized criterion M for states with both time and frequency noise.
Entanglement is verified for colored area (M < 0).

That said, there are two straightforward ways to increase the amount of noise

that can be tolerated while still being able to verify entanglement. The first would

be to broaden the detection range to decrease the amount of missing data to a

more reasonable amount, although this comes at the expense of the uniformity of

the detection probability across detector bins. The other would be to increase the

strength of the correlation of the state (before noise) to decrease the entropy of the

data that is not missing. As technology improves a third option would be possible:

to increase the resolution of the measurement to decrease the ln( 2π
δωδt

) term in Eq.

(5.13) for M

5.6. Conclusions

We have shown that in the absence of noise, the high-dimensional time-frequency

entanglement of photon pairs for the system proposed in Ref. [25] will be verified,
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even though a nonnegligible amount of data will fall outside the ranges of the time

and frequency detectors. The method developed in our previous chapter for treating

that type of missing data is sufficient for that purpose. We also showed that the

system, due to the large amount of missing data, tolerates only low levels of noise

before entanglement will no longer be verified. To increase the noise tolerance, we

suggest either increasing the detection range or increasing the strength of the time-

and frequency correlations.
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CHAPTER VI

CONCLUSIONS

Motivated by the significance of entanglement for quantum computing and

quantum cryptography, in this dissertation we looked at how to verify the presence

of entanglement for two types of optical states useful for quantum information

processing. We discuss these two types in order:

First, quantum computation schemes implemented with linear optics rely on the

interference effects of single photons on beam splitters. One such interference effect

is Hong-Ou-Mandel (HOM) interference, which results in an entangled delocalized

bi-photon state: (|02〉 − |20〉)/
√

2. In Chapter III we addressed the previously

unexamined problem of verifying entanglement for states similar to the HOM state,

while taking into account vacuum and multi-photon contaminations, phase noise,

and other imperfections. This problem turns out to be much more difficult than

verifying entanglement for the similar delocalized single photon state (|01〉−|10〉)/
√

2

[38] that results from a single photon incident on a 50/50 beam splitter. This

difficulty is due to the possible multimode character of the two photon state. The

method we developed uses just linear optics and photodetectors, and for single-mode

photodetectors we found a lower bound on the amount of entanglement. We also

discussed the difficulty of verifying entanglement when both the photodetectors and

the photons have multimode character, and derived an entanglement criterion that

does not require that the photons or photodetectors be single-mode. This criterion

works well when the deviation from the single-mode ideal HOM state is small.

Second, continuous variable entangled states are advantageous for use in quantum

key distribution schemes as they offer the ability to encode many bits per photon
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(rather than just one, when using polarization). In Chapter IV we identified an

important problem in continuous variable entanglement verification that surprisingly

had not been addressed before: detectors used to measure continuous variables are

necessarily of finite range and this may result in missing data outside the detector

range. We illustrated the importance of the missing data by showing how ignoring

it can lead one to falsely conclude the presence of entanglement. In the case of

quantum cryptography it would lead one to falsely believe to have security. We

presented a straightforward solution to this problem based on a worst-case analysis

(where missing data is distributed in the most disadvantageous way possible). We

described how to account for the missing data when applying either variance based or

entropic entanglement criteria, and demonstrated the superiority of entropic criteria

in this respect. We then applied these methods in Chapter V to a quantum key

distribution scheme recently proposed by Nunn, et al. [25] which uses time-frequency

entangled photon pairs. We demonstrated that our method is indeed able to verify

the entanglement of the proposed state, but that noise can quickly destroy that ability

as a result of the large amount of missing data.

61



REFERENCES CITED

[1] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of
physical reality be considered complete? Physical Review, 47(10):777, 1935.

[2] E. Schrödinger. Discussion of probability relations between separated systems.
Mathematical Proceedings of the Cambridge Philosophical Society, 31:555–563,
10 1935. ISSN 1469-8064.

[3] J. S. Bell. Speakable and Unspeakable in Quantum Mechanics: Collected papers
on quantum philosophy. Cambridge University Press, 2004.

[4] J. S. Bell et al. On the Einstein-Podolsky-Rosen paradox. Physics, 1(3):195–200,
1964.

[5] H. M. Wiseman, S. J. Jones, and A. Doherty. Steering, entanglement, nonlocality,
and the Einstein-Podolsky-Rosen paradox. Physical Review Letters, 98(14):
140402, 2007.

[6] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. Pryde. Experimental
epr-steering using bell-local states. Nature Physics, 6(11):845–849, 2010.

[7] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. Reid. Experimental
criteria for steering and the Einstein-Podolsky-Rosen paradox. Physical Review
A, 80(3):032112, 2009.

[8] S. Aaronson. Quantum computing since Democritus. Cambridge University Press,
2013.

[9] P. W. Shor and J. Preskill. Simple proof of security of the bb84 quantum key
distribution protocol. Physical Review Letters, 85(2):441, 2000.

[10] S. Singh. The code book: the science of secrecy from ancient Egypt to quantum
cryptography. Random House Digital, Inc., 2011.

[11] L. Gurvits. Classical deterministic complexity of Edmonds’ problem and
quantum entanglement. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, STOC ’03, pages 10–19. ACM, 2003.
ISBN 1-58113-674-9.

[12] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe,
and D. J. Wineland. Experimental violation of a bell’s inequality with efficient
detection. Nature, 409(6822):791–794, 2001.

62



[13] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger.
Experimental quantum teleportation. Nature, 390(6660):575–579, 1997.

[14] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger. Quantum
cryptography with entangled photons. Physical Review Letters, 84(20):4729,
2000.

[15] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson.
Experimental high-dimensional two-photon entanglement and violations of
generalized bell inequalities. Nature Physics, 7(9):677–680, 2011.

[16] T. Inagaki, N. Matsuda, O. Tadanaga, Y. Nishida, M. Asobe, and H. Takesue.
Long distance distribution of entangled photon pair over 300 km of fiber. In
CLEO: QELS Fundamental Science. Optical Society of America, 2013.

[17] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and
A. Zeilinger. Quantum entanglement of high angular momenta. Science, 338
(6107):640–643, 2012.

[18] S. Walborn, P. S. Ribeiro, L. Davidovich, F. Mintert, and A. Buchleitner.
Experimental determination of entanglement with a single measurement.
Nature, 440(7087):1022–1024, 2006.

[19] S. J. van Enk, N. Lütkenhaus, and H. J. Kimble. Experimental procedures for
entanglement verification. Physical Review A, 75(5):052318, 2007.

[20] C. Hong, Z. Ou, and L. Mandel. Measurement of subpicosecond time intervals
between two photons by interference. Physical Review Letters, 59(18):
2044–2046, 1987.

[21] M. Raymer, S. J. van Enk, C. McKinstrie, and H. McGuinness. Interference of
two photons of different color. Optics Communications, 283(5):747–752, 2010.

[22] J. L. O’Brien. Optical quantum computing. Science, 318(5856):1567–1570, 2007.

[23] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum
computation with linear optics. Nature, 409(6816):46–52, 2001.

[24] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn.
Linear optical quantum computing with photonic qubits. Reviews of Modern
Physics, 79(1):135, 2007.
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