NOTICE OF ADOPTED AMENDMENT

7/31/2009

TO: Subscribers to Notice of Adopted Plan or Land Use Regulation Amendments

FROM: Plan Amendment Program Specialist

SUBJECT: City of Coburg Plan Amendment
DLCD File Number 002-08

The Department of Land Conservation and Development (DLCD) received the attached notice of adoption. Due to the size of amended material submitted, a complete copy has not been attached. A Copy of the adopted plan amendment is available for review at the DLCD office in Salem and the local government office. This amendment was submitted without a signed ordinance.

Appeal Procedures*

DLCD ACKNOWLEDGMENT or DEADLINE TO APPEAL: Thursday, August 13, 2009

This amendment was submitted to DLCD for review prior to adoption. Pursuant to ORS 197.830(2)(b) only persons who participated in the local government proceedings leading to adoption of the amendment are eligible to appeal this decision to the Land Use Board of Appeals (LUBA).

If you wish to appeal, you must file a notice of intent to appeal with the Land Use Board of Appeals (LUBA) no later than 21 days from the date the decision was mailed to you by the local government. If you have questions, check with the local government to determine the appeal deadline. Copies of the notice of intent to appeal must be served upon the local government and others who received written notice of the final decision from the local government. The notice of intent to appeal must be served and filed in the form and manner prescribed by LUBA, (OAR Chapter 661, Division 10). Please call LUBA at 503-373-1265, if you have questions about appeal procedures.

*NOTE: THE APPEAL DEADLINE IS BASED UPON THE DATE THE DECISION WAS MAILED BY LOCAL GOVERNMENT. A DECISION MAY HAVE BEEN MAILED TO YOU ON A DIFFERENT DATE THAN IT WAS MAILED TO DLCD. AS A RESULT, YOUR APPEAL DEADLINE MAY BE EARLIER THAN THE ABOVE DATE SPECIFIED.

Cc: Petra Schuetz, City of Coburg
Gloria Gardiner, DLCD Urban Planning Specialist
Bill Holmstrom, DLCD Transportation Planner
Ed Moore, DLCD Regional Representative

<pa> YA/
Notice of Adoption

Jurisdiction: Coburg

Date of Adoption: 4/14/2009

Was a Notice of Proposed Amendment (Form 1) mailed to DLCD? Yes Date: 3/01/2009

☐ Comprehensive Plan Text Amendment ☐ Comprehensive Plan Map Amendment
☐ Land Use Regulation Amendment ☐ Zoning Map Amendment
☐ New Land Use Regulation ☒ Other: I-AMP

Summarize the adopted amendment. Do not use technical terms. Do not write “See Attached”.

State law requires that an Interchange Area Management Plan (IAMP) be completed before any funding can be released for projects identified at the Coburg/I-5 interchange to fix the problem. In addition, Oregon Administrative Rule (OAR) 734-051-0155(6) states: “Interchange Area Management Plans are required for new interchanges and should be developed for significant modifications to existing interchanges…”

The Coburg/Interstate 5 IAMP documents the planning process to develop an alternative that will improve and protect the function of the Coburg/I-5 interchange. The purpose of the IAMP is to ensure that public investments in state infrastructure are protected through an integration of transportation and land use planning at the city, county and state levels. The IAMP recommends: (1) operational and physical improvements, including access management, and (2) local policy and development code changes. The IAMP is a collaborative document and reflects coordination among the Oregon Department of Transportation (ODOT), the City of Coburg, and Lane County. The IAMP must be adopted by the Oregon Transportation Commission (OTC), the City of Coburg and Lane County to be in effect.

Does the Adoption differ from proposal? No

Plan Map Changed from: to:

Zone Map Changed from: to:

Location: Acres Involved:

Specify Density: Previous: New:

Applicable statewide planning goals:

Was an Exception Adopted? ☐ YES ☒ NO

Did DLCD receive a Notice of Proposed Amendment...

45-days prior to first evidentiary hearing? ☒ Yes ☐ No

If no, do the statewide planning goals apply? ☒ Yes ☐ No
If no, did Emergency Circumstances require immediate adoption?

Yes ☐ No ☐

DLCD file No. 002-08 (17261) [15635]

Please list all affected State or Federal Agencies, Local Governments or Special Districts:

Lane County
Lane Council of Governments
Oregon Department of Transportation
City of Coburg

Local Contact: Petra Schuetz
Address: P.O. Box 8316
City: Coburg Zip: 97408
Phone: (541) 682-7858 Extension:
Fax Number: 541-485-0655
E-mail Address: planning@ci.coburg.or.us

ADOPTION SUBMITTAL REQUIREMENTS

This form must be mailed to DLCD within 5 working days after the final decision per ORS 197.610, OAR Chapter 660 - Division 18.

1. Send this Form and TWO Complete Copies (documents and maps) of the Adopted Amendment to:
 ATTENTION: PLAN AMENDMENT SPECIALIST
 DEPARTMENT OF LAND CONSERVATION AND DEVELOPMENT
 635 CAPITOL STREET NE, SUITE 150
 SALEM, OREGON 97301-2540

2. Electronic Submittals: At least one hard copy must be sent by mail or in person, or by emailing larry.french@state.or.us.

3. Please Note: Adopted materials must be sent to DLCD not later than FIVE (5) working days following the date of the final decision on the amendment.

4. Submittal of this Notice of Adoption must include the text of the amendment plus adopted findings and supplementary information.

5. The deadline to appeal will not be extended if you submit this notice of adoption within five working days of the final decision. Appeals to LUBA may be filed within twenty-one (21) days of the date, the Notice of Adoption is sent to DLCD.

6. In addition to sending the Notice of Adoption to DLCD, you must notify persons who participated in the local hearing and requested notice of the final decision.

7. Need More Copies? You can now access these forms online at http://www.lcd.state.or.us/. Please print on 8-1/2x11 green paper only. You may also call the DLCD Office at (503) 373-0050; or Fax your request to: (503) 378-5518; or Email your request to larry.french@state.or.us - Attention: Plan Amendment Specialist.

Updated March 17, 2009
Coburg/Interstate 5
Interchange Area Management Plan

Prepared for
Oregon Department of Transportation

April 2009

Prepared by
CH2M HILL

Traffic mobility logistics.
Contents

Section Page
Acknowledgements... vii
Acronyms and Abbreviations .. ix
Executive Summary.. 1
 Background .. 1
 Existing and Future Conditions ... 1
 Alternatives Developed and Analyzed ... 2
 Interchange Area Management Plan ... 3
 Background ... 1-1
 1.1 Purpose and Intent .. 1-1
 1.2 Problem Statement ... 1-1
 1.3 Project History .. 1-2
 1.4 Functional Classification and Interchange Function .. 1-3
 1.5 Goal and Objectives .. 1-5
 1.6 IAMP Interchange Management Area .. 1-6
 1.7 Related Work Products .. 1-7
 1.8 Public Involvement ... 1-8
Existing Conditions Inventory and Analysis ... 2-1
 2.1 Regulatory Framework ... 2-1
 2.2 Existing Land Use and Zoning .. 2-1
 2.2.1 Northwest Quadrant ... 2-1
 2.2.2 Southwest Quadrant ... 2-2
 2.2.3 Northeast Quadrant .. 2-2
 2.2.4 Southeast Quadrant .. 2-3
 2.2.5 Zoning and Permitted Land Uses ... 2-3
 2.2.6 Activity Centers ... 2-4
 2.3 Growth Patterns and Demographics .. 2-4
 2.3.1 2000 Census ... 2-4
 2.3.2 Coburg Population/Employment Forecasts .. 2-4
 2.4 Transportation Facilities and Traffic Operations ... 2-5
 2.4.1 Road Facilities .. 2-5
 2.4.2 Interchange Condition and Geometric Deficiencies 2-13
 2.4.3 Access ... 2-14
 2.4.4 Crash Analysis .. 2-15
 2.4.5 Intersection-Level Analysis ... 2-17
 2.4.6 Existing Operational Analysis .. 2-17
 2.4.7 Transit Facilities ... 2-22
 2.4.8 Pedestrian and Bicycle Transportation ... 2-23
 2.4.9 Air Transportation ... 2-24
2.4.10 Rail Transportation .. 2-25
2.4.11 Water .. 2-25
2.4.12 Pipelines ... 2-25
2.4.13 Summary of Deficiencies and Issues 2-26

2.5 Natural and Cultural Resources 2-27
 2.5.1 Topography .. 2-27
 2.5.2 Soils .. 2-27
 2.5.3 Hydrology ... 2-27
 2.5.4 Floodplains and Floodway 2-28
 2.5.5 Wetlands .. 2-28
 2.5.6 Open Space and Parks ... 2-29
 2.5.7 Historic Resources .. 2-29
 2.5.8 Archaeological Resources 2-29

Future Conditions Analysis ... 3-1
 3.1 Purpose .. 3-1
 3.2 Land Use Assumptions ... 3-1
 3.2.1 Coburg Comprehensive Plan Forecasts 3-1
 3.2.2 Coburg Comprehensive Plan Growth Allocations 3-2
 3.3 Forecasted Traffic Operations 3-3
 3.3.1 Traffic Forecast Methodology 3-3
 3.3.2 Future No-Build (2031) Operations—30th Highest Hour 3-3
 3.3.3 2031 No-Build Scenario Deficiencies—30th Highest Hour 3-5
 3.3.4 Future No-Build (2031) Operations—AM Analysis 3-5
 3.3.5 Summary .. 3-6

Alternatives Development and Analysis 4-1
 4.1 Background and Purpose ... 4-1
 4.2 Alternatives Development .. 4-1
 4.3 Alternatives Analysis ... 4-2
 4.3.1 Alternative Comparison—2031 Operations 4-2
 4.3.2 Alternatives Development—Previous IAMP Iterations .. 4-6
 4.4 Alternatives Evaluation ... 4-6
 4.4.1 Evaluation Criteria and Measures of Effectiveness—Background 4-6
 4.4.2 Evaluation Criteria ... 4-7
 4.4.3 Subcriteria and Measures of Effectiveness 4-8
 4.5 Recommendation .. 4-13

Recommended Alternative—Operational, Physical and Access Improvements 5-1
 5.1 Recommended Alternative and Findings 5-1
 5.1.1 Recommended Alternative Overview 5-1
 5.1.2 Goal and Objectives Findings 5-2
 5.2 Recommended Alternative—Operational and Physical Improvements 5-4
 5.2.1 Short-Term Operational/Physical Improvements (0 to 7 years) 5-4
 5.2.2 Long-Term Operational/Physical Improvements (8+ years) 5-6
 5.3 Recommended Alternative—Access Management Plan 5-6
 5.3.1 Van Duyne Road (East of I-5) 5-7
 5.3.2 Pearl Street (West of I-5) .. 5-8
5.3.3 Access Management Deviations ... 5-8

IAMP Recommended Alternative – Policies and Implementation Measures 6-1
6.1 Policy Framework ... 6-1
 6.1.1 IAMP Purpose ... 6-1
 6.1.2 IAMP Policies and Actions .. 6-1

IAMP Recommended Alternative – Development Code 7-1
7.1 Development Code Language .. 7-1
 7.1.1 Traffic Impact Analysis ... 7-1
 7.2 Plan and Zone Map Changes .. 7-2

IAMP Implementation, Monitoring, and Updates ... 8-1
8.1 Implementation Authority ... 8-1
8.2 Monitoring and Updates ... 8-1

Appendices
A Public Involvement
B Plan and Policy Review
C Findings of Compliance with State and Local Plans, Policies, and Regulations
D Permitted Land Uses
E Traffic Methodology
F Raw Existing Traffic Data
G Existing 2005 Traffic Operations Worksheets
H Future No-Build 2031 Traffic Operations Worksheets
I Future Build 2031 Traffic Operations Worksheets
J Transportation Demand Management
K Alternate Land Use Scenarios
L Goal Exception Rationale
M IAMP Map and Legal Description

Tables
1-1 Coburg/I-5 IAMP Ownership and City of Coburg/Lane County Functional Classification ... 1-4
2-1 Permitted Land Uses within Coburg/I-5 Interchange Management Area 2-3
2-2 Comprehensive Plan, Coburg Urbanization Study and RTP Land Use Assumptions (Year 2025) ... 2-5
2-3 Coburg/I-5 IAMP Ownership and City of Coburg/Lane County Functional Classification ... 2-10
2-4 Coburg/I-5 IAMP Lanes, Road Width, Marked Shoulders, Speed Limit, Parking, 2-11
2-5 2005 Coburg/I-5 IAMP Pavement Condition ... 2-11
2-6 Minimum Spacing Standards Applicable to Freeway Interchanges 2-14
2-7 Historical Crash Data on I-5 within the Coburg/I-5 Interchange Management Area (MP 198.00 to MP 200.50) ... 2-16
2-8 Surface and Light Condition Summary ... 2-16
2-9 Intersection Crash Data (2003-2007) Coburg/I-5 IAMP 2-17
2-10 Intersection Operational Analysis – Existing (2005) 30th Highest Hour 2-20
CONTENTS, CONTINUED

2-11 2005 30th Highest Hour Queue Analysis .. 2-22
2-12 Coburg/I-5 IAMP Roads—Bicycle and Pedestrian Facilities 2-24
3-1 Comprehensive Plan Land Use Assumptions—Year 2025 3-1
3-2 Coburg Comprehensive Plan Land Use Assumptions—2025 3-2
3-3 30th Highest Hour Intersection Operational Analysis—2031 No-Build 3-4
3-4 30th Highest Hour Intersection Delay—2031 No-Build 3-5
3-5 AM Operational Analysis at I-5 Ramps—2031 No-Build 3-6
4-1 Components of Alternatives .. 4-3
4-2 2031 Intersection Operational Analysis—Alternative Comparison 4-4
4-3 2031 Intersection Delay—Alternatives Comparison 4-5
4-4 2031 30th Highest Hour Queue Lengths—Alternatives Comparison 4-5
4-5 Coburg/I-5 IAMP Evaluation Criteria and Measures of Effectiveness 4-8
4-6 Coburg/I-5 IAMP Alternatives and Evaluation Criteria Application 4-12
5-1 Comprehensive Plan Land Use Assumptions—Year 2025 5-2
5-2 IAMP Access Deviations ... 5-9

Figures (located at the end of each section)

1-1 Coburg Interchange Management Area
2-1 Comprehensive Plan Designations
2-2 Zoning Designations
2-3 Functional Classification
2-4 Pavement Condition
2-5 Study Area Accesses Located within 1,320' of Interchange
2-6 Existing Conditions (2005) 30th Highest Hour Traffic Volumes
2-7 Lane Transit District Bus Routes
2-8 Pedestrian and Bicycle Facilities
2-9 Coburg Interchange Refinement Plan Possible Environmental Constraints
3-1 Coburg Area TAZs
4-1 Alternative A
4-2 Alternative B
4-3 Alternative C
5-1 Recommended Alternative
5-2 Recommended Alternative Access Deviations
6-1 Interchange Management Area Quadrants
Acknowledgements

Project Staff
Oregon Department of Transportation
Terry Cole, Project Manager
Terri Harding, Project Manager
Dorothy Upton, Transportation Planning and Analysis Unit

CH2M HILL
Kirsten Pennington, Project Manager
Andra Henriques, Traffic Engineer

PTV America Inc.
Steve Perone, Consultant Team Manager
Jimmy Wong, Engineer

Angelo Planning Group
DJ Heffernan, Senior Planner
Katelin Brewer-Colie, Planner
Serah Overbeek, Planner

Project Steering Team
City of Coburg
Judy Volta, Mayor

Oregon Department of Transportation
Erik Havig, Region 2 Planning and Development Manager
Candice Stich, Project Leader
Gerry Juster, Region 2 Access Development Review Coordinator

Lane Council of Governments
Tom Schwetz, Transportation Manager
Petra Schuetz, Planner

TransWatch
Christian Watchie, Director

Lane County
Celia Barry, Division Manager, Lane County Public Works—Transportation Planning and Traffic
Bill Morgan, County Engineer
Stephanie Schulz, Planner

Oregon Department of Land Conservation and Development
Eric Jacobson, Transportation Planner
Marguerite Nabeta, Southern Willamette Valley Regional Representative
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>average daily traffic</td>
</tr>
<tr>
<td>AM</td>
<td>morning</td>
</tr>
<tr>
<td>ATR</td>
<td>automatic traffic recorder</td>
</tr>
<tr>
<td>BRT</td>
<td>bus rapid transit</td>
</tr>
<tr>
<td>CLMPO</td>
<td>Central Lane Metropolitan Planning Organization</td>
</tr>
<tr>
<td>DLCD</td>
<td>Department of Land Conservation and Development</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>HDM</td>
<td>Highway Design Manual</td>
</tr>
<tr>
<td>I-5</td>
<td>Interstate 5</td>
</tr>
<tr>
<td>IAMP</td>
<td>Interchange Area Management Plan</td>
</tr>
<tr>
<td>LCOG</td>
<td>Lane Council of Governments</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>LTD</td>
<td>Lane Transit District</td>
</tr>
<tr>
<td>LWI</td>
<td>Local Wetland Inventory</td>
</tr>
<tr>
<td>MEV</td>
<td>million entering vehicles</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MP</td>
<td>milepost</td>
</tr>
<tr>
<td>MPO</td>
<td>Metropolitan Planning Organization</td>
</tr>
<tr>
<td>NHS</td>
<td>National Highway System</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetlands Inventory</td>
</tr>
<tr>
<td>OAR</td>
<td>Oregon Administrative Rule</td>
</tr>
<tr>
<td>ODOT</td>
<td>Oregon Department of Transportation</td>
</tr>
<tr>
<td>OHP</td>
<td>Oregon Highway Plan</td>
</tr>
<tr>
<td>OTC</td>
<td>Oregon Transportation Commission</td>
</tr>
<tr>
<td>OTIA</td>
<td>Oregon Transportation Investment Act</td>
</tr>
<tr>
<td>OTP</td>
<td>Oregon Transportation Plan</td>
</tr>
<tr>
<td>PM</td>
<td>afternoon/evening</td>
</tr>
<tr>
<td>PMT</td>
<td>Project Management Team</td>
</tr>
<tr>
<td>RTP</td>
<td>Regional Transportation Plan</td>
</tr>
<tr>
<td>SPIS</td>
<td>Safety Priority Index System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>STIP</td>
<td>State Transportation Improvement Program</td>
</tr>
<tr>
<td>TAZ</td>
<td>Transportation Analysis Zone</td>
</tr>
<tr>
<td>TDM</td>
<td>transportation demand management</td>
</tr>
<tr>
<td>TIA</td>
<td>traffic impact analysis</td>
</tr>
<tr>
<td>TMC</td>
<td>turning movement count</td>
</tr>
<tr>
<td>TPR</td>
<td>Transportation Planning Rule</td>
</tr>
<tr>
<td>TSP</td>
<td>Transportation System Plan</td>
</tr>
<tr>
<td>UGB</td>
<td>urban growth boundary</td>
</tr>
<tr>
<td>V/C</td>
<td>volume-to-capacity ratio</td>
</tr>
<tr>
<td>VMT</td>
<td>vehicle miles traveled</td>
</tr>
</tbody>
</table>
Executive Summary

The Coburg/Interstate 5 (I-5) interchange, located on I-5 at milepost 199.15 adjacent to the City of Coburg, is no longer able to meet existing and forecast travel demand and is in need of modifications and improvements. This Interchange Area Management Plan (IAMP) documents the land use and transportation strategies developed to protect the function1 of the Coburg/I-5 interchange over the long-term (20-plus years) in light of these planned improvements, as directed by Oregon Administrative Rule (OAR) 734-051-0155(6). The Coburg/I-5 interchange is of interest for protection because much of the adjacent land is vacant and could potentially be developed, adding more traffic to the interchange area.

This document includes a complete description of the IAMP development process, including existing conditions analysis, no-build future analysis, alternative analysis, and description of the Recommended Alternative, including physical, access management, and policy and code recommendations. Recommendations for the Coburg/I-5 interchange area are presented as short-term, medium-term, and long-term. This IAMP was prepared collaboratively with the Oregon Department of Transportation (ODOT), Lane County, and the City of Coburg in coordination with the Lane Council of Governments (LCOG).

Background

The Coburg/I-5 interchange was proposed for reconstruction in the 1999 Coburg-Interstate 5 Interchange Refinement Plan (Refinement Plan), which was adopted as part of the 1999 City of Coburg Transportation System Plan (Coburg TSP). This IAMP re-examines the recommended conceptual design outlined in the Refinement Plan, given changes in land uses and population and employment forecasts in the interchange area, along with changes in highway policy regarding interchange improvements, since 1999.

Primary infrastructure improvements included in the Refinement Plan are the reconstruction of a standard diamond interchange and the realignment of Roberts Road to intersect with Coburg Industrial Way at a signalized intersection. This IAMP concludes that the original Preferred Concept included in the Refinement Plan is generally sufficient to address congestion problems for the planning horizon of 2031 — when the Refinement Plan interchange design concept is slightly modified with a four-lane bridge and when it is paired with policy and management tools.

Existing and Future Conditions

The existing Coburg interchange facility is not adequate to accommodate anticipated employment and population growth as outlined in Coburg's 2005 Comprehensive Plan and consistent with Regional Transportation Plan (RTP) employment and population forecasts.

1 As used in the state IAMP Guidelines (David Evans and Associates, Inc., with Angelo Eaton & Associates, July 2006), the term "function" refers to the intended role of the interchange in the transportation system. Although functional classification of the intersecting roads is one element that determines the overall function of an interchange, the term "function" also relates to its context (e.g. urban, rural, surrounding land uses it is intended to serve).
Traffic operations analysis performed for this IAMP shows that by study planning horizon year 2031, three of five study area intersections (Pearl Street/Industrial Way, Pearl Street/Roberts Road, I-5 Southbound Ramps/Pearl Street) are expected to not meet accepted mobility standards during the peak PM travel hour if no additional transportation infrastructure is constructed and no policy measures are enacted. Two of the five study area intersections (Pearl Street/Industrial Way and Pearl Street/Roberts Road) are anticipated to operate under conditions where volume would exceed capacity during the peak PM travel hour. This would generate high levels of delay and congestion, and vehicles would be expected to queue onto the I-5 mainline. Operations analysis shows that a new traffic signal will be required by 2031 at the I-5 Southbound Ramps/Pearl Street intersection to meet mobility standards. Existing and future conditions are discussed in greater detail in Sections 2 and 3 of this IAMP.

Alternatives Developed and Analyzed

Alternatives development and analysis for this IAMP were based on traffic forecasts built from population and employment forecasts consistent with the land use patterns in Coburg's existing Comprehensive Plan.

Alternatives developed are also consistent with the 2031 federal Regional Transportation Plan (RTP) for the Central Lane Metropolitan Planning Organization (CLMPO) and the 2004 Coburg Urbanization Study. The Coburg Urbanization Study is a document that was adopted by Coburg City Council, but never formally incorporated into the Comprehensive Plan. The RTP and the Urbanization Study both outline greater population and employment growth than could be accommodated under the City’s current Comprehensive Plan land use designations. Consistency of alternative development with these plans is important in order to (1) be consistent with regional planning, and (2) provide realistic solutions, given the likelihood of urban growth boundary (UGB) amendments.

The existing UGB will not accommodate the City's 2025 population and employment forecasts extrapolated to 2031, as identified in the RTP. However, pending resolution about how to develop a municipal wastewater system for Coburg, UGB amendments will likely be proposed by the City. The extent and location of these amendments are yet to be determined. Currently, the Coburg Comprehensive Plan provides for growth within the City’s existing UGB west of I-5. If amended, an expanded UGB (regardless of whether it is expanded west of I-5 or east of I-5) is expected to provide for the full growth anticipated in the RTP and commensurate with the City’s regionally adopted population and employment forecasts.

Physical interchange improvement alternatives focused on several conceptual designs:

- Alternative A: Diamond interchange with three-lane bridge
- Alternative B: Diamond interchange with four-lane bridge
- Alternative C: Loop ramp (northbound) interchange with four-lane bridge
Analysis of all of the physical alternatives considered the following common components:

- Bicycle and pedestrian facilities on the bridge
- Access management that supports interchange function and operations on Pearl Street/Van Duyne Road east and west of the interchange
- Realignment of Roberts Road at a signalized intersection with Coburg Industrial Way
- Closure of the existing Roberts Road at Pearl Street
- A new signal at the I-5 Southbound Ramps/Pearl Street intersection
- The eventual development of a local street system west of I-5 off Coburg Industrial Way to reduce demand for direct access to Pearl Street

All physical alternatives also were assumed to be paired with policy and development code language intended to protect the function and operations of the interchange (e.g., an alternate mobility standard to protect any excess capacity provided by an improvement, traffic impact analysis requirements, and encouragement of transit and transportation demand management (TDM)).

Alternative B—the diamond interchange with a four-lane bridge—was ultimately recommended by the Project Management Team (PMT) as the Recommended Alternative for this IAMP.

Analysis regarding population and employment growth scenarios different from those in the Comprehensive Plan (e.g., UGB expansion and population and employment growth patterns east of I-5) is included as a point of reference for the City of Coburg in Appendix K. If a UGB expansion and subsequent Comprehensive Plan amendment were to occur, this IAMP would need to be updated accordingly.

The alternatives analysis is discussed in greater detail in Section 4 of this IAMP.

Interchange Area Management Plan

A Recommended Alternative was agreed to by ODOT, the City, and Lane County. The IAMP concludes that the original Preferred Concept included in the Refinement Plan is generally sufficient to address congestion problems for the planning horizon of 2031—if the interchange design concept is slightly modified and when it is paired with policy and management tools. To maximize the operation of the interchange and accommodate planned future growth, the IAMP identifies a Recommended Alternative that includes: (1) operational and physical improvements, including access management, and (2) local policy and development code changes.

Recommended Alternative—Operational and Physical Improvements

The Recommended Alternative infrastructure improvements include physical improvements that accommodate the anticipated traffic growth related to the population and employment growth outlined in the Coburg Comprehensive Plan, including a diamond interchange with a four-lane bridge structure (see Figure 5-1). Although a three-lane bridge would accommodate traffic levels anticipated for 2031, a four-lane bridge is preferred.
because it will better accommodate the heavy north-to-west movement from the I-5 northbound off-ramp, in addition to extending the life of the bridge structure past 2031 for minimal additional cost. A four-lane bridge would also provide future flexibility for the addition of a loop ramp if determined necessary at some point after the 2031 planning horizon, for example, if greater levels of growth are anticipated in the area.

The Recommended Alternative includes the following physical improvements and associated actions to be implemented by ODOT, the City, and Lane County:

- Reconstruct the Coburg/I-5 interchange bridge structure to four lanes, with full standard pedestrian and bicycle facilities, and an appropriate height standard. The bridge is to include two westbound lanes with a turn pocket leading to the I-5 southbound on-ramp, one eastbound through lane, and one eastbound left-turn lane leading to the I-5 northbound on-ramp (ODOT).
- I-5 northbound ramps: Add a new I-5 northbound on-ramp receiving lane. Add new exclusive eastbound left-turn lane to I-5 northbound off-ramp (ODOT).
- I-5 Southbound ramps: Install a new exclusive eastbound right-turn lane on Pearl Street and southbound on-ramp receiving lane (ODOT).
- Signalize the I-5 southbound ramp terminals by 2031 or sooner if signal warrants are met and the signal is approved by the State Traffic Engineer (ODOT).
- Realign Roberts Road to meet the existing signalized Coburg Industrial Way intersection. The newly realigned Roberts Road would be constructed to road standards that accommodate freight vehicles (ODOT).
- Add a new connection between the aligned Roberts Road and original Roberts Road (ODOT).
- Purchase access control and do not allow any new private accesses west of I-5 along Pearl Street from the interchange ramp to a point 1,000 feet west of Coburg Industrial Way. In the interim, allow the Stuart Way driveway access at Pearl Street. Upon redevelopment of the Truck and Travel site (located east and west of Stuart Way), realign Stuart Way west of its current location to improve spacing with Coburg Industrial Way.
- Close access to the original Roberts Road at Pearl Street. This closure would only occur after or at the same time as the opening of the new Roberts Road/Coburg Industrial Way intersection to ensure continuous business access. A cul-de-sac will be constructed at the north termination of the original Roberts Road that is navigable for WB-67 trucks
- Coordinate traffic signal operations along Pearl Street and at interchange ramp terminal intersections (ODOT/Lane County).

2 ODOT would purchase impacted private property or private access as a result of any of the physical improvements within the interchange management area identified as ODOT’s responsibility in this IAMP. Access and circulation plans will be coordinated with affected property owners.

3 A truck with approximately 67 feet between the front and rear wheel axle.
• Install a new southbound left-turn lane and northbound left-turn pocket on Coburg Industrial Way (and realigned Roberts Road) at Pearl Street (ODOT).

• Purchase access control and do not allow any new private access east of I-5 along Van Duyn Road from the interchange ramp terminal to Hereford Road and do not allow any full accesses within 1,320 feet of the interchange ramp terminal (ODOT). In the interim, allow the properties within the UGB to continue to access Van Duyn directly from within the UGB. Upon redevelopment of one or more of these properties within the current UGB, implement changes to this access as needed to address safety issues or seek development and use of the access road right-of-way purchased by ODOT during the initial phase of the interchange project if it has not already been developed as part of a subsequent phase of the interchange project (ODOT).

• Consolidate all accesses on the southern side of Van Duyn Road to a point at least 1,320 feet from the north-bound ramp terminal intersection. Close accesses less than 1,320 feet from this location and construct an alternate access road. This road may be constructed by ODOT and maintained as a public road by Lane County or the City of Coburg, or it may be constructed privately in conjunction with redevelopment of properties within the Coburg UGB east of I-5, depending on the timing and availability of funds to construct future phases of the interchange project.

• The eventual construction of this access road will require an exception to Goal 3 of the Statewide Land Use Planning Goals, the reasons for which are summarized in Appendix L. If an exception is not granted by Lane County, ODOT will need to develop another alternative access for urban properties east of the interstate (ODOT, other responsible parties).

• Work with Lane Transit District to expand bus rapid transit to Coburg (City of Coburg).

• Market Lane Transit District’s Group Pass Program to employers, and promote carpool and vanpool services (City of Coburg).

• Implement local circulation improvements consistent with the Coburg TSP that provide alternative circulation and access for the lane north of Pearl Street and west of I-5 within the IAMP study area (City of Coburg).

• Design and construct the northern and southern connection alignments (extending Coburg Industrial Way north and Roberts Road south) as depicted in Map 16 of the Coburg TSP (City of Coburg).

• As Coburg develops, monitor the need for a park-and-ride (City of Coburg).

The Recommended Alternative physical and operational recommendations are discussed in greater detail in Section 5 of this IAMP.

Recommended Alternative—Access Management

To protect these infrastructure investments, access management recommendations were also developed as part of the Recommended Alternative, as shown in Figure 5-1. The Access Management Plan reduces by 11 the number of private and public accesses onto Pearl Street and Van Duyn Road by the year 2031. The Access Management Plan identifies access
management actions that improve safety and circulation in the interchange management area by moving access spacing along Pearl Street and Van Duyn Road to more closely align with access management standards as defined in the Oregon Highway Plan. For the Coburg/I-5 IAMP, the target spacing standard is 1,320 feet from the ramp terminal intersection for placement of the next road or driveway.

The Access Management Plan identifies driveways and local road connections that will need to be relocated, consolidated, or closed to achieve the safety and mobility objectives of the state's access management standards. Relocation, consolidation, or closure of driveways will be paired with enhancement of the local street circulation system.

These access recommendations are discussed in greater detail in Section 5, Recommended Alternative—Operational, Physical and Access Improvements.

Recommended Alternative—Policy and Development Code

To accompany the infrastructure and access recommendations, the Recommended Alternative also includes policy and implementation measures. Some of these implementing measures are intended to protect the interchange infrastructure investments through management of access within the interchange study area. Others require that future development mitigate traffic impacts associated with development proposals that are projected to create more traffic growth than planned for in the Coburg Comprehensive Plan. The IAMP also includes policies that are to be adopted by the Oregon Transportation Commission (OTC), City of Coburg, and Lane County.

The IAMP policies specifically address access management and also special interchange and local road mobility standards intended to protect the function of the interchange until such time as the City of Coburg resolves its wastewater service issues and amends its Urban Growth Boundary and Comprehensive Plan.

The IAMP also includes recommendations for development code changes in the City of Coburg related to Traffic Impact Analysis. The recommended alternative policy and development code recommendations are discussed in greater detail in Sections 6 and 7 of this IAMP.
SECTION 1

Background

1.1 Purpose and Intent

The Coburg/Interstate 5 Interchange Area Management Plan (IAMP) documents a plan for protecting the function of the Coburg/Interstate 5 (I-5) interchange. The purpose of this IAMP is to ensure that public investments in state infrastructure are protected through an integration of transportation and land use planning at the city, county and state levels.

Oregon Administrative Rule (OAR) 734-051-0155(6) states: “Interchange Area Management Plans are required for new interchanges and should be developed for significant modifications to existing interchanges…” This IAMP addresses the planned reconstruction of the Coburg/I-5 interchange, located at milepost (MP) 199.15 along I-5 adjacent to the City of Coburg (City; Coburg) in Lane County, Oregon. The reconstruction is intended to address existing and future safety and congestion issues.

The Coburg/I-5 interchange initially was proposed for reconstruction in the 1999 Coburg- Interstate 5 Interchange Refinement Plan (Refinement Plan). This IAMP re-examines the recommended conceptual design outlined in the Refinement Plan, given changes in land uses and population and employment forecasts in the interchange area, along with highway policy regarding interchange improvements, since 1999.

The IAMP recommends: (1) operational and physical improvements, including access management, and (2) local policy and development code changes.

This IAMP is a collaborative document and reflects coordination among the Oregon Department of Transportation (ODOT), the City of Coburg, and Lane County. Preparation of this document was conducted in accordance with state IAMP guidelines.

1.2 Problem Statement

Without improvements to the Coburg/I-5 interchange and transportation infrastructure in the interchange area, future PM peak hour traffic is expected to exceed available road capacity at many intersections in the interchange area, leading to highly congested conditions by 2031. Congestion is expected to affect the I-5 mainline and nearby intersections along Pearl Street/Van Duyne Road, the interchange's local crossroad and Coburg's primary east-west arterial road. Additional congestion is expected to contribute to travel delay and more potential safety conflicts.

As used in the state IAMP Guidelines (David Evans and Associates, Inc., with Angelo Eaton & Associates, July 2006), the term "function" refers to the intended role of the interchange in the transportation system. Although functional classification of the intersecting roads is one element that determines the overall function of an interchange, the term "function" also relates to its context (e.g., urban, rural, surrounding land uses it is intended to serve).

The Coburg/I-5 interchange serves as the primary access to the city of Coburg. Significant numbers of regional residents residing outside of Coburg currently travel to employment in the City using the Coburg/I-5 interchange. Most of the existing Coburg employment centers are located near the Coburg/I-5 interchange.

The existing interchange ramps and bridge are not anticipated to be able to accommodate anticipated future (year 2031) traffic growth. Intersections located close to the interchange also are expected to contribute to congestion, due to queuing and delay related to vehicles turning onto or from Pearl Street. During the PM peak hour, three of the five intersections in the study area (I-5 Southbound Ramps/Van Dyne Road, Pearl Street/Coburg Industrial Way, Pearl Street/Roberts Road) are anticipated to not meet operational standards by 2031 without infrastructure or policy improvements. The addition of a traffic signal at the I-5 northbound ramps intersection was a recent effort to improve traffic operations in the interchange study area.

Along with congestion, there are safety concerns in the interchange study area. The sight distance at the interchange ramp terminals and grades approaching the interchange bridge restrict motorist line of sight and create navigation problems for trucks. The bridge structure is very narrow, and allows virtually no room for pedestrians, bicyclists, or vehicular emergencies. Particularly problematic is the queuing on the northbound interchange off-ramp during the AM peak hour where traffic routinely backs up onto I-5, creating a speed differential hazard. This problem will worsen over time.

This IAMP describes the improvements and other strategies needed in the interchange area to safely accommodate anticipated planned traffic growth. State law requires that the Coburg IAMP is completed before any funding can be released for the interchange project.

1.3 Project History

In 1999, the Coburg/Interstate 5 Interchange Refinement Plan was adopted as part of the Coburg Transportation System Plan (TSP). The Refinement Plan and the Coburg TSP recommended improvements to the interchange structure and the surrounding road network in order to accommodate future traffic growth in the Coburg/I-5 interchange area and address safety concerns.

Recommended transportation improvements in the Preferred Concept of the Refinement Plan and in the Coburg TSP included the following:

- Three-lane interchange bridge structure with pedestrian and bicycle facilities and improvement to profile grade and ramps
- Realignment of Roberts Road to line up with Coburg Industrial Way at a signalized intersection
- Access closure of the original Roberts Road at Pearl Street
- New connection between realigned Roberts Road and original Roberts Road

7 The realignment of Roberts Road and Coburg Industrial Way was to occur at the same time as access to the campground parcel located south of Truck and Travel shifts from Stuart Street to the realigned Roberts Road.
• New extension of McKenzie Street east to Coburg Industrial Way (one way heading east)
• New extension of Shane Court south to Pearl Street
• Signalization at I-5 ramps when warranted
• Stuart Way realigned or vacated
• Enhanced local road network north of Pearl Street immediately west of the interchange

Since the Coburg TSP and Refinement Plan were completed, land use changes have occurred in the Coburg/I-5 interchange area that are anticipated to affect the levels of future population and employment growth, and highway policy has changed regarding interchange improvements. This has driven the need for this IAMP.

Improvements to date within the interchange management area include a new signal at the I-5 northbound ramps/Van Duyn Road intersection, modification of the northbound ramps, the vacation of Stuart Way and a portion of E. Delaney Street, and an upgrade of Pearl Street to include pedestrian and bicycle facilities.

1.4 Functional Classification and Interchange Function

Functional classifications generally define the intended purpose of a roadway as part of a hierarchy of roadways. The Coburg/I-5 interchange is an urban service interchange. The interchange connects I-5 with Pearl Street/Van Duyn Road, which serves Coburg to the west, and primarily unincorporated Lane County to the east.

According to Policy 1A of the Oregon Highway Plan (OHP), the primary function of interstate freeways is to provide connections to major cities, regions of the state, and other states. The secondary function is to provide connections for regional trips within a metropolitan area. Interstates are major freight routes, and are intended to provide mobility. I-5 is part of the National Highway System (NHS). It is classified by the OHP as an Interstate Highway—NHS. I-5 is a designated North American Free Trade Agreement (NAFTA) route. I-5 stretches from the Canadian to Mexican borders, and is the major north-south interstate and freight route for the west coast states (Washington, Oregon, and California).

The local crossroad at the interchange, Pearl Street/Van Duyn Road, is the primary east-west road connection in the area, and is the only direct connection to Coburg residences and commercial and industrial land uses from I-5. Pearl Street, located west of the interchange, is classified as a County Arterial by the City of Coburg and as a Minor Arterial by Lane County. According to the Lane County TSP, Minor Arterials in urban areas provide for intra-community traffic flow to principal arterials. Van Duyn Road, located east of the interchange, is classified as a Local Roadway. According to the Lane County TSP, Local Roads are intended solely for the purpose of providing access to adjacent properties.

Several existing highway-oriented commercial facilities are located within the interchange study area, and some of the undeveloped land in the interchange area is zoned Highway Commercial.
Functional classifications of roads in the vicinity of the Coburg/I-5 interchange are summarized in Table 1-1.

TABLE 1-1

<table>
<thead>
<tr>
<th>Road</th>
<th>Jurisdiction (Ownership)</th>
<th>Functional Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>ODOT</td>
<td>Interstate Highway (NHS)</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>Lane County</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Pearl Street</td>
<td>Lane County</td>
<td>County Arterial (Coburg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor Arterial (Lane County)</td>
</tr>
<tr>
<td>Coburg Industrial Way</td>
<td>Lane County and City of Coburg</td>
<td>Minor Collector (Lane County)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Collector (Coburg)</td>
</tr>
<tr>
<td>Roberts Road</td>
<td>City of Coburg</td>
<td>City Collector (Coburg)</td>
</tr>
<tr>
<td>N. and S. Coleman Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>E. Mill Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>E. Dixon Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>N. Miller Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Stuart Way</td>
<td>Private Road</td>
<td>Vacated</td>
</tr>
<tr>
<td>Dany Street</td>
<td>Lane County</td>
<td>Local Roadway (Lane County)</td>
</tr>
<tr>
<td>Sarah Lane</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>N. Emerald Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. McKenzie Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Lincoln Way</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Delaney Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Maple Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Thomas Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Rustic Court</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Shane Court</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
</tbody>
</table>

*Jurisdictional transfers of local roads may occur resulting in changes to the jurisdictional information in this table. The jurisdictional transfer process is independent of this document and does not require an amendment to this document in order to occur.

In addition to the functional classification of the area roadways, the interchange itself has a role or function that it serves with the broader transportation system. The broad intended function of the Coburg/I-5 interchange is to safely and efficiently move traffic between I-5 and the local crossroad, accommodate planned future traffic demands in the interchange area, and preserve mobility along I-5.

More specifically, the Coburg/I-5 interchange is an important facility for the community of Coburg, and also serves the following functions:

- **Commercial Access**: The interchange directly serves the downtown of Coburg, and Coburg businesses, including businesses off Coburg Industrial Way and Pearl Street. Several businesses off Pearl Street in the interchange study area are oriented to highway
travelers, and much of the land is zoned Highway Commercial to serve the traveling public. It is not the primary function of the Coburg/I-5 interchange to serve additional or expanded commercial land uses (beyond the existing zoned potential) or regional commercial development.

- **Industrial Access:** The interchange provides access to industrial manufacturing and industrial retail sales businesses, as well as a route for industrial and business freight. As the industrial-zoned areas of Coburg continue to develop, the Coburg/I-5 interchange will continue to be a key economic development factor.

- **Freight Movement:** Freight vehicles use the Coburg/I-5 interchange to access freight generators located off Coburg Industrial Way (e.g., Truck and Travel, Monaco Coach and Marathon) as well as northwest of Coburg (e.g., timber industry facilities).

- **Commuting:** A significant number of regional residents utilize the interchange to access employment in Coburg. This number will continue to rise as employment increases in the interchange management area.

- **Local Access to the Region:** Many Coburg residents use the interchange to travel to other communities, such as Eugene, Springfield, or Salem, for employment, shopping, or other personal trips.

Interchange modifications and associated local improvements must be planned and implemented to accommodate the multi-functional nature of the interchange.

1.5 Goal and Objectives

The goal of this IAMP is to reflect collaborative work with ODOT, Lane County, and the City of Coburg and outline recommendations for transportation improvements and policy and implementation measures that will maximize the operation of the interchange and accommodate future growth (as planned for in the Coburg Comprehensive Plan) in the interchange management area.

Policy 3C of the 1999 OHP states, "it is the policy of the State of Oregon to plan for and manage grade-separated interchange areas to ensure safe and efficient operation between connecting roadways." Consistent with this policy and consideration of project-specific local transportation issues, the objectives of the Coburg/I-5 IAMP are to:

- Protect long-term safety and operations of the interstate and local road network
- Build on the work in the Refinement Plan as adopted in the Coburg TSP
- Accommodate 2031 planned growth for the Coburg/I-5 interchange management area (described in Section 1.6) as outlined in the Coburg Comprehensive Plan
- Preserve public investments in the Coburg/I-5 interchange and adjacent transportation network
- Plan for future management of the interchange and adjacent land uses within the interchange management area (described in Section 1.6)
- Work with Coburg and Lane County to develop a plan for road network, right-of-way, and access within the interchange management area (described in Section 1.6)
- Provide recommendations for enhancement of the pedestrian and bicycle system
- Provide recommendations that allow for expanded use of transit and other transportation demand management (TDM) measures
- Provide for Oregon Transportation Commission (OTC) adoption of a plan so existing funds can be accessed for interchange reconstruction
- Ensure integration of land use and transportation planning
- Provide certainty for property and business owners and local governments

1.6 IAMP Interchange Management Area

The Coburg/I-5 interchange management area is centered on the Coburg/I-5 interchange, an urban interchange located in the eastern portion of the city of Coburg, Oregon, just north of Eugene along I-5. Figure 1-1 depicts the Coburg/I-5 interchange management area.

The interchange management area (Figure 1-1) differs from the IAMP study area, which was used for the traffic operational forecasting and analysis. The study area included all land within the City of Coburg, plus unincorporated adjacent areas, while the management area includes land closer to the interchange. The IAMP interchange management area encompasses land within 1/2 mile of the interchange, and is consistent with provisions in the Transportation Planning Rule (TPR).

Management area boundaries are based on recent TPR changes related to the establishment of interchange management areas (defined in OAR 660-012-0060) as well as property boundaries, traffic patterns, and existing natural resources (creeks, etc.). The management area helps focus the development and evaluation of IAMP alternatives, as well as to delineate an area where implementation will apply.

The Coburg/I-5 interchange management area is approximately 5 miles north of Eugene and 55 miles south of Salem. The management area includes a significant portion of the city of Coburg, and a portion of unincorporated Lane County. All road facilities in the Coburg/I-5 interchange management area fall under the jurisdiction of the City of Coburg, Lane County, or ODOT. I-5 is the only major highway facility located within the interchange management area.

Land within the Coburg/I-5 interchange management area is primarily flat, with some ponds located northwest and southeast of the interchange. Land to the west of I-5 is primarily located within Coburg city limits, and includes residential, commercial and industrial land uses, including facilities for motorcoach manufacturing and distribution. Land to the east of I-5 is relatively undeveloped. The area includes an RV sales lot and RV park, and farm land. Primary industries in the Coburg/I-5 interchange management area include services and manufacturing. Major employers of note are Monaco Coach and Marathon, located northwest of the Coburg/I-5 interchange.
1.7 Related Work Products

- As of April 2006, $12,500,000 in federal earmark and local match funding was identified for interchange improvements at the Coburg/I-5 interchange in the Regional Transportation Plan (Project #1003).

- In October 2005, $3,000,000 was programmed into the Metropolitan Transportation Improvement Program for Coburg/I-5 interchange improvements.

- ODOT’s 1999 Coburg/Interstate 5 Interchange Refinement Plan was central to the preparation of this IAMP. The Refinement Plan outlines a Preferred Concept related to interchange configuration and access. This IAMP sought to re-examine the Preferred Concept, given changes since 1999 in planned employment and population growth in the Coburg area and in statewide highway policies related to interchanges. The Refinement Plan provides rationale for Coburg/I-5 interchange improvements. The Refinement Plan was adopted as part of the Coburg TSP. The transportation improvements included in the Refinement Plan were analyzed during the alternatives decision-making process for the IAMP:
 - Three-lane interchange bridge structure with pedestrian and bicycle facilities and improvement to profile grade and ramps
 - Signalization at I-5 ramps when warranted (already completed at northbound ramps)
 - Stuart Way realigned or vacated (already completed – vacated)
 - Realignment of Roberts Road to line up with Coburg Industrial Way at a signalized intersection
 - Access closure of the original Roberts Road at Pearl Street
 - New connection between realigned Roberts Road and original Roberts Road
 - Pearl Street improvements to five-lane urban standard road with sidewalks and bicycle lanes (already completed)

- Map 14 of the Coburg TSP depicts several transportation system improvements located in the Coburg/I-5 interchange management area, including projects listed in the Refinement Plan. The projects were factored into the operational analysis and alternatives decision-making process for this IAMP:
 - Three-lane interchange bridge structure with pedestrian and bicycle facilities and improvement to profile grade and ramps
 - Signalization at Interstate 5 ramps when warranted (already completed at northbound ramps)
 - Stuart Way realigned or vacated (already completed – vacated)
 - Realignment of Roberts Road to line up with Coburg Industrial Way at a signalized intersection
- Access closure of the original Roberts Road at Pearl Street
- New connection between realigned Roberts Road and original Roberts Road
- Enhanced local road network north of Pearl Street immediately west of the interchange (connecting to Pearl Street from Coburg Industrial Way)

- Map 16 of the Coburg TSP also includes alignments yet to be determined—a northern connector, located in northern Coburg near Coburg Industrial Way and a Southern Connector, located at the south end of Roberts Road. Neither of these alignments was specifically delineated on the map.

- An update to the Coburg TSP is listed in the approved 2006-2009 State Transportation Improvement Program (STIP). It is listed as Project #14297 for $94,000 in local STIP-U funds.

1.8 Public Involvement

The purpose of the public involvement program for the Coburg/I-5 IAMP was to build a planning process that incorporated the needs and issues of residences and businesses in the Coburg/I-5 interchange area, including those who depend on and use the interstate. A key goal of the public involvement program was to elicit public discussion regarding access changes and potential phasing of treatments. The public involvement process for the Coburg/I-5 IAMP project is summarized in Appendix A of this document.
Note: The IAMP study area boundary is located within 0.2 mile of the interchange, considering the location of nearby roads and property lines, per the interchange influence area definition in Oregon Administrative Rule (OAR) 660-12-0050(1)(b)(c) - Transportation Planning Rule. The purpose of the IAMP study area boundary is to capture the land use and transportation influences near the interchange, and to provide an area of where transportation improvements, policies or measures could be recommended for implementation as part of IAMP development.

Figure 1-1 Coburg IAMP Management Area Coburg/I-5 Interchange Area Management Plan

Sources: 1. CH2M Hill 2. LCOG
SECTION 2
Existing Conditions Inventory and Analysis

2.1 Regulatory Framework

The Coburg/I-5 interchange management area encompasses land in the city of Coburg and Lane County. IAMP improvements are subject to applicable land use regulations for each jurisdiction, as well as state and federal regulations.

State, county, and local regulations pertaining to IAMP actions are addressed in the Plan and Policy Review, located in Appendix B. Findings of compliance with state and local plans, policies, and regulations are found in Appendix C.

2.2 Existing Land Use and Zoning

Existing land uses and zoning help to explain traffic patterns affecting the Coburg/I-5 interchange management area, as well as to identify potential transportation needs. Existing land uses/zoning can also help illuminate development potential that could affect interchange or mainline operations in the future. Significant existing patterns in the area include commute behavior relating to employees of the Monarch and Monaco factories and other employers to the west of I-5, as well as I-5 freight and other through-traffic using the travel-related services near the interchange. The relatively high amount of undeveloped land surrounding the interchange is also of significance to planning in the area. Vacant land located to the west of I-5 has the potential for development. Vacant land located to the northeast of I-5 would need to be included in Coburg's UGB and annexed into the City of Coburg before urban-level development could occur.

Figure 2-1 shows City of Coburg and Lane County Comprehensive Plan designations. City of Coburg land use designations in the interchange management area include Traditional Residential, Highway Commercial, Light Industrial, and Public Facility. Lane County land use designations include Agricultural, Residential, and Non-Resource.

Figure 2-2 shows City of Coburg and Lane County zoning districts. City of Coburg zoning districts within the interchange management area include Highway Commercial, Light Industrial, Traditional Residential, and Public Water Service. Lane County zoning designations within the interchange management area include Exclusive Farm Use, 40-acre minimum (E-40), Rural Residential, 2-acre minimum and 10-acre minimum (RR-2, RR-10), and Neighborhood Commercial (C2).

The interchange management area has been divided into northwest, southwest, northeast, and southeast quadrants for ease of description.

2.2.1 Northwest Quadrant

All of the land northwest of the interchange within the interchange management area is located within the Coburg city limits. The western-most portion of the northwest quadrant
is designated on the land use map as primarily Traditional Residential, and includes traditional grid street patterns and some of the older housing stock in the city. Heading eastward toward I-5, land uses rapidly become industrial. Accessed off Coburg Industrial Way, the Light Industrial designated land is used by Monaco Coach Corporation and other employers for the development of high-end and luxury motor coaches.

Immediately northwest of the interchange, the land is currently vacant. This vacant land is designated Traditional Residential and Highway Commercial (the land adjacent to I-5) by the City of Coburg, and has significant development potential. Some of the land along F. Pearl Street is developed, including a service station and a restaurant accessed from Daray Street.

The northwest quadrant of the interchange management area currently has the most influence on interchange and I-5/Pearl Street/Van Dyne Road traffic operations—Monaco Coach has a large number of employees working on shift schedules, which means that they often arrive at and leave from work at the same times. Many of the workers travel south on I-5 during the PM peak hour.

2.2.2 Southwest Quadrant

Much of the land within the management area southwest of the interchange is located within Coburg city limits and the Coburg UGB. Southwest of the interchange, the western-most area is residential land. Moving east, the land uses quickly become more intensive and are designated Highway Commercial and Light Industrial. This land is characterized by commercial and industrial developments, including an RV park (KampingWorld), RV factory outlets and a manufactured home outlet. Commercial uses along E. Pearl Street include service stations and uses related to the trucking industry and freeway travel (Truck-N-Travel, Shell), as well as some eateries.

Several driveways access these commercial locations south of F. Pearl Street, and the area is also characterized by large parking areas for trucks and larger vehicles. There is some land designated Exclusive Farm Use located outside of city limits in this quadrant of land.

2.2.3 Northeast Quadrant

The land northeast of the interchange within the interchange management area is located outside the Coburg UGB, and within unincorporated Lane County. The land is largely undeveloped, and is primarily designated Exclusive Farm Use. The land immediately adjacent to I-5 on the east currently has a temporary permit for temporary RV parking, and is used to stage RVs for pickup.
2.2.4 Southeast Quadrant

The land immediately southeast of the interchange within the interchange management area was recently annexed into the City of Coburg, and is designated by the City as Highway Commercial. The remainder of the land in the southeast interchange quadrant is located in unincorporated Lane County, and is designated Exclusive Farm Use and Rural Residential. Land uses in the area include a motel and an RV park (immediately southeast of the interchange) and a drainage facility, as well as some vacant land.

2.2.5 Zoning and Permitted Land Uses

Table 2-1 includes permitted land uses according to zoning district within the Coburg/I-5 IAMP management area. Appendix D includes a more detailed list of permitted uses.

<table>
<thead>
<tr>
<th>Zoning District</th>
<th>Permitted/Conditional Uses</th>
<th>Minimum Lot Size/Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Coburg Zoning Code—Ordinance No. A-199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional Residential (TR)—Article VII, A</td>
<td>Single family, duplexes</td>
<td>7,500 to 10,000 square feet</td>
</tr>
<tr>
<td></td>
<td>Churches, schools, parks</td>
<td>Maximum lot coverage: 30-35%</td>
</tr>
<tr>
<td>Highway Commercial (C-2)—Article VII, D</td>
<td>Retail, auto-related uses</td>
<td>10,000 square feet if no public sewer</td>
</tr>
<tr>
<td></td>
<td>Institutional, educational, office uses</td>
<td>No minimum if public sewer</td>
</tr>
<tr>
<td></td>
<td>Commercial recreation, restaurants</td>
<td>Maximum lot coverage: 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all permitted uses and structures the total ground floor space must not exceed 50,000 square feet of gross floor area per building</td>
</tr>
<tr>
<td>Light Industrial (LI)—Article VII, E</td>
<td>Commercial service, office, retail</td>
<td>10,000 square feet if no public sewer</td>
</tr>
<tr>
<td></td>
<td>Manufacturing, assembly, processing</td>
<td>No minimum if public sewer</td>
</tr>
<tr>
<td></td>
<td>Warehousing</td>
<td>Maximum lot coverage: 60%</td>
</tr>
<tr>
<td>Lane County Code, Chapter 10—Zoning (inside UGB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Commercial (C2) Section 10.160</td>
<td>Bakeries, banks, small retail stores, laundries, restaurants</td>
<td>Full coverage allowed (with setbacks)</td>
</tr>
<tr>
<td>Lane County Code, Chapter 18—Zoning (outside UGB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusive Farm Use (E-40) Section 16.212</td>
<td>Farm uses, forest related uses</td>
<td>40-acre minimum lot size</td>
</tr>
<tr>
<td></td>
<td>Limited single family residential</td>
<td></td>
</tr>
<tr>
<td>Rural Residential (RP) Section 16.260</td>
<td>Single family, general farming, animal husbandry</td>
<td>Minimum lot size 1 to 10 acres</td>
</tr>
<tr>
<td></td>
<td>Churches, schools, parks, golf courses</td>
<td></td>
</tr>
</tbody>
</table>

1 These are general categories of uses and are not meant to be a complete list.
2 There is only one parcel zoned C2 in the interchange management area (parcel is approximately 1.45 acres).
3 All lands outside the UGB are subject to the provisions in Chapter 18 of the Lane Code and state land use provisions in OAR 659, in particular 659-025 and 659-323. Only rural land uses are permitted outside the UGB.
2.2.6 Activity Centers

Activity centers within the Coburg/I-5 interchange management area include the interchange area itself, which generates traffic—including truck traffic—with its services for truckers and travelers. The Monaco Coach Corporation development is another critical activity/employment center.

Major activity centers near the Coburg/I-5 interchange include historic downtown Coburg, located approximately 1 mile west of I-5, which features antique stores and other retail shops and restaurants. Other activity centers include the city park (east of the downtown central business district) and the school located on North Coburg Road.

2.3 Growth Patterns and Demographics

Growth patterns and demographics in the Coburg area are important to understanding the future demands and needs for the transportation system in the area, including safety and operations related to the Coburg/I-5 interchange, I-5 mainline, and connecting local road network.

2.3.1 2000 Census

According to the U.S. 2000 Census, population in Coburg was 969, there were 367 total households, and there were 481 residents aged 16 years and over employed in the civilian labor force.

Average household size was 2.64 and average family size was 3.07. 80.4 percent of housing units were owner-occupied and 19.6 percent of housing units were renter-occupied. 86.7 percent of the population 25 years and older were high school graduates or higher, and 30.5 percent had bachelor's degree or higher.

The greatest percentages of employed civilian population 16 years and over were employed in management, professional and related occupations (29.5 percent) and sales and office occupations (28.7 percent). The percentage of families in poverty status in 1999 was 7.7 percent. Median household income was $47,500, and per capita income was $21,696.

Mean travel time to work was 19.9 minutes. With regard to commuting for workers 16 years and over, 79.7 percent drove to work alone, 10.1 percent carpooled, less than 1 percent are recorded using public transportation, 3.9 percent walked, 0.6 percent used other means, and 5.8 percent worked at home. 5.8 percent of occupied housing units had no vehicles available.

2.3.2 Coburg Population/Employment Forecasts

The Recommended Alternative for this IAMP is consistent with land use assumptions in the Coburg Comprehensive Plan, because all IAMPs must be consistent with local Comprehensive Plans. The Recommended Alternative is also consistent with the federally required Regional Transportation Plan (RTP) for Central Lane Metropolitan Planning Organization (CLMPO) and the 2004 Coburg Urbanization Study. The Coburg Urbanization Study is a document that was adopted by Coburg City Council, but never formally adopted into the Comprehensive Plan.
The Recommended Alternative for this IAMP recognizes that the City is likely to expand its UGB. As of this writing, because of wastewater system constraints (i.e., the lack of a wastewater system) the City has not been able to expand its UGB and land base to accommodate population and employment forecasts consistent with the 2004 Coburg Urbanization Study and the RTP.

The Recommended Alternative includes policy measures intended to protect the function and capacity of the interchange as the City moves toward expanding its UGB to provide for a greater level of growth, such as that identified in the RTP and the Coburg Urbanization Study. Table 2-2 shows differences in population and employment forecasts for the Comprehensive Plan, Coburg Urbanization Study, and RTP.

<table>
<thead>
<tr>
<th>TABLE 2-2</th>
<th>Comprehensive Plan, Coburg Urbanization Study and RTP Land Use Assumptions (Year 2025)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>New Dwelling Units</td>
</tr>
<tr>
<td>Coburg Comprehensive Plan</td>
<td>1,819</td>
</tr>
<tr>
<td>Regional Transportation Plan</td>
<td>2,950</td>
</tr>
<tr>
<td>Coburg Urbanization Study</td>
<td>3,327</td>
</tr>
</tbody>
</table>

This IAMP is based on the lower Comprehensive Plan population and employment numbers, because this is required by the state. However, the IAMP process also acknowledge the existence of the regionally adopted RTP forecasts and the locally adopted Urbanization Study forecasts to ensure the IAMP does not become obsolete the moment the City of Coburg resolves its wastewater issues, expands its UGB, and amends its Comprehensive Plan.

Based on land use designations included the Coburg Comprehensive Plan, 896 total (574 existing and 322 new) dwelling units and 4,672 employees are forecast for 2025 for the purpose of this IAMP. Because the analysis year for this IAMP is 2031, the 2025 population and employment forecasts were used to generate 2025 traffic forecasts, which were in turn grown to 2031 traffic forecasts using annual average growth rates.

As demonstrated in Table 2-2, Coburg is expected to undergo a large growth increase over the next 20 years. The method used to develop the forecasts upon which the IAMP analysis is based is described in greater detail in Section 3.2.

2.4 Transportation Facilities and Traffic Operations

This section summarizes the existing transportation conditions within the interchange management area, provides assumptions and methods used for the traffic operational analyses, and catalogues existing transportation system facilities and services. To the extent possible, physical as well as operational characteristics of the roads, intersections and transportation services are described.

2.4.1 Road Facilities

A summary of road facilities and characteristics is important to understanding the transportation system in relation to the Coburg/1-5 interchange management area in order
to set a baseline of information for IAMP alternatives and recommendation development. This section describes the public roads within the interchange management area.

Road Descriptions

Interstate 5 is the primary road serving the Coburg/I-5 interchange area. East Pearl Street/Van Duyn Road is the primary east-west arterial connection serving the interchange area. Other public roads within the interchange management area include:

- West of I-5
 - Daray Street
 - Coburg Industrial Way
 - Roberts Road
 - Sarah Lane
 - N. Miller Street
 - N. and S. Coleman Street
 - N. Emerald Street
 - E. Mill Street
 - E. McKenzie Street
 - E. Lincoln Way
 - E. Delaney Street
 - E. Dixon Street
 - E. Maple Street
 - E. Thomas Street
 - Rustic Court
 - Shane Court

- East of I-5
 - Hereford Road (first public road located east of I-5)

There are also private driveways located both east and west of the interchange within the management area. The City of Coburg recently vacated Stuart Way and the easternmost portion of Delaney Street, located west of the interchange, and that right-of-way is now considered part of the Truck-N-Travel property (with access and utility easement conditions).

The following descriptions briefly characterize all the roads within the interchange management area.

Interstate 5. I-5 is a limited access Interstate Highway, classified as part of the National Highway System (NHS). I-5 is also a designated freight route and is a federal North American Free Trade Agreement (NAFTA) route. I-5 is the primary north-south interstate road facility for the Pacific Coast states (Washington, Oregon, and California).

I-5 within the study area runs along the eastern edge of the city of Coburg, and also borders unincorporated Lane County. Within the interchange management area, I-5 is a four-lane facility (two lanes in each direction, separated by a grassy median). According to ODOT's
2007 Transportation Volume Tables, average daily traffic just south of the Coburg/I-5 interchange (milepost 198.85) is approximately 45,100 vehicles.

The Coburg/I-5 interchange is a classic diamond interchange, located at milepost 199.15. According to ODOT's 2007 Interchange Ramp Volume Diagrams, at the Coburg/I-5 (Van Duyn Road) interchange, the northbound average daily volume on I-5 immediately south of the interchange is 22,250; while immediately north of the interchange northbound average daily volume is 18,930. According to the data, southbound average daily volume south of the interchange and 22,890 immediately north of the interchange. Average 2007 daily volume on the northbound off-ramp is 5,090 while the northbound on-ramp is 1,770. Average 2007 daily volume on the southbound off-ramp is 1,880, while on the southbound on-ramp, it is 5,480. The differences between the off-ramps and on-ramps for each direction likely point to the influence of major employment areas located northwest of the interchange on interchange volumes and operations.

E. Pearl Street. E. Pearl Street is a two-lane County Minor Arterial that travels east-west and turns into Van Duyn Road at the east of the Coburg/I-5 interchange. The intersection of E. Pearl and Coburg Industrial Way is signalized. E. Pearl Street provides direct access to commercial and industrial businesses, and leads west to the historic central business district in Coburg. Within the interchange management area, E. Pearl Street is classified locally as a truck route.

Van Duyn Road. Van Duyn Road is a two-lane local County road that travels east-west and turns into E. Pearl Street at the Coburg/I-5 interchange. There is a traffic signal at the intersection of Van Duyn Road and the northbound I-5 ramp terminal. Van Duyn Road accesses property to the east of the interchange. Within the interchange management area, Van Duyn Road is classified by Coburg as a truck route and by Lane County as a local road.

Daray Street. Daray Street is a county two-lane local road that accesses some businesses immediately north of E. Pearl Street and then dead-ends. Daray Street does not meet ODOT spacing standards for interchanges; it is less than 1,320 feet from the I-5 ramp intersection with E. Pearl Street.

Coburg Industrial Way. Coburg Industrial Way is a two-lane County Minor Collector (between E. Pearl and city limits) and City collector (north of the County road section) that travels north-south and provides access to the Monaco Coach and industrial property northwest of the interchange. Coburg Industrial Way does not meet ODOT spacing...
standards for interchanges; it is less than 1,320 feet from the I-5 southbound ramp intersection with E. Pearl Street.

Roberts Road. Roberts Road is a two-lane City collector that travels north-south and provides access to Shell, Truck-N-Travel and other commercial and light industrial uses southwest of the interchange. Roberts Road does not meet ODOT spacing standards for interchanges; it is less than 1,320 feet from the I-5 ramp intersection with E. Pearl Street.

E. Mill Street. E. Mill Street is a two-lane City road that travels east-west and is classified as a City collector between Diamond Street and Miller Street. E. Mill Street provides access to residential properties west of the interchange as well as to the city park. E. Mill Street is narrow in areas.

E. Dixon Street. E. Dixon Street is a two-lane City road that travels east-west and is classified as a collector between Willamette Street and Coleman Street and as a local road everywhere else. E. Dixon Street primarily provides access to residential properties west of the interchange.

N. and S. Coleman Street. Coleman Street is a two-lane City road that travels north-south and is classified as a City collector between Mill Street and Pearl Street, but a local road everywhere else. Coleman Street provides access to residential properties northwest of the interchange, and provides a major north-south link through town. It is characterized by a series of four-way stops at intersections.

Sarah Lane. Sarah Lane is a two-lane City local road that travels east-west and provides access to residential properties northwest of the interchange.

N. Miller Street. N. Miller Street is a two-lane City local road that travels north-south and provides access to residential properties west of the interchange.

N. Emerald Street. N. Emerald Street is a two-lane City local road that travels north-south and provides access to residential properties northwest of the interchange.

E. McKenzie Street. E. McKenzie Street is a two-lane City local road that travels east-west and provides access to residential properties west of the interchange and to the city park.

E. Lincoln Way. E. Lincoln Way is a two-lane City local road that travels east-west and provides access to residential properties west of the interchange.

E. Delaney Street. E. Delaney Street is a two- and one-lane local City road that travels east-west and provides access to residential and commercial land west of the interchange. Immediately west of Stuart Way, E. Delaney Street has been vacated and is poorly maintained.
E. Maple Street. E. Maple Street is a two-lane City local road that travels east-west and provides access to residential properties west of the interchange.

E. Thomas Street. E. Thomas Street is a two-lane City local road that travels east-west and provides access to residential properties northwest of the interchange.

Rustic Court. Rustic Court is a two-lane City local road that travels north-south and provides access to residential properties northwest of the interchange.

Shane Court. Shane Court is a two-lane local City road that travels north-south and provides access to residential properties northwest of the interchange.

Stuart Way. Stuart Way is a two-lane private road that was recently vacated by the City of Coburg. It provides access to the Truck-N-Travel site as well as the Eugene Kamping RV Park and Featherland. Stuart Way does not meet ODOT spacing standards for interchanges; it is less than 1,320 feet from the I-5 ramp intersection with E. Pearl Street.

Jurisdiction and Functional Classification
Most of the roads within the Coburg/1-5 interchange management area fall under the jurisdiction of Coburg, though other roads are owned by Lane County or ODOT, as shown in Table 2-3. Most of the roads within the interchange management area are classified by the City of Coburg as local roads, though a few are classified as arterials (Willamette Street and E. Pearl Street) or collectors. Descriptions of relevant City of Coburg functional classifications for the management area include the following:

- Interstate Highways—Interstate Highways are the highest classification of road, and serve larger volumes of interstate and regional traffic at higher speeds with limited access. Interstate Highways favor mobility over access.
- County Arterials—County Arterials also generally favor mobility over access, and provide important regional and local connections.
- County/City Collectors—County/City Collectors are intermediate roads that typically serve as the direct link between local streets and the arterial street system. Mobility and access functions are important for Collectors.
- Local Roadways—The remainder of roads are classified as local roads. Access is the most important function for local roads.

Figure 2-3 depicts both City and County functional classification, based on roadway ownership. Information is relevant for segments within the management area only.

Number of Lanes, Road Width, Marked Shoulders, Speed Limits, Parking
Physical road characteristics help to define potential road issues or problem areas. Table 2-4 lists number of lanes, road width, marked shoulder width (if any), speed limits and presence of on-street parking for roads within the interchange management area. Many of the collectors within the interchange management area are relatively narrow for the expected function of the road.
TABLE 2-3

Coburg/I-5 IAMP Ownership and City of Coburg/Lane County Functional Classification

<table>
<thead>
<tr>
<th>Road</th>
<th>Jurisdiction [Ownership]</th>
<th>Functional Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>ODOT</td>
<td>Interstate Highway (NHS)</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>Lane County</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Pearl Street</td>
<td>Lane County</td>
<td>County Arterial (Coburg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor Arterial (Lane County)</td>
</tr>
<tr>
<td>Coburg Industrial Way</td>
<td>Lane County and City of Coburg</td>
<td>Minor Collector (Lane County)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>City Collector (Coburg)</td>
</tr>
<tr>
<td>Roberts Road</td>
<td>City of Coburg</td>
<td>City Collector</td>
</tr>
<tr>
<td>N. and S. Coleman Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>E. Mill Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>E. Dixon Street</td>
<td>City of Coburg</td>
<td>City Collector and Local Roadway</td>
</tr>
<tr>
<td>N. Miller Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Stuart Way</td>
<td>Private Road</td>
<td>Vacated</td>
</tr>
<tr>
<td>Daray Street</td>
<td>City of Coburg and Lane County</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Sarah Lane</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>N. Emerald Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. McKenzie Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Lincoln Way</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Delaney Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Maple Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>E. Thomas Street</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Rustic Court</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
<tr>
<td>Shane Court</td>
<td>City of Coburg</td>
<td>Local Roadway</td>
</tr>
</tbody>
</table>
Table 2-4

<table>
<thead>
<tr>
<th>Road</th>
<th>Lanes</th>
<th>Road Width (ft)</th>
<th>Marked Shoulders</th>
<th>Speed (MPH)</th>
<th>Signed Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>4</td>
<td>80</td>
<td>4+</td>
<td>65</td>
<td>N/A</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>2</td>
<td>24</td>
<td>4+</td>
<td>35</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Pearl Street</td>
<td>2</td>
<td>26</td>
<td>None</td>
<td>35</td>
<td>N/A</td>
</tr>
<tr>
<td>Coburg Industrial Way</td>
<td>2</td>
<td>42</td>
<td>None</td>
<td>35</td>
<td>No Parking</td>
</tr>
<tr>
<td>Roberts Road</td>
<td>2</td>
<td>22</td>
<td>None</td>
<td>40</td>
<td>1 hour on the east; no parking on west</td>
</tr>
<tr>
<td>N. and S. Coleman Street</td>
<td>1</td>
<td>17</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Mill Street</td>
<td>2</td>
<td>16</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Dixon Street</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>N. Miller Street</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>Daray Street</td>
<td>2</td>
<td>36</td>
<td>None</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>Sarah Lane</td>
<td>2</td>
<td>24</td>
<td>None</td>
<td>25</td>
<td>No Parking</td>
</tr>
<tr>
<td>N. Emerald Street</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. McKenzie Street</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Lincoln Way</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Delaney Street</td>
<td>2</td>
<td>20</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Maple Street</td>
<td>1</td>
<td>16</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>E. Thomas Street</td>
<td>1</td>
<td>17</td>
<td>Curbless</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>Rustic Court</td>
<td>2</td>
<td>24</td>
<td>None</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td>Shane Court</td>
<td>2</td>
<td>24</td>
<td>None</td>
<td>25</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: In cases where street segments vary in terms of physical characteristics, the primary characteristic is listed in this summary table (e.g., if a road segment is primarily two lanes and is one lane for a short segment, it will be listed in the table as two lanes).

Road Condition

Road pavement condition within the interchange management area affects the coordination of projects and identifies potential improvement needs. For example, often time improvements can be coordinated with pavement overlay programs to maintain efficient and streamlined funding by completing both at once. Table 2-5 lists pavement condition ratings within the interchange management area. Figure 2-4 shows pavement condition ratings for the interchange management area.

Road condition ratings are based on ODOT standards. Conditions are not identified below the road segment level. No pavement condition ratings are available for interstate ramps. The following codes are used for roads in the interchange management area:
- Poor—Paved road. Areas of instability, marked evidence of structural deficiency, large crack patterns (alligatoring), heavy and numerous patches, and/or deformation very noticeable. Riding quality ranges from acceptable to poor.

- Fair—Paved road. Generally stable, with minor areas of structural weakness evident. Cracking easy to detect; patched but not excessively. Deformation is more pronounced and easily noticed. Good riding quality.

- Good—Paved road. Stable, may have minor cracking, generally hairline and hard to detect. Minor patching and some minor deformation may be evident. Very good riding surface.

TABLE 2-5

<table>
<thead>
<tr>
<th>Road</th>
<th>Pavement Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>Good (Southbound); Very Good (Northbound)</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>Fair</td>
</tr>
<tr>
<td>E. Pearl Street</td>
<td>Good</td>
</tr>
<tr>
<td>Coburg Industrial Way</td>
<td>Good</td>
</tr>
<tr>
<td>Roberts Road</td>
<td>Good</td>
</tr>
<tr>
<td>N. and S. Coleman Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. Mill Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. Dixon Street</td>
<td>Good</td>
</tr>
<tr>
<td>N. Miller Street</td>
<td>Good</td>
</tr>
<tr>
<td>Daray Street</td>
<td>Fair</td>
</tr>
<tr>
<td>Sarah Lane</td>
<td>Good</td>
</tr>
<tr>
<td>N. Emerald Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. McKenzie Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. Lincoln Way</td>
<td>Fair</td>
</tr>
<tr>
<td>E. Delaney Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. Maple Street</td>
<td>Good</td>
</tr>
<tr>
<td>E. Thomas Street</td>
<td>Good</td>
</tr>
<tr>
<td>Rustic Court</td>
<td>Good</td>
</tr>
<tr>
<td>Shane Court</td>
<td>Good</td>
</tr>
</tbody>
</table>

Note: In cases where street segments vary in terms of pavement condition, the primary condition is listed in this summary table (e.g., if a road segment is primarily good, and is fair for a short segment, it will be listed in the table as good).

Signed Truck Routes

Truck route locations are important for understanding the flow of freight movement through an area. I-5 is a significant freight route, and carries interstate and international
Traffic Control

Traffic control is critical for traffic flow and safety in many locations. Within the interchange management area, there are two signalized intersections:

- Northbound I-5 Ramps/Van Duyn Road; and
- E. Pearl Street/Coburg Industrial Way.

There are several stop-controlled intersections, including the following:

- E. Delaney Street/N. Miller Street (two-way stop control)
- Coleman Street/E. Maple Street (two-way stop control)
- Coleman Street/E. Dixon Street (four-way stop control)
- Coleman Street/E. Delaney Street (four-way stop control)
- Coleman Street/E. Lincoln Way (four-way stop control)
- Coleman Street/E. McKenzie Street (four-way stop control)
- Coleman Street/E. Mill Street (four-way stop control)
- N. Miller Street/E. Mill Street (three-way stop control)
- All approaches to arterials are stop controlled

2.4.2 Interchange Condition and Geometric Deficiencies

The Coburg/1-5 interchange bridge was originally built in 1960 and was raised in 1998. The bridge was rated with a Sufficiency Rating of 77.1 in 2008, which is considered Not Deficient (not considered Structurally Deficient or Functionally Obsolete). The bridge is eligible for federal funds for rehabilitation, but not for replacement.\(^8\) The bridge is 239 feet in length, and the bridge type is reinforced concrete deck girder. Horizontal clearance is 40 feet 6 inches and vertical clearance is 16 feet 2 inches.

Primary deficiencies noted with regard to the interchange include the following:

- **Sight distance.** Sight distances are substandard; the view that motorists have from the ramp terminal of oncoming vehicles is not comprehensive. Guardrail locations restrict motorist line of sight.
- **Grades/Deceleration Length.** E. Pearl Street/Van Duyn Road approaches I-5 on the west side at 5.5 percent and Van Duyn Road approaches I-5 from the east at 5.3 percent, which is steep for trucks. The deceleration length is substandard.
- **Bridge width.** The bridge structure is narrow, and does not have room to accommodate bicyclists, pedestrians, or vehicular emergencies. The width is substandard.
- **Vertical clearance.** The bridge structure is less than the 17.5-foot ODOT standard.

\(^8\) A sufficiency rating of ≤ 80 percent is eligible for Federal Rehabilitation funds, and a sufficiency rating of ≤ 50 percent is eligible for Federal Replacement funds.
2.4.3 Access

Access spacing and the location of access points is critical to this IAMP planning process. The location of local streets and County roads near the interchange is a concern for the existing and future safety and operation of the Coburg/I-5 interchange. Public and private access locations along E. Pearl Street in the interchange study area are shown on Figure 2-5. Both ODOT and Lane County maintain access spacing recommendations or standards.

The Coburg/I-5 interchange is considered an urban interchange. There are no other interchanges along I-5 within these spacing limits; it is approximately 10 miles north to the Diamond Hill interchange, and approximately 3.5 miles south to the Beltline interchange.

The larger issue for the Coburg/I-5 interchange area is the spacing along the crossroad, Van Duyn Road/E. Pearl Street. According to the Oregon Highway Plan (OHP) Policy 3C: Interchange Access Management Areas, "When possible, access control shall be purchased on crossroads for a minimum distance of 1,320 feet (400 meters) from a ramp intersection or the end of a free flow ramp terminal merge lane taper."

ODOT standards are outlined in the OAR (OAR 734-051). The applicable standards are summarized in Table 2-6. The A, X, Y, and Z values are illustrated in Table 2-6.

TABLE 2-6	Minimum Spacing Standards Applicable to Freeway Interchanges				
Spacing Dimension	Crossroad	A	X	Y	Z
Two-lane	1 mile	1,320 feet	1,320 feet	990 feet	
Multi-lane	1 mile	1,320 feet	1,320 feet	1,320 feet	

A = The distance between the start and end of tapers of adjacent interchanges.
X = The distance to the first approach on the right; right in/right out only.
Y = The distance to the first intersections where left-turns are allowed.
Z = The distance between the last right in/right out approach road and the start of the taper for the entrance ramp.

Source: Tables 5 and 6 in OAR 734-051-0125.

Lane County standards, included in the Lane County Transportation System Plan (June 2004), reference ODOT standards for state facilities, and also reference Lane Code sections 15.130-15.139. Lane County classifies E. Pearl Street as an Urban Minor Arterial, 30 and 35 mph, and therefore, per Lane County Code Section 15.138 – Table 2, County spacing standards are 275 feet for roads and driveways (measured centerline to centerline) along E. Pearl Street.

Lane County classifies Van Duyn Road as an Urban Local Road within the UGB, and as a Rural Local Road outside the UGB. According to Lane County Code Section 15.138(2),
with a UGB the spacing standard for County Local Roads is 20 feet for use of property for a single family or manufactured dwelling, duplex, or triplex, and 100 feet for other uses. According to Lane County Code Section 15.138(3), outside the UGB the spacing standard for County Local Roads is 100 feet.

According to Lane County Code Section 15.137(6)(b), minimum offsets for roads along County roads designed for +25 mph speeds should be 150 feet. The County Code also recommends joint access where possible.

Lane County has a facility permits process to manage access to County Roads through the review of land divisions and other proposed development.

The following public roads do not meet the OHP's recommended distance from an interchange:

- Daray Street
- Coburg Industrial Way
- Roberts Road

In addition, Stuart Way (vacated road), driveways at the Texaco station, the entrance to Hillside Café and the RV park access on the east side of the interchange do not meet the OHP recommended distance of 1,320 feet from the interchange.

The intersections of Daray Street, Roberts Road, and Coburg Industrial Way are not aligned with each other, and in general do not meet County spacing or road offset standards.

2.4.4 Crash Analysis

The crash analysis includes a summary of safety conditions along I-5 within the city of Coburg, and study area intersections within the Coburg/I-5 interchange management area. The ODOT Crash Analysis Unit provided crash history statistics for the years 2003-2007.

These data were analyzed to identify crash patterns that could be a result of existing geometric or operational deficiencies.

Interstate 5

ODOT has developed a Safety Priority Index System (SPIS), generated annually and based on the most recently available 3 years of crash data, to identify hazardous locations along state highways. The highway locations within the highest 10 percent SPIS score are evaluated for potential safety improvements. No locations along I-5 near the interchange management area (MP 198.00 to MP 200.50) were included in the most recent highest 10 percent SPIS score.

For the 5-year period, a total of 73 crashes were reported along I-5 within the interchange management area, including 13 injury crashes, 59 property damage crashes, and one fatal crash (with three fatalities). Table 2-7 provides an overview of all traffic crashes over the 5-year period.

9 Legally reportable motor vehicle traffic crashes are those that involve death, bodily injury, or damage to personal property in excess of $1000.
TABLE 2-7

<table>
<thead>
<tr>
<th>Year</th>
<th>Injury</th>
<th>Property Damage</th>
<th>Fatal</th>
<th>Total Crashes</th>
<th>Type of Crash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Angle</td>
</tr>
<tr>
<td>2003</td>
<td>3</td>
<td>17</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>5</td>
<td>25</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>59</td>
<td>1</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

The rate of traffic incidents occurring along I-5 ranged between 2 and 30 crashes per year. Although there were thirty crashes in 2004, there are no trends in the data to explain the high number of crashes. The most common type of crash was fixed object crashes, which comprised roughly 39 percent (29 crashes) of all crashes over the 5-year period. This was followed by rear-end crashes, which comprised roughly 31 percent (23 crashes) of all crashes over the 5-year period. In 2003, seven of the 21 crashes occurred on the same day and were during icy conditions. The fatal crash (three fatalities) occurred in July 2003 at dawn during clear and dry conditions at MP 199.0.

Road conditions and time of day are two elements often analyzed with crash statistics. The majority (57 percent, 42 crashes) of crashes occurred on dry surface. Most of the crashes also occurred during the day—69 percent, or 51 crashes total. Table 2-8 summarizes these data. Crash incidents were comparatively higher during the work week than on weekends, and the PM peak period recorded the most number of crashes (10 crashes).

TABLE 2-8

Surface and Light Condition Summary

<table>
<thead>
<tr>
<th>Surface Conditions</th>
<th>Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>42</td>
</tr>
<tr>
<td>Wet</td>
<td>20</td>
</tr>
<tr>
<td>Icy</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light Conditions</th>
<th>Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>51</td>
</tr>
<tr>
<td>Dark (Road Lighted)</td>
<td>14</td>
</tr>
<tr>
<td>Dawn</td>
<td>6</td>
</tr>
<tr>
<td>Dusk</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
</tr>
</tbody>
</table>
2.4.5 Intersection-Level Analysis

In addition to the I-5 corridor, interchange management area study intersections, including I-5 ramp termini, have been analyzed with regard to crashes from 2003-2007. Table 2-9 provides an overview of the crashes recorded by study intersection location. The most common type of crashes at the study intersections were turning, followed by rear-end crashes. Most of the crashes involved property damage only with no injury. No head-on or parking collisions were recorded. No collisions involved pedestrians or bicyclists. Twelve of the 16 intersection crashes took place during the day. Six of the intersection crashes occurred on wet pavement.

Intersection crash rates are typically reported in crashes per million entering vehicles (MEV). Most crash rates are substantially lower than 1.00, which indicates that crashes are not a significant concern at all five study intersections. The Pearl Street/Coburg Industrial Way intersection experienced the greatest number of crashes, warranting further review of geometric and operational issues.

To reduce speeds in Coburg, traffic calming measures may be beneficial. Research has shown that narrower lanes, reduced overall road width, street trees, and speed humps along with other strategies have been successfully used to reduce travel speeds. These measures may in turn reduce the number of crashes in Coburg. Also, the incidence of crashes involving drivers not yielding indicates that some locations may benefit from better stop controls or improved sight distances.

2.4.6 Existing Operational Analysis

Existing operational analysis was conducted for intersections within the Coburg/I-5 IAMP interchange management area to identify operational issues. Figure 2-6 shows the turning movement volumes for study intersections within the interchange management area.
Traffic Operations

Manual turning movement counts were collected for five intersections within the Coburg UGB on typical weekdays in November 2002, May 2004, January 2005, and February 2007: Pearl Street/Coburg Industrial Way, Van Duyn Road/I-5 Northbound Ramps, Pearl Street/I-5 Southbound Ramps, Pearl Street/Roberts Road, and Pearl Street/Coleman Street.

The counts completed during November 2002, May 2004, and February 2007 were 14-hour counts and the count completed during January 2005 included 3 hours in the morning and 3 hours in the evening. In February 2007, new 14-hour counts were conducted for the Van Duyn Road/I-5 Northbound Ramps and Pearl Street/I-5 Southbound Ramps intersections. This new set of counts replaced the previous counts for these two intersections. All counts included the peak period, 3:00 PM to 4:00 PM. These counts were collected to evaluate the existing road and intersection operations near and at the Coburg/I-5 interchange.

Appendices E and F provide summaries of the methodologies and the raw traffic data used for this analysis, respectively.

Average Daily Traffic Volumes and Heavy Vehicle Percentages

The average daily traffic (ADT) for facilities within Coburg varies between 7,000 and 14,000 vehicles per day. On E. Pearl Street west of Coburg Industrial Way, there are approximately 7,000 vehicles per day. East of Coburg Industrial Way on E. Pearl Street, the ADT increases to approximately 14,000 vehicles per day.

The percent of heavy vehicles for facilities within Coburg ranges from 5 percent to 30 percent. On E. Pearl Street west of Coburg Industrial Way the percent of heavy vehicles is between 5 percent and 15 percent. East of Coburg Industrial Way on Pearl Street, the percent of heavy vehicles increases from 15 percent to 30 percent. There is also a high percent heavy vehicle rate of 25 percent on the north approach of E. Pearl Street and Roberts Road.

Study Intersections and Raw Traffic Counts

Traffic data were collected for signalized and unsignalized study intersections. Since the counts were taken in various years (2002, 2004, 2005, 2007), a growth factor was applied to the 2002 and 2004 counts to come up to the existing conditions year of 2005 for intersections not at I-5 ramps. 2007 counts were used for the I-5 ramp intersections. Appendix E provides an overview of the traffic analysis methodology and explains how the growth rate was calculated. Appendix F contains raw traffic volumes for each intersection that was counted.

- Signalized
 - Pearl Street and Coburg Industrial Way
 - Van Duyn Road and I-5 Northbound Ramps
Unsignalized
- Pearl Street and Coleman Street
- Pearl Street and Roberts Road
- Van Duyne Road and I-5 Southbound Ramps

Analysis of the Automated Traffic Recorder Sites

ODOT traffic analysis procedures require the 30th highest hour traffic volumes be used to calculate volume to capacity (V/C) ratios for intersections and street segments. The 30th highest hour represents the highest volume of traffic that would be expected to occur on the road, ignoring extraordinary circumstances—literally the 30th highest recorded traffic volumes. The 30th highest hour examined was a PM hour. Data from a representative automated traffic recorder (ATR) site was used to determine seasonal factors and to calculate 30th highest hour traffic volumes from traffic counts collected in November 2002, May 2004, January 2005, and February 2007. Methodologies used in this analysis are summarized in Appendix E.

Analysis Method

Operational analysis of existing conditions for the five study intersections, using 30th highest hour traffic volumes, was performed using Synchro analysis software. Appendix G provides the complete report output for each intersection.

State Highway Mobility Standards

State Highway Mobility Standards were developed for the OHP as a method to gauge reasonable and consistent standards for traffic flow along state highways. These mobility standards consider the classification (e.g., freeway, district) and location (rural, urban) of each state highway. Mobility standards are based on V/C ratios.

Two of the study intersections are governed by OHP standards with regard to existing operations. These are the intersections at the I-5 northbound and southbound ramps. The two study intersections under ODOT’s jurisdiction are within the UGB and inside the boundaries of a Metropolitan Planning Organization (MPO). These intersections are not within a Special Transportation Area (STA) and the intersections operate at a speed limit of less than 45 mph. The I-5 ramps therefore have a standard V/C ratio of 0.80 under the OHP. Table 2-10 lists the intersections within ODOT’s jurisdiction.

The future no-build analysis will maintain the same OHP standards as the existing conditions analysis. The future build analysis will use the 20-year design standard as designated in the 2003 Highway Design Manual (HDM). The build analysis standard V/C ratio will be 0.75 for the ODOT governed study intersections because they are inside the urban growth boundary and in an MPO.

10 V/C ratios are defined as the number of vehicles passing through a road segment during a given period of time, divided by the capacity of that road segment.

11 OHP standards are used to evaluate operations for existing or future no-build conditions. HDM standards are used to evaluate any future build scenario options on state facilities.
Lane County Mobility Standards

Lane County standards were used to analyze the remaining three study intersections in the interchange management area because they are located along a County road (E. Pearl Street). The *Lane County TSP* (2004) and *Lane Code* outline the performance standards. The three study intersections are located inside the UGB and within the MPO area. The minimum standard V/C ratio is 0.85 and the minimum acceptable level of service (LOS) is LOS D. For two-way stop controlled intersections, the approaches that are required to stop have a standard V/C ratio of 0.95 and LOS D. Table 2-10 lists the study intersections within the County's jurisdiction.

The future no-build and future build analyses will maintain the same V/C ratio standard for the study intersections within the County's jurisdiction.

TABLE 2-10 Intersection Operational Analysis—Existing (2005) 30th Highest Hour

<table>
<thead>
<tr>
<th>Study Intersection</th>
<th>Road Jurisdiction</th>
<th>LOS and V/C Ratio Standard</th>
<th>Observed Maximum LOS and V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Coburg Industrial Way</td>
<td>Lane County</td>
<td>(D) 0.85</td>
<td>(E) 0.61</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Northbound Ramps</td>
<td>ODOT</td>
<td>0.80</td>
<td>0.40</td>
</tr>
<tr>
<td>Unsignalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Street and I-5 Southbound Ramps</td>
<td>ODOT</td>
<td>0.80</td>
<td>0.66</td>
</tr>
<tr>
<td>Pearl Street and Coleman Street</td>
<td>Lane County</td>
<td>(D) 0.85</td>
<td>(D) 0.95</td>
</tr>
<tr>
<td>Pearl Street and Roberts Road</td>
<td>Lane County</td>
<td>(D) 0.85</td>
<td>(D) 0.95</td>
</tr>
</tbody>
</table>

Source: Synchro HCM Unsignalized and Signalized Reports

Notes: V/C standards for existing conditions on ODOT facilities are evaluated per the OHP. For unsignalized intersections, the V/C ratio is presented for the worst movement for each street. Numbers in *red* indicate V/C ratios and levels of service not meeting OHP mobility standards. For the intersections within ODOT's jurisdiction, no LOS will be reported. LOS = level of service.

Operational Analysis of Existing Conditions (30th Highest Hour)

Table 2-9 presents the mobility standards found in the OHP as well as the Lane County TSP and Lane Code. The table also presents the observed intersection V/C ratios for all of the study intersections and observed LOS for the intersections under City jurisdiction. These observations were made under the existing (2005) 30th highest hour traffic volumes. For signalized intersections, the overall intersection results are reported. For unsignalized intersections, the movement with the worst operating performance on both the major and minor approaches is reported.

Intersection V/C ratios greater than the mobility standards indicate areas of congestion and longer-than-acceptable vehicle delay. Intersection V/C ratios lower than the mobility standards indicate intersections operating at acceptable levels of mobility. As shown in Table 2-10, all of the study intersections except one (Pearl Street and Roberts Road) currently operate better than the OHP or County V/C thresholds.
Most of the intersections have V/C ratios well below the standard with exceptions at Pearl Street and Roberts Road and Van Duyn Road and I-5 Southbound Ramps. At Pearl Street and Roberts Road, the minor approaches are failing. The primary street volumes at this intersection are high due to the traffic traveling between I-5 and Coburg Industrial Way. The side street volumes are not large on Roberts Road, but since the intersection is a two-way stop, the vehicles have a difficult time turning onto, or getting across Pearl Street, thus making these movements fail.

Turn-Lane Queuing Analysis of Existing Conditions (30th Highest Hour)
The V/C ratio provides only one measure-of-effectiveness for intersection operation. Vehicle queuing in the turn-lanes shows where there is deficient vehicle storage at intersections. The 95th percentile queue length exceeds available storage capacity at the southbound left turn lane at E. Pearl Street and Coburg Industrial Way. However, this intersection meets Lane County mobility standards. All of the queues are shown in Table 2-11; assumptions used for the queue analysis are provided in Appendix E.

Queue lengths can impact overall intersection corridor operations by delaying and restricting upstream vehicle movements. This is true for both signalized and unsignalized intersections. The southbound left turn at E. Pearl Street and Coburg Industrial Way shares the same phase as the southbound through and right. This is beneficial, because it means that the long queues will not result in hindering through traffic from proceeding during the green signal. The long queue at Pearl Street and Coburg Industrial Way could, however, be an indication that vehicles are waiting at the signal for more than one cycle during peak periods.
TABLE 2-11
2005 30th Highest Hour Queue Analysis

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>Lane Group</th>
<th>Existing Storage (feet)</th>
<th>Queue Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearl Street and Coburg Industrial Way</td>
<td>Eastbound</td>
<td>Left/Thru/Right</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Thru/Right</td>
<td>200</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>Left/Thru/Right</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>Left/Thru/Right</td>
<td>300</td>
<td>720</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Northbound Ramps</td>
<td>Eastbound</td>
<td>Left/Thru</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thru/Right</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>Left/Thru/Right</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Coleman Street</td>
<td>Eastbound</td>
<td>Left/Thru/Right</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>Left/Thru/Right</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>Left/Thru/Right</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>Left/Thru/Right</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Roberts Road</td>
<td>Eastbound</td>
<td>Left/Thru/Right</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>Left/Thru/Right</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>Left/Thru/Right</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>Left/Thru/Right</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Southbound Ramps</td>
<td>Eastbound</td>
<td>Thru/Right</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>Left/Thru</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>Left/Thru/Right</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Numbers in **bold** indicate the existing queue length exceeds the existing storage length.
Synchro and SimTraffic were used to calculate queue lengths; see Appendix E for more information.
Queue lengths not reported for free-flowing and uncontrolled movements.
Queue lengths rounded up to the nearest 10 feet.
Storage for through-lanes displayed only when queue is expected to surpass distance to next intersection.

2.4.7 Transit Facilities

The Coburg/I-5 interchange is located within the Lane Transit District (LTD). LTD Route 96 and Route 96 Express serve areas within the Coburg/I-5 interchange management area. Figure 2-7 shows transit routes in the management area.

Route 96 heads north from Eugene to Coburg along Coburg Road and Willamette Street. Route 96 serves the interchange study area via E. Pearl Street and Coburg Industrial Way. There are bus stops along E. Pearl Street, as well as at Monaco and the Country Squire Inn stop, and then heads back to Eugene along Coburg Road. Service is generally every 2 hours during the weekdays.
Route 96 Express travels along I-5 between Eugene and Coburg, and services the Monaco property. The Coburg Express leaves Eugene during the weekdays one time during the morning (7:00 AM) and leaves Coburg one time during the evening (4:10 PM), intending to offer alternatives to Monaco and other industrial employers in Coburg.

From June 1, 2004, to May 31, 2005, total ridership on Route 96 was 19,934. Chart 1 shows the monthly ridership on Route 96 during 2004-2005. Ridership was highest during June 2004 (2,147 transit trips) and was the lowest during March 2005 (1,309 transit trips). Average monthly ridership for the timeframe was 1,661 transit trips. Monthly transit ridership was generally consistent.

There is no weekend or evening transit service to Coburg.

Other demand-response and transportation demand management (TDM) options are available through LTD's Commuter Solutions group. This service offers carpool and vanpool registration, School Pool, walking and bicycling groups, bicycling information, ideas for alternative work week schedules and a variety of employer programs. These transit and TDM strategies, if utilized, have some potential to affect operations in the interchange management area.

There is no passenger rail service within the study area. The closest Amtrak station is located in Eugene at 433 Willamette Street.

2.4.8 Pedestrian and Bicycle Transportation

Currently there is minimal pedestrian and bicycle activity in the vicinity of the Coburg/I-5 interchange. Figure 2-8 shows bicycle and pedestrian facilities, including existing crosswalks and off-street facilities in the interchange management area.

No observed bicycle parking locations exist in the interchange management area. There are two signalized crosswalks in the interchange management area, at I-5 Northbound Ramps/Van Duyn Road and E. Pearl Street/Coburg Industrial Way.

Table 2-12 lists existing bicycle and pedestrian facilities in the Coburg/I-5 interchange management area. The table also notes the existing sidewalks in the interchange management area that are less than 5 feet wide, which is the desired minimum width for sidewalk functionality (6 feet is preferred per the Oregon Bicycle and Pedestrian Plan, 1995). There is a noticeable lack of walking and bicycling facilities in the area, given the amount of employment in the area, and especially if the area is expected to grow.
The Coburg Zoning Code requires new sidewalks in the Highway Commercial and Light Industrial districts upon redevelopment. The local streets in the residential areas consciously do not require sidewalks in order to preserve the rural character of the local streets. It is a shared street design.

TABLE 2-12
Coburg/I-5 IAMP Roads—Bicycle and Pedestrian Facilities

<table>
<thead>
<tr>
<th>Road</th>
<th>Bicycle Facilities</th>
<th>Pedestrian Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate 5</td>
<td>None (N/A)</td>
<td>None (N/A)</td>
</tr>
<tr>
<td>Van Duyn Road</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Pearl Street</td>
<td>Both sides</td>
<td>South side; 5+ feet (both sides west of Stuart Way)</td>
</tr>
<tr>
<td>Coburg Industrial Way</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Roberts Road</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>N. and S. Coleman Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Mill Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Dixon Street</td>
<td>None</td>
<td>North side; Less than 5 feet</td>
</tr>
<tr>
<td>N. Miller Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daray Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sarah Lane</td>
<td>None</td>
<td>Both sides; Less than 5 feet</td>
</tr>
<tr>
<td>N. Emerald Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. McKenzie Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Lincoln Way</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Delaney Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Maple Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Thomas Street</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rustic Court</td>
<td>None</td>
<td>Both sides; Less than 5 feet</td>
</tr>
<tr>
<td>Shane Court</td>
<td>None</td>
<td>Both sides; Less than 5 feet</td>
</tr>
</tbody>
</table>

2.4.9 Air Transportation

There are no air facilities located within the Coburg/I-5 interchange management area, or within the city of Coburg.

Nearby Public Air Facilities

The closest public air service is at the Mahlon Sweet Field Airport, located approximately 7 miles east of the study area in Eugene. Road access to the Mahlon Sweet Field Airport from Coburg is via Coburg Road or I-5 to Beltline Highway and OR 99W. The airport is not serviced by fixed-route transit.

Mahlon Sweet Field is owned and operated by the City of Eugene, and is open to the public. It is the fifth-largest airport in the northwest, providing commercial air service, air cargo service, and one fixed base operator to handle general aviation needs. The airport provides service to Portland, San Francisco, Seattle, and other cities.
The airport averages 223 operations per day, or over 81,000 annually, with 206 aircraft based at the field. Approximately 38 percent of the operations are transient general aviation, 30 percent are local general aviation, 20 percent are commuters, 10 percent are air carriers, and 2 percent are military. Of the 206 aircraft based on the field, 171 are single-engine airplanes, 15 are jet airplanes, 13 are multi-engine airplanes, and 7 are helicopters.

The airport has two asphalt runways, both in good condition. Runway 16/34 is 8,009 feet long by 150 feet wide and has the following weight limits: 155,000 lb for single-wheel, 190,000 lb for double-wheel, and 300,000 lb for double-tandem aircraft. Runway 3/21 is 5,228 feet long by 150 feet wide and has the following weight limits: 50,000 lb for single-wheel, 65,000 lb for double-wheel, and 100,000 lb for double-tandem aircraft.

Nearby Private Air Facilities
There are four private air facilities within 5 miles of the Coburg/I-5 interchange management area:

- Briggs Airport (located 1 mile north of Coburg, west of I-5; one aircraft based on the field)
- Pape Bros. Inc. Heliport (located 1 mile north of Coburg, just west of I-5)
- West Point Airport (located 3 miles north of Coburg, just east of I-5; two aircraft based on the field)
- Greer Airport (located 4 miles north of Coburg, west of I-5; four aircraft based on the field)

2.4.10 Rail Transportation
There are no commuter or freight rail facilities located within the Coburg/I-5 interchange management area, or within the city of Coburg. The Southern Pacific Railroad formerly owned a right-of-way within the city of Coburg, which has been since partially vacated. The closest passenger rail service is located in Eugene (Amtrak). This service travels north-south with stops along the west coast, including Seattle; Portland; Salem; Albany; Vancouver, B.C.; and locations in California, with connections to other locations, such as Klamath Falls and Chemult.

2.4.11 Water
There are no navigable waterways located within the Coburg/I-5 interchange management area, or within the city of Coburg. The confluence of the McKenzie and Willamette Rivers is located approximately 2 miles southwest of Coburg.

2.4.12 Pipelines
There are no significant pipelines located within the Coburg/I-5 interchange management area. The closest significant pipeline is the Williams Gas Pipeline West, which is a natural gas pipeline that runs north-south through the western portion of the city of Coburg. There are no noted deficiencies.
2.4.13 Summary of Deficiencies and Issues

The following transportation and land use deficiencies or issues are relevant for the Coburg/I-5 IAMP planning process (in no particular order):

- **Land Use Changes and Expansions.** There is a lot of undeveloped and underdeveloped land within the Coburg/I-5 interchange management area. If land is to develop—or be annexed into Coburg—it would impact the transportation system. Planning for this interchange was partially initiated due to the rapid development of commercial and industrial lands near the interchange.

- **Access Spacing along E. Pearl Street.** Four public roads and multiple private driveways are closer to the interchange than ODOT standards recommend. Roads are not aligned within the interchange management area. Some access points along E. Pearl Street are located close to each other.

- **Operations at nonsignalized intersections.** Operations at the Pearl Street/Roberts Road intersection do not meet acceptable performance standards (the minor movement does not meet the standards).

- **Queuing at Pearl Street/Coburg Industrial Way.** At the Pearl Street/Coburg Industrial Way intersection, the 95th percentile queue length exceeds available storage capacity. The long queue at Pearl Street and Coburg Industrial Way could, however, be an indication that vehicles are waiting at the signal for more than one cycle during peak periods. However, the E. Pearl Street and Coburg Industrial Way intersection does not report V/C ratios higher than Lane County mobility standards.

- **Lack of Pedestrian and Bicycle Facilities.** The interchange management area is noticeably lacking in coordinated and connected bicycle and pedestrian facilities.

- **Transit Service and TDM.** Transit service (particularly Express transit service) is somewhat limited—though it may first require education for commuters using the interchange and surrounding street network. TDM strategies for large employers should be in the mix of concepts put forward.

- **Truck traffic.** Truck traffic includes freight vehicles with three or more axles, and must be accommodated, yet neighborhoods must also be shielded to the greatest extent possible from the impacts of this traffic.

- **Van Duyn Bridge and I-5 ramp geometry.** The Van Duyn Bridge is narrow, and does not offer much room for emergency management or clear visibility; widths are substandard. Some of the grades are difficult for trucks; deceleration length is substandard. The bridge does not have adequate width for pedestrians or bicyclists. Vertical clearance is substandard.
2.5 Natural and Cultural Resources

The Coburg/I-5 interchange management area includes land in Lane County and the City of Coburg. Project improvements could potentially trigger environmental protection regulations of any of these jurisdictions, as well as state and/or federal regulations. This section provides a broad overview of natural and cultural resources in the study area and related potential project constraints presented. Future project steps will require additional environmental work.

The 1999 Refinement Plan included a general environmental assessment conducted by ODOT, intended to provide a rough overview of the area around the interchange. The assessment included review of the natural and built environment for any fatal flaws for an interchange project. According to the Refinement Plan, "There were no environmental issues at this time that constitutes a significant problem for future interchange designs." Figure 2-9 includes the Possible Environmental Constraints map from the Refinement Plan.

The most relevant concerns for the interchange management area appear to be related to hydrology, floodplain, and wetlands related to Muddy Creek to the west of I-5 and Urr Stream to the east of I-5.

Runoff collection in the southwest corner of the west interchange ramp has been noted by City of Coburg staff. No sites were found that contain historic structures, parks, or environmental overlays.

The area contains a number of potential hazardous material sites due to previous gas stations or existing gas stations. The ODOT assessment determined that the sites could be mitigated if they were impacted by any future interchange project.

The Coburg TSP contains information regarding other natural and cultural resources, which has been adapted for this IAMP.

2.5.1 Topography

The topography within Coburg is relatively flat and there are no designated steep slopes in the study area.

2.5.2 Soils

The Coburg Comprehensive Plan identifies significant portions within the UGB as having soil restrictions for development. Most of the Highway Commercial plan designation area shows soil limitations. Coburg is largely surrounded by Class II soils. To the north of the residential portion of Coburg lies a mix of Class I and II soils. The soil to the west of Coburg and down the bluff from the present residential areas is Class II soil, as is the area south of Coburg, west of Coburg Road. South off Roberts Road, the soil between the railroad right-of-way and Interstate 5 is Class IV soil. This Class IV soil extends west of the railroad right-of-way until it nears Muddy Creek, where it is replaced by Class II soil.

2.5.3 Hydrology

The interchange management area lies within the Willamette River Subbasin. Muddy Creek and Urr Stream are the main drainageways that flow through the study area, generally in a
north-south direction. Muddy Creek is located to the west of I-5. According to the Coburg TSP, it is unlikely that development will be restricted by Muddy Creek because it has already been altered and channelized to accommodate existing and projected development. Urr Stream is located to the east of I-5 within the interchange management area.

2.5.4 Floodplains and Floodway
Coburg is located on the northeastern periphery of a 5 percent flood hazard area and the southern portion of the city is subject to a 1 to 2 percent flood hazard. Intensive land uses, such as residential developments, are subject to Federal Emergency Management Agency (FEMA) regulations and City ordinances. Proposals undergo a more extensive review and additional measures must be taken to reduce the risk of flood damage to property in these areas.

According to the FEMA map, the majority of the flood hazard area in Coburg is located along the western edge of Coburg, outside the interchange management area. Other identified flood plain areas are located in a narrow band adjacent to Muddy Creek, which extends through the interchange management area. Because this area is not extensive, it is unlikely that this will influence full development potential. However, it may influence the design of roads and need for specific engineering practices within these areas.

2.5.5 Wetlands
The presence of wetlands may influence the extent of development and/or where it occurs on both an area-wide and a site-specific basis. Development proposals that may impact wetlands are regulated and permitted by the Army Corps of Engineers and the Oregon Division of State Lands. If wetlands are located on property, before development can occur, the boundaries of the wetlands must be clearly delineated; wetland impacts should be avoided if possible; and if impacts do occur, mitigation must replace the values lost by development.

Wetland features for this report are based on the National Wetlands Inventory (NWI). The NWI provides basic data about the general characteristics and extent of wetlands in the nation. The NWI identifies the general boundaries of wetlands; however, in many instances, actual wetland boundaries and features are more extensive than what is identified through this national classification system. Coburg also has a Local Wetland Inventory (LWI). The LWI will be examined with any design-level or environmental study of the interchange management area.

Wetland features in Coburg are primarily of a linear type. The NWI also indicates the presence of three polygon-shaped wetlands in the northern portion of the interchange management area, and a small area also shown in the southern portion of the interchange management area. Potential development constraints in the interchange management area include:

- Urr Stream
- 80 to 85 percent soil limitation for three sites related to Muddy Creek
- Floodplain adjacent to Muddy Creek (one polygon site)
2.5.6 Open Space and Parks
There are no existing open spaces, as defined by OAR 660-023-0220(1), in the interchange management area. There are no existing or planned parks in the interchange management area. However, the Coburg Parks and Open Space Master Plan identifies a conceptual linear corridor to be used as a hard-surface trail that runs north-south along the west side of Coburg Industrial Way and any realignment of Roberts Road. An Implementation Strategy for this facility is targeted for completion Spring 2009.

Coburg has one community park and an elementary school playground area (totaling about 10 acres) for recreational uses. Neither is located within the interchange management area.

2.5.7 Historic Resources
Coburg was the second city in Oregon to be designated a national historic district. The City requires a conditional use or site plan review permit for any alteration or demolition of historical structures. None of the noted historic resources are located in the interchange management area.

2.5.8 Archaeological Resources
In 2007, archaeologists conducted a pedestrian survey for the I-5 @ Coburg Interchange Project, Key Number 14649, and recorded three precontact and historic period isolates. Additional fieldwork will be conducted after all rights-of-entry have been obtained.

ODOT is currently consulting with the Confederated Tribes of the Grand Ronde Community of Oregon, the Confederated Tribes of Siletz Indians, and the Confederated Tribes of Warm Springs, regarding the proposed project. No concerns have been noted at this time.
Coburg Comprehensive Plan Designations

Lane County Plan Designations (outside UGB)

Figure 2-1
Comprehensive Plan Designations
Coburg/I-5 Interchange Area Management Plan
Figure 2-2

Zoning Districts
Coburg/I-5 Interchange Area
Management Plan

Lane County Zoning Districts (outside City Limits)
- E40 - Exclusive Farm Use
- PR - Public Reserve
- RR - Rural Residential
- RR10 - NRES - Non Resource
- C2 - Neighborhood Commercial
- Light Industrial
- Traditional Residential
- Parks, Recreation, & Open Space
- Central Business
- Highway Commercial
- Traditional Medium Density Residential
- Public Water Service

Sources: 1. CH2M Hill; 2. LCOG; 3. USGS
Figure 2-3
Functional Classification
Coburg/I-5 Interchange Area
Management Plan

Sources: 1. CH2M; 2. LCOG; 3. Coburg TSP 1999; 4. Lane County TSP 2004
Note: No pavement condition ratings are available for interstate ramps.
Note: CHP Policy 3C: Interchange Access Management Areas states that access control shall be purchased on interchange cross roads for a minimum distance of 1,320 feet from a ramp intersection or the end of a free flow ramp terminal merge lane taper.
Figure 2-6
Existing Conditions (2005)
30th Highest Hour Traffic Volumes
Coburg/I-5 Interchange Area
Management Plan

Source: CH2M Hill
Figure 2-7
Lane Transit District Bus Routes
Coburg/i-5 Interchange Area
Management Plan
Figure 2-8
Pedestrian & Bicycle Facilities
Coburg/I-5 Interchange Area
Management Plan
SECTION 3
Future Conditions Analysis

3.1 Purpose
The Coburg IAMP focuses on planning for the Coburg/I-5 interchange and surrounding area. It is important to understand the impact of anticipated future employment and population growth on the transportation system. Transportation analysis was conducted to identify transportation system deficiencies in year 2031 (a 20+ year planning horizon). This provided a basis for developing alternatives for future transportation infrastructure and strategies.

3.2 Land Use Assumptions
3.2.1 Coburg Comprehensive Plan Forecasts
Population and employment allocations are important because they directly relate to how development patterns, which are used to determine transportation system deficiencies, are reflected in the transportation model.

Analysis of the Recommended Alternative for the Coburg IAMP was based on population and employment forecasts derived from the Coburg Comprehensive Plan. By year 2025, Comprehensive Plan forecasts anticipate population to be 1,819, the number of new dwelling units to be 322, and employment to be 4,672. All of this growth is anticipated to occur west of I-5. Table 3-1 shows 2025 Comprehensive Plan land use assumptions.

<table>
<thead>
<tr>
<th>TABLE 3-1 Comprehensive Plan Land Use Assumptions—Year 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Coburg Comprehensive Plan</td>
</tr>
</tbody>
</table>

The year 2025 population and employment forecasts from the Comprehensive Plan were used to develop 2025 traffic forecasts, which were in turn grown to year 2031 forecasts based on average annual growth rates.

As described in Section 2, the Coburg Comprehensive Plan does not reflect the likelihood that the City of Coburg will expand its UGB. As of this writing, the City had not yet expanded its UGB because of wastewater system constraints (i.e., the lack of a wastewater system).

The RTP predicts 1,131 more people (521 more new dwelling units) and 475 less jobs in year 2025 than does the current adopted Comprehensive Plan. The Preferred Scenario from the Coburg Urbanization Study predicts 1,508 more people (571 more new dwelling units) and
485 more jobs in year 2025 than does the current adopted Comprehensive Plan. Both plans assume growth will occur west of I-5. Although the specific population and employment numbers differ for the RTP and Urbanization Study, the traffic forecasts are consistent. Alternatives were developed for consistency with the RTP and Urbanization Study because it is important that this IAMP provide recommendations that are flexible to accommodate higher levels of growth that would accompany an UGB expansion.

3.2.2 Coburg Comprehensive Plan Growth Allocations

The Coburg buildable lands inventory identifies 59.1 acres of vacant/partially vacant land available for residential purposes under current comprehensive plan designations. The analysis also identifies approximately 23 acres (54 lots) with infill potential. For the purposes of estimating the number of households, five dwelling units per acre was assumed for vacant/partially vacant land and a factor of 0.5 was assumed as the rate for infill development per lot. These assumptions resulted in a total of 322 new households (59 * 5 + 54 * 0.5) anticipated to be constructed in the Coburg UGB by the year 2025.

The buildable lands inventory indicates 51 acres of vacant and 50 acres of underdeveloped land available to support commercial and industrial employment expansion. The analysis for the IAMP assumed a rate of 20 employees per acre for commercial land and 15 employees per acre for industrial land. Underdeveloped land was assigned a rate of 7.5 employees per acre. This assumption was translated to a redevelopment rate of 50 percent at 15 jobs per acre. In addition, a carrying capacity of 500 jobs requiring no additional land (i.e., expansion of current development) was assumed. Therefore, 1,795 new jobs are anticipated to be located in the Coburg UGB in the year 2025. Table 3-2 shows the detailed land use assumptions by Transportation Analysis Zone (TAZ). The TAZs are illustrated in Figure 3-1.

<table>
<thead>
<tr>
<th>TAZ (Figure 3-1)</th>
<th>Dwelling Units</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D.U.</td>
<td>% of Growth Allocation</td>
</tr>
<tr>
<td>300</td>
<td>42</td>
<td>5%</td>
</tr>
<tr>
<td>301</td>
<td>617</td>
<td>69%</td>
</tr>
<tr>
<td>302</td>
<td>118</td>
<td>13%</td>
</tr>
<tr>
<td>303</td>
<td>52</td>
<td>6%</td>
</tr>
<tr>
<td>304</td>
<td>64</td>
<td>7%</td>
</tr>
<tr>
<td>305</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>306</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>896</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Forecasted Traffic Operations

The intent of this section is to present the no-build analysis for year 2031, discuss the results, and identify deficiencies and needs. The no-build alternative represents how the transportation system is anticipated to perform in 2031 if no new transportation infrastructure is constructed.

The no-build analysis for this IAMP is based on Comprehensive Plan growth assumptions because UGB expansion—although desired by Coburg—has not yet been adopted into the Coburg Comprehensive Plan due to lack of an adequate wastewater facility to serve the additional population. Previous iterations of this IAMP were based on land use scenarios that assumed expansion of the Coburg UGB to accommodate future population forecasts (consistent with the RTP and Coburg Urbanization Study). The preferred scenario from previous IAMP iterations assumed all growth would occur west of I-5, and anticipated 485 more jobs and 520 more dwelling units than what can be accommodated with the existing Comprehensive Plan. Future no-build analysis showed that the same intersections that fail under Comprehensive Plan growth assumptions also fail under RTP/Coburg Urbanization Study assumptions.

3.3.1 Traffic Forecast Methodology

The forecasted traffic volumes were generated by the Lane Council of Governments (LCOG) regional travel demand model. LCOG provided PM peak-hour turning movement and directional link volumes at each study intersection for existing (2005) volumes and future (2031) no-build alternative volumes.

The forecasted traffic volumes from the model were subsequently post-processed using the iterative directional volume processing method outlined in the National Cooperative Highway Research Program (NCHRP) Report 255. An Excel workbook was created to distribute the forecasted entering and exiting link volumes from the model iteratively to arrive at turning movement volumes. The balancing procedure used ten iterations to balance the future entering and exiting trip estimates for each approach leg based on the current turning movement volumes. The balanced 2005 30th highest hour traffic volumes served as the basis for the turning movement distribution. After this process was completed, the future 2031 30th highest hour traffic volumes were analyzed for the no-build future alternative.

3.3.2 Future No-Build (2031) Operations—30th Highest Hour

The No-Build operations scenario assumes that no additional transportation infrastructure would be built during the planning period (through year 2031). The No-Build scenario examines future traffic levels and how well they would be served by the existing road system. Table 3-3 presents the no-build forecasted 2031 intersection V/C ratios for the study area intersections under state jurisdiction and 2031 LOS for the intersections under Lane County jurisdiction.

Three of the five study area intersections (Pearl Street/Coburg Industrial Way, Pearl Street/Roberts Road, Van Dyne Road/I-5 Southbound Ramps) are expected to be congested beyond accepted standards by 2031. At two of the study area intersections (Pearl Street/
Coburg Industrial Way and Pearl Street/Roberts Road volumes will exceed capacity (V/C > 1.0). The Coleman Street/Pearl Street intersection is expected to meet V/C standards, but not LOS standards.

Table 3-3 shows the mobility standards found in the OHP as well as the Lane County Transportation System Plan/Lane Municipal Code. For V/C for signalized intersections, the overall intersection results are reported. For unsignalized intersections, the movement with the worst operating performance on both the major and minor approaches is reported. Intersection V/C ratios higher than the mobility standards indicate areas of congestion and longer-than-acceptable vehicle delay. Intersection V/C ratios lower than the mobility standards indicate intersections operating at better levels of mobility.

TABLE 3-3

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Road Jurisdiction</th>
<th>LOS and V/C Ratio Standard</th>
<th>Forecasted Maximum LOS and V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Coburg Industrial Way</td>
<td>Lane County</td>
<td>(D) 0.85</td>
<td>FIA</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 NB Ramps</td>
<td>ODOT</td>
<td>0.80 (OHP) 0.75 (HDM)</td>
<td>0.70</td>
</tr>
<tr>
<td>Unsignalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman Street and Pearl Street</td>
<td>Lane County</td>
<td>(D) 0.85 (D) 0.95 (A) 0.01</td>
<td>FIA 0.01</td>
</tr>
<tr>
<td>Pearl Street and Roberts Road</td>
<td>Lane County</td>
<td>(D) 0.85 (D) 0.95 (A) 0.11</td>
<td>FIA 0.11</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 SB Ramps</td>
<td>ODOT</td>
<td>0.80 (OHP) 0.75 (HDM)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*Meets V/C standard, but not LOS standard.

OHP = Oregon Highway Plan; HDM = Oregon Highway Design Manual

Source: Synchro HCM Unsignalized and Signalized Reports

Notes: For unsignalized intersections, the V/C ratio is presented for the worst movement for each street.

Numbers in **BOLD** indicate V/C ratios and levels of service not meeting mobility standards.

Table 3-4 shows intersection delay in seconds anticipated at study area intersections under the No-Build scenario. Most of the intersections experience significant delay. The delay at Pearl Street/Roberts Road for the minor movement is expected to be too large for the software to calculate. Appendix H includes the full summary of the Synchro traffic analysis report on the 2031 no-build network.
3.3.3 2031 No-Build Scenario Deficiencies—30th Highest Hour

Intersection operational deficiencies were identified based on the 2031 No-Build scenario traffic analysis.

Without infrastructure improvements by 2031, three of the five study area intersections are expected to fail to meet mobility standards. Another intersection is anticipated to not meet LOS standards, even though it is expected to meet V/C standards.

At the Pearl Street/Coburg Industrial Way intersection, the traffic volume is anticipated to exceed full road capacity with a V/C of 1.19. An average vehicle would need to wait for 198.3 seconds to travel through the intersection.

The high V/C ratios for the minor approaches at the unsignalized Pearl Street/Roberts Road and I-5 Southbound Ramps/Van Dyne Road intersections indicate the inadequacy of the stop-controlled operation for those intersections under the no-build scenario. The minor movement on Roberts Road currently fails (V/C=1.01 for year 2005) and further deteriorates to inoperable conditions in 2031 (V/C=8.38).

At the stop-controlled intersections, the major movements (east-west movements on Pearl Street and Van Dyne Road) are too heavy for drivers making minor movements to find gaps to turn into or cross the major streets, resulting in significant delays for the minor approaches. The minor approaches at the unsignalized intersections essentially would not function.

3.3.4 Future No-Build (2031) Operations—AM Analysis

Per ODOT request, the project team also analyzed intersection operations for the AM peak hour at the I-5 ramp intersections, because the AM peak hour is characterized by heavy traffic movements related to employment trips to the northwest quadrant. Results showed that the system fails during the AM peak hour at the ramp intersections. Table 3-5 shows the analysis results.
3.3.5 Summary

This analysis shows that the existing transportation network is inadequate to support anticipated 2031 traffic levels, based on Coburg’s Comprehensive Plan and the RTP model. Multiple study intersections are expected to reach or exceed intersection capacity by 2031, causing queuing and delays. Some stop-controlled intersections cannot function with stop-control devices alone, as the conflicts between major and minor movements are too great. The operational analysis assumed interconnection of signals. Future signalization of stop-controlled study intersections would enable them to function properly. Additional improvements such as turn lanes and receiving lanes would increase intersection capacity and further reduce intersection delays. Focus on transportation demand management could also alleviate some of the pressure on the road system.
Figure 3-1

Coburg Area TAZs (from Regional Transportation Plan)
SECTION 4
Alternatives Development and Analysis

4.1 Background and Purpose

Without improvements to the transportation infrastructure in the interchange management area, future traffic in the Coburg/1-5 interchange area is expected to lead to highly congested conditions by 2031. Congestion would be expected to affect intersections along Pearl Street/Van Duyn Road and at the I-5 ramp terminals. This section examines alternatives for improvements or strategies to accommodate anticipated traffic growth in the interchange management area.

4.2 Alternatives Development

After analysis of the no-build traffic operations scenario, it was determined that improvements must be made to accommodate anticipated traffic growth. Infrastructure improvements are needed to meet relevant operational standards (ODOT and Lane County volume-to-capacity ratios). It was determined that transit and transportation demand management strategies alone would not be enough to accommodate anticipated traffic growth.

Alternatives development and analysis for this IAMP was based on traffic forecasts built from population and employment forecasts consistent with Coburg’s Comprehensive Plan, and consistent with the RTP and Coburg Urbanization Study. These plans assume that all future growth will occur west of 1-5. Physical improvements included as part of the alternatives analysis were based on realistic traffic forecasts consistent with land use development west of I-5. Therefore, the physical improvements are designed to be flexible enough to accommodate traffic forecasts based on the Comprehensive Plan land use designations and the adopted regional forecasts in the RTP, consistent with the Coburg Urbanization Study. Policy recommendations included in the alternative analysis are intended to protect the capacity of the interchange given the likelihood of UGB expansion.

A set of alternatives were developed to mitigate future operational and safety issues. All alternatives were developed to meet ODOT and Lane County operational standards in 2031. It was assumed that all alternatives would be designed to meet current ODOT HDM and interchange design guide standards. Physical alternatives examined focused on conceptual interchange design:

- Alternative A: Diamond interchange with three-lane bridge
- Alternative B: Diamond Interchange with four-lane bridge
- Alternative C: Loop ramp (northbound) interchange with four-lane bridge

Figures 4-1, 4-2, and 4-3 include conceptual drawings of these three alternatives.
All of the physical alternatives included the following consistent components:

- Bicycle and pedestrian facilities on the bridge
- Encouragement of transit and transportation demand management (TDM)
- Access management that supports interchange function and operations on Pearl Street/Van Duyn Road
- Realignment of Roberts Road at a signalized intersection with Coburg Industrial Way
- Closure of the existing Roberts Road at Pearl Street
- A new signal at the I-5 Southbound Ramps/Pearl Street intersection
- The eventual development of a gridded local street system west of I-5 off Coburg Industrial Way

All physical alternatives also were assumed to be paired with policy and development code language intended to protect the function of the interchange (e.g., an alternate mobility standard; traffic impact analysis requirements). Appendix J includes LTD transportation demand management strategies. Table 4-1 compares the assumptions for the three alternatives.

4.3 Alternatives Analysis

Infrastructure alternatives were developed to improve the intersection operation performance for anticipated traffic in 2031 in order to meet the V/C standard set by ODOT (HDM) as well as Lane County LOS standards in the Lane County TSP. The following sections include future traffic operations analysis for the different alternatives. Figures 4-1 to 4-3 illustrate the road configuration for each alternative.

4.3.1 Alternative Comparison—2031 Operations

Several alternatives were developed to evaluate how different interchange configurations would accommodate anticipated future traffic levels. The alternatives are based on the land uses included in the Coburg Comprehensive Plan, but are also intended to accommodate future traffic consistent with the RTP/Coburg Urbanization Study.

Alternative A (Diamond Interchange with Three-lane Bridge) was developed to accommodate expected traffic growth by 2031 with the least amount of infrastructure necessary. This alternative is generally consistent with improvement concepts identified in the 1999 Refinement Plan. This alternative is technically able to accommodate anticipated traffic growth by 2031; however, it has some operational limitations.

Alternative B (Diamond Interchange with Four-lane Bridge) was developed to improve upon operational challenges faced with Alternative A. Alternative B includes a four-lane bridge, which allows northbound-westbound traffic an exclusive receiving lane in addition to a westbound through lane. It is anticipated that the four-lane bridge would allow for quicker through-put, and more flexibility than a three-lane bridge. A four-lane bridge structure allows for future capacity and modification for a minimal cost above the cost of a
three-lane bridge. It also would allow for addition of a loop ramp if deemed necessary beyond year 2031. Operational results showed that this alternative performed better than Alternative A.

TABLE 4-1
Components of Alternatives

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Alternative A: Diamond Interchange/Three-lane Bridge</th>
<th>Alternative B: Diamond Interchange/Four-lane Bridge</th>
<th>Alternative C: Loop Ramp Interchange/Four-lane Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coburg TSP Recommendations:</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>• Realignment of Roberts Road to Coburg Industrial Way (signalized intersection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Access closure of the original Roberts Road at Pearl Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• New connection between realigned Roberts Road and original Roberts Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• New extension of McKenzie Street east to Coburg Industrial Way (one way heading east)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• New extension of Shane Court south to Pearl Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Northern and southern connection alignments (extensions of Roberts Road and Coburg Industrial Way)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian and Bicycle Facilities on Bridge</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Three-lane Interchange bridge structure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four-lane Interchange bridge structure</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Diamond Interchange structure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Ramp (northbound)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Signalization at I-5 Southbound Ramps/Van Duyn Road Intersection</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I-5 Southbound ramps: new exclusive eastbound right-turn lane on Pearl Street and southbound on-ramp receiving lane</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I-5 Northbound ramps: new exclusive eastbound left-turn lane and northbound on-ramp receiving lane</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Coburg Industrial Way: new exclusive southbound left-turn lane and northbound left-turn pocket</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Coordinate traffic signal operations along Pearl Street</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Access management that supports interchange function and operations on Pearl Street/Van Duyn Road</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encouragement of transit/TDM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eventual development of local grid street system west of I-5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Design consistent with ODOT HDM and Interchange Design Guide standards, and Lane County or Coburg standards where applicable</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X = Improvement needed for mitigation to reach ODOT or Lane County V/C standards
Alternative C (Loop Ramp Interchange with Four-lane Bridge) was developed to examine the effectiveness of isolating the northbound to westbound heavy movement (allowing this movement to bypass the Van Duyn Road/I-5 Northbound ramps intersection). The four-lane bridge is necessary to allow the northbound-to-westbound movement an exclusive receiving lane in addition to a westbound through lane. The operational results for this alternative shows that V/C and LOS results are similar to the results for Alternative B. This alternative would be more costly to implement than Alternative B.

Table 4-2 shows operational analysis results for all of the alternatives. Appendix I includes the full summary of the Synchro traffic analysis report on the 2031 no-build network.

Table 4-2

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Jurisdiction</th>
<th>V/C Ratio Standard</th>
<th>Alt A: Diamond With Three-lane Bridge</th>
<th>Alt B: Diamond With Four-lane Bridge</th>
<th>Alt C: Loop Ramp With Four-lane Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Coturk Industrial Way</td>
<td>Lane County</td>
<td>0.85</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Southbound Ramps</td>
<td>ODOT</td>
<td>0.75 (HDM)</td>
<td>0.66</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Northbound Ramps</td>
<td>ODOT</td>
<td>0.75 (HDM)</td>
<td>0.70</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>Unsignalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman Street and Pearl Street</td>
<td>Lane County</td>
<td>0.85</td>
<td>0.95</td>
<td>0.01</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Source: Synchro HCM Unsignalized and Signalized Reports.

Table 4-2 shows that all alternatives are able to support the anticipated levels of traffic by year 2031. Alternatives B and C perform generally perform better than Alternative A. Alternatives B and C perform similarly, with small differences at the Van Duyn Road/I-5 Northbound Ramps intersection. The loop ramp is not necessary to meet the mobility standard. A four-lane bridge offers more flexibility for a minimal additional cost, and better accommodates the operational flow and channelization.

Table 4-3 presents average intersection delay for each alternative. The Coleman Street and Pearl Street intersection is expected to perform acceptably based on the County V/C standard however, there will be some delay on the minor street approaches. This may warrant consideration for signalization depending on local circulation needs and objectives.

Table 4-4 contains review of queue length for each alternative.

ODOT developed preliminary cost estimates for the alternatives. Construction cost estimates range from 25 to 35 million for the alternatives.
TABLE 4-3
2031 Intersection Delay—Alternatives Comparison

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Alt A: Diamond and Three-lane Bridge</th>
<th>Alt B: Diamond and Four-lane Bridge</th>
<th>Alt C: Loop Ramp and Four-lane Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Control Delay</td>
<td>Average Control Delay</td>
<td>Average Control Delay</td>
</tr>
<tr>
<td>Signalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Street and Coburg Industrial Way</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Southbound Ramps</td>
<td>13.3</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Northbound Ramps</td>
<td>30.7</td>
<td>22.2</td>
<td>16.5</td>
</tr>
<tr>
<td>Unsignalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleman Street and Pearl Street</td>
<td>0.3</td>
<td>45.3</td>
<td>45.3</td>
</tr>
</tbody>
</table>

Source: Synchro HCM Unsignalized and Signalized Reports.

TABLE 4-4
2031 30th Highest Hour Queue Lengths—Alternatives Comparison

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>Approach</th>
<th>Lane Group</th>
<th>Storage (feet)</th>
<th>Queue Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Existing</td>
<td>No Build</td>
<td>Alt A Alt B Alt C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Existing</td>
<td>No Build</td>
<td>Alt A Alt B Alt C</td>
</tr>
<tr>
<td>Pearl Street and Coburg Industrial Way</td>
<td>Eastbound</td>
<td>Left</td>
<td>200</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>200</td>
<td>210</td>
<td>180 180 180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Westbound</td>
<td>100</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>150</td>
<td>200</td>
<td>220 220 220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northbound</td>
<td>Left</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>60</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southbound</td>
<td>Left</td>
<td>300</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>150</td>
<td>100</td>
<td>70 70 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Van Duyn Road and I-5 Northbound Ramps</td>
<td>Eastbound</td>
<td>Left</td>
<td>350</td>
<td>350</td>
<td>150 180 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru</td>
<td>80</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>90</td>
<td>90</td>
<td>40 40 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>40</td>
<td>60</td>
<td>50 50 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northbound</td>
<td>Left</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thru/Right</td>
<td>200</td>
<td>300</td>
<td>130 130 130</td>
</tr>
<tr>
<td>Pearl Street and Coleman Street</td>
<td>Eastbound</td>
<td>Left/ThruRight</td>
<td>--</td>
<td>10</td>
<td>10 10 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>--</td>
<td>10</td>
<td>10 10 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>--</td>
<td>20</td>
<td>19 19 19 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>--</td>
<td>20</td>
<td>19 19 19 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>30</td>
<td>70</td>
<td>30 30 30</td>
</tr>
<tr>
<td>Pearl Street and Roberts Road</td>
<td>Eastbound</td>
<td>Left/ThruRight</td>
<td>--</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>--</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left/ThruRight</td>
<td>--</td>
<td>190</td>
<td>error</td>
</tr>
</tbody>
</table>
TABLE 4-4
2031 30th Highest Hour Queue Lengths—Alternatives Comparison

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>Lane Group</th>
<th>Existing Storage</th>
<th>Queue Length (feet)</th>
<th>No Build</th>
<th>2031 Alt A</th>
<th>Alt B</th>
<th>Alt C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Duyn Road and I-5 Southbound Ramps</td>
<td>Eastbound</td>
<td>Thru/Right</td>
<td>70</td>
<td>370</td>
<td>370</td>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>70</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>Left</td>
<td>150</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thru/Thru</td>
<td>150</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southbound Van Duyn Road and I-5 Southbound Ramps</td>
<td>Left/Thru/Right</td>
<td></td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Numbers in *italics* indicate the queue length exceeds the storage length.
- Synchro and SimTraffic were used to calculate queue lengths; see Appendix E for more information.
- Queue lengths not reported for free-flowing and uncontrolled movements.
- Queue lengths rounded up to the nearest 10 feet.
- Storage for through-lanes displayed only when queue is expected to surpass distance to next intersection.

4.3.2 Alternatives Development—Previous IAMP Iterations

As discussed earlier, the interchange configuration alternatives discussed above were developed to be consistent with the Coburg Comprehensive Plan, RTP, and Coburg Urbanization Study in order to ensure the recommended physical infrastructure does not become obsolete once Coburg expands its UGB and amends its Comprehensive Plan.

In previous iterations of this IAMP, instead of interchange configurations, the alternatives were based on differing land use scenarios. One scenario was consistent with the RTP/Coburg Urbanization Study (UGB expansion west of I-5), and two were based on UGB expansions east of I-5. In previous IAMP iterations, the preferred scenario was UGB expansion west of I-5. Through operational analysis related to this preferred scenario, it was determined that a diamond/four-lane bridge or loop ramp/four-lane bridge would be adequate to accommodate anticipated traffic levels.

4.4 Alternatives Evaluation

4.4.1 Evaluation Criteria and Measures of Effectiveness—Background

The purpose of evaluation criteria is to ensure that the future alternatives for the interchange management area are evaluated for consistency with the overall intent of the project and state and local goals. Alternatives were examined against the criteria to ensure consistency with ODOT and local community goals. This will ensure that the Recommended Alternative in the IAMP best addresses future transportation and land use changes in the interchange management area. The evaluation criteria analysis is used as a tool to help inform decision-making.

In the context of the Coburg/I-5 IAMP, *evaluation criteria* are defined as state and local goals that help to determine the adequacy of an alternative to solve the problems the project is...
intended to solve, in the context of the local community. Measures of effectiveness are ways to measure whether or not—or to what extent—an alternative meets a specific criterion.

The basis for the evaluation criteria include issues identified during the existing conditions analysis and future no-build traffic operations analysis, as well as input from the project open house held on September 27, 2005. Criteria and measures of effectiveness are consistent with the goals of the OHP with regard to planning and management of grade-separated interchanges.

4.4.2 Evaluation Criteria

The following evaluation criteria were identified as relevant to planning for the Coburg/I-5 interchange management area. The evaluation criteria are listed in no particular order.

- **Traffic Operations.** Does the alternative mitigate existing and anticipated (2031) traffic congestion? This criterion measures the extent to which alternatives alleviate existing and anticipated future traffic congestion.

- **Safety.** Does the alternative mitigate existing or anticipated safety issues? This criterion measures the extent to which alternatives ensure safety for all users (drivers, transit, pedestrians, and bicyclists).

- **Mobility.** Does the alternative enhance mobility for all users? This criterion measures the extent to which alternatives enhance mobility for transportation users (freight, nonmotorized, transit, transportation disadvantaged, etc.).

- **Land Use.** Does the alternative minimize land use impacts? Is the alternative consistent with state and local land use planning goals? This criterion measures the extent to which alternatives minimize property impacts and impacts on existing residential and business access. This criterion relates to economic development because it also evaluates the extent to which alternatives impact future business development through property takes. It also relates to consistency with local, regional, and statewide land use plans.

- **Environmental and Social Impacts.** Does the alternative minimize environmental and social impacts, including impacts on existing and future development and low-income/minority populations? Most alternatives will have some built and natural environmental impacts. This criterion measures the extent to which alternatives minimize impacts on the social and environmental considerations for the interchange management area. This criterion includes environmental justice considerations.

- **Support for Implementation.** Can the alternative be supported by both the state and local community? This criterion measures the extent to which alternatives can be agreed upon that meet the needs and interests of stakeholders within acceptable timelines.

- **Cost-Effectiveness.** Is the scale of the alternative consistent with the benefits it provides? Is it a practical, affordable solution? All alternatives will have costs associated with development and implementation. This criterion evaluates how effective the alternative is at relieving congestion compared to the cost.
4.4.3 Subcriteria and Measures of Effectiveness

Subcriteria and measures of effectiveness were identified for each evaluation criterion listed in the section above. The subcriteria further define the evaluation criteria. The evaluation measures describe the extent to which an alternative concept fulfills a specific subcriterion. The evaluation measures are summarized descriptively (qualitatively and quantitatively) to show how the alternative concepts rate in comparison to each other. Table 4-5 describes the subcriteria and evaluation measures. These are listed in no particular order.

TABLE 4-5
Coburg/I-5 IAMP Evaluation Criteria and Measures of Effectiveness

<table>
<thead>
<tr>
<th>Subcriteria</th>
<th>Description</th>
<th>Evaluation Measures</th>
</tr>
</thead>
</table>
| VIC ratio | Does the alternative bring existing and future congestion to acceptable levels (state and county VIC ratios)? | High—the alternative meets relevant state and local VIC standards for all study area intersections
| | | Medium—the alternative meets relevant state and local VIC standards for some study area intersections
| | | Low—the alternative does not meet relevant state and local VIC standards for any study area intersections |
| Delay | Does the alternative decrease delay in comparison to the no-build scenario? To what extent? | High—the alternative decreases delay as compared to the no-build scenario
| | | Medium—the alternative maintains delay as compared to the no-build scenario
| | | Low—the alternative increases delay as compared to the no-build scenario |
| Other solutions | Does the alternative offer other solutions to mitigate capacity issues (e.g., policy, TDM, ITS, transit, or multimodal options)? | High—the alternative provides for other solutions to mitigate capacity issues
| | | Low—the alternative does not provide for other solutions to mitigate capacity issues |
| Safety | | |
| Safety performance—geometry | Does the alternative mitigate safety issues and concerns related to outdated geometry at the interchange? | High—the alternative updates interchange geometry
| | | Low—the alternative does not update interchange geometry |
| Access management | Does the alternative decrease the number of conflict points related to public and private accesses? Does the alternative move toward ODOT's preferred spacing (1,320') from interchange ramp terminals on Pearl Street/Van Duyne? | High—the alternative reduces the number of accesses located within 1,320' of the interchange, in comparison to the no-build scenario
| | | Medium—the alternative maintains the number of accesses located within 1,320' of the interchange, in comparison to the no-build scenario
| | | Low—the alternative increases the number of accesses located within 1,320' of the interchange, in comparison to the no-build scenario |
| Design Standards | Can the alternative be designed to optimal design standards (design speed, acceleration/deceleration lanes, access spacing, horizontal/vertical curves, and vertical clearance)? | High—alternative meets design standards as proposed, with minimal or no additional mitigation
| | | Medium—alternative requires moderate mitigation to meet design standards; requires a design exception
<p>| | | Low—alternative requires significant mitigation; |</p>
<table>
<thead>
<tr>
<th>Subcriterion</th>
<th>Description</th>
<th>Evaluation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion: Mobility</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Freight Movement | Does the alternative facilitate freight movement? | High—the alternative enhances freight movement, in comparison to the no-build scenario
Medium—the alternative provides for maintenance of the same level of freight movement, in comparison to the no-build scenario
Low—the alternative impedes freight movement, in comparison to the no-build scenario |
| Mobility for the Transportation Disadvantaged | Does the alternative facilitate mobility for the transportation disadvantaged? | High—the alternative improves mobility for the transportation disadvantaged, in comparison to the no-build scenario
Medium—the alternative maintains the same level of mobility for the transportation disadvantaged, in comparison to the no-build scenario
Low—the alternative impedes the level of mobility for the transportation disadvantaged, in comparison to the no-build scenario |
| Impact on nonmotorized facilities | How well does the alternative advance pedestrian and bicycle system plans? | High—the alternative advances pedestrian and bicycle system plans
Medium—the alternative does not address pedestrian and bicycle system plans
Low—the alternative impedes pedestrian and bicycle system plans |
| **Criterion: Land Use Impacts** | | |
| Disruptions and Displacements | How many properties will be impacted? To what level does the alternative impact businesses and properties? Is right-of-way available? | High—the alternative does not require takes of commercial or industrial zoned land
Medium—the alternative requires minimal takes of commercial or industrial zoned land
Low—the alternative requires significant takes of commercial or industrial zoned land |
| Business and Residential Accesses | To what extent will private accesses be impacted? | High—the alternative does not impact private accesses
Medium—the alternative requires minimal impact to private accesses
Low—the alternative requires significant impact to private accesses |
| Compatibility with Local Comprehensive Plans | Is the alternative consistent with the Coburg Comprehensive Plan? | High—the alternative is consistent with the Comprehensive Plan
Low—the alternative is not consistent with the Comprehensive Plan |
<table>
<thead>
<tr>
<th>Subcriteria</th>
<th>Description</th>
<th>Evaluation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact to resource-zoned land</td>
<td>To what extent does the alternative impact resource-zoned land, including OAR-defined high value agricultural land?</td>
<td>High—the alternative does not require takes of resource-zoned land</td>
</tr>
<tr>
<td>Criterion: Environmental and Social Impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on sensitive areas and endangered species</td>
<td>How will implementation of an alternative impact known natural and cultural resources or endangered species?</td>
<td>High—the alternative does not impact known natural and cultural resources or endangered species</td>
</tr>
<tr>
<td>Impact to critical community resources</td>
<td>Would the alternative require any direct impacts to parks, schools, historic buildings, or other similar resources?</td>
<td>High—the alternative does not require removal of critical community resources</td>
</tr>
<tr>
<td>Noise</td>
<td>What noise impacts to residential development will result from implementation of the alternative?</td>
<td>High—the alternative is located more than 400' from residential development</td>
</tr>
<tr>
<td>Required permits and approvals</td>
<td>Is the alternative likely to meet requirements for permits and approvals?</td>
<td>High—the alternative is likely to meet permit and approval requirements</td>
</tr>
<tr>
<td>Impact to low-income and minority populations (related to environmental justice)</td>
<td>Does the alternative negatively impact minority or low-income populations?</td>
<td>High—the alternative does not displace or negatively impact minority or low-income populations</td>
</tr>
<tr>
<td>Economic Development</td>
<td>To what extent does the alternative advance City economic development plans? Does it restrict future development opportunities?</td>
<td>High—the alternative advances economic development plans and requires no takes of undeveloped land</td>
</tr>
<tr>
<td>Criterion: Support for Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Feasibility</td>
<td>How easy would it be to implement the alternative?</td>
<td>High—the alternative has political support</td>
</tr>
<tr>
<td>Multijurisdictional Coordination</td>
<td>Can all affected agencies (ODOT, City of Coburg, Lane County) support the alternative?</td>
<td>High—all affected agencies can support the alternative</td>
</tr>
</tbody>
</table>
TABLE 4-5
Coburg/I-5 IAMP Evaluation Criteria and Measures of Effectiveness

<table>
<thead>
<tr>
<th>Subcriteria</th>
<th>Description</th>
<th>Evaluation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructability</td>
<td>How disruptive will the alternative be to construct?</td>
<td>High—the alternative requires little disruption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium—the alternative requires some disruption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low—the alternative requires significant disruption</td>
</tr>
<tr>
<td>Criterion: Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Coordination</td>
<td>Does the alternative involve more than one jurisdiction? Can interjurisdictional cooperation be leveraged for funding opportunities (match, etc.)?</td>
<td>High—the alternative allows for interjurisdictional cooperation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low—the alternative does not allow for interjurisdictional cooperation</td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td>Does the alternative provide benefit consistent with the level of investment?</td>
<td>High—the alternative requires a relatively low level of investment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium—the alternative requires a moderate level of investment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low—the alternative requires a relatively high level of investment</td>
</tr>
</tbody>
</table>

Criteria Application

The following review of evaluation criteria displays the advantages and disadvantages of the project alternatives. This allows decision-makers to compare alternatives to ensure that those forwarded for consideration meet the goals of the community.

Because future congestion in the interchange management area is the motivation behind the IAMP, the traffic operations criteria weighs heavily in any decision.

Application of the criteria to the three alternatives shows that for most of the criteria categories, the alternatives have similar ratings. This is because the alternatives have similar characteristics.

Primary differences among the mitigation strategies include traffic operations, land use impacts, cost, and support for implementation.

Alternatives B and C provide for greater capacity than Alternative A. The four-lane bridge (part of Alternatives B and C) offers more flexibility for growth than the three-lane bridge (part of Alternative A), and maximizes value to the state by investing in infrastructure that will last more than 20 years. These options also provide better accommodation for operations and channelization, which will do a better job of allowing additional growth if Coburg expands its UGB and amends its Comprehensive Plan. Alternative A would not adequately accommodate future traffic conditions if a UGB expansion were to occur consistent with the RTP. For these reasons, ODOT, LCOG, and other entities may not support this option.

Alternatives B and C are expected to have more property and access impacts than Alternative A, due to the need for more land to accommodate the northbound off-ramp configuration (either two lanes or a loop ramp) and to ensure the approaching channelization lines up with the bridge travel lanes. Alternative C is anticipated to cost more than Alternative A or B.
All things considered, Alternative B provides the most benefit. Table 4-6 shows the ratings for each of the alternatives according to the criteria.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternative A: Diamond and Three-lane Bridge</th>
<th>Alternative B: Diamond and Four-lane Bridge</th>
<th>Alternative C: Loop Ramp and Four-lane Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIC ratio</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Delay</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Other solutions</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety performance—geometry</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Access management</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Design Standards</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight Movement</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Mobility for the Transportation Disadvantaged</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Impact on nonmotorized facilities</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Land Use Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disruptions and Displacements</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Business and Residential Accesses</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Compatibility with Local Comprehensive Plans</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Impact to resource-zoned land</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Environmental and Social Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on sensitive areas and endangered species</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Impact to critical community resources</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Noise</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Required permits and approvals</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Impact to low-income and minority populations</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Economic Development</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>
TABLE 4-6
Coburg/5-IAMP Alternatives and Evaluation Criteria Application

<table>
<thead>
<tr>
<th>Mitigation Alternatives</th>
<th>Alternative A: Diamond and Three-lane Bridge</th>
<th>Alternative B: Diamond and Four-lane Bridge</th>
<th>Alternative C: Loop Ramp and Four-lane Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Implementation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All alternatives would require the reconstruction of the Pearl Street/Van Dyke bridge over I-5. Alternative C would be slightly more costly because of the need for the loop ramp. Alternative B is more cost-effective than Alternative A because it provides more flexibility and better operational performance for minimal additional cost.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Feasibility</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Multijurisdictional Coordination</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Constructability</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Cost-Effectiveness</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Regional Coordination</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Summary: Alternative B scores better than Alternatives A and C, with 20 Highs and 4 Mediums. Alternative A received 13 Highs, 9 Mediums, and 2 Lows. Alternative C received 16 Highs, 3 Mediums, and 3 Lows. Alternative B has the optimal operational performance for the cost required for construction, and the greatest level of support for implementation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5 Recommendation

Based on analysis of alternatives, the Recommended Alternative is Alternative B: Diamond Interchange with Four-lane Bridge. Alternative B meets operational standards by year 2031, and includes access management measures and policy and implementation measures that will be adopted into local plans and codes.

Alternative B is preferable to Alternative A because it provides better operational performance and better operational channelization for the heavy northbound to westbound movement, for minimal additional cost. It also is more likely to have more multi-jurisdictional support for implementation, since it would offer the ability to accommodate growth related to future UGB expansion. It also offers flexibility to convert the interchange to a loop ramp design if deemed appropriate beyond year 2031. Alternative B is preferable to Alternative C because it provides a very similar level of operational performance for less cost than a loop ramp. This basic design concept will still be subject to operational and geometric modifications during the preliminary and final design process.
SECTION 5

Recommended Alternative—Operational, Physical and Access Improvements

This section of the IAMP outlines the operational, physical, and access management recommendations included as part of the Recommended Alternative. Based on an analysis of alternatives, the Recommended Alternative includes a diamond interchange with a four-lane bridge. The Recommended Alternative includes operational and physical improvements, access management plans, and policy and code implementation recommendations.

5.1 Recommended Alternative and Findings

5.1.1 Recommended Alternative Overview

The recommended alternative package consists of:

- Operational and physical improvements
- Access management plans
- Policy and code implementation recommendations

Section 5 of this IAMP focuses on the operational, physical, and access recommendations. The Recommended Alternative includes reconstruction of a diamond interchange with a four-lane bridge. Figure 5-1 depicts the Recommended Alternative physical and access improvements.

A four-lane bridge is preferred because it will better accommodate the heavy north to west movement from the I-5 Northbound off-ramp, in addition to extending the life of the bridge structure past 2031 for minimal additional cost. A four-lane bridge would also provide future flexibility for the addition of a loop ramp if determined necessary at some point after the 2031 planning horizon.

The Recommended Alternative package is generally consistent with the Preferred Concept outlined in the Refinement Plan, except for increases in bridge and ramp capacity to address growth assumptions in the Coburg Comprehensive Plan, increases in capacity at the new Coburg Industrial Way/Roberts Road/Pearl Street intersection, and the inclusion of comprehensive access and policy measures. The access and policy and implementation measures are intended to meet or exceed the OHP access spacing standards for interchanges (or, at a minimum move closer to meeting these standards if existing constraints prevent fully achieving them) and outline requirements for mitigation when developments are projected to create more traffic than is planned for in the Coburg Comprehensive Plan.

12 The design team refined the southbound approach of Coburg Industrial Way at Pearl Street (three lanes under Alternative B and two lanes under the Recommended Alternative) to maximize the trade-off between project cost and operational performance. This revision is not expected to significantly change future operational performance of Pearl Street.
The Recommended Alternative will be designed consistent with applicable ODOT HDM and interchange design guide standards, as well as applicable Lane County or City of Coburg geometric design standards.

The Recommended Alternative is based on the employment and population assumptions included in the Coburg Comprehensive Plan. Table 5-1 outlines the employment and population assumptions used to create 2031 traffic forecasts.

<table>
<thead>
<tr>
<th>TABLE 5-1</th>
<th>Comprehensive Plan Land Use Assumptions—Year 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>New and Total Dwelling Units</td>
</tr>
<tr>
<td>Coburg Comprehensive Plan</td>
<td>1,819</td>
</tr>
</tbody>
</table>

5.1.2 Goal and Objectives Findings

This subsection describes how the Recommended Alternative is consistent with the goal and objectives set forth in this IAMP (see Section 1.5).

Goal

Reflect collaborative work with ODOT, Lane County, and the City of Coburg and outline recommendations for transportation improvements and policy and implementation measures that will maximize the operation of the interchange and accommodate future planned growth in the interchange management area.

Response: This IAMP was a collaborative effort, including ODOT, Lane County, and the City of Coburg. The Project Management Team (PMT) included members from all three jurisdictions/ agencies. The Recommended Alternative includes recommendations for both transportation improvements and policy measures intended to accommodate growth as provided for in the Coburg Comprehensive Plan.

Objectives

- Protect long-term safety and operations of the interstate and local road network

Response: Recommendations included as part of the Recommended Alternative are intended to protect long-term safety and operations. Recommendations include interchange and local intersection modifications, which will increase available capacity. Pedestrian, bicycle, transit, and TDM components of the Recommended Alternative also address improvement of operations. Operational analysis shows that the Recommended Alternative will meet ODOT and Lane County operational standards in year 2031. Recommendations also include access management actions and policies, which work to improve operations and safety due to a reduction in potential conflict points.

- Build on the work in the Refinement Plan as adopted in the Coburg TSP

Response: This IAMP looked to the Preferred Concept outlined in the Refinement Plan as a starting point for interchange area improvement alternatives. The Recommended Alternative is generally consistent with the Preferred Concept outlined in the
Refinement Plan (a diamond interchange), but also includes increases in interchange and local intersection capacity and the inclusion of comprehensive access and policy measures.

- **Accommodate 2031 planned growth for the Coburg/I-5 interchange management area as outlined in the Coburg Comprehensive Plan**

 Response: The Recommended Alternative accommodates 2031 planned growth through interchange modifications, modifications to the local street system, enhanced pedestrian and bicycle facilities, access management plans, and policy and implementation measures. Operational analysis shows that the Recommended Alternative will accommodate traffic levels at appropriate ODOT and Lane County standards by year 2031.

- **Preserve public investments in the Coburg/I-5 interchange and adjacent transportation network**

 Response: The Recommended Alternative will meet ODOT design standards, will achieve appropriate ODOT and Lane County operational standards for year 2031 traffic levels, and will move toward compliance with ODOT access management standards. The alternative includes policy and implementation measures that consider future land development to protect the operations of a newly reconstructed interchange. It also includes a four-lane bridge, which will offer better management/channelization of anticipated traffic, as well as allowing for future interchange modifications (e.g., addition of a loop ramp) if deemed necessary beyond year 2031.

- **Plan for future management of the interchange and adjacent land uses**

 Response: The Recommended Alternative includes recommendations that relate to future development of adjacent land uses. When land develops or redevelops within the interchange management area, development applications will trigger access and traffic analysis requirements.

- **Work with Coburg and Lane County to develop a plan for road network, right-of-way, access, and land within the interchange management area**

 Response: The Recommended Alternative represents a collaborative effort among ODOT, Lane County, and the City of Coburg to provide road, access, and land plans within the interchange management area. The Recommended Alternative includes an access management plan, and also includes policies related to the development of a local grid street system west of I-5 as land develops.

- **Provide recommendations for enhancement of the pedestrian and bicycle system**

 Response: The Recommended Alternative includes an interchange bridge with pedestrian and bicycle facilities that extend multimodal system connectivity.

- **Provide recommendations that do not preclude expanded use of transit and other transportation measures such as transportation demand management (TDM)**

 Response: The Recommended Alternative does not preclude transit or TDM, in that it provides improved nonmotorized access to transit stops and includes recommendations for enhanced TDM and signal optimization.
• Provide for OTC adoption of a plan so existing funds can be accessed for interchange reconstruction

Response: The Recommended Alternative is the culmination of the IAMP and project planning process, and sets the stage for next steps for interchange design and reconstruction. Adoption of the IAMP by the OTC, City, and County fulfills this requirement.

• Ensure integration of land use and transportation planning

Response: The Recommended Alternative includes both operational and physical transportation improvements and recommendations related to policies and code affecting land uses. The Recommended Alternative requires managed population and employment growth within the study area, and requires mitigation for trip generation higher than planned growth.

• Provide certainty for property and business owners and local governments

Response: The Recommended Alternative defines physical improvements over the short-, medium-, and long-term planning horizons. The Recommended Alternative also identifies conditions and/or associated actions/opportunities that cause such improvements to occur. Adoption of the IAMP will provide a foundation for public and private interests and certainty for the development application process in the IAMP management area.

5.2 Recommended Alternative—Operational and Physical Improvements

In its current configuration, the Coburg/I-5 interchange would not support traffic anticipated by 2031 due to growth in employment and population. Without improvement, intersections would be congested, and vehicles would be anticipated to back up onto the I-5 mainline.

The implementation of the Recommended Alternative would result in acceptable operations, safety conditions, and design conditions by year 2031 within the Coburg/I-5 interchange management area.

The Recommended Alternative infrastructure improvement includes the following operational and physical improvements and associated actions to be managed by ODOT, the City of Coburg, and Lane County. Jurisdictions in parentheses indicate the lead responsibility for each action.

5.2.1 Short-Term Operational/Physical Improvements (0 to 7 years)

• I-5 Southbound ramps: Install a new exclusive eastbound right-turn lane on Pearl Street and southbound on-ramp receiving lane (ODOT).

ODOT would purchase any impacted private property or private accesses as a result of any of the physical improvements. Access and circulation plans will be coordinated with affected property owners.
• Realign Roberts Road to meet the existing signalized Coburg Industrial Way intersection. The newly realigned Roberts Road would be constructed to road standards that accommodate freight vehicles (ODOT).

• Add a new connection between the aligned Roberts Road and original Roberts Road (ODOT).

• Purchase access control and do not allow any new private accesses west of I-5 along Pearl Street from the interchange ramp to a point 1,000 feet west of Coburg Industrial Way. In the interim, allow the Stuart Way driveway access at Pearl Street. Upon redevelopment of the Truck and Travel site (located east and west of Stuart Way), realign Stuart Way west of its current location to improve spacing with Coburg Industrial Way.

• Close access to the original Roberts Road at Pearl Street. This closure would only occur after or at the same time as the opening of the new Roberts Road/Coburg Industrial Way intersection to ensure continuous business access. A cul-de-sac will be constructed at the north termination of the original Roberts road that is navigable for WB-67 trucks (ODOT).

• Install a northbound left-turn pocket on Coburg Industrial Way at Pearl Street (ODOT).

• Coordinate traffic signal operations along Pearl Street; ensure signal optimization (ODOT/Lane County).

• Purchase access control and do not allow any new private access east of I-5 along Van Duyn Road from the interchange ramp terminal to Hereford Road and do not allow any full accesses within 1,320 feet of the interchange ramp terminal (ODOT). In the interim, allow the properties within the Urban Growth Boundary (UGB) to continue to access Van Duyn directly from within the UGB. Upon redevelopment of one or more of these properties within the current UGB, implement changes to this access as needed to address safety issues or seek development and use of the access road right-of-way purchased by ODOT during the initial phase of the interchange project if it has not already been developed as part of a subsequent phase of the interchange project (ODOT).

• Purchase right-of-way needed to construct an access road from the areas with the Coburg UGB east of I-5 to a point approximately 1320' east of the northbound ramp terminals (eventual construction of this access road will require an exception to Goal 3 of the statewide planning goals—if an exception is not granted by Lane County, ODOT will need to develop an alternative access approach to address this issue) (ODOT). See Appendix L for the justification for a goal exception.

• Work with Lane Transit District to expand Bus Rapid Transit to Coburg (City of Coburg).

• Market Lane Transit District’s Group Pass Program to employers, and promote carpool and vanpool services (City of Coburg).

• As Coburg develops, monitor the need for a park-and-ride (City of Coburg).
5.2.2 Long-Term Operational/Physical Improvements (8+ years)

- Signalize the I-5 southbound ramp terminals by 2031 or sooner if signal warrants are met and the signal is approved by the State Traffic Engineer (ODOT).

- Reconstruct the Coburg/I-5 interchange bridge structure to four lanes, with full standard pedestrian and bicycle facilities and adequate height to meet the appropriate standard. The bridge is to include two westbound lanes with a turn pocket leading to the I-5 southbound on-ramp, one eastbound through lane, and one eastbound left-turn lane leading to the I-5 northbound on-ramp. ODOT will work with property owners to purchase property impacted due to the interchange reconstruction. The bridge structure will need to be lengthened to reduce the approach slope to meet current design standards. The bridge length will also need to factor in future potential widening of I-5. This improvement could take place earlier if adequate funding is secured for construction (ODOT).

- Consolidate all accesses on the southern side of Van Duyn Road to a point at least 1,320 feet from the north-bound ramp terminal intersection. Close accesses less than 1,320 feet from this location and construct an alternate access road. This road may be constructed by ODOT and maintained as a public road by Lane County or the City of Coburg, or it may be constructed privately in conjunction with redevelopment of properties within the Coburg UGB east of I-5, depending on the timing and availability of funds to construct future phases of the interchange project (eventual construction of this access road will require an exception to Goal 3 of the statewide planning goals — if an exception is not granted by Lane County, ODOT will need to develop an alternative access approach to provide access to the urban properties east of I-5) (ODOT, other responsible parties). See Appendix L for the justification for a goal exception.

- Implement local circulation improvements consistent with the Coburg TSP that provide alternative circulation and access for the land north of Pearl Street and west of I-5 within the IAMP study area (City of Coburg).

- Design and construct the northern and southern connection alignments (extending Coburg Industrial Way north and Roberts Road south) as depicted in Map 16 of the Coburg TSP (City of Coburg).

5.3 Recommended Alternative—Access Management Plan

Access management and access spacing are important for traffic operations and safety. Access management is intended to reduce conflict points in order to improve mobility and minimize potential for collisions. As part of the Coburg/I-5 IAMP, access locations and public street connections were examined in order to meet the goals and objectives of the IAMP.

The Access Management Plan identifies access management actions that move access spacing along Pearl Street and Van Duyn Road toward access management standards as

14 This improvement is conceptually identified in the City of Coburg TSP. Because it would be located within the Coburg/I-5 interchange management area, it is included as a physical/operational improvement.
defined in the OHP. For the Coburg/I-5 IAMP, the minimum spacing standard is 1,320 feet from the I-5 ramp terminal intersection for placement of the next full access road or driveway. This standard is based on research regarding optimal safety and operations near Interchanges. As discussed in Section 2, several public and private accesses are currently located within 1,320 feet of the ramp intersections on both sides of the interchange.

The Access Management Plan identifies driveways that will ultimately need to be relocated, consolidated, or closed to achieve the safety and mobility objectives of the state's access management standards. Relocation, consolidation, or closure of driveways will be paired with enhancement of the local street circulation system (e.g., frontage roads).

Figure 5-1 depicts access recommendations in the interchange management area. Descriptions of the recommendations follow.

5.3.1 Van Duyn Road (East of I-5)

- Purchase access control and do not allow any new private access east of I-5 along Van Duyn Road from the interchange ramp terminal to Hereford Road and do not allow any full accesses within 1,320 feet of the interchange ramp terminal. In the interim, allow the properties within the Urban Growth Boundary (UGB) to continue to access Van Duyn directly from within the UGB. Upon redevelopment of one or more of these properties within the current UGB, implement changes to this access as needed to address safety issues or seek development and use of the access road right-of-way purchased by ODOT during the initial phase of the interchange project if it has not already been developed as part of a subsequent phase of the interchange project.

- Consolidate all accesses on the southern side of Van Duyn Road to a point at least 1,320 feet from the north-bound ramp terminal intersection. Close accesses less than 1,320 feet from this location and construct an alternate access road. This road may be constructed by ODOT and maintained as a public road by Lane County or the City of Coburg, or it may be constructed privately in conjunction with redevelopment of properties within the Coburg UGB east of I-5, depending on the timing and availability of funds to construct future phases of the interchange project. (eventual construction of this access road will require an exception to Goal 3 of the statewide planning goals—if an exception is not granted by Lane County, ODOT will need to develop an alternative access approach to provide access to the urban properties east of I-5).

- If land uses change in the northeast quadrant of the interchange management area, consolidate all accesses on the northern side of the road to a public road approach that aligns opposite the consolidated approach south of Van Duyn Road.

18 For the Oregon Highway Plan, right-in/right-out accesses are permissible 750 feet from an interchange ramp terminal.
5.3.2 Pearl Street (West of I-5)

- Purchase access control and do not allow any new private accesses west of I-5 along Pearl Street from the interchange ramp to a point 1000 feet west of Coburg Industrial Way. In the interim, allow the Stuart Way driveway access at Pearl Street. Upon redevelopment of the Truck and Travel site (located east and west of Stuart Way), realign Stuart Way west of its current location to improve spacing with Coburg Industrial Way.

- Realign Roberts Road with the signalized Coburg Industrial Way.

- Construct an east-west connection between the realigned Roberts Road and original Roberts Road.

- Close access to Pearl Street from the original Roberts Road.

- Develop local circulation options that provide private properties north and south of Pearl Street the opportunity to access the signalized intersection of Pearl Street and the realigned Roberts Road/Coburg Industrial Way. Specific internal access circulation will be developed by the City of Coburg and individual property owners.

- Close access to Pearl Street from Daray Street. Properties will be accessed via frontage or backage roads (from Coburg Industrial Way/realigned Roberts Road).

- Develop a local road system consistent with the current Coburg TSP. The local grid system developed will connect directly onto Pearl Street within the study area.

5.3.3 Access Management Deviations

When implemented, the IAMP Access Management Plan reduces the number of approaches to Pearl Street/Van Duyn Road by a total of 11 (including private drives; four of the accesses are public streets that are either realigned or redirected).

Under OAR 734-051-0135(5) the ODOT Region Access Management Engineer “shall require any deviation for an approach located in an interchange access management area as defined in the Oregon Highway Plan, to be evaluated over a 20-year horizon from the date of application and may approve a deviation for an approach located in an interchange access management area if:… (b) The approach is consistent with an access management plan for an interchange that includes plans to combine or remove approaches resulting in a net reduction of approaches to the highway.” Deviations identified in this IAMP are consistent with this statute.

Table 5-2 addresses all approach locations where access deviations will be required and provides a rationale for why the deviations should be granted. Figure 5-2 shows the locations of these accesses and the approach number that corresponds to Table 5-2.
TABLE 5-2

<table>
<thead>
<tr>
<th>Approach #</th>
<th>Tax Lots Served or Road Name</th>
<th>Deviation Request Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stuart Way/Pearl Street</td>
<td>The intersection of Stuart Way and Pearl Street lies within 1,320 feet from the interchange ramp. The City of Coburg has permitted Stuart Way to be vacated. In the interim, this access shall be allowed to stay open for access to the Truck 'n Travel site (the portion of the Anderson property east of Stuart Way). Upon redevelopment of the portion of the Anderson property west of Stuart Way (tax lot 2600), the Stuart Way access reservation shall be required by ODOT permit to be relocated to a point somewhere between the existing Stuart Way intersection and the far west side of tax lot 2600. The purpose of this relocation is to provide improved access spacing between the relocated (formally Stuart Way) access point and the intersection of Pearl Street and Coburg Industrial Way/Roberts Road. The precise location of the relocated access point will be determined through the City's site plan review process and the traffic analysis required by ODOT's permit process. Upon redevelopment of tax lot 2600 or the Truck 'n Travel Site, the present location of Stuart Way will be closed and Truck 'n Travel will begin using the relocated Stuart Way across tax lot 2600.</td>
</tr>
<tr>
<td>2</td>
<td>160332402900</td>
<td>As part of the Recommended Alternative recommended in this IAMP, Roberts Road will be closed at Pearl Street and realigned with Coburg Industrial Way. Once the Roberts Road realignment is complete, this private access will be closed, and access to this property will occur via the realigned Roberts Road. In the interim, this access should be allowed to stay open for property access. Internal local circulation will be discussed directly between ODOT and property owners.</td>
</tr>
<tr>
<td>3</td>
<td>Coburg Industrial Way/Realigned Roberts Road at Pearl Street</td>
<td>The intersection of Coburg Industrial Way and Pearl Street lies within 1,320 feet from the interchange ramp. This location will be where the realignment of Roberts Road lies in to Pearl Street, in order to be able to close Roberts Road and private driveways to the south of Pearl Street. This location was identified in the Refinement Plan after a review of alternatives and extensive public process. As part of this IAMP, Roberts Road will be closed at Pearl Street and realigned to this location south of Coburg Industrial Way, thereby moving toward ODOT access management standards. Coburg Industrial Way is identified in the Coburg TSP and Lane County TSP as an integral piece of Coburg's circulation system.</td>
</tr>
<tr>
<td>4</td>
<td>1603330000601</td>
<td>As part of the Recommended Alternative recommended in this IAMP, Roberts Road will be closed at Pearl Street and realigned with Coburg Industrial Way. Once the Roberts Road realignment is complete, this private access will be closed, and access to this property will occur via the realigned Roberts Road. In the interim, this access should be allowed to stay open for property access. Internal local circulation will be discussed directly between ODOT and property owners.</td>
</tr>
<tr>
<td>5</td>
<td>1603330000501</td>
<td>As part of the Recommended Alternative recommended in this IAMP, Roberts Road will be closed at Pearl Street and realigned with Coburg Industrial Way. Once the Roberts Road realignment is complete, this private access will be closed, and access to this property will occur via the realigned Roberts Road. In the interim, this access should be allowed to stay open for property access. Internal local circulation will be discussed directly between ODOT and property owners.</td>
</tr>
</tbody>
</table>
TABLE 5-2

IAMP Access Deviations

<table>
<thead>
<tr>
<th>Approach #</th>
<th>Tax Lots Served or Road Name</th>
<th>Deviation Request Rationale</th>
</tr>
</thead>
</table>
| 6 | 1603330000502
 | 1603330000500 | Roberts Road will be closed at Pearl Street and realigned with Coburg Industrial Way. Once the Roberts Road realignment is complete, this private access will be closed, and access to this property will occur via the realigned Roberts Road. In the interim, this access should be allowed to stay open for property access. Internal local circulation will be discussed directly between ODOT and property owners. | |
| 7 | 1603330000102 | As part of this IAMP, once land in the northwest quadrant of the IAMP study area develops or redevelops, the land use application will trigger the development and implementation of a local circulation plan that connects to Pearl Street via Coburg Industrial Way. Direct access to Pearl Street will not be permitted within the IAMP interchange management area. Because this access serves an existing business, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access only until development or redevelopment occurs on adjacent property. Internal local circulation will be discussed directly between ODOT and property owners. |
| 8 | 1603330000102 | As part of this IAMP, once land in the northwest quadrant of the IAMP study area develops or redevelops, the land use application will trigger the development and implementation of a local circulation plan that connects to Pearl Street via Coburg Industrial Way. Direct access to Pearl Street will not be permitted within the IAMP interchange management area. Because this access serves an existing business, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access only until development or redevelopment occurs on adjacent property. Internal local circulation will be discussed directly between ODOT and property owners. |
| 9 | Daray Street | As part of this IAMP, once land in the northwest quadrant of the IAMP study area develops or redevelops, the land use application will trigger the development and implementation of a local circulation plan that connects to Pearl Street via Coburg Industrial Way. Direct access to Pearl Street will not be permitted within the IAMP interchange management area. Because this access serves an existing business, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access only until development or redevelopment occurs on adjacent property. Internal local circulation will be discussed directly between ODOT and property owners. |
| 10 | 1603330000200 | All accesses east of I-5 along Van Dyun Road will be rerouted to a new intersection 1,320' east of the interchange ramp terminal that will connect with a frontage road. Because this access serves an existing purpose, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access in the meantime. |
| 11 | 1603330000207 | All accesses east of I-5 along Van Dyun Road will be rerouted to a new intersection 1,320' east of the interchange ramp terminal that will connect with a frontage road. Because this access serves an existing purpose, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access in the meantime. |
| 12 | 1603330000206 | All accesses east of I-5 along Van Dyun Road will be rerouted to a new intersection 1,320' east of the interchange ramp terminal that will connect with a frontage road. Because this access serves an existing purpose, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access in the meantime. |
TABLE 5-2
IAMP Access Deviations

<table>
<thead>
<tr>
<th>Approach #</th>
<th>Tax Lots Served or Road Name</th>
<th>Deviation Request Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1003330000101</td>
<td>All accesses east of I-5 along Van Duyne Road will be rerouted to a new intersection 1,320’ east of the interchange ramp terminal that will connect with a frontage road. Because this access serves an existing purpose, and because currently there are no reasonable alternative accesses to this property, a deviation should be allowed to allow access in the meantime.</td>
</tr>
</tbody>
</table>
SECTION 6

IAMP Recommended Alternative—Policies and Implementation Measures

Adopting policies and other implementation measures are critical to protecting the Recommended Alternative infrastructure investments. IAMP Section 6 summarizes policies to be adopted by the City of Coburg, Lane County, and the OTC. IAMP Section 7 summarizes development code language to be adopted by the City of Coburg, Lane County, and the OTC. Section 8 summarizes the adoption process and the processes for monitoring and updating the IAMP.

6.1 Policy Framework

The following policy framework is to be adopted by the City of Coburg, Lane County, and the OTC.

6.1.1 IAMP Definition and Purpose

The City of Coburg (City), Lane County (County), and Oregon Department of Transportation (ODOT) recognize the importance of Interstate 5 in the movement of people and goods, and are committed to protecting the function of the Coburg/I-5 interchange (Milepost 199.15). The Coburg/I-5 Interchange Area Management Plan and Boundary is defined as the following:

A City of Coburg Special District in the City of Coburg Comprehensive Plan map and a Lane County Combining (Overlay) zone in the Lane County Comprehensive Plan map within which ODOT will monitor and review development proposals and proposed land use changes and coordinate with the City and County to meet ODOT access safety spacing standards, mobility standards, and address other possible traffic impacts on the subject interchange, as appropriate.

The Coburg/I-5 Interchange Area Management Plan (IAMP) is intended to (1) describe plans for operational, physical, and access improvements; and (2) anticipate and provide direction for the development of land inside the interchange management area in a manner that does not compromise the function or operation of the interchange.

6.1.2 IAMP Policies and Actions

The following policies and actions shall be adopted and implemented by ODOT (through this IAMP and development of the interchange improvement project), and Lane County and the City of Coburg (through amendments to their respective Transportation System Plans and Comprehensive Plans).

1. ODOT and the City of Coburg and Lane County establish the Coburg/I-5 Interchange Management Area overlay as depicted in Figure 6-1.

PDX/082680005.DOC 51
2. If full construction of the improvements described herein as the Recommended Alternative (Alternative B), and depicted in Figures 4-2 and 5-1, occur in advance of the City of Coburg expanding its urban growth boundary and updating its comprehensive plan and zoning to fully accommodate its regional population and employment forecasts, in order to preserve capacity for future City of Coburg comprehensive plan updates, ODOT shall establish alternative mobility standards to protect any excess capacity provided by an improvement at the Coburg/1-5 interchange ramps as follows.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Van Dyne Road/1-5 Northbound Ramps</th>
<th>Pearl Street/1-5 Southbound Ramps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Mobility Standard</td>
<td>0.55 V/C Ratio</td>
<td>0.65 V/C Ratio</td>
</tr>
</tbody>
</table>

3. If full construction of the improvements described herein as the Recommended Alternative (Alternative B) occur in advance of the City of Coburg expanding its urban growth boundary and updating its comprehensive plan and zoning to fully accommodate its adopted population and employment forecasts, in order to preserve capacity for future City of Coburg comprehensive plan updates, the City of Coburg shall establish an alternative mobility standard to protect any excess capacity provided by an improvement at the Pearl Street/Coburg Industrial Way intersection as follows.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Pearl Street/Coburg Industrial Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Mobility Standard</td>
<td>0.80 V/C Ratio</td>
</tr>
</tbody>
</table>

4. The City and County will coordinate with ODOT prior to amending their transportation system plans, proposing transportation improvements that could affect the function of the Coburg/1-5 Interchange Area, or proposing changes that are inconsistent with the IAMP.

5. If the City expands its urban growth boundary and updates its comprehensive plan and zoning to fully accommodate its adopted population and employment forecasts after construction of the interchange and local access and circulation improvements described herein as the Recommended Alternative (Alternative B), ODOT will work with the City and Lane County to amend the IAMP, as necessary, to recognize and support those updates. This amendment shall include adjustment of the Alternative Mobility Standards at the interchange ramps to accommodate the additional growth, but not to exceed the mobility standards in the OHP that apply to the Coburg/1-5 interchange (ramp terminal V/C ≤ 0.8). ODOT will also work with the County to modify the alternative mobility standards set for the Pearl Street/Coburg Industrial Way intersection.

6. If the City expands its urban growth boundary to fully accommodate the population and employment forecasts in the Regional Transportation Plan (RTP) before construction of the interchange and local access and circulation improvements described herein as the Recommended Alternative (Alternative B), the mobility standards in the OHP that apply to the Coburg/1-5 interchange (ramp terminal V/C ≤ 0.8) shall be applied to any

16 As adopted for the federally designated Metropolitan Planning Organization planning area, by the Metropolitan Policy Committee (MPC).
subsequent comprehensive plan and zoning updates initiated by the City for the purposes of complying with Oregon Administrative Rule 660-012-0060.

7. The City and County shall coordinate with ODOT in the review of land use applications for areas within the interchange area management boundary. Land use actions within the interchange management area that may affect the performance of an interchange, such as zone changes, land development applications, and requests for new local access, will be consistent with the adopted IAMP. The City Planner shall include ODOT as an agency referral partner. Actions not consistent with the IAMP may only be approved by also amending the IAMP and related transportation system plans consistent with OAR 660-012-0050 and 0055.

8. The City of Coburg shall adopt traffic impact analysis (TIA) requirements as outlined in Section 7 for the interchange management area. Lane County developments are subject to Lane County TIA requirements, specified in Lane County's TSP, adopted in 2004.

9. In the event that Coburg seeks to expand its urban growth boundary east of I-5, the City of Coburg, Lane County, and ODOT shall reassess the viability of the IAMP local circulation recommendations and shall identify and ensure any new facilities needed to serve the resulting growth pattern are properly planned for, including an implementation strategy—this reassessment may include consideration of a new or enhanced I-5 bridge crossing to reduce potential travel demand on Pearl Street at the interchange ramp intersections.

10. Access spacing requirements shall be implemented consistent with and to meet or exceed the minimum standards in the 1999 Oregon Highway Plan, Policy 3C, as follows:

(a) When new approach roads are planned or constructed near the interchange, unless no alternative access exists, the nearest intersection on a crossroad shall be no closer than 1,320 feet from the interchange. Measurement is taken from the ramp intersection or the end of a free flow ramp terminal merge lane taper;

(b) Existing private accesses shall be closed along Pearl Street and Van Duyn Road where access control has been purchased by ODOT and when alternative access to public roads is provided.

(c) Deviations

i. Deviations shall be permitted as identified in Section 5.3.3 of this IAMP.

ii. Deviations not identified in Section 5.3.3 may be permitted for new access for farm and forestry equipment and associated farm uses, as defined in ORS 215.203, on lands zoned for exclusive farm use, and accepted forest practices on those lands that are within the interchange management area, but only when access meeting the standards in 10(a) above is unfeasible.

(d) Until such time as ODOT purchases access rights on any County Road or City Street that is designated for restricted access by this IAMP, any redevelopment of property within the IAMP area that would result in a greater number of average daily trips or an increase in large truck trips will require written approval from the Oregon Department of Transportation pursuant to an Intergovernmental Agreement to be
established between the City of Coburg, Lane County, and ODOT, and subject to the limits of applicable county or city codes. When ODOT has purchased access rights, any redevelopment of property within the IAMP area that would result in a greater number of average daily trips or an increase in large truck trips will be subject to the provision of ODOT's Access Management Administrative Rule (OAR 734-051).

(e) ODOT shall purchase access control east of I-5 along both sides of Van Duyn Road from the interchange ramp terminal to Hereford Road and west of I-5 along both sides of Pearl Street from the interchange ramp terminal to a point 1,000 feet west of Coburg Industrial Way. New approaches shall be deed restricted to specific uses.

11. The City and County shall work with ODOT to implement the operational, physical, and access recommendations included in Section 5 of this IAMP.

12. Work with Lane Transit District to expand bus rapid transit to Coburg (City of Coburg, Lane County).

13. Market Lane Transit District's Group Pass Program to employers, and promote carpool and vanpool services (City of Coburg).

14. As Coburg develops, monitor the need for a park-and-ride (City of Coburg, ODOT).
SECTION 7
IAMP Recommended Alternative—Development Code

Implementation measures are critical to protecting Recommended Alternative infrastructure investments. IAMP Section 7 summarizes development code language to be adopted by the City of Coburg and Lane County. Section 8 discusses the adoption process and the processes for monitoring and updating the IAMP.

7.1 Development Code Language

The following development code language applies to any land use proposal for lands within the Coburg/I-5 Interchange Management Area. Any development on unincorporated Lane County land within the interchange management area is subject to Lane County traffic impact analysis standards.

7.1.1 Traffic Impact Analysis

Traffic Impact Analysis Requirements for Land within the Interchange Management Area:

1. For purposes of this section, the IAMP Special District (City of Coburg) or Combining Zone (Lane County) area shall be as defined in Figure 6-1 of this IAMP and represented in the map and legal description of the Coburg Special District area and County Combining Zone area that are shown in Appendix M and included in each jurisdiction’s development code.

2. Within the IAMP Special District for lands within the City of Coburg, for city streets, a traffic impact analysis (TIA) shall be required for all proposed development that will generate more than 100 AM or PM peak hour trips per day or 600 Average Daily Trips. Trip calculation shall be based upon Trip Generation, 8th Edition (2008) published by the Institute of Transportation Engineers.

3. For County Roads within the IAMP Combining Zone area, a TIA shall be required in accordance with Lane Code Chapter 15.697.

4. Within the IAMP Special District or Combining Zone Area, TIAs shall be prepared in accordance with ODOT’s 2005 Development Review Guidelines. TIA adequacy shall be determined jointly by ODOT, the City of Coburg, and Lane County. If a conflict exists between ODOT Development Review Guidelines and applicable County or City requirements, ODOT Development Review Guidelines shall be applied by ODOT. Any required mitigation associated with the ODOT permitting process shall be determined by ODOT with participation by the City of Coburg and Lane County with regard to their respective requirements, and shall be consistent with the requirements in OAR 734-051 and OAR 600-012-0050. Any required mitigation associated with the local land use authority shall be by the City of Coburg and/or Lane County, as appropriate, with
regard to their respective requirements and with participation of ODOT, and shall be consistent with the requirements in OAR 734-051 and OAR 660-012-0050.

5. ODOT shall be responsible for any enforcement necessary to implement ODOT requirements through the ODOT permitting process that are not specified in Lane County or City of Coburg respective requirements.

7.2 Plan and Zone Map Changes

Coburg and Lane County shall amend their development codes as follows:

1. Coburg shall create a Plan Designation and corresponding new “special district” called the IAMP Overlay District to implement the provisions of this IAMP.

2. Lane County shall create a Plan Designation and corresponding “Combining Zone” called the Interchange Area Combining Zone to implement the provisions of this IAMP.

3. The Coburg and Lane County Plan Designation and Zoning Maps shall be amended to show the respective IAMP plan and zoning areas.
SECTION 8
IAMP Implementation, Monitoring, and Updates

Section 8 discusses implementation authority and the processes for monitoring and updating the IAMP.

8.1 Implementation Authority

Development, adoption, and implementation of this IAMP are determined by regulatory authority. Local agency authority comes through state statutes, and city and county comprehensive plans and development codes. State of Oregon authority comes in the form of policy and administrative rules governing authority over federal and state systems, as granted through the following:

• State Agency Coordination Rule and Agreement (SAC 1990—OAR 731-015): The purpose of this rule is to define what ODOT actions are land use actions and how ODOT will meet its responsibilities for coordinating these activities with the statewide land use planning program, other state agencies, and local government.

• Transportation Planning Rule (OAR 660-012): The TPR implements statewide planning goal 12 and is one of several statewide planning rules that promotes protection of the long-term livability of Oregon's communities for future generations. The rule requires multi-modal transportation plans to be coordinated with land use plans. In satisfying the goal, state and local governments must satisfy requirements that are intended to promote development of a transportation system that is consistent with and supportive of planned land uses (and vice versa).

• Access Management Rule (OAR 734-051): The Access Management Rule, commonly referred to as Division 51, regulates the location, construction, maintenance, and use of approaches to state highway rights-of-way and properties under the jurisdiction of ODOT. These rules also govern the closure of existing approaches, spacing standards for approaches and driveways, medians, deviations from standards, appeal process, grants of access, and indentures of access.

8.2 Monitoring and Updates

It is the responsibility of ODOT to monitor this IAMP. An update to this IAMP should be completed within the next 5 to 10 years, given the amount of vacant land in the Coburg/I-5 interchange area.

This IAMP should be updated if/when any of the following occur:

• It is 5 to 10 years after the adoption of this IAMP.

• The Coburg Comprehensive Plan is amended, and such update affects the interchange.
• The *Lane County Comprehensive Plan* is amended, and such update affects the interchange.

• Development occurs in Coburg that is significantly different from the development assumptions in the *Coburg or Lane County Comprehensive Plans*.
ATTACHMENT E

ORDINANCE NO. A-199C

AN ORDINANCE ADOPTING THE COBURG/I-5 INTERCHANGE AREA MANAGEMENT PLAN (IAMP) AS A REFINEMENT PLAN TO THE COMPREHENSIVE PLAN

WHEREAS, the State of Oregon Department of Transportation (ODOT) has enacted their authority to require the adoption and implementation of an IAMP prior to reconstruction of the Coburg/I-5 interchange;

WHEREAS, the City of Coburg adopted a Transportation System Plan (TSP) on November 1999 (Ord. A-133L) that identified the need to develop and adopt an IAMP for the Coburg/I-5 Interchange;

WHEREAS, notice of a Joint public hearing before the Coburg and Lane County Planning Commissions was sent via mail to all property owners within the IAMP Study Area and 300 feet beyond the Study Area, published in the Register Guard January 11, 2009 and sent to all parties on ODOT’s interested parties distribution list;

WHEREAS, a second notice of the City Council public hearing was published in the Register Guard March 2, 2009 and was sent via mail to all property owners within the IAMP Study Area and 300 feet beyond the Study Area, and sent to all parties on ODOT’s interested parties distribution list;

WHEREAS, the City held a public hearing before the Coburg and Lane County Planning Commissions on January 21, 2009 and before the City Council March 10, 2009, took testimony on this matter, taking said testimony into consideration in making its decision;

WHEREAS, the Coburg Planning Commission unanimously recommended to City Council at the March 3, 2009 meeting to adopt the IAMP;

WHEREAS, on March 10, 2009 Coburg City Council conducted a public hearing and first reading of the IAMP; and

WHEREAS, on April 14, 2009 Coburg City Council conducted a second reading of the IAMP;

THE CITY OF COBURG ORDAINS AS FOLLOWS:

Section 1. The City of Coburg Zoning Ordinance No. A-200C shall be amended to adopt the IAMP as set forth as Exhibit A, which is incorporated herein by this reference,
so as to comply with the Coburg Comprehensive Plan; sub-policies to Goal 12 – Transportation, Policy #13.

Section 2. The City of Coburg acknowledges compliance with the appropriate State Planning Goals, and regional, county and local implementing regulations with the Findings of Fact shown as Exhibit B.

Section 3. The City of Coburg Transportation System Plan (TSP) shall be amended to include the adopted IAMP at the time the TSP is next updated, so as to comply with the Coburg Comprehensive Plan and requirements of the IAMP.

Section 4. Severability. The provisions of this Ordinance are severable. If any section, sentence, clause or phrase of this Ordinance is judged by any court of competent jurisdiction or by the land Conservation and Development Commission to be invalid, the declaration shall not affect the validity of the remaining portions of the Ordinance.

This Ordinance, after public notices, hearings, Planning Commission and City Council deliberations, was upon motion and second, put to a final vote. The vote of the Council was:

YES: __________
NO: __________
ABSTENTIONS: ______________
PASSED: ______________
REJECTED: ______________

Signed and Approved by the Mayor this 14th day of April, 2009.

ATTEST: _______________

Judy Volta, Mayor

Sammy Egbert, City Recorder
EXHIBIT A

Add the following sub-policies to the City of Coburg Comprehensive Land Use Plan, Goal 12 - Transportation, Policy # 13:

13.2 The City shall adopt an Interchange Area Management Plan (IAMP) and boundary for the Coburg Interstate 5 interchange. The IAMP boundary will be shown on city zoning maps.

13.3 The City supports the enactment of special land use regulations and development standards for the Coburg IAMP boundary for the purpose of protecting interchange function and capacity consistent with adopted city and county land use plans. Special regulations may include but are not limited to requirements for traffic impact studies, access standards that differ from standards in other areas of the county, trip generation limits, and requirements for mitigation concurrent with development.

13.4 The City will coordinate the review of land use applications for properties within the IAMP boundary with ODOT and Lane County. Land use actions that may affect the performance of the interchange, such as amending the city's transportation system plan, approving land development applications, and approving requests for local access, will be consistent with the regulations in the adopted IAMP. Actions not consistent with the IAMP may only be approved by also amending the IAMP and the transportation system plan consistent with OAR 660-012-050 and 055.
EXHIBIT B

Oregon Statewide Planning Goals and Guidelines

Goal 1: Citizen Involvement

Requirement: Goal 1 requires the development of a citizen involvement program that is widespread, allows two-way communication, provides for citizen involvement through all planning phases, and is understandable, responsive, and funded.

Findings

Task 2 of the IAMP included the development of a citizen involvement plan that allowed for involvement of citizens, stakeholders and public agencies throughout the duration of the project. The plan was a coordinated effort between the Contractor, ODOT, and the City of Coburg and included the Technical Advisory Committee, the general public, the Coburg Crossroads Stakeholder group, the Periodic Review Core Team, affected public agencies, transportation providers, and transportation interest groups. Two meetings were held with the Periodic Review Core Team, both of which were open to the public. Two joint meetings were held with the City Council and the Planning Commission, which were also open to the public. Two open houses were held to inform the public and gather their input; written notices were sent out prior to the meetings to invite participation. Written public comment was accepted throughout the project. Several individual meetings were conducted with property owners in the project vicinity. In addition, public notice for the hearings on this application will be provided through the City of Coburg and Lane County notification procedures. The public will have opportunity to review the application and staff report in advance of the public hearings, and to provide testimony at the hearings. A copy of the citizen involvement plan and actions taken to engage citizens in the planning process are included in IAMP Appendix A.

Conclusions

Based on the above findings, the requirements set forth in Goal 1 have been met.

Goal 2: Land Use Planning

Requirement: This goal requires that a land use planning process and policy framework be established as a basis for all decisions and actions relating to the use of land. All local governments and state agencies involved in the land use action must coordinate with each other. With regard to this IAMP, ODOT is required coordinate with Lane County and the City of Coburg, both of which have planning authority over the impacted area.

Findings

Task 3 of this project involved a thorough review and analysis of all relevant state, regional and local planning documents in order to establish a planning process and policy framework for the IAMP. This information can be found in Memo #1, Plans and Policy Review (Appendix B). Throughout the project, the Contractor met with ODOT, Lane County and City of Coburg to discuss objectives, issues and concerns regarding the IAMP. In addition, a Technical Advisory Committee (TAC) was established to guide
the IAMP process. The TAC consisted of representatives from the City, County, DLCD, ODOT, and other local and regional agencies. The alternatives analysis was based on land use assumptions included in the Coburg Comprehensive Plan, and was consistent with forecasts included in the Regional Transportation Plan.

Requirement: Land use decisions and actions must be supported by an "adequate factual base." It is required that there is evidence that a reasonable person would find to be adequate to support findings of fact that a land use action complies with the applicable review standards.

Findings
The IAMP adoption application has prepared a thorough factual base that demonstrates that this proposed action is consistent with the applicable adopted local plans, including the Coburg Comprehensive Plan and the Regional Transportation Plan.

Requirement: City, county, state and federal agency and special district plans and actions related to land use must be consistent with the comprehensive plans of cities and counties and regional plans adopted under Oregon Revised Statues (ORS) Chapter 268.

Findings
Task 3 of this project included a thorough review and analysis of all relevant state, regional and local planning documents, including the Lane County and Coburg comprehensive plans. The IAMP is consistent with the Coburg Comprehensive Plan, as it is based on land use assumptions included in that Plan. The recommended alternative is consistent with the Coburg Comprehensive Plan and traffic forecasts included in the Regional Transportation Plan.

Conclusion
Based on the above findings, the requirements set forth in Goal 2 have been met.

GOAL 11: PUBLIC FACILITIES AND SERVICES
Requirement: Cities and counties shall plan and develop a timely, orderly and efficient arrangement of public facilities and services to serve as a framework for urban and rural development. The goal requires that urban and rural development be "guided and supported by types and levels of urban and rural public facilities and services appropriate for, but limited to, the needs and requirements of the urban, urbanizable and rural areas to be served."

Findings
The IAMP will amend the City of Coburg Transportation System Plan and adds a number of planned improvements at the interchange to the list of TSP projects needed to meet planned urban growth (IAMP, Section 5.2). The IAMP establishes special access management requirements for the interchange area to improve safety and help ensure traffic mobility is maintained (IAMP, Section 5.3). The IAMP also establishes a mobility standard for the interchange that limits growth in traffic to a level commensurate
with the adopted population and employment for the city (IAMP, Section 6). These measures provide a basis for ensuring investment in public facility infrastructure is made in a manner that will accommodate the city’s planned population and employment.

Requirement: Goal 11 prohibits the establishment of sewer systems outside urban growth boundaries and the extension of sewer lines from within UGBs to serve lands outside UGBs, except where a new or extended system is the only practicable alternative to mitigate a public health hazard and will not adversely affect farm or forest land.

Findings
This IAMP does not propose the establishment of new sewer systems outside the urban growth boundary.

Conclusion
The IAMP complies with Goal 11.

GOAL 12: TRANSPORTATION

Requirement: This goal requires cities, counties, metropolitan planning organizations, and ODOT to provide and encourage a “safe, convenient and economic transportation system.” This is accomplished through development of Transportation System Plans based on inventories of local, regional and state transportation needs.

Goal 12 is implemented through OAR 660, Division 12, also known as the Transportation Planning Rule (TPR). The TPR contains numerous requirements governing transportation planning and project development. (See the “OAR 660, Division 12 section of this document for findings of compliance with the TPR).

Findings
The adoption of the Coburg IAMP will ensure that the interchange operates safely and efficiently. Task 7.1 of the IAMP involved a transportation analysis that was conducted in order to determine safety issues, future demand, capacity, deficiencies, and needs for this interchange area. The analysis demonstrates that the recommended alternative in the IAMP will be adequate to serve trips generated by future land uses. An alternative mobility standard is included in the IAMP to protect the interchange capacity in the case that interchange development occurs prior to the anticipated expansion of the Coburg UGB and simultaneous amendment of the Comprehensive Plan. As noted above, the IAMP’s adoption by the city will amend the City of Coburg Transportation System Plan as required by city policy and the TPR for plans that implement local transportation system plans. Coburg development regulations recommended in the IAMP impose new limitations on access to major roads in the IAMP boundary and also require traffic impact studies for development projects that cause a significant impact to the function of the interchange (IAMP, Sections 7.1 and 7.2). Lane County will also adopt the IAMP as part of its Transportation System Plan through policy that recognizes the special regulatory and access limitations on land within the IAMP boundary (IAMP, Section 6). This alters the underlying regulatory framework that applies to new
development in the interchange area regarding access and mobility standards that apply to new development proposals.

Conclusion
The IAMP complies with Goal 12.

GOAL 14: URBANIZATION, AND OAR 660, DIVISIONS 14 AND 22
Requirement: Goal 14 regulates urban growth boundaries. The goal provides that establishment and change of a UGB shall be based upon considerations of the following seven factors:

- Demonstrated need to accommodate long-range urban population growth requirements consistent with LCDC goals;
- Need for housing, economic opportunities, and livability;
- Orderly and economic provision for public facilities and services;
- Maximum efficiency of land uses within and on the fringe of the existing urban area;
- Environmental, energy, economic and social consequences;
- Retention of agricultural land as defined, with Class I being the highest priority for retention and Class VI the lowest priority; and
- Compatibility of the proposed urban uses with nearby agricultural activities.

Additionally, ORS 197.298 establishes priorities for including land inside urban growth boundaries. The first (highest) priority for inclusion is land that is designated “urban reserve” land. The second priority is land adjacent to a UGB that is identified as “an exception area or nonresource land.” The third priority is land that is designated as “marginal land” pursuant to ORS 197.247. The final (lowest) priority is land that is designated for agriculture, forestry, or both.

Findings
This IAMP does not involve any amendments to the Coburg UGB boundary. The EFU land in Lane County, within the Coburg Interchange management area, is lowest priority for inclusion into the UGB. While the proximity of this land to the interchange makes it susceptible over time to inclusion inside a UGB, such an action would need to be based on a demonstration of need and the application of the standards in ORS 197.298. The IAMP does include measures (alternate mobility standards) designed to protect the function of the interchange if it is constructed prior to a Coburg UGB expansion and Comprehensive Plan amendment.

Conclusions
The IAMP complies with Goal 14.

Oregon Transportation Plan (1992)
An IAMP must be consistent with the goals and policies of the OTP. OTP policies that are applicable to an IAMP are:

- Policy 1B (Efficiency)
- Policy 1C (Accessibility)
- Policy 1G (Safety)
• Policy 2B (Urban Accessibility)
• Policy 4G (Management Practices)

An IAMP must include an access management component that identifies approaches on the state highways within the management area and recommends any necessary access changes in order to protect the function of the interchange.

Findings
A plan and policy review was conducted as part of the IAMP planning process that identified relevant OTP policies (Appendix B). The IAMP addresses relevant OTP policies.

Conclusions
The IAMP complies with the OTP.

Oregon Highway Plan
The 1999 Oregon Highway Plan (OHP) establishes policies and investment strategies for Oregon's state highway system over a 20-year period and refines the goals and policies found in the OTP. Policies in the OHP emphasize the efficient management of the highway system to increase safety and to extend highway capacity, partnerships with other agencies and local governments, and the use of new techniques to improve road safety and capacity. These policies also link land use and transportation, set standards for highway performance and access management, and emphasize the relationship between state highways and local road, bicycle, pedestrian, transit, rail, and air systems. The policies applicable to planning for the Coburg interchange improvements are described below, with impacts to interchange planning shown in italic. Under Goal 1: System Definition, the following policies are applicable:

• Policy 1A (Highway Classification) defines the function of state highways to serve different types of traffic that should be incorporated into and specified through IAMPs.
• Policy 1B (Land Use and Transportation) recognizes the need for coordination between state and local jurisdictions; Coordination with local jurisdictions occurred throughout the preparation of the IAMP. A Technical Advisory Committee (TAC) was formed to inform the IAMP. Members included representatives from the City of Coburg, LCOG, ODOT and Lane County.
• Policy 1C (State Highway Freight System) states the need to balance the movement of goods and services with other uses; I-5 is a designated freight route. Policy 1F (Highway Mobility Standards) sets mobility standards for ensuring a reliable and acceptable level of mobility on the highway system by identifying necessary improvements that would allow the interchange to function in a manner consistent with OHP mobility standards; and The purpose of the IAMP is to evaluate the operation of the Coburg Interchange, assess needs and problems, identify future long-range needs, and identify recommended improvements in order to ensure consistency with mobility standards.
• Policy 1G (Major Improvements) requires maintaining performance and improving safety by improving efficiency and management before adding
capacity. ODOT works with regional and local governments to address highway performance and safety. The current Coburg I-5 Interchange Refinement Plan is adopted into the City TSP, and addresses the major investment criteria. The IAMP will continue to implement Policy 1G.

- Policy 1H (Bypasses) establishes criteria for determining the need and impact considerations for a new bypass; directs the preparation of plans, management of access, and provision of local facilities for existing bypasses; and provides a checklist of considerations.

Findings
Under Goal 2: System Management, the following policies are applicable:
- Policy 2B (Off-System Improvements) helps local jurisdictions adopt land use and access management policies; and The IAMP includes sections describing existing and future land use patterns, an access management plan, and implementation measures.
- Policy 2F (Traffic Safety) improves the safety of the highway system. One component of the IAMP is identification of existing crash patterns and rates and to develop strategies to address safety issues, including access management and improvement of operational conditions to avoid backup onto the I-5 mainline.

Findings
Under Goal 3: Access Management, the following policies are applicable:
- Policy 3A: (Classification and Spacing Standards) sets access spacing standards for driveways and approaches to the state highway system;
- Policy 3C (Interchange Access Management Areas) sets policy for managing interchange areas by developing an IAMP that identifies and addresses current interchange deficiencies and short, medium and long term solutions; The access spacing standard designated in the OHP for state highways within a UGB is 1,320 feet from the ramp terminal.
- Policy 3D (Deviations) establishes general policies and procedures for deviations from adopted access management standards and policies. The Access Management Plan component of the IAMP is consistent with adopted access standards. Intersections that do not meet access spacing standards – either in the interim before the interchange improvements are constructed or after construction of interchange improvements – are included in Section 5 of the IAMP.

Findings
The IAMP includes policies that establish desired access conditions consistent with the OHP and regulations that require new development to alter existing access that is not in compliance with the desired condition (1,320'). A frontage road improvement east of the freeway interchange is planned to enable private development to comply with this requirement (IAMP, Section 5.3). Deviations – for intersections not meeting the standard in the interim before interchange improvement construction, and for some not meeting the standard after construction – are included in Section 6 of the IAMP.
Conclusion
The Coburg IAMP complies with the OHP.

OAR 660 Division 12 Transportation Planning Rule (TPR)
The TPR requires local governments to adopt land use regulations consistent with state and federal requirements "to protect transportation facilities, corridors and sites for their identified functions OAR 660-012-0045(2)." This policy is achieved through a variety of measures, including:

- Access control measures which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;
- Standards to protect future operations of roads;
- A process for coordinated review of future land use decisions affecting transportation facilities, corridors or sites;
- A process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities, corridors or sites;
- Regulations to provide notice to ODOT of land use applications that require public hearings, involve land divisions, or affect private access to roads; and
- Regulations assuring that amendments to land use designations, densities and design standards are consistent with the functions, capacities and performance standards of facilities identified in the TSP. See also OAR 660-012-0060.

- In addition to the requirements noted above, the TPR defines the interstate interchange area as containing property within one-half mile of an existing or planned interchange on an Interstate Highway as measured from the center point of the interchange; or as defined an Interchange Area Management Plan adopted as an amendment to the Oregon Highway Plan. This is the area in which planning and analysis for the IAMP takes place locally and in which local governments must comply with interchange-related state access management rules.

Findings
The IAMP planning process included a review of all relevant sections of the TPR (Appendix B, Table 1). Applicable sections of the TPR are addressed throughout the IAMP, including identifying the purpose and function of the interchange (Section 1), an assessment of existing and future conditions (Sections 2 and 3), an analysis of alternative solutions for meeting functional objectives (Section 4), and measures to ensure the plan addresses planned conditions including physical improvements, policies, and development regulations (Sections 5, 6, and 7).

Conclusion
The IAMP complies with the Oregon TPR.

OAR 734, Division 51. Highway Approaches, Access Control, Spacing Standards and Medians
OAR 734-051 governs the permitting, management, and standards of approaches to state highways to ensure safe and efficient operation of the state highways. OAR 734-051 policies address the following:

- How to bring existing and future approaches into compliance with access spacing standards, and ensure the safe and efficient operation of the highway;
- The purpose and components of an access management plan; and
- Requirements regarding mitigation, modification and closure of existing approaches as part of project development.

Section 734-051-0125, Access Management Spacing Standards for Approaches in an Interchange Area, establishes interchange management area access spacing standards. It also specifies elements that are to be included in IAMPs, such as short- and long-range actions to improve and maintain safe and efficient roadway operations within the interchange area. The Access Management Plan component of the IAMP (Section 5.3) includes plans for access closures and a frontage road to be constructed east of I-5. This section also includes deviations for intersections on Pearl Street and Van Duyn Road that will not meet adopted state access standards in the interim (before construction) as well as those that will not meet standards after construction, per OAR 734-051-0135.

Findings
Section 5.3 of the IAMP outlines a detailed access management plan of the interchange area. Access spacing standards are designed around OPH and Division 51 spacing standards and are intended over time to shift access spacing in the direction of the applicable state standards. The plan also includes policies specifically aimed at improving access spacing and citing conditions in which access alterations must be made to bring conditions in line with state standards (IAMP, Section 6.1.2, Policy #10).

Conclusion
The IAMP complies with OAR 734, Division 51.

Regional Transportation Plan
The Central Lane Metropolitan Planning Organization Regional Transportation Plan (RTP) guides regional transportation system planning and development in the Central Lane MPO metropolitan area. Coburg was recently added to the MPO. The RTP includes provisions for meeting the transportation demand of residents over a 20-year planning horizon while addressing transportation issues and making changes that can contribute to improvements in the region’s quality of life and economic vitality. The City of Coburg and Lane County are two of the six jurisdictions participating in regional transportation planning related to the RTP. The following project related to the Coburg/I-5 Interchange is on the RTP Capital Improvements List. The following project is on the “illustrative” list in the RTP, that is, it is considered a “needed” project but it does not fit with anticipated revenue over the life of the plan. The City is working at the MPO level to get the project on the Financial Constraint list in the near term.
According to the RTP, new arterial links or interchanges add new links or interchanges to the arterial or freeway systems in the region. Projects typically consist of any required right-of-way acquisition, general roadway construction, and addition of pedestrian and bicycle facilities either adjacent or parallel to the roadway.

Findings
The IAMP included an evaluation of RTP policies and planned improvements (IAMP, Appendix B). The IAMP provides Coburg the means necessary for elevating the interchange project on the RTP list of needed projects, especially the list of financially constrained projects, by addressing necessary planning requirements associated with securing state and federal funding for the improvements that implement the IAMP. In addition, the development of IAMP alternatives and selection of the recommended alternative were consistent with RTP traffic forecasts and policies.

Conclusion
The IAMP complies with the RTP; the Coburg TSP will need to be revised for RTP consistency.

Lane County Transportation System Plan
Lane County's TSP was adopted in 2004. The Plan contains an introduction to the concept of access management in the section of Chapter 4 entitled Access Management: Spacing of Intersections and Driveways on County Roads, stating that "Implementation of access management techniques produces a more consistent traffic flow, helping to improve safety, while reducing congestion, fuel consumption and air pollution." (p. 27). In addition, the Goals and Policies section contains access management policies under Goal 3: Promote a safe and efficient road network through access management. Policy 3b specifically addresses state facilities, noting that "for state facilities, the Oregon Department of Transportation controls access pursuant to Oregon Administrative Rules 734, Division 51." The TSP references Lane Code 15.130 as containing the access management guidelines and spacing standards. The table below outlines the access spacing requirements for County Roads. The spacing standard for local roads outside of urban growth boundaries is 100 feet. The Lane County section of the IAMP study area only contains one road, Van Duyn Road, which is classified by the County as an urban local road inside the UGB and a rural local road once it leaves the UGB. The City of Coburg classifies it as a County Arterial.
Chapter 6 of the TSP, entitled Recommended Improvements lists the improvements on Lane County Roads. The following table shows the project within the Coburg IAMP boundary:

<table>
<thead>
<tr>
<th>Project #</th>
<th>Road Name</th>
<th>Limits</th>
<th>Begin MP</th>
<th>End MP</th>
<th>Length (ft)</th>
<th>Source</th>
<th>Description</th>
<th>Cost</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>#28</td>
<td>Pearl Street*</td>
<td>Miller Street to I-5</td>
<td>0.244</td>
<td>0.64</td>
<td>0.396</td>
<td>Coburg</td>
<td>Urban Standards — Four lane facility with median treatments, curb, gutter, sidewalks, bike lanes</td>
<td>$750,000</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Findings
The IAMP includes requirements for traffic impact studies that are consistent with those required by Lane County (IAMP, Section 7).

Conclusion
The IAMP complies with the Lane County TSP.

Lane County Code
Much of the land adjacent to and east of the Coburg/I-5 interchange is currently under the jurisdiction of Lane County. Land directly southeast of the interchange was recently annexed into the Coburg city limits, and is now designated as Highway Commercial. The land in Lane County jurisdiction is zoned Exclusive Farm Use — Rural Comprehensive Plan (E-RCP) zone, which allows corresponding appropriate farm-related uses. The Lane County Code implements OAR 660-033. It allows four levels of minimum parcel size, E-60, E-40, E-30, and E-25. Land within the Coburg/I-5 IAMP boundary is zoned E-40, with a minimum lot size of 40 acres.

Findings
The IAMP includes a review of relevant sections of the Lane County Code and TSP (IAMP, Appendix B). The IAMP includes requirements for traffic impact studies that are consistent with those required by Lane County (IAMP, Section 7). The IAMP does not alter planned land uses or zoning for any properties within the IAMP management boundary.

Conclusion
The IAMP is consistent with the Lane County Rural Comprehensive Plan.

Coburg Comprehensive Plan
Coburg's Comprehensive Plan was originally adopted in 1978 and is currently undergoing periodic review, which is anticipated to result in Draft plan amendments. *Per agreement with LCOG and ODOT, this review includes Draft amendments as of 2005.* Therefore, the 2005 PROPOSED policy amendments to the Coburg Comprehensive Plan are incorporated into the following review. Goal 9, Economy of the City includes the following policy relevant to the Coburg/I-5 IAMP:

- **Policy 4:** A "Highway Commercial" district will be located adjacent to the I-5 interchange. The purpose of the Highway Commercial Plan designation is to provide goods and services that primarily serve the traveling public. Uses in this area will preserve the small town and historic character of Coburg, by having compatibility in architectural design and scale with the Central Business District and/or Residential designations. Development of the Highway Commercial District shall be considered secondary to the development of the downtown area, however.

Findings
The policy advances a city preference that the Highway Commercial district applies to land the general vicinity of the interchange. The policy is not specific with regard to access distances or uses that would compromise interchange operation. Goal 12, Transportation includes the following policies relevant to the Coburg/I-5 IAMP:

- **Policy 3:** Improve the aesthetics of streets and streetscapes, especially at City entrance ways such as Interstate 5 interchange area. Aesthetic improvements may address: street design, trees, lighting, utility lines, sidewalks, park strips, noise abatement, etc.
 3.1 Improve major through-fares with beautification and scenic amenities, coordinating with other agencies and jurisdictions as necessary.
 3.2 Identify and improve city gateways and entranceways with beautification and scenic amenities, coordinating with other agencies and jurisdictions as necessary.

This policy identifies the importance of the I-5 interchange as a gateway to Coburg that needs aesthetic improvements. No specific location has been identified to date as the "gateway". No projects are designated on the CIP related to this policy.

Findings
The policies do not conflict with the proposed access limitations or design features planning in the IAMP.

- **Policy 13:** Improve the Coburg-Interstate 5 Interchange safety and transportation operations.
 13.1 The City shall adopt and coordinate with ODOT and Lane County to implement the ODOT Coburg-Interstate 5 Interchange Refinement Plan, which includes but is not limited to:
 - A preferred interchange alternative,
 - An interchange access management plan,
A recommended TDM program that shall be fully implemented before interchange reconstruction, and
An assumption that current City and County comprehensive land use designations at and near the interchange are constant for the next 20 years.

This policy supports coordination with Lane County and ODOT to adopt the Coburg/I-5 Interchange Refinement Plan, which is discussed in more detail below.

Findings
The policy is supportive of IAMP objectives and operational objectives.

- Policy 36: The City shall not expand the UGB east of Interstate 5 until the City has sufficient clarity on the configuration, timing, and cost of the interchange upgrade to conclude that adequate transportation facilities will be in place to serve future development.

The area immediately southeast of the Coburg/I-5 interchange was annexed into the UGB in 2004, but maintained the County zoning designation. City zoning designation to Highway Commercial occurred November 2007.

Findings
The policy is consistent with the IAMP. Traffic analysis did not assume UGB expansion to the east. The policy also is consistent with IAMP policies that enact an alternative mobility standard for the interchange that would support levels of traffic consistent with the city’s adopted land use plan, and protect the capacity of the interchange in case the interchange is constructed prior to any UGB expansion and Comprehensive Plan amendment by Coburg.

- Policy 41: The exception area immediately east of the Interstate 5 interchange shall have an established trip generation baseline upon annexation of the property. The trip generation baseline shall be for average daily trips (ADT), weekday AM peak and weekday PM peak trips, based on ITE Trip Generation Manual and inventory of uses is as shown in Exhibit 2 and is incorporated as policy by reference.

- Policy 42: All new development proposals and/or redevelopment proposals in the exception area immediately east of Interstate 5 that exceed the baseline trip generation established upon annexation shall be required to apply for a city plan amendment application and meet Statewide Goal 12, Transportation Planning Rule, in particular Section 0060, and develop a transportation analysis to determine the impact on the interchange and on County Roads. The County may require a traffic impact analysis and road improvements consistent with the Lane County Transportation System Plan goals and policies and with County requirements for roads in Lane Code 15. The new site development or redevelopment shall be required to measure the following trip impacts for all three of the following:
 - Weekday PM peak hour trips between 4:00 pm and 6:00 pm
• **Weekday AM peak hour trips between 6:00 am and 9:00 am**
• **Average Daily grips for the entire area in question.**

- **Policy 43:** *In the event that Interchange Refinement Plan is completed and adopted in the Coburg TSP or Interchange Area Management Plan is developed and adopted, the exception areas immediately east of Interstate 5 shall be included in the plans and shall be governed by the results of that plan. Notwithstanding this provision, a traffic impact analysis, road dedications and road improvements may be required for new development affecting County roads in this area.*

Related to Policy 43, above, the interchange Refinement Plan was completed and adopted in 1999 as part of the planning and adoption process for the 1999 Coburg TSP. The IAMP management area includes the areas of Lane County directly east of the interchange, which has been designated by the County for exclusive farm use (E-40). For a specific description of the uses within the IAMP boundary, see Section III, Existing Land Use.

Findings

IAMP alternatives were based on land use assumptions contained in the current adopted Coburg Comprehensive Plan. The policies listed above are generally consistent with the alternative mobility standard and other policies that are enacted through the IAMP, and with land use assumptions used in the IAMP traffic analysis. Future land use applications in the IAMP management area would trigger policies in the IAMP that require the development either to mitigate traffic impacts to perform within the adopted mobility standard/alternative mobility standard for the interchange or proceed with local amendments to the city and county land use plans and the IAMP. The IAMP will be adopted by Coburg – establishing an IAMP Overlay area – which will address concerns expressed in the policies above regarding traffic impact analysis, access and other requirements for development.

Conclusion

The IAMP is consistent with the Coburg Comprehensive Plan.

City of Coburg Transportation System Plan

The City adopted a Transportation System Plan (TSP) in 1999. In order to implement the TSP, the City made amendments to the Comprehensive Plan and Development Code. Chapter 4, Recommended Transportation System Plan, includes Goal 13, which reiterates the intention to adopt the Coburg/I-5 Interchange Refinement Plan.

In addition, Chapter 5, Plan Implementation outlines a Capital Improvement Project List for Coburg Transportation Improvements. Under "Medium Range Projects," the Coburg/Interstate 5 Interchange is listed as a project. According to the TSP, the project includes rebuilding the interchange to modern standards. These include widening the structure to three lanes of traffic with shoulders for bicycles and sidewalks for pedestrians, and the profile grade will also be improved. Related access improvements and improvements to Pearl Street are also included. The total estimated project cost is
$7,773,500. According to the project schedule, all improvements will be completed by 2015.

Findings
The recommended alternative that is advanced by the IAMP is generally consistent with the project description outlined in the Coburg TSP, with additional interchange bridge lanes and accompanying policy and code measures. Cost estimates for the preferred alternative differs from the cost in the TSP; that difference, however, relates to time-sensitive estimates that were prepared when the TSP was adopted and which are no longer relevant.

Conclusion
The IAMP is consistent with the Coburg Transportation System Plan Capital Project List.

Coburg/Interstate 5 Interchange Refinement Plan
As noted above, this Refinement Plan was adopted in order to provide a deeper analysis of the Coburg/Interstate 5 Interchange than was possible during the general TSP process. The Refinement Plan was adopted in 1999 as part of the Coburg TSP. According to the executive summary, the intent of the Refinement Plan is to create a long range plan for the interchange and surrounding transportation system and land uses with public participation and to improve the function and safety of the interchange. The plan did not anticipate expansion of the Coburg UGB east of the interchange. The plan guides investment and program decisions for the City of Coburg, Lane County, and ODOT. The Plan includes multiple design concepts showing detailed preliminary analyses of traffic patterns, land use projections, and geometric designs. Major issues that were raised during the Refinement Plan process were:

- The interchange is an obsolete structure, built in 1959;
- The percentage of land uses in the surrounding area dominated by heavy vehicles
 (trucks);
- The undeveloped nature of the surrounding area, including large tracts of industrial and commercial land, that, if developed would severely degrade the operations, safety, mobility and access of the interchange;
- A desire to improve safety and operations; and
- A desire to lessen impacts of transportation improvements to local residents.

The adopted preferred concept, an enhanced diamond interchange, includes the following improvements:

- The interchange structure is rebuilt and local street improvements enhance the safety and operations of the interchange terminals;
- The bridge is rebuilt to modern standards that include a wider structure with shoulders, bike lanes, sidewalks, and traffic signals;
- The ramp terminals are significantly improved;
- Exit lanes from I-5 to and from the interchange are longer, wider, and will increase capacity for vehicles.
• Policy implementation includes Transportation Demand Management (TDM) and access management policies and guidelines.

Findings
The recommended alternative chosen in the IAMP is generally consistent with the Refinement Plan recommendations for the interchange. However, IAMP recommendations are based on updated population and employment forecasts and changes in state requirements, so the new interchange is recommended to be a 4-lane bridge diamond structure accompanied by an access management plan and policy and development code provisions to be adopted by the City of Coburg, Lane County, and the OTC.

Conclusion
The IAMP complies with the Refinement Plan.

Coburg Zoning Code and Land Division Regulations
Land in Coburg immediately adjacent to the Coburg/I-5 interchange is zoned Light Industrial and Highway Commercial. Further west within the IAMP area boundary and closer to downtown Coburg, land is zoned Mixed Use Master Plan, Public Facilities, and Traditional Residential. The list below briefly describes each of these land use designations.

• Light Industrial – The Light Industrial designation is intended to provide areas for manufacturing, assembly, packaging, wholesaling, related activities, and limited commercial uses that support local industry and are compatible with the surrounding commercial and residential districts. The LI designation is intended to promote a high quality of life through a diverse economy and strong tax base, transition between higher and lower intensity uses, and appropriately scaled non-polluting industrial uses that fit the small town, historic character of the community.

• Highway Commercial – The Highway Commercial designation is intended to provide goods and services that primarily serve the traveling public. The C-2 designation is intended to promote a high quality of life through a diverse economy and strong tax base, transition between higher and lower intensity uses, and appropriately scaled commercial uses that fit the small town, historic character of the community.

• Public Facility – This designation is intended to provide lands for public facilities and uses such as water reservoirs, sewage treatment plants, pump stations, major electric utilities and similar uses.

• Traditional Residential – The Traditional Residential designation is intended to guide development within historic and traditional neighborhoods of the community. The Traditional Residential designation is intended to provide a livable neighborhood environment, preserve the small town and historic character of Coburg, ensure architectural compatibility, and provide for a variety of residential housing choices (including medium density housing in designated areas).
Findings
The IAMP does not modify the purpose or uses allowed by the zoning districts that are found within the IAMP management boundary. Special policies and the alternative mobility standard may result in limiting development in the IAMP management boundary differently from areas outside the management boundary. This is an intended outcome of the IAMP to ensure the interchange functions over time.

Conclusion
The IAMP is consistent with the City of Coburg’s development code and zoning districts.
AN ORDINANCE AMENDING THE COBURG ZONING CODE TO IMPLEMENT THE COBURG/I-5 INTERCHANGE AREA MANAGEMENT PLAN (IAMP) WITHIN ARTICLE VIII SUPPLEMENTARY DISTRICT REGULATIONS AND IX SPECIAL DISTRICTS

WHEREAS, the State of Oregon Department of Transportation (ODOT) has enacted their authority to require the adoption and implementation of an IAMP prior to reconstruction of the Coburg/I-5 interchange;

WHEREAS, the City of Coburg adopted a Transportation System Plan (TSP) on November 1999 (Ord. A-133L) that identified the need to develop and adopt an IAMP for the Coburg/I-5 Interchange;

WHEREAS, notice of a Joint public hearing before the Coburg and Lane County Planning Commissions was sent via mail to all property owners within the IAMP Study Area and 300 feet beyond the Study Area, published in the Register Guard January 11, 2009 and sent to all parties on ODOT’s interested parties distribution list;

WHEREAS, a second notice of the City Council public hearing was published in the Register Guard March 2, 2009 and was sent via mail to all property owners within the IAMP Study Area and 300 feet beyond the Study Area, and sent to all parties on ODOT’s interested parties distribution list;

WHEREAS, the City held a public hearing before the Coburg and Lane County Planning Commissions on January 21, 2009 and before the City Council March 10, 2009, took testimony on this matter, taking said testimony into consideration in making its decision;

WHEREAS, the Coburg Planning Commission unanimously recommended to City Council at the March 3, 2009 meeting to adopt the IAMP;

WHEREAS, on March 10, 2009 Coburg City Council conducted a public hearing and first reading of the IAMP; and

WHEREAS, on April 14, 2009 Coburg City Council conducted a second reading of the IAMP;

THE CITY OF COBURG ORDAINS AS FOLLOWS:

Section 1. The City of Coburg Zoning Ordinance No. A-200C shall be amended to adopt the Interchange Area Management Plan as set forth in Exhibit A, which is
incorporated herein by this reference, so as to comply with the Coburg Comprehensive Plan; Article IX Special Districts and Article VIII Supplementary District Regulations.

Section 2. The City of Coburg acknowledges compliance with the appropriate State Planning Goals, and regional, county and local implementing regulations with the Findings of Fact shown as Exhibit B.

Section 3. The City of Coburg Transportation System Plan (TSP) shall be amended to include the adopted IAMP at the time the TSP is next updated, so as to comply with the Coburg Comprehensive Plan and requirements of the IAMP.

Section 4. Severability. The provisions of this Ordinance are severable. If any section, sentence, clause or phrase of this Ordinance is judged by any court to of competent jurisdiction or by the land Conservation and Development Commission to be invalid, the declaration shall not affect the validity of the remaining portions of the Ordinance.

This Ordinance, after public notices, hearings, Planning Commission and City Council deliberations, was upon motion and second, put to a final vote. The vote of the Council was:

YES: ________________
NO: ________________
ABSTENTIONS: __________
PASSED: ________________
REJECTED: ________________

Signed and Approved by the Mayor this 14th day of April, 2009.

ATTEST: ________________
Judy Volta, Mayor

Sammy Egbert, City Recorder
C. IAMP Area

The purpose of the Interchange Area Management Plan (IAMP) Special District is to protect the function of the Coburg Interstate 5 (I-5) interchange area. The function of the interchange is to safely and efficiently accommodate future traffic demands associated with planned land uses within the IAMP boundary. In addition, the interchange will safely and efficiently accommodate future traffic demands associated with planned land uses outside the IAMP boundary. The IAMP boundary is defined in the Coburg/Interstate 5 Interchange Area Management Plan.

In order to accomplish this, special regulations apply to all new development within the IAMP boundary. In addition to the access management and vision control regulations found in Article VIII(A), the following special regulations apply within the IAMP boundary. Where the IAMP regulations are more stringent, they supersede the regulations listed in Article VIII(A).

1. Access Spacing Requirements (as required by the 1999 Oregon Highway Plan, Policy 3C)
 a. When new approach roads are planned or constructed near the interchange,
 i. the first full intersection on a crossroad shall be no closer than 1,320 feet from the interchange. Measurement is taken from the ramp intersection or the end of a free flow ramp terminal merge lane taper
 ii. approach roads on the crossroad shall be no closer than 750 feet from the interchange and will be limited to right-in, right-out only.
 b. Existing access that does not meet the standard must be abandoned at such time as an alternative point of access that complies with the standard becomes available.
 c. An exception to the above requirement will be made for the planned Roberts Road realignment. The realignment will result in a full intersection located in accordance with the adopted Coburg Interchange Area Management Plan.

2. Traffic Impact Analysis Requirement
 a. For areas within the IAMP boundary, a traffic impact analysis will be required as part of a complete land use application for any of the following:
 i. any development proposal that will result in an increase of 100 AM or PM peak hour traffic flow trips, or an increase of more than 600 average daily automobile trips. Trip calculation shall be based upon Trip Generation, 7th Edition (2003) published by the Institute of Transportation Engineers (ITE) and associated handbook and user’s guide, or a subsequent update to the ITE Manual if more than one year in print;
 ii. any plan amendment proposal, unless waived by the City Engineer as specified below; or
 iii. proposed development that will generate or receive traffic by single or combination vehicles with gross weights greater than 26,000 pounds as part...
of their daily operations. “Daily operations” includes delivery to or from the site of materials or products manufactured, processed, or sold by the business of the site. “Daily operations” does not include routine services provided to the site by others, such as mail delivery, solid waste pickup, or bus service.

b. The City Engineer or designee may waive the traffic impact analysis requirements specified in Article IX(C)(2)(a) above, when:

i. previous analysis has determined that the development proposal will not result in congestion, safety, or pavement structure impacts that exceed the standards of the agency that operates the interchange area; or

ii. in the case of a plan amendment or zone change, the scale and size of the proposal is insignificant, eliminating the need for detailed traffic analysis of the performance of roadway facilities for the 20-year planning horizon. Whether the scale and size of a proposal may be considered insignificant may depend on the existing level of service on affected roadways.

c. Traffic impact analyses shall be prepared by an Oregon-certified engineer with expertise in traffic and road construction engineering, and shall document compliance with the following requirements and guidelines:

i. the volume to capacity ratio (v/c) for peak hour operating conditions shall not exceed 0.80 (from the 1999 Oregon Highway Plan, Policy IF: Highway Mobility Standards); and

ii. the road design standards in Article VIII(F); and

iii. the access requirements specified in Article VIII(A) and Article IX(C)(1) above; and

iv. The goals and policies of the applicable transportation system plan.

d. The traffic impact analysis shall demonstrate the following:

i. for plan amendments and zone changes, that the performance standard specified in Article IX(C)(2)(c)(i) above for the affected road(s) will not be exceeded as a result of the plan amendment or zone change, within 20 years from the date the analysis was completed;

ii. for other development, that the performance standard specified in Article IX(C)(2)(c)(i) above for the affected road(s) will be achieved immediately and for the next five years.

e. If the performance standard in Article IX(C)(2)(c)(i) cannot be achieved or maintained as specified in Article IX(C)(2)(d) above, the analysis shall propose one or more of the following:

i. road dedications and improvements for capacity increases;

ii. implementation of demand management strategies;

iii. other mitigation measures.

f. Proposed dedications, improvements, demand management strategies and other measures proposed pursuant to Article IX(C)(2)(e) above may include but are not limited to the following:

i. reconfigure roadway and side-street accesses to minimize traffic conflicts at intersections;

ii. limit parking near signalized intersections to increase intersection capacity;

iii. coordinate and operate traffic signals to improve traffic progression;
iv. relocate driveways and improve local road connections to direct traffic away from intersections in order to optimize traffic progression on the state highway;
v. improve turning radii at intersections that are heavily used by trucks to avoid lane blockages;
vi. install raised medians to reduce traffic conflicts;
vii. improve accesses so that traffic can enter or exit the roadway with minimal disruptions of flow;
viii. implement other transportation demand management or transportation system management measures to use existing capacity of the roadway more efficiently.
g. Proposed dedications, improvements, demand management strategies and other measure pursuant to Article IX(C)(2)(e) shall:
i. consider the safe operation of affected driveways and public street intersections;
ii. propose access locations as appropriate, consistent with the access requirements in Article VIII(A) and Article IX(C)(1);
iii. demonstrate that the proposed measures will be completed in a manner consistent with applicable state and local policies and standards; and
iv. include a description of how and when the dedications, improvements and other measures will be performed.
h. Traffic impact analyses shall be developed in coordination with agencies such as the Oregon Department of Transportation or a city when the proposal requiring the analysis affects facilities in their jurisdiction. Dedications, improvements, and other measures proposed pursuant to Article IX(C)(2)(e) shall comply with adopted plans and requirements of the agency with jurisdiction for the affected facility.
i. In addition to the requirements in this subsection, the Highway Capacity Manual published by the Transportation Research Board shall be used as the guiding standard for completion of the traffic impact analysis. The McTrans Highway Capacity Software package, or other approved software packages, may be used to complete the analysis. The Oregon Department of Transportation's SIGCAP software, or other ODOT-approved software is acceptable where the study scope includes analysis of both state and county facilities.
j. Upon approval of the traffic impact analysis and proposed dedications, improvements, and other measures, requirements shall be completed at private expense, unless otherwise approved by the Director. Conditions may be assigned to ensure all requirements are completed.

3. Future Street Plan Requirement
a. A future street plan shall not be required for any portion of an area for which a proposed street layout has been established by either the Coburg Comprehensive Plan, or its implementing ordinances, or a future street plan previously approved by a hearing body.
b. A future street plan is a conceptual plan in that its adoption does not establish a precise alignment. The plan shall demonstrate how access can be provided to adjoining parcels. The Director may require that a traffic study be submitted where
access to the land division includes streets that are classified as a collector or greater functional classification status.

c. Except as provided in Article IX(C)(3)(a) above, a future street plan shall be filed and reviewed as part of an application for a partition or subdivision.

4. Type III Future Street Plan
 a. The City Council or Planning Commission may initiate a future street plan for any area which impacts traffic conditions inside the urban growth boundary, providing the street plan is given consideration through a Type II procedure.

5. Recording and Filing a Future Street Plan
 a. Upon final approval, a future street plan shall be recorded with the County Recorder's Office as follows:
 i. Evidence of recordation shall be provided to the Director by the applicant; or if there is no applicant, the Director shall record the future street plan/
 ii. Filed by the Director in the future street plan index.

6. Revision of a Future Street Plan
 a. An approved future street plan may be revised as follows:
 i. by the Director under a Type II procedure in conjunction with a land division application or by the Planning Commission under a Type III procedure;
 ii. by the City Council in conjunction with a revision of the Coburg Comprehensive Plan or implementing ordinances or resolutions.

7. Criteria for Approval of a Future Street Plan
 a. Approval does not impede the future best use of the remainder of the property under the same ownership of adversely affect the safe and healthful development of such remainder or any adjoining land or access thereto.
 b. The future street plan complies with this code and its implementing ordinances and resolutions, and standards and policies of the Coburg Comprehensive Plan and the Coburg Transportation System Plan.
 c. Except as provided by the provisions of this code, approval as stipulated herein does not relieve the applicant from other applicable provisions of the Oregon Revised Statutes or contained elsewhere in this code.
 d. The future street plan shall adequately serve traffic with an origin in, and destination to, the area of the plan.
 e. The future street plan shall provide for the logical extension of streets, to serve circulation, and access needs within a district or neighborhood.
EXHIBIT B

Oregon Statewide Planning Goals and Guidelines

GOAL 1: CITIZEN INVOLVEMENT

Requirement: Goal 1 requires the development of a citizen involvement program that is widespread, allows two-way communication, provides for citizen involvement through all planning phases, and is understandable, responsive, and funded.

Findings
Task 2 of the IAMP included the development of a citizen involvement plan that allowed for involvement of citizens, stakeholders and public agencies throughout the duration of the project. The plan was a coordinated effort between the Contractor, ODOT, and the City of Coburg and included the Technical Advisory Committee, the general public, the Coburg Crossroads Stakeholder group, the Periodic Review Core Team, affected public agencies, transportation providers, and transportation interest groups. Two meetings were held with the Periodic Review Core Team, both of which were open to the public. Two joint meetings were held with the City Council and the Planning Commission, which were also open to the public. Two open houses were held to inform the public and gather their input; written notices were sent out prior to the meetings to invite participation. Written public comment was accepted throughout the project. Several individual meetings were conducted with property owners in the project vicinity. In addition, public notice for the hearings on this application will be provided through the City of Coburg and Lane County notification procedures. The public will have opportunity to review the application and staff report in advance of the public hearings, and to provide testimony at the hearings. A copy of the citizen involvement plan and actions taken to engage citizens in the planning process are included in IAMP Appendix A.

Conclusions
Based on the above findings, the requirements set forth in Goal 1 have been met.

GOAL 2: LAND USE PLANNING

Requirement: This goal requires that a land use planning process and policy framework be established as a basis for all decisions and actions relating to the use of land. All local governments and state agencies involved in the land use action must coordinate with each other. With regard to this IAMP, ODOT is required coordinate with Lane County and the City of Coburg, both of which have planning authority over the impacted area.

Findings
Task 3 of this project involved a thorough review and analysis of all relevant state, regional and local planning documents in order to establish a planning process and policy framework for the IAMP. This information can be found in Memo #1, Plans and Policy Review (Appendix B). Throughout the project, the Contractor met with ODOT, Lane County and City of Coburg to discuss objectives, issues and concerns regarding the IAMP. In addition, a Technical Advisory Committee (TAC) was established to guide
the IAMP process. The TAC consisted of representatives from the City, County, DLCD, ODOT, and other local and regional agencies. The alternatives analysis was based on land use assumptions included in the Coburg Comprehensive Plan, and was consistent with forecasts included in the Regional Transportation Plan.

Requirement: Land use decisions and actions must be supported by an "adequate factual base." It is required that there is evidence that a reasonable person would find to be adequate to support findings of fact that a land use action complies with the applicable review standards.

Findings
The IAMP adoption application has prepared a thorough factual base that demonstrates that this proposed action is consistent with the applicable adopted local plans, including the Coburg Comprehensive Plan and the Regional Transportation Plan.

Requirement: City, county, state and federal agency and special district plans and actions related to land use must be consistent with the comprehensive plans of cities and counties and regional plans adopted under Oregon Revised Statues (ORS) Chapter 268.

Findings
Task 3 of this project included a thorough review and analysis of all relevant state, regional and local planning documents, including the Lane County and Coburg comprehensive plans. The IAMP is consistent with the Coburg Comprehensive Plan, as it is based on land use assumptions included in that Plan. The recommended alternative is consistent with the Coburg Comprehensive Plan and traffic forecasts included in the Regional Transportation Plan.

Conclusion
Based on the above findings, the requirements set forth in Goal 2 have been met.

GOAL 11: PUBLIC FACILITIES AND SERVICES

Requirement: Cities and counties shall plan and develop a timely, orderly and efficient arrangement of public facilities and services to serve as a framework for urban and rural development. The goal requires that urban and rural development be "guided and supported by types and levels of urban and rural public facilities and services appropriate for, but limited to, the needs and requirements of the urban, urbanizable and rural areas to be served."

Findings
The IAMP will amend the City of Coburg Transportation System Plan and adds a number of planned improvements at the interchange to the list of TSP projects needed to meet planned urban growth (IAMP, Section 5.2). The IAMP establishes special access management requirements for the interchange area to improve safety and help ensure traffic mobility is maintained (IAMP, Section 5.3). The IAMP also establishes a mobility standard for the interchange that limits growth in traffic to a level commensurate
with the adopted population and employment for the city (IAMP, Section 6). These measures provide a basis for ensuring investment in public facility infrastructure is made in a manner that will accommodate the city’s planned population and employment.

Requirement: Goal 11 prohibits the establishment of sewer systems outside urban growth boundaries and the extension of sewer lines from within UGBs to serve lands outside UGBs, except where a new or extended system is the only practicable alternative to mitigate a public health hazard and will not adversely affect farm or forest land.

Findings
This IAMP does not propose the establishment of new sewer systems outside the urban growth boundary.

Conclusion
The IAMP complies with Goal 11.

GOAL 12: TRANSPORTATION

Requirement: This goal requires cities, counties, metropolitan planning organizations, and ODOT to provide and encourage a "safe, convenient and economic transportation system." This is accomplished through development of Transportation System Plans based on inventories of local, regional and state transportation needs.

Goal 12 is implemented through OAR 660, Division 12, also known as the Transportation Planning Rule (TPR). The TPR contains numerous requirements governing transportation planning and project development. (See the "OAR 660, Division 12 section of this document for findings of compliance with the TPR.

Findings
The adoption of the Coburg IAMP will ensure that the interchange operates safely and efficiently. Task 7.1 of the IAMP involved a transportation analysis that was conducted in order to determine safety issues, future demand, capacity, deficiencies, and needs for this interchange area. The analysis demonstrates that the recommended alternative in the IAMP will be adequate to serve trips generated by future land uses. An alternative mobility standard is included in the IAMP to protect the interchange capacity in the case that interchange development occurs prior to the anticipated expansion of the Coburg UGB and simultaneous amendment of the Comprehensive Plan. As noted above, the IAMP’s adoption by the city will amend the City of Coburg Transportation System Plan as required by city policy and the TPR for plans that implement local transportation system plans. Coburg development regulations recommended in the IAMP impose new limitations on access to major roads in the IAMP boundary and also require traffic impact studies for development projects that cause a significant impact to the function of the interchange (IAMP, Sections 7.1 and 7.2). Lane County will also adopt the IAMP as part of its Transportation System Plan through policy that recognizes the special regulatory and access limitations on land within the IAMP boundary (IAMP, Section 6). This alters the underlying regulatory framework that applies to new
development in the interchange area regarding access and mobility standards that apply to new development proposals.

Conclusion
The IAMP complies with Goal 12.

GOAL 14: URBANIZATION, AND OAR 660, DIVISIONS 14 AND 22

Requirement: Goal 14 regulates urban growth boundaries. The goal provides that establishment and change of a UGB shall be based upon considerations of the following seven factors:

- Demonstrated need to accommodate long-range urban population growth requirements consistent with LCDC goals;
- Need for housing, economic opportunities, and livability;
- Orderly and economic provision for public facilities and services;
- Maximum efficiency of land uses within and on the fringe of the existing urban area;
- Environmental, energy, economic and social consequences;
- Retention of agricultural land as defined, with Class I being the highest priority for retention and Class VI the lowest priority; and
- Compatibility of the proposed urban uses with nearby agricultural activities.

Additionally, ORS 197.298 establishes priorities for including land inside urban growth boundaries. The first (highest) priority for inclusion is land that is designated "urban reserve" land. The second priority is land adjacent to a UGB that is identified as "an exception area or nonresource land." The third priority is land that is designated as "marginal land" pursuant to ORS 197.247. The final (lowest) priority is land that is designated for agriculture, forestry, or both.

Findings
This IAMP does not involve any amendments to the Coburg UGB boundary. The EFU land in Lane County, within the Coburg Interchange management area, is lowest priority for inclusion into the UGB. While the proximity of this land to the interchange makes it susceptible over time to inclusion inside a UGB, such an action would need to be based on a demonstration of need and the application of the standards in ORS 197.298. The IAMP does include measures (alternate mobility standards) designed to protect the function of the interchange if it is constructed prior to a Coburg UGB expansion and Comprehensive Plan amendment.

Conclusions
The IAMP complies with Goal 14.

Oregon Transportation Plan (1992)
An IAMP must be consistent with the goals and policies of the OTP. OTP policies that are applicable to an IAMP are:

- Policy 1B (Efficiency)
- Policy 1C (Accessibility)
- Policy 1G (Safety).
• Policy 2B (Urban Accessibility)
• Policy 4G (Management Practices)

An IAMP must include an access management component that identifies approaches on the state highways within the management area and recommends any necessary access changes in order to protect the function of the interchange.

Findings
A plan and policy review was conducted as part of the IAMP planning process that identified relevant OTP policies (Appendix B). The IAMP addresses relevant OTP policies.

Conclusions
The IAMP complies with the OTP.

Oregon Highway Plan
The 1999 Oregon Highway Plan (OHP) establishes policies and investment strategies for Oregon’s state highway system over a 20-year period and refines the goals and policies found in the OTP. Policies in the OHP emphasize the efficient management of the highway system to increase safety and to extend highway capacity, partnerships with other agencies and local governments, and the use of new techniques to improve road safety and capacity. These policies also link land use and transportation, set standards for highway performance and access management, and emphasize the relationship between state highways and local road, bicycle, pedestrian, transit, rail, and air systems. The policies applicable to planning for the Coburg interchange improvements are described below, with impacts to interchange planning shown in italic. Under Goal 1: System Definition, the following policies are applicable:

• Policy 1A (Highway Classification) defines the function of state highways to serve different types of traffic that should be incorporated into and specified through IAMPs.
• Policy 1B (Land Use and Transportation) recognizes the need for coordination between state and local jurisdictions; Coordination with local jurisdictions occurred throughout the preparation of the IAMP. A Technical Advisory Committee (TAC) was formed to inform the IAMP. Members included representatives from the City of Coburg, LCOG, ODOT and Lane County.
• Policy 1C (State Highway Freight System) states the need to balance the movement of goods and services with other uses; I-5 is a designated freight route. Policy 1F (Highway Mobility Standards) sets mobility standards for ensuring a reliable and acceptable level of mobility on the highway system by identifying necessary improvements that would allow the interchange to function in a manner consistent with OHP mobility standards; and The purpose of the IAMP is to evaluate the operation of the Coburg Interchange, assess needs and problems, identify future long-range needs, and identify recommended improvements in order to ensure consistency with mobility standards.
• Policy 1G (Major Improvements) requires maintaining performance and improving safety by improving efficiency and management before adding

PA-01-09 Ordinance A-200D
capacity, ODOT works with regional and local governments to address highway performance and safety. The current Coburg I-5 Interchange Refinement Plan is adopted into the City TSP, and addresses the major investment criteria. The IAMP will continue to implement Policy 1G.

- Policy 1H (Bypasses) establishes criteria for determining the need and impact considerations for a new bypass; directs the preparation of plans, management of access, and provision of local facilities for existing bypasses; and provides a checklist of considerations.

Findings
Under Goal 2: System Management, the following policies are applicable:
- Policy 2B (Off-System Improvements) helps local jurisdictions adopt land use and access management policies; and The IAMP includes sections describing existing and future land use patterns, an access management plan, and implementation measures.
- Policy 2F (Traffic Safety) improves the safety of the highway system. One component of the IAMP is identification of existing crash patterns and rates and to develop strategies to address safety issues, including access management and improvement of operational conditions to avoid backup onto the I-5 mainline.

Findings
Under Goal 3: Access Management, the following policies are applicable:
- Policy 3A: (Classification and Spacing Standards) sets access spacing standards for driveways and approaches to the state highway system;
- Policy 3C (Interchange Access Management Areas) sets policy for managing interchange areas by developing an IAMP that identifies and addresses current interchange deficiencies and short, medium and long term solutions; The access spacing standard designated in the OHP for state highways within a UGB is 1,320 feet from the ramp terminal.
- Policy 3D (Deviations) establishes general policies and procedures for deviations from adopted access management standards and policies. The Access Management Plan component of the IAMP is consistent with adopted access standards. Intersections that do not meet access spacing standards — either in the interim before the interchange improvements are constructed or after construction of interchange improvements — are included in Section 5 of the IAMP.

Findings
The IAMP includes policies that establish desired access conditions consistent with the OHP and regulations that require new development to alter existing access that is not in compliance with the desired condition (1,320'). A frontage road improvement east of the freeway interchange is planned to enable private development to comply with this requirement (IAMP, Section 5.3). Deviations — for intersections not meeting the standard in the interim before interchange improvement construction, and for some not meeting the standard after construction — are included in Section 6 of the IAMP.
Conclusion
The Coburg IAMP complies with the OHP.

OAR 660 Division 12 Transportation Planning Rule (TPR)
The TPR requires local governments to adopt land use regulations consistent with state and federal requirements "to protect transportation facilities, corridors and sites for their identified functions OAR 660-012-0045(2)." This policy is achieved through a variety of measures, including:

- Access control measures which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;
- Standards to protect future operations of roads;
- A process for coordinated review of future land use decisions affecting transportation facilities, corridors or sites;
- A process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities, corridors or sites;
- Regulations to provide notice to ODOT of land use applications that require public hearings, involve land divisions, or affect private access to roads; and
- Regulations assuring that amendments to land use designations, densities and design standards are consistent with the functions, capacities and performance standards of facilities identified in the TSP. See also OAR 660-012-0060.

- In addition to the requirements noted above, the TPR defines the interstate interchange area as containing property within one-half mile of an existing or planned interchange on an Interstate Highway as measured from the center point of the interchange; or as defined an Interchange Area Management Plan adopted as an amendment to the Oregon Highway Plan. This is the area in which planning and analysis for the IAMP takes place locally and in which local governments must comply with interchange-related state access management rules.

Findings
The IAMP planning process included a review of all relevant sections of the TPR (Appendix B, Table 1). Applicable sections of the TPR are addressed throughout the IAMP, including identifying the purpose and function of the interchange (Section 1), an assessment of existing and future conditions (Sections 2 and 3), an analysis of alternative solutions for meeting functional objectives (Section 4), and measures to ensure the plan addresses planned conditions including physical improvements, policies, and development regulations (Sections 5, 6, and 7).

Conclusion
The IAMP complies with the Oregon TPR.

OAR 734, Division 51. Highway Approaches, Access Control, Spacing Standards and Medians
OAR 734-051 governs the permitting, management, and standards of approaches to state highways to ensure safe and efficient operation of the state highways. OAR 734-051 policies address the following:

- How to bring existing and future approaches into compliance with access spacing standards, and ensure the safe and efficient operation of the highway;
- The purpose and components of an access management plan; and
- Requirements regarding mitigation, modification and closure of existing approaches as part of project development.

Section 734-051-0125, Access Management Spacing Standards for Approaches in an Interchange Area, establishes interchange management area access spacing standards. It also specifies elements that are to be included in IAMPs, such as short- and long-range actions to improve and maintain safe and efficient roadway operations within the interchange area. The Access Management Plan component of the IAMP (Section 5.3) includes plans for access closures and a frontage road to be constructed east of I-5. This section also includes deviations for intersections on Pearl Street and Van Duyn Road that will not meet adopted state access standards in the interim (before construction) as well as those that will not meet standards after construction, per OAR 734-051-0135.

Findings
Section 5.3 of the IAMP outlines a detailed access management plan of the interchange area. Access spacing standards are designed around OPH and Division 51 spacing standards and are intended over time to shift access spacing in the direction of the applicable state standards. The plan also includes policies specifically aimed at improving access spacing and citing conditions in which access alterations must be made to bring conditions in line with state standards (IAMP, Section 6.1.2, Policy #10).

Conclusion
The IAMP complies with OAR 734, Division 51.

Regional Transportation Plan
The Central Lane Metropolitan Planning Organization Regional Transportation Plan (RTP) guides regional transportation system planning and development in the Central Lane MPO metropolitan area. Coburg was recently added to the MPO. The RTP includes provisions for meeting the transportation demand of residents over a 20-year planning horizon while addressing transportation issues and making changes that can contribute to improvements in the region’s quality of life and economic vitality. The City of Coburg and Lane County are two of the six jurisdictions participating in regional transportation planning related to the RTP. The following project related to the Coburg/I-5 Interchange is on the RTP Capital Improvements List: The following project is on the "illustrative" list in the RTP, that is, it is considered a "needed" project but it does not fit with anticipated revenue over the life of the plan. The City is working at the MPO level to get the project on the Financial Constraint list in the near term.
According to the RTP, new arterial links or interchanges add new links or interchanges to the arterial or freeway systems in the region. Projects typically consist of any required right-of-way acquisition, general roadway construction, and addition of pedestrian and bicycle facilities either adjacent or parallel to the roadway.

Findings
The IAMP included an evaluation of RTP policies and planned improvements (IAMP, Appendix B). The IAMP provides Coburg the means necessary for elevating the interchange project on the RTP list of needed projects, especially the list of financially constrained projects, by addressing necessary planning requirements associated with securing state and federal funding for the improvements that implement the IAMP. In addition, the development of IAMP alternatives and selection of the recommended alternative were consistent with RTP traffic forecasts and policies.

Conclusion
The IAMP complies with the RTP; the Coburg TSP will need to be revised for RTP consistency.

Lane County Transportation System Plan
Lane County's TSP was adopted in 2004. The Plan contains an introduction to the concept of access management in the section of Chapter 4 entitled Access Management: Spacing of Intersections and Driveways on County Roads, stating that "Implementation of access management techniques produces a more consistent traffic flow, helping to improve safety, while reducing congestion, fuel consumption and air pollution." (p. 27). In addition, the Goals and Policies section contains access management policies under Goal 3: Promote a safe and efficient road network through access management. Policy 3b specifically addresses state facilities, noting that "for state facilities, the Oregon Department of Transportation controls access pursuant to Oregon Administrative Rules 734, Division 51." The TSP references Lane Code 15.130 as containing the access management guidelines and spacing standards. The table below outlines the access spacing requirements for County Roads. The spacing standard for local roads outside of urban growth boundaries is 100 feet. The Lane County section of the IAMP study area only contains one road, Van Duyn Road, which is classified by the County as an urban local road inside the UGB and a rural local road once it leaves the UGB. The City of Coburg classifies it as a County Arterial.
Road and Driveway Spacing Standards
for Lane County Collector and Arterial Roadways (Feet) in the Lane County TSP (LC 15.138)

<table>
<thead>
<tr>
<th>Posted Speed or Travel Speed*</th>
<th>Principal Arterial</th>
<th>Minor Arterial</th>
<th>Major Collector</th>
<th>Minor Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥55</td>
<td>700</td>
<td>475</td>
<td>475</td>
<td>325</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
<td>475</td>
<td>475</td>
<td>325</td>
</tr>
<tr>
<td>40 & 45</td>
<td>500</td>
<td>400</td>
<td>400</td>
<td>325</td>
</tr>
<tr>
<td>30 & 35</td>
<td>400</td>
<td>275</td>
<td>273</td>
<td>220</td>
</tr>
<tr>
<td><25</td>
<td>400</td>
<td>200</td>
<td>200</td>
<td>150</td>
</tr>
</tbody>
</table>

Chapter 6 of the TSP, entitled Recommended Improvements lists the improvements on Lane County Roads. The following table shows the project within the Coburg IAMP boundary:

<table>
<thead>
<tr>
<th>Project</th>
<th>Road Name</th>
<th>Limits</th>
<th>Begin MP</th>
<th>End MP</th>
<th>Length</th>
<th>Source</th>
<th>Description</th>
<th>Cost</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>#28</td>
<td>Pearl Street*</td>
<td>Miller Street to I-5</td>
<td>0.244</td>
<td>0.64</td>
<td>0.396</td>
<td>Coburg</td>
<td>Urban Standards - Four lane facility with median treatment, curb, gutter, sidewalks, bike lanes, I-81</td>
<td>$750,000</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Findings
The IAMP includes requirements for traffic impact studies that are consistent with those required by Lane County (IAMP, Section 7).

Conclusion
The IAMP complies with the Lane County TSP.

Lane County Code
Much of the land adjacent to and east of the Coburg/I-5 interchange is currently under the jurisdiction of Lane County. Land directly southeast of the interchange was recently annexed into the Coburg city limits, and is now designated as Highway Commercial. The land in Lane County jurisdiction is zoned Exclusive Farm Use—Rural Comprehensive Plan (E-RCP) zone, which allows corresponding appropriate farm-related uses. The Lane County Code implements OAR 660-033. It allows four levels of minimum parcel size, E-60, E-40, E-30, and E-25. Land within the Coburg/I-5 IAMP boundary is zoned E-40, with a minimum lot size of 40 acres.

Findings
The IAMP includes a review of relevant sections of the Lane County Code and TSP (IAMP, Appendix B). The IAMP includes requirements for traffic impact studies that are consistent with those required by Lane County (IAMP, Section 7). The IAMP does not alter planned land uses or zoning for any properties within the IAMP management boundary.

Conclusion
The IAMP is consistent with the Lane County Rural Comprehensive Plan.

Coburg Comprehensive Plan
Coburg’s Comprehensive Plan was originally adopted in 1978 and is currently undergoing periodic review, which is anticipated to result in Draft plan amendments. Per agreement with LCOG and ODOT, this review includes Draft amendments as of 2005. Therefore, the 2005 PROPOSED policy amendments to the Coburg Comprehensive Plan are incorporated into the following review. Goal 9, Economy of the City includes the following policy relevant to the Coburg/I-5 IAMP.

- **Policy 4:** A “Highway Commercial” district will be located adjacent to the I-5 interchange. The purpose of the Highway Commercial Plan designation is to provide goods and services that primarily serve the traveling public. Uses in this area will preserve the small town and historic character of Coburg, by having compatibility in architectural design and scale with the Central Business District and/or Residential designations. Development of the Highway Commercial District shall be considered secondary to the development of the downtown area, however.

Findings
The policy advances a city preference that the Highway Commercial district applies to land the general vicinity of the interchange. The policy is not specific with regard to access distances or uses that would compromise interchange operation.

Goal 12, Transportation includes the following policies relevant to the Coburg/I-5 IAMP:

- **Policy 3:** Improve the aesthetics of streets and streetscapes, especially at City entrance ways such as Interstate 5 interchange area. Aesthetic improvements may address: street design, trees, lighting, utility lines, sidewalks, park strips, noise abatement, etc.
 3.1 Improve major through-fares with beautification and scenic amenities, coordinating with other agencies and jurisdictions as necessary.
 3.2 Identify and improve city gateways and entranceways with beautification and scenic amenities, coordinating with other agencies and jurisdictions as necessary.

This policy identifies the importance of the I-5 interchange as a gateway to Coburg that needs aesthetic improvements. No specific location has been identified to date as the “gateway”. No projects are designated on the CIP related to this policy.

Findings
The policies do not conflict with the proposed access limitations or design features planning in the IAMP.

- **Policy 13:** Improve the Coburg-Interstate 5 Interchange safety and transportation operations.
 13.1 The City shall adopt and coordinate with ODOT and Lane County to implement the ODOT Coburg-Interstate 5 Interchange Refinement Plan, which includes but is not limited to:
 o A preferred interchange alternative,
 o An interchange access management plan,
A recommended TDM program that shall be fully implemented before interchange reconstruction, and
An assumption that current City and County comprehensive land use designations at and near the interchange are constant for the next 20 years.

This policy supports coordination with Lane County and ODOT to adopt the Coburg/I-5 Interchange Refinement Plan, which is discussed in more detail below.

Findings
The policy is supportive of IAMP objectives and operational objectives.

- **Policy 36**: The City shall not expand the UGB east of Interstate 5 until the City has sufficient clarity on the configuration, timing, and cost of the interchange upgrade to conclude that adequate transportation facilities will be in place to serve future development.

The area immediately southeast of the Coburg/I-5 interchange was annexed into the UGB in 2004, but maintained the County zoning designation. City zoning designation to Highway Commercial occurred November 2007.

Findings
The policy is consistent with the IAMP. Traffic analysis did not assume UGB expansion to the east. The policy also is consistent with IAMP policies that enact an alternative mobility standard for the interchange that would support levels of traffic consistent with the city’s adopted land use plan, and protect the capacity of the interchange in case the interchange is constructed prior to any UGB expansion and Comprehensive Plan amendment by Coburg.

- **Policy 41**: The exception area immediately east of the Interstate 5 interchange shall have an established trip generation baseline upon annexation of the property. The trip generation baseline shall be for average daily trips (ADT), weekday AM peak and weekday PM peak trips, based on ITE Trip Generation Manual and inventory of uses is as shown in Exhibit 2 and is incorporated as policy by reference.

- **Policy 42**: All new development proposals and/or redevelopment proposals in the exception area immediately east of Interstate 5 that exceed the baseline trip generation established upon annexation shall be required to apply for a city plan amendment application and meet Statewide Goal 12, Transportation Planning Rule, in particular Section 0060, and develop a transportation analysis to determine the impact on the interchange and on County Roads. The County may require a traffic impact analysis and road improvements consistent with the Lane County Transportation System Plan goals and policies and with County requirements for roads in Lane Code 15. The new site development or redevelopment shall be required to measure the following trip impacts for all three of the following:
 - Weekday PM peak hour trips between 4:00 pm and 6:00 pm
• Weekday AM peak hour trips between 6:00 am and 9:00 am
• Average Daily trips for the entire area in question.

- Policy 43: In the event that Interchange Refinement Plan is completed and adopted in the Coburg TSP or Interchange Area Management Plan is developed and adopted, the exception areas immediately east of Interstate 5 shall be included in the plans and shall be governed by the results of that plan. Notwithstanding this provision, a traffic impact analysis, road dedications and road improvements may be required for new development affecting County roads in this area.

Related to Policy 43, above, the Interchange Refinement Plan was completed and adopted in 1999 as part of the planning and adoption process for the 1999 Coburg TSP. The IAMP management area includes the areas of Lane County directly east of the interchange, which has been designated by the County for exclusive farm use (E-40). For a specific description of the uses within the IAMP boundary, see Section III, Existing Land Use.

Findings
IAMP alternatives were based on land use assumptions contained in the current adopted Coburg Comprehensive Plan. The policies listed above are generally consistent with the alternative mobility standard and other policies that are enacted through the IAMP, and with land use assumptions used in the IAMP traffic analysis. Future land use applications in the IAMP management area would trigger policies in the IAMP that require the development either to mitigate traffic impacts to perform within the adopted mobility standard/alternative mobility standard for the interchange or proceed with local amendments to the city and county land use plans and the IAMP. The IAMP will be adopted by Coburg – establishing an IAMP Overlay area – which will address concerns expressed in the policies above regarding traffic impact analysis, access and other requirements for development.

Conclusion
The IAMP is consistent with the Coburg Comprehensive Plan.

City of Coburg Transportation System Plan
The City adopted a Transportation System Plan (TSP) in 1999. In order to implement the TSP, the City made amendments to the Comprehensive Plan and Development Code. Chapter 4, Recommended Transportation System Plan, includes Goal 13, which reiterates the intention to adopt the Coburg/I-5 Interchange Refinement Plan. In addition, Chapter 5, Plan Implementation outlines a Capital Improvement Project List for Coburg Transportation Improvements. Under "Medium Range Projects," the Coburg/Interstate 5 Interchange is listed as a project. According to the TSP, the project includes rebuilding the interchange to modern standards. These include widening the structure to three lanes of traffic with shoulders for bicycles and sidewalks for pedestrians, and the profile grade will also be improved. Related access improvements and improvements to Pearl Street are also included. The total estimated project cost is
$7,773,500. According to the project schedule, all improvements will be completed by 2015.

Findings
The recommended alternative that is advanced by the IAMP is generally consistent with the project description outlined in the Coburg TSP, with additional interchange bridge lanes and accompanying policy and code measures. Cost estimates for the preferred alternative differ from the cost in the TSP; that difference, however, relates to time-sensitive estimates that were prepared when the TSP was adopted and which are no longer relevant.

Conclusion
The IAMP is consistent with the Coburg Transportation System Plan Capital Project List.

Coburg/Interstate 5 Interchange Refinement Plan
As noted above, this Refinement Plan was adopted in order to provide a deeper analysis of the Coburg/Interstate 5 Interchange than was possible during the general TSP process. The Refinement Plan was adopted in 1999 as part of the Coburg TSP. According to the executive summary, the intent of the Refinement Plan is to create a long range plan for the interchange and surrounding transportation system and land uses with public participation and to improve the function and safety of the interchange. The plan did not anticipate expansion of the Coburg UGB east of the interchange. The plan guides investment and program decisions for the City of Coburg, Lane County, and ODOT. The Plan includes multiple design concepts showing detailed preliminary analyses of traffic patterns, land use projections, and geometric designs. Major issues that were raised during the Refinement Plan process were:

- The interchange is an obsolete structure, built in 1959;
- The percentage of land uses in the surrounding area dominated by heavy vehicles (trucks);
- The undeveloped nature of the surrounding area, including large tracts of industrial and commercial land, that, if developed would severely degrade the operations, safety, mobility and access of the interchange;
- A desire to improve safety and operations; and
- A desire to lessen impacts of transportation improvements to local residents.

The adopted preferred concept, an enhanced diamond interchange, includes the following improvements:
- The interchange structure is rebuilt and local street improvements enhance the safety and operations of the interchange terminals;
- The bridge is rebuilt to modern standards that include a wider structure with shoulders, bike lanes, sidewalks, and traffic signals;
- The ramp terminals are significantly improved;
- Exit lanes from I-5 to and from the interchange are longer, wider, and will increase capacity for vehicles.
Policy implementation includes Transportation Demand Management (TDM) and access management policies and guidelines.

Findings
The recommended alternative chosen in the IAMP is generally consistent with the Refinement Plan recommendations for the interchange. However, IAMP recommendations are based on updated population and employment forecasts and changes in state requirements, so the new interchange is recommended to be a 4-lane bridge diamond structure accompanied by an access management plan and policy and development code provisions to be adopted by the City of Coburg, Lane County, and the OTC.

Conclusion
The IAMP complies with the Refinement Plan.

Coburg Zoning Code and Land Division Regulations
Land in Coburg immediately adjacent to the Coburg/I-5 interchange is zoned Light Industrial and Highway Commercial. Further west within the IAMP area boundary and closer to downtown Coburg, land is zoned Mixed Use Master Plan, Public Facilities, and Traditional Residential. The list below briefly describes each of these land use designations.

- **Light Industrial** – The Light Industrial designation is intended to provide areas for manufacturing, assembly, packaging, wholesaling, related activities, and limited commercial uses that support local industry and are compatible with the surrounding commercial and residential districts. The LI designation is intended to promote a high quality of life through a diverse economy and strong tax base, transition between higher and lower intensity uses, and appropriately scaled non-polluting industrial uses that fit the small town, historic character of the community.

- **Highway Commercial** – The Highway Commercial designation is intended to provide goods and services that primarily serve the traveling public. The C-2 designation is intended to promote a high quality of life through a diverse economy and strong tax base, transition between higher and lower intensity uses, and appropriately scaled commercial uses that fit the small town, historic character of the community.

- **Public Facility** – This designation is intended to provide lands for public facilities and uses such as water reservoirs, sewage treatment plants, pump stations, major electric utilities and similar uses.

- **Traditional Residential** – The Traditional Residential designation is intended to guide development within historic and traditional neighborhoods of the community. The Traditional Residential designation is intended to provide a livable neighborhood environment, preserve the small town and historic character of Coburg, ensure architectural compatibility, and provide for a variety of residential housing choices (including medium density housing in designated areas).
Findings
The IAMP does not modify the purpose or uses allowed by the zoning districts that are found within the IAMP management boundary. Special policies and the alternative mobility standard may result in limiting development in the IAMP management boundary differently from areas outside the management boundary. This is an intended outcome of the IAMP to ensure the interchange functions over time.

Conclusion
The IAMP is consistent with the City of Coburg’s development code and zoning districts.
Salem, Oregon
635 Capitol Street NE, Suite 1
Department of Land Conservation and Development
Attention: Plan Amendment Specialist

Eugene, OR 97401-3910
639 Willamette St., Suite 500
Lane Council of Governments