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An atomic-level description of the presumed catalytic action of13-galactosidase is

described. This large enzyme, from E. coli, carries out two reactions which allow the

bacterium to live on the disaccharide lactose. First, it breaks down lactose to the two

monosaccharides galactose and glucose. Second, it converts lactose into another

disaccharide, allolactose, which is the inducer for the lac operon, and thus is the signal to

the bacterium to produce more 13-galactosidase. The work is based on high resolution x-

ray crystallography and enzyme kinetics. A crystal form of J3-galactosidase was isolated

that permits data collection up to 1.5 A resolution. Using this crystal form, the structures

of several ligands bound to the enzyme were determined. These ligands were chosen to
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mimic various points in the reaction: binding of substrate, covalent intermediates,

transition states, and products. Together these complexes suggest a reaction coordinate

for P-galactosidase which clarifies and enhances previous ideas about the reaction

mechanism. The reaction includes a conformational change triggered by the progression

of the substrate towards the transition state. Additional investigation suggests that this

conformational change is involved in determining whether the enzyme carries out its

hydrolysis or isomerization reaction. Considerations of the structure in the context of

other related enzymes suggest an evolutionary path for P-galactosidase. It is suggested

that a progenitor enzyme which catalyzed the hydrolysis of long polysaccharide

substrates recruited additional domains which permit P-galactosidase to act on smaller

substrates and produce the inducer, allolactose.

This dissertation includes both my previously published and co-authored material.
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CHAPTER I

INTRODUCTION

Enzymes as Tiny Little Machines

Every living organism is full of enzymes. These are tiny protein molecules (-.50-

500 A) which are the workhorses of life. They are responsible for building and

maintaining infrastructure (membranes, filaments, tubules, bones, vessels, tendons,

skin...), carrying oxygen and carbon dioxide, digesting food, producing movement,

interpreting input signals (light, smell, sound), and generating responses. Anything a

living organism does ultimately has an enzyme catalyzing a chemical reaction at its root.

The purpose of the research presented here is to understand in atomic detail how one of

these tiny machines works.

Enz me Ada tation and the 0 eron Model for Gene Ex res ion

Each organism has its own genes, which code for thousands of enzymes and other

proteins. At any given moment, many of the possible enzymes aren't actually made, but

are held in reserve to deal with situations as they arise. Organisms have evolved ways of

responding to environmental changes (temperature, pressure, light, salinity, food) which
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involve manufacturing enzymes specific for the new environmental condition and

destroying enzymes specific for the old one. In this way energy is conserved by keeping

on hand only the tools necessary for the job. The requirement for this system is the

ability to sense the change in the environment and respond appropriately.

One environmental condition that organisms respond to is a change in food type.

Early studies showed that yeast can grow on many different sugars, including glucose and

galactose. 1 , 2 Further, if yeast are grown on a mixture of glucose and another sugar, the

glucose is hydrolyzed first, followed by the other sugar. Similar studies were later done

in bacterial systems.

The adjustment to a new food source was thought to be controlled by a

phenomenon called enzyme adaptation, for which two explanations were proposed. The

"instructive theory" suggested there is a preexisting enzyme, which in the presence of the

new sugar adapts to break it down. In the alternative, the "selective theory", the

appearance of the new sugar triggers new production of an enzyme specific for its break

down. In both cases the new sugar acts as an inducer, resulting in an enzyme which can

break it down.

The lac System from E. coli

Several bacterial systems were used to study induction in enzyme adaptation2.

However, the lac system in Escherichia coli proved to be the most fruitful. In this

system, the new sugar is the disaccharide lactose. The appearance of lactose induces an

active enzyme, D-galactosidase, which can hydrolyze lactose into the two
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monosaccharides glucose and galactose.

The lac system had several advantages. First, it occurs in E. coli, so genetic

crosses could be performed. Second, neither P–galactosidase activity nor its induction

was specific for only lactose. Other galactosides could be hydrolyzed and/or act as

inducers, which allowed for tests to separate hydrolysis from induction. And third, in

1950, a chromogenic substrate became available (ortho-nitrophenyl-P-D-gAactoside),

which made kinetic assays much easier than in other systems3.

With these advantages, Jacques Monod and colleagues at the Institute Pasteur

carried out activity and induction tests on a variety of small molecules. They showed that

inducers are not necessarily substrates and substrates are not necessarily inducers. This

suggested the instructive theory, which predicted all substrates and substrate analogues

should be inducers, was incorrect.4 Subsequently, using radioactively labeled nutrients, it

was shown that the induced enzyme was synthesized from amino acids de novo only after

the appearance of the inducers . Additional studies suggested the existence of another

protein, called the lac permease, which acted as a pump to move the inducer into the cell.

Further investigations were focused on using genetic analysis to understand the mode of

induction by distinguishing between the ideas of positive and negative control. Induction

with positive control worked by initiating production of new enzyme, whereas with

negative control, induction worked by stopping repression of enzyme production. The

genetic experiments showed that production of P-galactosidase was governed by negative

control. 6 Ultimately, this resulted in the operon model for gene expression.?

In the operon model, two types of genetic elements govern the synthesis of

proteins. The structural elements code for proteins, such as I3-galactosidase, whose
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functions are the goal of induction. The other genetics elements, the regulator and

operator genes, control the expression of the structural elements through intermediate

cytoplasmic molecules, repressors and inducers (Figure 1).

In the lac system, there are three structural elements, the products of the Z,Y and

A genes. The Z gene codes for ri-galactosidase, which will hydrolyze lactose to galactose

and glucose, thus permitting the bacterium to live on lactose 8. The Y gene

Fro. 6. Models of the regulation of protein synthesis.

Figure 1. The regulation of protein synthesis as originally presented by Jacob & Monod.
The figure is from their review in the Journal of Molecular Biology. ? Genes (DNA) are
transcribed into messengers (RNA), which are translated into proteins. The repressor
affects this process by binding to the operator, and binding is modulated by metabolites.
In this figure, the repressor is shown as RNA, although it was later shown to be protein.
The principal mode of regulation is via Model Translational regulation (Model II) also
exists, but had been studied in much less detail.
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codes for lac permease, a membrane bound transport protein responsible for transporting

the lactose into the celP. The A gene codes for thiogalactoside transacetylase, which

appears to be involved in detoxification9, 10 . It is also now know that the R gene also

codes for a protein (the repressor). All the genes appear sequentially on the E. coil

genome forming the lac operon.

The repressor protein binds to the DNA, preventing expression of the structural

genes. When the inducer molecule binds to the repressor, the repressor releases from the

DNA, allowing expression of the structural genes. Curiously, the inducer for the lac

operon is not lactose itself, but another disaccharide, allolactose, which is made by P-

galactosidase (Figure 2). Thus P-galactosidase makes is own inducer.

There are two apparent incongruities in this system. First is a chicken and egg

paradox involving P-galactosidase, which makes the inducer, and the inducer, which

triggers the synthesis of p-galactosidase. This paradox is resolved with the observation

that gene expression is "leaky". The repressor has a certain probability to release from

the DNA even in the absence of inducer 11, 12 . Thus there will always be a few molecules

of lac permease and p-galactosidase in the cell to import lactose and create inducer (the

basal level is about 10 molecules of each per ce11) 13 . Second, there must be a way of

processing the inducer to shut down the system once the lactose is depleted. This occurs

via hydrolysis of allolactose to galactose and glucose by P–galactosidase m. So

eventually P–galactosidase converts all of the lactose to galactose and glucose, but there

is a transient build up of the inducer, allolactose.
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Figure 2. Schematic showing the function of p-galactosidase in E. coli metabolism. The
enzyme hydrolyzes lactose, produces allolactose, and hydrolyzes allolactose.

It should be noted that even under high concentrations of lactose, the lactose

system is repressed in the presence of glucose. This is due to two other effects. Inducer

exclusion involves the inhibition of lac permease by glucose, while catabolite repression

is another genetic regulatory system that responds to glucose levels.

The purpose of this dissertation is to explain in atomic detail how the enzyme 0-

galactosidase carries out its two reactions, hydrolysis of lactose to galactose and glucose,

and conversion of lactose to allolactose.
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Biochemistry of 0-galactosidase

General Features of Hydrolysis

As mentioned above, (3—galactosidase will cleave a variety of small disaccharide

sized substrates. It is highly specific for galactosides, but will also cleave fucosides and

arabinosides about 10-3 and 10-2 as efficiently (Figure 3). In addition to acting on 0-

galactosides, it will hydrolyze galactosides with N, S, and F linkages. The specificity is

much less stringent at the aglycon position (corresponding to glucose in the lactose

molecule), and kinetics on –50 galactosides with different aglycons have been

determined. Many offer easy chromogenic assays and the most common substrates for

kinetic analysis are ortho-nitrophenyl-P-D-galactoside (onpg), para-nitrophenyl-O-D-

galactoside (pnpg), and glucosy1-1,4-13-D-galactoside (lactose).

Hydrolysis by 13-galactosidase involves retention of stereochemistry, suggesting a

two-step reaction (Figure 4) 15 . The first step (galactosylation) involves bond cleavage

and formation of a galactosyl-enzyme intermediate. The second step (degalactosylation)

involves the addition of an acceptor molecule (usually water) to the intermediate

releasing a product, which has retained the same stereochernistry as the starting state.

Two classes of experiments demonstrate the existence of two steps. First are

methanol competition experiments done with various galactosides as substrates 16 . Here,

methanol substitutes for water to form methyl-P-D-galactopyranoside (MG) as a product

rather than galactose. For all aglycons, the ratio of galactose/MG produced is constant for

a given concentration of methanol, suggesting the aglycon is released prior to reaction
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with water or methanol. Second, under certain conditions with certain substrates, a burst

of aglycon is observed in the pre-steady state, indicating a fast first step, followed by a

slower rate limiting step 17.

Glycon Aglycon

OH

lactose	 allolactose 

glucose
OH

Sugar --- -N3	-F
OH 

X-gal	 Magenta-gal

Figure 3. Substrate specificity of 3-galactosidase. Only a small fraction of possible
aglycons is shown. The specificity for the glycon is much more stringent. The bond
cleaved by P-galactosidase is shown as a dashed line.
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a. A two step reaction retains stereochemisty	
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Figure 4. Retention vs inversion with nucleophilic substitutions. In both cases, water is
the nucleophile substituting for glucose.
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Overview of Reactions and Inhibition

A general overview of P-galactosidase catalyzed reactions is shown in Figure 5.

The principal reactions involving lactose (Figure 5(a)) are hydrolysis (1( 2) to glucose and

Figure 5. Reactions catalyzed by f3-galactosidase. All of the rate constants (k) and
equilibrium constants (K) shown have been measured or approximated with inhibition
studies(See Table 9, Chapter 3) . E + X means enzyme and X are separate in solution.
E•X and E-X signify non-covalent and covalent complexes respectively.

a. Lactose is substrate. Lac=lactose; Gal=galactose; Glu=glucose; Allo=allolactose.

E • Allo 	  E + Allo

	

KLac	
k4 	 H 0__2k2	 k3	 KGa1

E + Lac	 E • Lac	 E-Gal•Glu	 E-Gal • H20	 E • Gal	 E + Gal
*.°41

Enzyme	 Glu

-9407'

b. Generalized substrate with effector present. S = substrate, shown here as a galactoside;
I = intermediate; A = effector; P1-3 = products. The red (left) path shows competitive
inhibition by A. The blue (upper) path shows uncompetitive inhibition by A, although it
includes the possibility of completing a reaction to produce product P3. For true
uncompetitive inhibition k4 must be zero.

	

k4
	 K p3

	

E•A
	

E-I•A	 E•133
	

E + P3 •

	

K,
	

1k
Kr
	 " A

A

Ks
E + S	 E • S

R

k2 k3
E-I

Kp2
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galactose and transglycosylation to allolactose. Dissociation of glucose after hydrolysis

is shown as irreversible because experiments with radioactively labeled glucose have

shown, at least at low concentrations of lactose (0.3 mM) and glucose (3 mM), that the

formation of allolactose does not occur through binding of exogenous glucose to

theintermediate but through reattachment of the just-cleaved glucose 18 . Also, the action

of f3-galactosiclase on allolactose produces primarily glucose and galactose. Lactose is

not produced at detectable levels, although other transglycosylation products are formed

at high allolactose concentrations (> 50 mM) 14. Thus the path from E-Gal•Glu to •Lac

is shown as irreversible, while interconversion between E-Gal •Glu and •Alio is allowed.

The ratio of allolactose production/hydrolysis is about 1/1 in native enzyme19.

This ratio should be important in the response of E. coil to lactose – small values should

give poor induction, while large values should give excessive induction. Factors known

to affect the ratio are pH and the presence of Mr ions (see below). Two of the

questions addressed by the research presented here are first, what determines whether the

enzyme simply hydrolyzes lactose or does the transglycosylation to produce allolactose

and second, why is allolactose the preferred transglycosylation product?

Figure 5(b) shows the action of 13-galactosidase on a generalized substrate with an

exogenous effector present. The principal reaction, in black, is governed by two rate

constants, k2 for galactosylation and k 3 for degalactosylation, and a dissociation constant

Ks for the binding of substrate to enzyme. It produces two products, P1 and P2, which are

galactose and glucose if lactose is the substrate. Alternate pathways are shown in color.

Red shows the binding of the effector A to free enzyme in competitive inhibition. Blue

shows the same effector binding to the intermediate in uncompetitive inhibition. In many
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cases, the intermediate bound effector can also act as an acceptor to release a third

product P3.

The inhibition by many small molecules has been measured. The best

competitive inhibitors have nanomolar dissociation constants, whereas K. for the most

common substrates is in the range 0.1-1.0 mM. Uncompetitive inhibitors (those which

bind more tightly to the intermediate than the free enzyme) usually bind at about 10-100

mM to the intermediate and 100-1000 mM to free enzyme. Non-competitive inhibitors

(those which bind equally well to the intermediate and free enzyme) typically bind at

about 100-500 mM. Another question addressed by the research presented here is what is

the structural basis for the various types of inhibition?

Details of the Transition State

There is some disagreement regarding the details of the transition state for

3–galactosidase hydrolysis. The basic argument goes as follows 20 . The enzyme will

efficiently cleave galactosyl pyridinium salts, for which galactosylation (step 1) is rate

limiting 21 . Because they have an aromatic nitrogen (which has no free lone pair) at the

04 position, the pyridinium salts are precluded from undergoing acid catalysis. They

show significant a–deuterium isotope effects and reasonably linear Bronsted plots of

slope — 1, suggesting that bond cleavage is rate limiting and that it occurs without acid

catalysis in an SN 1 process. These parameters depend little on the presence of Mr.

For aryl-O-galactosides, which are able undergo acid catalysis 22, the catalytic

parameters in the absence of Mr (including a–deuterium isotope effects and Bronsted
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plots) are similar to the pyridinium salts. This suggests that for all substrates, without

Mg' there is little acid assistance with galactosylation.

With Mr present, the aryl galactosides show more complex behavior. The

Bronsted plots are more scattered, and there is no a–deuterium isotope effect for slow

substrates 23 . This casts doubt on whether bond cleavage is rate limiting for the aryl

galactosides in the presence of Mg'. However, it was further shown that for a slow

substrate (para-nitrophenyl-(3-D-galactopyranoside, or pnpg) there is a primary isotope

effect on both kat and kat/IC,24. Additionally, for hydrolysis of pnpg, is there is a solvent

isotope effect on kcatand this is due to a single proton. However, there is no solvent

isotope effect on kat/IC„ meaning that steps up through the first irreversible step are

insensitive to this proton transfer (or there are offsetting changes to k cat and Km)25.

Together these data have been interpreted in two ways.

One possible interpretation is that because of the primary isotope effect, C-0

bond cleavage is rate limiting for aryl galactosides in the presence of Mr. The absence

of an a–deuterium isotope effect suggests this process is either SN2 or involves a

substrate-assisted element to maintain the hybridization at the anomeric center. The

scatter in the Bronsted plot is due to structural variations in the substrates, which

apparently matters only if mg- is present. Acid catalysis would be facilitated by an

enzyme group donating a proton to the 04 of the leaving group in concert with C-0 bond

cleavage in the rate determining process, accounting for the solvent isotope effect. This

model, however, does not account for the lack of solvent isotope effect on k alK,„ for

pnpg hydrolysis.
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The other possibility is that the Mg' acts as a direct electrophilic catalyst,

forming a complex with 04 of the leaving group in concert with the formation of a

galactosyl enzyme intermediate20. The rate determining process would be release of the

Mg-0-Ar complex via donation of a proton. This would account for both the primary

and solvent isotope effects. And because the galactosyl moiety is not involved in the rate

determining step, there would be no a–deuterium isotope effect.

The basic difference between the two interpretations is the mode of acid catalysis.

In the first interpretation, acid catalysis is accomplished by donating a proton (Bronsted

catalysis) from an enzyme group to the leaving group oxygen. In the second

interpretation, acid catalysis is accomplished when the Mr accepts a lone pair (Lewis

catalysis) from the leaving group oxygen. One of the objectives of the research

presented here is to distinguish between these two interpretations by determining the

location of the leaving group oxygen relative to the mg- at various points along the

reaction path.

The above discussion is based on experiments done on two classes of substrates –

the pyridinium salts and the aryl galactosides. Bronsted parameters have also been

determined for a third class of substrates, the alkyl galactosides. These substrates have

more basic leaving groups and are therefore expected to better mimic the natural

substrate lactose. With Mr, 1318 for the alkyl galactosides is –0.49, suggesting at least

some acid assistance for C-0 bond cleavage26.

Details concerning degalactosylation are less controversial, but there are still

ambiguities. There is a significant a–deuterium isotope effect for this step, but no

solvent isotope effect. Both of these observations are consistent with an SNI type
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process. However, the rate of degalactosylation depends on the acceptor

concentration, suggesting involvement of the acceptor in the transition state, which is

inconsistent with an SN1 process. To explain this paradox, Sinnott has proposed a

reversible ion pair between the galactosyl intermediate and the enzyme nucleophile'7.

Nucleophilic attack of the intermediate then occurs on the ion pair rather than the

covalently bound galactoside. This accounts for both the a—deuterium isotope effect and

the dependence of the rate on the acceptor concentration.

Interactions between Substrate and Enzyme

Interactions between substrate and enzyme are the source of the catalytic power of

an enzyme, so the details of these interactions are expected to help in understanding how

the enzyme works. The goal of the research presented here is to delineate these

interactions at different points along the reaction coordinate.

Due to the two step nature of the reaction, there is expected to be a nucleophilic

enzyme group that stabilizes the enzyme bound intermediate. Early pH studies and

analogy with esterases suggested that this group might be a histidine side chain 27 . Later

studies on other glycosidases, including lysozyme, implicated a pair of carboxylates, one

as nucleophile and one as an acid to donate a proton to the leaving group 28 . With

P—galactosidase, labeling experiments were used to identify these important catalytic

groups.

A galactosyl carbonium ion was used to label Met 502, locating it to the active

site29 . This residue was rejected as a catalytic acid, but the possibility of Tyr 503 acting
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in an acid role was noted. This is consistent with the pH profile, which shows a

downturn in kcatat pH –9, and mutations made at this site supported the idea of Tyr 503

acting as an acid/base catalyst3°, 31 . Subsequently, Glu 461 was labeled with an epoxide

and it was initially proposed as the nucleophile in the reaction 32 . Enzymes altered at this

site had substantially decreased activity, consistent with its proposed role as a

nucleophile33 . However, dinitropheny1-2-F-galactoside, a specific, mechanism based

inactivator, was used to label Glu 537, suggesting that it, instead of Glu 461 was the

nucleophile34. These authors suggested that Glu 461 was the acid/base and discussed the

Glu 461 mutations in this light. Subsequently, mutations at Glu 537 were made, and

found to have larger decreases in activity than those at Glu 461 (10 3-105 decrease, vs 102

-103 decrease for Glu 461) 35. Thus, prior to any structural information from x-ray

crystallography, there was good evidence that Glu 537 acts as the active site nucleophile,

with either Glu 461 or the active site Mg ++ acting as a catalytic acid/base.

The initial structure determination off3–galactosidase located the above residues

in a deep pocket on the surface of the enzyme – the presumed active site36.

Subsequently, other site-directed mutagenesis studies have implicated Histidines 540,

391, and 357 as interacting with the substrate during catalysis37-39. These will be

discussed in more detail later.

A final curious case is the observation of a mutation resulting in an increased rate

of lactose hydrolysis – G794D. This mutation was identified in a temperature-sensitive

screen as a f3–galactosidase variant with lower thermal stability than native enzyme39.

Subsequently, it was isolated and kinetics showed it to have a much larger galactosylation

rate than native enzyme40 . Mutations resulting in increased activity are uncommon, and
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one of the goals of the research presented here is to understand the role of residue 794

in the catalytic mechanism.

Energetics

Figure 6 shows the nonenzymatic hydrolysis of the three common substrates of

13–galactosidase: ortho-nitropheny1-13-D-galactopyranoside (onpg), para-nitrophenyl-13-D-

galactopyranoside (pnpg), and glucosy1-1,443-D-galactopyranoside (lactose). The rate

constants for these degradations are k n. = 2.2 x 10-9 , 3.2 x 10 9 , and < 1040 s'

respectively. The corresponding rate constants for the enzyme catalyzed breakdown

from the Michaelis complex are k ca, = 1200, 90, and 60 s - '. This results in a rate

enhancement of kcalk„„„ = 5 x 10, 3 x 10'°, and > 6 x 10 1 ' for hydrolysis of onpg. pnpg,

and lactose. Several studies have been done suggesting quantitatively how much this

rate enhancement is facilitated by various galactosyl substituents and enzyme groups37,38,

41 . To the extent that binding interactions control the energetics, any reaction coordinate

proposed from crystallography should make sense in the context of these studies.

Parameters Affecting Catalysis

pH

Studies on the pH dependence of 13–galactosidase catalyzed hydrolysis show a

relatively broad maximum at a pH of 7.0 42. For onpg hydrolysis, there is one
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Figure 6. Non-Enzymatic hydrolysis of onpg, pnpg, and lactose using 1 mM solutions at
room temp. Onpg and pnpg hydrolysis were measured in 50 mM Na 2HPO4 , 1 mM MgC12
using absorption spectroscopy to monitor the signal from nitrophenol at 420 nM. The
single data point for lactose hydrolysis is an estimation based on the fact that less than
0.2% of a solution of 50 mM lactose (in water) was hydrolyzed over 1 year. Lactose and
its products were measured with a capillary electrophoresis assay. The corresponding
rate constants are: onpg: 2.2 x 10' s", pnpg: 3.2 x 10-9s", lactose 3.6 x 10'

protonated group which ionizes at alkaline pH (about 8.5) and at least one unprotonated

group which ionizes at acidic pH (below 6). In the absence of Mr, the group ionizing

at pH 8.5 shifts to a pKa of about 6.5.

Metal Ions

Both magnesium and alkali ions are required for maximal activity, but the enzyme

is active in the absence of either ion. Manganese can substitute for magnesium with
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almost no observable difference in the kinetics while calcium binds but does not

activate43 . The alkali metals have more complex behavior. The (3-galactosidase system

was one of the first enzymes observed to have a metal activation that depended on

substrate. Sodium ions activate hydrolysis of onpg greater than lactose and pnpg, while

potassium ions activate hydrolysis of lactose and pnpg greater than onpg 8 . Additionally,

some synergy has been observed with mixtures of alkali ions in which activity with

sodium and cesium is greater than the sum of the individual activities 44 . Another goal of

the research presented here is to understand the metal ion activation.

Temperature

The temperature dependence of p-galactosidase-catalyzed hydrolysis of several

substrates shows Arrhenius behavior for kc,,over the range 0 to 30° C45 . Above 30° C the

activity deviates from Arrhenius. The activity in the range from –80° C to 10° C to has

also been measured for onpg hydrolysis with DMSO as a cryosolvent 46 . In this case the

Arrhenius plot shows a slow decrease in slope with increasing temperature. However,

the mechanism for 0-galactosidase catalyzed hydrolysis is complex, involving two

separate steps, so the Arrhenius behavior is likely to be nonlinear.

Pressure

There have been at /east two studies involving the effects of pressure on 13-

galactosidase activity47-49. In one study, the pressure dependence on activity was
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compared with alkali metal activation. It was found that increasing pressure (up to

1500 atm) decreased ICE activation with all substrates (onpg, pnpg and lactose). In

contrast, pressure increase Na + activation with pnpg and lactose but had a substrate

dependent effect with onpg. A more detailed study on onpg hydrolysis with Na + showed

that increasing pressure decreased 1( c , mostly by decreasing k3 . Also, glucose was a better

inhibitor with pressure and lactose was a worse inhibitor while the inhibition of galactose

was unaffected by pressure.

Molecular Biology of 13–Galactosidase

Beta-galactosidase has several properties that have made it an invaluable tool for

molecular and cell biologists. First, as mentioned above, various chromogenic substrates

exist for the enzyme. In particular, X-gal is a galactoside that turns from colorless to blue

upon cleavage_ Second, other polypeptide sequences can be fused at sites up to residue 23

of 13–galactosidase without affecting hydrolysis50. And third, certain deletions in the

P–galactosidase protein which are inactive can be complemented in trans by adding an

appropriate separate short polypeptide, producing active enzyme 51 . This phenomenon is

known as either a or co complementation.

Fusion proteins with P–galactosidase have been used extensively as reporters to

monitor gene expression. In these experiments, the lac Z gene (which codes for

3–galactosidase) is fused to the promoter of the gene of interest. When this gene is

turned on, P–galactosidase is produced and can be monitored with one of the

chromogenic substrates for 13–galactosidase.
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Alpha–complementation has been used extensively in cloning procedures.

Here, a strain of E. coli that bears a deletion in the lac Z gene is used. The cloning vector

contains the gene sequence coding for the 13–galactosiclase complementation polypeptide.

If this vector is transferred into the E. coli an active complemented p–galactosidase is

produced and colonies grown on X-gal will turn blue. The cloning vector is constructed

such that insertion of the gene of interest disrupts the 13–galactosidase complementation

peptide, so complemented I3–galactosidase is no longer produced. Thus colonies that do

not turn blue suggest that the gene of interest has been successfully incorporated into the

cloning vector.

Part of the research presented here is to understand how complementation works

in 13–galactosidase.

Summary

Beta–galactosidase has a rich history but until recently there has been no high

resolution structural information about the enzyme or its interactions with substrate. The

main goal of the research presented here is to gain a deeper understanding of how

13 –galactosidase works by defining in detail the interactions between the enzyme and its

substrate during its catalytic cycle and interpreting these interactions in light of previous

genetic, biochemical and biophysical experiments. A secondary goal, which is an

outgrowth of the structural studies presented here, is to understand more fully what

happens when a protein crystal is flash frozen.



This dissertation contains co-authored material in Chapters 2 and 4. I am

grateful to my co-authors for their insight and effort in preparing the manuscripts. The

introduction to each of these chapters contains more details about the co-authorship.
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CHAPTER II

THE HIGH RESOLUTION STRUCTURE OF BETA-GALACTOSIDASE

Introduction 

The three dimensional structure of13-galactosidase was originally determined in a

monoclinic crystal form which includes 16 independent chains l . This structure has been

refined to 2.5A resolution. Because of the large unit cell for these crystals (108 A x 210

A x 510 A, (3=95°) data collection is problematic and cannot be performed in house to

high resolution. Therefore for further mechanistic studies a different crystal form was

desirable. Such a form was isolated by Dr. Dale Wigley at Oxford and reproduced in

Eugene with the help of Dr. Gene Huber from the University of Calgary while he was on

sabbatical leave. This orthorhombic crystal form has smaller cell dimensions (154 A x

172 A x 204 A), permitting data collection in house up to 2.5 A resolution. Additionally

with these crystals, synchrotron radiation has produced diffraction up to 1.1 A resolution

and data sets up to 1.5 A resolution. This chapter describes the structure determination

and refinement in the orthorhombic form to 1.7 A resolution.

This chapter includes co-authored material. Brian Matthews provided much help

in writing the manuscript. Ray Jacobson, who originally determined the structure of 0-

galactosidase in the monoclinic crystal form, was very helpful as he transferred the
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project to me, teaching me the finer points of dealing with such a large molecule and

unit cell. Additionally, Ray did the initial refinement in the monoclinic form, and I

continued where he left off. Cai Zhang and Dale Tronrud were very helpful with

discussions concerning molecular replacement and refinement. Finally, I am indebted to

Dale Wigley for sharing his crystallization conditions and Gene Huber for helping me

reproduce these orthorhombic crystals here in Eugene.

Results 

Refinement, Space Group P2,

The initial determination of the structure of p–gal ac tosidase in space group P2,

was described by Jacobson et al. 1 . This structure was initially refined using TNT 2 to an

R-factor of 17.4% without the imposition of non-crystallographic symmetry constraints

or restraints (see Methods and Tables 1 and 2). This model includes residues 3-1023 for

each chain with approximately 93 solvent molecules per monomer. In general the

electron density (Figure 7(b)) is of high quality throughout the structure. However,

limited regions exhibit weak density. These include the two amino-terminal residues

omitted from each chain, a largely solvent-exposed loop including residues 578-583

which appears to be quite mobile, and an extended region of chain between residues 727

and 733 that appears to display multiple conformations. Examination of a Luzatti plot

(not shown) suggests an r.m.s. coordinate error of less than 0.35k The model was also

refined with imposition of 16-fold constrained non-crystallographic symmetry. In this
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case the R-factor was 19.9% (Table 2). Although Rfree is quite low (20.7%) the high

degree of NCS biases the randomly chosen test set towards the working set 3 (Kleywegt &

Brunger, 1996). The Ramachandran plot (not shown) has 83% of the residues in the most

favored regions, and acceptable overall stereochemistry.

Table 1. X-ray data collection – native data. The data in space group P2 1 are from
Jacobson et al. (1994) 1 . Numbers in parentheses correspond to the outermost shell of
data.

Space group P2, P2,2121 P212121

Temperature RT RT –95K

Mode of collection Photon Factory Daresbury ALS

Measured reflections 1,321,660 299,596 2,201,152

Unique reflections 559,917 116,158 543,188

Rmer,e (%) 7.0 9.6 (32.1) 6.0 (34.6)

Completeness (%) 73. 88.3 (71.0) 98.6 (97.0)

Resolution limit (A) 2.5 25.0-2.8 30.0-1.7

Cell dimensions

a (A) 107.9 153.4 149.6

b (A) 207.5 173.4 168.4

c (A) 509.9 204.4 200.7

13 (°) 94.7
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Table 2. X-ray refinement of native structures. A boiid , Aangle and AB give the average
deviations of the bond lengths, bond angles and B-factors from expected values. <B>,,,a,„,
<B>,, d, and <B>SOL.ent give the average thermal factors of the mainchain, sidechain and
solvent atoms. Kso, and 13,o, are the parameters specifying the bulk solvent model used by
TNT 2 . 1311, 1322, B33 and B 13 are the parameters defining the overall anisotropic
scaling of the data 4 . Cons. = constrained and Uncons. = unconstrained.

Space group P21 Space group P212121

Temperature RT RT RT RT -95K
Mode of Cons. Uncons. Cons. Uncons. Uncons.
refinement (16 mon.) (4 mon.)

Resolution (A) 93-2.5 8.0-2.5 25.0-2.8 25.0-2.8 15.0-1.7
Protein atoms 131,712 131,168 33,312 32,952 32,500

(16 x 8232) (4 x 8328)
Solvent atoms 6992 1486 1472 856 4908

(16 x 437) (4 x 368)
Abond (A) 0.018 0.016 0.016 0.016 0.018
Dangle (°) 2.7 2.6 2.6 2.8 2.8
_B (A2) 5.5 4,7 6.2 7.5
<B>main (A2) 31.2 29.5 30.2 28.3 16.8
<13>side (A2) 38.7 35.5 36.6 33.7 22.2
<B>solvent (A2) 48.0 28.0 46.6 32.6 31.5
R-factor (%) 19.9 17.4 16.8 13.6 15.7
R-free (%) 20.7 19.7 28.0 21.1
Ksol 0.98 0.8 0.84 0.81 0.66
Bsol (A2) 625 200 465 475 126
B11 (A2) -3.2 -3.8 -3.1 -1.6
B22 (A2) 5.7 3.6 4.1 1.7
B33 (A2) -2.5 0.1 -1.0 -0.1
B13 (A2) 148.1 0 0 0
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Figure 7. Electron density: P2, vs P2,2 1 2, (a-top) Stereo view of representative electron
density in space group P2 1 2,2 1 . Coefficients are 2Fo-F, where Fo and Fc are the observed
and calculated structure amplitudes. The map is calculated at 1.7A resolution and
contoured at 16. The refined model is superimposed. (b-bottom) Same view as above
for the refined structure in space group P2 1 . The resolution is 2.5A. Figure prepared with
MOLSCRIPT (Kraulis, 1991).

Structure Determination and Refinement, Space Group P212,21

Crystallization and determination of the structure of p—galactosidase at 2.8 A

resolution in the new (orthorhombic) crystal form is described in Methods and in Table 1.

The use of flash freezing permitted data collection and refinement to high resolution (1.7

A). This model serves as the basis for the detailed description of the structures. It

includes residues 13-1023 for each of the four chains, several Mg" and Na ÷ ions, 4424

water molecules and 112 dimethylsulfoxide (DMSO) molecules. The electron density

(Figure 7(a)) is of high quality throughout except that residues 684-690 and 730-735 have

very weak density and are likely in multiple conformations. They are both in loop

regions that are quite solvent exposed. The first 12 residues at the N-terminal end of the
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molecule appear to be disordered, perhaps in part because the sequence of the first

eight of these is not the same as wildtype (see Methods). This was also verified by

sequencing the thrombin digested protein (data not shown). This change is expected to

have little effect on the overall structure. Also the identity of the first 23 amino acids has

little effect on hydrolytic activity5 . It was verified with a capillary electrophoresis assay 6

that the modified enzyme has the expected transglycosylase activity (data not shown).

The R-factor is 15.7% and R-free is 21.1% (Table 2), with a coordinate error of about

0.15A as judged by a Luzatti plot. Figure 8 shows the Ramachandran plot for the

tetramer.

The high resolution refinement in the new crystal form confirms the structure as

originally described.' Including the constrained refinements, there are then 26 models for

a p-galactosidase monomer, which differ by either space group, temperature, or

refinement protocol (constrained versus unconstrained) (Table 3). The agreement of C'

positions in the 325 possible monomer-monomer comparisons varies from 0.2A to 0.7A.

The best agreements (0.2-0.3A) are between two monomers in the 1.7A model, between

the constrained models and their own descendants, and between the two constrained

models. In the range from 0.3 to 0.4A are comparisons between monomers in the same

crystal form at the same temperature, and between a constrained model in one crystal

form and the monomers from the other crystal form at room temperature. The monomers

having poorest agreement (0.4-0.7A) are from the non-constrained models in different

crystal forms and at different temperatures. Taken together, these data suggest that the

freezing process has a larger effect on the enzyme conformation than packing differences

between crystal forms.
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Figure 8. Ramachandran diagram for the non-constrained model of the p-galactosidase
tetramer in space group P2 1 2 1 2 1 . Glycine residues are indicated by triangles and non-
glycines by squares. According to the criteria of Laskowski et al. (1993) 7 87.7% of the
residues are in most favored regions, 11.6% in additionally allowed regions, 0.6% in
generously allowed regions and 0.1% in disallowed regions. Residues that are putative
outliers are labeled; the letters A-D identify the four monomers. Glu-461 and Arg-599
are active site residues. Ala-514 is at the apex of a tight turn which packs against the
donated loop in the activating interface and Ala-491 is in the (missing) helix 5 of the
(cc/(3) 8 barrel (Figure 11(c)). There are no distinctive structural elements associated with
residues D164, L546 or D916.

Table 3. Monomer-monomer Ca rmsd (A). Each value is an average over all monomer-
monomer comparisons within each set. P2 1 .= 16 monomers. P2,2,2,(LT) = 4 low
temperature monomers. P2,2,21 (RT) = 4 room temperature monomers. P2 1 (Con) = P2,
model constrained by non-crystallographic symmetry(NCS). P2,2 1 2,(Con) = P2,212,
model constrained by NCS.

P21
P2,2,2,(LT)
P2,212,(RT)
P2, (Con)
P2,2121(Con)

P2 1
0.32

P2 1 2,2 1 (LT)
0.55
0.32

P2 1 2 1 2 1 (RT)
0.41
0.47
0.34

P2 1 (Con)
0.27
0.55
0.41
0.0

P2,2,21(Con)
0.34
0.43
0.24
0.26
0.0
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Structure of the Monomer

Most of the 1023 residues that form the P-galactosidase monomer form five well-

defined structural domains 1,8 (Figure 9). These include one jelly-roll type barrel

(Domain 1, -170 residues), two fibronectin type III-like barrels (Domains 2, 4, -110

residues each), a large 19-stranded p-sandwich that exhibits a unique topology (Domain

5, -300 residues) and the central TIM barrel (Domain 3, -300 residues). Approximately

the first 50 residues of the polypeptide chain are in a rather extended conformation and

are not obviously categorized as being associated with any of the five well-defined

domains. This portion of the chain makes contacts with the first, second and third

domains from the same chain and also interacts with the equivalent amino-terminal

portion of the chain from a neighboring monomer. Both the inter- and intra-chain

contacts appear to be important in forming one of the dimer interfaces that make up the

tetramer.

As with all other known enzymes that contain a TIM barrel, the active site of p-

galactosidase is located at the C-terminal end of the central core of this domain. For 13-

galactosidase the active site forms a deep pit that intrudes well into the central core of the

TIM barrel. The active site also includes portions of loops from the first, second and fifth

domains of the monomer.



Figure 9. Stereo drawing illustrating the fold of the monomer. Three of the solvent
molecules identified as Na+ ions are shown as light-gray spheres. The magnesium ion
identified at the active site (labeled a) is drawn as a dark sphere as is another tightly-
bound ion, also presumed to be mg- (see text). Additional putative Na + and Mg'
binding sites are not shown. D1-D5 identify the five domains. The amino-terminus, as
seen in the electron density map, starts at residue 13, which is labeled. This also
corresponds to the a-complementation peptide which extends roughly to residue 50. The
hole through which this peptide is threaded is labeled t. The pair of helices which form
half of the four-helix bundle at the activating interface are labeled b while the polar core
of domain D5 is labeled c. Figure prepared with MOLSCRIPT (Kraulis, 1991).

36
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Structure of the Tetramer

The tetramer has 222-point symmetry (Figure 10). It is roughly ellipsoidal, with

dimensions 175 x 135 x 90 A along the two-fold axes. There is a continuous system of

channels running along the surface (Figure 10(b)) and within the tetramer (Figures 10(c),

10(d)). These channels appear to be accessible to bulk solvent and vary in width from 5-

20A, The active sites are located at the bottom of such surface channels (Figure 10(b)).

Figure 10. Several views of the tetramer. (a) (Following page). View of the tetramer
looking down one of the two-fold axes. Coloring is by domain: complementation
peptide, orange; Domain 1, blue; Domain 2, green; Domain 3, yellow; Domain 4, cyan;
Domain 5, red. Lighter and darker shades of a given color are used to distinguish the
same domain in different subunits. The metal cations in each of the four active sites are
shown as spheres: Na+, green; Mr, blue.
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Figure 10 (b-upper left). A view of the tetrarner showing one of the deep channels that
runs across the surface. Part of the way along the channel residues Asp-233 from
different subunits extend out and essentially touch each other. Two active sites,
highlighted by the blue and green spheres (cf. Figure 10(a)), are at the bottom of this
channel.

Figure 10 (c-upper right). Another view of the molecule showing one of the solvent-
filled channels that passes through the tetramer.

Figure 10 (d-bottom). A stereo drawing illustrating the overall topology of the solvent-
filled channels and tunnels that interconnect across the surface of the molecule. The
small interconnected spheres are intended to show only the path of the channels, not their
size. The larger spheres show the locations of the four active sites. All protein atoms
have been removed from this figure.
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Subunit Interfaces and Formation of the Active Site

There are two principal subunit interfaces (Figure 11). The "long" interface

buries about 4000A2 (48% polar atoms) and the "activating" interface buries 4600A2

(45% polar). There is also a third interface in the tetramer which is much smaller,

burying 230A 2 (75% polar).

The long interface (Figure 11(a)) is formed from Domains 3, 4, and 5 and has two

separate regions. The first region is a Domain 3-Domain 3 contact and accounts for

about 40% of the interface. This region includes two buried arginine residues (Arg561

from each domain). Each guanidinium group is surrounded by four backbone carbonyls

(one from the neighboring subunit) and two solvent molecules, which bridge the

interface. The second region of contact includes parts of Domains 4 and 5.

The activating interface (Figure 11(b)) is more contiguous than the long interface

and involves mostly Domain 2, Domain 3 and the complementation peptide. It is "S"

shaped, in contrast with the long interface, which is fairly planar. About half is formed

by two equivalent interactions between Domain 3 and a loop that includes residues 272-

288(Figure 11(c)). This loop, which is donated by Domain 2 of one subunit, extends

across the interface and completes the active site within Domain 3 of the neighboring

subunit. The remaining half is formed by interactions involving Domain 3 and the

complementation peptide. Interactions involving the complementation peptide are more

polar (-65% versus –45%) than the bulk of the interfacial regions. On the other hand, the

Domain 3-Domain 3 interaction, which forms a four-helix bundle, is considerably less

polar (-30% versus –45%).
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Figure 11. The dimer interfaces. (Following page) (a-top). View of the "long"
interface. The P-galactosidase tetramer is viewed perpendicular to the long interface with
the two subunits closer to the viewer removed so as to expose the interface. The
remaining two subunits shown in the figure are A and D. Atoms that form part of the
long interface are shown as spheres and shown in somewhat brighter coloring. They
cluster into two patches and are mainly from Domains 3 (yellow) and 5 (red). The color
coding is as in Figure 10. The junction between the two subunits shown here constitutes
part of the activating interface which is shown "face-on" in the following panel. (b-
bottom). "Face-on" view of the "activating interface" (cf. Figure 11(a)). In this case the
two subunits that are included are A and B. The atoms that contribute to the activating
interface (shown as brightly-colored spheres) are mainly from Domains 2 (green) and 3
(yellow), as well as the complementation peptide (orange).
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Figure 11(c). Stereo view of the activating interface in the vicinity of the four-helix
bundle (yellow) and the complementation peptide (orange). The direction of view is
essentially the same as in Figure 11(a). The four-helix bundle is formed by helices 3 and
4 of the (a/13) 8 barrels of the subunits that form the interface. Also the loop that includes
G1u281 (in green) extends across the interface and occupies a position labeled 'a'5 which
corresponds to the "missing" helix 5 of the (a/13) 8 barrel. The complementation peptide,
labeled "c pept", starts at residue Arg-13 (near the letter b) and extends through a tunnel
made by Domains 1-3. Close to the beginning of the complementation peptide there are
two salt bridges, shown as dashed lines, that connect one subunit with the other. The
two-fold axis of symmetry passes between the two salt bridges and relates one with the
other. The two subunits have been separated slightly for clarity. Figure prepared with
MOLSCRIPT.

Solvent Structure

In the orthorhombic model there are approximately 4900 solvent atoms, including

water, DMSO, Na+ and Mg". This may seem excessive but is equivalent to about one

per residue. About 70% of the solvent atoms are in equivalent locations in the four

monomers. About 80% of the presumed water molecules are within 3.5A of polar protein

atoms (Table 4) suggesting that they are "first shell" (i.e. interacting directly with the

protein). 10% of the water molecules lie beneath the surface of the protein, and all of

these make polar contacts with protein and/or solvent. (Each subunit has two buried
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water molecules that make polar contacts only to other water molecules - they are in a

buried water cluster.) The buried water molecules satisfy about 1300 hydrogen bonds for

the protein (Vriend, 1990). The remaining 4000 water molecules make about 4800

hydrogen bonds to protein, while there are about 4700 protein-protein hydrogen bonds.

Thus 55% of the hydrogen bonds made by protein are to ordered water, and 21% of these

are to "buried" water molecules.

The overwhelming majority of ordered solvent molecules interact with other

ordered solvent to form rings, clusters, and networks. Ring sizes vary between 4 and 6,

with 5 being most common. There are several linked rings and, in the vicinity of Arg-

721, there are five linked five-membered water rings forming part of a clathrate-like

structure. The outside of this "clathrate" forms polar contacts to solvent and to Arg-721

(Figure 12). Inside the partial clathrate is electron density of uncertain origin. It is

poorly modeled by one or more water molecules and might, for example, be a disordered

molecule of dimethylsulfoxide (DMSO), or perhaps some adduct involving His-878.

There are 112 presumed DMSO molecules in the model (Table 4), reflecting the

high concentration (30% v/v) used for low-temperature data collection. They bind in 34

distinct sites - most are in pockets and crevices and none are in interior cavities.

Although the crevices are topologically on the surface of the protein, some are quite deep.

The DMSO molecules generally bind with the carbonyl groups making polar contacts.



Polar contacts
Protein Water

1.4 1.6
1.5 1.6

1.9 1.5
0.0 2.4
0.0 1.8
0.0 0.5
3.4 0.9

2.7 1.6
3.0 1.4
3.0 1.4
3.0 2.5
2.8 2.8

1.1 1.3
0.6 0.6
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Table 4. The environments of the solvent and other atoms associated with the tetramer of
0-galactosidase in the P2 12,2 crystal form. Water molecules are segregated into different
categories depending on whether they are at the solvent-exposed surface of the protein
("shell"), are buried, or form bridging interactions between subunits or domains or at
crystal contacts ("crystal"). The "shell" water molecules are further segregated into first
shell, second shell, etc. For the DMSO molecules the contacts are segregated into those
made by the oxygen atom and those made by carbon plus sulfur. The "polar contacts"
are the average number of either polar protein atoms or water molecules within 3.5A of
each type of solvent atom. First shell molecules are within 3.5A of polar protein atoms.
Second shell molecules are within 3.5A of first shell molecules. Buried molecules are
those whose center is greater than 1.4A from the molecular surface of the tetramer
(protein only) as calculated with MSRoll (1.4A probe). Bridging waters are less than
3.5A from two polar atoms that are greater than 4.0A apart.

Count
Average B-factor

(A2)

All solvent 4908 32
Water 4424 31

Shell
First 3429 28
Second 925 38
Third 118 42
Rest 52 45

Buried 398 16
Bridging

Crystal 58 29
Subunit 129 25
Domain 352 19

Na+ 20 24
Mr 16 23
DMSO 112 40

0 112 37
S,C 336 41
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Figure 12(a). Stereo drawing showing the general location of the partial clathrate-like
structure in a surface crevice at the long interface. Coloring is as follows: Domain 4
(monomer A), cyan; Domain 5 (monomer B), red; Domain 3 (monomer B), yellow.
Putative cation binding sites are shown as colored balls (Mg", blue; Nat, green; Kf,
magenta). The active site is in the upper left, marked by its Mg" and Nat/IC sites. Also
shown are several DMSO molecules.

Cavities

Figure 13 illustrates some of the characteristics of the cavities within the tetramer

as well as those volumes that are inaccessible to bulk solvent but contain one or more

water molecules. The most striking result is that the volumes that are most hydrophilic in

character are occupied by solvent whereas those that are largely non-polar are empty

(Hubbard et al., 1994). The volume of the largest such empty cavity, which is in Domain

5, is 113k. A partial 4.0 A data set collected in the presence of iodoethane suggested

that iodoethane binds in this cavity.
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Figure 12(b). Close-up stereo view of the partial clathrate-like structure. Water
molecules and protein oxygen atoms are shown as black spheres, nitrogen atoms light
gray and carbon atoms as open circles. Presumed hydrogen bonds are shown as broken
lines. The electron density is seen in a "residual" map with coefficients (F o-Fj where the
structure factors, Fc, and phases correspond to the final refined model. The map is
contoured at ±3.06 where a is the root-mean-square density throughout the unit cell.
Figure prepared with BOBSCRIPT (Esnouf, 1999).

Cis-Peptide Bonds

There are seven apparent cis-peptide bonds in each monomer, at Asp-164, His-

391 and Trp-568, as well at four proline residues (87, 112, 422 and 902). All of these

residues occur within domains at turns and other breaks in secondary structure. His391

and Trp-568 are at the active site while Asp165 is about 15A away forming a tight turn.

Prol 12 and Pro422 participate in the activating interface, Pro-112 interacts with the

complementation peptide and Pro-422 with the donated loop. Pro-87 and 902 are in

relatively solvent-exposed regions of Domains 1 and 5.
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Figure 13. Plot summarizing the nature of both empty cavities and solvent-binding sites
in the tetramer that do not have access to bulk solvent. Solid symbols indicate sites
occupied by solvent, half-filled symbols indicate partially occupied sites and open
symbols indicate cavities that appear to be empty. Squares indicate sites within domains;
circles indicate sites between domains and diamonds indicate sites between monomers.

Polar "Core" of Domain 5

Each domain has a well-defined hydrophobic core. Within some domains,

however, there are also substantial polar networks and salt bridges. This is especially

true of Domain 3, the TIM barrel and Domain 5, the p-supersandwich. Domain 3 has a

salt-bridge network through the outer core (Arg356-Asp375-Arg611) connecting strand 1

to a helix and a loop. This domain also includes a four-residue charged network in the

active site that includes His-391, Asp-412, Arg-388 and Glu-537. More striking is a

buried charged network within Domain 5. In this case it appears that the domain has

folded back on itself so that "outside" has become "inside". The network involves six

residues (Arg-786, Asp-792, Arg-881, Glu-934, Asp-987 and His-990) whose sidechains

/00	 ■ ■

or le
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are completely buried within the domain, occupying about 650 A2 {Figures 9, 14).

Most of these residues are conserved in enzymes homologous to D-galactosidase (e.g. see

Figure 3 of Jacobson et al., 1994).

Figure 14. Stereo view of the polar network in the core of Domain 5 that includes Asp-
792, Glu-934, Asp-987, Arg-786, Arg-881 and His-990. This network also interacts with
other polar protein atoms and two buried water molecules. Figure 9 shows the location of
this network within the monomer. Figure prepared with MOLSCRIPT (Kraulis, 1991).

Discussion

The structure of13-galactosidase from E. coli was originally determined to a

resolution of 2.5A using the monoclinic crystal form with four tetramers in the

asymmetric unit 1 . The orthorhombic crystals described here have one tetramer per
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asymmetric unit and higher crystallographic symmetry, allow for easier data collection.

More important, these crystals diffract to higher resolution, which is helpful for detailed

mechanistic studies.

The crystallization conditions for both forms make use of PEG 8000 as the

precipitant at about the same concentration. The monoclinic crystals require a high

concentration of P-mercaptoethartol (BME) (70-140 mM) and at least three cysteines

appear to be derivatized with BME, one near a crystal contact. While the orthorhombic

crystals do not require BME, they need 200 mM MgCl 2. Attempts at chelating the Mg'

with EDTA or exchanging it with Mn" produced extremely mosaic or cracked crystals.

This is consistent with octahedral centers (modeled as Mg r'-solvent clusters) at three

crystal contacts.

Because the 3-galactosidase molecule is large it provides an opportunity to

evaluate the characteristics of the interactions that occur at different levels of association,

i.e. between domains, monomers and tetramers.

Overall, the tetramer has about 135,000k of accessible surface area and buries

about 18,000A2 at the subunit interfaces (Tables 5,6). Although there are no structures

reported of other tetramers of comparable size, a study including smaller tetramers (up to

230 kDa) suggested that the mass, M, in Daltons, and the accessible surface area, A,, in

A2 for oligomeric proteins follow the relationship A, = 5.3 M° 76 9. P-galactosidase,

however, shows a 27% discrepancy (135,000A 2 versus 106,000A2). In a similar study,

the same authors propose a scaling law for monomeric proteins, A, = 6.3 M° 73 1 °. They

suggest that this should be applicable to subunits of oligomeric proteins which involve

only a small fraction of their surface area in subunit-subunit contacts. Even though the 13-
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galactosidase subunits can be considered to be in this category (Table 5), they show a

21% discrepancy from the monomer power law. When considered separately, however,

the five individual domains follow the monomer power law better, with discrepancies of

0, 12, 6, 9 and 4%, respectively.

The discrepancies with the scaling relationships suggest that 13-galactosidase

exposes more surface area to solvent than expected in comparison with other oligomeric

proteins. Because the domains follow the monomer scaling law better than the monomer,

it suggests that the discrepancy is due to the domain associations rather than the domains

themselves. Indeed, as shown in Figures 10(b)-10(d) there are deep solvent-filled

channels that extend across the surface of the molecule as well as channels that pass

through the middle of the tetramer.

Table 6 shows that there is a decrease in buried hydrophobic area as one moves

up the hierarchy from interactions within domains, to those between domains and

ultimately to those between tetramers. At the same time, the frequency of hydrogen

bonds decreases. In other words, the higher in the hierarchy the fewer hydrogen bonds

per unit area of buried polar interface. Generally, the interfaces at the crystal contacts are

quite different in character from the other interfaces. They are significantly more polar

yet have fewer hydrogen bonds per unit area. In addition, the area buried by bridging

waters is greater at the crystal contacts than the other interfaces. This illustrates the

nonspecific nature of these contacts.
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Table 5. Characteristics of the surface area of the J3-galactosidase tetramer and isolated
monomers and domains. The five domains are designated Dl-D5. If the solvent-
accessible surface area of, for example, the complementation peptide is calculated in the
context of a single monomer, then 52% of the surface area is buried. If the calculation is
made in the context of the tetramer, 61% (i.e. an additional 9%) is buried.

Solvent-accessible surface area

Total Polar Nonpolar
Buried by
monomer

Buried by
tetramer Volume

(A') (%) (%) (%) (%) (A3)

Tetramer 134815 48 52 549312
Monomer 38109 48 52 11 136381
Complementation

peptide (13-50)
4160 48 52 52 61 4542

D1 (51-219) 8449 43 57 35 35 22504
D2 (220-332) 6983 53 47 24 34 14230
D3 (333-626) 13581 47 53 38 54 39106
D4 (627-726) 6268 46 54 19 25 12868
D5 (735-1023) 13023 49 51 14 21 38451

Table 6. Characteristics of the surface area that forms the interfaces in the 3-
galactosidase crystals in space group P2 1 21 2 1 and between individual monomers and
domains. The surface area buried in crystal interfaces was determined by calculating the
surface area of an isolated tetramer and subtracting the surface area accessible within the
crystal. The intradomain surface was determined by calculating the solvent-accessible
surface area of the polypeptide chain in an extended conformation and subtracting the
combined surface areas of the complementation peptide plus the five domains.

Nature of interface
Total Polar Nonpolar H-bond
area surface surface density
(A2) (%) (%) H-bonds (H bonds/100A2)

Crystal interfaces 6315 61 39 17 0.44
Subunit interfaces 17481 47 53 84 1.02
Domain interfaces 62551 44 56 370 1.34
Intradomain interface 444241 40 60 3636 2.05
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It has recently been suggested that P-galactosidase folds according to the

following mechanism 11:

fast	 slow	 slow	 fast

4M, - 	 4M 4 2D' 4 2D 4 T

According to this scheme the unfolded monomer chains (M e) first give folded monomers

(M). There is then a slow bimolecular event to form dialers (D'). These then undergo a

slow first order event to form dimers (D) competent for fast association to tetramers (T).

Overall this is consistent with the hierarchical stability and specificity described above.

In particular, a much larger surface area is buried between domains than between

monomers, suggesting that the monomers could fold independently prior to forming

dimers or tetramers. The buried surface of the former is also more hydrophobic in

character suggesting greater stability. Which dimer interface is formed in the 4M - 2D'

step and which must wait for the 2D' -> 2D event has not been established. The long

interface is relatively flat and unstructured. In contrast, the activating interface is S-

shaped and its formation involves interdigitation of the donated loop and proper

positioning of the complementation peptide. This suggests that 2D' is a dimer formed by

association of two monomers at the long interface. The rate-limiting step in the 2D' 4

2D association could correspond to the proper positioning of the complementation

peptide or the donated loop. This would be consistent with the kinetics of a-

complementation, which show a first order event of similar rate following binding of the

complementation peptidell, 12.
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a-Complementation and the Role of the Amino-Terminus

P-galactosidase is widely used because of its easy colorimetric assay and because

hybrids with other polypeptides can be made extending up to at least residue 26 and still

result in active enzyme13, 14. Also, deletions of residues 23-31 or 11-41 result in inactive

dimers (called a–acceptors) which can be complemented by certain peptides (a-donors)

to reconstitute the active tetramer 14, 15 . Two common a-donors encompass residues

3-41 or 3-92. This phenomenon of a–complementation is the basis for the common

blue/white screening used in cloning and other procedures.

Figure 15 is a sketch illustrating in highly simplified fashion the parts of

13–galactosidase that appear to be important for hybrids and for a–complementation. The

50 or so residues at the amino terminus have an irregular, largely extended conformation

and mostly lie across the surface of the protein. At the same time, however, residues 13

and 15 contribute to the activating interface while segment 29-33 passes through a

"tunnel" formed by a 3 domain junction. Residues 22-31 are located fairly close to the

activating interface but most of the contacts made by these residues are with Domain 1

and parts of the four-helix bundle, both of which are within the same subunit (Figures 9,

11c, 15). There is a presumed magnesium ion that is coordinated by Asp 15, Asn18,

Va121, Gln163 and Asp 193. This ion therefore bridges between the complementation

peptide and the rest of the protein (Figure 11(c)).
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Figure 15. Sketch summarizing key features of the 13–galactosidase tetramer and
a–complementation. At the amino terminus, residues 1-12 are not seen in the electron
density map due to presumed disorder. Residues 13-50 (shown as thick lines) pass
through a tunnel between the first domain (labeled D1) and the rest of the protein (see
also Figure 9). The region shaded gray (residues 23-31) is deleted in one of the a–donors
(see text). A magnesium ion (shown as a small solid circle) bridges between the
complementation peptide and the rest of the protein. The four active sites are labeled
with asterisks. The activating interface runs vertically through the middle of the figure.
An important part of this interface is a bundle of four a–helices in the region labeled 4a.
When the activating interface is formed the four equivalent loops that include residues
272-288 extends across the interface to complete the active sites within the four recipient
subunits.

Studies of hybrids by Fowler and Zabin 5 showed that variants of J3–galactosidase

with the first 26 residues replaced were prone to dissociation to dieters whereas

substitution of the first 23 residues did not show this behavior. Since the deletion of

residues 23-31 results in inactive dieters, residues are presumably critical for tetramer
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formation. This is consistent with the structure illustrated in Figure 15. The lesser

importance of residues 1-23 is consistent with the observation that parts of this region (1-

12) are disordered while the remainder (residues 13-23) contribute only weakly to

interactions across the activating interface (mostly by reciprocal salt bridges between

Arg-13 and Asp-15). Residues 22-31 help stabilize the four-helix bundle which is a

major part of the interface. The particular importance of residues 27-31 is explained by

the observation that residues 29-33 pass through the tunnel, stabilizing the junction of

domains 1-3 (Figure 9). It may also be noted that mutant M15 3-galactosidase, which is

missing residues 11-41, is an inactive dimer, and is much more labile to proteases than

the native enzyme, particularly with regard to the Arg-431-Trp-432 peptide bond 16 . This

can be rationalized in terms of protection of the peptide bond with both intrasubunit

interactions (involving the complementation peptide) and intersubunit interactions

(involving the activating interface).

As illustrated in Figure 15, the formation of each active site requires that each half

of the activating interface be present. Dissociation of the (l–gaIactosidase tetramer into

dimers removes the G1u281 loop from the remainder of the active site. Thus, dissociation

of the tetramers to dimers is synonymous with inactivation.

Typically, cc-complementation has employed the a-acceptors M15 or M112,

which have deletions of residues 11-41 and 23-31, respectively, and the a-donors 3-41

and 3-92 (3-92) is usually called CNBr2). Both acceptors can be complemented by either

donor. Complemented13-galactosidase has catalytic activity essentially identical with the

native enzyme but is more heat and urea labile. The region of overlap between the

a–donors and a–acceptors includes the segment of the 13–galactosidase structure in
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which the polypeptide is threaded through the "tunnel" (Figures 9,15). This helps to

rationalize some of the nuances of the complementation reaction. The a—acceptors,

which result in the substitution of residues 29-31 with non-native amino acids would

make is less favorable for this segment to occupy the tunnel region. The donors, in

contrast, include the appropriate amino acid sequence to occupy the tunnel and to

substitute the interactions present in the wildtype protein The long a—donor, including

residues 18-92, presumably occupies the tunnel and displaces from the acceptor not only

residues 29-33, but also residues extending to 60-90 within domain D1 (Figure 15),

making them susceptible to proteases and available for binding antibodies 12 . The shorter

donor, spanning residues 3-41, presumably also occupies the tunnel, but does not displace

residues in the vicinity of 60-90.

Although the N-terminal 23 residues appear relatively unimportant for tetramer

formation in hybrids, they can have an effect on a—complementation. For example, the

mutation EI7Y in the donor 3-92 reduces a—complementation and also decreases the

stability of complemented enzyme. This residue makes no intersubunit contacts, but does

participate with Arg-14 and the backbone amide of Val-114 in a small intrasubunit polar

network. Likewise, Tip-16, which is fairly well conserved in homologous enzymes, does

not participate in subunit contacts but is largely buried within its own subunit. Also,

deletion of residues 3-17 of the 3-92 donor eliminates complementation activity,

suggesting that some of these residues are critical. In particular, Asp-15, Asn-18, and

Val-21 presumably contribute to the binding of the complementation peptide via their

coordination of the Mr ion that bridges to the rest of the protein (Figures 11(c), 15).

This is also consistent with the observation that Mg' stabilizes the complemented
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protein'7.

In a donor-acceptor complex binding energy is required to offset the entropic cost

of keeping the two polypeptide chains in contact. This is not necessary either for native

enzyme or for a covalently-linked chimera. Thus the supplemental interactions provided

by residues 3-17 may be dispensable in the latter two cases but required for

a–complementation. We assume that the complementation peptide binds in the tunnel as

shown in Figure 15. This unusual arrangement may confer two advantages. First the

intimate association presumably enhances thermodynamic binding affinity. Second, the

enclosure of the peptide within the tunnel presumably increases the activation energy for

its removal thus providing kinetic stability as well.

Metal Binding Sites

Both Mr and Na÷ are required for maximal activity of P–galactosidase18.

Putative sodium ions were identified by collecting X-ray data for crystals soaked in both

potassium and rubidium. This analysis identified five such sites. It also suggested there

is at least one site which binds potassium and rubidium, but not sodium. The electron

density map for the sodium ion that binds in the vicinity of the active site is shown in

Figure 16. Because of its close proximity to the active site (Figure 9) it is highly likely

that its removal would perturb this region and reduce activity. The role of this ion in the

catalytic mechanism is discussed in Chapter 3. The other sodium ions bind on the surface

liganded by backbone carbonyls, water molecules, and in one case, a DMSO oxygen.

A presumed magnesium ion at the active site was identified, both in the monoclinic and
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orthorhombic structures using X-ray data for crystals soaked with solutions containing

EDTA (data not shown). The role of this ion is also discussed in Chapter 3. The

identities of the ions at several other presumed metal sites are less clear, although each

has been modeled as magnesium based on its octahedral geometry and the nature of its

ligands. Most have five or six water ligands and three occur at crystal

Figure 16. Stereo view of sodium binding site in the active site. The large sphere shows
the sodium ion and the smaller spheres show the locations of refined water molecules in
the potassium soak. Electron density is calculated from a map with coefficients F o(K+) -
F0 where the Fo(K+) are the structure amplitudes for the crystals soaked in K+ and Fo are
the structure amplitudes of the native (i.e. Nat-containing) crystals. The map is
contoured at + 6cr (black = +, gray = -). The density suggests the sodium has been
replaced by potassium and in response the cation ligands have slightly expanded. The
solvent structure has also slightly reorganized. Figure prepared with MOLSCRIPT
(Kraulis, 1991).
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contacts mediating intermolecular interactions with no direct contacts to protein. An

apparent ion-binding site in Domain 1 (Figure 9) was not affected by the presence of

potassium, rubidium, or EDTA, suggesting that the putative ligand at this site, which has

been modeled as a magnesium, is bound both tightly and specifically.

Consistency with Protease-Sensitivity and Insertion Mutagenesis

Limited exposure of the enzyme to chymotrypsin results in cleavage of the

Trp585-Ser586 and Phe601-Cys602 peptide bonds, both being protected by Na+ or K+16.

This is consistent with the former bond being solvent-exposed and mobile and the latter

bond being close to the Na+ binding site (Figure 16). Likewise, elastase cleaves the

A1a732-A1a733 peptide bond 16 which is also highly mobile in both crystal structures.

The observed structure of 13-galactosidase is also consistent with insertion mutants

constructed by Breul et a1. 19 . Those insertions that have little effect on activity are

located in solvent-exposed loops while those that reduce activity tend to occur in the

more rigid parts of the protein.

Materials and Methods 

Expression and Purification

Purification of 13-galactosidase for the initial structure determination in space

group P21 was as clescribed2°.
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Protein used for crystallizing the P212121 crystal form was initially prepared

by growing E. coli strains BL21(DE3) and B834(DE3) and purifying the endogenous

P-galactosidase. Cells were resuspended in 25 mM Tris-Ha, pH 7.5, 1 rnM EDTA, 1

mM DTT, 10% glycerol (TEGD) and lysed. A 40% ammonium sulphate precipitation

(4°C) was performed on the lysate and the pellet redissolved in TEGD. The protein was

applied to a Q-Sepharose HP column (Pharmacia), equilibrated in TEGD and eluted with

a 0-0.5 M NaC1 gradient. The I3-galactosidase was concentrated and run on a Superdex

200 sizing column (Pharmacia), equilibrated to TEGD + 150 mM NaCI. The purity was

slightly improved with a Mono Q HR 5/5 column (Pharmacia), again with TEGD and

NaCI. The room-temperature data were collected using crystals from this protein.

Subsequently, higher levels of P-galactosidase were obtained by overexpressing

the protein using Induction Control B for the pET system from Novagen. This is the pET

15b plasmid with a lacZ insert and includes an N-terminal six-histidine tag. It also has

the N-terminal sequence Gly-Ser-His-Met-Leu-Glu-Asp-Pro rather than the wildtype

sequence of Thr-Met-Ile-Thr-Asp-Ser-Leu-Ala. This protein was used for the low-

temperature data collection. Cells of E. coli strain BL21 (DE3) with this plasmid were

grown either in shaker flasks or a ferrnenter at 37°C and induced with 1 rnIVI IPTG for 3

hours. The cells were spun down and resuspended in 20 mM Tris, pH 7.9, 500 mM

NaC1, 5 mM imidazole, and 2 mM P-mercaptoethanol. After sonication for 5 minutes,

the cell lysate was loaded on a nickel column (Qiagen). Usually sonication was repeated

for better yield. The column was washed with the loading buffer and the protein was

eluted with a 5-200 inM imidazole gradient (500 mL total volume). After dialyzing

versus 2x4 L 25 mM Tris, pH 7.9, 125 mM NaC1, 2.5 mM CaC1 2, and 2 mM
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P-mercaptoethanal, thrombin (Pharmacia) was added to cleave the histidine tag. This

was allowed to incubate for 2-3 days at room temperature and the cleavage was

monitored via native polyacrylamide gels (Phastsystem) or anion exchange

chromatography (Biocad). The digested protein was further purified with anion exchange

chromatography. The best results were obtained with a PI column (Perceptive

Biosystems) at pH 7.0 with a 0-1 M NaCI gradient in a Bis-Tris/Tris buffer. Pooled

fractions from the anion exchange step were quite pure, but typically contained higher

order oligomers as judged from native polyacrylamide gel electrophoresis (Phastsystem).

Therefore, the protein was concentrated by ammonium sulfate precipitation and run on a

sizing column (Sephacryl S-200 at 0.1 rnL/rnin) after resuspending to -20 mg/mL in 100

mNl Bis-Tris, pH 6.5, 200 mM MgC1 2 , 1 mM DTT and 5 mM NaC1. Fractions from the

sizing run corresponding to the pure tetramer were concentrated to -10 mg/mL for

crystallization with centriprep concentrators.

Crystals

Monoclinic crystals of E. coli 13-galactosidase (Table 1) were obtained as

previously described 20. A number of other crystal forms were identified, some in York

and some in Eugene. Of these, the one most promising crystallized as pyramids. The

best crystals were obtained by seeding and using a mother liquor of 10% PEG 8K, 100

mM Bis-Tris, pH 6.5, 200 mM MgC1 2, 100 mM NaCI, and 10 mM DTT. Seed solutions

were created by diluting a drop of initial, small crystals into 0.1-10 rnL mother liquor.

Drops were then set up using 5 pl of protein solution and 5 pl of seed solution. Pyramids
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(and occasionally plates) appeared in 1-3 days, and growth appeared to be complete in

2-3 weeks. The largest crystals were approximately 0.8 x 0.7 x 0.6 mm. Macroseeding

was also successful, and produced some of the largest crystals. Temperature was an

important factor, 15° usually giving the best yield of large crystals. Room temperature

usually produced fewer crystals, while 4°C often produced poorly formed ones.

Although the crystals diffracted well, they decayed significantly after a few hours

in the beam, suggesting cryocrystallography would be required for high resolution data

collection. For freezing, several solutions were tried. Glycerol, MPD, and ethylene

glycol gave poor diffraction, while PEG 200, PEG 400, PEG 550, glucose, and sucrose

were more promising. Dimethylsulfoxide was the best cryosolvent (70% mother liquor,

30% DMSO). Crystals were equilibrated by adding 251.11 aliquots of DMSO to crystals

sitting in 0.7 rriL mother liquor over the course of 6 hours or more. Crystals could then

be flash frozen in a cold stream with only small effects on the mosacity and diffraction.

Model Building and Refinement, Space Group P2,

An initial model of one monomer was built with fragments from a library of well

refined protein structures using the automated routines in 0 (Jones et al., 1991). This

model was then used to generate the 16 copies present in the P2 1 cell. Assuming an

overall average Wilson B-value of 27.5A 2 the initial R-factor was 38% for data at 4A

resolution.

All refinement was done with the TNT package of programs 2, 21, 22 After rigid-

body refinement, positional refinement was initiated using constrained NCS (non-
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crystallographic symmetry). For this procedure the prototype model is expanded using

the NCS operators derived from rigid-body refinement. Gradients (and curvatures in

later cycles) are then calculated for all atoms using diffraction data and stereochemical

restraints. After the gradients are combined using the chain rule, again with the NCS

operators, shifts are calculated and applied to the prototype molecule.

This constrained NCS refinement was carried out on the atomic positions using

data from 8.0 to 3.5A, 3.0A, and finally 2.5A resolution. At this point the averaged maps

were used to locate the missing regions of the model and refinement continued. About

100 water molecules and two magnesium ions were located in the averaged density and

built into the prototype molecule. At this point, releasing the NCS constraints and

refining both positions and B-factors resulted in the model described in Table 2.

From a practical standpoint, it was desirable to have a model with 16-fold

constrained NCS. Rebuilding such a model would require inspection of fewer residues

(1000 versus 16,000) and would also provide a much more favorable ratio of

observations to parameters. So refinement was continued with constrained NCS using all

data to 2.5A. Additionally, a random set of 1600 reflections was removed for R,ffee

calculations, which were used to help determine the best refinement protocol (see below).

Prior to B-factor refinement, several rounds of positional refinement, model

building and solvent addition were carried out and resulted in an R-factor of 27.3%.

Subsequently, coordinates and B-factors were refined simultaneously with the B-factors

restrained to the TNT B-correlation library 21 . Eight more rounds of building and

refinement, including further refinement of the NCS transformations resulted in an R-

factor of 21.1%.
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Anisotropic scaling was then included, which lowered the R-factor from 21.1%

to 20.4%. Final model building and refinement resulted in a model which included one

subunit (residues 3-1023), 437 solvent molecules, two Mg', five sidechains modeled

with two conformations, and three cysteines derivatized by 13-mercaptoethanol. The

entire model was constrained by the non-crystallographic symmetry.

It might be noted that initial attempts at 13-factor refinement using all data to 2.5A

resolution were unsuccessful in that the B-factors of many interior atoms decreased to

Figure 17. Behavior of the scaling profile used to account for the scattering of bulk
solvent. The model for bulk solvent used in TNT is based on Babinet's principle which
states that, at low resolution, the scattering of the bulk solvent is the inverse of that from
the protein. This leads tota s Ba(12in-ieg, function for,,f{:::,:v),_ B.,,	 which is defined by the functional

form:	 —e A	 – Ksole	
A ]

where K, B, K001 and B,„l are adjustable parameters that define the solvent scaling. In the
figures the circles show the values of E Foa Fc where Fo and F0 are the observed and
calculated structure factor amplitudes calculated in increasing ranges of sin(0/20, The
solid line shows the scaling profile as derived from the best fit to the data of the above
equation. (a) Scaling after rigid-body refinement with the B-factor of all atoms set at
27.5A2 . The poor fit is presumably due to the lack of ordered solvent in the model_ (b)
Scaling for the final refined model including ordered solvent and with anisotropic
scaling.
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near zero. Also the scaling profile of F. to F, was not well fit by the solvent model

employed by TNT (Figure 17(a)). A series of tests (not shown) suggested that the poor

fit was caused by the lack of ordered solvent molecules in the model. To some extent the

problem could be circumvented by including only the data between 8.0A and 2.5A

resolution. A better procedure, however, was to include ordered solvent molecules prior

to any B refinement and, as well, to include anisotropic scaling of F. to	 The

anisotropic scaling helped but the B refinement was still unstable without the addition of

ordered solvent. The scaling profile for the final model is shown in Figure 17(b).

Data Collection, Space Group P2,212,

Using non-frozen crystals, data were initially collected at Daresbury to 2.8A

resolution (Table 1). Data for structure refinement at high resolution were collected on a

frozen crystal using beam line 5.02 at the Advanced Light Source with 30 second

exposures, 0.5° oscillations and a wavelength of 1.0A. Reflections were visible to 1.5A,

and data were processed to 1.7A resolution with Mosflm/Scala 23-25.

Structure Determination and Refinement, Space Group P212,21

The native Patterson function had a large peak (40% of the origin) at

(0.0,0.5,0.48), suggesting that a local two-fold axis was parallel to a crystallographic 2,

screw axis. The self-rotation function also suggested two pairs of perpendicular two-fold

axes in the xz plane rotated approximately 25° (+ or -) about the y axis.



67
Molecular replacement was based on the 2.8A resolution data set (Table 1) and

the averaged J3-galactosidase structure (see above) as a search model. Using the MRCHK

suite of molecular replacement programs and GLRF 26, 27 , the rotation search gave peaks

which aligned the tetramer so that its 222 axes coincided with diad axes observed in the

self rotation function, including one parallel to the y axis.

The systematic absences alone did not clearly differentiate between the two

possible space groups P2 1 2,2 1 and P2 1 21 2. Translation searches showed strong peaks for

various combinations of monomers in both space groups. After rigid-body and positional

refinement, the model in space group P2,2 1 2, had an R-factor of 20%, while that in space

group P2 1 2 1 2 had an R-factor of 30%, suggesting that the former was the correct solution.

Following further rigid-body refinement at the tetramer, monomer, domain, and

secondary structure levels, the model was averaged and subsequent refinement was done

with constrained non-crystallographic symmetry. Several rounds of model inspection,

solvent addition, and minimization resulted in a model with an overall R-factor of 16.8%

at 2.8A resolution (Table 2). When the symmetry constraints were released this model

refined to an R-factor of 13.6%.

After the higher resolution data were collected (Table 1), another model was built,

again starting from the averaged P2, model with thermal factors set to the Wilson B of

17A2 . After rigid-body refinement each monomer was refined independently using all

data to 1.7A resolution. During model building, one chain was inspected and adjusted,

solvent molecules were added, and the overall structure re-refined. This procedure was

then repeated for each subunit in turn. Many adjustments were necessary, mostly

repositioning sidechains. By the time that each chain had been rebuilt once,
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approximately 2500 solvent molecules had been added, including water molecules,

dimethylsulfoxide molecules, Mg' ions, and 1\la + ions. At this point the Automated

Refinement Procedure (ARP) was implemented, adding about 2500 more solvent

molecules 28 . Approximately 1000 of those added by ARP were subsequently removed

by hand because the electron density and solvent-protein contacts were unconvincing.

Several more cycles of model building resulted in a model with an overall R-factor of

15.7% at 1.7A resolution (Table 2). Several solvent molecules have been set with

occupancies of 0.5 or 0.25. These molecules drifted out of density during refinement

when their occupancies were 1.0. Halving the occupancy usually eliminated the drift. If

it did not, the occupancy was halved again.

Analysis and Calculations

Calculations on the refined coordinates were carried out using a variety of

programs. EDPDB 29 was used for coordinate manipulations, solvent accessible surface

area calculations, and to generate crystal contacts. MSRo1I 30 was used for volume and

molecular surface calculations. Cavity calculations were also performed with MSRoll

and were supplemented with INSIDE_MSP (M. QuiIlin, unpublished) to determine the

locations of water molecules relative to cavities. All surface area calculations used a

probe of radius 1.4A. Whatif 31 was used to determine hydrogen bonds. Calculations to

determine bridging waters and contact atoms, to create extended models of the domains,

and to rename water molecules were carried out with unpublished programs by the

authors.
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CHAPTER III

STUDIES ON THE REACTION MECHANISM OF BETA-GALACTOSIDASE

Diffusion of the Substrate to the Active Site

Before an enzyme can carry out its activity, the substrate must find the active site.

This occurs via diffusion, which is characterized by a second order rate constant

describing the frequency of collisions between the substrate and enzyme. This is

generally between 109 and 10" s' 	 For 13--galactosidase, k cat/Km for hydrolysis is

—105 s-2 1\f'for lactose and 10' for onpg, suggesting there are typically —100-10,000

collisions between the enzyme and the active site before a reaction takes place.

Imaging Reaction Coordinate Complexes with X-Ray Crystallography 

Once the substrate finds the active site, 3–galactosidase catalyzes the hydrolysis

or transglycosylation in about 15 ms. In the ideal experiment, a single enzyme molecule

would be imaged at atomic resolution performing the catalysis in real time. This would

be repeated many times to build up statistics on the reaction pathway.

Although some spectroscopic experiments have been performed with single

enzyme molecules,2' 3 these are typically done with longer wavelengths than the X-rays

72
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required for atomic resolution. Because X-rays interact relatively weakly with

proteins, many molecules in an ordered lattice are necessary to amplify the signal/noise.

A typical P--galactosidase crystal has –10 13 molecules.

For the amplification effect to be useful, all the active sites must be synchronized

in their catalysis. Methods have been devised to allow certain enzyme reactions to be

synchronously initiated throughout a crystal with nanosecond laser pulses. However,

once the reactions have begun, there will be a distribution of trajectories. Unless this

distribution is very narrow, the resulting electron density maps are typically very difficult

to interpret. This is particularly true if there are significant motions of the substrate and

enzyme during the reaction. In addition to the difficulties in synchronization, data

collection within submillisecond time scales is also problematic, although some

experiments have been performed4.

The most straightforward method of recording atomic resolution images relevant

to an enzyme catalyzed reaction is to use altered substrates, enzymes, or buffer conditions

that slow down or stop the reaction. In this way the active sites pause in the same

conformation long enough either to flash freeze the crystal (minutes) or to collect the

diffraction data at room temperature(minutes-hours).

Regardless of the exact experimental design, the substrate of interest is soaked into the

crystal, diffusing throughout it, occupying all of the active sites. Critical to the success of

these methods is first the observation that protein crystals are intimately dependent on

solvent. Generally 25-75 % of the volume of the crystal is occupied by disordered

solvent, occurring in channels which run throughout the crystal. This allows the substrate

to diffuse throughout the crystal and occupy all of the active sites. Second, the enzyme
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must be able to catalyze its reaction in the crystal. Sometimes lattice packing

interactions either prevent access to the active site or preclude motions required for

catalysis or the buffer conditions needed for crystal stability are incompatible with

activity. However, in both crystal forms of Vgalactosidase used in this study the

enzyme is active in the crystal This is shown especially clearly by the use of the

substrate X-gal, which turns blue within the crystal (Figure 18).

Figure 18. Crystal of P-galactosidase (P2 1 2,2 1 ) in the absence (left) and in the presence
(about 2 hours) (right) of the substrate X-gal (5-bromo-4-chloro-3-indolyl-P-D-
galactopyranoside). X-gal turns blue upon hydrolysis, showing the enzyme can perform
hydrolysis in the crystal. A capillary electrophoresis assay also showed that in solution
the enzyme can produce allolactose in the crystallization buffer (not shown).

Once all of the active sites are occupied by substrate, the diffraction data can be

collected. An example of a diffraction image for Vgalactosidase is shown in Figure 19.
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Figure 19. A diffraction image from an orthorhombic crystal of 13-galactosidase. The
crystal (the E537Q variant with allolactose) was exposed for 15 seconds at the Stanford
Synchrotron Radiation Laboratory Beam Line 9-2 with the beam roughly parallel to the
b* axis. The detector edge is at 1.5 A resolution. There are about 30000 Bragg spots on
the image and about 30 levels of reciprocal space can be discerned as the concentric
rings. Longer exposures (60 seconds) of the same crystal produced spots up to 1.1 A
resolution. The row of spots in the blowup in the upper left corner shows that the long
edge (c*) runs diagonal to the upper right and the short edge (a*) runs diagonal to the
upper left.
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The intensity of each Bragg spot can be used as a coefficient in a Fourier series to

give an image of the electron density:

P( F) =	 F(k)eilick )e27tii-.k

where p is the electron density at a point T, the sum is over reciprocal lattice vectors k ,

F(k) is the modulus of the intensity and 0( ) is the phase. The amplitude, F, can be

measured for each Bragg reflection, but the phase, 0, associated with it is lost in the

diffraction experiment and it must be estimated by other means. In the cases presented

here, the structure of the unliganded, native enzyme is used to calculate an estimate,

Oc(k), for each phase:

(k) = Fc ( 0e 1" ) = f 
pn (F)e27'14

where p is the electron density derived from the coordinates.

To determine the location of a bound ligand, typically two diffraction

experiments are performed, one without ligand ("native") and another with ligand.

Difference electron density can then be calculated:

pv.)—p-(7)=E[Fo'ci)—	 (k)	
u:)

e
2ici,--..k

k
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Here the superscript refers to liganded (1) or native (n) and the subscript refers to

observed (o) or calculated (c). Such electron density is called "F o-F0" density because

both sets of coefficients come from observed data. Two examples are shown in Figure 20.

Figure 20(a). Stereo view of 1.7 A F0-F0 electron density for para-nitrophenyl-P-D-
galactoside (pnpg) bound to the E537Q variant. Only positive density is shown,
contoured at 4 sigma (0.24 electrons/A 3). The binding mode of the ligand is very clear
from the density and a ball-and stick model for the refined coordinates is also shown.
Oxygens are red, carbons are white and nitrogens are blue.

55 ,61 55

Figure 20(b). Stereo view of 1.7 A Fo-F0 electron density for the 2-deoxy-galactosyl
intermediate (with native enzyme). The map is contoured at +/- 6 sigma (0.36
electrons/A3) with blackpositive and gray negative and native protein coordinates are
shown. This map is more complex than Fig 20(a) because of changes in the enzyme.
Density for the 2-deoxy-galactosyl moiety can be seen next to the nucleophile, Glu-537,
with a covalent bond between the two. Phe-601 clearly swings to the left. More subtle
features can also be discerned, including shifts of Glu-537 and the sodium ion.
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The crystal may be thought of as a convolution between a single molecule and

a lattice:

p(F)= m(7) 0 I8(F –

where m(7-) is the electron density for a single protein molecule, p(F) is the electron

density for the whole crystal, and the sum is over real space lattice vectors . The

diffraction experiment will give information about the Fourier transform of the crystal.

But the Fourier transform of a convolution is the product of the Fourier transforms:

FT(p(F)) M(k ' ) • ocic't

where	 is an arbitrary vector in reciprocal space, M(k') is the Fourier transform of the

single molecule (the molecular transform), and the Fourier transform of the real space

lattice gives another lattice in reciprocal space, which is defined by the vectors kn.

Therefore, this second lattice can be thought of as a mask placed over the molecular

transform, defining a sampling of the molecular transform which is recorded by the

diffraction experiment.

Fo-F0 electron density is only useful if the lattice parameters for both crystals are

nearly identical. Otherwise, the molecular transform is sampled differently, and

differences may be due to inherent variations in the molecular transform rather than

changes in the molecular transforms due to ligand binding. Several factors can cause

variations in lattice parameters, including ligand binding and freezing. Freezing is



I PTG	 I PTG2 -OH
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particularly problematic for P–galactosidase crystal variation. In these cases, the

difference electron density calculation must use calculated amplitudes for the native

conformation rather than the observed ones:

CF) p"	 ,1[Fol (k)	 (k. ) e 1 0:1 (k) e2ini 

Such electron density is called "F0-Fc", the liganded amplitudes coming from

observed data and the native amplitudes being calculated from a model of the native

enzyme which has been correctly positioned in the new crystal. This electron density is

sometimes less clear than F o-F0 density because of difficulties in calculating the

amplitudes at low resolution. However, the binding mode for ligands can usually be

discerned from F o-Fc density as well. An example is shown in Figure 21.

Figure 21. Stereo view of 1.75 A F0 —Fc electron density for isopropyl-thio-P-D-
galactoside (iptg) bound to native enzyme. In this case, because the crystal lattice was
slightly repacked relative to native enzyme, an F o-F0 map could not be calculated. After
correctly placing the protein in the unit cell an F0-Fc map could be calculated, resulting in
the map shown, which clearly shows the binding mode for iptg. Only positive contours at
4 sigma are shown.
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Assuming the binding mode of the ligand can be discerned from either F o-Fo or

Fo-Fc electron density, a model for the ligand is built on a graphics workstation. Also, the

enzyme model is inspected and necessary changes to it are made. The coordinates for

this model are then refined using a least squares procedure which tries to minimize the

difference between the observed and calculated amplitudes by shifting the atoms around

while keeping the whole model consistent with expected geometric parameters such as

bond lengths, bond angles, and contact distances. The shifted coordinates are used to

calculate another F o-F, map, which is used to further rebuild the model. After several

cycles of refinement and model building, the end result is a model for the enzyme with

bound ligand. This model then serves as a starting point for analyzing enzyme ligand

interactions to understand how the enzyme carries out its activity.

Table 7 lists data collection and refinement statistics. The complexes are

organized conceptually by experiment. The discussion which follows is organized along

the listing of data complexes. Figure 22 shows some of the ligands whose binding modes

to ii-galactosidase were determined.
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Figure 22. Schematics of some of the ligands whose binding mode was determined with crystallography.
Left - substrate and substrate analogs. Right - transition state analogs.
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Table 7(a) Data collection statistics for P-galactosidase complexes. Ligand = ligand; *=-1 mM Bis-Tris, otherwise 100 mM Bis-
Tris; 2-d-g-E 2-deoxy-galactosyl-enzyme; 2-F-g-E = 2-F-galactosyl-enzyme. Conc. = concentration of the ligand in the
crystal. Res. = maximum resolution. R-Merge = average agreement between symmetry related reflections (E,,(1,-<1>)/<l>, where
the mean is over symmetry related reflections). All = all data, High = data in the high resolution shell. <I>i<Sig(I)> =
<signal>/<noise>. Red. = #total reflections/#unique reflections.

R-Merge (%) Completness (%) <I>/<Sig(I)> Reflections
Identification Ligand Conc. (mM) Res (A) All High All High Ail High Unique Red

Reaction Coordinate
Early

Unliganded
Native none - 1.70 6.0 34.6 99 91 17.1 3.0 523322 4.2

Real SubstrateslE537Q
lactose lactose 100 1.80 6.6 18.8 97 82 12.5 4.1 450429 2.6
pnpg2 pnpg 150 1.55 4.2 27.6 98 97 10 4 715583 2.7
onpg onpg 100 2.00 5.4 21.5 87 47 10.2 2.1 297446 2.7
galactal galactal -100 1.70 5.0 20.7 95 87 11.1 4.7 521708 1.8

Substrate Analogs
gal-S-R

Iptg iptg 7 1.75 7.0 40.9 90 88 13 2.0 397254 3.8
Iptglu ipt-glucose 40 2.70 8.3 27.9 92 94 11 3.3 128048 3.9

2-F-gal
2-F-lac 2-F-lactose 89 2.70 9.0 66 408368 1.8

Middle
Intermediates

Hydrolysis
2-d-gal 2-d-g-E -50 1.75 6.1 45.5 94 88 14 2.2 471435 3.3
2-F-gal 2-F-g-E -7 2.60 7.1 70 477611 1.9
Gti-lobt 2-d-g-E* 10 2.10 8.1 27.0 90 80 7.5 2.3 265076 2.7



Table 7(a) continued Reflections
Identification Ligand Conc. (mM) Res (A) All	 High

R-Merge (%) CoAmlipletneHsisg(4%) <I>/<Sig(1)>
All	 High	 Unique	 Red

Ttransglycosylation
2dG/Gle-loot 2-d-g-E/glucose* 10/500 1.90	 4.0	 24.1 93 86 11 3.1 397875 2.4
2dG/G1c2-lobt 2-d-g-E/glucose* 50/500 2.30	 8.3	 27.6 96 95 10.4 2.6 219154 2.4
2FG/Glc 2-F-g-E/glucose 7/1000 2.10	 6.0	 34.2 91 61 10.3 2.8 275362 1.0

Transition State Analogs
L-ribose L-ribose 0.21 1.50	 5.3	 30.7 97 80 16 3.1 773703 3.9
Lactone galactonolactone 100 1.80	 6.8	 41.5 91 87 12.7 2.0 420164 3.5
Tetrazole galactotetrazole 0.1 2.10	 8.8	 37.9 86 87 12.4 2.7 288130 4.0
JG142 JG142 0.01 1.40	 4.7	 35.4 89 43 9.6 2 881391 3.2

Late
Hydrolysis

Galactose galactose 400 1.50	 7.4	 22.6 90 87 9.1 2.5 750588 4.2
Glucose glucose 500 2.80	 9.4	 30.8 99 98 9.3 3.4 131804 3.2

Transglycosylation
E537Q/allo allolactose -30 1.50	 5.4	 24.6 98 85 12.4 3.2 778084 2.6

Lactose
Lactose lactose 130 1.70	 4.8	 26.7 93 75 11.6 4 739824 3.5

Na+ & Mg++ Function
Potassium K+ 100 1.50	 6.4	 38.9 86 52 10.7 1.8 688912 2.6
Rubidium Rb+ 100 1.60	 5.0	 24.1 98 99 10.1 4.7 643587 3.4
K+/2dG K+/2-d-g-E 100/10 1.85	 8.2	 31.3 94 95 6.9 2.1 407391 2.8
EDTA edta 50 2.50	 6.2	 20.1 93 84 12.3 3.8 166292 2.6

Loop swing (room temp)
L-rib-rt L-ribose 21 2.70	 7.7	 29.6 98 95 9 2.2 145888 2.8
L-rib/dmso-rt L-ribose/DMSO 21/30% 3.00	 8.2	 30.4 98 97 8.3 2.8 105972 2.5
Lactone-rt galactonolactone 500 3.00	 12.4	 44.4 75 62 7.3 1.7 81588 2.1
Lactone/dmso-rt lactone/DMSO -100/30% 3.50	 10.9	 23.2 88 76 7.6 2.9 60013 1.9
2dG-hibt-rt 2-d-g-E 200 3.10	 10.8	 33.8 98 98 6.3 2.5 96563 2.5
2dG-hibt/dmso-rt 2-d-g-E/DMS0 200 3.00	 9.9	 33.9 96 94 7.3 2.1 104005 2.4 co
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Table 7(a) continued R-Merge (%) Completness (%) <I>/<Sig(I)> Reflections
Identification Ligand Conc. (mM) Res (A) All 	 High All 1110 All High Unique  Red
2dG-lobt-rt 2-d-g-E* 200	 3.00	 8.6	 29.2 98 96 8.6 3.1	 106546	 2.6.
2dG-lobt/dinso-rt 2-d-g-E/DMS0* 200 3.00 9.9 33.5 99 96 7 2.1 106607 2.4
Tetrazole-rt galactotetrazole 1 3.00 8.5 33.4 90 89 9.6 2.6 97866 2.5
Galactose-rt galactose 40 2.90 9.1 32.6 98 99 8 3.6 118495 3.7

Glucose search (rt)
L-rib/glc-rt L-ribose/glucose 21/900 2.80 8.7 34.8 99 99 8.9 3.3 132722 3.9
2dG/G1c-loot-rt 2-d-g-E/glucose* 200/500 2.90 7.8 32.5 97 93 9.7 2.6 116775 2.4

Variants
E537Q (see also above)

E537Q-L-ribose L-ribose 150 1.70 7.0 33.7 96 94 10.2 2.7 527809 2.5
F601A

F601A none - 1.55 5.8 17.5 91 67 9.0 5.2 671736 3.6
F601A-iptg iptg -10 1.70 5.7 23.5 90 87 8.1 3.6 492738 2.2
F601A-lactone lactone -100 1.80 6,8 34.9 86 79 6.7 1.8 392368 2.2
F601A-rt none 3.20 11.6 35.7 98 99 6.9 3.4 88197 2.9
F601A-Irib-rt 1-ribose 21 3.50 10,0 25.3 98 100 11 7.1 67111 4.3

G794A
G794A none 1.60 7.5 36.0 96 92 6.4 2.7 632326 3.5
G794A-iptg iptg -10 1.60 5.6 27.3 95 90 7.6 3 623810 3.2
G794A-rt none 3.00 9.5 37.1 94 90 8.4 1.8 104632 2.1
G794A-gg-rt gtI/glucose 100/250 3.10 9.2 31.6 96 91 7.3 2.2 94653 2.1
G794A-glc-rt glucose 500 3.00 8.7 31.2 99 99 9.6 4.4 107677 3.9
G794A-ltn-rt lactone 50 3.50 10.6 23.1 99 99 7.7 4.5 68323 2.9

DMSO Titration
DMSOO none 3.00 9.2 29.4 95 99 8.9 2.3 103758 2.2
DMSO 1 dmso 1% 3.00 8.2 28.6 99 99 12.7 3 107609 2.8
DMS010 dmso 10% 3.30 10.7 27.6 93 95 11.8 4.3 76404 2.9
DMS030 dmso 30% 3.20 11.5 29.0 95 96 7.7 2.5 84174 2.3



Table 7(b). Refinement statistics. All refinement was done with the TNT package (see methods). R-Fac = EjF„-F,J/F„ R-Free is an R-
factor with a small subset of data has not used in refinement. RMS Deviations are RMS deviations in bond lengths (Leng),
bond angles (Ang) and B-factors (B-fac) from expected values for these parameters from a small molecule data base as defined in

TNT. Units are A, degrees and A2, respectively. Mean refined atomic B-factors are given for subsets of atoms: protein, solvent , and
the two parts of the ligand (glycon and aglycon) if present. The scaling parameters define the model at low resolution (see
discussion in Chapter 2). Blank entries were not refined.

RMS Deviations Number of atoms <B-factor> (A2) 	 Scaling
Identification	 R-Fac R-Free Len g Aug B-fac Protein Solvent Prot Solv Glvc Aglyc K	 B	 _112 1313

Reaction Coordinate
Early

Unliganded
Native	 15.7

Real Substrates/E537Q
lactose	 15.4
pnpg2	 18.0
onpg	 21.3
galactal	 16.1

Substrate Analogs
gal-S-R

Iptg	 16.8
Iptglu

2-F-gal
2-F-lac
	

21.4
Middle

Intermediates
Hydrolysis

2-d-gal
	

15.8
2-F-gal
	

21.2
Gtl-lobt

21.1 0.018 2.9 7.5 32500 4908 19.5 31.5 0.66 128.0 -1.6 1.7 -0.1

21.8 0.018 3.0 8.0 32512 4945 16.8 27.7 8.5 23 0.69 183.0 -0.9 2.0 -1.1
22.9 0.019 2.9 7.4 32522 4942 19.2 32.1 12.1 19.5 0.83 217.0 -0.9 1.8 -0.9
32.2 0.017 3.0 5.5 32512 3421 34.8 42 30.8 61.9 0.87 226.0 -7.6 16.7 9.1
21.3 0.019 3.0 7.7 32512 4629 18.7 31.1 20.2 - 0.86 222.0 -1.6 1.7 -0.2

24.5 0.015 2.8 5.5 32500 3956 25.1 34.3 18.6 22.3 0.74 130.0 -2.1 2.5 -0.4

22.5 0.019 2.7 4.3 16 x 8220 16 x 281 23* 28.9 35.1 52.6 1.00 693.0 0.0 0.0 0.0

22.2 0.016 2.7 8.4 32506 4823 22.1 33.9 13.2 27.3 0.70 115.0 -2.3 4.0 -1.7
22.4 0.021 2.9 4.3 16 x 8220 16 x 293 23.8* 28.7 18.2 - 1.00 863.0 0.0 0.0 0.0



Table 7(b) continued 	 RMS Deviations	 Number of atoms <B-factory (A2) Scaling
Identification	 R-Fac R-Free Len g Ang 11-1ac	 Protein	 Solvent Prot Solv Glyc Aglye 8B,,

Transglycosylation
2dG/Glc-lobt	 24.0	 24.3	 0.014	 2.3	 4.1	 31016	 4513 32.4 48.5 ?	 ? 0.88 262.0 -5.0 12.7 -7.7
2dG/G1c2-lobt	 16.4	 27.8 0.013	 2.6	 4.0	 32500	 4879 35.3 52.2 30.6	 94 0.75 140.0 -0.9 7.8 -6.9
2FG/G1c	 16.6	 26.7 0.014	 2.8	 5.2	 32500	 4326 30.2 59.6 24.8 ? 0.90 261.0 0,4 5.8 -6.3

Transition State Analogs
L-ribose	 17.4	 22.0 0.018	 2.9	 3.7	 32180	 4811 19.5 33.2 14.6 - 0.87 219.0 -1.0 0.5 0.4
Lactone	 16.5	 23.8 0.014	 2.7	 7.1	 32260	 4664 25.2 38.9 20.5 - 0.74 143.0 -1.8 3.4 -1.6
Tetrazole	 16.1	 26.9	 0.017	 2.8	 6.0	 32500	 3319 33 39.7 28.4 - 0.76 141.0 -6.2 10.7 -4.5
JG142	 17.2	 21.2 0.020	 2.9	 7.6	 32643	 5039 17.1 28.8 6.6	 10.4 0.84 219.0 -1.6 2.2 -0.6

Late
Hydrolysis

Galactose	 17.6	 21.9	 0.020	 3.0	 7.7	 32508	 4657 19.4 31.3 18.9 - 0.89 204.0 0,5 0.6 -1.1
Glucose

Transglycosylation
E537Q/allo	 32500	 4644 16 28 16	 83.3

Lactose
Lactose	 19.3	 24.0 0.019	 2.5	 3.6	 32500	 4623 18.4 32.2 28.6 ? 0.87 209.1 -1.7 2.3 -0.6

Na+ & Mg++ Function
Potassium	 16.2	 21.4 0.019	 3.0	 7.9	 32500	 4751 18.6 29.3 - 0.85 218.0 -0.8 1.0 -0.2
Rubidium	 18.2	 23.6 0.019	 3.0	 8.6	 32500	 4399 22.1 32.3 -	 - 0.85 202.0 -2.6 3.2 -0.6
K+/2dG	 18.4	 25.8 0.019	 3.0	 4.8	 32500	 4551 20.2 30 10.9 - 0.85 219.0 -1.6 2.9 -1.3
EDTA	 28.8	 34.7 0.017	 2.6	 6.6 0.84 103.0 -2,0 8.4 -6.3

Loop swing (room temp)
L-rib-rt
L-rib/dmso-rt
Lactone-rt
Lactone/dmso-rt
2dG-hibt-rt	 15.2	 25.0 0.012	 2.6	 4.6	 32628	 748 36.6 40.2 48.6 ? 0.75 140.0 -6.8 6.5 0.2
2dG-hibt/dmso-rt	 15.1	 28.8	 0.012	 2.8	 5.9	 32952	 752 34 37.1 47.8	 63.6 0.75 140.0 0.1 4.1 -4.2 g°,



Number of atoms <B-factory (A2)	 Scaling
Protein Solvent Prot Solv Glvc Aglyc K 	 Li	1122 13,32

32596	 744 35.8 39.8 38.1 -	 0.80 190.0 0.5 -0.4 -0.1
32756	 748 35.6 39.3 49.3 -	 0.75 140.0 0.7 2.0 -2.7

Table 7(b) continued
Identification	 R-Fac R-Free
2dG-lobt-rt 16.2
2dG-lobt/dmso-rt 16.6
Tetrazole-rt
Galac tose-rt

Glucose search (rt)
L-rib/glc-rt
2dG/G1c-lobt-rt 	 16.0

Mutants
E537Q (see also above)

E537Q-L-ribose 17.7
F601A

F60 1 A
F601 A-iptg
F601A-lactone
F601 A-rt
F601A-1fib-rt

G794A
G794A
	

19.2 25.2 0.035 3.6 6.3
G794A-iptg
G794A-rt
G794A-gg-rt
G794A-glc-rt
G794A-1rn-rt

DMSO Titration
DMSOO
DMSO1
DMS010
DMS030

RMS Deviations
Leng Ang B-fac

26.2 0.017 3.0 5.4
26.8 0.013 2.8 4.8

756	 40 43.4 35.4 ?	 0.75 140.0 -4.4 6.5 -2.1

	

4448 21.8 32.8 17.2 -	 0.86 212.4 -2.0 2.8 -0.8

32410	 4332 21.8 35.7 -	 0.74 154.7 -0.4 1.6 -1.1

	

24.5 0.012 2.6 4.4	 32628

	

26.1 0.018 2.9 9.5	 32180



Table 7(c) Binding results from map inspections. Maps (F„-F„, otherwise F„-Fe-marked with an asterisk) were inspected for
ligand binding and the 794-804 loop conformation. Bound = positive feature (at least 4 sigma) for ligand binding. Not Bound
no obvious feature which corresponds to ligand binding. Open = no features to suggest the loop changes from its native
conformation. Closed = both positive and negative features to suggest the loop moves from its native conformation to the closed
conformation (e.g. Figure 34. Dest Open = negative features on the loop to suggest the native conformation is destabilized, but
no obvious positive features to suggest where it goes. Mixed = different loop conformations can be discerned for different
monomers. ICB Novagen induction control B (see Chapter 2 methods). RT = room temperature (-294 K). SG = Space Group

(4=P2„ 19=P2,2,2 1 ). Both P2, data sets had (3=95.04.

Identification Variant Temp (IC SG a b	 c	 glycon
Difference Map Result
aglycon	 794-804 loop

Reaction Coordinate
Early

Unliganded
Native ICB -93 19 149.6 168.4 200.7 -

Real Substrates/E537Q
lactose ICB1E537Q -93 19 149.6 168.6 200.9 Bound Bound	 Open
pnpg2 ICB/E537Q -93 19 149.7 168.6 201.1 Bound Bound	 Open
onpg ICB/E537Q -93 19 151.4 166.8 201.8 Bound* Bound*	 Open*
galactal ICB/E537Q -93 19 149.4 168.1 200.6 Bound* Open*

Substrate Analogs
gal-S-R

Iptg ICB -93 19 151.8 161.2 202.9 Bound* Bound*	 Open*
Iptglu ICB -93 19 151.7 167.0 201.3 Not bound* Not Bound*	 Open*

2-F-gal
2-F-lac none 298 4 107.6 207.3 510.3 Bound Bound	 Open

Middle
Intermediates

Hydrolysis
2-d-gal ICB -93 19 149.6 168.2 200.7 Bound Bound(bis-tris) Open
2-F-gal none 298 4 107.5 207.2 510.2 Bound Closed
Gtl-lobt ICB 101 19 149.5 169.0 200.8 Bound Not Bound



Table 7(c) continued Difference Map Result
Identification	 Variant Temp (K' SG a glycon aglycon	 794-804 loop

Transglycosylation
2dG/Glc-lobt	 ICB -93 19 151.7 167.5 202.0 Bound* Bound *	 Open*
2dG/G1c2-lobt	 ICB -93 19 151.8 168.0 202.8 Bound* Bound *	 Mixed/disordered*
2FG/Gic	 ICB -93 19 151.5 167.7 201.6 Bound* Bound*

Transition State Analogs
L-ribose	 ICB -93 19 149.3 168.2 200.5 Bound Dest Open
Lactone	 ICB -93 19 149.7 168.0 201.0 Bound Dest Open
Tetrazole	 ICB -93 19 149.7 166.8 200.9 Bound Open
JG142	 ICB -93 19 149.6 168.8 200.6 Bound Bound	 Mixed

Late
Hydrolysis

Galactose	 ICB -93 19 149.6 166.5 200.6 Bound* -Open*
Glucose	 ICB RT 19 153.8 171.8 204.8 Not Bound -	 Open

Transglycosylation
E537Q/allo	 ICB/E537Q -93 19 149.4 168.7 200.9 Bound Bound	 Open

Lactose
Lactose	 ICB -93 19 149.5 168.4 200.5 Mixed Mixed	 Open

Na+ & Mg++ Function
Potassium	 ICB -93 19 149.3 168.4 200,4 Bound Open
Rubidium	 ICB -93 19 149.5 168.2 200.5 Bound Open
K+/2dG	 ICB -93 19 149.2 168.0 200.3 Bound Open
EDTA	 ICB -93 19 151.6 166.6 202.2 Gone* Open*

Loop swing (room temp)
L-rib-rt	 ICB RT 19 153.9 171.6 204.4 Bound Closed
L-rib/drnso-rt	 ICB RT 19 153.1 171.0 203.9 Bound Closed
Lactone-rt	 ICB RT 19 153.8 171.5 204.5 Bound Closed
Lactone/dmso-rt	 ICB RT 19 153.5 170,9 204.8 Bound Closed
2dG-hibt-rt	 ICB RT 19 151.9 171.5 204.4 Bound Bound (bis-tris) Closed
2dG-hibt/dmso-rt 	 ICB RT 19 151.9 171.2 204.2 Bound Bound (bis-tris) Dest Open (slight)



Table 7(c) continued Difference Map Result
Identification Variant Temp (IC SG a b	 c	 glycon aglycon	 794-804 loop
2dG-lobt-rt ICB RT	 19 153.9	 171.7 204.4 Bound Not Bound	 Closed
2dG-lobt/dmso-rt ICB RT	 19 153.5	 171.0 204.0 Bound Not Bound	 Dest Open & closed'
Tetrazole-rt ICB RT	 19 153.8	 171.5 204.5 Bound Closed
Galactose-rt ICB RT	 19 153.8	 171.5 204.5 Bound Open

Glucose search (rt)
L-rib/glc-rt ICB RT	 19 153.9	 171.8 204.5 Bound Not Bound	 Closed
2dG/Glc-lobt-rt ICB RT	 19 153.9	 171.9 204.7 Bound Bound (glue)	 Closed

Variants
E537Q (see also above) Bound Open

E537Q-L-ribose ICB/E537Q -93	 19 149.6	 168.1	 200.9
F601 A

F601A ICB/F601A -93	 19 149.7	 168.6 200.7 - Open
F601A-iptg ICB/F601A -93	 19 149.6	 168.0 200.2 Bound Bound	 Open
F601 A-lactone ICB/F601A -93	 19 149.4 166.7 200.5 Not bound Open
F601A-rt ICB/F601A RT	 19 153.7	 171.9 204.4 - Dest Open
F601A-Irib-rt ICB/F601A RT	 19 153.5	 171.8 204.6 Bound Dest Open

G794A
G794A ICB/G794A RT	 19 149.7	 169.6 201.0 - Dest Open
G794A-iptg ICB/G794A -93	 19 149.5	 168.3 200.4 Bound Bound	 Open
G794A-rt ICB/G794A RT	 19 153.9	 171.6	 204.4 - Closed
G794A-gg-rt ICB/G794A RT	 19 153.9	 171.9 204.6 Bound Not Bound	 Closed
G794A-glc-rt ICB/G794A RT	 19 153.9	 171.8 204.8 Not bound Closed
G794A-lrn-rt ICB/G794A RT	 19 153.8	 171.7 204.7 Bound Closed

DMSO Titration
DMSOO ICB RT	 19 153.9	 171.4 204.5 Open
DMS01 ICB RT	 19 153.9	 171.4 204.5 Open
DMS010 ICB RT	 19 153.9	 171.2	 204.3 Open
DMS030 ICB RT	 19 153.5	 171.0	 204.1 Open
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Complexes Along the Reaction Coordinate of 13-Galactosidase

Early Points in the Reaction

Early points on the P–galactosidase reaction path were mimicked using two

methods. First, natural substrates were bound to the altered enzyme, E537Q. In this

variant, residue Glu-537 is replaced by a glutamine, resulting in an enzyme that is

catalytically incompetent (<10-4 x native activity – data not shown and 5 ). Second, two

classes of non-hydrolyzable analogs of P–galactosides– thiogalactosides and 2-F-lactose-

were bound to native enzyme. In sum, atoms were changed at three positions to prevent

substrates from being hydrolyzed: 0 4 N on Glu-537, 04 4 S on the substrate and 02

--> F on the substrate. Attempts to image the natural substrate, lactose, with native

enzyme were unsuccessful, but resulted in an image of galactose bound to the enzyme

with some residual density at the aglycon position.

All of the "early reaction" ligands bind nearly identically. A representative

example from this group, lactose bound to the E537Q variant, is shown in Figure 23. The

ligand sits on the face of Trp-999 and the galactosyl hydroxyls 2,3 and 4 make specific

contacts to enzyme and bound water, while the 6 hydroxyl contacts enzyme and a Na+

ion. A summary of these interaction is shown in Table 8. The aglycon makes almost no

specific contacts in any of the cases above with the important exception of His-418 (see

below). The mean B–factor for aglycon atoms is about double that for the glycon atoms

– reflecting the fact that there are very few specific contacts made by the aglycon. There

is no obvious distortion in any of the ligands – the sugars are in a standard chair



conformation - and those for which there is a structure in the Cambridge Small

Molecule Database (CSD) bind in a conformation similar to that structure. This

verification was made while determining geometry restraints for refinement.
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Figure 23. Stereo view showing the binding of lactose to the E537Q variant. The model
shown is from the final refined coordinates to 1.5 A. Lactose is shown in white (carbon)
and red (oxygen), while the protein is shown in white (carbon), black (oxygen) and gray
(nitrogen). The lactose molecule lies flat on Trp-999 with the galactosyl hydroxyls
(numbered) making interactions to the protein and solvent. The 6-0H is directly liganded
to a bound Na+ ion (green), which has square pyramidal geometry. The 4-0H and 3-0H
contact protein and Mg"(blue) coordinated solvent. The 2-0H has one polar contact to
Glu-461. The glucose moiety, which lies further out of the active site, make no polar
contacts with protein, although there is a hydrogen bond between the glucose and the
galactosyl ring oxygen. The bound Mg"(blue) shows octahedral geometry, with three
solvent ligands and three protein ligands (Glu-416, His-418 and Glu-461).

A comparison of the binding modes of onpg and pnpg (Figure 24) shows that the

onpg nitro group contacts His-418 while the pnpg nitro group does not. This suggests an

explanation for the long observed elevated rate of ortho substituted aryl glycosides

relative to para substituted ones 6 . Galactosylation for onpg is about 15x faster than for

pnpg (Table 9). Since this probably involves delocalization of an electron on the pi

electron cloud of the leaving group, an interaction between His-418 and the nitro group
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might help stabilize the developing negative charge. Since pnpg appears unable to

make this interaction with His-418, its rate for galactosylation is lower than for onpg.

Figure 24. Stereo view comparing the binding of onpg (2.0 A) and pnpg (1.5 A) to
E537Q. Both ligands bind similarly to lactose. The interaction between the onpg nitro
group and His-418 is not possible with pnpg. This interaction could help bond cleavage
by slightly stabilizing the developing negative charge on the leaving group. Another onpg
molecule (not shown) was weakly bound such that its nitrophenyl ring stacked with the
one shown.

In these "early reaction" complexes, Cl is about 6 A from the nucleophile Glu-

537, while 04 is also about 6 A from the potential acids, Mg" and Glu-461. Therefore,

the substrate would need to reposition relative to the enzyme before nucleophilic or acid

catalysis can take place.



Table 8. Distances between polar enzyme groups and the galactosyl substituents. Also shown are distances between the active site
Mr and Na+ ions and the enzyme. Distances were determined based on Monomer A for each complex. Distances greater than 3.2 A
are not shown. If a substituent is absent in a ligand, an "a" is entered in the table.

Early Complexes
E537Q Complexes Native

Intermediates T - State Analogs Products

native	 native	 lactose	 onpg	 pnpg galactal iptg 2-F-gal 2-deoxy- 2-deoxy- lactone	 tetrazole galactose E537Q/al-
(Na+)	 (K+) gal (Na+) gal(K+) Joactose

2-OH(F) N460 (odl) a 3.2 a a

N460 (nd2) a 3.0 a a

E461 (oel ) a a a 3.1 3.0 3.0

E461 (oe2) 2.6	 2.9	 2.6 a 2.5 a a 3.2 2.5

E537 (oel) a 2.8 a a 2.6 2.7 2.7

E537 (oe2) a a a 3.1 3.1 3.1

HOH 3.2	 3.1 a a a

3-OH H391 2.7 2.7 2.6 2.8 2.5 2.8

H357-HOH 2.7 2.7 2.6 2.7 3.0 2.8

E461 (oe 1 /oe2) 3.2 3.2

E461 (oe 1 /oe2) 3.0	 3.1 2.9 2.7 3.!

E(Q)537 (I) 3.2	 2.9	 3.0 3.1

Mg-HOH (3) 2.6 2.7 2.6 2.7 2.8 2.8

H391-110H 2.8	 2.6	 2.8 2.7 3.0 2.8

4-OH D201 2.7	 2.6	 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.6

Mg-HOH (1) 2.5	 2.7	 2.6 2.4 2.8 2.8 2.6 2.6 2.7 2.4 2.6 2.6

H391-HOH 2.9 3.0

Glyco - 0
6-OH D201 3.2	 3.2	 3.2

H540 2.8	 2.8	 2.8 2.8 2.6 2.8 2.8 2.8 2.8 2.6 2.8 2.8

N604 2.9	 3.0	 2.9 2.9 3.1 3.1 2.9 3.1 2.9 2.9 2.9 2.9

Na+ 2.3	 2.4	 2.3 2.3 2.4 2.5 2.5 2.6 2.5 2.6 2.4 2.3

W568 3.1 3.0



Early Complexes
E537Q Complexes Native

Intermediates T- State Analogs Products

native	 native	 lactose	 onpg pnpg galactal iptg 2-F-gal 2-deoxy- 2-deoxy- lactone tetrazole galactose E537Q/al-

(Na+)	 (K+) gal (Na+) gal(K+) lolactose

01 E461 (oe2) a a a a 2.5 2.5

M502 (sd) a a a a 3.0 3.2

05 N102 3.1	 3.2 3.1

E537 (oe2) 2.6 2.4 2.4 3.1

Y503 (oh) 2.9 3.0 3.1

C I E537 2.9 3.0

Mg++ E416 (oel) 2.1	 2.1	 2.0	 2.2	 2.0 2.1 2.0 2.1 2.1 2.1 2.1 2. l 2.1 2.0

E461 (oel ) 2.2	 2.2	 2.2	 2.3	 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.0 2.0

H418 (ndx) 2.2	 2.2	 2.2	 2.2	 2.2 2.2 2.2 2.2 2.2 2.2 2.1 1.9 2.1 2.2

HOFI (1) 2.2	 2.1	 2.2	 2.1	 2.1 2.1 2.1 2.2 2.2 2.1 2.1 2.2 2.0 2.1

HOH (2) 2.1	 2.1	 2.2	 2.3	 2.1 2.1 2.2 2.2 2.2 2.2 21 2.2 2.1 2.2

HOH (3) 2.1	 2.1	 2.1	 2.3	 2.1 2.2 2.0 2.2 2.2 2.2 2.2 2.1 2.2 2.1

Na+ F601 (o) 2.4	 2.6	 2.4	 2.4	 2.4 2.4 2.3 2.4 2.5 2.7 2.5 2.3 2.3 2.4

N604 (od2) 2.4	 2.6	 2.4	 2.4	 2.4 2.3 2.3 2.5 2.5 2.7 2.4 2.4 2.4 2.4

D201 (oel ) 2.4	 2.6	 2.3	 2.3	 2.3 2.4 2.4 2.3 2.3 2.6 2.4 2.5 2.4 2.3

HOH 2.3	 2.4	 2.4	 2.4	 2.2 2.2 2.4 2.3 2.3 2.6 2.4 2.3 2.3 2.3

HOH/6-01-1 2.3	 2.8	 2.3	 2.4	 2.3 2.3 2.4 2.5 2.5 2.6 2.5 2.6 2.4 2.3
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Table 9. Representative kinetic parameters for 3-galactosidase. Parameters for
lactose, pnpg and onpg hydrolysis are from phosphate buffer 7 . Parameters for lactose
transglycosylation and allolactose hydrolysis are from tris buffer 8 . Inhibition for
substrate analogs is from TES buffers. Most of the transition state analogs were measured
in TES buffer lo , with the exception of the tetrazole ll and BBG12 . The galactal kinetics
were done in imidazole buffer 13 and the 2-F-dnp-gal kinetics in phosphate24.

K„ (s- ')	 K. (mM)	 Li/Km (s-1 M- ') K, (mM) k2 (s 1 ) k3 (s-1)
60	 1.4	 4.3 x 104

61	 1.4	 4.4 x 104

65 900lactose
(hyd)
lactose (tg)

1.3

allolactose 92 1.0 9.2 x 104
pnpg 90 0.04 2.2 x 106 0.036 100 900
onpg 550 0.14 3.9 x 106 0.052 1580 900
galactal 270' 54b 4.6x10-3
2-F-dnp-gal 13' 0.78' 0.01' 4.2x10-6f
a 2"d order rate for inactivation b assumes K, - 200 rnm. Galactal inhibition has been
measured up to 10 mM w/o saturation. ' 0.01/(0.78/1000) d Ki e rate constant for
inactivation f rate constant for reactivation

Inhibitor	 Ki (mM)	 Ki"(mM)	 (s-1) 
Substrate Analogs

3-D-glucose	 >300	 17	 380
p-D-glucose (2-F-gal) 	 460	 7.6 x 10-5
p-D-galactose	 40
2-deoxy-3-D-galactose	 160
phenyl-thio-P-D-galactoside	 0.19
o-nitro-phenyl-thio-P-D-galactoside 0.3
isopropyl-thio-P-D-galactoside 	 0.085
lactose	 1

Transition State Analogs
galactonolactone	 0.5
L-ribose	 0.21
D-galactal	 16 x 10-3
galactotetrazole	 1 x 10
"BBG"	 - 1 x 10-6
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Intermediate Points in the Reaction

True Catalytically Competent Intermediates

True intermediates along the reaction path were isolated by using two different

substrates for which the rate of step 2 is much smaller than step 1, allowing the

intermediate population in the crystal to build up long enough to collect diffraction data.

Dinitropheny1-2-F-galactoside was prepared by John McCarter, Lloyd MacKenzie and

Steve Withers at the University of British Columbia, Vancouver, BC. The dinitrophenyl

group increases k 2 because the larger pi electron cloud makes it easier to delocalize the

negative charge on the leaving group. The 20H F change is thought to have two

effects. First, the interactions with enzyme should be different due to the replacement of

the OH hydrogen by a F lone pair, eliminating the possibility of H-bond donation by the

2-OH (see below). Second, because the F is more electronegative it destabilizes any

positive oxocarbonium ion which develops in the transition state. The other substrate

used to image a covalent intermediate is the slow-binding inhibitor, galactal (Figure 22).

This is thought to form a 2-deoxy-galactosyl-enzyme intermediate with a half-life of 10

minutes 13 . A 40 minute soak time was enough for the galactal to diffuse throughout the

crystal and form the 2-deoxy-galactosyl intermediate, which was trapped with flash

freezing. With higher concentrations of the galactal, room-temperature data collection

could also be performed, resulting in lower resolution images of the intermediate.

Figure 25 compares the native/2-deoxy-galactosyl intermediate with the

E537Qflactose complex. There is a covalent bond between the ligand and Glu-537 and



98
the galactosyl ring has moved deeper into the active site, rotating –90° to rest on Trp-

568. The 2- and 3- substituents have moved to new binding locations, which were

(roughly) occupied by water molecules in the unliganded enzyme. Changes in the

binding of the 4- and 6-0Hs are more subtle, although both are deeper in the active site.

The 6-0H is still liganded to the Na t, although the O-Na+ distance has increased by 0.1-

0.2 A. Phe-601 has swung into a different rotamer conformation to pack against the

hydroxymethyl of the galactosyl moiety. There are additional changes to the enzyme

linked to the Phe 601 swing which will be discussed later.

Contacting both Glu-461 and the galactosyl ring oxygen is a water molecule (or

other acceptor molecule – see below). Presumably this is the water molecule that will

bond to C 1 to form the product. In these complexes, this water molecule does not have

Figure 25. Stereo view comparing the 2-deoxy-galactosyl intermediate (1.7 A, white
carbons) to the lactose complex (gray carbons) In the intermediate, the galactosyl moiety
has rotated about 90 degrees and moved deeper into the active site stacking on Trp-568
(not shown in the figure, but in the parallel to the plane of the paper beneath 2dgal). This
substantially changes the environments of the 2 and 3 substituents. The 4 and 6-OHs
change less, although the 6-0H moves about 0.1-0.2 A farther from the Na t ion (Table
8). Phe-601 swings toward the Nat ion filling in for the departing hydroxymethyl group.
Additional changes in enzyme structure are discussed later in the chapter.
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direct access to Cl, suggesting the galactosyl enzyme bond is broken prior to attack.

by the water molecule, consistent with an SN 1 mechanism for degalactosylation

Significantly, the Mgr ion does not interact directly with the substrate, while its

four of its ligands, including Glu-461, do interact with the substrate. This suggests first,

that the active site acid is Glu-461, not Mr. Second, the Mr may play a structural role

in properly positioning Glu-461, His-418 and water molecules, or an electronic role in

tuning the pKas of its protein ligands, Glu-461, Glu-416 and His-418.

These complexes represent intermediates for hydrolysis. Three attempts were

made to determine the structure of the intermediate for transglycosylation by soaking

either the 2-F-galactosyl or 2-deoxy-intermediate in high concentrations of glucose (500-

1000 mM). A lower resolution (3.0 A) F.-Fa map between the 2-deoxy-galactosyl

intermediate with and without glucose shows a 8 6 feature in the active site on Trp-999

(Figure 26). Fo-F. maps could not be calculated for frozen data sets due to different

lattice changes caused by freezing (the high concentrations of glucose appear to alter the

freezing properties). In these cases, F.-F. maps also suggest glucose binding adjacent to

Trp-999, interacting with Glu-461, Asn-102 and perhaps His-418. However, a

convincing model could not be refined. Additionally, in some of the active sites this

density appears more linear than planar. Overall, this suggests the glucose molecule is

bound to the intermediate in multiple conformations, and since none of the conformations

are highly occupied, none of the binding modes can be discerned.
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Figure 26. Stereo view of four-fold averaged 3.0 A Fo-F0 electron density map contoured
at +/- 4 6 (0.08 electrons/A) for glucose binding to the intermediate. The data sets were
collected at room-temperature on the 2-deoxy-galactosyl intermediate in the presence and
absence of 500 mM glucose. The feature on Trp 999, near Ser-796 and Asn-102 suggests
a general binding location for glucose, but a model could not be refined, suggesting
multiple binding modes.

The suggestion that glucose has multiple binding modes is supported by

biochemical experiments in the literature l5 The second order rate constant for glucose

addition to the intermediate is kuc=1.2 x 104	significantly below the diffusion

limit. Also, the first order rate constant for glucose addition to the intermediate after

binding is smaller than for the reaction with water 16 . This suggests that glucose has other

populated binding mode(s) which do not lead to allolactose production.

Transition State Analogs

Whether bond cleavage going to or from the intermediate is an SN1 or SN2

process, the anomeric center should be planar near the transition state(Fig 4, Chapter 1).

In the case of an SN1 process, there will also be a positive charge on the galactosyl ring

(an oxocarbonium ion), whereas for an SN2 process there will be no formal charge. An
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ideal transition state analog, then, would be planar at Cl. To mimic the TS for the

SN I cleavage the analog should also be positively charged.

Three ligands were used as transition state analogs – galactonolactone,

galactotetrazole (kindly provided by Thomas Heightman and Andrea Vasella, ETH,

Zurich) and L-ribose. The lactone and tetrazole are both planar at Cl. Although they

both lack a formal charge at pH 7.0, they both have a dipole moment with the positive

end at Cl. L-ribose is not expected to be planar, but generally follows the inhibition due

to other transition state analogs. All three bind in about the same mode as the

intermediates. Glu-461 contacts the atoms corresponding to the glycosidic oxygen in the

Intone and the tetrazole (there is no such atom with the L-ribose – see below), further

supporting its role as the active site acid/base. The lactone binds in the 1-5 form,

although this is by far the least populated of the three forms for the lactones ( 17 and

Figure 22), illustrating the specificity of the enzyme.

Differences Among the Intermediate Complexes and the Reaction Coordinate in the
Vicinity of the Transition State

Although all of the intermediate complexes bind similarly, there are some subtle

differences which offer insight into the reaction coordinate near the transition state.

The chief difference between the two covalent intermediates (2-F and 2-deoxy) is the

location of Glu-537 (Figure 27). This residue is slightly rotated in the 2-deoxy-galactosyl

complex, presumably due to the covalent bond between the sugar and Glu-537. The

rotation is increased in the 2-F-galactosyl intermediate, probably due to repulsion
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between the fluorine and side chain carbonyl of Glu-537 . The ligand stays the same

suggesting its binding orientation is determined by the specific interactions with

hydroxyls 3,4 and 6.

4-0H	 4-OH
6-OH	 • 6-0H.6,7at.er

, i	 #

t.. n,„..t
Nip.-Glu-461

	

00;-; 	 05	 irtZt;t -..........„ 	 ,

	

Asn-460	 Asn-460	 /
Glu-537	 IV?" ., Glu-537111

Figure 27. Stereo view comparing the 2-deoxy-galactosyl intermediate(1.7 A, gray), the
2-F-galactosyl interrnediate(2.1 A, white) and unliganded enzyme (1.7 A, black). The
galactosyl ring sits nearly identically, suggesting its binding mode is dominated by the
covalent bond to Glu-537 and noncovalent interactions made by hydroxyls 3,4 and 6.
The major difference between the three structures is the rotation of G1u537. This residue
rotates 25 degrees (x3) in the 2-deoxy-intermediate, presumably from forming the
covalent bond. The rotation increases by 15 degrees in the 2-F-intermediate, probably
from repulsion of the Glu-537 oxygen by the fluorine.

The lactone and tetrazole bind similarly and rotated relative to the intermediates,

slightly shifting the 2 substituent by --0.7-0.8 A and the other substituents by -0.2-0.5 A

(Figure 28). This shift is probably due to steric repulsion between Glu-537 and the Cl

mimic. Since the 2 substituent is closest to Cl, it changes the most. Since the true

transition state would involve a partial bond between Glu-537 and the CI mimic, it is

likely that the lactone and the tetrazole are not ideal transition state mimics, but represent

a position on the reaction coordinate between the transition state and the products (or

reactants).

3-OH
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Figure 28. Stereo view comparing the planar transition state analog galactonolactone (1.7
A, white carbons) to the 2-F-galactosyl intermediate (1.7 A, gray carbons). The ring
flattening of the lactone is accomplished primarily by moving the ring oxygen (or
nitrogen in the case of the tetrazole, which is not shown) without affecting the relative
geometry of substituents 2-6. The lactone rotates and shifts, probably due to repulsion
between C 1 and Glu-537 . The 2 substituent, closest to Cl, moves the most.

The Binding of L-ribose is Atypical

The binding of the third transition state analogue, L-ribose is a curious case.

Inhibitor binding studies suggested that L-ribose should bind in its furanose form,

because, first, the temperature dependence of its inhibition closely follows the

temperature dependence of the furanose population 17 . Second, in the furanose form, the

hydroxyls are oriented similarly to hydroxyls 2,3 and 4 of galactose. In the pyranose

form, however, L-ribose clashes at the 2-0H – galactopyranose is equatorial at this

position whereas L-ribopyranose is axial. Despite these considerations, the structure of

L-ribose bound to f3–galactosidase shows that it binds in the pyranose form, but in a non

standard orientation (Figure 29). It is in a normal chair conformation, but rotated 60

degrees and puckered inversely from galactopyranose. The effect is that the "3","4" and



"6"-OHs and ring oxygen make nearly identical interactions to the transition state

analogs and intermediates, but the "2"-OH moves slightly.
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Figure 29. Stereo view comparing the binding of L-ribose (1.5 A, white carbons) to the
lactone (1.7A, gray carbons). Somewhat surprisingly, L-ribose binds its pyranose form
with the ring oxygen and the C 1 equivalent swapped. However, because only it has a
hydroxyl instead of a hydroxymethyl, it can fulfill almost identically the interactions
made by the 3,4 and 6-0Hs and the ring oxygen. The positioning of the 2-0H shifts the
most.

In both the lactone and L-ribose structures, Phe601 is in the intermediate

conformation, whereas with the tetrazole, the native conformation is favored. This is

probably due to some extra density sitting next to the tetrazole in the region of Phe-601 –

perhaps a DMSO molecule. A room temperature structure in the absence of DMSO

shows that Phe-601 swings closed and the additional enzyme changes also occur.
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Product State Complexes

Structures of product states for hydrolysis were determined by collecting data on

crystals with high concentrations of galactose and glucose. The galactose complex shows

that galactose binds similarly to the lactone and tetrazole with the 2-, 3- and 4- hydroxyls

in similar positions (Figure 30). The main difference is that the 6-0H has shifted along

the Na+ sphere back to the early conformation, displacing Phe-601, which has opened to

the native conformation. This is probably due to steric repulsion between Glu-537 and

C 1 created by puckering the galactose ring.

Figure 30. Stereo view comparing the product galactose (1.5 A, white carbons) to the
transition state analog galactonolactone (1.7 A). The puckering of the galactose results in
a shift of the hydroxymethyl group (including the 6-0H), while leaving the 2, 3 and 4-
OHs unmoved. Although this shift is very slight, it is enough to move Phe-601 back into
the native conformation, which resets the enzyme conformational change.

One attempt was made to determine the structure of glucose bound to the active

site by soaking a native crystal in 500 mM glucose. F o-F0 maps showed no obvious

electron density greater than 3 sigma, suggesting that either the glucose was not bound

specifically or was competed out by something else in the buffer. This is not surprising,
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because the dissociation constant for glucose from the active site is about 400 mM

(Table 9). The crystals were sensitive to higher concentrations of glucose, inhibiting data

collection under these conditions.

A complex between allolactose and the E537Q variant was used as a mimic for

the product complex fo • transglycosylation. Native enzyme could not be used because

allolactose is a substrate of P–galactosidase. In this complex, the galactosyl moiety binds

as in the early complexes. Beyond the galactosyl moiety a linkage that involves 2 atoms

to branching density can be seen, consistent with the allolactose 1-6 bond. (Figure 31).

Part of the glucose moiety is not visible, suggesting disorder. Three glucose

conformations can be modeled that are consistent with the branching density and not anti

to the 1-6 bond. Out of all of these conformations there are only 3 contacts to protein <

3.5 A, and all are > 3.1 A. These observations suggest that although a clear binding

mode cannot be seen for the glucose moiety, there is little reason to expect one. In the

case of lactose, onpg and pnpg, the galactose and aglycon are connected by a single atom,

which severely limits the conformational freedom of the aglycon in comparison to

allolactose. Furthermore, in lactose there is an interaction between the galactose ring

oxygen and 02 of the glucose which further restrains the lactose conformation.
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Figure 31. Stereo view showing the binding of allolactose to the E537Q variant. The
electron density is positive 1.5 A F 0-Fe density (3 sigma, or 2.13 electrons/A 3) with Fe
coming from the refined coordinates without the allolactose. The density clearly shows
the binding of the galactosyl moiety and a two atom link to branching density, which is
consistent with the 1-6 linkage in allolactose. The branching suggests three
conformations for the glucose molecule, all with reasonable torsion angles with the 1-6
bond (trans, gauche + and gauche -). Only one of these conformations is shown. None of
these conformations have distances to protein atoms less than 3.1 A.

An Enzyme Conformational Switch

Induction of the Switch by Ligand Binding

As mentioned above, the swing that Phe-601 goes through between the early

complexes and intermediate is linked to further changes in enzyme conformation (Figure

32). Arg-599 packs with Phe-601 and is ordered in the early complexes, but becomes

disordered in the intermediate. More strikingly, the 794-804 loop swings toward the

active site with residue shifts up to 9 A.

One effect of the intermediate, or closed, conformation is to restrict access to the

intermediate and the galactosyl group probably can not be released from the active site in

this conformation. However, the change does not act as a lid, sequestering the active site
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Figure 32. Stereo view showing the conformational switch. The native, or open
conformation is shown with gray carbons and the intermediate, or closed conformation is
shown with white carbons. When the substrate moves to the intermediate, Phe-601 can
swing to the left. This destabilizes Arg-599 and its hydrogen bonds to the backbone
carbonyls of Gly-794 and Ser-796. The 794-804 loop swings to the left toward the active
site making two new polar interactions with its backbone to Asn-102 and Asp-598. The
Ser-796 side chain, which was involved in an intraloop hydrogen bond in the open
conformation (on the right) moves about 9 A and its Ca and Ca pack on Phe-601.

from bulk solvent as has been observed with other enzymes18.

This conformational change might be triggered, for instance, by changes in the

charge states of Glu-461 and Glu-537 in going to the intermediate. However, this

possibility seems unlikely since the conformational change is observed with the transition

state analogs L-ribose, galactonolactone and galactotetrazole, and, most importantly, with

L-ribose bound to the inactive variant E537Q. Thus the conformational change appears

to be a function of binding interactions only. Inspection of the structure suggests that the

conformational change is triggered by a subtle change in the coordination geometry of

the active site Na+ ion in going from the early complexes to the intermediates.

In the native, unliganded structure, the M.+ ion has two water ligands and three

protein ligands. In the early complexes, one of the water ligands is replaced by the

galactosyl 6-OH in about the same place (Figure 23, pg. 92). This water or 6-0H
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prevents Phe-601 from swinging into the new rotamer well. In moving to the

intermediate, the 6-OH remains liganded to the Ne, but moves about 20 degrees on the

Na+ sphere and 0.1-0.2 A further away from the Na4, opening some room for Phe-601 to

swing in (Figure 25, pg. 98). This appears to destabilize Arg-599, breaking its contacts to

two backbone carbonyls of the 794-796 loop. The destabilized loop finds two new

contacts in the closed conformation to Asp-598 and Asn-102 (Figure 32). Furthermore, a

new hydrophobic interaction is created between Phe-601 and Ser-796. The change in

galactosyl position required to trigger the conformational change is very small, as the

galactose complex is open, while the lactone complex is closed (Figure 30, pg. 105).

Induction of the Switch by Amino Acid Substitution

Figure 33 shows a Ramachandran plot for the 794-804 loop in the two

conformations. In the native conformation, Gly-794 is in a region that would be high

energy for a non glycine residue, but moves to a lower energy conformation (for non-

glycine) in the closed conformation. Therefore, it seemed reasonable that a mutation at

this position would force the enzyme into its intermediate conformation without the

intermediate present. This position is of further interest because it has been shown to be

functionally important (see below). The variant G794A was constructed and the structure

determined. Figure 34 shows that, as predicted, the G794A enzyme is in the closed

conformation without ligand present. Further structural studies show iptg binding to

G794A forces the enzyme into its open conformation.
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Figure 33. Phi-psi plot for the 794-804 loop in the open and closed conformation. Gray
portions show lower energy conformations for non-glycine residues. Glycine 794 moves
to a low energy region in the closed conformation. Altering Gly-794 to Ala forces the
loop into the closed conformation (see text). Figure prepared with dphipsi (M.Quillin,
unpublished program.)

Figure 34. Fo-F0 electron density map between G794A and native enzyme contoured at
+4/-5 G. Native coordinates are shown in black and G794A coordinates are shown in
white. The density clearly shows the loop swings to the left into a new conformation as a
result of the mutation. Phe-601 also swings to the left and Arg-599 becomes disordered.
Position 794 is at one end of the loop and not visible in the figure.

n
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Because Phe-601 appears to play an important role in the conformational change

by affecting the stability of Arg-599 and drawing Ser-796 in, the variant Phe-601-Ala

was constructed. This appears to have the general affect of destabilizing both

conformations, although iptg and L-ribose bind in the same modes as in native and

G794A (Table 7(c)).

Besides the obvious changes described above there are much more subtle changes

involving the overall enzyme conformation. Figure 35 shows the correlation between

changes in domain 3 interatomic distances relative to native protein induced by the

various ligands or mutations. It is defined as:

4 L ./ (C,1:,	 115d	 (4 3d2°

(Scl' •&/2). E 	
N' N2'4 a=1

where, 8d' i , refers to the change in distance between the ith and jth atoms in going from

native enzyme to structure 1. The superscript over the 1 refers to which monomer is

being considered and an average is taken over the four monomers in the asymmetric unit.

This gives a measure of how similarly a perturbation (ligand binding or mutation) affects

the structure of the enzyme. Although the 8cls are typically less than 0.01 A and the

maximum &Is are about 0.5 A there is still an interpretable correlation in whether the

enzyme is in its open or closed form. Of particular interest are E537Q/L-ribose and

G794A, which fit with the closed complexes and G794A/iptg which fits better with the

open complexes. Thus the gross features of the conformational change described above

propagate to a small overall change in the C a trace for domain 3.
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lactose

f601a

g794a/iptg

g794a

Rb+

K+

galactal&K+

galactal

jg142.

1-ribose

lac tone

e537c1/1-ribose

e537q/allolactose

e537q/galactal

e537q/pnpg

e537q/lactose

early	 is	 int I

Figure 35. Correlations between delta-difference plots for Ca atoms of domain 3 (see the
text for the formulation). Light squares mean the two ligands and/or mutants have a
similar effect on native enzyme, whereas dark squares mean the effects are different. All
the "early" complexes have a similar effect, as do the transition state analogs. The 1(1"
and Rb+ complexes have an "early" effect, whereas G794A has a transition state effect.
G794A with iptg, however, as a weak "early" effect. L-ribose has the same effect on the
E537Q variant as it does on native, suggesting the changes due to ligand binding over
shadow changes due to the mutation.
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Energetics of the Switch

Inhibition studies can be used to estimate the free energy required for the

conformational change:

KiG794A

AG(open <---> closed)QOGbf,RT ln( 	 . )ingKt atrve

This assumes that inhibitor binding results in the same conformation for both enzymes.

That is, iptg binds to the open conformation in both native and G794A, and lactone or L-

ribose bind to the closed conformation in both cases. These studies, done in collaboration

with Shamina Hakda and Gene Huber at the University of Calgary, CA, show that iptg

binds 5x worse to G794A than native, because it must use some of its binding energy to

open the loop. On other hand, the Intone and L-ribose bind 4x and 14x worse to native,

because they must use their binding energy to close the loop. This suggests that in the

absence of ligand, the free energy difference between the two enzyme conformations is

about 1-1.5 kcal/mol, or 2-3 kT at 300 K. This is relatively small, suggesting the

conformational change would be fairly accessible to thermal fluctuations.

Effects of Freezing, Solvent and Crystal Packing on the Switch

Some of the low temperature data sets show ambiguous density for part of the

794-804 loop. In these cases, a room temperature data set was also collected (usually to

–3 A resolution), sometimes also collected in the presence of 30% DMSO. Fourfold
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averaged F,-Fo maps were calculated to determine the state of the conformational

change. The results are listed in Table 7(c).

The open conformation, which is seen in all of the early complexes, is unaffected

by solvent, freezing, or crystal packing (meaning that all four monomers are about the

same). The closed conformation, however, is more variable. The transition state analogs

L-ribose and galactonolactone clearly show the closed conformation at room temperature

with or without DMSO. At low temperature, the electron density is more ambiguous,

with residues –794-797 appearing closed but 798-801 probably in multiple

conformations. The loop in the tetrazole complex is closed at room temperature (without

DMSO) but open at low temperature, possibly due to DMSO binding near both the

tetrazole and Phe-601.

The behavior of the intermediates is more complex, depending on DMSO, bis-tris

and temperature. Also, different monomers show different degrees of disorder for Phe-

601, Arg-599 and the 794-804 loop. DMSO appears to destabilize the closed

conformation by binding weakly on Phe-601, disrupting the Phe-601 Ser-796

interaction. This binding could not be confirmed with Fo-Fo maps because high

concentrations of DMSO change the cell dimensions. However, F o-F, density for many

of the frozen data sets show fairly strong features on Phe-601, suggestive of DMSO

binding. Kinetics with DMSO shows weak mixed inhibition in the 1 M range, which is

–1/3 the DMSO concentration used for data collection.

In the case of the F601A mutation, in the frozen complexes, which are in the

presence of DMSO, there is sometimes density in place of the Phe-601 side chain, which



115
is, nevertheless, disconnected from the main chain. In these cases it appears that

something is filling in for the F601 side chain, perhaps DMSO.

Most strikingly, bis-tris binds to the 2-deoxy-galactosyl intermediate, making

interactions with Asn-102, His-418 and the attacking water molecule (Figure 36). There

is little density for such a molecule in the native structure, suggesting the bis-tris binds

better to the intermediate. This is supported by inhibition studies, which suggests that

bis-tris acts an uncompetitive inhibitor, binding 5-10 x better to the intermediate than the

ground state (Table 10). These studies also suggest that bis-tris can act as an

intermolecular acceptor to form a bis-tris-galactoside at similar efficiency to the

formation of allolactose when glucose is the acceptor. The 2-deoxygalactosyl-enzyme-

bis-tris complex points to Asn-102 and His-418 playing a role in orienting the

intermolecular acceptors.

Figure 36. Stereo view of the the binding of the uncompetitive inhibitor bis-tris to the 2-
deoxy-galactosyl intermediate. Despite its tremendous flexibility, the buffer molecule
binds clearly in the active site, making polar interactions with Asn-102, the water
molecule which will attack the intermediate, possibly the Trp-999 ring nitrogen and a
bidentate interaction with His-418.
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Table 10. Kinetics of P-galactosidase variants. See methods for experimental details.
Ki is the competitive inhibition constant, Ki" is the uncompetitive inhibition constant and
k4 is the rate constant for the acceptor reaction between the galactosyl-enzyme
intermediate and the given ligand. Results with an asterisk were provided by S. Hakda
from the laboratory of G. Huber, University of Calgary.

kca, (onpg) IC, (onpg) Kai K m (onpg) kat (Pnpg) K,,, (pnpg) kat/K m (pnpg)
(s-1) (mM) (s_im-,) (s-1) (mM) (s-W-1)

Native 530 0.101 5.2x106 53 0.044 1.2x106
G794A 76 0.241 3.2x105
F601A 97 0.234 4.1x105

Ki (mM) Ki" (mM) (s-1)
L-ribose

Native 0.28*
G794A 0.02*

lactone
F601A 1

Native 0.13*

iptg
G794A 0.035*

Native 0.11*
G794A 0.59*

Glucose
Native 230* 21 450
G794A 43* 1 * 22*

Bis-Tris
Native 102 17 420

061190
Native 900	 (300)
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Functional Consequences of the Conformational Switch

Transition State Stabilization

Kinetic studies done on G794A and other substitutions at position 794 (Asp, Asn

and Gin) show that k3 decreases, while k2 slightly increases for lactose and pnpg

hydrolysis 7, 19, 20 . These studies also show that the 794 variants bind transition state

analog inhibitors better and substrate analog inhibitors worse than native enzyme. With

the structural data this suggests that in the closed conformation the enzyme is better

prepared to recognize the first transition state than in the open conformation and it is

more reluctant to release the intermediate.

Allolactose Production

Although the position 794 variants are a slightly improved for hydrolysis of slow

substrates, Figure 37 shows the variant G794A has diminished ability to produce

allolactose relative to native enzyme. Surprisingly, acceptor studies with G794A suggest

that glucose binds to the intermediate better than with native enzyme (Table 10). Taken

together, the kinetics and structural data suggest that if the enzyme is in the closed

conformation, hydrolysis is favored over transglycosylation via nonproductive binding of

glucose. Allolactose production must occur primarily from a conformation other than the

closed one.
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Figure 37. Activity assays for the action of 13-galactosidase variants on lactose. The
assay is a capillary electrophoresis based assay21 and was done at room temperature with
50 mM Na2HPO4, 1mM MgC12 pH 7.0. Native enzyme both with and without 30%
DMSO and F601A all produce significant amounts of allolactose, whereas G794A
produces about 10-fold less.

Figure 38 shows a sequence alignment from various P-galactosidases in the

regions of the conformational change. Most of the residues involved in the

conformational switch (Phe-601, Asn-102, Asp-598 and Gly-794) are well conserved,

except for the proteins coded by the ebg gene from E. colt and the K. lactis, a yeast gene.

The region preceding Gly-794 is also well conserved except in ebg and yeast, although

the loop itself is poorly conserved. As this region preceding Gly-794 underlies Trp-999

and Phe-601, it is probably important in shaping the active site pocket. Other key active

site residues: Asp-201, His-357, Arg-388, Arg-391, Glu-416, His-418, Glu-461, Glu-537,

Glu-540 are completely conserved in all sequences, suggesting that the basic mechanism

for hydrolysis is the same.
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Figure 38. Multiple sequence alignment in the regions of the conformational switch. All
sequences are bacterial, except for K.lac, which is a sequence from yeast.
S.the=Streptococcus thermophilus, C.ace=Clostridium acetobutilicum,
L.del=Lactobacillus delbrueckii,Llac=Leuconostoc lactis, E.col=Escherichia coli,
E.clo=Enterobacter cloacae, K.pne=Klebsiella pneumonia, T.mar=Thermotaga
maritima, ebg=E. coli ebg, Athro=Athrobacter, Klac=Kluyveromyces lactis.

The ebg gene from E. coli encodes another 13-galactosidase. It has a similar

operon structure to the lacZ gene with its own repressor, and was identified in strains

without lacZ. The ebg 13-galactosidase cannot support growth on lactose. Selection

experiments showed that the single point mutants Asp-102 ( Asn and Trp-999 ( Cys (lac

Z numbering) allow ebg to support growth with iptg present 22 . These enzymes can

hydrolyze lactose but cannot produce allolactose. The double mutant Asp-102 --> Asn &

Trp-999 4 Cys can produce allolactose and supports growth on lactose without iptg

present23. This suggests further that Asn-102 is important for allolactose production.

Since the sequence of 794-804 is poorly conserved except for 794, the identity of

its sidechains are presumably unimportant. However, because the glycine is conserved,

whether it is open or closed is probably important and this influence may exerted through

Asn 102 positioning. The only sequence besides ebg without Gly-794 is the yeast

sequence, which has a proline and a shorter loop, although the region preceding Gly-794

is well conserved. The rest of the sequences are from bacteria. Since gene organization is
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different in eukaryotes, the yeast gene is probably regulated differently. For example,

with yeast galactose is a gratuitous inducer24 , whereas with E. coli, galactose is a very

weak inducer25.

Summary – The Role of the Conformational Switch in Catalysis

The preceding sections have described a conformational switch in I3-galactosidase

which can be induced by substitutions at Gly-794. The 794 substitutions have the effect

of increasing hydrolysis at the expense of allolactose production. This occurs by forcing

the enzyme into its closed conformation, which favors non-productive binding of glucose

Thus, Gly-794 appears to be conserved because any other residue would likely limit

allolactose production and thus inhibit the ability of the bacterium express the genes of

the lac operon.

Because ligand binding, in particular the binding of catalytic intermediates, also

triggers this conformational switch, it may also play a role in the catalytic mechanism of

native enzyme. In particular, if the enzyme is in its closed conformation, it is likely that

allolactose will not be produced, and hydrolysis will be favored_ This suggests that if the

enzyme is in its open conformation, allolactose production would be favored over

hydrolysis.

Whether the loop conformation affects catalysis with native enzyme depends on

the time scale for loop closure relative to the second step. If the second step happens too

fast, the loop may not have time to close. With the 2-F- and 2-deoxy galactosyl-

intermediates, the closed conformation will very likely be visited, since the lifetime of
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these complexes are hours-minutes. The lifetime of the normal galactosyl-enzyme,

however is about 1 ms (k3=900 - Table 9). This would suggest that the loop must

fluctuate on a microsecond time scale in order for its effects to be felt.

Fluctuations in protein structure occur over many orders of magnitude in time,

Bond vibration are picosecond events l , while the rotation of methyl group occurs in

nanoseconds26 . The binding of hydrophobic ligands to a cavity in T4 lysozyme takes

microseconds-milliseconds 27. Other substrate induced conformational changes have

been observed on 100 !is - 0.1 sec time scales l , while flipping of buried aromatic rings

can take seconds28.

One of the best studied systems similar to the loop swing studied here is in triose

phosphate isomerase. This enzyme includes a 10 residue loop which closes upon

substrate binding to sequester the reaction from bulk solvent 1 8 . NMR experiments on

this loop suggested it jumps between its two conformations at a rate of 3 x 10 4 s", or a

lifetime of 33 gs29. While this has no direct application to the 794-804 loop in 13-

galactosidase, it is suggestive that the loop swing might happen faster than 1 ms.

Additionally, the 794-804 loop has relatively high B-factors, is relatively solvent

exposed, and parts of it are disordered in several structures, suggesting it can fluctuate

relatively easily.

Although both the F6O1A substitution and DMSO binding both appear to perturb

the loop structure, neither has an appreciable effect on the relative rates of hydrolysis and

allolactose production (Figure 37). This suggests that either the loop conformation is

unimportant for this ratio, or that in these cases, although the loop conformation is
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perturbed, it can still explore the conformations necessary for the enzyme to catalyze

hydrolysis and transglycosylation at about the same rate.

The Mechanism of Action for 13–Galactosidase

Overall Description

Based on the work presented here and the extensive biochemical studies in the

literature, previously described mechanisms for hydrolysis and transglycosylation can be

clarified and enhanced. Figure 39 shows the presumed mechanism in light of the

observations presented here.

The substrate binds by stacking on Trp-999 (not shown in Figure 39 – see Figures

23-25, pp. 92-98) with several specific interactions made by the galactosyl hydroxyls and

few specific interactions made by the aglycon. Should the substrate bind exactly as in the

"early complexes", catalysis would be unable to proceed, because a water molecule

would be trapped deeper in the active site where the galactosyl group is presumed to

occupy to form the intermediate (Figure 39(a)). In the event that the substrate binds

without this water molecule present there will be unsatisfied interactions unless the

substrate moves in so its hydroxyls occupy this water binding site and another water

binding site which is unoccupied in the early complexes (Figure 39(b)). These

interactions made by the 2,3,4 and 6 hydroxyls draw the substrate deep into the active

site, positioning Cl near the nucleophile, Glu-537, the glycosidic oxygen near Glu-461

and the sugar ring on a different tryptophan, Tip-568. Whether the substrate binds
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shallow or deep (Figure 39(a) or (b)), the active site will be unavailable for another

substrate molecule, and saturation kinetics will result.

For the fastest substrates, which have degalactosylation rate limiting, bond

cleavage could occur via an SN I process. For onpg, this could be assisted by the

interaction between His-418 and a nitro group on the leaving group (not shown in Figure

39, see Figure 24, pg. 93). Slower substrates such as lactose, which have more basic

leaving groups or do not have the correct geometry to utilize His-418 need to have the

acid assistance of Glu-461 and must move deeper into the active site before bond

cleavage can occur.

The active site has been preorganized for this task 30, and once the substrate is in

the correct position, Glu-461 can donate a proton to the glycosidic oxygen in concert with

formation of the intermediate with Glu-537 (Figure 39(c)). This is likely predominantly

an SN2 process and results in the formation of the galactosyl-enzyme intermediate

(Figure 39(d)). However, the possibility of a substrate assisted reaction stabilized by an

intramolecular interaction between the 2-OH and Cl cannot be excluded.

As the substrate moves through the transition state towards the intermediate the 6-

OH moves to a new position on the sodium ion, opening room for Phe-601 to swing into

its new rotamer well which destabilizes Arg-599 and favors the closed loop conformation

(Figure 39(c) & (d)). The closed loop introduces a polar interaction between the

backbone carbonyl of residue 796 and the Asn-102 side chain, probably favoring a single

Asa-102 rotamer.

As with the unsatisfied binding interactions drawing the substrate deeper into the

active site, the conformational change is another example of potential positive
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interactions which can be realized only by moving further along in the reaction.

Interactions between the enzyme and the 2-OH probably fall in the same category. As

the bond is broken, the 2-OH-G1u537 H-bond strength will probably increase due to the

developing negative charge on Glu-537, or possibly optimizing the geometry of this H-

bond (see below).

Figure 39 (following 2 pages) A proposed mechanism for 13-galaetosidase based on the
previous biochemistry and the work presented here. (a) The "early complexes" identified
crystallographically. Solvents sites are shown as circles – filled (occupied) or open
(empty). One of the filled sites must be empty for the reaction to proceed. (b) Another
proposed binding mode on the way to the transition state. (c) The transition state for step
1 (d) The covalent intermediate with the enzyme in its "closed" conformation. The open
conformation should also be possible. (e) The intermediate. (0 The transition state for
step 2. (g) The product galactose, bound in the active site. (h) The enzyme in its unbound
state. Ordered water molecules occupy much of the binding site.
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The second half of the reaction (Figure 39(d)-(0) occurs via an SNI process,

in which the galactosyl group is transferred from the nucleophile Glu-537 to an acceptor

molecule. During this process, a planar oxocarbonium ion develops, which is stabilized

by an interaction between Glu-537, Tyr-503 and the galactosyl ring oxygen. The

transition state is also stabilized by interactions between the 2-OH and Glu-537 and Asn-

460. Optimal geometry between the 2-OH and Glu-537 may be realized in the transition

state when the hydrogen bond between the two is coplanar with the Glu-537 carboxylate

group. Glu-461 facilitates attack of the oxocarbonium ion by the acceptor molecule by

abstracting a proton, which also regenerates the protonated Glu-461 {Figures 39(f) & (g)).

Whether the acceptor molecule is water, or in the case of allolactose production,

glucose, is determined by binding interactions between the acceptors and residues in the

active site possibly Asn-102 and His-418. Glucose binds in multiple modes to the

intermediate, not all of which are productive for forming allolactose. The conformation

of the 794-804 loop has an impact on glucose binding, and if it is in its closed form, as in

Figure 39(e)& (f), the outcome will likely be hydrolysis, perhaps because the Asn-102

amino group is unavailable to properly bind the glucose for allolactose production.

In the case of hydrolysis, when the bond is cleaved the leaving group diffuses

away and a water molecule comes in, hydrogen bonding to Glu-461 and the ring oxygen

of the galactosyl moiety. The intermediate is released in an SN 1 process, and is trapped

by the water molecule, which has been activated by the abstraction of a proton by Glu-

461. The move toward the transition state lengthens the 0-C1 bond forcing the sugar to

rotate. As the pucker in the galactose product forms from the planar transition state, the
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sugar rotates farther, shifting the 6-0H along the Na+ towards Phe-601. This causes

Phe-601 to open, allowing the galactose to diffuse out of the active site.

Other Considerations about the Mechanism

What about the Michaelis Complex ?

The discussion thus far has avoided explicitly defining any of the inhibitor

complexes as a model for the Michaelis complex. This a postulated enzyme-substrate

complex which rapidly associates and dissociates, but eventually leads directly to the

transition state. With the results presented here, the observed early complexes require

repositioning of the substrate before the transition state can be reached (at least for slow

substrates such as lactose). This repositioning can be modeled by overlaying lactose on

the galactose complex and adjusting the glucose molecule (Figure 39b). In this way,

lactose can be modeled without steric clashes at the glucose. Although the internal

glucose-galactose hydrogen bond must be broken in this process, there is potential for a

new hydrogen bond between the glucose and Asn-102.

A binding mode like the repositioned lactose is very likely on the reaction path,

however it was not seen in any of the early complexes. For 2-F-lactose, this could be

because the 2-substituent probably has to donate a hydrogen bond to Glu-537 or Glu-461,

which is impossible with the fluorine. For the thio-galactosides this could be because the

Glu461-S interaction is not as strong as a G1u461-0 interaction. However, for the E537Q

variants it is less clear why the repositioned conformation is not observed, because all the
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required polar interactions appear to be possible. This depends, however, on the

protonation state of Glu-461 which could be altered by the Glu-537 alteration.

The simplest model to account for these results is that the Michaelis complex

consists of two binding modes in equilibrium with each other. The saturation kinetics

will not be affected by the relative population of these two modes, although pre-steady

state kinetics might be able to detect them. In one extreme, the early mode observed by

crystallography would be extremely high energy. In this case the rapid equilibrium

would be with the repositioned mode directly and the early mode would never be visited.

In the other extreme, the repositioned mode would be high energy and visited only on the

way to the transition state. In the middle extreme, the free energy between the two modes

would be zero, and they would be equally populated, although the reaction would only

proceed from the repositioned mode.

Although none of the evidence presented here can distinguish between the two

modes, it is worth pointing out the mutagenesis studies on His-357 31 . This residue does

not interact directly with substrate. Instead, it ligands a water molecule which forms an

H-bond to the 3-OH in intermediate complexes, but is quite far from the galactosyl in the

early complexes (Figure 25, pg. 98 & Figure 39). The mutagenesis studies showed that

with His-357 variants, the rate for step 1 decreased much more than for step 2. If the

intermediate and both transition states are affected about the same, then step 2 would be

unaffected because the barrier from intermediate to the second transition state would be

unchanged. Since the intermediates and the transition state analogs have similar

structures, it is reasonable to expect them to be affected the same by the His-357 variants.

In this vein, for step 1 to decrease, the ground state must be less affected than the
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transition state. This is more consistent with a Michaelis complex like the early mode

than the repositioned mode, which would make about the same interactions to the His-

357 water molecule as the intermediates.

The Role of MC and Nat 

The complexes presented here strongly suggest that the active site acid is Glu-461

and not the Mg". Recent biochemical work has also supported Glu-461 as a Bronsted

acid rather than Mg' as a Lewis acid 32 . The obvious role for the Mg' is then structural,

as it ligands Glu-461 as well as two water molecules which provide interactions for the 3

and 4-Oils (Figures 23 and 25, pg. 92). Whether it has a further role is unclear. It could

be involved in tuning the pKa of Glu-461 and it has been suggested that the Mr-Glu-

461 interaction distance might decrease on going to the intermediate, decreasing the pKa

of Glu-461, allowing it to be deprotonated in the intermediate and setting it up to abstract

a proton from the acceptor molecule32 . However, in the structures presented here no

decrease in the Mg"-Glu-461 distance in going to the intermediate is observed (Table 8).

Another possible role of the Mr- would be to provide correct geometry between

Glu-461 and His-418 to bind glucose correctly for allolactose production. Removal of

Mg' decreases the ratio of transglycosylation/hydrolysis, highlighting its importance for

producing allolactose. Recent studies by the Huber lab have also shown that His-418 is

important for glucose binding20. However, such binding is apparently too transient or

poorly occupied to produce a good model via X-ray crystallography.
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The role of the Na + is to directly ligand the galactosyl 6-OH (or a water in

unliganded enzyme). This distance increases from 2.2-2.4 A in the early complexes to

2.4-2.5 A in the intermediates and is analogs and back to 2.3-2.4 A in the products(Table

8). Although this change is small, it is consistent across all four monomers in the

tetramer (data not shown). Assuming that increasing this distance is unfavorable, then

replacing the Na+ with ICE, which is larger, should make it easier to get to the intermediate

and more difficult to leave it. This would speed up the first step and slow down the

second step, which is consistent with the kinetics. Both lactose and pnpg, which are

limited by the first step, prefer K.+ and onpg, which is limited by the second step prefers

Na+33.

Energetics of Transition State Stabilization

Several experiments have been done to suggest limiting values for transition state

stabilization provided by interactions between the various galactosyl substituents and

enzyme groups. McCarter and Withers measured kinetics for a series of deoxy and

fluoro analogs of 2,4 dinitrophenyl galactoside' 4. These substitutions affect both

electrostatics and binding interactions. The electron withdrawing fluorine group will

destabilize any positive carbocation that develops in the transition state, while the

electropositive hydrogen in the deoxy compounds will stabilize the carbocation.

Therefore, the deoxy variants represent a lower limit for the transition state stabilization

resulting from interactions between the enzyme and the altered substituent. Their results

suggested that interactions between the enzyme and the 3, 4 and 6 hydroxyls provide at
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least 4 kcal/mol of transition state stabilization for galactosylation, whereas the 2-OH

provides about S kcal/mol. The special role of the 2-substituent correlates well with the

structures presented here, which suggest the 2-substituent changes its interactions the

most between the various complexes. In this model, the stabilization provided by the 2-

OH is due to interactions with Asn-460 and Glu-537 and the role of the other hydroxyls is

to properly orient the galactosyl moiety.

The Role of Strain and the Stereoelectronic Effect

Enzyme catalyzed hydrolysis of glycosidic bonds is often thought to involve

distortion of the sugar ring next to the cleaved bond prior to the transition state. This

distortion, which has been observed crystallographically in a number of systems, is

thought to be required to allow the substrate to bind to the active site. If the distortion

has the correct geometry for the transition state, then some of the work to reach the

transition state will have been done in the initial binding step.

Since many glycosidases include an SN1 bond cleavage, if binding interactions

distort the sugar from a relaxed chair to a high energy half chair (which is planar at C1)

catalysis will be facilitated. Furthermore, for retaining p—glycosidases such as

13–galactosidase, stereoelectronic considerations suggest that an inverted boat

conformation for the sugar ring would facilitate catalysis by providing orbital overlap

between the ring oxygen and the anomeric center to help form the oxocarbonium cation.

This idea has been supported with the observation of several inverted boat inhibitor

complexes in various glycosidases34.
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As was discussed above, the first step for p--galactosidase probably does not

involve an oxocarbonium ion, so distortion to an inverted boat for optimal

stereoelectronic would not be advantageous. However, distortion to a half chair could

facilitate an SN2 reaction since the anomeric center should be planar at the transition

state.

Nevertheless, the data presented here show no direct evidence for galactosyl

distortion in the mechanism of 13–galactosidase. In all of the early complexes, the

galactosyl ring binds in a normal, full chair conformation, as does the product galactose.

The repositioned lactose also offers no suggestion that galactosyl distortion would be

required for binding in this hypothetical mode.

Assuming that distortion is the rule, then one possible reason for the lack

distortion Vgalactosidase catalysis is that the enzyme acts on a small substrate with

strong specificity for only one sugar. Often the distortion is observed in enzymes that act

on long substrates. The distortion is paid for with substrate binding energy comes the

undistorted saccharide units. In the case of 13–galactosidase, there are only two

saccharides, and the glucose has very few specific contacts, so glucose binding might not

be able to pay for distortion in the galactose ring

The Asymmetry in the Transition States

As presented, and in accord with the biochemistry, the two steps of (3-

galactosidase catalysis appear to have slightly different mechanisms with different
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transition states. Step 1 appears to be predominantly SN2 (except perhaps for very

fast substrates), whereas step 2 appears to be predominantly SN1.

One reason for this asymmetry may be because the geometry at the anomeric

center differs. Step 1 is a substitution on ali-linked substrate, while step 2 is a

substitution on an a-linked substrate. Stereoelectronic considerations suggest that in the

absence of distortion an a-linked substrate should form an oxocarbonium ion more easily

than a 13-linked substrate. So cleavage of the galactosyl-enzyme intermediate can

proceed via an SN1 process, whereas the initial substrate cleavage must proceed via SN2.

Additionally, the leaving groups are different for the two reactions – glucose for step 1

and protein for step 2. In this case, the protein appears to be a better leaving group than

the glucose molecule.

Charge States of Key Residues

A poorly understood but critical aspect of catalysis by 13—galactosidase and other

glycosidases is how the electrostatic environment changes during the reaction. Usually

there is a residue, such as Glu-461 which acts as both an acid and a base during the

reaction, which means it must be alternatively protonated and unprotonated at different

points in the reaction.

Crystallographic studies can give little direct information about the detailed

electrostatic environment in the active site. The locations of protons must usually be

inferred from putative hydrogen bonding patterns, and these are often ambiguous. With
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smaller proteins, however, NMR can be used to learn about the charge states key

residues in the active site.

NMR studies on an enzyme similar to P–galactosidase, a xylanase from Bacillus

circulans, suggest that the pKa of the active site acid cycles during the reaction. 35 . The

explanation suggests that the nucleophile (Glu-537 in Vgalactosidase), which is

negatively charged in the unliganded enzyme, elevates the pKa of the nearby acid to 6.7

from the unperturbed 4.1, making it protonated at that enzyme's pH optimum of 5.7. In

the intermediate, the nucleophile forms a covalent bond and has a smaller effect on the

acid, lowering its pKa to 4.2, making it deprotonated and available to abstract a proton

from the acceptor molecule. This sort of mechanism has been also discussed for

P–galactosidase, although NMR experiments are not currently possible because of its

large size36.

Glu-537, the Vgalactosidase nucleophile, will have a large effect on the active

site electrostatics because it should be negatively charge in the free enzyme. It does,

however, interact with the OH of Tyr 503 and with Arg 388. Substitutions at 503 have

been studied and suggest that k 3 decreases more than k2 if the substitution does not have

transferable protons (Phe, Ser and Ile) but decreases about the same if the substitution

does have transferable protons (His and Cys). This suggests a role for Tyr-503 in

helping to stabilize the negative charge which develops on the nucleophile as the

galactosyl-enzyme intermediate is hydrolyzed. Arg-388 may play a similar role, from the

other side of the Glu-537 carboxylate group. Alternatively, since Glu-537, Tyr-503 and

the ring oxygen form a tripartite interaction in some of the intermediate complexes Glu-

537 and Tyr-503 could mutually stabilize the developing oxocarbonium ion in the
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transition state for degalactosylation. This would be expected to be less important for

k2, if galactosylation occurs via an SN2 process.

Thus, in this model, the electrostatic environment of Vgalactosidase is dependent

synergistically on a number of residues. The pKa of Glu-461 is elevated by the negative

charge on Glu-537. But this charge is also stabilized by Tyr-503. Formation of the

covalent bond in the intermediate decreases the pKa of Glu-461 via shielding of the

nucleophile by the intermediate and perhaps other factors. Breaking the galactosyl-

enzyme intermediate bond is facilitated by hydrogen bond donation from Tyr-503 to Glu-

537.

Considerations of the Mechanism in the Context of the Biology

It is often noted that an enzyme has evolved to perfection when it is diffusion

controlled. That is, the rate limiting step is diffusion, so that every time a substrate binds

to the active site a reaction happens. As noted in the introduction, P–galactosidase is not

diffusion controlled and there are probably –1000 binding events between lactose and the

active site before a reaction takes place. Although it appears, therefore, that

13–galactosidase has not evolved to perfection, further consideration suggests that

diffusion control per se may not be advantageous for the bacterium.

Beta-galactosidase has three roles in the biology of E. coll. First, is to hydrolyze

lactose, second is to produce the inducer, allolactose and third is to hydrolyze allolactose.

Therefore, fl–galactosidase must not only produce allolactose, but also hydrolyze it. If

the enzyme were diffusion controlled for hydrolysis, then allolactose might never make it
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out of the active site, because it would be hydrolyzed as soon as it was produced,

Since the active site is in such a deep pocket on the surface, apparently making it more

difficult to bind appropriately, this might make it more likely for the allolactose to escape

once produced.

The progression of the galactosyl group to deep within the active site pocket in

the intermediate offers an explanation for why allolactose is produced and not lactose or

other transglycosylation products. Glucose apparently is exploring many binding modes

while the enzyme is in the intermediate state. Putting aside specific binding interactions

between the glucose and the enzyme, the most likely substituent to react with the

intermediate is the 6-OH, since it has an extra atom connecting it to the sugar ring.

Methods 

Crystallography

The general method for determining the structure of bound ligands and altered

enzymes was described in the first section of the chapter. Most of the ligands were

purchased from Sigma. The 2-F- derivatives (2-F-lactose and the dinitrophenyl-2-F-

galatoside used to generate the 2-F-galactosyl-enzyme intermediate) were synthesized by

John McCarter, Lloyd McKenzie and Steve Withers at the University of British

Columbia, Vancouver, CA. The galactotetrazole was synthesized by Thomas Heightman

in the laboratory of Andrea Vasella at the Swiss Federal Institute of Technology, Zurich,

Switzerland. The "BBG" inhibitor was synthesized by Jerg Greul and Volker Jager at the
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University of Stuttgart. Aliolactose was synthesized enzymatically using j3-

galactosidase after Huber et al (1975) 37 . To 50 mL of 50 mM onpg and 170 mM glucose

in 50 mM Na2HPO4 , 1mM MgC1 2, 1 mg 13-galactosidase was added at room temperature.

This was allowed to stir for about 45 minutes and the reaction was halted by heating to

80° C. The nitrophenol was extracted (twice) with 50 mL chloroform by stirring at room

temperature for 30 minutes. The resulting aqueous solution was filtered (0.2 pm) and

lyophilized. This was then run on a gel filtration column (Biorad P3) in water and the

fractions were identified using circular dichroism and capillary electrophoresis assay

(CE-see below). The allolactose peak was identified as allolactose with mass

spectometry (the mass was identical with lactose) and using thin layer chromatography

(the allolactose ran slower than lactose 38). As judged by the CE, the allolactose was

98% pure.

All ligands were soaked into the crystal, usually stepwise, to the concentration

shown in Table 7. Typically this was 100 x Ks where Ks is the dissociation constant for

the ligand. For the time sensitive ligands, dnp-2-F-galactoside, galactal and lactose,

soaking times of 30, 30 and 10 minutes were used, without stepwise equilibration.

Generally, if the final ligand concentration was more than 100-200 mM, stepwise

equilibration aided in minimizing the mosaicity and maximizing the diffraction. Stepwise

equilibration was not necessary for lower ligand concentrations. Metal soaks were done

similarly. Based on the soaking protocol, the IC soak had < 16 nM NaCl. The P212,21

EDTA soak had < 25 .tM Mg' and 50 mM EDTA.

Data collection was carried out in house and at synchrotron sources. The P2 1 data

were collected at the Photon Factory, Beam Line 6A2, in Tsukuba, Japan. P2 1 2 1 2 1 data
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were collected at the Stanford Synchrotron Radiation Laboratory Beam Lines 1-5, 7-

1, 9-1 and 9-2 and at the Advanced Light Source Beam Line 5.0.2. Data were processed

either with Mosflm/Scala or Denzo/Scalepack, generally to edge of the detector. Due to

the high spot density, it was often necessary to decrease the size of the integration box in

order to increase the completeness (Figure 19, pg. 75). In one case (the 2-deoxy-

galactosyl intermediate with K+) the data quality were improved by using the program

PrOW (Profile fitting for Overlapped or Weak data)39, which can deconvolute overlapped

reflections.

Refinements were done generally as outlined in Chapter 2. The starting structure

was native protein with all ordered solvent. After rigid body refinement at the tetramer,

monomer, domain and secondary structure level, individual atom parameters (x,y,z and

B) were refined. Each residue was then inspected by overlaying the four chains onto

each other and stepping through the sequence, examining all four versions of each residue

in succession. The ligand was then built into F o-F, and Fo-F, electron density and

refinement continued. Geometry restraints for the ligands were usually derived from the

Cambridge Small Molecule Database. Cycles of model building and water molecule

addition and deletion using ARP were repeated until fewer than 50 water molecules were

added. The DMSO molecules and solvent ions were inspected and adjusted, flipped

chiral centers were fixed and after a few more rounds of refinement, the model was

judged to be finished. If the maximum resolution was lower than 2.4 A, non-

crystallographic symmetry restraints were used, and if the resolution was lower than 2.9

A, non-crystallographic symmetry constraints were used. Prior to refinement, a test set
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was set aside for R-free calculations (this was matched to a template R-free set, so

that all complexes have the same test set).

Kinetics

Enzyme kinetics were carried out using onpg, pnpg and lactose as substrates. The

onpg and pnpg assays were done with absorption spectroscopy by monitoring the signal

from nitrophenol (the first product of the reaction) at 420 nm over time. Assays were

done at 25° C (or sometimes room temperature: 21-22° C) in 50 mM Na 2HPO4, 1 mM

MgC12. pH 7. Initial velocities were obtained with a linear fit of a 10 minute scan. Low

enzyme concentrations were used (usually 50 04) to ensure linearity. Usually 6 different

substrate concentrations were used and the kinetic parameters were determined by

directly fitting the Michaelis-Menten equation to the data (see Appendix 1). Competitive

inhibition constants were determined similarly using the parameters obtained in the

absence of inhibitor. Uncompetitive inhibition is more complex, because of the

possibility of the inhibitor acting as an acceptor, and this analysis is described in

Appendix 1. G794A kinetics with onpg and pnpg were performed by Shamina Hakda in

the laboratory of Gene Huber at the University of Calgary.

With lactose as the substrate, a reaction profile over time was measured using a

capillary electrophoresis(CE) assayer . Briefly, a solution of 0.375 M lactose in 50 mM

Na2HPO4, 1 mM MgC1 2 and 250 nM 0-galactosidase was allowed to react. Samples were

taken out (30 }IL) at various times and the reaction was stopped by adding 60 I.LL 10%

acetate in methanol and putting to 60°C. After about 24 hours of time points, the samples
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were derivatized by adding 30 pL derivatizing solution (1% w/v of NaBH3CN in

ABEE stock solution, which is 10 % w/v ethyl 4-aminobenzoate and 10% acetate in

methanol) and heating at 70°C for –30 min. This adds a charged aromatic ring to the

reducing end of the sugar, allowing it to migrate in an electric field and be monitored

with absorption spectroscopy at 306 nm. The derivatized sugar was extracted with

300/300 ftl, chloroform/water and centrifuged for 5 minutes. This was then run on the

CE using a 23 mm capillary at 50-100 ItA in a lithium borate buffer (pH 10.5).

Galactose, glucose and lactose standards were used to identify the peaks, with the

remaining major peak allolactose (identified as described above). Integration of these

peaks gave relative amounts of these sugars, producing the plots in Figure 37, pg. 118.

Protein Purification and Mutagenesis

Protein was purified as in Chapter 2. The E537Q, F601A and G794A variants

were constructed using the QuikChange mutagenesis kit from Stratagene with assistance

from Leslie Gay. The resulting plasmid was sequenced across the mutation site to verify

that the desired change had occurred. Because the complete gene was not sequence, there

is the possibility of accidental mutations.
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CHAPTER IV

THE EVOLUTION OF BETA-GALACTOSIDASE

Introduction

As has been discussed briefly in Chapter 2, P-galactosidase has a modular

structure. This chapter describes comparisons between the different modules composing

P-galactosidase and other proteins to understand how P-galactosidase evolved. This

chapter contains co-authored material and was published in 1999 1 . My role was to do the

computational work involved. The manuscript was written together with Gene Huber

and my advisor, Brian Matthews.

Summary

Beta-galactosidase (lac Z) from E. coli is a 464 kDa homotetramer. Each subunit

consists of five domains, the third being an a/P barrel that contains most of the active site

residues. A comparison is made between each of the domains and a large set of proteins

representative of all structures from the protein data bank. Many structures include an

a/P barrel. Those that are most similar to the a/3 barrel of E. coli P-galactosidase have

similar catalytic residues and belong to the so-called "4/7 superfamily" of glycosyl
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hydrolases. The structure comparison suggests that 0-amylase should also be

included in this family. Of three structure comparison methods tested, the "ProSup"

procedure of Zu-Kang and Sippl and the "Superimpose" procedure of Diederichs were

slightly superior in discriminating the members of this superfamily, although all

procedures were very powerful in identifying related protein structures.

Domains 1, 2 and 4 of E. coli 0-galactosidase have topologies related to "jelly-roll

barrels" and "immunoglobulin constant" domains. This fold also occurs in the cellulose

binding domains (CBDs) of a number of glycosyl hydrolases. The fold of Domain 1 of

E. coli 0-galactosidase is closely related to some CBDs, and the domain contributes to

substrate binding, but in a manner unrelated to cellulose binding by the CBDs. This is

typical of Domains 1, 2, 4 and 5 which appear to have been recruited to play roles in 0-

galactosidase that are unrelated to the functions that such domains provide in other

contexts. It is proposed that 0-galactosidase arose from a prototypical single domain a43

barrel with an extended active site cleft. The subsequent incorporation of elements from

other domains could then have reduced the size of the active site from a cleft to a pocket

to better hydrolyze the disaccharide lactose and, at the same time, to facilitate the

production of inducer, allolactose.

Background

0-galactosidase (lac Z) from E. call is a 464 kDa homotetramer. Each subunit

(1023 residues) is composed of five domains 2. The overall structure is built around the

third domain (Figure 40) which is a so-called "(a/0) 8 ", "(0/ot) 8 " or "TIM barrel" domain
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(hereafter " a/13 barrel"). This domain contains most of the active site residues. The

other domains consist primarily of n-sheet with Domain 1 having a jelly- roll barrel fold

and Domains 2 and 4 having immunoglobulin folds. Domain 5 is a 288-residue (3-

sandwich with one structural homolog amongst known protein folds.

Figure 40. Orthogonal views of a single 13-galactosidase monomer. (a) Looking straight
down the a/13 barrel axis of Domain 3 (black). The cleft in the barrel runs up-down with
Domains 1 and 2 above, and 4 and 5 below-right. The "donated" loop extends across the
activating interface to complete the neighboring active site. (b) View from the left of
Figure 40(a). Except for the donated loop, Domains 2 and 4 are far from the active site,
which is on the right. The cleft in the barrel runs up-down on the right side with Domain
1 filling in the top and Domain 5 filling in the bottom.

Many organisms have enzymes with sequences related to that of E. coli 13-

galactosidase. The closest relatives are summarized in Figure 41. Most of these enzymes
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are 0-galactosidases, but one branch contains mammalian and prokaryotic 15-

glucuronidases. Some other enzymes, including I3-galactosidase from Bacillus circulans

and some eukaryotic P-mannosidases, have weaker sequence correspondence (less than

25% identity) and are not included in the figure.

Mouse

	 L Rat

— Human

	 E. nofi

13-glucuronidases

C
L. sake

 L. Lactis

— C. acelobutylicum

	 — S. thermophilus

	  L. deliameckii

E. coil (lacZ)

E. cloacae

— K. pneumonia

	  T. martinis

	  E. coil (ebg)

	  Yeast - K. lactis

13-galactosidases

Arthrobacter

R. melitoti S-galactosidases
	 T. thermosuifurogenee

Figure 41. An evolutionary sequence tree for P-galactosidase and its closest relatives.
The group of four enzymes at the top of the tree are p-glucuronidases; all others are (3-
galactosidases. The tree was created using the UPGMA (Unweighted Pair Group Method
with Arithmetic Mean) 3 and includes homologs with sequences at least 25% identical
with Domain 3 (i.e. the a43 barrel) of E. coli 13-galactosidase. The distances were
calculated using the Jukes-Cantor method based on a multiple sequence alignment of
regions of each protein corresponding to E. coli P-galactosidase Domain 3 4 . All steps
were done with the Wisconsin package 5 . Sequences used for the alignment came from a
BLAST search with the amino acid sequence of E. coli 0-galactosidase Domain 3.

Based on sequence similarities, the glycosyl hydrolases have been classified into

more than 50 families 6' 7 . All of the enzymes shown in Figure 40 are members of Family

2. Other considerations such as similarities in structure and catalytic mechanism have
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been used to link various families into "superfarnilies" or "clans" 8- 1°. These

classifications have been based in large part on similarities of catalytic residues within

the active site domain. There is, however, more information potentially available from

consideration of the overall structure including the other four domains.

The objectives of the present study are: (1) to examine the domain modularity

and scaffolding of 13-galactosidase E. call); (2) to use structural comparisons to

investigate the superfamily relationships; (3) to try to understand how changes in the

structure during evolution might explain differences in catalytic activity; and (4) to use

the abundance of structural data that are available for the glycohydrolases to test different

methods of structure comparison.

Results 

Structure Comparisons

The overall backbone structure of each domain from E. coli f3-galactosidase was

compared to a representative set of protein structures from the Protein Data Bank. Such a

list is published by the European Molecular Biology Laboratory under the name "PDB

Select" 11 . We were interested in detecting relatively distant relationships, not necessarily

apparent from sequence comparison and therefore chose a cutoff such that sequences

included were not more than 25% identical. This results in a sample, as of October 1997,

of 680 structures, including E. call f3-galactosidase. (Those proteins with sequences that

are more than 25% identical to E. call (3-galactosidase are identified in Figure 40.)
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Comparisons of the five domains of j3-galactosidase with the 680 representative

structures, carried out with ProSup 12(see Methods) are shown in Figures 42(a)-41(e).

These comparisons are characterized by the number of structurally equivalent residues

and the root-mean-square deviation (rmsd) of their Ca positions. It is convenient to first

discuss Domain 3, the a/(3 barrel.

Figure 42 (following page). Graphs for each domain of E. coli J3-galactosidase showing
the results of a structural search with ProSup for similar folds in a representative set of
680 known protein structures having less than 25% sequence identity with each other and
with E. coli P-galactosidase. Program parameters were gap penalty s = 10, cutoff
distance c = 3.5 , maximum seed p = 10, search atom = C a. The plots show the
percentage of Ca atoms in the f3-galactosidase domain judged to be a structurally
equivalent and the root-mean-square discrepancy between them. In each graph, triangles
represent proteins identified in the Brookhaven Data Bank as having "jelly-rolls", squares
represent proteins identified as immunoglobulins, circles indicate "aJP barrels" and the
crosses indicate proteins that were not designated as belonging to any of the above
categories. Structures that either score high or have similar function are identified
including the Data Bank identification. (a) Domain 1 (residues 49-218). (b) Domain 2
(residues 219-334). (c) Domain 3 (residues 335-624). Solid symbols are a/P barrels
with catalytic residues similar to p-galactosidase. Their Brookhaven ID codes and
family names are identified. (d) Domain 4 (residues 625-725). (e) Domain 5 (residues
726-1023
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Domain 3

The most distinctive graph (Figure 42(c)) is for Domain 3. The comparisons fall

into two quite distinct groups. On the right (shown as circles and solid symbols and

comprising 7% of the sample) are all the proteins that contain a/13 barrels. The eight

structures to the extreme right of the figure (indicated by solid symbols) are all

glycosidases and have a-carbons that are structurally equivalent to more than 50% of the

E. coli P-galactosidase a/f3 barrel. Also the root-mean-square discrepancies are

generally somewhat less than those of the other a/13 barrel proteins (open circles).

Together with [3-galactosidase, these nine structures represent six glycosyl hydrolase

families which are functionally similar in that they hydrolyze 1,4 glycosidic bonds using

similar catalytic machinery. Jenkins et al. (1995) grouped five of these six families into

the "4/7 superfamily" because they have a catalytic acid/base on strand 4 of the a/13 barrel

and a catalytic nucleophile on strand 7. (They were also identified by Henrissat et al.

(1995) and called "Clan GH-A".) Other glycosidases that have a/13 barrels but are not in

the 4/7 superfamily have poorer structural similarity, although the similarity is generally

better than with the rest of the a/13 barrels. Because we did not include proteins with

greater than 25% sequence identity, some members of the 4/7 superfamily do not appear

in Figure 42(c). These are, however, included in Figure 43 which is a phenogram

showing the result of comparing all a/13 barrels with each other. Note that this

phenogram is based on structural correspondence (see Methods). In general it groups the
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different proteins into the same subfamilies that have previously been proposed on the

basis of sequence relationships. The comparisons were repeated using different cutoff

parameters and the results were qualitatively similar (not shown).

Comparisons of the backbone of the a/13 barrel of E. coil 13-galactosidase with

other structures using the alignment algorithms DALI 13 and Superimpose" (see

Methods) are shown in Figures 43(a) and 43(b). Qualitatively, the results are similar to

those obtained using ProSup (Figure 42(c)). Both DALI and Superimpose differentiate

between a/13 barrels and other structures although there are differences in the extent to

which the groups are separated.

We now return to the other domains of P-galactosidase.

Domain 1

Domain 1 is a so-called "jelly-roll barrel" 15 . The graph summarizing the

comparison of this domain with the 680 representative structures from the databank

(Figure 41(a)) shows that most of the structures with the greatest number of

Figure 43 (following page). Structure based tree showing the relationships between 93
a/13 barrels based on their structural correspondence. The identification includes the data
bank access code followed by the name of the protein_ The figure was made by
combining the structural agreement provided by ProSup with the Growtree algorithm of
the GCG package (see Methods). All members of the 4/7superfamily (bold type),
including 13-amylase, appear on the same branch. The number in parentheses is the
family number of Henrissat 6' 16 . Representatives of additional families identified by
Henrissat are shown in Helvetica type.
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Figure 44. Comparison of two structural comparison programs. "Superimpose" and
"DALI" were used to search the structural data base for folds similar to the (43 barrel
from E. coli p-galactosidase. The set of structures searched with Superimpose was the
same "PDB Select" list searched with ProSup (Figure 41(c)). The set searched with
DALI is defined by the Dali server, and includes a set of unique structures similar to the
"PDB Select" list. Solid symbols represent a43 barrels with similar catalytic machinery
to E.coli 13-galactosidase. These are identified by their Data Bank access code. Open
circles represent other a1j3 barrels. Crosses indicate structures in the Data Bank not
identified as a./f3 barrels. (a) Comparisons using "DALI". (b) Comparisons using
"Superimpose".

structurally-equivalent residues have also been identified as "jelly-rolls". There is,

however, overlap amongst the "jelly-rolls", the "immunoglobulins", and other proteins.

"Jelly-rolls" and "immunoglobulins" have similar topology and can be viewed as variants

of the same fold. The higher-scoring proteins in Figure 42(a) that are neither jelly-rolls

nor immunoglobulins have the jelly-roll topology but have one or more insertions. Some

of the jelly-rolls are found in glycosidases. These include CBDs 17-20, glucanase 21,

neuraminidase 22 and chitobiase 23.
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Domains 2 and 4

Domains 2 and 4 of 13-galactosidase have identical topology, both having the

fibronectin III fold. This is a close variant of the immunoglobulin constant domain 24.

Among the 680 proteins in the data base, those with most Ca atoms in common with

Domain 2 of f3-galactosidase are mostly identified as having "immunoglobulin" domains

(Figure 42(b)). As with Domain 1, however, there is some overlap between the

"immunoglobulin" and "jelly-roll" folds. Among all the matches seen in Figure 42(b),

one of the best is between Domain 2 and Domain 4 of 13-galactosidase. The inverse

comparison is seen in Figure 42(d). Again, there are other glycosidases (e.g. a

glycosyltransferase 25 , chitinase 26, neuraminidase 22, chitobiase 23) that have structures

similar to Domains 2 and 4 of E. coli 13-galactosidase.

Domain 5

The graph summarizing structural comparisons with Domain 5 of f3-galactosidase

is quite striking (Figure 42(e)). There is only one structure with significant similarity,

namely the large 13-sandwich domain of copper amine oxidase. This is also a

multidomain oligomeric (dimeric) enzyme, and parts of the dimer interfaces of both

13–galactosidase and copper amine oxidase are formed by roughly the same region of the

-sandwich. The respective domains have the same overall fold and differ mainly in the

length of the loops between the strands. With P-galactosidase, some residues from one

end of the sandwich are contributed to form part of the active site. In the case of copper
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amine oxidase, the active site residues are also on loops between the 0-strands.

Topologically some of the active site residues of the two enzymes overlap, while others

do not.

Discussion

Domain Modularity and Scaffolding

One of the most striking aspects of the p-galactosidase structure is that it is

constructed from domains that, in most cases, serve very different functions in other

proteins. In addition, the parts of the domains used by 13-galactosidase are different from

the parts that are functional in the other proteins. Of the five domains, only Domain 3

(the catalytic domain) is uniformly found in closely-related glycosyl hydrolases. The fact

that the other four domains are used in different roles in 0-galactosidase suggests that

they have been appropriated as modules that provide stable scaffolds upon which binding

residues can be presented to render specificity to ii-galactosidase.

Proteins similar to Domain 1 of 0--galactosidase include viral coat proteins and

domains from toxins. Some of the other related structures (Figure 42(a)) are cellulose

binding domains (CBDs) of glycosyl hydrolases. Cellulose binding domains are usually

separated from their catalytic domains by flexible linkers. The CBDs occur in many

glycosyl hydrolases and are themselves classified into nine families (CBD:I-CBD:IX)

based on sequence similarities. The structures of representatives of CBD:I, CBD:11,

CBD:Ill and CBD:IV are known and 13–galactosidase Domain 1 has appreciable
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structural similarity to all but CBD:I. These relationships are illustrated in Figure 45.

As shown in Figure 45(a), Domain 1 of 13--galactosidase has long loops that extend into

the active site region of the a!13 barrel and help define the shape of the substrate binding

region. CBD:II (Figure 45(b)) has somewhat shorter loops. The loops are even shorter in

CBD:IV (Figure 45(d)). In the case of CBD:III (Figure 45(c))the loops make contact

with the a6/(36 catalytic domain 20. Also the polypeptide chain extends to make a

Figure 45. Comparison of Domain 1 of 13–galactosidase with cellulose binding domains
(CBDs) from the three structurally related families CBD:II, CBDIII and CBD:IV. (a)
Domain 1 of P–galactosidase (shaded gray) with loops penetrating into the active site
region within the ci./I3 barrel (broken lines). (b) CBD:II domain from a bacterial xylanase
(Xu et al., 1995) (lexh). (c)CBD:III domain (gray) with loops contacting the catalytic
domain (broken lines) of a bacterial cellulase zQ (I tf4). (d) CBD:IV domain of a bacterial
glucanase 18 (lulp)

covalent connection between the two domains. The binding mechanisms that have been

proposed for the different cellulose binding domains 18.19 are quite different from that

used by 0–galactosidase and involve different parts of the respective structures. This is

also the case for the Family 16 bacterial endoglucanase which is one of the higher-

scoring Domain 1 analogs 18, 21. There are other cases of this sort.
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The structures with the highest similarity to Domain 2 of 0–galactosidase are

all fibronectin type III (fnIII) folds and immunoglobulin folds. They occur in a variety of

proteins, often participating in cell surface interactions. The highest scorers include fnIII

itself and a domain from the glycosyl hydrolase Family 33 bacterial neuraminidase 24 22.

Structures with slightly poorer agreement include domains from glycosyl hydrolase

Families 9 (a bacterial endoglucanase), 13 (a bacterial cyclodextrin glycosyltransferase),

18 (a bacterial chitinase) and 20 (a bacterial chitobiase) 25, 27 23, 26.

As will be discussed, the structures most similar to Domain 3 of 13–galactosidase

represent the glycosyl hydrolase Families 1, 2, 5, 10, 14 and 17.

Domain 4 is like Domain 2. Hood et al. (1978) noted a similarity in sequence

between residues 1-379 and 398-781 of Vgalactosidase 28 . On this basis they proposed

that these segments evolved via gene duplication and fusion. Their sequence alignment

is, in part, remarkably close to the structural correspondence that is observed between

Domains 2 and 4 (Figures 42(b), 42(d)). It therefore seems likely that these two domains

were produced via gene duplication. However, the larger-scale duplication proposed by

Hood et al. (1978) is not supported by any further structural correspondence.

The only closely matching structural homolog of Domain 5 is one of the domains

of copper amine oxidase. Again, it is a protein with a function completely different from

that of 13–galactosidase.

These findings indicate that Domains 1, 2, 4 and 5 of 13–galactosidase are, in

essence, independent folding modules that serve to supplement or to modify the central

role that is played by Domain 3. As shown in Figure 45(a), two loops of Domain 1 of

f3–galactosidase completely fill one end of the cleft in Domain 3. Inhibitor complexes
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(Chapter 3) have shown that residues on these two loops contact the non-reducing end

of the galactosyl moiety (residue Asp-201 in particular) and thus appear to be partially

responsible for the specificity of J3–galactosidase for J3–D-galactosides. Domain 2

contributes residues to the active site of a neighboring subunit via a loop which reaches

across a subunit interface. These residues appear to make no direct substrate contacts

although some are located within 7A of catalytic residues. Besides completing the ot13

barrel, this loop also helps to convert the cleft to a pocket. The removal of this loop

should substantially perturb the active site and it is therefore reasonable to assume that at

least a dimer is required for activity (See also Figure 15, pg. 55 and discussion in Chapter

2 concerning a-complementation). Domain 2 also appears to function as a linker

between Domains 1 and 3. Domain 4 is largely absent in some D–galactosidases and in

those in which it is present the homology is poor. in the E. coli enzyme it has the least

extensive interdomain contacts, contributes no residues to the active site and may indeed

simply function as a linker between Domains 3 and 5. Domain 5 fills the end of the cleft

opposite Domain 1 and also provides the important residue Trp-999, as well as the 794-

804 loops. The role of Domain 5 is uncertain. indeed, since the glucuronidases and

some of the13–galactosidases require only Domains 1-3 to cleave disaccharide-sized

substrates, it can be asked why the13–galactosidase of E. coli and some related organisms

require two additional domains. The answer may lie in the ability of the enzyme not only

to hydrolyze but also to transglycosylate. While 13–glucuronidase can facilitate

transglycosylation if the acceptor concentration is sufficiently high, this is apparently not

part of its physiological role 29. The same effect is found with P–galactosidase from T.

thermosulfurogenes which has much of Domain 5 deleted 30 . The P--galactosidase from
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E. coli, on the other hand, is tuned so that the kcat values for hydrolysis and

transglycosylation are about the same 31 . Domain 5 appears to contribute those residues

at the active site that bind and orient the glucose moiety of lactose. Thus its main role

may be to contribute to the dual activity of 13–galactosidase, especially since Tip-999

stacks with glucose and the 794-804 loop is important for glucose binding.

Membership of the 4-7 Superfamily

Henrissat and Bairoch 7 provided an overall classification of 57 glycosyl

hydrolase families. Based on topological similarity, Jenkins et al.(1995) identified five of

these as having a possible catalytic nucleophile on strand 7 and a possible acid/base on

strand 4. They identified these enzymes as the "4-7 Superfamily" 9. Based on a structural

alignment of the cc/13 barrels (not shown) interfamily pairs show only 7-10% sequence

identity. There are only two residues (corresponding to Glu-461 and Glu-537 of

13–galactosidase) that are strictly conserved for all five families. Figure 46 shows the

structural coincidence of these active-site sidechains in the five family members plus

J3–amylase. Also shown in the figure are an active site Trp/Phe that coincides, as well as

a cis peptide bond that occurs in four of the six families. Glu-537 or its equivalent has

been shown for many of these enzymes to be the active site nucleophile which attacks

the anomeric center 32-36 . Glu-461 or its equivalent appears to act as an acid/base in
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Figure 46. Close-up superposed view of selected sidechains in the active site of the
3–galactosidase and the other 4/7 enzymes. The superpositions are based on the a-
carbon correspondence determined by ProSup and one enzyme per family is shown
(Family 1 - L. lactis 6-p-galactosidase (1pbg), Family 2 - E. coli 3–galactosidase (lbgl),
Family 5 - C. thermocellum 3–glucanase (lcec), Family10 - C. thermocellum xylanase
(lxyz), Family 14 - soybean 3–amylase (lbyb), Family 17 -barley 3–glucanase (lghr)).
The f3–galactosidase backbone is shown with sidechains for the presumed nucleophile
(Glu-537), the acid/base (Glu-461), a tryptophan (Trp-568) and the conserved cis peptide
bond. Dark gray side-chains correspond to the enzymes that cleave 13–linked substrates
with retention of configuration. The light gray sidechains correspond to 3–amylase.
The active site cleft runs roughly from lower left to upper right.

protonating the leaving group and activating a water to attack the enzyme-bound

intermediate 37-39.

A phenogram based on the structures of 93 a/13 barrels (Figure 43) suggests that

Families 1, 2, 5, 10, 14 and 17 should be included in the 4-7 superfamily. Among this

grouping is 13–amylase (Family 14) which is included among the structures shown in

Figure 46. 0–Amylase is somewhat atypical in that it lacks the equivalent of Trp-568

and the neighboring cis peptide bond and also lacks a distinctive loop between strand 8
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and helix S. One of the major functional differences between J3–amylase and the

other members of the 4/7 superfamily is that it is an "inverting" rather than a "retaining"

enzyme. For this reason the anomeric center is presumably attacked by a water molecule

rather than an acid residue 40 (Figure 47). The structural consequence (Figure 46) is a

Cleft

6
OH

180°

3

21-1/R.....41 bond
HO
6	 0

Barrel
Axis

Strand 7 Glu
(Nucleophile)  

Bulge
No Bulge

Families 1,25,10,17 	 B-amylase (Family 14)

Figure 47. Schematic drawing comparing substrate binding in 0–amylase (Family 14)
with substrate binding in Families 1, 2, 5, 10 and 17 . There are two main differences.
First, in Families 1, 2, 5, 10 and 17,which are retaining enzymes, the nucleophile is
located on a bulge in strand 7 and directly attacks the Cl carbon of the substrate.
A–Amylase lacks the bulge, so that the residue corresponding to the nucleophile is
"retracted", leaving room for a water molecule to attack and produce an inverted
substrate. Second, in Families 1, 2, 5, 10 and 17, the cleaved bond is equatorial whereas
it is axial in 13–amylase. However, the 0–amylase substrate is rotated approximately
1300 relative to that for Families 1, 2, 5, 10 and 17, giving the nucleophile similar access
to the Cl carbon. This rotation puts the sugar substituents and the faces of the sugar in
different locations relative to the cleft, resulting in different enzyme-substrate contacts.

slight withdrawal of the group that normally acts as a nucleophile into the barrel relative

to the "retaining" enzymes, allowing room for this water molecule. Also, although the

13–amylase substrate has an axial glycosidic bond, Cl is similarly presented to the

nucleophile because the substrate is bound with the opposite side of the sugar facing into
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the cleft 40 (Figure 47). As a consequence, the sugar substituents all interact with

different parts of the protein relative to the other 417 enzymes. For example, most of the

4/7 enzymes except (3–amylase have an asparagine preceding the acid/base and with

13–galactosidase this residue appears to bind the 2-hydroxyl of the cleaved sugar. With

13–amylase, which lacks this asparagine, the 2-hydroxyl is on the opposite side of the

cleft.

Similar arguments apply to additional active-site residues that are largely

conserved among the other 4/7 enzymes. Despite these structural differences,

13–amylase still retains the main characteristics of the 4/7 family. In particular the residue

that corresponds to the nucleophile on strand 7 and the acid/base on strand 4 are the key

elements of the 4/7 family. Taken together, the structural and functional relationships

justify the inclusion of 13–amylase in the 417 superfamily. The similarity of Family 14 to

the above grouping was also discussed by Sakon et al. (1996) who considered possible

relationships between Families 1, 2, 5, 6, 10, 13, 14, 17 and 18.

Henrissat and coworkers 8, 10 used amino acid sequence comparison and

hydrophobic cluster analysis to include in the 4/7 superfamily additional subfamilies for

which three-dimensional structures are as yet unknown. This technique was also used to

study a subset of the 4/7 superfamily of clinical importance, the lysosomal hydrolases 41.

The overall characteristics of all of the putative 4/7superfamily members are given in

Table 11. There are 12 families included, the first six of which have representatives with

known three-dimensional structures. These six families are also the ones identified by

our study as having cc/13 barrels like that of 13–galactosidase. The smallest members of

these six families are the Family 17 glucanases with 300-450 residues. Families 5 and
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10 also have some single WO barrel enzymes of 300-400 residues, but other members

have additional domains. The enzymes of these three families appear to be involved in

the degradation of either cell walls or cellulose and occur primarily in bacteria and fungi

(Families 5 and 10) and plants (Family 17). Families 26 and 53 appear to have members

that fit in with this grouping, having barrels of 300-400 residues, occurring in bacteria

and fungi, and being involved in cell wall degradation.

The largest single-domain members are the Family 1 enzymes (-500 residues).

This family carries out a variety of functions, although generally not cell wall

degradation. Families 30, 35, and 39 include enzymes of similar overall length and all

four families include mammalian lysosomal hydrolases. Within this group the extra

length of the polypeptide chain tends to be correlated with a change in the active site

from a cleft into a pocket.



Table 11. Some characteristics of putative members of the 4/7 superfamily of glycosyl hydrolases. This table summarizes the
main characteristics of putative members of the 4/7 superfamily of glycosyl hydrolases. The family members are from Jenkins
et al. (1995), Henrissat et al. (1995), Henrissat and Davies (1997) and the present work. The sources are from Bacteria
(Eubacteria, B; Archaebacteria, B*), Fungi (F), Plants (P) and Animals (A). "Overall length" is the number of amino acids in
the complete polypeptide chain. "Barrel length" is the number of residues in the alb barrel, in cases where the structure is
known. Such structures are identified by their Brookhaven Protein Data Bank access code. The substrate of each enzyme is
identified as "small" (i.e. a disaccharide or equivalent), "long (i.e. oligosaccharide) or "small-large" (i.e. both). The orientation
of the cleaved glycosidic bond (e = equatorial, a = axial) is also given. In cases where the three-dimensional structure is
known the number of domains in the protein is indicated. Where the likely number of domains can be inferred from sequence
homologies this is indicated inparentheses. Uncertain cases are indicated by question marks. References corresponding to
each PDB coordinate file are as follows: lcbg, 36Barrett et al.(1995); lgow, 42 ; 1pbg, 43; 2myr , 44; lbgl, 2 ; lbhg, 45 ; leec, 46;

ledg, 47 ; lece, 48 ; iCIX, 49 ; lxas, 50; lxyz, 46 ; 2exo, 51 ; lbyb, 40 ; lghr and lghs, 52.

Fan.__,DIlz me
Enzyme
code

Sources
B F P A

Overall Number of
length	 domains

Bane!
length

Type of
substrate

Active
site

POE
code(s

1 p—glucosidase 3.2.1.21 B	 -	 P 425-566	 1 491 e-small Pocket lcbg
3-galactosidase 3.2.1.23 B* -	 - 489-491 1 489 e-small-large Cleft lgow
6-p-3-galactosidase 3.2.1.85 B	 -	 - 468-474 1 468 e-small Pocket 1pbg
thio-P-glucosidase 3,2.3.1 -	 -	 P - 541-548 1 499 e-small Pocket 2myr
6-p-P-glucosidase 3.2.1.86 B	 - - 465-479 (1) No structure e-small
Lactase 3.2.1.108 -	 - A 1926-1927 (4) No structure e-small
Glycosylceramidase 3.2.1.62 -	 -	 - A 1926-1927 (4) No structure e-long

2 P-galactosidase 3.2.1.23 B. F - 897-1037 4-5 277 e-small Pocket lbgl
p-glucuronidase 3.2.1.31 B	 - A 603-651 3 290 e-long Pocket lbhg

5 Endo-1,4, 3-glucanase 3.2.1.4 B F .. 312-1039 1-? 332,380,362 e-long Cleft lcee,ledg lece
Exo-1,3-3-glucanase 3.2.1.58 -	 F - 421-570 ? No structure
Endo-1,4-11-mannosidase 3.2.1.78 B	 - - 363 ? No structure

10 Endo-1,4-13—xylanase 3.2.1,8 B F 312-1157 1-? 345,299,320 e-long Cleft I clx, I xas,lxyz
Exo-1,4-0-cellobiosidase 3.2.1.91 B	 - 484-1087 315 e-long Cleft 2exo
Endo-1,4-3-glucanase 3.2.1.4 B F 387-1039 ? No structure

14 P-amylase 3.2.1.2 B -	 P 488-575 1-? 491 a-long Pocket lbyb
17 Endo-1,3-1,4-3—glucanase 3.2.1.73 -	 -	 P 312-370 1-? 306 e-long Cleft lghr

Endo-1,3-0—glucanase 3.2.1.39 -	 P 305-478 1-? 306 e-long Cleft lghs

Exo-1,3-13—glucanase 3.2.1.58 F - 308-313 1-? No structure



Table 11(continued)
Enzyme Sources Overall Number of	 Barrel Type of Active PDB

Family	 Enzyme code B F P A length	 domains	 length_ substrate site code s
26	 Endo-1,4f3—glucanase 3 .2.1.4 - 900	 ?	 No structure e-long

Endo-1,4-I3—mannosidase 3.2.1.78 B F - 360-398	 ?	 No structure e-long
30	 13--glucocerebrosidase 3.2.1,45 A 515-536	 ?	 No structure e-long
35	 13—galactosidase 3.2.1.23 B F P A 536-1006	 No structure e-long
39	 Exo-1,4-0—xylosidase 3.2.1.37 B - 488-500	 ?	 No structure e-long

a-L-iduronidase 3.2.1.76 A 634-655	 ?	 No structure e-long
42	 fi—galactosidase 3.2.1.23 B- - 672	 ?	 No structure e-small
53	 Endo-1,441—galactanase 3.2.1.89 B	 F	 - 350-376	 ?	 No structure e-long
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Evolution of E. coli 13–Galactosidase and Other Members of the 4/7 Superfamily

The coincidence of structural and functional similarity seen in Figure 42(c)

suggests possible evolutionary routes for the origin of J3–galactosidase. Four of the

families represented by the solid symbols (Families 5, 10, 14 and 17) cleave a long-chain

polysaccharide substrate which binds in an active site cleft or tunnel in the a'j3 barrel. In

E. coli 13–galactosidase the active site has a pocket-like shape. If, however, Domains 1,

2, 4 and 5 are stripped away, Domain 3 has an open, extended cleft (Figure 48(a)). Thus,

the extra domains increase the overall size of the enzyme and, at the same time, change

Figure 48. Overlay of 4/7 enzymes looking down the active site cleft. (a-left) The a/0
barrels from the three families identified by ProSup that have a pronounced cleft (C.
thermocellum, J3-xylanase (lxyz), C. thermocellum 0–glucanase (lcec), barley
13–glucanase (1 ghr)). Also superimposed is the structure of the a/0 barrel of E. coli
13–galactosidase (lbgl) (Domain 3) with Domains 1, 2, 4 and 5 removed. (b-right) Same
view of representatives of the other two families (L. lactis 6-p-I3–galactosidase (lpbg),
and soybean (3–amylase (lbyb)). There is no cleft because of the longer loops.

the active site from a cleft to a pocket, which better accommodates the smaller substrate

(the disaccharide lactose). Let us assume that the prototypical enzyme had a structure
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similar to that of the Family 17 barley endoglucanases (Figures 48(a), 49). The

enzymes in this family are, in a sense, the simplest members of the 4/7 superfamily

(Table 11). They have the shortest polypeptide chains, and function as monomeric

enzymes having only a single domain which is like Domain 3 of E .coli Vgalactosidase.

One imagines that in such cases the polysaccharide substrate would bind in an open cleft

running along the barrel with a number of the saccharide units making specific contacts

with the protein and providing binding energy to be used for catalysis. The activity of

such a prototype could be modified by altering the shape of the binding cleft. This might

happen in different ways. One possibility would be to extend the loops at the end of the

cc/I3 barrel, partly filling the active site cleft and making it more appropriate for binding

smaller substrates. This is illustrated in Figure 48(b). Such an enzyme might, at least to

some extent, cleave a saccharide from the non-reducing end of an oligosaccharide, or

hydrolyze a smaller substrates such as a disaccharide. Another possibility would be to

add complete domains (CBDs) on one side or the other of the active site cleft. The sorts

of ways in which this might occur are illustrated in Figures 45(a) and 45(c). Yet another

possibility would be to utilize a combination of loop extension and the addition of new

domains. Of the alternative paths from the oligosaccharide to disaccharide hydrolase, one

would imagine that lengthening loops would be more economical than adding domains.

This is clearly the way that the Family 1 disaccharide hydrolases converted a cleft into a

pocket (Figure 48(b)). The evolutionary selection, however, is presumably for function in

preference to efficiency and shows that the extant state may be very path dependent.

Other enzymes appear to have added domains in order to hydrolyze smaller substrates.

These include the Family 20 chitobiases, which include structural homologs to



Cleft	 CBD

Endoglycosidase w/CBD
(e.g. Families 5 & 10)

Exoglycosidase wl
CBD and longer loops
(e.g. Families 5 & 10)
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Active Site
	 Non-Reducing End	 Reducing End

Cleft •
\

Prototype 417 Barrel
(e.g. Family 17)

Add loops

Cleft - with
closed end

Bring CBD closer, blocking cleft

Remove CBD, add more loops

Pocket

Exoglycosidase w/
small substrate

(e.g. Families 1 & 14) 

Exoglycosidase w/
small substrate
(e.g. Family 2)

Figure 49. Model for the evolution of 13–galactosidase and other 4/7 enzymes. A
presumed prototypical u/3 barrel enzyme (shaded) with a long, groove-like active site
cleft and an extended polysaccharide substrate is shown at the top. The addition of a
cellulose binding domain (CBD)to either terminus of the a143 barrel could give rise to
both endoglycosidases and exoglycosidases (e.g. Families 5 and 10). The generation of
an enzyme that hydrolyses small substrates might have occurred by either of the routes
shown utilizing loops and/or a CBD to turn the active site from a cleft into a pocket.
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Domains 1 and 2 as well as an additional domain that decorates a central 003 barrel

catalytic domain. Another example is the Family 33 bacterial neuraminidase. It has a

structure that is strikingly similar to domains 1-3 of f3–galactosidase. Here domains very

similar to Domains 1 and 2 are built around a barrel structure which in this case is a six-

fold I3-propeller rather than an cc/I3 barrel 22 . This apparently is also how Family 2 has

evolved but in the case of 13–galactosidase from E. coli and some closely related

enzymes, two extra domains have been added.

The 13–glucuronidases (Figure 43) are about 600 residues in length and are in the

same family as f3–galactosidase. Their structures appear to correspond to the first three

domains of the 3–galactosidases with which they have about 25% overall sequence

identity. This structural relationship was confirmed recently with the determination of

the three-dimensional structure of human 0–glucuronidase 45 . As discussed previously,

f3–galactosidase from E. coli and some related Vgalactosidases have two extra domains.

Domain 4 was presumably added by gene duplication of Domain 2 and seems to serve as

a "linker" to Domain 5 which was probably added and adapted specifically to bind

glucose in such a way that the enzyme has the capability to produce allolactose. Based

on this scenario, Domains 1-3 of 13–galactosidase might be capable of forming a stable

folded structure. This may be the basis for the phenomenon of complementation, in

which a deletion of the C-terminal third of the lac Z gene (the acceptor) can be

complemented by a deletion of the N-terminal two-thirds of the lac Z gene (the donor)53,

54. Studies with antibodies suggested that each of these elements could fold

independently 55 . The I3–galactosidase structure suggests that the acceptor comprises

Domains 1-3 while the donor consists of Domain 5 or Domains 4 and 5. Also consistent
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with the above explanation, the subunits for L. sake and L. lactis fl—galactosidase

(Figure 41) actually comprise two separate polypeptides roughly corresponding,

respectively, to Domains 1-3 and Domain 5 of the E. coli enzyme. Most of the

equivalents of Domain 4 are missing, suggesting that this region may not be critical for

function. These two enzymes together with the three to which they are most closely

related all have a deletion in the "donated loop" that reaches across the activating

interface to complete the active site (Figure 15, pg. 55). This suggests that they do not

need to be tetrameric. Indeed it has been shown that L. delbrueckii13--galactosidase is

active as a dimer (Adams et al., 1994). The enzymes from R. melitoti and T.

thermosulfurogenes {Figure 41) are smaller than the E. coli-type13—galactosidases (about

700 residues) and have lower sequence identity (about 20%). These two enzymes have

large deletions of Domain 4 and at least one of them (T. thermosulfurogenes) is a dimer

30 . They also have long deletions within Domain 5 and do not produce allolactose except

in the presence of high concentrations of glucose. The deletions of regions of Domain 5

may also relate to their dimeric structures30.

Structure Comparisons

In many respects the results from the three comparison programs ProSup, DALI

and Superimpose are comparable. All identify structural domains in other proteins

related to those in E. coli f3—galactosidase. For this reason we have compared the results

of all three methods only for Domain 3 (Figures 42(c), 44(a), 44(b)). Each technique
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consistently groups Families 1, 5 and 17 separately from all other structures in the

similarity plots and also the a/13 barrels separately from the non-a/13 barrels.

There are also some differences, ProS up and Superimpose both differentiate the

five TIM barrels that are glycosidases and appear to have the same catalytic machinery.

Members of this group are indicated by the solid symbols in Figure 42(c). In the ProSup

comparison, these structures have lower discrepancy between C_ atoms and/or more

structurally equivalent residues than all the other a10 barrels. For DALI there is some

overlap between the different barrel structures (Figures 44(a), 44(b)). There is not a

consensus concerning the relative similarity of the various a/I3 barrels to

13–galactosidase. For instance, ProSup and Superimpose group 3–amylase with the other

members of the 4/7 family. For DALI this distinction is much less clear-cut (Figure

44(a)).

In Figure 42(c), the non-a/13 barrels with the most equivalent atoms correspond to

typically 3/8 of the barrel. That is, the span of the structural segments being compared

includes about three strands plus three helices. In contrast, the most poorly scoring ot/13

barrels (left-most open circles) correspond to more than half of a complete barrel. The

presence of the gap suggests that the a/13 barrel is an "all-or-nothing" structure. In other

words, one does not have a gradual succession of structures with 3, 4, 5,...-strands

eventually leading to the complete 8-stranded barrel.

The a/ I3 barrels have pseudo eight-fold symmetry yet the apparent

nucleophile is always found on strand 7. Given the symmetry of the a/I3 barrel, if these

enzymes evolved convergently there would be no obvious reason to favor the location of
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the nucleophile on one strand over another. Thus these different structures appear to

have arisen by divergent evolution.

Following the preceding discussion there appear to be at least two factors that

may have contributed to the large size of Vgalactosidase. First, it may have evolved

from a much smaller enzyme which cleaved long polysaccharides. In the process of

modifying the active site to have shape complementarity towards the smaller substrate

lactose, additional domains may have been added. Second, the addition of these domains

may also have been associated with the development of a second activity

(transglycosylation).

Methods

Structure Alignments

Three methods were used to search for structures similar to the domains of E. coli

Vgalactosidase. These are described below.

Superposition lf S atiall E uivalewBackbors

The method "ProSup" of Zu-Kang and Sippl (1996) is based on the superposition

of backbone segments that are spatially superimposable 32. Initial sets of equivalent

segments, called seeds, are found and the alignment given by each seed is then optimized.

To generate the seeds, every possible pair of fragments of length 5 between the two
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structures is superimposed. Each fragment is then extended by adding residues onto

either end if the Ca-Ca distance between these residues is less than a specified cutoff

distance. This cycle is repeated until convergence (i.e. the equivalent fragments do not

change). The result is a set of initial seeds. The alignments given by the seeds with the

most equivalent Ca pairs are then refined using a dynamic programming algorithm. The

resulting refined alignments are compared and redundant alignments are discarded.

Although ProSup provides multiple alignments for each parities comparison, we only

used the one with the most equivalent Ca pairs.

In the case of the a/P barrels, the structural correspondence as measured by

ProSup was used to generate a structure-based phenogram. For every pair of a/13 barrels

the following ratio was determined: Rms Ca discrepancy/percentage of residues

structurally equivalent in the smaller barrel. This was then input to the UPGMA

algorithm of the GCG package 5 to obtain the phenogram shown in Figure 43 (page 154).

Superposition Using Distance Matrices

The program "DALT", introduced by Holm and Sander (1993), uses Ca-Ca

distance matrices to find the optimal superposition of two structures. In principle the

method allows for comparison of structures that have similar elements of secondary

structure, but connected in a different sequence, although this is not normally done. The

strategy is to break up the distance plot into overlapping 6-mer squares. Pairs of similar

subdistance plots define equivalenced residues. Using a Monte Carlo algorithm, a chain

of equivalenced segments is created to give the overall alignment. The similarity is
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measured by a similarity score which is related to the distances between equivalent

pairs of residues.

Generalized Superposition

The method of Diederichs (1995) ("Superimpose") was also tested as a general

way to search for similarities in Cc, positions. It can be applied with or without regard to

topological equivalency. The algorithm uses a six-dimensional search strategy to find the

alignment between two structures that maximizes a similarity function. The molecule is

rotated through discrete angular increments. For each angle a translation search is

performed to maximize the number of equivalent Ca atoms. This involves finding the

most common intermolecular C a–C,, vector. The algorithm is general, allows for

different topologies, and the user can employ a number of different "filters". The "filter"

used in this study is the "Topological Similarity Score" which favors alignments with

many equivalent atoms and high sequence correlation between pairs.

Sequence Searches and Alignments

Amino acid sequence searches were done with BLAST at the National Center for

Biotechnology Information 56 . Non-redundant tblastn and blastp data bases were

searched. Amino acid sequence alignments were performed with the Wisconsin program

package 5 . Default parameters were used (swgappcp.cmpmatrix, gap creation = 3.0, gap
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extension -= 0.1) with pileup (multiple sequence alignment) and Bestfit (pairwise

sequence alignment).

Structure Databases and Fold Assignments

The comparisons using ProSup and Superimpose were made using the PDB

Select 10/97 release with a "25% identity cutoff' ". The Family II CBD from C. fimi

(PDB code 1EXH) was also included because it is the only CBD II structure known.

Although it has greater than 25% sequence identity with three structures in the PDB

Select list, it scores much higher in structural comparisons with Domain 1 of 13-

galactosidase. The bacterial sialidase (code 1EUT) was also included because of its

similar domain organization to P-galactosidase. Comparisons with DALT were done by

submitting coordinates to the DALI server.

Structures were assigned to one or more of the categories a/r, barrel, jelly-roll,

immunoglobulin and "other" based on the identifications provided with the coordinates as

well as a visual inspection of the structures. In cases where the assignment was uncertain

a check was made with the SCOP data base 57 . While most of the structures with high

similarity to any of the domains fall clearly in one of the categories, those with poorer

similarity are more difficult to classify. This is especially true of the immunoglobulins

and the jelly-rolls, which can be viewed as variants of each other. These classifications

are therefore meant to serve as overall identifications rather than precise descriptors.
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CHAPTER V

THE EFFECTS OF FREEZING ON PROTEIN CRYSTALS

Introduction

Many protein crystals are subject to significant damage during X-ray data

collection. Figure 50 shows the decay of a Vgalactosidase crystal at room temperature

and one flash frozen to —100 K. Damage occurs hundreds of times faster at room

temperature (Table 12). At a synchrotron, where the beam intensity is up to 1000x

greater, damage occurs about 2000x faster (Table 12) and data collection at room

temperatures is practically impossible, because of the short life of the crystals. In the

case of 0–galactosidase, a single data set at 1.7 A would likely require 50 to 100 crystals,

whereas at low temperature a complete data set to 1.5 A resolution can be collected on a

single crystal. The exact mechanism of the decay is unknown, but is thought to involve

free radicals generated by the interaction of the incident x-ray radiation with the solvent

or protein.

The search for suitable conditions under which to freeze crystals is often

problematic and screening is usually necessary to find a suitable cryoprotectant and a

freezing protocol. The cryoprotectant is often necessary in order to prevent ice crystals
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from forming, which can destroy the protein lattice. Once conditions are found it is

usually possible to collect data to higher resolution than possible without freezing.
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Figure 50. Plots of B vs Time in Beam. Each spot represents one exposure during data
collection. B is derived from a scaling algorithm used to scale each exposure to the first
one. It describes the falloff of diffraction intensity with increasing scattering angle:
where theta is the scattering angle and lambda is the wavelength. Over time, the

I	 e-B(sine/A)2

radiation destroys the lattice, causing the diffraction intensity to falloff faster with theta,
increasing B. The crystals used were: Room-Temp/Home(Raxis4): E537Q/X-gal; Low-
Temp/Home(Raxis2):Native/Galactal; Room-Temp/Synchrotron: E537Q; Low-
Temp/Synchrotron: E537Q/Galactal

Table 12. Crystal decay rates under various conditions measured with the rate of change
of B, based on linear fits of the data in Figure 50.

Room Temp	 Low Temp	 RT/LT
Synchrotron (ALS BL 5.0.2) 	 1380 A2/hour	 3.6 A2/hour	 380
Home source	 0.50 A2/hour	 0.003 A2/hour	 200
Synchrotron/Home source	 3000	 1200
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Although freezing of crystals is an important element of macromolecular

crystallography it has not been studied in much detail. There have been a few reports of

the surprising possibility of recovering "lost" diffraction by using "annealing" protocols,

and this technique is gaining in popularity 1 -3 . However, there has been little discussion

of more basic issues about what happens to crystals when they freeze. The intent of this

chapter is to describe some observations and experiments designed to address some basic

issues concerning freezing f3–galactosidase crystals.

Results

1. Freezing Decreases the Unit Cell Volume

Figure 51 shows a histogram of unit cell volumes for different crystals of P212121

p—galactosidase. On average, there is a 7 % decrease upon freezing. Both sets of crystals

(frozen and non-frozen) include a variety of protein ligand complexes and three different

mutations, as well as data sets processed with two different data processing programs.

Both groups also include data sets collected in house and at synchrotrons, although most

of the frozen data sets are from synchrotrons, while all but one of the room temperature

data sets were measured house. Additionally, the room temperature data sets are of lower

resolution than the frozen data sets. These differences may have contributed to the

spread in the two distributions, but it is highly unlikely that there is a systematic error

grouping the crystals in a way to lead to the 7 % decrease in cell volume upon freezing.
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Figure 51. Histogram of orthorhombic f3-galactosidase unit cell volumes. Blue cross
hatching shows crystals at low temperature (-100 K) and red dots shows crystals at room
temperature (-295 K). There is a —7% decrease in volume with freezing.

2. Freezing Repacks the Crystal Lattice

As calculated with molecular surface programs, the area buried at crystal contacts

increases by about 80 % upon freezing4,5 . The area buried at intersubunit contacts

within a tetramer also increases, but not as much. This suggests that there is repacking of

the crystal lattice upon freezing and slight repacking of the monomers within the

tetramer. Examination of the coordinates shows that there are shifts of the tetramers in

the crystal lattice relative to each other upon freezing. This is shown schematically in

Figure 52.

5.5
	

5.6
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Figure 52. Schematic illustrating changes in crystal packing upon freezing. The cell
parameters change, and the molecules reorient. The 1-2 crystal contact becomes the 1-3
crystal contact. In P2,2 1 2 1 0-galactosidase, the reorientation includes rotations up to 3
degrees and shifts at the crystal contacts of several angstroms.

3. Freezing Does Not Change the Protein Volume

As calculated with molecular surface programs, the volume of the protein actually

increases by – 1% upon freezing4, 5 . This is probably near the noise level for the

calculation. Since the volume of the protein doesn't change appreciably, the change in

unit cell volume observed on freezing cannot be due to thermal contraction of the protein

itself.

4. The Effects of Freezing are Reversible

A natural question, then, is whether the observed changes in unit cell volume are

reversible. To test this, a crystal was mounted at room temperature in the cryo buffer

using the standard method in a glass capillary and several diffraction images were taken
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to determine the unit cell volume. The buffer was 10% PEG8000, 100 mM bis-tris

pH 6.5, 200 mM MgC1 2 , 100 mM NaC1, 10 mM DTI', and 30% DMSO as the

cryoprotectant. The crystal was then expelled from the capillary, flash frozen, and several

more images were taken. The crystal was then "flash melted" by bringing a large drop of

crystal buffer up to the crystal and immersing the crystal directly in the drop. After

remounting in a glass capillary, more images were taken at room temperature. This was

repeated as many times as possible. Up to three cycles of freeze-melt could be attained

before the crystal broke apart. Figure 53(a) shows that the change in cell volume is

reversible. The volume decreases upon freezing and increases upon melting.

Furthermore, the mosaicity also changes reversibly, increasing with freezing and

decreasing with melting.

A second experiment was done to explore the reversibility in smaller temperature

jumps. Figure 53(b) shows that the cell change in the low temperature range is

reversible.

For the reversibility experiments, temperatures above –170 K could not be

measured, because when the crystals were warmed to this temperature they stopped

diffracting, The disappearance of the protein diffraction was accompanied by the

appearance of a powder diffraction pattern which corresponded to the expected powder

diffraction pattern for hexagonal ice (space group P63Immc, a=4.49 A, c=8.33 A). This

behavior could be reproduced with buffer only (no crystal), and also with water and

DMSO only. it appears then that flash freezing the buffer produces a glassy material.

Warming this material through about 170 K allows the water to crystallize

(devitrification). This phenomenon of devitrification has also been observed in
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DMSO/water mixtures using differential thermal analysis. The formation of these

ice crystals destroys the protein crystal lattice.
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Figure 53. Reversible nature of the effects of freezing. (a) The crystal can be repeatedly
frozen and melted cycling the volume and mosaicity between room temperature and low
temperature values. There are, however, some indications of hysteresis in the mosaicity.

(b). Reversibility tests at low temperature. The crystal was first flash frozen to 100 K,
then warmed to 160 K in 10 degree steps, cooled back to 100 K in 10 degree steps,
warmed to 160 K in a 60 degree jump, and cooled back to 100 K in a 60 degree jump.
Changes in cell volume can be detected even with 10 degree temperature jumps.
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Discussion

Although the low temperature crystal packing is well ordered, diffracting to high

resolution, it is apparently never produced with the initial crystallizations at 15° C.

The reason for this could be a path dependence on the crystallization process. That is, the

low temperature packing might be a stable configuration at room temperature, but only

accessible through freezing (and then thawing). However, the reversible nature of the

cell parameter change argues against this idea (Figure 53). It suggests, instead, that each

temperature has a different optimal packing configuration which is governed by

thermodynamics at each temperature.

The protein volume (and therefore density) does not change appreciably on

freezing. Changes in density of bulk solvent could have an effect on the unit cell volume.

However, the density of the vitrified bulk solvent after flash freezing has not been

measured. The density of vitrified water has been measured with eryo electron

microscopy and found to be -0.93 g/cm 37, suggesting that water slightly expands upon

vitrification. Assuming this bears on the behavior of the bulk solvent, it is then apparent

that inherent changes in the density of neither the protein nor the bulk solvent can

account for the decrease in unit cell volume, and in fact they may be expected to increase

the cell volume.

The change in unit cell volume is probably be due, then, to the temperature

dependence of the protein-protein interactions and protein-solvent interactions which

define the crystal lattice. For example, it will be easier to order long amino acid side



192
chains and form a salt bridge at lower temperature. Hydrophobic interactions at 100

K are probably also quite different from those at room temperature.8

Some flexibility in the proteins and the lattice itself will be required to allow the

molecules to explore different packing arrangements during the freezing process. If the

lattice as formed at room temperature is very strong and rigid, then repacking will be less

likely upon freezing. If the lattice is very weak then it will be easier for the molecules to

reorient. In either case, the repacking is probably a cooperative process.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The structure of p-galactosidase was originally determined in a monoclinic crystal

form to 2.5 A resolution.. This dissertation describes the crystallization and structure

determination of13-galactosidase in an orthorhombic crystal form to 1.7 A resolution.

Analysis of this structure resulted in new insights concerning Mr and Na.' binding, ot-

complementation and the hierarchical construction of 13-galactosiclase(Chapter 2).

The mechanism of13-galactosidase includes two alternate pathways – one for

hydrolysis and one to produce allolactose, the inducer for the lac operon. This

mechanism was studied by determining the binding modes of several ligands to 13-

galactosidase andf3-galactosidase variants to high resolution (up to 1.5 A). These

structures, which include two trapped covalent intermediates and products, as well as

structures designed to mimic early points in the reaction and transition states, suggest a

putative reaction pathway for P-galactosidase. The pathway involves the progression of

the substrate to a deep pocket where interactions between the galactosyl hydroxyls and

the enzyme position the substrate for a concerted nucleophilic attack of the galactosyl

group and proton donation to the leaving group. Detailed consideration of this reaction

pathway in the context of previous biochemical studies offers new insights and questions

about the mechanism for 13-galactosidase (Chapter 3).
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A conformational change in the enzyme is observed which appears to be

triggered by the progression of the substrate toward the intermediate. This

conformational change could also be triggered via amino acid substitution and this p-

galactosidase variant appears to favor a structure better suited for binding the transition

state for hydrolysis. However, the variant is deficient for allolactose production,

suggesting the residues involved in the conformational change are important for

determining which reaction pathway the enzyme follows. Possible roles for this

conformational change in the action of native enzyme are discussed (Chapter 3).

The evolution of p-galactosidase was investigated by considering structures

related to its 5 domains. A model is proposed involving a progenitor catalytic domain

which could hydrolyze a long polysaccharide substrate by binding it in a cleft. The

addition of other domains transformed the active site from a cleft into a pocket,

drastically increasing the size of the enzyme, but allowing it to hydrolyze a much smaller

substrate(Chapter 4).

Finally, a brief investigation of the effect of freezing on the orthorhombic [3-

galactosidase crystals is described. It is shown that the unit cell volume decreases by 7%

upon freezing, This effect is reversible, suggesting that each temperature has a slightly

different optimal packing determined by the nature of the intermolecular interactions at

that temperature (Chapter 5).



APPENDIX

DERIVATION OF EXPRESSIONS FOR KINETICS

Typically, an enzyme catalyzed reaction follows saturation kinetics:

v	 E° kcat [51 (1)
Kw +[S1

where vo is the initial rate of the reaction, E. is the enzyme concentration and S is the
substrate concentration. Experimentally, vo is measured for different S at fixed E 0 . This
results in data that can be fit to the above equation using the two parameters: kea„ which is
the turnover number of the enzyme (reactions/second) and K m, which is the substrate
concentration at 1/2 the maximum rate.

A minimal model for an enzyme catalyzed reaction with two steps, as with 0-
galactosidase is:

ki	 kz	 k3

E+S<=:›E•S–÷E–I+Pl--E+ P2

where E = enzyme, S = substrate, E•S = enzyme-substrate complex, E-I = enzyme-
intermediate, P1 = product 1, P2 = product 2, k i = rate constant for association of E S,

= rate constant for dissociation of E•S, k2 = rate constant for step 1, k 3 = rate constant
for step 2.

The initial velocity for any model of an enzyme reaction is given by:

vo E, - knet (2)

where kit is the net rate constant for the model. In this case,k„ EI is given by:

1	 1	 1	 1
=	 - (3)

k2 k3
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E + P2
+ k3
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is a net rate constant for the association of enzyme and substrate. It is the rate of
association times the probability that the association will continue down the reaction
pathway.

Combining the equations 2-4, and rearranging to look lik equation 1 equation,
k2k3

k2 + k3 
gives:	 –+ k2 )k3 s (5)

k l (k, + k3)

2	 k3 	,)kand therefore:	
k

=	 and K = (k +k- -1 	(6).
k2 + k3	 ki(k2 k3)

If substrate binding is a rapid equilibrium (k . , >> k2), then:

= K 
kk 	

(7)
2 + k3

where IC =k A I is a dissociation constant for the enzyme-substrate complex. Thus if the
rate of step 1 is comparable to the rate of step 2, an appreciable fraction of the enzyme is
in the enzyme-intermediate complex, Km < IC This is the case with onpg for 3-
galactosidase.

A model for p-galactosidase with an intermolecular acceptor, A, in rapid
equilibrium with the intermediate is:

E-I•A	 E + P1
k4

With a net rate constant for given by:
1	 1	 1	 1	 (8)
— + +
k„„	 k, k2 k3

1c3 =	
1 +

1 
a	

a	 m+ k4 -
1 + a 

(9)

where a =—A . Here, k3 and k4 are multiplied by the fraction of the intermediate which is

following the k3 or k4 path.
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Following the algebra through yields:

k (k + k a)
= 	 " 4	 (10)

+k3 + (k2 + k3)a
(k3 + k 4a)

K,„= K	 (11)
k2 + k3 + (k2 + k3 )a

Adding in the possibility that the acceptor A can also act as a competitive
inhibitor:

P1

ki
E+S	 E+ P2

1(1	 k2	 k3

A	 A

E•A
	 E-I•A	 E+Pl

1(4

decreases the amount of free enzyme to E/(1+A/K,), but doesn't directly affect the other
complexes. Therefore, the net rate constant k,' will decrease to k,'/(1+A/K,). Following
this through yields:

(k3 kaK = K 
(1 

+ 
A 

) 	 (ka) 	 (12)
5	 k2 + k3 + (k2 + k3)a

kcat is unaffected because a competitive inhibitor can always be overcome by increasing
the substrate concentration. These expressions for Ica, and Km (eqns 10-12) can be
directly fit to data in A.

Alternatively, Deschavanne et al (1978) describe the use of these equations for
kinetic analysis of various effectors. Determining Ic a, and K. for a series of
concentrations of A allows one to determine 	 K," and k4 by using:

K K
=	 (1+ 

I
) (13)

kc„,,	 k2
(Ica, – kfw ) k2 + k3 „  k2k4

k = 	 	  +
I	 k2 + k4	 k2+k4

(14)
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