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CHAPTER I

INTRODUCTION

I.I. Background of Problem

One current strategy in noncommutative ring theory is to associate geometric

objects to noncommutative algebras. Algebraists have been very successful analyzing

primitive ideals by considering them as geometric objects. For example, a geometric

focus was used in [1] to classify algebras with nice homological properties (similar

to polynomial rings) in terms of the geometric structure of a collection of graded

indecomposable modules. We refer to this geometric philosophy as noncommutative

algebraic geometry. In this dissertation, we focus on a family of twists B of the

polynomial algebra S = C[x i, , Our goal is to give a geometric description of

the primitive spectrum of B.

We offer the following examples as motivation. The primitive ideals of the uni-

versal enveloping algebra of an algebraic solvable Lie algebra, g, are parametrized by

the symplectic leaves in the Poisson manifold g*, [2]. Furthermore, these leaves are

the orbits of the adjoint algebraic group of g. Hodges and Levasseur use the quan-

tum group 0q (SL„) to define a Poisson structure on the manifold SL 7,. They then
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demonstrate that the primitive ideals in 0q (SL,L ) are parametrized by the symplectic

leaves, [7]. In [10] M. Vancliff describes the primitive spectra of a family of twists,

B(m), of S, parametrized by the maximal ideals of an algebra R. Each twist B(m) of

S is determined by a semisimple automorphism am of P. The multiplication in the

twist induces a Poisson structure on C'. Vancliff restricts to the setting where the

symplectic leaves for this Poisson structure are algebraic. She defines an associated

algebraic group, G, whose orbits are the symplectic leaves. She then proves that the

primitive ideals in B(m) are parametrized by the symplectic leaves for the Poisson

structure if and only if am has a representative in G.

In this dissertation we extend Vancliff's results to a family of twists S' of S in

which the automorphism o- is not semisimple. In particular, we consider the twist of

S by an automorphism that is represented by a single Jordan block. In this setting

we find that the symplectic leaves of the associated Poisson structure are always

algebraic. Furthermore, we find that as in Vancliff's case, the symplectic leaves are

the orbits of an algebraic group, and that the primitive ideals are parametrized by

these leaves.

Much of the work in Vancliff's analysis, is due to a having more than one eigen-

value. In her setting, the commutator of x i and xi is a difference of eigenvalues

times xixi , and this fact makes analyzing prime and primitive ideals straightforward.

Problems only arise for certain bad combinations of eigenvalues (i.e. when ratios of

differences of eigenvalues are roots of unity). We avoid these eigenvalue complications
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in our setting, because 1 is the only eigenvalue. On the other hand, commutators of

monomials are no longer monomials, and thus it is much more difficult to analyze

the prime and primitive ideals. We are required to take a different approach to the

problem, and are afforded a more intricate primitive spectrum.

In Vaneliff's work, the Poisson geometry is relatively straightforward to analyze

because the symplectic structure is evident. In our setting, some of the symplectic

leaves are evident, but we must make a careful analysis of certain differential operators

to find the others.

L2. Statement of Theorems

Let a be the automorphism of IP -1 which is represented by the matrix with ones

on the diagonal and superdiagonal, and zeros everywhere else, and let B be the twist

of S by a. In section	 we will see that B is isomorphic to a quotient of the

free algebra C(y i , yri ) by a homogeneous quadratic ideal. We identify B with this

quotient, and retain the notation yi for the image of y, in B. The algebra B is well

understood as a projective object, [11], however, we are interested in understanding

B as an affine object.

This thesis is organized as follows. Chapter II gives background information per-

taining to the problem. In Chapter III we investigate the primitive spectrum of the

twisted algebra. Our main result is the description of the primitive ideals of B.
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Theorem 111.1.6. The maximal ideals in B are the ideals (yi ,	 y7,-1,	 - A),

A E C. The remaining primitive ideals are (yl ,	 yn-2), together with a family of

homogeneous ideals. These homogeneous ideals are of the form

(Y1, • • • , Yk,	 • -

n k — 2
where k 0,	 , n — 3, j	 , each fi is degree 2, and each collection

2

{	 is determined by a unique element of C' k

For notation necessary for the precise statement of Theorem 111.1.6, please see Con-

struction 111.1.5. From Theorem 111.1.6 we see that the non-maximal primitive ideals

are parametrized by the set

-= {a E	 =

where C° = 1.

In Chapter IV, we construct the Poisson structure associated to the twist. Here

we define a differential operator w, which is the key to the symplectic structure. In

fact, this operator represents the crucial difference between this case and the diagonal

case. Each leaf is obtained by constructing a sequence of elements . , f3 , such that

w = 0, and w fi = fi_ i . That is, we determine the symplectic leaves by integrating

with respect to w. After a change in variables, we recognize the two dimensional

symplectic leaves as open affine subsets of classical surfaces.
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Proposition IV.2.1. The 0-dimensional symplectic leaves associated to the Poisson

structure are the points (0, . , 0, -y) E An . The remaining leaves are two dimensional,

and each of these leaves is an open subset of the image in An of a Veronese surface.

For a precise statement of Propositions IV.2.1, the reader is refered to section IV.2.

After describing the Poisson structure, we note that the primitive ideals are also

parametrized by g`.

Corrolary IV.2.2. There is a natural one to one correspondence between the prim-

itive ideals in B = 8' and the symplectic leaves for the symplectic structure induced

by o

In Chapter V we realize the two-dimensional leaves as orbits of a unipotent sub-

group of the general linear group.

Proposition V.1.1. The 2-dimensional symplectic leaves for Su are the orbits in

rIT (ere%An of a regular unipotent algebraic subgroup G of	 Furthermore, C acts

transitively on the 0-dimensional leaves.

Finally, in Chapter VI, we give examples of our result, and a three dimensional

twist example where the automorphism has two Jordan blocks.



CHAPTER II

PRELIMINARIES

II.1. Non-Commutative Algebra

Our primary goal is to describe the ideal structure of the twist of a polynomial al-

gebra by a degree zero automorphism. Such an algebra is a noncommutative analogue

of a homogeneous coordinate ring [1]. It is defined more simply below.

II.1.1. Twisted Algebras. Given a commutative graded k-algebra A (19.21d , and a

degree 0 automorphism a of A, we form the twisted algebra A°, with multiplication

defined on homogeneous elements by a * b = a • o-r (b), where r deg a, and • denotes

usual multiplication in A. This new algebra A' retains many of the properties of

the original algebra. For example, the properties of being a domain and of being

Noetherian are invariant under twisting [11]. In fact, J. Zhang has shown that twisting

defines an equivalence relation on the category of graded k-algebras that is analogous

to Morita equivalence, in the following sense. Let Gr —A be the category of graded

A-modules, with morphisms being graded degree 0 homomorphisms. Then a graded

k-algebra B is a twisted algebra of A if and only if the categories Or —A and Gr —B

are equivalent if and only if the categories Gr —A and Gr —B are isomorphic.

6
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Let B = A. Since B = A as sets, each element of f E B is also an element of A.

We will write f° E A when f is viewed as an element of A. For an ideal I in B, let

ff°If c For homogeneous F E I° and G E A, FG = F * a'(G) E I°. It

follows that if I is a homogeneous ideal in B, then I° is a homogeneous ideal in A. If in

addition, (1°)" = I°, then B/I is A/I° as a graded vector space, with multiplication

inherited from B, so in fact, B11= (AlP)° , where Er is the automorphism induced

by a.

Let f,g E B be homogeneous of degrees i and j respectively. Write F = f° E Ai,

and G = g° E Ai , and assume that F' = F. Define Tf (g) by [rf (g)]° = G. Then

[Tf (g) * 1]° = Ga2 Fcri = FG'` = (f * g)°, so that (g) * f = f * g. From this we see

that if f is homogeneous with (f°)" = f°, then f is normal in B. We will say that

f E B is a-invariant if (t)" = f°.

11.1.2. Note. For homogeneous a-invariant element f E B,i-f is an automorphism of

B. Furthermore, homogeneous o--invariant elements of the same degree are associated

to the same automorphism.

We write (F1 ,	 , Fd) for the ideal generated by the elements F1 , ..., Fd in the

commutative algebra A, and write	 , fd) for the ideal generated by	 fd in

the noncommutative algebra B. Let f E Bi be homogeneous and o--invariant, and let
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I = (f). Since f is normal, I f * B, so

= {(f * grig E B}

{f°(9°)azlg E B}

= A.

For G E A, (f°G)° = f°C1 E I°, so I° is u-invariant. It follows that B I (f)

[A/(f°)]' , where where a is the automorphism induced by a.

11.1.3. Notes.

1. The preceding paragraph shows that if f is u-invariant and irreducible, then the

ideal (f) is prime.

2. Let f be u-invariant, and let P be a prime ideal in B with f P. Since f is

normal, (f) =B*f. If gEB, with f * g E P, then ,f*) *(g)=B*f*B*g*B=

B*f*g*B,-(g*f) C P. But then g E P. It follows that f is regular modulo P.

Now, let S = S" = C[x i , x,.] be the polynomial algebra in n variables over the

complex numbers, with grading given by deg(x i ) = 1. A graded automorphism a of

Sn is determined by its restriction to the vector space Si' of degree one elements, so a

is represented by an upper-triangular (n x n)-matrix. Furthermore, scalar multiples

of this matrix give rise to isomorphic twisted algebras, so we can take a to be an

automorphism of Ir-1.

11.1.4. Primitive Ideals. Let R be a ring. A module MR is faithful if AnnR(M) =

0, that is, if r E R with Mr = 0, then r = 0. We say that R is (left) right primitive
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if R has a simple faithful (left) right module. Although a right primitive ring need not

be left primitive, we will usually omit the word 'right'. An ideal Pin R is primitive

if R/P is a primitive ring. A primitive ideal is prime, and each maximal ideal is

primitive [5]. Furthermore, in a commutative ring an ideal is primitive if and only if

it is maximal. It is not surprising then that the primitive ideals in a non-commutative

ring play a role analogous to that of maximal ideals in a commutative ring.

A ring R has the endornorphism property if for every simple R[z] module,

M, End(M) is algebraic over k. If k is an uncountable field, and R is a countably

generated k algebra, then R has the endomorphism property [9].

Proposition 11.1.5. Let k be art uncountable algebraically closed field, and let R be

a primitive k-algebra. Then the center of the quotient ring Q(R) is k.

Proof. Let Z be the center of Q(R), and z E Z. Write z = rs-1 , with r, s E R, and

s regular. Since z is central, it follows that for each p =-- p(z) E R[z], ps" G R, where

n is the z degree of p. Let L be a simple faithful R-module, and let L = L ®R R[z].

We claim that L is a simple faithful R[z]-module. As an R-module, L >  L, is
icz

a sum of faithful modules, so AnnRm (L) fl R = 0. But R is essential in R[z], so

AnnRm (L) = 0. Now, suppose that A is a nonzero R[z]-submodule of L, and let u be

nonzero in A. Write u = x ®p, where p E ad. The R-module uR is contained is
i=0

the module E L.?, whose simple factors are all isomorphic to L. Since L is faithful,
i=0

AnnL (sn )	 L, so there is a nonzero element v E uR such that vs'	 0. Write



10

v = y q where q E R[z] has z degree less than or equal to n. Then vs' = yqsn 1 is

in 1.113 C A and generates A, so L is in fact simple. Now, Riz] has the endomorphism

property, so End(L) is algebraic over k, hence equal to k. But multiplication by z is

an endomorphism on L, so z acts as A for some A E k. But L is faithful, so z = A E k,

and we are done.	 q

11.1.6. Note. In the proof of Proposition 11.1.5, we actually showed that if R and

R[z] are primitive algebras over an uncountable algebraically closed field, then R[z] =

R.

11.1.7. Remark. A regular normal element r in a ring R determines an automor-

phism (pr of R by xr = rpr (x). Suppose R is a primitive k-algebra. If r and s

are elements of R that determine the same automorphism, then the element rs-1 is

central in the quotient ring Q(R). Then by Proposition 11.1.5, r = cs for some c E k.

11.2. Poisson Geometry

11.2.1. Poisson Manifolds. Let A be a C-algebra. A Poisson bracket on A is a

Lie bracket {, } on A that is a derivation in each variable. So {, } is a skew-symmetric

bilinear form that satisfies

{x,	 z}} {y, {z, x}} + {z, {x, y}} = 0; and

(ii) {x, yz} = y{x,	 + {x, y}z.
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The pair (A, {, }) is called a Poisson algebra. An ideal I in A is a Poisson ideal

if {I, A} C I, and an element f E A is a Poisson element if (f) is a Poisson ideal

in A. Let M be a differentiable complex manifold. A Poisson structure on M

is determined by choosing a Poisson bracket {, from C°°(M, C) x C°°(M, C) —

C°°(M, C). The pair (M, {, }) is called a Poisson manifold.

For any Poisson manifold (M, }), there is a unique differentiable field A of twice

contravariant, skew-symmetric tensors such that for any pair f, g E C°°(M, C),

{f,g} A(df,dg).

For a point x e M, the rank of the 2-tensor A(x) is called the rank of the Poisson

structure at x. A symplectic leaf is a maximal connected Poisson submanifold N

of M such that the rank of the Poisson structure at each point of N is equal to the

dimension of N. By standard theory, the symplectic leaves have even dimension, and

M is a disjoint union of symplectic leaves [8]. The collection of symplectic leaves

is called a foliation of M, and we say that M is foliated by its symplectic leaves.

Suppose that (M, {, }) is a Poisson manifold, with M = Cn. Then the bracket {, }

is determined by its restriction to S = C[x i , - • • , xn], [8]. If in fact the bracket maps

(C[x i , , xTh ] x C[xi, • - , xid into C[xi , - • • , xn], then we may determine the Poisson

structure by studying the Poisson algebra (S, }).

11.2.2. Drinfel'd. Let S be the polynomial algebra on n generators over C. The

Poisson bracket due to Drinfel'd is defined as follows. Let R be a commutative k-

algebra which is a PID but not a field, and let A be an R-algebra. Further assume
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that A is flat as an R-module, and that there exists a maximal ideal m0 = (H) of R

which is unique with the property that Agmo) a-' S. For F, G E S choose preimages

F, G E A, and define the bracket of F and G to be

{F, G} = 
Pd  di mod(H).

H

Then {, } is a Poisson bracket on S [3].



CHAPTER III

THE TWISTED ALGEBRA

Non-Semisim ple Twists

III.1.1. The Twisted Algebra. In [10], Vancliff describes geometrically the primi-

tive spectrum of the twist of a polynomial algebra by a diagonalizable automorphism.

We are interested in the case where the automorphism is not diagonalizable. In partic-

ular, we present the case where the automorphism is represented by the Jordan block

with ones on the diagonal and on the superdiagonal. Let S STh be the polynomial

algebra with n variables over the complex numbers, and let

13

=
1 1

1

Then using the convention that x 0	0, and writing Fa for a(F), we have ei

xi + xi_ 1 . The twisted algebra Bn = Scr has multiplication

X • * X- =-F- X -X 13	 1, I - •

Notice that for each i < n, we have an embedding Bi	Br' given by x i 1---4 xi.
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To avoid the * notation, we write yi1 yi2 • • y.„ for the element xt1 * xi2 * • - * xj,.

Then Bn is a quotient of the free algebra C(y i, yam. ) by a homogeneous quadratic

ideal. Recall that each f E Bn corresponds to a unique polynomial f° E S. For

example, = xi , and (yiy3 )° = xtx7 = x ixj +

111.1.2. Remark: The goal is to describe the primitive ideal structure of Bn . The

element y1 is homogeneous and a-invariant, so by III.1.1, Bn•/(yi) Bn- 1. By

induction, we will understand the primitive ideal structure of BTh once we describe

the primitive ideals in each k , i < 71, that do not contain yi.

111.1.3. Example. Let n 2, so B2 =	 Y2)/(Yi y2 - y2yi - yi). We will show in

Lemma 111.2.3 that every primitive ideal in B' contains a homogeneous, a-invariant
d

element. Suppose F =Eaixl
d—j xj2 E S2 is a-invariant.

j=o

— F = Eaix cii-jRzizr — x
j=1

a •xd-i E
j=1	 i=0
d j-1

EEai
j=1 i=0
d-1 d

E E
i7=0 j=i+1

j ) j—i
Xi X2

d—i i
X I X 2

Then for each i, Eaj (	 = 0, and it follows that al = 0 for j = 1, . d. This
j=i+1

means that the only homogeneous a-invariant elements of B 2 are powers of yi . But

Yi is normal, so every non-zero primitive ideal contains y i . The primitive ideals in
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the commutative algebra B 2/(yi ) C[y2] are the maximal ideals (y 2 — -y), -y E C, so

the non-zero primitive ideals in B 2 are the ideals (y i , y2 — 7), y E C. Finally, 0 is a

prime ideal which is not the intersection of strictly larger primitive ideals, so 0 itself

must be primitive t91. Thus the primitive ideals in B 2 are (0), and (yi , y2 — 7) -y E C.

111.1.4. Note. From Example 111.1.3, we see that for each n, the primitive ideals

In Bn that contain yi ,	 are (yi, ... , yn_2), and (y1, - • - , yn-i, yn - 7), y E C.

Moreover, the ideal (yi ,	 yn_ i ) is prime but not primitive.

I11.1.5. Construction.

Let n > 2, and a = (a 1 ,	 ar,_ 2 ) E Cu-2 . For each j = 1,	 , n — 2, let

k=1 i=1	 i=3
j+1

i=2

i•-i+ooi + (j — 1)Yiyi+i + (j + 1 )yiyi+2 - Y2Yj+1,

and let Ia ( , ffn„ -2 ). We want to show that every primitive ideal in Bn that

does not contain yi , contains fa , for some a E Crz-2 . In fact, we will show that if

P is primitive with yl P then there is a unique a E C r" so that Ia C P. Let

2aryl 2y1y3 – y22 , and for j > 2, let

g7De [ E(-1) k'azYtY3-k+11 [E(-1)1 Nyi1
j-1-1

+ (j + 1 )Y03+2 [E(-1)3-i y2y1 .



[j 1
-

i=2

Then gal = Pc-,, and

16

gj, gja1 (--i)k-jaiY1Rj-k+i (-1)k jaimi-k

-Y1Yj+1	 (3. 	 1 )Y1Y.j+2 iY1Yj+1 Y2Yjd-1

j	 k	 j k-1

( -1 ) k-iaiY1Yi-k+ 1	 (-1)k i-laiY1Yj-k+1

	

k=1 i=1
	 k=2 i=1

(j	 + +1)yo.,+2 - y2y3+1

	

= alYiSj
	

akYTY j-k+1 (j —1)&r.lYj+i+	 1)Y1Y/+2 11211j+1
k=2

akYlYi-k+1 +	 1)yiyi+i + + 1),Ylvj+2 Y2Yj+1
k=1

- 

Then (C	 2 = I 1	 n-2 	 Let G° 	 0, and for j = 1, ...n – 2, let

Ga

' 3Ct	 •

= (gD° E S. Then G,1 = cx ixT + X1X2 2x i x3 – x2 i and for j > 2,

1
(-1)k—iceixix;_k+1

1
xi

](-1) j—ix2x7

We have



k=1 1=1
j+1

(-1
i=3
j+1

+
i=2j	 k

k=1 i=1j+1

]
(-1 )k-iaiXi (Xj-k+1 + Xj-k)

j-iX (Xi + xi-1)k + + 1)X1 (Xj+2 + xj+1)

+ 
{j-1 k
E

	

k=1 i=1

	

1
(-1)k-ilaiX1Xj-k

j+1
E(-1)i-iX1Xi-1) + (j +1)xixi+2

	

i=3	 J	 L i=3
j+1

(-1)i-zX2Xi+ 1)XiXj-44 +
i=2

	

k=0 i=1	

[j-1 kj-1 k+1

+
k=1 i=1

17

+ (j 1)xixj+2
j+1

	1=3	 i=2

+(j + i)x i xj+i + 
{j+1

E( -1)j-iX2Xi + t (-1)i-i-1 X2X1
i=2	 ?.---1	 J

	

j-1 k+1	 k
EE(-1)k- i± 'aix ixj_ k + E(-1)k-ja ixixj-k + aixixj

	

k=1 i=1	 i=1

-XiXj+1+ (-1)i-1X1X2 + + 1)X1Xi-+2 + (j + i)XiXj±i

___12Xj+1 (-1)7-2X2X1
[j-1

ak+iXiXj-k + CtiXi Xi + iXiXj+1± (j + 1)XiXi+2 - X2Xj+1
k=1

I
-_i+ iXiX i + iXiXi+i + (j + 1)x isj+2 – x2xj+1•
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Now,

(Gjar Gla =Ec,i_i±izi (xz_ Xi) ± iX1(X:Ti + 1 —
i=1

2

=E

+(j + 1)x i (4+2 — Xj+2) — 144+1 f X2Xj+1)

aj-i+iXiXi-i jX i Xj	 + 1)xixj+1
i=1

i=1

i=2
j-1

i=1

— (x 1 + X2)(Xi Xj+i) X2Xj+1

iX1Xj	 1)x1xj+1 - x ixj - xixf+1

-x2xj - S2Xj+1 X2Xj+1

'-i+1 X 1 Xi-1 (j 1 )x i xj-kixixi+1 x2xj

(j-1)x ixi jx ixi+ 1 - x2xj

=

It follows that the ideal (G6,1 , ..., Gun-2 ) is u-invariant, and we claim that /2, =

(Gc,1 ,... ) Since _ra is homogeneous, 1 -,?, is homogeneous, so it suffices to show

that every homogeneous element in /2, lies in 	 GZ-2). Suppose F E 1

homogeneous of degree t. Then F = f°, with f° E la , and deg(f) t. Since each

gai is normal modulo (go,1 ,... g 2- 1-), we can write f = gal 	 gan-2 fn	 with

fi G Bt--2 . Then F G ia(fir2 + • • • + G',1-2 (4?_ 2f2 E (G ii„	 G2,-2), so in fact

(Gal ,..., G -2 )= la°. This means that B11,`=-'151(G1,..., GZ-2)1'.

Let v1 = x i , v2 = x 2 , and v3 = a ixi + x2 + x3, so G,„]- = vlv3 — q. Assume that

we have defined vk =	 akixi , akk 0 for each k =1,- j + 2, and that the ideal
1=1

GL) is equal to the ideal (vi vi V2Vi-11 i	 3,-. ,j + 2). Note that this



ai_j+2Xi + (j + 1)X7+2 + (j + 2)xj+3 - V2 (j+2= Vi

k=1

b5+2,kVk

means that there are b, k , bkk

j +1

0 so that xi = havebtkvk . We
k= 1

G)+1 = E
i=1

a:7 -i-F2X1 Xi

j+1

+ 1)XL/5+2 + ± 2)xixj+3 - 12X +2

= )ai + (j + 1)X5+2 + (j	 2)X5+3+Xi-i+2 - v2xj+2
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SO

5+1
Gj+ 1
	

E b j+2,k(V1V k+1 V2V1c)
k=1

5+1

= v, E=1 aj_i+2Xi + + 1)/5+2 + 0 + 2)/5+3
i=
( j +1 j

- E b +2,kV1Vk+1	 bj+2,j+2V2V5+2
k=1

(5+1

E aj-i-F2Xi + 0+ 1)15+2 ±	 j+ 2)Z +3 -= 111

L i=1

5+1

b5+2,kVk+1
k=1

- b.54-2,j+2V2Vj+2.

(5+1	 j+1	 k+1
v, E ai_i+2Xi + (j + 1)15+2 + + 2}15+3 E bi+2, Ek	 ak+1,iXi

i=1	 k=1	 i=1

- bi +2 ,5+2 V2 Vj+2 •

Set

5+1 k+1

	

vi+3 = L	  
5+1

E CtiX5-i+1 + + 1).xj+2 + + 2)xj +3 - 	  E bj+2,kak+1,iXi
+2,5+2

k=1 i=1

5+1

	

Then Gic,±1	 E bj+2,k (v ivk±i v2vic )	 bi+2,i+2(vivj+3 — v2v5+2 ). By induction,
Lk=1

we have a change of variables so that

(G,,1 ,	 Gna-2) = (ViV5 V2V5-1,	 3, . n).
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We claim that

(vi vi —	 = 3, • • • n)	 v2) n	 - vi±ivi ,i, = 1, ... ,n	 1).

Set Pi = (v i , v2), and P2 = (vivj+1 – vi+ i Vi,	 1,	 , n — 1). It is clear that

j = 3, n) C nP2 , so it suffices to show that n7=31 V(viv3 —v2v3+ 1 ) C

V (Pi nP2 ) = V (POUV(P2 ). Take p (2)1 , ,pn ) E n7=1V(viv3 —v2vi+1 ), and assume

p V(P1 ). If pi = 0, then since p 1p3 — A 0, we must have p 2 = 0, contradicting

that p V(P1). Then pi 	 0. Write p1 =	 and p2 = to-2u. pip3 =	 so

411-1	 4,2rt-4u27 and p3 tn-3v,2 . Assume pi = to-ju" Then pipi+i = p2pj , soP3

= r-2utn-jul-1 = t2n-j-2 213 . It follows that pi+i = tn-3-1u3 . By induction,

p = (tn-1, tun-2-, ) E V(ViVi±i - Vi-FiVA for all i and j.

Now, P2 is the kernel of the map C[v i ,	 , vn]	 C[t,u] that sends vi to tn-itti-1,

so P2 is prime. Then	 has primary decomposition Ia = P1 n P2 , with Pi prime,

= P1 , and we claim that P2 is also a-invariant. First we note that PI is an ideal

in S. In fact, since P2 is a prime ideal, ./Jr is also prime. Then we have

Ia = cci:r

— (Pi n P2)g

=P1 n P

=Pi ne .
But ./g = P1 n P2, so by the uniqueness part of primary decomposition, [4], we must

have P2 = P2.
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For i = 2, n – 2, and j = i + 1, , n – 1, let II aij =	 – vi+I vi , and define

E B by (h i.:D° = H. Set

SO

Then

Pa	 (f ,	 ,	 ,	 , i	 2, . . , n, j = i ± 2, .	 , n),

Pc°, = P2 = (G ,	 Gna-2 , Hg , i = 2, . , n, j i + 2,	 , n).

B I Pa L' [SI(P,,(„))]a

is a twist of the algebra

s/(p?)	 utn-2,	 un-2t, un-11,

so Pa is prime.

For f = f (yi, • Yn-k) E Bn-k C Bn , define .7k f to be f (Yk+11 • • y,i ). We want

to show:

Theorem 111.1.6. If P is a primitive ideal in Bn that does not contain yl , then

P	 for some a E C11-2 . By induction, the primitive ideals in Bn are

(Yi; - ; Yn-2); and

, Yk, Ykfa,...,54kg-k-2 ,5'ekhg I = 2,	 n – k – 2, j = i + 2, . , n – k)

k = 0, 1,	 , n – 3; a E cn-k-2

In the next section we establish some preliminary results, and then complete the

proof of Theorem 111.1.6.
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111.2. Formulas

Let co = ad(y i ) E Aut(B). Let f E Bd and F = E S. Then WA° =

xiFq — Fxr xl (F' — F), so (,o(f) 0 if and only if f is or-invariant. We have the

following formulas.

Lemma I11.2.1.

N co(Yd) Yd-1Y1'

(Pd-1 (Yd) =

(iii) If f E Bd is a-invariant and F = f° , then [f , y2] dy if. In particular, [4, y2] -

dye'.

(iv) (PN (.1.9) = EN ( 1\41. )C (APN-3(9).

Proof. ( i) (V(Yd))° (YiYa — YdYi)° = X14 — X dXj: = Xl(Xd ± X d-1) XdX 1 = 1 1 X c1-1 =

(..) T A +	 d-1 ( )	 d	 deyd y	 .	 =	 PTI	 =_-
d-1 ((r.,(vdi))	 d-1 (ydyi)

•D'1.	 r	 r

v'(Yd)m. =	 (iii) De, Y21° = F(e) x2Fa = F(x2 dxi ) — x2 F° = dx iF =

(dy l f)°. (iv) This is the product rule for derivations. 	 q

111.2.2. Notes.

1. Lemma	 implies that c.pd (yd) = 0, so (iv) implies that for each f E B

there exists N such that (pN (f) = 0_



23

2. If P is an ideal containing a = A + tyt, At	 0, then Lemma III.2.1(ii) implies
i=1

that P contains c,ot-1 (a) = y ti . Thus if P is a prime ideal, and P contains a linear

element, then P contains yi.

3. if / is a a-invariant ideal in B and g E B, we will say that g is a-invariant modulo

I if (go )° — go E I°. We can use the argument used in the proof of Lemma III.2.1(iii)

to show that if f E B.? is a-invariant modulo I, with F	 f°, then [f, Y2] =.

modulo I.

Lemma 111.2,3. Let I and P be prime ideals in B, such that I P, I° is o--

invariant, and y i g' P. Then P contains an element that is nonzero, homogeneous,

irreducible, and a-invariant modulo I.

Proof. Let g E P I. Choose N minimal with (pN (g) E I, and set f = (pN-1(g).

Then co(f)° = x 1 [(f°) 7 	 E I°, with x i /° so f is a-invariant modulo I. Write

fi with fi homogeneous of degree i. Each fi is a-invariant modulo I, so by
dr■.0
i="0

111.2.2.3, [ f, Y2] iftyi E I. Then dfyi —[f, Y2] E P wit
i=0

d

dfy1 — y2] =d.fYi Eifiyi modulo I
i=0

d-1

(d — i)fiyi modulo I.
i=0

By induction on d, we may assume that f is homogeneous. Finally, suppose f° =

F1 F2 • • • Ft , with F, irreducible. Since (f °)°= f°, a permutes {F1, - Ft}, so there
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exists s so that Fr Fi for each i. But a is a unipotent automorphism of each of

the vector spaces Si , so we must have Ff'	 q

Theorem 111.2.4. Every prime ideal in B that does not contain y' is of the form

g2,	 , gt), where	 g2 ,	 , gt is a regular sequence with g i homogeneous irre-

ducible and a-invariant modulo (g i , . • -

Proof Let P be a primitive ideal. The ring B is prime Noetherian, so by Lemma

1E2.3 it suffices to show that if I is a prime ideal in P, and g is nonzero, homogeneous,

irreducible, and a-invariant element modulo I, then g is regular, and the ideal I + (g)

is prime. These follow from Notes 11.1.3. 	 q

111.3. Primitive Ideals

Lemma 111.3.1. Every primitive ideal that does not contain yi contains Ia for some

a E cm-2.

Proof. Let P be primitive, with y i P and let a, E C11-2 with al 0	 We

want to find -y so that	 E P, so assume fcl,, f, P. The elements f2-, and f/3- are

regular and normal in B, hence regular and normal modulo the prime ideal P, (Note

11.1.3.2). By Remark 11.1.2, fa and	 determine the same automorphism of B/P.

Then by Remark 11.1.7 there exists c E C so that 41, — cfri E P. But	 — cfA

aiy? + 2y 1y3 —	 cthy? — 2cy ly3	 = (al — c0i )y? + 2 ( 1 -' c)yiy3 — (1 — c)y3. If
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c = 1, then since al 01 , P contains y? which would imply that y i E P. Thus c 1,

al –
. Assume we have 71 , • • • ' 73 ,and P contains fy1 for every -y E en-2 with 71 – 	

1 – c

such that if E Cn-2 with (", = 7„ for 2 = 1,	 j, then fS E P for each i = 1, .. j.

Let a = (1/1, • • • , 73 , al+i, • • • , an-2), and 0 = (71 • -17j, 03 +1, • • • , i3n-2), with ai+i

0.7+1, and assume faj+1 , fr P. fit" and fr are o--invariant modulo P, hence

regular and normal modulo P. As above, there exists b 1 so that fl,+1 –bfrl E P.

fi •
Set -y3+ 1 =	

–bb
 3+ so fj+1 E P. By induction, we can thus construct 7 so that

c p.	 0

We are now ready to prove Theorem III.1.6

Proof of Theorem 111.1.6. Let P be primitive in B, and assume yl P. By Lemma

IIL3.1, P contains for some a, so by Lemma 111.2.3, P	 qi, . , q.0, with qi ho-

mogeneous, a-invariant and irreducible modulo (Ia , qi, ,	 Thus P corresponds

to a prime ideal P° in S containing

(G4,	 , 
Gan 2}(v1, v2) n	 j = 1, . . . n – 1).

Then P° contains either (vi , v2 ) or Pa° (vivi+1 vi+i vj , j = 1, . , n– 1) but since

yi P, we must have Pa° C P°. Now 17;,' is coheight two, so if P° Pa, then P° is

coheight one or zero. In either case, P° contains a linear polynomial. But then by

Note 111.2.2.2, P° contains x i , contradicting that yi P. We have then shown that

the primitive ideals in B that do not contain yi are of the form

P„.	 fan-2,1eZ, i = 2, ... ,n, j =	 2, ... ,n).
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Now suppose P is primitive, and P contains yi , ... , yk , but yk±i 0 P. Then P

corresponds to a primitive ideal P in B/ (y i , . . . , yk ) '-='-' Bn-k . Under this isomorphism,

image of yk+1 is yi , so P corresponds to a primitive ideal in Bn-k that does not contain

yi . By the above, the image of P in Bri-k is Pc, for some a. Since the preimage of

f E 13n-k is ,.5,°kf, we have

P= (Yi, • • • , Ykl '91411 1 - • • •	 ciYkfn—k-2 • kieLi=2,...,n—k-2,/=i+2,...,n-4

0



CHAPTER IV

THE POISSON MANIFOLD

Here we describe the Poisson manifold associated to the twisted algebra Bn.

IV.1. The Poisson Bracket

Let R = C[h]. Grade the polynomial ring R[x i, , x„] by deg(xi ) = 1, and

deg(h) = 0. Let A	 where a h is given on degree one elements in

coordinates x l , . ,	 by right multiplication by

1 h
I h
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ah

1 h

Each element f E A corresponds to a unique polynomial f+ E C[h, x i , . , xn]. Eval-

uating f+ at h = 0 gives a polynomial in S. The map from A to S that takes

f to f± (0, xi, xri) is a ring epimorphism, whose kernel is (h), so A/(h) 2-f. S.

Similarly, the map from A to B that takes f to the unique element f E B with

f+ (1, xi ,	 , x,i ) = (h° , is an epimorphism with kernel (h, — 1), so A/(h — 1)

The Drinfel'd Poisson bracket (11.2.2) on S is given by

,	 xi * Xj — Xj * xi
{ xi,	 = 	  mod (h),

h



where * is multiplication in A. Again, using the convention that xo 0, we have
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xj}
— xixi — hxixi_i
h

mod (h)

XiXi-1 mod (h).

This yields the following formulas:

xj} Y XIX j_f j > 1;

{Xi , xi } XiX	 — Xi-iXi, j > 1. 

n  

We define differential operators w , and 0 =
Gxj

, and observe

that

	

{Xi ) 	XiLJ — xi-1O.

Note that for homogeneous f E Of = jf. It follows that if I is a homogeneous

ideal of S, with coI C I, then I is Poisson. In particular, the ideal (x 1) in S is

Poisson, and the variety of x l , V(x1), is a Poisson subrnanifold of (A n , 8, {, }) which

is isomorphic to (An-', {, 1). This means that as in the analysis of the primitive

ideal structure, we can concentrate on describing the syrnplectic leaves that are not

contained in V(x1).

IV.1.1. Example. Let n = 2, so S = C[xi , x2). The Poisson bracket is given by

x2} = Xj. . A 0-dimensional symplectic leaf is the variety of a maximal ideal m,

with {m, S} C m. These are the ideals (x1, X2 — 7), E C. The form determined by

{, } has rank 2 at each p E A2 \ V(x1 ). It follows that the syrnplectic leaves are the

points {(0, 7)}, E C and the 2-dimensional leaf A2 \ V(x1).



Ij-i+1X1W(Xi) + (j + 1)x iw(xj+2 ) - w(x2)xi± i - x2w(xj+1)
[i=1i

=	 "-i4-1X1Xi-1 + (j + 1)x ixj+i – x ix;44 – x2xi
i=2

_-_
i

= rEa;_ixix i + T T. j-1-j+1 — i2Xi
i=1
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IV.1.2. Construction. Let n > 2. For each a = (al, • - an-2) E Cn-2 , let

Fj = [V
/ 
i=1

aj_i_FIXiXi] + (j + 1)x ixj+2 – x2xj+1,

and let Qa be the ideal (F,1„,	 F:-2). We have

coFal = w(aisT 2x1 x3 --- 4)

= 2x1 x2 - 2x1x2

= 0.

For j > 1,

w(Fa)

7=4-1

Thus each Qa is a Poisson ideal. Furthermore, for p = (pi, • • • , Tin) E At \V(x l ) there

is a unique a so that p E V(Qa): indeed, set

2
–2/2'17)3	 +P2 al =	 and2

131

– (j	 + 1)piPj+2 +P2Pj+i
0/2 =	 > 1-

p1

[iSince fili = ajx2 + E ai-i_Fi x ixi+i + (j + 1)x1 xj+2 - x2x2+ 1 , a =-- (al, • • . , an-2) is
i=2

the unique element of Cn-2 with p E V(Qa). We will show that each symplectic leaf

for {, }, that is not contained in V(zi ), is an open subvariety of V (Q 0,) for some a.
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IV.2. Symplectic Leaves

Let V:, = V(Q„)\V(xi). Then A' 1 V(x 1 ) is the disjoint union of V,„ a E Cr".

For f	 f	 , Xn—k) E Sn—k C Sn, let Y'kf	 f(Xkl-11 Xk-1-2) • xn)• Then for

each a E Cm-k-2 , let Yk Q,„ =	 • ,xk, ) and let 9'kVa =

V (.4Q \ 1) (x1, • - Zrz-1) . We want to show:

Proposition IV.2.1. The symplectic foliation of An associated to {, consists of

the 0-dimensional leaves {(0, 	 0,	 -y E C, and the two dimensional leaves

V(x i , • ,ina2 ) and .5°kVa = V(x i , • • • ,I k ,	 ,k Focn k —2 ) V(x i ,. • • ,xn_i),

k = 0, 1,	 ,n — 3, a e

As an immediate corollary, we have

Corollary IV.2.2. There is a one to one correspondence between primitive ideals in

the twisted algebra B = Sff and the symplectic leaves for the Poisson structure induced

by o-.

To prove Proposition IV.2.1 inductively, it suffices to show that the symplectic

leaves for {, } that are not contained in V(xi ) are the varieties Va	F:-2)

V (x 1 , .	 xr,_ 1 ), a E Cn-2 . We start by showing that each Va is an irreducible 2-

dimensional variety.

Lemma IV.2.3. For each a, there is a change of coordinates so that

Va =	 to-2u,	 tun-2, un1	 u E C, t 0}.



F4+ 1

=

d+1
Fd+1
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Proof Let v 1 = x1, v2 = x2, and v3 = a i x i + 2x 3 . Then Fc! = v iv3 —	 Assume

that for for k 3, ... , d + 2, we have defined vi = E C, cjj 0 so that

the ideal (112,-, . . . F,"1,) is equal to the ideal (v ivi —	 , . , d+ 2). Note that

this means that for each i, there exist eij so that x =	 We have
j=1

d+1

ad_i+2X1Xi	 (d +2)XiXd+3 — X2Xd+2

i=

[

[

(

(d+1

i=1 ad_i+2Xi	 (d + 2) xd+3 — 

t72 jd=+21

d+1	

ed+2, jv

—i+2Xl	 (d + 2)Xd+3	

d+2

ad
=i	

ed+2,iv2vi

i 

Then

ed+2,i(V iVi_1 — V2Vi)

j=1

= vir ( "1 ad—i+2Xi) (d 2),xd+31

r td+1 \	 1
= VI	 ad—i-F2 xi + (d + 2)Xd+3]

i=1

ed+2,g1C

1

--1,iXi — ed+2,d+2V2Vd+2

d+2

j=1	 i=1

[
(d 2)Xd+3

d+2 j-1

E ed+2,jej•1,iXi	 ed+2,d+2V2Vd+2•
j=i j=1

Set VdH-3 =
ed+2,d+2	 i=1

d+1 d+2 j-1

)ad_i+2Xi + (d + 2)xd+3 — E
j=1 i=1 Ied+2,j ej-1,iXi , so

[d+1

>7ed+241711,1j-1	 ed+2,d+2V2Vd+2

j=1-

d+1

= V1
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d+1

Fad+1	 ed+2,d+2(V1Vd+3 V2Vd+2
	

ed-1-2,j(V 1 Vj-1 V2Vi). By induction,
3=1

Q.
	 (V174 -	 =	 n)

(v1 , v2 ) n (vivi — vi+I vi_ i ji + 1 < j).

The variety of Qa , with respect to coordinates (v 1 , v2 ,	 , vn ) is

V(Qa) = V(v i , v2) U {(tn.-1 ,	 u E C}.

so that Va = {(0-1 ,	 tun-2,

We have shown that An \ V(x i ) is a disjoint union of the 2-dimensional subman-

ifolds V° . To show that Va are symplectic leaves, it remains to check that the form

determined by 1,1 has rank 2 on each V,.

Consider the matrix m = ({xi,xj}):

I(	
0

—x2
1

-X1X2

- XiXn_2

- 515n-1

2x i 	 x1x2
0 2x 2 - XiX3

-X22 + XiX3	 0  

X15n-1

xlxn
X3Xn-1 525n

0	 2 - Xn_2Xn,

Xn_2	 0   

	

This matrix has rank 0 if and only if x i = 0, for i = 1,	 , n — 1, and it follows

	

that the 0-dimensional leaves are the points of the form (0, 	 , 0,-y). Furthermore,

un-1 )1t, u E C, t	 0}.    

711 =

I .X1

X2

xn

Xi, X2, • • • Xn-1) -

0
Xi

5n-1  
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At the points not of the form (0, ..., 0, -y), we see that m is a sum of rank 1 matrices,

so has rank at most 2. Since the form is skew symmetric it must have even rank, 2.

This completes the proof of Proposition IV.2.1.



CHAPTER V

ALGEBRAIC GROUP

V.1. Orbits in An

In this section we will show that the symplectic leaves are the orbits of an algebraic
subgroup of Grin (C). Let

( 0 1
0 1

N = E Mn(C),
0 1

0
	

al
and let G be the regular solvable subgroup of GL,,(C) given by

G = {M(u,t) = uetiv E C x ,t E C}.

Then G acts by right multiplication on A n . It is easily seen that G acts transitively

on the set C of 0-dimensional leaves: C = {(0, , 0, 	 E	 We want to show:

Proposition V.1.1. The orbits in A' of G are the two dimensional symplectic leaves

and C.

V.1.2. Example. Let n = 2, so that

G = {(° uut
u E (C x ,t E CI .

Then the orbits of G are A2 \ V(x i ), and V(xi) which are the the two-dimensional

leaf and the union of the zero-dimensional leaves, respectively.
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i=0
n-1 

tit
=u	 01) • • • 0 p i, • • • 7 Pn-i)7i !	 7	 7	 7

n-1 '•

7 t
pM = u	 7),(N)i

z•—■ t!
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Proof of Proposition V.1.1. It suffices to prove that G acts transitively on each of

the symplectic leaves not contained in V(x 1). Recall that these leaves are Va

V(x i ), where F;1,	 + (I + 1)x i xj+2 — x 2xj± i . Let
i=1

P	 - - • ,Pn) E Va , and M= M(u,t) E G.

M = M(u,t)	 uetN
n-1

=u

i=0
n-1

= U

i=0

and pNi = (0,	 , 0, pi, • • - , Pn-i) . Then

i=0

so the ith coordinate of pM is u

Evaluating i at pM gives

Fa(pM) = ct iuM + 2upi (2ut2pi + utp2 + up3 ) — (utpi + up2)2

u2 [ce ipT + 2p1 (1t2p1 + tp2 +P3)- (tpi + p2)2]

2r	 2
= P1P1 2P1P3 PZ]

= 0,

so pM E V(F,D. Assume that pM E	 ... Fr). Note that to check that pM E

,	 it suffices to check that b = pM(1, t) E	 ,	 Evaluating FZ:



k=0
j i-1 k j+1	 j+1 +k ,

—k! aj-i+1P1Pi-k	 1)PiPj-k+2	 kNP1Pj-k+2
k=0	 k=1

=EE
1=1 k=0

tk
k!P2Pj-k-F1

k=0
j i-1 k

t

=E —cck!

j1-1 tk

k! (3 + 1 - N)Pisi-k+2 + +1)Pipi+2
1=1 k=0

j tk
P2Pj-k+1IC!

k=1

tk	
j+1 tki-1

k!P	 (tpi + P2)i-k (j + 1)p	 — j-k+2
k=0	 k=0

i-1  k	 j+1 kL	 , .	 i \
—k! oej-i-P1P1Pi-k +	 —1c1 u + 1 )P1Pj-k+2 

1=1 k=0	 k=0

at b gives

FZ(b)	 -i+1P1
i=1
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tk
—k! Pj-k+1

k=0

tk+1

k=0 
k! P1Pj-k+1

tk
TP2Pj-k+1

k =0
j i-1k	 ,I+1 ,k

=EE —aj-i+1P1Pi-k +
t

k!	 — i + 1 )P1Pj-k+2 —
L f

k!i=1 k=0	 k=0
i tkb

k!P— 2Pj-k+1

j+1	
tk 

k=1 (k	 1)! P1Pg-k+2 ,

k=0
j -1 i	 k

3=-EE _a	 +k!
0 ± 1 - k)PiPj-k+2 (i i)pip,+2

k!
1=0 k=0

J tk
—P2Pj-k+1k!

j-1 i tk	 j- 1 k
k=0	

t
EE—Id '.7-'a • T zIP .-k+1 +	 —k! (j + 1 — k)pipi_k+2 + (.:7 + 1)pipj+2
1=1 k=1	 k=1

3 -1 k	 j-1, t	 ti

— TiP2P.i-k+1 + Ecti_ipipi±1±=PiP2 + (j + 1)pipi+2
31

ti
--P2Pi -

j!
j-1 i	 k	 j-1 kt	 t

= 	 + L	 + 1 - k)PiPi-k+2 + (j + 1)p1pi+2 ,
1=1 k=1	 k=--1

k=.-1	 i=0



SO

.1	 tk	 j-k

k=1.

J-1 tk
—k! F«-k (P) (P)

k=1

Falb)
)

•-kPiPi + (j — k + 1 )P1Pj-k-1-2 - P2Pj-k+1

since 
(-I

io	
+	 1)pipi+2 — P2Pi+i = Fg(p) = 0. Now,

=

j-1 j-k k
k 	 rE	 —ki aj-kPlPi)

	

i=1 k=1	 k=1 i=1
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. 0,

so G acts on each Va . Now, suppose q =	 E Va . We want to find u and

q
t such that pM(u,t) = q. Set u	 i—, and t = 2— — P2—, and let c = (c i ,	 en)

Pi	 qi	 Pi

pM(u, t). We have c1 = up1 = q 1 , and

C2 .= utpi up2

qi ( q2 P2 \ p1\ P2
P1 ql Pi,	 ■Pi

q2 — -r
gir2 glp2
P1 Pi

q2•

Thus pM(u, t) is an element of 17„ whose first two coordinates are q i and q2 . Since

each element of 17a is determined by its first two coordinates, pM(u, t) must be q. q

V.2. Momentum Map

Let (M, be a symplectic manifold.
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For each f E C'(M, C), there is a differentiable vector field Xf on M such that

for all g E C° (M, C)

Xf(g) = If, gl.

The vector field Xf is called the Hamiltonian vector field associated with f, or

admitting f as a Hamiltonian. Let G be a Lie group with Lie algebra 0, and let

be a right action of G on M

g) = 4'g (x) = x.g, x E M, g E G.

The action of G is symplectic if G acts by symplectomorphisms, that is, for each

g E G,

(1,9*Q = Q.

For X E G, the fundamental vector field associated with X is the vector field

XM on M defined by

=(x. exp(—sX)) 1
ds

A symplectic action 4, of a Lie group G on M is Hamiltonian if and only if there

exists a differentiable map J : M g* such that for every X E g, the associated

fundamental vector field XM admits the function Jx

Jx(x) = (i(x), x), x E M

as a Hamiltonian, [8]. Such a map J : M g* is called a momentum map of the

Hamiltonian action 4'.
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V.2.1. Example. Consider the Poisson manifold (A 3 , {, }) determined by the twist

B3 = qYi, Y2, Y3)/J,

where J is the ideal

J = (Y02 - Yai - Y?, Y1y3 - y3y1 - y1y2 + y?, Y2y3 - Y3Y2 - A + Y03)-

Recall that the symplectic leaves are the orbits in A 3 of the algebraic group

u ut lut2

	

G = 11171(u,t) = ( 0 u ut	 u€Cx,tEC .

0 0 u

Let g be the Lie algebra of G, and let

( a t 0
X= Oat E g.

0 0 a

e-su(st)2
-e'st 	

2
0	 e-Stt	 -e-lust
0	 0	 e-su

The fundamental vector field XA3 is given by

dv.A.	 I .c\A3 ,xv ) = --x.exp(-sX))1 s=0 .ds ,

In particular,

XA3 (xi) d
d= ..._(e-sux,)1
s	 I- I 12=o

= -ue "x112=0

XA3 (x2) = —d (-e-sustxi+e-sux2)1 6=0ds`

. ue'stxi- e-sutxl-ue-suz21s=o

= -txi - ux2.

Then

(

exp(-sX) =
2u-e
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Now, suppose that J is a momentum map for the action of G. Then there is an

element g E S such that X9 = XA3. But

Xg(xi) = {g, x1}

=

= x 1 (4) g

and

X g(X2) = {9, x2}

= —{x2,

= —2 2wg + xiOg.

This implies that wg u, and Og = t. This only holds for g = 0 and u = t 0, and

we conclude that there is no momentum map for the action of G.



CHAPTER VI

EXAMPLES

VL1. Standard Examples

VI.1.1. Three Dimensional Example. Let S ---- C[xi , x2 , 53], and

Q=

 (

1 1 0
011 	 .
0 0 1

Then Sq '.-' B =-..- C(yi , y2 , y3 )IJ where

J = (YiY2 – Y2Y1 – yT, yi y3 - y3yi - y 1y2+ y?, y2y3 - y3y2 - A +YiY3),

The primitive ideals of B are

(Yi, Y27 Y3 - 7), 7 E C;

(Y1); and

(fa = ay? + 403 – Y3), a e C.

The Poisson bracket on S induced by a is given by

{x1, x2} =ST,	 {T 1 ,13 1= x112,	 {X2, 13} = 4 - XiT3.

The symplectic leaves associated to the bracket are

the points :	 {(0, 0, li) }, 7 E C;

the plane :	 V(xi) \ lAxi, '2)

and the quadratic surfaces : Va = V(Fa ,-- az2i + 2x 1 13 – 4)\V(xi , x2), a E C.

41
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Let G be the algebraic group consisting of matrices of the form

u ut lut2

M(u, t), ue' = 0 u ut(
0 0 u

G acts by right multiplication on A 3 . and it is easy to see that G acts transitively on

the 0-dimensional leaves E. The remaining orbits are the 2-dimensional leaves,

a E C.

VI.1.2. Four Dimensional Example. Let S = C[x i , x2 , x3 , x 41, and

J =

= 0

(

1

0
0

1
1
0
0

0
1
1
0

0
0
1
1

Then B = S' is isomorphic to C(yi , y2 , y3 , y4)/J, where J is the ideal

2
y1y2 yoi Yi

Y1Y3 Y3Y1 M.Y2 +

M.Y4 - y4y1 YiY3 Y1Y2 Yi'
+Y2Y3 Y3Y2 - Y2 1- Y1Y3,

Y2Y4 Y4Y2 Y2y3 + y2 - y1y4 + yiy3,

Y3Y4 Y4Y3	 Y2Y4 )

From the 2-dimensional example, we know that the primitive ideals in B that contain

yi are

(Y1, Y2, Y3, Y4 - 7);

y2); and

Yif« ay + 2Y2Y4 — A), E C.

We now compute the primitive ideals that do not contain 1/ i . Let

Ga = oti xT + x ix2 + 2x 1 x3 —
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Set v1	 x i , v2	x2 , and v3	+ 12 + 213 , so Gal = vi v3 — v22 . Now let

G2ü = a2/?. + ai x ix2 + 21 1/3 + 31 1 x4 — 1213 . Then

	

2Ga2	 x/(2a2x1 + 2a1 x2 + 413 + 614 ) — 12 (v3	— /2)

= xi (2a2s1 + 3a1 x2 + 413 + 614) — x 2 v3 +

and

2G2o, + Gc,1 xi Rai + 2a2 )x i + (3a 1 + 1)/ 2 + 613 + 614] — s2v3.

Set v4 ---- (at + 2a2 )x i + Pal + 1)/2 + 6/3 + 614 . Then G	 v1v3 — v2v3 . Let

Hai = v2v4 — 24. We have

B",2,3	 V2V4 —

= x2 [(al + 2a2 )xi + (3ai + 1)/2 + 613 + 614] (aixi x2 + 213)2

= —a21 4 + (2a2 ori )x 1/2 — 4a 1 1 1 13 + 3a 1 4 + 212 13 + 61214 —

Then

2—
1

(1/23 + ai G,„) --= a2x 1 12 — a1 x1 x3 + aiX
22 1213 + 31214 — 2x3.

2 -

Let

_ _2h?„3 = a2 y? — Ce2M.Y2 cti.M.Y3 —	 — 3Y2Y4	 3-

Then (q3 )° =	 + a i GI ), and the primitive ideals in B that do not contain yi

are

(foci = al yi + 403 y2> fa = CeM aiYiY2 + Y1Y3 + 3y1Y4 — Y2Y3, h,23 ), a E C2.
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The bracket on S = C[x i , x2, x3, x4] induced by a is given by

{x i , x 2 } =
{x i , X3} = xix2

{Xi, X4} = X1X3	 IX2, X = 12X3 11x4

{X2, x3} = 4 - 1iX3 {x3, x4} = X3 - x214

From the two dimensional example, we know that the symplectic leaves contained in

V(x i ) are:

P7 = {(0, 0, 0, -y)},	 E C;

V(x i , x2 ) \ V(x i , x2 , x3); and

911Va V(AFQ ,-- axe + 2x2 x4 — 4) \ V(xi, x2 , x 3), a E C.

Let a E C2 , and let

2x1 x3 — 4, and

3x 1 14 12x3.

Then wF,,,2 = Fa, and colic! 0, so the ideal (a Fa) is Poisson. The two dimensional

leaves not contained in V(z i ) are

F.2) \ V(xl , x2 , x3), a E 02.

V1.2. More Examples 

Here we consider the case where the automorphism a is not represented by a

Jordan block.

VI.2.1. Example Let
( 1 1 0

Cf 0 1 0 ,
0 0 q
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where q E C, and let A = S. First we consider the case where q = 1. One can check

that every primitive ideal contains an element of the form ax i + Oz3. It follows that

the primitive ideals are

W, (Y1, y2 — A2, Y3 - A3), (yi + /3y3),

The bracket induced by a is

{x 1 ,12 }	 {x1, x3 } — 0,	 {x2 , x3 } = —x1x3.

The form determined by {, has rank zero if and only if xi = 0, and rank 2 otherwise.

It follows that the zero dimensional leaves are the points (0, A2, A3 ). It is easily seen

that x3 is a Poisson element, so that V(x3 ) \ V(x 1 ) is a 2-dimensional symplectic

leaf. Let E C, and set p = x 1 + 13x3 . Then {x i ,p} = 0 = {x 3 ,p}, and {x2, P} =

2—x i — 13x ix3 =	 so p is Poisson. It follows that the two dimensional symplectic

leaves are

V(x3) \ V(xi ), and

V(ax i +13x2)\ V(x i), a,13 E C.

We see that the symplectic leaves are algebraic, and are in one to one correspondence

with the primitive ideals in the twisted algebra.

Now suppose that q is not a root of unity. Then A = C(yi , y2, y3)/J where

(YiY2 — Y2Y1 yi, YiY3 gY3Y1, Y2Y3 V3Y2 Y1Y2)•

We want to show that the primitive ideals of A are

0 , (Y1), (Y3), (Yi, Y2, Y3 — A), and (yi, Y2 — A, Y3).
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It suffices to show that every primitive ideal contains either y i or y3 . Note that the

subalgebra spanned by y i and y2 is isomorphic to B 2 . We will retain the notation

B2 for this subalgebra. Let cp = ad(y i ). Then (p(y2 ) = y and (19.' (A) = (q

From Note III.2.2.1, we know that for each element f in B 2 there exists N so that

C?
N

(f) = 0. Let P be primitive. If P contains neither yi nor y3 , then P contains

an element f = E fiy3, with L E B 2 C B, and fo 0, fd 0, i.e. f cZ B2 and
i=0

f agl. Then P contains g yo(f) - (1 -	 We have

g =	 Afi)+(,*-	 -'19(.fd)A1-
c2-1

i=0

Now, if ;o(fi ) = Ay ifi , with A	 0, then colv (fi )	 ANyifi	0 for all N. This is a

contradiction since c9 is locally nilpotent. Then since 1 -d	 t	 0, it follows that
q

+ ( 713- -*)yifi 0 for fi 0. By induction P contains an element

d-1

h= E hiy coN(fd)yl,

d-1

with coN(fd) 0, and iy3 0. By induction on d, P contains an element in B2,
i=o

so by Example 111.1.3, P contains yi . We now have shown that every primitive ideal

contains either y i or y3 . This means that the nonzero primitive ideals in A are

KY 1) (Y3), (Yi, Y2, Y3 - A), (Yi, Y2 -	 y3).

The ideal 0 is prime, but not an intersection of strictly larger primitives, so must

itself be primitive.
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Next we construct the Poisson structure associated to A. Set

	

( 1 h	 0
6= o 1	 0

0 0 1 + h(q — 1) •

We see that Sc r I (h) '-'-'.--, S, and S' I (h — 1) —= A. Let 'y = 1 — q. The Drinferd bracket

is given by

{x i , x2 } =	 {xi, x3 1 7'x 1 x 3	{x2 ,13 } = -yx2x3 — 1113.

It is easily seen that the form induced by {, } has rank zero if and only if x 1 = 0 and

either x2 = 0 or x3 = 0. The form has rank two otherwise. It follows that the zero

dimensional leaves are the points (0, 0, A) and (0, A, 0), A E C. Let C be the set of

zero dimensional leaves. It is easily seen that the ideals (xi ) and (x3) are Poisson,

and it follows that V(x i ) \ C and V(x2) \ C are symplectic leaves. In fact, we will

show that xi and x3 are the only irreducible Poisson elements. This means that the

algebraic symplectic leaves are

	

(0, 0, A), (0, A, 0), A E C; {(0, A2, A3)IA2, A3	 0}; and {(Al , 0, A3 )1A 1	0}.

a	 a	 a
Set w =+ X2-, , 02 = 

01 
and — 0 1 + 02 . Then

C12	 CX1	 C12	 3

{T I , -}	 XiW axi192,

{xi , — } ax2 O2 — x i° + x2w,

{ X 2 - = X3 C1-1 axsei,

Suppose p E S is a Poisson element with p xi, x3 . Since xiwp + axie2P E (p),

wp + aO2p E (p). Also x3wp — ocx 3 01p E (p), so wp aO 1p E (p). Then

a(Oi + 02 )p = ceOp E (p),
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so p is homogeneous. Write p = with pi E	 x21, and deg(pi ) = d — i.

wp + a92p E (p), so there exists A E C so that

(wpi)e3	 --=LApixj3.

Then for each i there exists pi with cepi	We claim that Iii = 0 for all	 If

so, then Api aipi for all i, so p	 and we are done. To prove the claim,
t

suppose g E A with cog Ag. Write g = x2pi , with A E Mx' , x3] c S. Then

wp =	 = E ( i +1)xixi2pi+1.
i=i	 i=o

Then Ax2pd = 0, and Api = (i 1)2cipi+i for each i. If A 0, then p = 0, so we are

done.
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