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CHAPTER 1

INTRODUCTION

1.1. Background of Problem

One current strategy in noncommutative ring theory is to associate geometric
objects to noncommutative algebras. Algebraists have been very successful analyzing
primitive ideals by considering them as geometric objects. For example, a geometric
focus was used in [1] to classify algebras with nice homological properties (similar
to polynomial rings) in terms of the geometric structure of a collection of graded
indecomposable modules. We refer to this geometric philosophy as noncommutative
algebraic geometry. In this dissertation, we focus on a family of twists B of the
polynomial algebra S = Clzy,...,x,). Our goal is to give a geometric description of
the primitive spectrum of B.

We offer the following examples as motivation. The primitive ideals of the uni-
versal enveloping algebra of an algebraic solvable Lie algebra, g, are parametrized by
the symplectic leaves in the Poisson manifold g*, {2]. Furthermore, these leaves are
the orbits of the adjoint algebraic group of g. Hodges and Levasseur use the quan-

tum group @4(SLy,) to define a Poisson structure on the manifold SL,. They then




demonstrate that the primitive ideals in O4(SL,) are parametrized by the symplectic
leaves, [7]. In [10] M. Vancliff describes the primitive spectra of a family of twists,
B(m), of S, parametrized by the maximal ideals of an algebra R. Each twist B(m) of
S is determined by a semisimple automorphism o, of P*~*. The multiplication in the
twist induces a Poisson structure on C". Vancliff restricts to the setting where the
symplectic leaves for this Poisson structure are algebraic. She defines an associated
algebraic group, G, whose orbits are the symplectic leaves. She then proves that the
primitive ideals in B(m) are parametrized by the symplectic leaves for the Poisson
structure if and only if o, has a representative in G.

In this dissertation we extend Vanclil’s results to a family of twists S7 of S in
which the automorphism ¢ is not semisimple. In particular, we consider the twist of
S by an automorphism that is represented by a single Jordan block. In this setting
we find that the symplectic leaves of the associated Poisson structure are always
algebraic. Furthermore, we find that as in Vancliff’s case, the symplectic leaves are
the orbits of an algebraic group, and that the primitive ideals are parametrized by
these leaves.

Much of the work in Vancliff’s analysis, is due to ¢ having more than one eigen-
value. In her setting, the commutator of z; and z; is a difference of eigenvalues
times x;z,, and this fact makes analyzing prime and primitive ideals straightforward.
Problems only arise for certain bad combinations of eigenvalues (i.e. when ratios of

differences of eigenvalues are roots of unity). We avoid these eigenvalue complications




in our setting, because 1 is the only eigenvalue. On the other hand, commutators of
monomials are no longer monomials, and thus it is much more difficult to analyze
the prime and primitive ideals. We are required to take a different approach to the
problem, and are afforded a more intricate primitive spectrum.

In Vancliff’s work, the Poisson geometry is relatively straightforward to analyze
because the symplectic structure is evident. In our setting, some of the symplectic
leaves are evident, but we must make a careful analysis of certain differential operators

to find the others.

[.2. Statement of Theorems

Let o be the automorphism of P*~! which is represented by the matrix with ones
on the diagonal and superdiagonal, and zeros everywhere else, and let B be the twist
of § by o. In section II.1.1 we will see that B is isomorphic to a quotient of the
frec algebra C{y1, . . ., yn) by a homogeneous quadratic ideal. We identify B with this
quotient, and retain the notation y; for the image of y; in B. The algebra B is well
understood as a projective object, [11], however, we are interested in understanding
B as an affine object.

This thesis is organized as follows. Chapter II gives background information per-

taining to the problem. In Chapter III we investigate the primitive spectrum of the

twisted algebra. Qur main result is the description of the primitive ideals of B.




Theorem 111.1.6. The mazimal ideals in B are the ideals {(y1,...,Un-1,Un — A),
A € C. The remaining primitive ideals are (1, ..., Yn-2), together with a family of

homogeneous ideals. These homogeneous ideals are of the form

(yla"wyk:flw“fj)a

n—k—2

wherekzO,...,n—S,j:( 9

), each f; is degree 2, and each collection
{f1,-.. f;} is determined by a unique element of cr k.
For notation necessary for the precise statement of Theorem IIL.1.6, please see Con-

struction 1I1.1.5. From Theorem III.1.6 we see that the non-maximal primitive ideals

are parametrized by the set
P={acC¥k=2,...,n},

where CY = 1.

In Chapter IV, we construct the Poisson structure associated to the twist. Here
we define a differential operator w, which is the key to the symplectic structure. In
fact, this operator represents the crucial difference between this case and the diagonal
case. Each leaf is obtained by constructing a sequence of elements fi, ..., f;, such that
wfi =0, and wf; = f;_1. That is, we determine the symplectic leaves by integrating
with respect to w. After a change in variables, we recognize the two dimensional

symplectic leaves as open affine subsets of classical surfaces.




Proposition IV.2.1. The -dimensional symplectic leaves associated to the Poisson
structure are the points (0,...,0,7v) € A®. The remaining leaves are two dimensional,

and each of these leaves is an open subset of the image in A" of a Veronese surface.

For a precise statement of Propositions IV.2.1, the reader is refered to section IV.2.
After describing the Poisson structure, we note that the primitive ideals are also

parametrized by 2.

Corrolary I1V.2.2. There is a natural one to-one correspondence between the prim-
itive ideals in B = 87 and the symplectic leaves for the symplectic structure induced

by o.

In Chapter V we realize the two-dimensional leaves as orbits of a unipotent sub-

group of the general linear group.

Proposition V.1.1. The 2-dimensional symplectic leaves for S are the orbils in
Y. Furthermore, G acts

A" of a regular unipoteni algebraic subgroup G of GLn(

transitively on the 0-dimensional leaves.

Finally, in Chapter VI, we give examples of our result, and a three dimensional

twist example where the automorphism has two Jordan blocks.



CHAPTER II

PRELIMINARIES

I1.1. Non-Commutative Algebra

Our primary goal is to describe the ideal structure of the twist of a polynomial al-
gebra by a degree zero automorphism. Such an algebra is a noncommutative analogue

of a homogeneous coordinate ring [1]. It is defined more simply below.

I1.1.1. Twisted Algebras. Given a commutative graded k-algebra A = @Ay, and a
degree 0 automorphism ¢ of A, we form the twisted algebra A7, with multiplication
defined on homogeneous elements by a* b= a-¢"(b), where r = dega, and - denotes
usual multiplication in A. This new algebra A? retains many of the properties of
the original algebra. For example, the properties of being a domain and of being
Noetherian are invariant under twisting [11]. In fact, J. Zhang has shown that twisting
defines an equivalence relation on the category of graded k-algebras that is analogous
to Morita equivalence, in the following sense. Let Gr —A be the category of graded
A-modules, with morphisms being graded degree ¢ homomorphisms. Then a graded
k-algebra B is a twisted algebra of A if and only if the categories Gr —A and Gr —B

are equivalent if and only if the categories Gr —A and Gr —B are isomorphic.



Let B = A°. Since B = A as sets, each element of f € B is also an element of A.
We will write f® € A when f is viewed as an element of A. For an ideal I in B, let
1° = {f°|f € I}. For homogeneous F € If and G € A, FG = Fxo7(G) € I°. Tt
follows that if I is a homogeneous ideal in B, then I° is a homogeneous ideal in A. Ifin
addition, (I°)° = I°, then B/I is A/I" as a graded vector space, with multiplication
inherited from B, so in fact, B/I = (A/I 0)&, where @ is the automorphism induced
by .

Let f,g € B be homogeneous of degrees ¢ and j respectively. Write F' = f°e A,
and G = ¢° € A;, and assume that F” = F. Define 74(g) by [r#(g)]° = G°". Then
[74(g) * fI° = G"F” = FG” = (f % )°, so that 74(g) * f = f *x g. From this we see
that if f is homogeneous with (f°)” = f°, then f is normal in B. We will say that

f € B is o-invariant if (f°) = f°.

I1.1.2. Note. For homogeneous o-invariant element f € B, 7y is an automorphism of
B. Furthermore, homogeneous o-invariant clements of the same degree are associated

to the same automorphism.

We write (F1,..., Fy) for the ideal generated by the elements Fi, ..., Fy in the
commutative algebra A, and write (f1, ..., fs) for the ideal generated by fi,..., fain

the noncommutative algebra B. Let f € B; be homogeneous and g-invariant, and let




I'={f). Since f is normal, I = f x B, so

1° ={(f*g)lg € B}
= {f*(¢°)"1g € B}
= fOA.
For G € A, (f°G)° = f°G° € I° so I' is o-invariant. It follows that B/(f) =

[A/(f))}°, where where & is the automorphism induced by o.

I1.1.3. Notes.

1. The preceding paragraph shows that if f is o-invariant and irreducible, then the
ideal (f) is prime.

2. Let f be o-invariant, and let P be a prime ideal in B with f ¢ P. Since f is
normal, (f) =B f. If ge B, with fxg€ P, then {f}x{(g) =B*f«Bxg* B =

Bx fxgxB={(gx*f)C P. But then g € P. It foliows that f is reguiar modulo P.

Now, let S = S§" = C[z1,...z,] be the polynomial algebra in n variables over the
complex numbers, with grading given by deg(z;) = 1. A graded automorphism o of
5™ is determined by its restriction to the vector space S7 of degree one elements, so ¢
is represented by an upper-triangular (n x n)-matrix. Furthermore, scalar multiples
of this matrix give rise to isomorphic twisted algebras, so we can take ¢ to be an

automorphism of P"~!.

I1.1.4. Primitive Ideals. Let R be aring. A module Mg is faithful if Anng(M) =

0, that is, if r € R with M7 = 0, then r = 0. We say that R is (left) right primitive




" if R has a simple faithful (left) right module. Although a right primitive ring need not
be left primitive, we will usually omit the word ‘right’. An ideal P in R is primitive
if R/P is a primitive ting. A primitive ideal is prime, and each maximal ideal is
primitive [5]. Furthermore, in a commutative ring an ideal is primitive if and only if
it is maximal. It is not surprising then that the primitive ideals in a non-commutative

ring play a role analogous to that of maximal ideals in a commutative ring.

A ring R has the endomorphism property if for every simple R(z] module,
M, End(M) is algebraic over k. If k is an uncountable field, and R is a countably

generated k algebra, then R has the endomorphism property [9].

Proposition I1.1.5. Let k be an uncountable algebraically closed field, and let R be

a primitive k-algebra. Then the center of the quotient ring Q(R) is k.

Proof. Let Z be the center of Q(R), and z € Z. Write z = rs™*, with r,s € R, and
s regular. Since z is central, it follows that for each p = p(z) € R[z], ps™ € R, where

n is the z degree of p. Let L be a simple faithful R-module, and let L = L ®g RJ[z].

We claim that I is a simple faithful R[z}-module. As an R-module, L = Z L, is

i€Z
a sum of faithful modules, so Anngpy(L) N R = 0. But R is essential in R[z], so

Anngy (L) = 0. Now, suppose that A is a nonzero R[z]-submodule of L, and let u be
nonzero in A. Write u = z ® p, where p = Z a;2'. The R-module ©R is contained is
i=0

k]

the module Z Lz', whose simple factors are all isomorphic to L. Since L is faithful,
i=0

Anng(s") # L, so there is a nonzero element v € uR such that vs™ # 0. Write
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v =y ®q where ¢ € R[z] has z degree less than or equal to n. Then vs" = ygs"®1 is
in uR C A and generates A, so L is in fact simple. Now, R[z] has the endomorphism
property, so End(L) is algebraic over &, hence equal to k. But multiplication by z is
an endomorphism on L, so z acts as A for some A € k. But L is faithful, so 2 = X € k,

and we are done. O

I1.1.6. Note. In the proof of Proposition I1.1.5, we actually showed that if R and
R[z] are primitive algebras over an uncountable algebraically closed field, then R[z] =

R.

11.1.7. Remark. A regular normal element r in a ring R determines an automor-
phism ¢, of R by zr = ry.(z). Suppose R is a primitive k-algebra. If r and s
are elements of R that determine the same automorphism, then the element rs™! is

central in the quotient ring @(R). Then by Proposition I1.1.5, r = ¢s for some ¢ € k.

11.2. Poisson Geometry

I1.2.1. Poisson Manifolds. Let A be a C-algebra. A Poisson bracket on A is a
Lie bracket {, } on A that is a derivation in each variable. So {, } is a skew-symmetric
bilinear form that satisfies

@) {2 {521} + o {521} + {2 {,9}} = 0; and

(i) {z,yz} =y{z, 2z} + {z,y}=
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The pair {4, {,}) is called a Poisson algebra. An ideal I in A is a Poisson ideal
if {{,A} C I, and an element f € A is a Poisson element if (f) is a Poisson ideal
in A. Let M be a differentiable complex manifold. A Poisson structure on M
is determined by choosing a Poisson bracket {,} from C®¥(M,C)} x C®(M,C) —
C*(M,C). The pair (M, {,}) is called a Poisson manifold.

For any Poisson manifold (M, {, }), there is a unique differentiable field A of twice

contravariant, skew-symmetric tensors such that for any pair f,g € C*(M, C),

{f,9} = Aldf, dg).

For a point © € M, the rank of the 2-tensor A(x) is called the rank of the Poisson
structure at z. A symplectic leaf is a maximal connected Poisson submanifold NV
of M such that the rank of the Poisson structure at each point of N is equal to the
dimension of N. By standard theory, the symplectic leaves have even dimension, and
M is a disjoint union of symplectic leaves [8]. The collection of symplectic leaves
ion of M, and we say that M is foliated by its symplectic leaves.
Suppose that (M, {,}) is a Poisson manifold, with M = C". Then the bracket {, }
is determined by its restriction to S = Clzy,..., 2], [8]. If in fact the bracket maps
Clzi,...,2n) x Clzy, ..., %,) into Clzy, ..., z,), then we may determine the Poisson
structure by studying the Poisson algebra (S, {, })-

I1.2.2. Drinfel’d. Let S be the polynomial algebra on n generators over C. The

Poisson bracket due to Drinfel’d is defined as follows. Let R be a commutative k-

algebra which is a PID but not a field, and let A be an R-algebra. Further assume
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that A is flat as an R-module, and that there exists a maximal ideal mg = (H) of R
which is unique with the property that A/{mg) & 5. For F,G € S choose preimages

f’, Ge A, and define the bracket of ' and G to be

(F.G) = EC%GE mod (H).

Then {, } is a Poisson bracket on S [3].
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CHAPTER II1

THE TWISTED ALGEBRA

III.1. Non-Semisimple Twists

II1.1.1. The Twisted Algebra. In {10], Vancliff describes geometrically the primi-
tive spectrum of the twist of a polynomial algebra by a diagonalizable automorphism.
We are interested in the case where the automorphism is not diagonalizable. In partic-
ular, we present the case where the automorphism is represented by the Jordan block
with ones on the diagonal and on the superdiagonal. Let S = 5™ be the polynomial

algebra with n variables over the complex numbers, and let
(11 )
1

11
1

[y

o

Then using the convention that zo = 0, and writing F for o(F), we have z7 =

z; + Z;—1. The twisted algebra B™ = §7 has multiplication
I % Tj = L;Tj + TiTj-1.

Notice that for each i < n, we have an embedding B* < B" given by x; +— ;.
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To avoid the = notation, we write v;, Ui, - - - ¥i, for the element x;, * T, * -+ - * xy,.
Then B" is a quotient of the free algebra C(yy,...,¥») by a homogeneous quadratic

ideal. Recall that each f € B™ corresponds to a unique polynomial f° € S. For

0 0
example, 37 = z;, and (yy;)° = 227 = 7% + TiTj-1.

I11.1.2. Remark: The goal is to describe the primitive ideal structure of B”. The
element ; is homogeneous and o-invariant, so by II1.1.1, B"/{(y) & B™'. By
induction, we will understand the primitive ideal structure of B™ once we describe

the primitive ideals in each B*, i < n, that do not contain .

II1.1.3. Example. Let n = 2, so B? = Cly1, ¥2)/ (¥192 — voy1 — v5). We will show in

Lemma II1.2.3 that every primitive ideal in B"™ contains a homogeneous, o-invariant
d - .
element. Suppose F = Z ozt 7z € §? is o-invariant.
j=0

4
FP—F =) o7 () - i
-
’ =L . .

d
_Z dsz 7 i—i i
—_— Oéji‘l ( 'l, ):L‘l 1;2
=1

=0

4 j-1 .
= ZZO:J- (Z )mf'éxg
0

d-1 d R
- Y a ( I )zg—ix;.

=0 j=i+1

d .
Then for each i, Z o ( J ) =0, and it follows that a; =0 for 7 =1,...,d. This
i
j=i+l
means that the only homogeneous o-invariant elements of B? are powers of y;. But

Y is normal, so every non-zero primitive ideal contains ;. The primitive ideals in
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the commutative algebra B*/{y;) = Cly,] are the maximal ideals (g, - 7), v € C, so
the non-zero primitive ideals in B? are the ideals (y;,¥2 — 7), ¥ € C. Finally, 0 is a
prime ideal which is not the intersection of strictly larger primitive ideals, so ¢ itself

must be primitive [9]. Thus the primitive ideals in B? are (0), and (g1, %2 —7) v € C.

I11.1.4. Note. From Example I11.1.3, we see that for each n, the primitive ideals
in B™ that contain vy,...Yn_2 are {(¥1,...,Un—2), a0d Y1, .., Yo-1,4. — 1), ¥ € C.

Moreover, the ideal {y1,...,yn—1) is prime but not primitive.

I11.1.5. Construction.
Let n>2, and o = (g, ..., p_3) € C" 2 Foreach j=1,...,n— 2, let
j
fi= [Z O‘j—i+lylyi} +(j = Dy + (G + Dvaire — ¥4,

i=1
and let I, = (f,..., f27?). We want to show that every primitive ideal in B" that
does not contain y;, contains I, for some a € C* 2. In fact, we will show that if
P is primitive with y; ¢ P then there is a unique o € C* 2 so that I, C P. Let

gl = ay? + 25193 ~ ¥, and for j > 2, let

j+1 N
Z('— 1)‘?_191%}
=3

j+1
+ (4 + Dwniyjee + {Z(—l)rzyzy{‘ .

=2

i ok
o= ZZ(_I)kﬁiaiylyj-kH} +

k=1 i=1
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Then g! = f1, and

ik -1k
g+ gyt = Z Z(—l)k—zaiylyj—%l + Z Z(—l)kﬂaiylyj—k
k=1 i=1 k=1 i=1

—tyj+1 + ( + Dnyse + J01¥541 — Yo¥in
j i k=1

3
= Z (=1)* " oiyyj-es1 + ZZ(_I)k_I_la’iylyj—k+1

k=1 i=1 k=2 i=1

o

(7 ~ Dntger + (7 + D)y — Yot
J
= a1hy; + Za’kylyj—k-f—l + (= Dyryinr + (G + Dyayjee — Yoy

k=2

7
=" agyryjrr1 + (G — Doigger + G + Dy ~ yayjn
k=1

= fi,

Then (f1,...,f72) = {g%,....gv%). Let Go = 0, and for j = 1,...n — 2, let

ot

Gf; = (gﬁt)0 € 5. Then Gi = ale + T1Z9 + 22123 — 3:%, and for 7 > 2,

' ik _ F+1 o '| |
G |3 Y0 ot + |0t |
k=1 T',:l 1=3

We have




o -[3

I

E E e (T ki1 + Tjok)

k=1 i=1

:,-+1

+ Z( Y "z (i + 3-1) | + (G + Dza (a2 + £501)
. )

+ Z(—l)ﬁ%z(mémé_l)J

ZZ Oiz':E;:lTj_;H.l:] + I:Z Z(_l)k_iaifclﬁj—k:l

k=1 i=1 k=1 i=1

J+l j+1
+ EB(—I)J'“xla:i + [Z(—l)"_zwwi_l)] + (7 + D)z1zj42
i i=3

-+(J' + 1)z12501 + [i(—l)j“iﬂsmjl + [i(—l)j‘imgxi_l]

-

=2 =2

-1 &4l i-1

ZZ k “Halexj k} + [Z 2_1:( ]. ai$1$5;ﬁk}

k=0 i=1 k=1

J+1 J
+ Z(—l)‘?hz.’ﬁlﬂig‘ + I:Z(—”l)]_tulﬁl)lxi)} + (] + 1)$1$j+2
i=3 =2
J+1 o J o
0+ Vi + [Z(wl)f“*xzme] + {me*mgxi}
=2 i=1 i
i—1 [k+1 k
I:Z k H_IO! iL1L 5k + Z aixlxj__;{l + Q1T1T4
k=1 {i=1 i=1

—ZT1Zj41 + (=1 zyzs + (G + Dzazjpe + (G + D21z

2
—=To¥it1 + (“1)‘? T2X1

§-1

E Qp1T1Zik | +0nz12; + 012500 + (J + 1DT1xj00 — 2225401

Lk=1
M

Z ij—z'+1331-’13{| + jr1Ti41 + (7 + Dz1zj42 — ToTje1-

Li=1

17




18

;
(GLY =G, = ojmanm(z? — m) + jo(3dy, — 2541)

i=1

+(7 + Dzi(a,s — 2542) — (29274 — T2zj1)

j
= Zajmi+l$137i—l + jorxy + (7 + D21z
i=1
~(z1 4+ zo)(z; + :Ej+1) + ToZj41
7
= Z Wji101T51 + J21%5 + (F + D)@azi00 — 212 — 292541
i=1

—ZToZ; — ToZjt1 + TaLj41

Wj—i41 X105 + (j — 1)1‘133'3' + j$1$j+]_ — Loy

il
M “.

[
1
b

212 + (F — 1)zazy + j71T541 — Tax;

..,
Ii
—

F—1
o -

Il
Q

It follows that the ideal (G},...,G27?) is g-invariant, and we claim that I° =
(GL,...,G2?). Since I, is homogeneous, I is homogeneous, so it suffices to show
that every homogeneous element in I° lies in (G,...,G% ?). Suppose F & 2 s
homogeneous of degree . Then F = f° with f° € I, and deg(f) = ¢. Since each
g, is normal modulo {g3,...g5"), we can write f = glfi + -+ + g" *fn_s, with
fi € Big. Then F = GL(fO" + - + G¥2(f2,)7 € (GL,...,G7%), so in fact
(GL,...,G" %) = I°. This means that B/I, = [S/(GS,...,G" 2.

Let v; = 71,09 = T9, and v3 = 171 + T2 + L3, 50 G, = vivs — v2. Assume that
we have defined v, = iakimi, arr # 0 for each £ = 1,...,7 + 2, and that the ideal

i=1

GL,...,GY) is equal to the ideal (v;v; — vov;—1,% = 3,...,5 + 2). Note that this
[+4 [+4
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;
means that there are by, by, # 0 so that z; = Z birvy,. We have

k=1
F+1
G+l _Za.. . P41 . i+ 2 e — .
= jmit2Z1%; + (J + D212 + (7 4+ 2)0125545 — Zaxj40
i=1

[ /3+1
=1 (Z Otj*i+2$i) + (] + 1)513j.|.2 + (j + 2):13j+3 — UaTj42
i=1

[ /i+1 3 42
= vy (Z ij—i+2$i) +(+ Dz + (G + 2)zj08| —v2 (Z bj+2,k'0k) ,
L ] k=1

i=1
0]
j+1
G_[’]x-l-l — Z bj+2’k(’v]_'Uk+1 — UQ'Uk;)
k=1
Jj+1
=U ((Z aji+2$i) +(J+ Dzjpa + (7 + 2)5“33’+3}
i=1
J+1
- Z bivokV1Vkr1 | — bjyo2vatite
k=1
j+i J+1
= l:( aj—i+2$i) + (A Dajea + (G + 27505 — Y bj+2,kvk+1jl
i=1 k=1
—bji2,542v20512.
j+1 Jj+l k+1
= {(Z aj_z-+2:ci) + (G + Dzjpn+ (J+ 2)zj4a — Z bivo.k Z ak+1,imi]
i=1 k=1 i=1
~Ui+2,j+2V2V)+2.
Set
1 i+l G4 Bt
Vit = Z iTj—ir1 + (F 4+ Ve + (F + 2)z543 — Z Z bj+2,k0k+1,4%: | -
. J+2g+2 | k=1 i=1

j+1
Then GL' = {Z bir2k(V1Uk+1 ~ VaUk) | + bjyaji2(Vivj+3 — Vavsis). By induction,

k=1
we have a change of variables so that

Io=(Ga..-, G5 = (vt — ;1,5 = 3,...n).
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We claim that
(’Ul’Uj - TJQ'Uj_]_,j = 3, ca ’I’L) = (’Ul,’Uz) N (Uiﬁj+1 — Ui+1'lij,1:,j = 1, e, 1)

Set Py = (v1,v2), and Py = (vwjp1 — v, 6,7 = 1,...,n — 1). It is clear that
(vvj—vavj_1,§ = 3,...n) C PINP;, so it suffices to show that NFZ3V(v1v;—vavsy1) C
V(PANPR) = V(P)UV(R). Takep == (p1,...,0n) € m?;;V(U]_Uj—‘QZUj.}.l), and assume
o & V(P). If py = 0, then since pyps — p3 = 0, we must have p, = 0, contradicting
that p ¢ V(P,). Then p; # 0. Write py = t"!, and py = " %u. pips = p2, 0
t" Ipy = " *u?, and ps = t"°u’. Assume p; = "7/ Then pipjr1 = pop;, 50
£ p g = eIy Tl = 420777 2y0 T follows that pia = 77!, By induction,
p= (""" 2, .. ™ w™ ) € V(vwje — vip1v;) for all é and j.

Now, P, is the kernel of the map Clvy,. .., vs) — C[t, u] that sends v; to £*u*™!,
so P is prime.. Then IQ has primary decomposition I0 = P; 11 P, with P, prime,
Py = Py, and we claim that P, is also o-invariant. First we note that Py is an ideal
in 5. In fact, since P is a prime ideal, F§ is also prime. Th_en we have

I, =y
= (A NHA)°
= Pl NF;
— P NPy
But I? = P, N P, so by the uniqueness part of primary decomposition, [4], we must

have Pj = B,.
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Fori=2,...n—2and j=i+1,...,n—1, let HY = vu;41 — v;41v;, and define
k¥ € B by (h¥)° = HY. Set

Pa:( C]x‘c?‘"if:_‘z h‘ij i=23"'7n7j=i+2;-..,n>7

S0
Pl=p=(G,. . . .GF%HYi=2,...,nj=i+2,...,0)
Then
B/P.2 [S/(RD)]’,
is a twist of the algebra

S/(PYy = Cl™ Y w2, u R, u Y,

so P, is prime.
For f = f(y1,...,Yn-t) € B** ¢ B, define Ff to be f(yit1,...,Yn). We want

to show:
Theorem IIL1.6. If P is ¢ primifive ideal in B™ that does not contain yi, then
P = P, for some o € C*"2. By induction, the primitive ideals in B™ are

Wi, Yn1: Y — A A € C;

(y1,- ., Yn—2); and

Wts - Yo TS ST AR | i=2,. . n—k=2,=1i+2,...,n—k)

k=0,1,....,n—3;a e C" 72
In the next section we establish some preliminary results, and then complete the

proof of Theorem II1.1.6.
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111.2. Formulas

Let ¢ = ad{y1) € Aut(B). Let f € Bgand F = f° € S. Then [p(f)]® =
1 F° — F:v‘{d = z1(F7 — F), so ©(f) = 0 if and only if f is o-invariant. We have the

following formulas.
Lemma ITE.2.1.

(1) o(ya) = ya-191-
(i) " (ya) = 1.

(iii) If f € By is o-invariant and F = f°, then [f,y2] = dy1f. In particular, [y%, yq] =

dyi*t.

THolyar)) = " yayr

Il

o Hya)yy = 9L (iid) [f, 10)° = F(23") — 22F° = F(wy + day) — 22F° = dui F =

O

(dy, f)°. (iv) This is the product rule for derivations.

I711.2.2. Notes.

1. Lemma II1.2.1(ii) implies that ¢*(y4) = 0, so (iv) implies that for each f € B

there exists N such that @™ (f) = 0.
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[4

2. If P is an ideal containing a = Ap + Z AYi, A # 0, then Lemma T11.2.1(ii) implies
i=1

that P contains ¢'"*(a) = 3. Thus if P is a prime ideal, and P contains a linear

element, then P contains y;.

3. If [ is a o-invariant ideal in B and g € B, we will say that g is o-invariant modulo
Iif (¢°)7 — ¢° € I°. We can use the argument used in the proof of Lemma I11.2.1(iii)
to show that if f € B; is o-invariant modulo I, with F' = f°, then [f, yo| = jyrf

modulo [.

Lemma I11.2.3. Let I and P be prime ideals in B, such that I & P, I is g-
tnvariant, and y, &€ P. Then P contains an element that ts nonzero, homogeneous,

wrreducible, and o-invariant modulo I.

Proof. Let g € P\ I. Choose N minimal with ¢”(g) € I, and set f = oV (g).

Then ©(f)° = 21[(f°)7 — f°] € I°, with z; & I° so f is o-invariant modulo /. Write

d
f= Z fi with f; homogeneous of degree i. Each f; is o-invariant modulo I, so by
i=0 )
11.2.2.3, [f,ys) ~ Y _ifis € I. Then dfy, — [f, 4] € P with
i=0
d
dfyy —{f,ye] =dfn — Z ifiy1 modulo 7
i=0

.
-

(d — i} fsy, modulo 1.

Il
=)

By induction on d, we may assume that f is homogeneous. Finally, suppose f* =

F\F; .- F,, with F} irreducible. Since (f°)° = f°, ¢ permutes {Fi, ..., F}}, so there
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exists s so that F;"S = [ for each 7. But ¢ is a unipotent automorphism of each of

the vector spaces S, so we must have F = F;. O

Theorem 111.2.4. Every prime ideal in B that does not contain yi is of the form
(91,92, --,0:), where g1,62,...,0: 18 a regular sequence with g; homogeneous irre-

ducible and o-invariant modulo {g1,. .. gi—1)-

Proof. Let P be a primitive ideal. The ring B is prime Noetherian, so by Lemma
111.2.3 it suffices to show that if  is a prime ideal in P, and g is nonzero, homogenecous,
irreducible, and o-invariant element modulo I, then g is regular, and the ideal I+ {g)

is prime. These follow from Notes [1.1.3. O

T11.3. Primitive Ideals

Lemma I11.3.1. Every primitive ideal that does not contain yy contains I, for some

a€C?

Proof. Let P be primitive, with y; ¢ P and let o, 8 € C"? with oy # ;. We
want to find «y so that fI € P, so assume f, f5 € P. The elements f} and f} are
regular and normal in B, hence regular and normal modulo the prime ideal P, (Note
11.1.3.2). By Remark 11.1.2, f; and f,é determine the same automorphism of B/P.
Then by Remark IL1.7 there exists ¢ € C so that f) — cf; € P. But fi—cf} =

1y + 25193 — ¥2 — cPyi — 2eyiys — cyi = (1 — eBu)yi +2(1 — e)yays — (L — o)y, If
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¢ = 1, then since @ # 81, P contains y? which would imply that y; € P. Thus ¢ # 1,

ay — cfh

T . Assume we have 7y, ..., 7,
—c

and P contains f; for every v € C"2 with v, =
such that if { € C*2 with §; = ~;, for i = 1,... 7, then fé € Pforeachi=1,...,7.

Let & = (1, .., %) 1, -« s Oz ), @0d 3 = (71, -+ %, Bjgt, -+ -y Baea2), with oy #

. it : i1 ) )
Biv1, and assume I, f271 ¢ P fi* and féJ" are o-invariant modulo P, hence

regular and normal modulo P. As above, there exists b # 1 so that fI*' b € P.

i1 — b
1-6

LCP. 0

Set vj41 = , 80 fi“ ¢ P. By induction, we can thus construct v so that

We are now ready to prove Theorem IIL.1.6
Proof of Theorem II1.1.6. Let P be primitive in B, and assume y; ¢ P. By Lemma
I11.3.1, P contains I, for some «, so by Lemma I[1.2.3, P = (I, q1, . .., g5}, with ¢; ho-
mogeneous, o-invariant and irreducible modulo (74, ¢1, . - -, gi—1}. Thus P corresponds

to a prime ideal P® in S containing
(Gi, ey GZ_Q) = (’Ul,'U'z) N (’U,;’Uj+1 e ’Ui+1Uj,?;,j = 1, N 1)

Then P° contains either (v, v2) or Pg = (Vi¥j1 — Vi1, 4,5 = 1,...,n— 1) but since
y; € P, we must have P2 C P°. Now P? is coheight two, so if P° # P2, then P° is
coheight one or zero. In either case, P? contains a linear polynomial. But then by
Note [I1.2.2.2, P* contains 1, contradicting that y; & P. We have then shown that

the primitive ideals in B that do not contain y; are of the form

Py={(f iR i=2...,nj=1i+2,...,0)
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Now suppose P is primitive, and P contains #,..., %, but ¢z &€ P. Then P
corresponds to a primitive ideal P in B/{y;, ..., yx) = B"*. Under this isomorphism,
image of Y41 s 91, s0 P corresponds to a primitive ideal in B™* that does not contain
1. By the above, the image of P in B"* is P, for some a. Since the preimage of

f e B Fis % f, we have
P=, sy TS S * 2 AR i=2,. . o n—k—2,7=1i+2,...,n—k).

O
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CHAPTER IV

THE POISSON MANIFOLD

Here we describe the Poisson manifold associated to the twisted algebra B™.

IV.1. The Poisson Bracket

Let R = C[h|. Grade the polynomial ring Rzy,...,z,] by deg{z;) = 1, and

deg(h) = 0. Let A = Rix;,...,x,]°", where oy is given on degree one elements in
coordinates xy,...,Z,, by right multiplication by
1 h
1 &
op = T -
1 A
1
Each element f € A corresponds to a unique polynomial f+ € Clh,z1,...,z,]. Eval-

uating f* at h = 0 gives a polynomial in §. The map from A to S that takes
f to fH{0,z,...,2,) is a ring epimorphism, whose kernel is (h), so A/(h) = §.
Similarly, the map from A to B that takes f to the unigue element f € B with
A, zy,. .. ,.a:n) = (f)o, is an epimorphism with kernel (h — 1), so A/(h — 1) = B™.
The Drinfel’d Poisson bracket (I1.2.2) on S is given by

Ti*Tj—Tj%%;

{zi,z;} = 3 mod (h},
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where * is multiplication in A. Again, using the convention that z¢ = 0, we have

L L1 — LT — RT L
(26, 2;} xxzxj+hxtx, 1h:cjx LT o ()

=T~ LT mod (h)

This yields the following formulas:

{21, 25} = 1251, 7> 15

{zi, 2} = ®xj_1 — Lic1%g, 4,7 > 1.

‘ 8 —~
We define differential operators w = » z;.1——, and § = » z;—, and observe

, 1
j=2 I

that

{4, ~}=zw ~ T;-16.

Note that for homogeneous f € S;, 6f = jf. It follows that if I is a homogeneous
ideal of 8§, with wl C I, then I is Poisson. In particular, the ideal {z;) in § is
Poisson, and the variety of z1, V(21}, is a Poisson submanifold of (A", S, {, }) which
is isomorphic to (A", §%~1 { }). This means that as in the analysis of the primitive
ideal structure, we can concentrate on describing the symplectic leaves that are not

contained in V(z;).

IV.1.1. Example. Letn =2, so § = C[x), zs]. The Poisson bracket is given by
{z1,72} = z}. A 0-dimensional symplectic leaf is the variety of a maximal ideal m,
with {m, §} € m. These are the ideals (z;, 22 —7), ¥ € C. The form determined by
{,} has rank 2 at each p € A%\ V(z1). It follows that the symplectic leaves are the

points {(0,7)}, ¥ € C and the 2-dimensional leaf A%\ V(z1).
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1V.1.2. Construction. Let n > 2. For each o = {ay,...,0n-2) € T2, let

i
o= [Zaj—mxﬂ'a] + (7 + Dorzez — 22541,
i=1
and let Q, be the ideal (F2,..., F*~?). We have

1 2 2
wF, = w(ozy + 2r103 —~ 25)
= 221711()2 - 2931272

=0

For 7 > 1,

| r

w(Ff) = aj—i+1$1w($é)} + (7 + Dz21w(Zj42) — w(@2)zj11 — Tow(T)i)
1

L%
A

j
= Cjit181Zi-1 | + (J + D)T1T501 — T1Z5400 — Tox;

L

(S
1l
1 b2

Il

®5.iT1Ti | + JT1Tj401 — T2Zj

il
=

H

iy

i

= r

QG

Thus each @, is a Poisson ideal. Furthermore, for p = (p1,...,ps) € A"\ V(z;) there

is a unique « so that p € V(Qq): indeed, set

-9 2
oy = plpg-f-pg, and
Py
_ Zgz'l aj‘_iplpi-l-l - (J + 1)plpj+2 +p2pj+1 3 1
aJ - p2 4 J > .
1
) 7
Since Fg = ayzi + [Zai"‘i“mlxiﬂ} + (J + 1)@1%j42 — T2Zj41, @ = {Q1, ..., Qp2) I8
i=2

the unique element of C*2 with p € V(Q.). We will show that each symplectic leaf

for {, }, that is not contained in V(z1), is an open subvariety of V(Q,) for some a.
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IV.2. Svmplectic Leaves

Let V, = V(Qa) \ V(z1). Then A™\ V(z;) is the disjoint union of V,, o € C*2
For f = f(zy,...,2p-k) € §VR o ST let HAf = f(Zk41, Try2y .., Zpn). Then for
each o € CV*2 let #Qa = (z1,..., 2k, FFa, ..., S%F2?), and let AV, =

V(FQa) \ V(21, ... Tn-1). We want to show:

Proposition IV.2.1. The symplectic foliation of A" associated to {,} consists of
the O-dimensional leaves {{0,...,0,7)}, ¥ € C, and the two dimensional leaves
V(z1,...,Tn2) and FV, = V@1, .. 2k FaF oy FF I\ Vg, ., ),

k=0,1,...,n—3, a c CVF2,
As an immediate corollary, we have

Corollary IV.2.2. There is a one to one correspondence between primitive ideals in
the twisted algebra B = S7 and the symplectic leaves for the Poisson structure induced
by o.

To prove Proposition 1V.2.1 inductively, it suffices to show that the symplectic
leaves for {, } that are not contained in V(z;) are the varieties V, = V(F,..., F?7%)\
V(z1,. . Tpa1), @ € C™ 2. We start by showing that each V, is an irreducible 2-

dimensional variety.

Lemma IV.2.3. For each o, there is a change of coordinates so that

Vo = {(t" 4, " 2, ... w2 " D, u € C,t # 0}
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Proof. Let vy = x1,v2 = Z9, and vs = a;z; + 2x3. Then Fé = v1v3 — v3. Assume
J

that for for k = 3,...,d + 2, we have defined v; = Zcﬁmi, ¢ji € C, ¢j; # 0 50 that
i=1

the ideal (F1, ..., F%) is equal to the ideal (v1v; —vavj_1,7 = 3,...,d+2). Note that

this means that for each ¢, there exist e;; so that z; = Z ei;u;. We have
j=1

d+1
Fort = (Z g z+2x12:1) +(d + 2)21 %443 — TaTaro

d+1 d-+2
= U (Z Qd—i+2xi) + (d+ 2)-’13d+3jl — Uz Z €d+2,Vj
| \i=1

=1

" /d+1 d+2
=1 E Qg—iyal; | + (d + 2)$d+3 - E €d+2,;U2?;.
L \i=1 j=1

Then
d+1
d+1
FFY = earag(vivio1 — vavy)
3=1
d+1
=1 E Qg—ipaTi | + (d+2)Taes
L vi=1
d+1
- E Eq2,iV1Uj—1 | — E€d+2,d+2Vela42
=1
rys d+1 B
HE ad—1+2$z) +{(d+2)Tayss j
i=1
d+2 -1
- E €d+2,5V1 E Cj—13%; | — €d+2,d+2¥aVd42
j=1 i=1
d+1
='U1|: E Og_ipa®i | + (d+ 2)xass
i=1
d+2 j-1
- E E 6d+2,jcj—»1,i$z} — €d+2,d+2V2Vd 2.
=1 i=1

€d+2,d+2 =1 o i

i d+1 d+2 j—1
Set vgpy = ——m {(Z ad_ngz) +{(d+ 2)zg4s — Z Zed+2 FCj— Mmz], S0
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dti
d+l _ . -
Fi7 = eqa,a42{010443 = VaUay2) + E edt2,j(V1Vj-1 ~ v2v;). By induction,
i=1
Qo = (v —vyuye,1=3,...,7)

= (v1,v2) N (vivy — Vip1vy1]i + 1 < 7).

The variety of (J,, with respect to coordinates (vi, va, ..., v,) is
V(Qo) = V(v o) U{(t™ L, " 2y, .., tu™ % u™ it u € C}.

so that V, = {{(t" 1, 1" %u,. .., tu™ 2 u" 1)|t,u € C,t # 0}, O

We have shown that A™\ V(x,) is a disjoint union of the 2-dimensional subman-
ifolds V. To show that V, are symplectic leaves, it remains to check that the form
determined by {, } has rank 2 on each V.

Consider the matrix m = ({z;, z;}):

( 0 :cf T1T2 e T1Tn_1
2 2
-z . 0 T5— T1T3 s ToXpn-1 — T1Tn
~T1Ty —Iy+ T1X3 0 cen T3Ln_1 — Laln
—I T 0 L2 = Ty ol
1dn-2 2 n—1 n—24n
\ — L1 L1 e —Zh_ + Tpo 0

This matrix has rank 0 if and only if z; = 0, for i = 1,...,n — 1, and it follows

that the 0-dimensional leaves are the points of the form (0,...,0,~). Furthermore,

I 0

T2 T
m = : (0,21,22, ..., Tn-1) — : (T1,-..,Zn)-
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At the points not of the form (0,...,0,), we see that m is a sum of rank 1 matrices,
so has rank at most 2. Since the form is skew symmetric it must have even rank, 2.

This completes the proof of Proposition 1V.2.1.
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CHAPTER V

ALGEBRAIC GROUP

V.1. Orbits in A™

In this section we will show that the symplectic leaves are the orbits of an algebraic
subgroup of GL,(C). Let

01 0
0 1
N = € M,(C),
g 1
0 0

and let G be the regular solvable subgroup of GL,(C) given by
G = {M(u,t) = ueju € C*,t € C}.

Then G acts by right multiplication on A". It is easily seen that G acts transitively

on the set C of 0-dimensional leaves: C' = {{0,...,0,7)|y € C}. We want to show:

Proposition V.1.1. The orbits in A" of G are the two dimensional symplectic leaves

and C.
V.1.2, Example. Let n =2, so that

G:{(g f)(ue@,tec}.

Then the orbits of G are A%\ V(x;), and V(z;) which are the the two-dimensional

leaf and the union of the zero-dimensional leaves, respectively.
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Proof of Proposition V.1.1. It suffices to prove that GG acts transitively on each of

the symplectic leaves not contained in V(zy). Recall that these leaves are V,, =
j

V(FL, ..., EP")\ V(zy), where FI = Zaj_z-ﬂzmxi + (7 + V)z1zj42 — zoTjq1. Let
=1

p= (P12 --..0Pn) € Vo, and M = M(u,t) € G.

M = M(u,t) = ue'’

n—1
1 .
= UZ ;F(tN)‘L
i=0
n—1 i .
='U,Z ;I(N)Z,
i=0
and pN* =(0,...,0,p1,...,Pni). Then

n—1 ,;

t i
pM =ud PN)

=0

n—1 ti
=ud =0, 0,ps,- P,
i=0

i—1 Lk
so the ™ coordinate of pM is uz — D g
k=0 k'

Evaluating F. at pM gives
FYpM) = ayulp? + 2upy(Jut®p; + utps + ups) — (utpr + upe)®
= u?{aap} + 2p1(48%p1 -+ tp2 + pa) — (tpr + p2)”]
= u’[o1p} + 2pips — P}
— 0,
so pM € V(F}). Assume that pM € V(FL,..., FI™'). Note that to check that pM €

V(FL, ..., FY) it suffices to check that b = pM(L,t) € V(F.,..., F?). Evaluating F7
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at b gives
Lok 1 g b
j —
Fa(b ;O{g —i+11 Z krp't —k + (j' -+ 1 pl Z Arp] —k+2 tpl +p2 kZ pj —k+1
i1 k J+}' b tk+1 W
= ZZ eIk ¥ Z U+ VPP ~ Z R PiPi-ke
i1 k=0 k=0
— TyPali—k+1
!
k-O k!
J Ik ik
= ZZ k‘% —i+1P1Pi—k + Z %l J’ + 1)p1p3~k+2 Z (k 1)'17’1?;; —k42
i=1 k=0 k=0 k=1
J £k
— Z yp2pj—k+1
k 0
7 Ik Itk
= ZZ il C“J #1P1Pik T Z T T UPiPi-kez = ) kP ks
=1 k=0 k=1
J tk
- Z Ep2pj—k+l
k=0
i i-1 tk F41 I’C
= Z E j~i+iPiPi—k T Z T (j+1—=kpipjrrz + (G + L)pipsre
i=1 k=0 k=1
b £
- Z Ep2pjw~k+1
=0
j_l i tk J+1 k
= Lo L ol Fi—iPL ikt 1 + ; A (7 +1—E)ppjkrz + (§ + Dp1pjez
J th
- Z kfp'zp_?""k‘l'l
k=0
= X G Pi-k+r T Z y(j + 1= k)p1pj—rse + (J -+ U)pipjso
i=1 k=1 k=1
Jj-1 £k j-1 4
— Z klpng —k+1 + Z Qj—iP1Pi+1 + P1Pe + (J + Dpipise
k=1 i=0 ‘7
+
—3;?2101 — P2Pin
= k,% —iD1Pik+1 T Z 7 (7 +1—=E)p1ipj—rre + (F + Dp1pjto,
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=1
since (Z ajplpm) + (7 + 1)p1pjs2 — paps+1 = Fi(p) = 0. Now,

i=0
i—-1 1 -1 j- k:
a;,v iP1Pi—kr1 = E E a] EPLD:,
=1 k'_l k=1 i=1

80

j— ik
. tk
Fi(b) Z ! [(Z Qj— kplpz) (7 — k+ 1)p1pj-k+2 — DaPj—k+1

k=1 1
j-1 ik

= G
k=1 "

= (),

so (G acts on each V,. Now, suppose ¢ = (¢1,¢2,- - -, @) € Vo. We want to find v and

t such that pM(u,t) = q. Set v = g—l—, and t = q_z_1_93) and let ¢ = (¢1,...,¢n) =

o q1 J 4

pM{u,t). We have ¢ = up; = ¢y, and

cy = utp) +ups

g1 {92 D2 @
= == —_—— + -

h (41 Pl) b km) b
= go— q1P2 4 g1p2

0 Pt

= q2_
Thus pM({u,t) is an element of V,, whose first two coordinates are ¢; and gz. Since

each element of V, is determined by its first two coordinates, pM(u,t) must be q. [

V.2. Momentum Map

Let (M, §2) be a symplectic manifold.
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For each f € C°°(M, C), there is a differentiable vector field Xy on M such that
for all g € C*(M,C)

Xelg) =1/ g}

The vector field X is called the Hamiltonian vector field associated with f, or
admitting f as a Hamiltonian. Let G be a Lie group with Lie algebra g, and let

& be a right action of G on M
Pz, 9) = Py{z) =29, tEMgeQG.

The action of G is symplectic if G acts by symplectomorphisms, that is, for each
g€G,

o0 = .

For X € G, the fundamental vecior field associated with X is the vector field

Xy on M defined by

d
Xprlz) = Eg(x exp(—sX))!s=n

u

A symplectic action ® of a Lie group G on M is Hamiltonian if and only if there
exists a differentiable map J : M — g* such that for every X € g, the associated

fundamental vector field Xjr admits the function Jx
Jx(x)=(J(z)}, X}, x € M

as a Hamiltonian, [8]. Such a map J: M — g" is called a momentum map of the

Hamiltonian action ®.
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V.2.1. Example. Consider the Poisson manifold (A% {, }) determined by the twist

B = C<y1:y2:y3>/'ja
where J is the ideal

J= (ylyz — Y21 — y‘f, Y1Ys — Y31 — iya + ’yfa Yala — Yayz2 — y% + ylys)-

Recall that the symplectic leaves are the orbits in A?® of the algebraic group

w ut lut?
G= M{u,t)=1 0 u ut weC* teC
0 0 wu

Let g be the Lie algebra of G, and let

a t O
X=}10a t |eg
0 0 a
Then Ceur D
e —e st L 2(315)
exp(—sX) = 0 e=St _emsugy
0 0 e %

The fundamental vector field X3 is given by

d
Xpsal) = (@ exp(—=aX))] o

In particular,

d, _
XA3($1) = ZE Su:El)IS_O
= —ue 3”$1|S=
= —UT)
_ d —su -3
Xas(x2) —&-S—( e *Mstxy + e :r:g)|s={3
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Now, suppose that J is a momentum map for the action of G. Then there is an

element g € S such that X; = X,3. But

Xo(z1) ={9,7:1}
= —{71. 9}

= —Iiwg

and

Xo{xa) =1g,z2}
= —{x, 9}

= —Towg + 27199'.

This implies that wg = u, and €g = ¢. This only holds for ¢ = 0 and © = ¢ = (, and

we conclude that there is no momentwmn map for the action of G.
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CHAPTER VI

EXAMPLES

V1.1. Standard Examples

VI1.1.1. Three Dimensional Example. Let S = C[z1, z,, z3), and

o]

1
O o o
O e =
—= e O

Then S7 = B = C{yy, y2, y3)/J where
J = {thys — Yoy1 — yf, hys — Ysy1 — vz + yfa Y2¥s — Yalja — y% + 1193).

The primitive ideals of B are

(1,293 =7, Y €G

{y1); and

(fo = o1t + 2p1ys — v3), a € C.
The Poisson bracket on S induced by ¢ is given by

{561, 332} = CC%, {$1, 373} = I1%a, {mz, 1‘3} = iﬂg — ZiT3.

The symplectic leaves associated to the bracket are
the points : {(0,0,7)}, 7 € C;
the plane : V(zi) \ V(z1, 22)

and the quadratic surfaces : V, = V(F, = azi + 22173 — z3) \ V(z1,22), a € C.
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Let G be the algebraic group consisting of matrices of the form

2

u ut lut

Mu,t)=ue™ =] 0 u ut
0 0 wu

G acts by right multiplication on A®. and it is easy to see that G acts transitively on

the 0-dimensional leaves P,. The remaining orbits are the 2-dimensional leaves, Vy,

a€C.
VI.1.2. Four Dimensional Example. Let S = Cizy, 2, z3, 24, and

0
0
1
1

v B e i e S
o R v B
Q== O

Then B = S7 is isomorphic to C{yi, ¥z, ys3, ¥4)/J, where J is the ideal

J={ wnye—voy1 — ¥3, ,
Ys — Y3y — e + U1,

AL al

Y10a — Yab1 ~ 1% + Yi¥a — Ui

Yols — YaY2 — Yz + 113,

Yos — Ya¥2 — Yo¥s + Y3 — 1¥a + 11y,
Yays — Yala — Y2 + Yols )

From the 2-dimensional example, we know that the primitive ideals in B that contain

th are
(yl, Y2, Y3, Ya — ’7’>;
(y1,92); and

(11, #1fa = oyt + 2ypoys — ¥3), @ € C.

We now compute the primitive ideals that do not contain y;. Let

2
Ga = Oé]_.’L'% + 120 + 2x423 — Xy.
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Set v; = I1,v2 = T, and vs = T + T2 + 233, so G = vws — v Now let
G2 = apx? + o212 + 27173 + 33174 — Tozz. Then
2G§ = 2120211 + 2072 + 43 + 674) — 22V — XT7 — 23)
= 2120221 + 3012 + 43 + 624) — Tz -+ 5C§:

and

2G2 + Gl = m1f(on + 20)71 + (3ay + 1)xg + 633 + 624] — T2U3-
Set vy = (a1 + 209}z, + (3ou + L)z + 623 + 6z4. Then G2 = wvjv3 — vyvs. Let
H?% = yyvy — v, We have

H? =g —v3
= Tof(01 + 202)71 + (B + 1)z2 + 623 + 624] — (171 + T2 + 223)° !
= —afzf + (209 — ) x122 — doyz173 + 3a1x§ + 2293 + 62024 — 456‘%.

Then

1
g(Hga + QIGCI,_') = (¥o1To — 121 X3 + Otlil,'g + Zols + 3.’132324 - 23’}%

Let

hZ = gy} — agyrys + onyiys — 1y — 3Yaya + 245

—~ 1 . . .
Then (h23)° = -—5(HZ3 + yG"), and the primitive ideals in B that do not contain y;

are

(fa=onyi +2u1ys — 43, f3 = cayi + ¥z + vays + 301y — Yoys, b)), € C*. |
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The bracket on S = C[x1, T2, T3, z4) induced by o is given by

{Il, 332} = ZC% {231, 334} = I1T3 {562, 334} = X2z — L1T4

(21,23} = m1x2 {29, 23} = 25 — mzs  {Z3, T4} = T3 — ToL4

From the two dimensional example, we know that the symplectic leaves contained in
V(z;) are:
P, ={(0,0,0,7)}, vy€C
V(xla 3:2) \ V(:E]_, T3, 'T3)7 and
AV, = V(AF, = azi + 2974 — )\ V(z1, 72, 23), o € C.
Let & € €2, and let
Fl = 2% 4 22,25 — 5, and
F(f = 0{233% 4+ a1 z1%2 + IT1T4 - ToT3.
Then wF?2 = F2, and wF2 = 0, so the ideal (F, ol Fozt) is Poisson. The two dimensional

leaves not contained in V(z;) are

V(Fé,Fé) \ V(ml,xg,xg), a € C

V1.2. More Examples

Here we consider the case where the automorphism ¢ is not represented by a

Jordan block.

VI1.2.1. Example Let

Q
|
OO
R
[l I o B e
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where g € C, and let A = 8°. First we consider the case where ¢ = 1. One can check
that every primitive ideal contains an element of the form az; + Bx;. It follows that

the primitive ideals are
(ys), (W1,%2 — Ao, us — Aa)y {31 + Bya),
The bracket induced by ¢ is
{:ci, T2} = i, {z1, 73} = 0, {z2, 23} = —m123.

The form determined by {, } has rank zero if and only if z; = 0, and rank 2 otherwise.
It follows that the zero dimensional leaves are the points (0, A2, A3). It is easily seen
that z3 is a Poisson element, so that V(z3) \ V(z1) is a 2-dimensional symplectic
leaf. Let # € C, and set p = 21 + fz3. Then {z1,p} = 0 = {z3,p}, and {zq,p} =
—z2 — Bx123 = —21p, 50 p is Poisson. It follows that the two dimensional symplectic

leaves are
V(x3) \ V(z1), and

V(aml 4 ;8:132) \ V(:L'l), a,f€C.
We see that the symplectic leaves are algebraic, and are in one to one correspondence
with the primitive ideals in the twisted algebra.

Now suppose that ¢ is not a root of unity. Then A = C{y1,y2,y3)/J where

J = (y1y2 — Y2t yf, Y1Ys ~— qYsY1, YalYs — qlyslys — yﬁlz)-

We want to show that the primitive ideals of A are

0’ (y1>= <y3): (y1>y25y3 - A): and (yh a2 — /\1 y3>
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It suffices to show that every primitive ideal contains either y; or y;. Note that the
subalgebra spanned by y; and y. is isomorphic to B?. We will retain the notation
B? for this subalgebra. Let ¢ = ad(y;). Then o{y2) = 45 and ¢’ (¥5) = (g — LY 1ys.
From Note [11.2.2.1, we know that for each element f in B? there exists N so that
o (f) = 0. Let P be primitive. If P contains neither ¥; nor ys, then P contains
an element f = iﬁy@, with fi € B2C B,and fu # 0, fa #0,ie. f & B? and

i=0
f # ayj. Then P contains g = ¢(f) — (1 — )y f. We have

d—1

9= (Z[;ﬁ:w( i)+ (% - ;%)ylfz-]yé) + Lo(fays-
=0

Now, if o(fi) = Ayrfi, with X # 0, then ¢” (f;} = AV g1 fi 5 0 for all N. This is a

contradiction since ¢ is locally nilpotent. Then since 1 — e s 0, it follows that

Lo(fi) + (& — X)yfi # 0 for f; # 0. By induction P containg an element

d-1
h=>hys+9" (f0ys,
1=0
i-1
with ¢™(fs) = 0, and Zhiyg # 0. By induction on d, P contains an element in B,
i=0

so by Example II1.1.3, P contains y,. We now have shown that every primitive ideal

contains either ¢, or 3. This means that the nonzero primitive ideals in A are

(y1>? <y3)1 (ylvaay-?» - )\)1 (91,y2 - AayS)-

The ideal 0 is prime, but not an intersection of strictly larger primitives, so must

itself be primitive.
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Next we construct the Poisson structure associated to A. Set

1 h 0
o=\ 0 1 0
0 0 14+h{g—1)

We see that S°/(h) & S, and S°/(h — 1} = A. Let v =1 — ¢. The Drinfel’d bracket

is given by
{331, 1‘2} = ’Yil»'%, {$1,$3} = YI1X3 {3321 373} = YT2X3z — LT1x3.

It is easily seen that the form induced by {, } has rank zero if and only if 2; = 0 and
either o = 0 or 3 = 0. The form has rank two otherwise. It follows that the zero
dimensional leaves are the points (0,0, A) and (0,A,0), A € C. Let' C be the set of
zero dimensional leaves. It is easily seen that the ideals (z;) and (z3) a,ré Poisson,
and it follows that V(z1) \ C and V(zs) \ C are symplectic leaves. In fact, we will
show that z; and 73 are the only irreducible Poisson elements. This means that the
algebraic symplectic leaves are

(0,0, /\), (0, A, 0), AE (C; {(0, /\2, )\3)[/\2,}\3 75 0}, and {(Al,ﬁ, /\3)')\1 7-—" 0}

o) 0 d 0
Set w = ml-({i—:]g, G, = :EIE -+ 332“53:—2, By = 21338—55—3', and @ = 8; + &s. Then

{z1, — } = 21w + @z,
{z1, — } = axsby — 210 + Zow,

{22, — } = zaw — axabh.

Suppose p € S is a Poisson element with p # z1,z3. Since Tiwp + azifp € (p),

wp + ablp € (p). Also zawp — azzbip € (p), so wp — abip € (p). Then

a(@l + 92)]) = aﬂp S (p),
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so p is homogeneous. Write p = Zpixg, with p; € kfz(, 2], and deg(p;) = d — 1.

wp + afap € (p), so there exists A € C so that

Z(wpé)xg + Z aip; Ty = Z ;5.

Then for each i there exists y; with wp; = ppi. We claim that g; = 0 for all 3. If

so, then Ap; = aip; for all 4, so p = ax?'zi, and we are done. To prove the claim,
¢
suppose g € A with wg = Ag. Write g = Za:ép@, with p; € k[z1,z3] € S. Then

1=0
T t—1
wp = Zﬁ'xlﬂ%_lpi = Z(ﬁ + 1)z125pig.-
=1 i=0

Then Azlp; = 0, and Ap; = (2 + 1)z1pipq for each 2. If A #£ 0, then p = 0, so we are

done.
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