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DISSERTATION ABSTRACT

Michael Yuan Sun

Doctor of Philosophy

Department of Mathematics

June 2014

Title: The Tracial Rokhlin Property for Countable Discrete Amenable Group Actions on Nuclear
Tracially Approximately Divisible C *-Algebras

In this dissertation we explore the question of existence of a property of group actions on

C∗-algebras known as the tracial Rokhlin property. We prove existence of the property in a very

general setting as well as specialise the question to specific situations of interest.

For every countable discrete elementary amenable group G, we show that there always

exists a G-action ω with the tracial Rokhlin property on any unital simple nuclear tracially

approximately divisible C∗-algebra A. For the ω we construct, we show that if A is unital simple

and Z-stable with rational tracial rank at most one and G belongs to the class of countable

discrete groups generated by finite and abelian groups under increasing unions and subgroups,

then the crossed product A oω G is also unital simple and Z-stable with rational tracial rank at

most one.

We also specialise the question to UHF algebras. We show that for any countable discrete

maximally almost periodic group G and any UHF algebra A, there exists a strongly outer product

type action α of G on A. We also show the existence of countable discrete almost abelian group

actions with the “pointwise” Rokhlin property on the universal UHF algebra. Consequently we

get many examples of unital separable simple nuclear C∗-algebras with tracial rank zero and a

unique tracial state appearing as crossed products.
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CHAPTER I

INTRODUCTION

At San Francisco International Airport en route to a conference in Shanghai, Professor Lin

asked me: “Is there an action of Z on the universal UHF algebra with the Rokhlin property?”

The question was unexpected but seemed spontaneous and fascinating. I had never heard of the

Rokhlin property, but I had learned what UHF-algebras were in class. Another question quickly

interrupted the silence: “What if I gave you a Z-action could you find me a Z2-action?” I was

excited to hear about the Z-action because this gave me a chance to get a clue into what the

definition of the Rokhlin property actually was! This line of questioning continued and became

increasingly difficult. We reached a point where it seemed that some groups just did not act with

the Rokhlin property. Then came the question, which unbeknownst to me at that time, inspired

this thesis:

“What about the tracial Rokhlin property?”

What was the Rokhlin property and why did people want to find examples of it in group

actions on C∗ algebras? How does its tracial analogue help with matters? These questions will

mark the starting point of our investigations.

One fundamental way to investigate the structure of a C∗-algebra is through the study of

its group actions. Not only does it reveal the inherent symmetries of the C∗-algebra, but actually

allows one to exploit them to construct more C∗-algebras. An indispensable part of this theme is

the crossed product construction. Given a discrete group G, a unital C∗-algebra A and a group

action α of G on A, we can construct a C∗-algebra called the crossed product and denoted by the

less common notation A oα G to emphasize our assumptions on A and G . It has the following

presentation:

Aoα G = 〈a, ug | a ∈ A, g ∈ G,αg(a) = ugau
∗
g〉.

Asking about what sort of C∗-algebras one gets brings us to another aspect of the study

of C∗-algebras: the classification of simple nuclear C∗-algebras using the Elliott invariant. It is

remarkable that so basic an invariant can determine so much about the structure of a simple C∗-

algebra. At the forefront of this success are the large classes of unital simple separable nuclear
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(Z-stable) C∗-algebras which have tracial rank zero, tracial rank at most 1, rational tracial rank

zero or rational tracial rank at most 1 (satisfying the Universal Coefficient Theorem (UCT)),

which were discovered to be classifiable by Lin (26), (27), (29) and by Lin, Niu and Winter (49),

(23). Classifiable C∗-algebras necessarily possess a property called Z-stability which is attracting

a lot of attention in work extending Elliott’s classification program, while those C∗-algebras of

tracial rank at most one are also known to be tracially approximately divisible (Lin (29, Theorem

5.4)).

From the point of view of classification, the crossed product construction gives a way to

explicitly construct algebras which belong to a large class of classifiable C∗-algebras that were

otherwise only identifiable by their Elliott invariant. Conversely, the classification of C∗-algebras

allows one to distinguish between group actions through examining the crossed products, which

also brings clarity to the crossed product construction itself by giving an identity to algebras

otherwise only defined by generators and relations.

Of major interest with respect to these two themes would be a property of group actions

that could, when acting on an algebra belonging to a classifiable class, produce a crossed product

algebra that belonged to the same class. A long standing candidate for this property is one

known as the Rokhlin property. For example, it can be shown that finite group actions with the

Rokhlin property on approximately finite-dimensional C∗-algebras will have approximately finite

dimensional crossed products (Phillips (42)). One major drawback to this property is that it

seems too scarce to be able to fullfil the required role in many common situations. For example, in

the case for finite groups, the size of the group will usually need to divide some key parameter

of the C∗-algebra. Hence another property is sought that will command a similar influence

but exist in greater abundance. In line with the theme of Lin’s celebrated breakthrough in the

classification program, a natural such weakening would manifest itself in the form of the tracial

Rokhlin property. In this case, Phillips (42) gave the definition for finite groups having the tracial

Rokhlin property on simple C∗-algebras and showed that having tracial rank zero is preserved

by taking crossed products. Now that we see it shows some promise in achieving our purposes,

what about the question of existence? Are actions with this property abundant enough to be of

practical importance?

2



The question of how abundant this property is and the ways that it can manifest will

be the main focus of this thesis. This is presented in the first part from Chapter III through to

Chapter VII. The second part of this thesis, consisting of Chapter VII and Chapter IX, will verify

that the actions constructed actually produce crossed products with the desired properties and

hence allow us to construct certain algebras in a classifiable class as crossed products.

We have the privilege of this investigation because we have been recently blessed by Matui-

Sato’s (37) definition of the tracial Rokhlin property for amenable groups with a demonstration

that the property can be used to preserve the property of Z-stability from algebra to crossed

product. We will henceforth refer to their definition as the Matui-Sato tracial Rokhlin property.

Before this, a definition of the tracial Rokhlin property was only stated for Z (Osaka-Phillips (41))

and finite groups (Phillips (42)). Phillips (43) also showed the abundance of cyclic group actions

with the tracial Rokhlin property, while for example Lin (25) gives an existence (and uniqueness)

result for Z building on the work of Kishimoto and others.

In this thesis, we will construct for every countable discrete group G and Z-stable C∗-

algebra A, an action ω of G on A to prove the following theorem in Chapter VII:

Theorem (Corollary VII.14). Given a countable discrete elementary amenable group G and a

unital simple separable Z-stable tracially approximately divisible C∗-algebra A, then there exists a

group action ω of G on A such that ω has the tracial Rokhlin property.

Formally, we show that ω has the Matui-Sato tracial Rokhlin property as an action of G

on A ⊗ Z. Built into the construction of ω is a family of G-actions γ on the Jiang-Su algebra Z,

which we also introduce in Chapter VI. An investigation into the classifiability of Z oγ G and

A oω G is undertaken in Chapter IX. There we obtain as part of Theorem IX.17 the following

result:

Theorem. Suppose A is a unital simple Z-stable C∗-algebra with rational tracial rank at most

one and G belongs to the class of groups generated by finite and abelian groups under increasing

unions and taking subgroups. Then A oω G is a unital simple Z-stable C∗-algebra with rational

tracial rank at most one.

One can also show for all G and all A in the above theorem satisfying certain UCT

requirements that A oω G has tracial rank zero when A has tracial rank zero. So there is
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essentially always an action present on every unital simple separable nuclear tracial rank zero

algebra that has the tracial Rokhlin property and a tracial rank zero crossed product, despite the

problem of proving this in general being open. As part of our investigation we specialise to a very

familiar class of C∗-algebras where many of the earlier investigations into the Rokhlin property

began, the so-called uniformly hyperfinite algebras. We will see that part of our construction for

group actions on Z will adapt particularly well to this new situation.

Uniformly hyperfinite algebras, or UHF algebras for short, represent some of the earliest

and most fundamental examples of unital simple C∗-algebras. Their study and classification is

attributed to Dixmier (5) and Glimm (9). Despite the classical status of UHF algebras in the

theory of C∗-algebras, many new insights can still be gained from studying them and their group

actions. One way to define a UHF algebra is to start with a sequence (nl)l∈N of strictly positive

integers and then associate to it the C∗-algebra M(nl)l∈N using an infinite tensor product (see

Definition III.1). That is

M(nl)l∈N = Mn1
⊗Mn2

⊗ · · · ⊗Mnl ⊗ . . . .

Looking at these UHF algebras together with their tensor product decomposition can lead us to

an interesting point of view. For example, if (nl)l∈N is a constant sequence, the algebra M(nl)l∈N is

strongly self-absorbing in the sense of Winter (48). This perspective has had considerable success

and has allowed one to localise the Elliott conjecture at a UHF algebra (see Winter (49)). Lin, Niu

(23) and Winter (49) made use of this to extend Lin’s celebrated classification of unital simple

separable nuclear C∗-algebras A of tracial rank at most one and which satisfy the UCT to those

A that only had to have tracial rank at most one after tensoring by a strongly self-absorbing

UHF algebra. This is the class of unital separable simple nuclear Z-stable C∗-algebras of rational

tracial rank at most one and satisfies the UCT. It is also interesting to note that part of the

argument used to prove that ω has the tracial Rokhlin property on A ⊗ Z for all A was to first

simulate it on A⊗Z when A is a UHF algebra.

With these developments in mind we study group actions on UHF algebras. Given

our definition, it is natural to look at those group actions that preserve some tensor product

decomposition. Furthermore we will for convenience look at those actions that are inner on each
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factor, so that for each l ∈ N, we have a group homomorphism

G→ U(Mnl)→ AutMnl .

Putting this together we have (cf. Definition IV.3)

G→
∞∏
l=1

U(Mnl)→ Aut

( ∞⊗
l=1

Mnl

)
= AutM(nl)l∈N .

These represent the class of actions that are most accessible to study. Among these actions we

look for examples of actions satisfying some sort of Rokhlin property, tracial Rokhlin property or

strong outerness, listed from strongest to weakest. The actions with these properties represent the

unknown that we are trying to investigate and hope to gain insight from. Finding these properties

together in the same action will serve to provide model group actions for the latter property.

Again, the novelty of our investigation as compared to the many that have preceded us is that

we now have at our disposal all of the groups included in Matui-Sato’s tracial Rokhlin property.

These at least include the countable discrete elementary amenable groups. Previous investigations

have examined and exhausted actions of finite groups on UHF algebra with the Rokhlin property

((7), (8), (13), (11)), as well as single automorphisms of infinite order ((12), (1), (20)), which can

be considered as actions by the group of integers. Higher rank free abelian groups followed not

long after ((40), (39)). In all of these cases, product type actions were used as the model actions.

The Klein bottle group was the first example of an infinite non-abelian group and its actions were

classified by Matui-Sato (37). We will give a model product type action for this group in Chapter

V.

The existence theorem (Corollary VII.14) mentioned above already shows that group

actions on UHF algebras with the tracial Rokhlin property always exist. Now we see if they can

always exist as a product type action.

If the action is outer, then the group homomorphism must be injective. In particular, we

have an embedding

G ↪→
∞∏
l=1

U(Mnl).

These groups are known as maximally almost periodic groups. So our question, in its weakest

version, becomes
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Question. Which maximally almost periodic groups can have strongly outer product type actions

on a UHF algebra?

We show in Chapter IV that the answer is “all of them”. There we use the same method

of obtaining strongly outer actions from faithful ones employed on the Jiang-Su algebra. This

is particularly well-suited to the situation for UHF-algebras because it preserves the property of

being a product type action. With a few adjustments we arrive at Theorem IV.12, which says

Theorem. If G is a countable discrete maximally almost periodic group and A is any UHF

algebra, then there is a strongly outer product type action of G on A. If G is also elementary

amenable then α has the tracial Rokhlin property.

We then give some examples of strongly outer abelian group actions in the following section

of Chapter IV. In Chapter V we compare and contrast the abundance of strongly outer product

type actions with the scarcity of actions with the Rokhlin property. We avoid a definition of the

Rokhlin property for G by using a substitute called the pointwise Rokhlin property that serves to

illustrate our point. In this case we quickly realise that the universal UHF algebra Q maximises

our chances of finding group actions and we arrive at Theorem V.9.

Theorem. If G is a countable discrete almost abelian group, then there is a product type action of

G on Q with the (pointwise) Rokhlin property.

In Chapter VI we focus purely on almost abelian group actions on Q and look for model

actions within a particularly nice class of residually finite group actions.

In Chapter XIII we emphasise the convenience of the properties we have imposed when

investigating the crossed products formed. For example, we know that being an inner action

on each tensor factor will guarantee us that the crossed product is amenable quasidiagonal and

satisfies the UCT. Strong outerness will tell us that the crossed product will have a unique tracial

state, among other things.

Theorem. Suppose G is a countable discrete maximally almost periodic amenable group, A is any

UHF algebra and α is a product type action of G on A with the tracial Rokhlin property. Then

A oα G is unital simple separable nuclear with tracial rank zero, satisfies the Universal Coefficient

Theorem and has a unique tracial state. Furthermore, if G is almost abelian, then A oα G is also

locally type I. Moreover, if G is finite, then Aoα G is approximately finite dimensional.

6



As it might already have been hinted at, the organisation of this thesis will take on a

somewhat reversed order to that in which the topics were just introduced. After some preliminary

definitions and background material, we will develop our arguments from the more specific

situation of single automorphisms on UHF algebras in Chapter III to the more general situation

of group actions on tracially approximately divisible C∗-algebras in Chapter VII, finishing with

an independent investigation into the crossed product algebras in Chapters VIII and IX. Indeed,

Chapters III through VI concern themselve solely with UHF algebras, while Chapter VII moves on

to the Jiang-Su algebra and exhibiting the general existence theorem. In principle, one could start

with Chapter VII without compromising the logical integrity of the thesis. We have chosen this

order of presentation so that the reader may first be exposed to a concrete elementary example of

the Rokhlin property in action, tracial or otherwise, which contains much of the relevant insight

into later developments and will serve as a platform for elevating these ideas to those situations.

Within the discussion of UHF-algebras we move from the very specific situation of single

automorphisms in Chapter III to the least specific situation of strongly outer group actions

in Chapter IV. From here we look to strengthen the condition of strongly outer to that of the

pointwise Rokhlin property in Chapter V, which both limit the groups and algebras that we

examine. We further specialise the situation in Chapter VI to the universal UHF algebra and

have specific requirements on the way the groups act so as to ensure the nicest model actions for

some of the more common groups obtained in Chapter V.

7



CHAPTER II

PRELIMINARIES

We give here some background material and basic definitions for C∗-algebras (see for

example, Lin (21)). As the objects in this investigation will usually be loaded with adjectives

we take the time here to list what many of the more common ones mean but will assume some

basic knowledge of the more elementary jargon so as to avoid being overwhelmed by detail.

C∗-algebras: Separable, Simple, Nuclear, Z-Stable, UCT

A C∗-algebra A is an algebra over C equipped with a norm ‖ · ‖ and a conjugate linear

isometric involution ∗ such that

– ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A,

– (ab)∗ = b∗a∗ for all a, b ∈ A,

– ‖a∗a‖ = ‖a‖2 for all a ∈ A,

– A is complete with respect to ‖ · ‖.

To have a homomorphism of C∗-algebras it suffices to have a homomorphism of their underlying

algebras that preserves the ∗-operation. These are called ∗-homomorphisms, or ∗-isomorphisms

if the underlying algebra homomorphisms are isomorphisms. For C∗-algebras A and B we write

A ∼= B if A and B are isomorphic. We list some common assumptions on C∗-algebras in our

investigation. We will reserve the upper case letter A for C∗-algebras. Also

a ≈ε b stands for ‖a− b‖ < ε.

Unital

A C∗-algebra A is called unital if it contains an element 1A such that

– ‖1A‖ = 1.

– 1Ab = b1A = b for all b ∈ A.

All of the C∗-algebras we consider will be unital.

8



Separable

A C∗-algebra is separable if there is a countable dense subset.

Simple

A C∗-algebra is simple if it has no proper closed two-sided ideals.

Nuclear (or Amenable)

We choose the more practical characterisation of amenability to reflect its use in this thesis.

A C∗-algebra A is said to be nuclear (or amenable) if for any C∗-algebra B, the algebraic tensor

product of A and B has only one possible norm so that the completion is a C∗-algebra. That is,

there is only one possible way to define the C∗-algebra A⊗B.

Let A and B be unital nuclear C∗-algebras. We have

A⊗B = 〈a, b | a ∈ A, b ∈ B, ab = ba〉.

If a ∈ A and b ∈ B we denote their product in A⊗B by

a⊗ b = ab = ba

and note that

‖a⊗ b‖ = ‖a‖‖b‖.

Implicitly there are unital embeddings

A→ A⊗B : a 7→ a⊗ 1 and B → A⊗B : b 7→ 1⊗ b.

Also, for any unital C∗-algebra C, whenever there are pairs of unital embeddings

A→ C, B → C

9



such that the images commute, there is a unital embedding

A⊗B → C.

Z-stability

Let Z denote the Jiang-Su algebra (introduced further in Chapter 5). We say a C∗-algebra

A is Z-stable or Z-absorbing if A⊗Z ∼= A.

Universal Coefficient Theorem (UCT)

This is a technical condition that would take us too far astray to define. Suffice it to say

that there are no nuclear C∗-algebras known to not satisfy the UCT and that the condition is

needed to ensure the classification results in the section after the next section.

C∗-algebras: Projections, Unitaries and Traces

Let A be a unital C∗-algebra. Let Mn denote the algebra of n × n matrices, let 1n denote

its identity and let τn denote the trace normalised so that τn(1n) = 1.

Projections

An element a ∈ A is called self-adjoint if a∗ = a. Say a is positive and write a ∈ A+ if a is

self-adjoint and has real spectrum. If also a2 = a we call it a projection. We will usually reserve

the lower case letters p and q to denote projections. We say projections p and q in A are Murray

von-Neumann equivalent if there is a v ∈ A such that vv∗ = p and v∗v = q. Let p ∈ A be a

projection and let a ∈ A+. We write

p � a

if p is Murray-von Neumann equivalent to a projection in aAa.

Lemma II.1. Suppose δ ∈ (0, 1/4) and a ∈ A is self-adjoint and satisfies

a2 ≈δ a.

10



Then there is a projection p such that

p ≈2δ a.

Proof. See for example Lin (21, Lemma 2.5.5).

Lemma II.2. Let ε > 0 and let n ∈ N. There is a δ > 0 such that for any projections q1, . . . , qn

such that

– qiqj ≈δ 0,

there exist mutually orthogonal projections p1, . . . , pn such that for 1 ≤ i ≤ n

pi ≈ε qi.

Proof. See for example Lin (21, Lemma 2.5.6).

Identifying Mn(A) as a subalgebra of Mn+1(A) via the embedding a 7→ diag(a, 0) we define

M∞(A) =

∞⋃
n=1

Mn(A).

If pn ∈ Mn(A) and qn′ ∈ Mn′(A) are projections, we say that they are stably equivalent if

there is an l and an L such that diag(pn, 1l, 0L−l−n) is Murray-von Neumann equivalent to

diag(qn′ , 1l, 0L−l−n′) in ML(A). Writing [p] for the equivalence class of p with respect to stable

equivalence, we set

K0(A)+ = {[p] | p = p2 = p∗ ∈M∞(A)}.

This is a cancellative semigroup under the addition defined by [p] + [q] = [diag(p, q)] and so it

embeds into its Grothendieck group

K0(A) = {[p]− [q] | [p], [q] ∈ K0(A)+}

of formal differences [p]− [q] subject to the relation [p1]− [q1] = [p2]− [q2] if [p1] + [q2] = [p2] + [q1]

in K0(A)+.
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Unitaries

An element u ∈ A is called a unitary if u∗u = 1 and uu∗ = 1. We will write U(A) for the

group of unitaries in A and U(A)0 for its path component of the identity. We have maps

U(Mn(A))→ U(Mn+1(A)) : u 7→ diag(u, 1).

Define

K1(A) = lim−→
n

U(Mn(A))/U(Mn(A))0,

which we note without proof is an abelian group.

Traces

A tracial state τ on A is a positive linear function A→ C such that

– τ(ab) = τ(ba) for all a, b ∈ A,

– τ(1A) = 1.

It is convenient to note that for any a, b ∈ A if a ≈ε b then τ(a) ≈ε τ(b) since |τ(x)| ≤ ‖x‖ for all

x ∈ A.

Lemma II.3. If p, q ∈ A are projections such that p ≈1 q, then τ(p) = τ(q).

Proof. See for example (21, Lemma 2.5.1).

We write T (A) for the tracial state space of A, which is convex set. Denote by Aff(T (A))

the set of real weak* continuous affine functions on T (A), that is,

Aff(T (A)) = {f : T (A)→ R | f is affine}.

For a projection p ∈Mn(A), define an associated evaluation function p̂ ∈ Aff(T (A)) by

p̂(τ) = (τn ⊗ τ)(p)
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for all τ ∈ T (A). Then there is a group homomorphism

ρA : K0(A)→ Aff(T (A))

defined on K0(A)+ by

[p] 7→ p̂.

For a unital simple C∗-algebra A with at least one tracial state, define a norm ‖ · ‖2 for

a ∈ A by

‖a‖2 = sup
τ∈T (A)

τ(a∗a)1/2.

Suppose A is unital and simple with unique tracial state τ . Then we define the Gelfand-

Naimark-Segal representation with respect to τ in this case. Define a positive definite sesquilinear

form by

〈a, b〉 = τ(b∗a)

for all a, b ∈ A.

Take the completion and call the Hilbert space obtained Hτ with ã the image of a ∈ A.

Then define πτ : A→ B(Hτ ) by

πτ (a)̃b = ãb.

We also have for all a ∈ A

τ(a) = 〈πτ (a)1̃A, 1̃A〉.

C∗-algebras: Tracial Rank and Elliott’s Program

Tracial rank

A simple unital C∗-algebra is said to have tracial rank zero or be tracially approximately

finite dimensional if for any ε > 0, any a ∈ A+ and every finite subset {a1, a2, . . . , an} in A, there

is a finite dimensional subalgebra B with 1B denoted by p, such that there exist b1, . . . bn ∈ B

such that

– [p, ai] ≈ε 0 for 1 ≤ i ≤ n.

– paip ≈ε bi for 1 ≤ i ≤ n.
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– p � a.

If instead of a finite dimensional algebra, B is allowed to be of the form

m⊕
i=1

piMni(C(X))pi

where X a CW-complex of dimension at most one and pi is a projection in Mni(C(X)), then we

say that A has tracial rank at most one. Let Q be the universal UHF algebra (to be defined in

chapter 2). Then A is said to have rational tracial rank zero or rational tracial rank at most one

if Q ⊗ A has tracial rank zero or tracial rank at most one respectively. We see that the weakest

condition is to have rational tracial rank at most one and includes the algebras with the other

conditions just defined.

Elliott invariant

Define the Elliott invariant for a unital C∗-algebra A to be

Ell(A) = (K0(A),K0(A)+, [1A],K1(A), T (A), ρA).

If A and B are unital C∗-algebras we say that Ell(A) ∼= Ell(B) if there are isomorphisms of groups

and spaces

– ϕ0 : K0(A)→ K0(B),

– ϕ1 : K1(A)→ K1(B),

– λ : T (B)→ T (A),

such that the following conditions are satisfied:

– ϕ0([1A]) = [1B ],

– ϕ0(K0(A)+) = K+
0 (B),

and that the following diagram commutes:

K0(A)
ρA−−−−→ Aff(T (A))yϕ0

yAff(λ)

K0(B)
ρB−−−−→ Aff(T (B)).
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Elliott’s classification program

The Elliott classification program is an attempt to find classes A (as large as possible) of

unital separable simple nuclear C∗-algebras that can be classified using the Elliott invariant. That

is to say, if A and B are in A and Ell(A) ∼= Ell(B), then A ∼= B. Here are some of the recent

breakthroughs in the program.

Theorem II.4 (Lin (26) (27)). The class of unital separable simple nuclear C∗-algebras with

tracial rank at most one and satisfying the UCT can be classified by the Elliott invariant.

Theorem II.5 (Lin-Niu (23), Winter (49)). The class of unital separable simple nuclear Z-stable

C∗-algebras with rational tracial rank at most one and satisfying the UCT can be classified by the

Elliott invariant.

Groups: Countable, Amenable, Elementary Amenable

We will reserve the upper case letter G for groups.

Discrete

A group is called discrete if its underlying set is equipped with the discrete topology.

Consequently the multiplcation and inversion maps are automatically continuous and any map

from G is automatically continuous. So any group is a discrete topological group and we will often

omit the word “topological”.

Countable

A group is countable if its underlying set is countable. This assumption will ensure the

crossed product algebras we form are separable.

Amenable

We will see that the definition of the tracial Rokhlin property used here will only make

sense for amenable groups.
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Definition II.6 ((F, ε)-invariance). Let G be a countable discrete group, let F ⊂ G be a finite

subset and let ε > 0. We say a finite subset K of G is (F, ε)-invariant if K 6= ∅ and

∣∣∣∣∣∣K ∩
⋂
g∈F

g−1K

∣∣∣∣∣∣ ≥ (1− ε)|K|.

Definition II.7 (Amenability). A countable discrete group G is said to be amenable if an (F, ε)-

invariant subset exists from any finite set F and ε > 0. The group G is said to be elementary

amenable if it is contained in the smallest class of groups that contains all abelian groups, all

finite groups and is closed under taking subgroups, quotients, direct limits and extensions.

Crossed Products: Automorphisms and Actions

Let A be a unital C∗-algebra.

Automorphisms

An automorphism of A is a ∗-isomorphism from A to A. Let AutA be the group of all

automorphisms of A. For a unitary u ∈ A define Adu ∈ AutA for all x ∈ A by

(Adu)(x) = uxu∗.

These are called inner automorphisms. Write (πτ , Hτ ) for the GNS-representation with respect

to τ ∈ T (A). An automorphism is called weakly inner if it is inner when extended to an

automorphism of πτ (A)′′, the weak operator closure of πτ (A), for all α-invariant τ ∈ T (A).

Group actions

Let G be a discrete group. We will usually denote a group action of G on A as a

homomorphism

α : G→ AutA

and the automorphism by which g ∈ G acts as αg. We ignore any continuity conditions as we will

only look at discrete groups.
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Crossed products

For any unital C∗-algebra A, any discrete group G and any action α of G on A, define the

crossed product Aoα G to be the C∗-algebra with the presentation

Aoα G = 〈a, ug | a ∈ A, g ∈ G,αg(a) = ugau
∗
g〉.

Implicitly the elements a ∈ A satisfy the relations in A and the elements ug for g ∈ G satisfy the

relations in G. That is, there is a unital embedding

A→ Aoα G, a 7→ a

and a group homomorphism

G→ U(Aoα G), g 7→ ug.

For g ∈ G we will refer to ug as the canonical unitary implementing αg. It is clear by definition

that Aoα G is unital. Since G is discrete, finite sums of the form

∑
g

agug,

for ag ∈ A and g ∈ G, are dense in Aoα G. We see that when G is countable Aoα G is separable.

We see that for any unital C∗-algebra B, whenever there is a pair of maps

ψ : A→ B, ϕ : G→ U(B),

with ψ a unital embedding and ϕ a group homomorphism such that for all a ∈ A and all g ∈ G,

ϕ(g)ψ(a)ϕ(g)∗ = ψ(αg(a)),

then there is a canonical untial ∗-homomorphism Ψ : A oα G → B such that Ψ|A = ψ and

Ψ|G = ϕ.
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Since G is discrete, there is also a conditional expectation E : A oα G → A defined so

aug 7→ 0 for g 6= 1 and au1 7→ a. If τ is a G invariant trace on A, then τ ◦ E is a trace on

Aoα G→ A.

The Tracial Rokhlin Property

Definition II.8 (Tracial Rokhlin property). A group action α of G on a C∗-algebra A has the

tracial Rokhlin property if for every finite subset F ⊂ G, any εG > 0, there is a finite (F, εG)-

invariant subset K in G such that for every εA > 0, every finite subset {x1, . . . , xn} ⊂ A and

all non-zero a ∈ A+, and mutually orthogonal projections (pk)k∈K such that for all h ∈ K and

g ∈ K ∩ h−1K, and writing p =
∑
k∈K pk, we have

– [ph, xi] ≈εA 0 for 1 ≤ i ≤ n,

– αh(pg) ≈εA phg,

– 1− p � a.

The tracial Rokhlin property for amenable group actions is essentially new and was

introduced by Matui-Sato. We will look in detail at aspects of this definition in Chapter III where

the situation has been simplified as to be digestible.

There is also the weaker notion of this for algebras without projections called the weak

Rokhlin property (Matui-Sato (37, Definition 2.5)).

Infinite Tensor Products and Strongly Outer Actions

Infinite tensor products

Definition II.9. For each n ∈ N, let An be a unital nuclear C∗-algebra and let αn ∈ AutAn.

Then define the infinite tensor product as the C∗-algebra direct limit

∞⊗
n=1

An = lim−→

(
m⊗
n=1

An, id⊗1Am+1

)
.

Also write
⊗∞

n=1 αn for the unique automorphism such that for an ∈ An

( ∞⊗
n=1

αn

)(
m⊗
n=1

an

)
=

m⊗
n=1

αn(an)
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If A is a unital nuclear C∗-algebra and An = A for all n ∈ N, we sometimes write

A⊗N =

∞⊗
n=1

A.

If also α ∈ AutA and αn = α for all n ∈ N, we sometimes write

α⊗N =

∞⊗
n=1

α.

If α is an action of G on A, we define α⊗N by

(α⊗N)g = α⊗Ng

for all g ∈ G.

Strongly outer actions

Definition II.10. An action α of G on A is called strongly outer if αg is not weakly inner for all

g ∈ G \ {1}.

In the case an automorphism α is weakly inner we have for any invariant τ there is a

unitary u ∈ B(Hτ ) such that

πτ (α(a)) = uπτ (a)u∗

for all a ∈ A. This means that there is a representation of the crossed product π : Ao Z→ B(Hτ )

such that π|A = πτ and π(u1) = u.

Definition II.11. Let 1̃A ∈ Hτ be the vector obtained from 1A in the GNS construction. Then

we have the following positive state on Ao Z extending τ :

τAoZ(x) = 〈π(x)1̃A, 1̃A〉

Lemma II.12. τAoZ is a trace on Ao Z.

Proof. By linearity and continuity of τAoZ it suffices to show

τAoZ(aumbun) = τAoZ(bunaum)
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for all m,n ∈ Z, a, b ∈ A. We first show this for m,n ≥ 0 by induction on l = m+ n. This is clear

for l = 0 since τAoZ|A = τA is a trace.

Let (vk)k∈N be a sequence in A such that vk → u in the weak operator topology. In

the diagram below, the top equality is the induction hypothesis, the vertical arrows represent

convergence, while the equality in the bottom row is the conclusion drawn from these facts,

completing the induction step.

τ(avku
m−1bun) τ(bukavku

m−1)y y
τ(aumbun) τ(bunaum)

Now we complete the proof in the case m < 0 or n < 0, by replacing the corresponding u by

u∗ in the argument above since v∗k converges weakly to u∗.

The following is based on Matui-Sato (37, Lemma 6.13).

Lemma II.13. Let An be a sequence of unital simple nuclear C∗-algebras with unique tracial

states τn and let αn ∈ Aut(An). For A =
⊗∞

n=1An define α ∈ AutA by

α =

∞⊗
n=1

αn.

Let τ be the unique tracial state on A. If there is a sequence of unitaries vn ∈ U(An) such that

‖αn(vn)− vn‖2 does not converge to 0, then α is not weakly inner.

Proof. Define a (central) sequence in A by

v(n) = 1⊗ · · · ⊗ 1⊗ vn ⊗ 1⊗ · · · ,

where 1 appears in every factor except An. We will show that if α is weakly inner then

‖α(v(n))− v(n)‖2 → 0.

Assume there is a unitary u ∈ πτ (A)′′ such that α⊗Ng = Adu on πτ (A)′′. This gives a

representation of A oα Z on Hτ as described in the previous section and a sequence (xk)k∈N in
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πτ (A) such that xk → u in the weak operator topology. Let ε > 0, fix k so that

‖u− xk‖2,AoZ ≈ε/2 0

by way of xk strongly converging to u, and let n be large enough so that

[xk, v(n)] ≈ε 0,

which is possible because v(n) is a central sequence. Using ‖ab‖2 ≤ ‖a‖2‖b‖ in the third step we

now calculate:

‖α⊗Ng (v(n))− v(n)‖2,A = ‖uv(n)u∗ − v(n)‖2,AoZ

= ‖uv(n)− v(n)u‖2,AoZ

≤ 2‖u− xk‖2,AoZ + ‖xkv(n)− v(n)xk‖

≈ε ‖xkv(n)− v(n)xk‖

≈ε 0.

The following is essentially Matui-Sato (37, Lemma 6.13). We thank Y. Sato for

communicating a proof of their lemma to us.

Corollary II.14. Suppose A is a unital simple nuclear C∗algebra with a unique tracial state and

α : G→ Aut(A) corresponds to an action of G on A and kerα = {1G}. Then the action α⊗N of G

on A⊗N =
⊗∞

n=1A is strongly outer.

Proof. We use Lemma II.13 to show that for each g ∈ G not 1, the automorphism that g acts

by is not weakly inner. Since α is not trivial on A there is some u ∈ A such that α(v) 6= v.

We can take v to be unitary since unitaries span A and α is linear. In particular, the sequence

‖αn(vn) − vn‖2 in Lemma II.13 with αn = α and vn = v for all n ∈ N is constant and non-

zero.
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CHAPTER III

AUTOMORPHISMS OF UNIFORMLY HYPERFINITE C∗-ALGEBRAS

We look at the very specific situation of a single automorphism acting on a particularly

nice class of C∗-algebras so that we may get a concrete understanding of the ideas involved. After

introducing the definition and notation for UHF algebras in Section 1, we introduce the Rokhlin

property for automorphisms of UHF algebras in Section 2 where we will embark on an informal

discussion of the definition and present two fundamental examples of automorphisms with the

Rokhlin property. Many of the observations discussed in Section 2 will be formalized into Lemmas

and Propositions in Section 3, where the similar looking definition of the tracial Rokhlin property

is introduced. Two particularly nice observations are presented in Section 3 as the “bump-up”

and “cut-down” principles, which will be called upon in Chapter 2 and Chapter 3 respectively.

An elementary lemma concerning the tensor product of automorphisms keeping the Rokhlin

properties of the factors is stated and proved in Section 5.

Uniformly Hyperfinite C∗-algebras (UHF)

We will introduce the universal UHF algebra Q and other UHF algebras as infinite tensor

products of full matrix algebras.

Definition III.1. Recalling the definition of the infinite tensor product (Definition II.9) we define

for any sequence of strictly positive integers (nl)l∈N such that nl ≥ 2 for all l ∈ N, its associated

UHF algebra M(nl)l∈N given by

∞⊗
l=1

Mnl = Mn1
⊗Mn2

⊗ · · · ⊗Mnl ⊗ . . . .

So we have in this notation a definition for the universal UHF algebra Q as

Q = M(n)n∈N =

∞⊗
n=1

Mn.

Let (nl)l∈N and (ml)l∈N be sequences of strictly positive integers. We say that (nl)l∈N and (ml)l∈N

are of the same type if

M(nl)l∈N
∼= M(ml)l∈N .
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We see that one way to get algebras of the same type is to regroup the factors. That is, a strictly

positive sequence (Nl)l∈N is called a regrouping of (nl) if there is a strictly increasing sequence

(li)
∞
i=1 with l1 = 0, such that

Ni =

li+1∏
li+1

nj .

We say (nl)l∈N is of infinite type if

M(nl)l∈N ⊗M(nl)l∈N
∼= M(nl)l∈N ,

which we note to be equivalent to saying that every prime divides infinitely many terms in the

sequence. A special case of sequences of infinite type is the constant sequence (n)l∈N for some

n ∈ N \ {0}, for which we will sometimes adopt the notation

Mn∞ = M(n)l∈N .

We will also use the notation M(nl)l≤m to denote the corresponding finite dimensional subalgebra.

The Rokhlin Property for Automorphisms

Here we use the definition of the Rokhlin property for automorphisms as the focus of an

informal discussion to introduce some basic ideas. We will eventually see how it is related to

the definition in the preliminaries and later to the Matui-Sato definition of the tracial Rokhlin

property.

Definition III.2. Let A be a unital C∗-algebra and α ∈ AutA. We say α has the Rokhlin

property, if for every n′ ∈ N, there exists N ′ > n′ such that for every ε > 0 and every finite

subset {a1, . . . , an} in A, there exist mutually orthogonal projections p1, p2, . . . , pN ′ such that

(i) [pi, aj ] ≈ε 0 for 1 ≤ i ≤ N ′ and 1 ≤ j ≤ n,

(ii) α(pi) ≈ε pi+1 for 1 ≤ i ≤ N ′ − 1,

(iii)
∑N ′

i=1 pi = 1.

So the Rokhlin property is about finding enough projections that satisfy certain conditions

with respect to α. Notice that finding N ′ > n′ projections ensure that the order of α exceeds
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n′. So as n′ varies, this definition forces α to be of infinite order. The general definition involves

two “towers” of projections but we will not deal with situations where it is not equivalent to the

one tower version defined above and hence will stick with the one tower version for simplicity. We

labelled these conditions (i), (ii) and (iii). Let us examine these conditions closely after seeing an

example.

Consider for example the UHF algebra M(2l)l∈N . For each l ∈ N let ul ∈ U(M2l) be the

cyclic permutation of the standard basis vectors of order 2l and let α ∈ AutM2∞ be defined by

α =

∞⊗
l=1

Adul.

We now show that α has the Rokhlin property. For any n′ ∈ N we fix N ′ = 2l
′

for the minimum

l′ such that 2l
′
> n′. Let ε > 0 and let {a1, . . . , an} be a finite subset of A. By the direct limit

definition of M2∞ there exists L ≥ l′ and a1(L), . . . , an(L) ∈
⊗L

l=1M2l such that for 1 ≤ i ≤ n, we

have

ai ≈ε ai(L).

For 1 ≤ j ≤ 2L+1 let ej,j ∈ M2L+1 denote the diagonal matrix units. Let r(j) be the remainder

when j is divided by 2l
′

and for 1 ≤ i ≤ 2l
′

set

pi =
∑

r(j)=i−1

ej,j .

We check that these mutually orthogonal projections satisfy the requirements of the Rokhlin

property. Let 1 ≤ i ≤ N ′ and 1 ≤ j ≤ n. Since aj(L) and pi lie in different tensor factors we have

[pi, aj ] ≈2ε [pi, aj(L)]

= 0.
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Next let 1 ≤ i ≤ 2l
′ − 1. Then

α(pi) =
∑

r(j)=i−1

α(ej,j)

=
∑

r(j)=i−1

Adu2l′ (ej,j)

=
∑

r(j)=i−1

Adu2l′ (ej+1,j+1)

=
∑
r(j)=i

Adu2l′ (ej,j)

= pi+1.

Finally we see that
2l
′∑

i=1

pi =

2l
′∑

i=1

∑
r(j)=i−1

ej,j

=

2L+1∑
j=1

ej,j

= 1.

With this example in mind, we now return to examining the properties (i) − (iii) and our

informal discussion.

Property (i)

We saw for UHF algebras how tensor products work particularly well with condition (i),

which after all is about commuting. Suppose the automorphism α preserves the tensor product

decomposition of M(nl)l∈N like in the above example. Then we would be able to always satisfy

(i), (ii) and (iii) as long as we could satisfy just (ii) and (iii) outside any finite number of tensor

factors. That is α has the Rokhlin property if it satisfies the Rokhlin property with condition

(i) omitted on M(nl)l≥m for all m > 1. The converse is also true because we can always include

all of the matrix units of a finite number factors into the finite set which our projections will

approximately commute with in (i) and hence the projections can be forced to be outside of those

factors. (See Proposition III.10).

In a sense condition (i) is the only one that detects the whole algebra. Without it, the

projections could potentially be found in any subalgebra left invariant by α. In this way to exhibit
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the Rokhlin property “globally” or for all n′, one only needs to exhibit it “locally” for each n′.

The problem with trying to take advantage of this for different algebras is that condition (iii)

forces our invariant subalgebras to be unital subalgebras which are not always easy to find.

Recall that a central sequence (an)n∈N in A is one such that for all a ∈ A, aan − ana → 0

as n → ∞. In a separable C∗-algebra to test the centrality condition for all a ∈ A, it suffices

to test it for a countable dense subset. So if we take our finite subset {a1, . . . , an} to be a finite

subset of a countable dense subset and ε to decrease to 0 with n, then the projections p1, . . . , pn′

we find (with n′ fixed) form a central sequence. Conversely, a central sequence of projections will

eventually satisfy (i) for any finite subset of A. The problem again is because of (iii), we may not

be able to control the variance of N ′ and hence not be able to get well-defined sequences.

Property (ii)

Combined with property (i) we see that α must be an outer automorphism. This is because

if there is a unitary u to implement α, we can include it in the finite subset for condition (i). In

this case a projection commuting with u is fixed by α, which contradicts (ii). (See Lemma III.6).

Property (ii) also tells us that the projections we get are all Murray-von Neumann

equivalent. In the case of a matrix algebra, this means that the projections all have the same

rank or equivalently, all have the same number of 1’ and 0’s when diagonalized. We can essentially

always assume our projections lie in some matrix algebra because these algebras are dense inside

of a UHF algebra. Lemma II.2 will ensure that they remain mutually orthogonal and the fact that

a projection that is close to 1 is actually equal to 1 will save condition (iii).

The actual orbit of p1 under α is also a set of projections not fewer than N ′. Since they

are close to the projections given, they are “almost” mutually orthogonal. So if we were willing to

allow almost mutually orthogonal projections in the definition, then we can enjoy exect equalities

in (ii). Conversely, if we did have this, we can return to the original situation using Lemma II.2 to

orthogonalise the projections.

For an automorphism with the Rokhlin property that does not necessarily preserve a tensor

product decomposition, we can try to simulate a tensor product automorphism as follows. Fix

an increasing sequence of integers (nl)l∈N to take on the roles of a varying n′. Find at least n1

projections satisfying (ii), localise them to a matrix MN1
where α might not act on the matrix
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but will look as if it does in its approximate action on the projections inside. Then find at least

n2 projections which approximately commute with the matrix units in MN1 satisfying (ii). Then

they approximately belong to 1N1 ⊗MN2 with an approximate action of α. Repeating this we get

a tensor product decomposition M(Nl)l∈N for which the action of α approximately looks like that

of Example III.2.

Property (iii)

This innocuous looking condition is responsible for the Rokhlin property being so hard to

find in general. For example, if we were to find N ′ projections in a single matrix algebra Ml then

condition (ii) implies that all of the projections have the same rank and hence combined with (iii)

implies that l is divisible by N ′. So as N ′ varies the matrices in our decomposition need to be

divisible by infinite many different integers. This is actually not a problem for UHF algebras for

infinite order automorphisms but will be for finite order automorphisms, while the problem for

infinite order automorphisms will compound to more complicated algebras. Without (iii) we look

at what the definition might look like to save effort later convincing the reader that the Matui-

Sato tracial Rokhlin property is equivalent to the general one.

Definition. An automorphism α has the Rokhlin property without (iii) if for n′ ∈ N there is

N ′ > n′ and a central sequence of non-zero projections (pn)n∈N such that for 1 ≤ i 6= j ≤ N ′, we

have

lim
n→∞

αi(pn)αj(pn) = 0.

Actions of Z with the Rokhlin Property

We notice that when α has the Rokhlin property that any power of α also satisfies the

Rokhlin property, so that the Rokhlin property for a single infinite order automorphism is really

a property for actions of the discrete group Z. We see Example III.2 above determines a map

Z→ AutM(2l)l∈N defined by j 7→ αj for all j ∈ Z. We even see that there is a factorisation

Z→
∞∏
l=1

U(M2l)→ AutM(2l)l∈N
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defined by the lifting

j 7→ (ul)
∞
l=1.

Actions of Z/kZ with the Rokhlin Property

If α has finite order k, then we ignore n′, require N ′ = k and α(pk) ≈ε p1 in the previous

definition. That is:

Definition III.3. Let A be a unital C∗-algebra and α ∈ AutA. We say α has the order k Rokhlin

property, if for every ε > 0 and every finite subset {a1, . . . , an} in A, there exist k mutually

orthogonal projections p1, p2, . . . , pk such that

(i) [pi, aj ] ≈ε 0 for all i ≤ k and all j ≤ n,

(ii) α(pi) ≈ε pi+1 for all i ≤ k, with pk+1 = p1,

(iii)
∑N ′

i=1 pi = 1.

If we review the construction of Example III.2, we see if we replace (l)l∈N by (k)l∈N

and similar definitions for ul, we would get an example of the Rokhlin property for an order k

automorphism. As mentioned in the previous section, (iii) will now be a serious inhibition to

finding such examples. Indeed with the above discussion we see that k must divide the matrix

sizes of the matrix algebras appearing in the tensor product decomposition infinitely many times.

We also make the direct leap that this definition is really one for actions of the finite group

Z/kZ, which can be readily extended to all finite groups. Below is the canonical example of a

finite group acting with the Rokhlin property.

Proposition III.4. Let G be a finite group acting on C|G| via its left regular representation. This

gives a group homomorphism

G→ U(M|G|),

which we duplicate infinitely many times to get

α : G ↪→
∏
n=1

U(M|G|)→ AutM|G|∞ .

Suppose for every g ∈ G that αg has order k(g). Then αg has the order k(g) Rokhlin property for

all g ∈ G.
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Proof. We will show that α has the pointwise Rokhlin property. Let g ∈ G with g 6= 1 and let 〈g〉

denote the subgroup generated by g. If we restrict the left regular representation of G to 〈g〉, we

get a decomposition into a direct sum of copies of the left regular representation for 〈g〉. Hence it

suffices to assume that G = 〈g〉 and that |G| = k, the order of g. If we write Ck with respect to

the basis {1, g, g2, . . . , gk−1} we get

Ck = C1⊕ Cg ⊕ · · · ⊕ Cgk−1,

we see that g acts as a cyclic permutation of the basis vectors of order k. Then Example III.2

combined with the comments directly above tells us this is an example of the Rokhlin property.

The Tracial Rokhlin Property for Automorphisms

Here we give the tracial Rokhlin property for automorphisms of UHF algebras. The only

difference is in (iii), where a weaker condition now resides.

Definition III.5. Let A be a UHF algebra and α ∈ AutA. We say α has the tracial Rokhlin

property, if for every n′ ∈ N, there exists N ′ > n′ such that for every ε > 0 and every finite

subset {a1, . . . , an} in A, there exist mutually orthogonal projections p1, p2, . . . , pN ′ such that with

p =
∑N ′

i=1 pi we have

(i) [pi, aj ] ≈ε 0 for 1 ≤ i ≤ N ′ and for 1 ≤ j ≤ n,

(ii) α(pi) ≈ε pi+1 for 1 ≤ i ≤ N ′ − 1,

(iii) τ(p) ≈ε 1 for the unique tracial state τ .

We say α has the order k tracial Rokhlin property if in the above we ignore n′ and require N ′ = k

as well as α(pk) ≈ε p1.

Clearly if α has the (order k) Rokhlin property, it has the (order k) tracial Rokhlin

property. This definition though slightly different than what appears in the literature is equivalent

to such definitions.

Lemma III.6. If α has the tracial Rokhlin property, then α is outer.
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Proof. Suppose α = Adu for some unitary u ∈ A. We can take a1 = u to be part of the finite

subset and ε = 1/2. Now property (i) gives us

[p1, u] ≈ 1
2

0.

But then property (ii) would imply

p2 ≈ 1
2
α(p1)

= up1u
∗

≈ 1
2
uu∗p1

= p1.

Hence we have the following contradiction:

p1 = p2
1

≈1 p1p2

= 0.

Lemma III.7. Suppose α ∈ AutM(nl)l∈N preserves the natural decomposition and has the tracial

Rokhlin property. Then for any n′ ∈ N there is N ′ > n′ such that for any finite subset {a1, . . . an}

and any ε > 0 there exists j ≥ 1 with N = n1n2 · · ·nj and mutually orthogonal projections

p1, . . . , pN ′ in MN such that

– [pi, aj ] ≈ε 0 for 1 ≤ i ≤ N ′ and 1 ≤ j ≤ n,

– α(pi) ≈ε pi+1 for 1 ≤ i ≤ N ′ − 1,

– τ(p1 + · · ·+ pN ′) ≈ε 1.

If α has the order k tracial Rokhlin property, ignore n′ and require N ′ = k and α(pk) ≈ε p1.

Proof. Let n′ ∈ N and fix N ′ > n′ from α having the tracial Rokhlin property. Let ε > 0 and

let {a1, . . . an} be a finite subset of M(nl)l∈N . Without loss of generality assume ‖aj‖ ≤ 1 for

1 ≤ j ≤ n and let δ = δ(ε/100, N ′) as in Lemma II.1. Without loss of generality we can assume
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δ ≤ ε/100 and δ ≤ 1. Since α has the tracial Rokhlin property for N ′ > n′, there exist q1, . . . , qN ′

mutually orthogonal projections such that

– [qi, aj ] ≈δ 0 for 1 ≤ i ≤ N ′ and 1 ≤ j ≤ n,

– α(qi) ≈δ qi+1 for 1 ≤ i ≤ N ′ − 1,

– τ(q1 + · · ·+ qN ′) ≈δ 1.

By the direct limit definition, there exists j ∈ N such that with N = n1n2 · · ·nj , there are self-

adjoint q′1, . . . , q
′
N ′ ∈MN ⊂M(nl)l∈N such that for 1 ≤ i ≤ N ′, we have

qi ≈δ/32 q
′
i.

We check

q′i ≈δ/32 qi

= q2
i

≈δ/32 qiq
′
i

≈ δ
32 (1+ δ

32 ) (q′i)
2.

Apply Lemma II.1 to get projections p′i such that for 1 ≤ i ≤ N ′, we have

q′i ≈δ/4 p′i.

We check that

p′ip
′
j ≈δ/4 p′iq′j

≈δ/4 p′iqj

≈δ/2 qiqj

= 0.

Now apply Lemma II.2 to mutually orthogonalise the projections p′i in MN to obtain p1, . . . , pN ′ ∈

MN so that

pi ≈ε/100 p
′
i.
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Now we check that p1, . . . , pn′ satisfy our claim. Suppose 1 ≤ i ≤ N ′ and 1 ≤ j ≤ n. We have

[pi, aj ] ≈2ε/100 [p′i, aj ]

≈δ/2 [q′i, aj ]

≈2δ [qi, aj ]

≈δ 0.

Now let 1 ≤ i ≤ N ′ − 1. We have

α(pi) ≈ε/100 α(p′i)

≈δ/2 α(q′i)

≈δ α(qi)

≈δ qi+1

≈δ q′i+1

≈δ/4 p′i+1

≈ε/100 pi+1.

We also have
N ′∑
i=1

τ(pi) =

N ′∑
i=1

τ(qi)

≈δ 1.

Lemma III.8. Suppose α ∈ AutM(nl)l∈N preserves the natural decomposition and has the tracial

Rokhlin property. Then for any n′ ∈ N, any finite subset {a1, . . . an} and any ε > 0 there exists

j ≥ 1 such that with N = n1n2 · · ·nj, there exist mutually orthogonal projections p1, . . . , pn′ in

MN such that

– [pi, aj ] ≈ε 0 for 1 ≤ i ≤ n′ and 1 ≤ j ≤ n,

– α(pi) ≈ε pi+1 for 1 ≤ i ≤ n′ − 1,

– τ(p1 + · · ·+ pn′) ≈ε 1.

If α has the order k tracial Rokhlin property, ignore n′ and require N ′ = k and α(pk) ≈ε p1.
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Proof. Let n′ ∈ N, let {a1, . . . , an} be a finite subset and let ε > 0. Use Lemma III.7 with some N ′

so large that n′

N ′ <
ε
2 and writing N ′ = n′Q′ + r′ with 0 ≤ r′ < n′ and Q′ ∈ N gives r′ satisifying

r′/N ′ < ε/2 and get projections q1, . . . , qN ′ relative to {a1, . . . , an} and ε/N ′. Then group the first

n′Q′ projections into n′ groups consisting of Q′ projections in each group to get the projections in

the conclusion. Let r(j) be the remainder when j is divided by Q′ and for 1 ≤ i ≤ n′ − 1 set

pi =
∑
r(j)=i

1≤j≤n′Q′

qj

and

pn′ =
∑
r(j)=0

1≤j≤n′Q′

qj .

Lemma III.9. Let ε > 0, let N,N ′ ∈ N, let {ei,j | 1 ≤ i, j ≤ N} be a set of matrix units for MN

and let x ∈MN ⊗MN ′ satisfy

[x, ei,j ⊗ 1N ′ ] ≈ε 0

for 1 ≤ i, j ≤ N . Then there exists b ∈MN ′ such that

x ≈10N3ε 1⊗ b.

Proof. Since the matrix units for a basis for MN , there are unique bi,j ∈ MN ′ for i, j ≤ N such

that we can write

x =

N∑
i,j=1

ei,j ⊗ bi,j .

If N = 1 there is nothing to prove, so let N ≥ 2. Choose distinct i0, j0 ∈ {1, 2, . . . , N}. We have

from assumption

0 ≈ε [ei0,i0 ⊗ 1, x]

=

N∑
j=1

ei0,j ⊗ bi0,j −
N∑
i=1

ei,i0 ⊗ bi,i0 .

Another interation gives

0 ≈2ε [ej0,j0 , [ei0,i0 , x]]

= −ei0,j0 ⊗ bi0,j0 − ej0,i0 ⊗ bj0,i0 .
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One last iteration gives

0 ≈4ε [ei0,j0 , [ej0,j0 , [ei0,i0 , x]]]

= (ej0,j0 − ei0,i0)⊗ bj0,i0 .

Hence

‖bj0,i0‖ = ‖(ej0,j0 − ei0,i0)⊗ bj0,i0‖

≈4ε 0.

Therefore

x ≈4(N2−N)ε

N∑
i=1

ei,i ⊗ bi,i.

Let j 6= 1. We have

[e1,j , x] ≈8(N2−N)ε e1,j ⊗ bj,j − e1,j ⊗ b11

Therefore

bj,j ≈(8(N2−N)+1)ε b1,1

Hence we have

‖x− 1⊗ b1,1‖ < 4(N2 −N)ε+ (N − 1)(8(N2 −N) + 1)ε

≤ 10N3ε.

Proposition III.10. Suppose α ∈ AutM(nl)l∈N preserves the natural decomposition. Then α

has the tracial Rokhlin property if and only if there is a regrouping (Nl)l∈N of (nl)l∈N such that

MNl ⊂M(Nl)l∈N contains mutually orthogonal projections p1, . . . , pl satisfying

– α(pi) ≈ 1

2l
pi+1 for 1 ≤ i ≤ l − 1,

– τ(p1 + · · ·+ pl) ≈ 1

2l
1.

We can also replace 1
2l

with any εl such that lεl → 0.

Proof. Assume α has the tracial Rokhlin property. We define the integers Nl inductively on l. To

get N1, we apply Lemma III.8 with n = 0, ε = 1/2 and n′ = 1.

Now assume for an induction that we have found N1, . . . , Nl with the properties required.

Let N = N1 · · ·Nl, let ε = 1/2l+5 and let {ei,j | i, j ≤ N} be matrix units for MN . By Lemma
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III.7 there exists s > 0 such that with Nl+1 = nj+1 . . . nj+s, there are l + 1 mutually orthogonal

projections q1, . . . , ql+1 in MN ⊗MNl+1
such that

– [qi, ei,j ] ≈ ε
10N3

0 for all i, j ≤ N ,

– α(qi) ≈ε qi+1 for i ≤ l,

– τ(q1 + · · ·+ ql+1) ≈ε 1.

Now by Lemma III.9 we have qi ≈ε 1 ⊗ bi for some self-adjoint bi ∈ MNl+1
. Then b2i ≈4ε bi, so

Lemma II.1 gives a projection pi ∈ MNl+1
such that pi ≈8ε bi. We check that these projections

satisfy our requirements.

Let 1 ≤ i ≤ l + 1. We have

α(pi) ≈ε α(bi)

≈ε α(qi)

≈ε qi+1

≈ε 1⊗ bi+1

≈ε pi+1.

We also have τ(pi) = τ(qi) so the trace condition is satisfied. This completes the induction.

Conversely, let n′ ∈ N and fix N ′ > n′. Let ε > 0 and let {a1, . . . , an} be a finite subset

of M(Nl)l∈N . By the direct limit decomposition there exists L > 0 such that with N = N1 · · ·NL,

there exist a1(N), . . . , an(N) ∈ MN such that aj ≈ε/2 aj(N) for 1 ≤ j ≤ n. Now choose L′ ∈ N

such that

– L′ > L,

– N ′/L′ < ε/2,

– L′/2L
′
< ε/2.

Then write L′ in quotient remainder form as L′ = N ′Q′ + r′ with Q′ ∈ N and 0 ≤ r′ ≤ N ′ − 1. If

q1, . . . , qL′ are the promised L′ mutually orthogonal projections in ML′ from the assumption, then

define the projections p1, . . . , pN ′ as follows: let r(j) be the remainder when j is divided by N ′.

Then for 1 ≤ i ≤ N ′ − 1 set

pi =
∑
r(j)=i

1≤j≤N′Q′

qj

35



and

pN ′ =
∑
r(j)=0

1≤j≤N′Q′

qj .

We check these the projections satisfy the requirements of the tracial Rokhlin property. Let 1 ≤

i ≤ N ′. First we have

[pi, aj ] ≈ε [pi, aj(N)]

= 0.

Next for 1 ≤ i ≤ N ′ − 1, we have

α(pi) =
∑
r(j)=i

1≤j≤N′Q′

α(qj)

≈Q′/2L′
∑
r(j)=i

1≤j≤N′Q′

α(qj+1)

=
∑

r(j)=i+1

1≤j≤N′Q′

α(qj)

= pi+1.

Since Q′ < L′, we get α(pi) ≈ε pi+1. Lastly, writing p = p1 + · · · + pN ′ and q = q1 + · · · + qL′ , we

have

τ(p) =
L′ − r′

L′
τ(q)

≈ε τ(q)

≈ε 1.

Proposition III.11. Suppose α ∈ AutM(nl)l∈N preserves the natural decomposition. Then α has

the order k tracial Rokhlin property if and only if there is a regrouping (Nl)l∈N of (nl)l∈N such that

MNl contains mutually orthogonal projections p1, . . . , pk satisfying

– α(pi) ≈ 1

2l
pi+1 for i ≤ k − 1 and α(pk) = p1,

– τ(p1 + · · ·+ pk) ≈ 1

2l
1.

We can also replace 1
2l

with any εl such that εl → 0.
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“Bump-ups” and “Cut-downs”

We explore some relationships between the Rokhlin and tracial Rokhlin properties. The

following can be thought of as ways of adding and removing the word “tracial” from the property

at the cost of possibly changing the matrix sizes in the tensor product.

Lemma III.12 (Bump-up). Let (nl)l∈N be a sequence of positive integers and suppose that

α =

∞⊗
l=1

Adul

for ul ∈ U(Mnl) has the tracial Rokhlin property. Then there is a regrouping (Nl)l∈N of (nl)l∈N

and unitaries Ul ∈ U(MNl) for l ∈ N such that

α =

∞⊗
l=1

AdUl

and such that for any sequence (sl)l∈N there is a regrouping (Sl)l∈N of (sl)l∈N and integers Ql and

rl for each l ∈ N such that

β =

∞⊗
n=1

Ad(diag(Ul ⊗ 1Ql , 1rl)) ∈ AutM(Sl)l∈N

has the tracial Rokhlin property.

Proof. Suppose α has the tracial Rokhlin property. By Proposition III.10 there is a regrouping

(Nl)l∈N of (nl)l∈N such that MNl contains l mutually orthogonal projections p1, . . . , pl satisfying

– α(pi) ≈1/2l pi+1 for 1 ≤ i ≤ l − 1,

– τ(p1 + · · ·+ pl) ≈ 1

2l
1.

Now regroup (sl)l∈N into Sl so that Sl is large enough relative to Nl to satisfy

Nl
Sl

<
1

2l
.

Then upon writing Sl in quotient remainder form

Sl = QlNl + rl,
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for unique Ql ∈ N and 0 ≤ rl < Nl, we have

rl/Sl < 1/2l.

We now check that β has the tracial Rokhlin property. By Proposition III.10 it suffices to

check for each l ∈ N that MSl contains l mutually orthogonal projections p1, . . . , pl such that

– β(pi) ≈ 1

2l
pi+1 for 1 ≤ i ≤ l − 1,

– τ(p1 + · · ·+ pl) ≈ 1

2l
1.

Now by construction, we can find l mutually orthogonal projections p1, p2, . . . , pl in MNl such that

– α(pi) ≈1/2l pi+1 for 1 ≤ i ≤ l − 1,

– τ(p1 + · · ·+ pl) ≈1/2l 1.

If we regard MNl as a subalgebra of MSl via the block diagonal embedding with Ql copies of x

and one zero block of size rl, that is

x 7→ diag(x⊗ 1Ql , 0rl).

and identify the projections with their image under this embedding, then β restricts to α on

MNl . So we only need to check the trace condition. Let τSl denote the tracial state on MSl with

identity 1Sl and let τNl denote the tracial state on MNl . Then

τA(p) = τSl(p)

= τSl(1Nl)τNl(p)

=
QjNl
Sl

τNl(p)

=

(
1− rl

Sl

)
τNl(p)

≈ 1

2l
1− rl

Sl

≈ 1

2l
1.

Since l/2l−1 → 0, this is enough to guarantee the tracial Rokhlin property by Proposition III.10.
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Lemma III.13. Let (nl)l∈N be a sequence of positive integers and suppose that

α =

∞⊗
l=1

Adul

for ul ∈ U(Mnl) has the order k tracial Rokhlin property. Then there is a regrouping (Nl)l∈N of

(nl)l∈N and unitaries Ul ∈ U(MNl) for l ∈ N such that

α =

∞⊗
l=1

AdUl

and such that for any sequence (sl)l∈N there is a regrouping (Sl)l∈N of (sl)l∈N and integers Ql and

rl for each l ∈ N such that

β =

∞⊗
n=1

Ad(diag(Ul ⊗ 1Ql , 1rl)) ∈ AutM(Sl)l∈N

has the order k tracial Rokhlin property.

We now exhibit the inverse principle for “residually finite” automorphisms.

Lemma III.14 (Cut-down). Let (nl)l∈N be a sequence of positive integers and suppose that α ∈

AutM(nl)l∈N is of order k and has the order k tracial Rokhlin property. Then there is a regrouping

(Nl)l∈N of (nl)l∈N with

α =

∞⊗
l=1

Ad(diag(λ
(l)
1 , . . . , λ

(l)
Nl

))

for k-th roots of unity λj ∈ C with 1 ≤ j1 < j2 < · · · < jk ≤ Nl such that

β =

∞⊗
l=1

Ad(diag(λ
(l)
j1
, . . . , λ

(l)
jk

))

has the order k Rokhlin property on Mk∞ .

Proof. Since α has the order k tracial Rokhlin property we can use Proposition III.10 to get a

regrouping (Nl)l∈N of (nl)l∈N so that for each l ∈ N there are k non-zero mutually orthogonal

projections p1, . . . , pk ∈MNl such that, setting pk+1 = p1, we have

– α(pi) ≈ 1

2l
pi+1 for 1 ≤ i ≤ k
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Let ε > 0. We take δ = δ(ε, k) in Lemma II.2 and l large enough so that 1
2l
< δ/10. Let α = Adu

on MNl for u ∈ U(MNl). We can decompose CNl into e2πij/k-eigenspaces Vj for u. That is

CNl =

k−1⊕
j=0

Vj .

By taking a subprojection if necessary we can assume that p1 has rank one. Let v be a unit vector

that spans the range of p1. Then we write for unique vj ∈ Vj :

v =

k−1∑
j=0

vj .

Let V be the subspace spanned by {vj | 0 ≤ j ≤ k − 1}. We see that both p1 and u preserve V .

Hence also αj(p1) = ujp1u
−j preserves V for 0 ≤ j ≤ k − 1. Therefore we have k non-zero δ-

approximately mutually orthogonal projections in End(V ). By Lemma II.2 there exist k non-zero

exactly mutually orthogonal projections End(V ), making V a k-dimensional space. Hence we take

ml = k and j1, . . . , jk so that λj1 , . . . , λjk are k distinct roots of unity.

Tensor Product of Automorphisms

We see here that tensor products of automorphisms with the tracial Rokhlin property

will have the tracial Rokhlin property on the tensor product algebra. Most of the time we will

only need one of the automorphisms to have the tracial Rokhlin property. Sometimes one of the

automorphisms will only partially have the tracial Rokhlin property, in which case the other may

be able to help. While these facts are kind of obvious, when combined with the observation that

a tensor product of tensor product preserving automorphisms will be a tensor product preserving

automorphism, we will certainly have something to savor.

Lemma III.15. Let A and B be unital nuclear C∗-algebras, let α ∈ AutA, let β ∈ AutB and

consider α ⊗ β ∈ Aut(A ⊗ B). (For the claims about the tracial Rokhlin property we require that

every trace on A⊗B restrict to an extremal trace on either A or B). We have:

– If α satisfies the Rokhlin property (resp. tracial Rokhlin property), then α ⊗ β satisfies the

Rokhlin property (resp. tracial Rokhlin property).
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– If α satisfies the order k Rokhlin property (resp. order k tracial Rokhlin property), then α⊗β

satisfies the order k Rokhlin property (resp. order k tracial Rokhlin property).

– If αk has the Rokhlin property (resp. tracial Rokhlin property) for some k > 1 and β has the

order k Rokhlin property (resp. order k tracial Rokhlin property), then α ⊗ β has the Rokhlin

property (resp. tracial Rokhlin property).

Proof. Assume αk has the tracial Rokhlin property for some k ≥ 1 and β has the order k tracial

Rokhlin property. The case of the Rokhlin property is simpler. We allow k = 1 to include the first

statement in the lemma. First for any n′ ∈ N fix N ′ > n′ as in the definition of the tracial Rokhlin

property for αk. Let ε > 0 and let {x1, ..., xn} be a finite subset of A ⊗ B. Since the algebraic

tensor product is dense in A ⊗ B, there exist N ∈ N, ai,j ∈ A and bi,j ∈ B for 1 ≤ i ≤ N and

1 ≤ j ≤ n such that

xj ≈ε
N∑
i=1

ai,j ⊗ bi,j for 1 ≤ j ≤ n.

Let

δ =
ε

maxj≤n(
∑N
i=1 ‖bi,j‖,

∑N
i=1 ‖ai,j‖)

.

By the choice of N ′, there exist mutually orthogonal projections e1, e2, . . . , eN ′ such that if we

write e = e1 + e2 + · · ·+ eN ′ , then we have

– [el, ai,j ] ≈δ 0 for 1 ≤ l ≤ N ′, 1 ≤ i ≤ N and 1 ≤ j ≤ n,

– [el, α
1−m(ai,j)] ≈δ 0 for 1 ≤ l ≤ N ′, 1 ≤ m ≤ k, 1 ≤ i ≤ N and 1 ≤ j ≤ n,

– αk(el) ≈ε el+1 for 1 ≤ l ≤ N ′ − 1,

– τA(e) ≈ε 1 for all τA ∈ T (A).

Since β has the order k tracial Rokhlin property, there exist mutually orthogonal projections

f1, . . . , fk ∈ B for such that if we set f = f1 + f2 + · · ·+ fk and fk+1 = f1, we have

– [fm, bi,j ] ≈δ 0 for 1 ≤ m ≤ k, 1 ≤ i ≤ N and 1 ≤ j ≤ n,

– β(fm) ≈ε fm+1 for 1 ≤ m ≤ k,

– τB(f) ≈ε 1 for all τB ∈ T (B).
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Note if k = 1 we can take f1 = 1. Set pl,m = αm−1(el)⊗ fm for 1 ≤ l ≤ N ′ and 1 ≤ m ≤ k ordered

lexicographically according first to l then m. Set p =
∑
l,m pl,m. We now check that these witness

the tracial Rokhlin property for α ⊗ β. Note that we can think of the first case as k = 1, f1 = 1B

and pl,1 = pl in the third case if we disregard β so that we can verify both cases simultaneously.

We first check that our projections approximately commute with our given finite subset.

Let 1 ≤ l ≤ N ′, 1 ≤ m ≤ k and 1 ≤ j ≤ n. We have

pl,mxj = (αm−1(el)⊗ fm)xj

≈ε (αm−1(el)⊗ fm)

(
N∑
i=1

ai,j ⊗ bi,j

)

=

N∑
i=1

αm−1(el)ai,j ⊗ fmbi,j

=

N∑
i=1

ai,jα
m−1(el)⊗ fmbi,j +

N∑
i=1

[αm−1(el), ai,j ]⊗ fmbi,j

≈ε
N∑
i=1

ai,jα
m−1(el)⊗ fmbi,j

=

N∑
i=1

ai,jα
m−1(el)⊗ bi,jfm +

N∑
i=1

ai,jα
m−1(el)⊗ [fm, bi,j ]

≈ε
N∑
i=1

ai,jα
m−1(el)⊗ bi,jfm

=

(
N∑
i=1

ai,j ⊗ bi,j

)
(αm−1(el)⊗ fm)

≈ε xj(αm−1(el)⊗ fm)

= xjpl,m.

So ‖pl,mxj − xjpl,m‖ < 4ε. We now check that α ⊗ β cycles the projections. Let 1 ≤ l ≤ N ′ − 1

and 1 ≤ m ≤ k. We have

(α⊗ β)(pl,m) = (α⊗ β)(αm−1(el)⊗ fm)

= αm+1(el)⊗ fm+1

≈ε pl,m+1 if m 6= k.
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If m = k, we see from the same calculation as before

(α⊗ β)(pl,m) ≈ε αk(el)⊗ fk+1)

≈ε el+1 ⊗ f1

= pl+1,1.

The remaining condition on the trace is seen to be satisfied as follows using Lin-Niu (22, Lemma

5.15) on the third line:

τ(p) = τ
(∑
l,m

pl,m

)
= τ(e⊗ f)

= τA(e)⊗ τB(f)

≈2ε 1.

(p = e⊗ f = 1 if we are talking about the Rokhlin property.) Letting k = 1, f1 = 1B and pl,1 = pl

in the above calculations will give us the required calculations for pl.
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CHAPTER IV

GROUP ACTIONS ON UNIFORMLY HYPERFINITE C∗-ALGEBRAS

Maximally Almost Periodic Groups

Definition IV.1. A discrete group G is said to be maximally almost periodic if for every g ∈

G \ {1} there exists n ∈ N and a group homomorphism ϕn : G → U(Mn) such that ϕn(g) 6= 1.

Equivalently (for countable groups), G is maximally almost periodic if there is an embedding

G ↪→
∞∏
n=1

U(Mn).

Lemma IV.2. If G is a countable discrete maximally almost periodic group, then there is an

embedding

G ↪→
∞∏
n=1

U(Mn)

such that the image of G intersects
∏∞
n=1 C1n trivially.

Proof. Starting with any embedding

ϕ : G ↪→
∞∏
n=1

U(Mn),

we write ϕn for the map G→ U(Mn). Define for all n ∈ N the map ψn : G→ U(Mn+1) by

ψn(g) = diag(1, ϕn(g))

for all g ∈ G. Now define ψ(g) = (1, ψ1(g), ψ2(g), . . . ) for all g ∈ G to give the required

embedding.

Product Type Actions

Since we have defined Q and other UHF algebras as tensor products, it will be natural to

look at the actions that preserve this infinite tensor product structure. These can be represented
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by group homomorphisms that have the following factorisation:

G→
∞∏
l=1

AutMnl → Aut

( ∞⊗
l=1

Mnl

)
= AutM(nl)l∈N .

Upon imposing that the action on each factor Mnl be inner as well we get the next definition.

Definition IV.3 (product type action). Define for any sequence of strictly positive integers

(nl)l∈N the group homomorphism

Ad(nl)l∈N :

∞∏
l=1

U(Mnl)→ AutM(nl)l∈N ,

written Ad when there is no confusion, for unl ∈ U(Mnl) by

(unl)
∞
l=1 7→

∞⊗
l=1

Adunl

on the algebraic direct limit and then take the extension to the C∗-direct limit. We define an

action of G to be a product type action if it is represented by a group homomorphism that has the

following factorisation

G→
∞∏
l=1

U(Mnl)
Ad→ AutM(nl)l∈N

for some strictly positive sequence (nl)l∈N.

We will now try to make explicit some ways to manipulate our definitions. For example,

we may regroup and permute the factors in a tensor product decomposition and the algebras will

remain of the same type via a canonical isomorphism and any product type actions will remain

product type actions after conjugating by this canonical isomorphism.

Lemma IV.4 (Regrouping). Let (li)
∞
i=1 be a strictly increasing sequence with l1 = 0. Define mi

for i ≥ 1 by

mi =

li+1∏
li+1

nj .

In this case there is a canonical isomorphism

Ψ : M(nl)l∈N →M(mi)i∈N
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with

Ψ(Mnl+1 ⊗ · · · ⊗Mnl+1
) = Mml

and a canonical embedding

ϕ :

∞∏
l=1

U(Mnl)→
∞∏
i=1

U(Mmi)

such that the following diagram commutes:

∏∞
l=1 U(Mnl)

Ad−−−−→ AutM(nl)l∈N .

ϕ

y yΨ( )Ψ−1∏∞
i=1 U(Mmi)

Ad−−−−→ AutM(mi)i∈N .

Proof. In terms of the direct limit defintion of the infinite tensor product this corresponds to

taking a subsequence of the connecting maps. Hence this will give the same limit with the new

groupings preserved by the action.

Lemma IV.5 (Reordering). Let d : N × N → N \ {0} be any function and let σ : N → N × N be

any bijection. Then there is a ∗-isomorphism

Ψσ :

∞⊗
m=1

∞⊗
n=1

Md(m,n) →
∞⊗
l=1

Md(σ(l))

such that

Ψσ(Md(m,n)) = Md(σ(σ−1(m,n)))

and a canonical isomorphism

ϕσ :

∞∏
m=1

∞∏
n=1

U(Md(m,n))→
∞∏
l=1

U(Md(σ(l)))

given by

((ud(m,n))
∞
n=1)∞m=1 7→ (uσ(σ−1(m,n)))

∞
σ−1(m,n)=1
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such that the following diagram commutes

∏∞
m=1

∏∞
n=1 U(Md(m,n))

⊗
Ad−−−−→ Aut

(⊗∞
m=1

⊗∞
n=1Md(m,n)

)
.

ϕσ

y yΨσ( )Ψ−1
σ∏∞

l=1 U(Md(σ(l)))
Ad−−−−→ Aut

(⊗∞
l=1Md(σ(l))

)
.

Proof. We first note that the domain algebra is simple so any unital ∗-homomorphism we define

will be injective. Now we proceed to define the map. Let m,n ∈ N and let Ψm,n : Md(m,n) →⊗∞
l=1Md(σ(l)) be defined on matrix units e

(d(m,n))
i,j ∈Md(m,n) by

e
(d(m,n))
i,j 7→

σ−1(m,n)−1⊗
l=1

1d(σ(l))

⊗ e(d(m,n))
i,j ⊗

 ∞⊗
l=σ−1(m,n)+1

1d(σ(l))

 .

for 1 ≤ i, j ≤ d(m,n). We note for later that for m,n ∈ N we have

Ψm,n(Md(m,n)) = Md(σ(σ−1(m,n)).

Let N > 1. We see that since σ is injective, the images of Ψn,m are in different tensor factors and

in particular commute for n = 1, . . . , N . Therefore we get a map

N⊗
n=1

Ψm,n :

N⊗
n=1

Md(m,n) →
∞⊗
l=1

Md(σ(l))

satisfying for e(d(m,n)) ∈Md(m,n) that

N⊗
n=1

e(d(m,n)) 7→
N∏
n=1

Ψm,n(e(d(m,n))).

Restricting this to (
⊗N−1

n=1 Md(m,n))⊗ 1d(m,N) we get

(
N−1⊗
n=1

e(d(m,n))

)
⊗ 1d(m,N−1) 7→

(
N∏
n=1

Ψm,n(e(d(m,n)))

)
Ψm,N (1d(m,N)).

which agrees with
⊗N−1

n=1 Ψm,n. Hence there is a map

Ψm : lim−→
N

(
N⊗
n=1

Md(m,n), id⊗1d(m,n)

)
→

∞⊗
l=1

Md(σ(l)).
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We see that the images commute for m = 1, . . . ,M since σ is injective so we have a map

M⊗
m=1

Ψm :

M⊗
m=1

∞⊗
n=1

Md(m,n) →
∞⊗
l=1

Md(σ(l)),

defined for xm ∈
⊗∞

n=1Md(m,n) by

M⊗
m=1

xm 7→
M∏
m=1

Ψm(xm).

Restricting this to (
⊗M−1

m=1

⊗∞
n=1Md(m,n))⊗ 1 we get

M−1⊗
m=1

xm ⊗ 1 7→

(
M−1∏
m=1

Ψm(xm)

)
ΨM (1)

which agrees with the map
⊗M−1

m=1 Ψm. Hence we have a map

Ψ : lim−→
M

M⊗
m=1

∞⊗
n=1

Md(m,n) →
∞⊗
l=1

Md(σ(l)),

that is,

Ψσ :

∞⊗
m=1

∞⊗
n=1

Md(m,n) →
∞⊗
l=1

Md(σ(l)).

Since Ψσ restricts to Ψm,n on Md(m,n) we have

Ψσ(Md(m,n)) = Md(σ(σ−1(m,n)),

which also implies surjectivity, since these generate the target algebra as m and n run through N

by surjectivity of σ. Hence Ψσ is a ∗-isomorphism. We also see that the diagram commutes.

Tracial Rokhlin Property and Strong Outerness

Definition IV.6. Suppose each g ∈ G has order 1 ≤ k(g) ≤ ∞ and α is a G action on some UHF

algebra A. We say that an G-action α has the pointwise (tracial) Rokhlin property, if αg has the

order k(g) (tracial) Rokhlin property for all g ∈ G. We understand the order ∞ (tracial) Rokhlin

property to mean the (tracial) Rokhlin property.
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Theorem IV.7. Let A be a UHF algebra and let G be a countable discrete elementary amenable

group. Then the following are equivalent:

– α has the tracial Rokhlin property,

– α has the pointwise tracial Rokhlin property,

– α is strongly outer.

Proof. This is Matui-Sato (37, Theorem 3.7) specialized to actions of elementary amenable groups

on UHF algebras. For automorphisms, let G = Z or G = Z/nZ.

The equivalence of the last two conditions was already known to Kishimoto and others.

Existence of Strongly Outer Product Type Actions

We will present here our results concerning strongly outer product type actions on UHF

algebras. We essentially show that every group that can act via a product type action can also

act via a strongly outer product type action. We will show this for arbitrary UHF algebras by

reducing to the case of the universal UHF algebra Q (or any UHF algebra of infinite type). The

assumption that G is an elementary amenable group will be added later to upgrade the status of

strongly outer actions to those with the tracial Rokhlin property. Recalling Definition IV.3, we

consider actions corresponding to group homomorphisms of the form

G↪→
∞∏
l=1

U(Mnl)
Ad→ AutM(nl)l∈N .

We first look at the case of the universal UHF algebra Q. Since we have chosen a standard tensor

product decomposition for Q to be M(n)n∈N , we will look for product type action in the following

standard form:

G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

There are other possible tensor product decompositions of Q and we now show that no generality

is lost by trying to find actions in standard form.
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Lemma IV.8. Let G be a countable discrete group and suppose that for some sequence (nl)l∈N in

N there exists a strongly outer action

α : G↪→
∞∏
l=1

U(Mnl)
Ad→ AutM(nl)l∈N .

Then there exists a strongly outer action

β : G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

Proof. First we can if necessary regroup the tensor factors so that we can assume the sequence

(nl)l∈N is strictly increasing. Let id denote the identity automorphism on
⊗∞

l=1

⊗
nl−1<n<nl

Mn

and consider the action α⊗ id

α⊗ id : G→ Aut

( ∞⊗
l=1

Mnl

)
⊗

 ∞⊗
l=1

⊗
nl−1<n<nl

Mn

 .

It is strongly outer by Theorem IV.7 combined with Lemma III.15 and factors through

( ∞∏
l=1

U(Mnl)

)
×

 ∞∏
l=1

∏
nl−1<n<nl

U(Mn)

 .

Reordering the factors using Lemma IV.5, we get a conjugate action

α⊗ id : G→ Aut

 ∞⊗
l=1

⊗
nl−1<n≤nl

Mn

 .

factoring through
∞∏
l=1

∏
nl−1<n≤nl

U(Mn)
Ad→ Aut

 ∞⊗
l=1

⊗
nl−1<n≤nl

Mn

 .

Regrouping the factors now gives us our action in the required form.

So any groups that can act via a product type action on some UHF algebra can also be

found to act in standard form on Q. We now show that any discrete group can act on Q via a

strongly outer product type action in standard form.
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Proposition IV.9. Suppose G is a discrete group with a product type action

α : G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ,

such that kerα = {id}. Then there exists a strongly outer product type action

β : G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

Proof. We see that the action α⊗N of G on Q⊗N is strongly outer by Corollary II.14 with A = Q.

We also see that α⊗N factorises as

α⊗N : G→

( ∞∏
n=1

U(Mn)

)N

→ Aut(Q⊗N),

which can be written in the more expanded form

α⊗N : G→
∞∏
m=1

∞∏
n=1

U(Mn)→ Aut

( ∞⊗
m=1

∞⊗
n=1

Mn

)
.

Rearrange the factors as in Lemma IV.5 to get a conjugate map (also call it α⊗N)

α⊗N : G ↪→
∞∏
n=1

U(Mn!)→ Aut

( ∞⊗
n=1

Mn!

)
.

(If one wants to be more explicit with the application of Lemma IV.5, we take d(m,n) = n and

define σ using the sequence (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3) and so on where the pairs

(m,n) such that m + n = 2 are exhausted first and then m + n = 3 and so on. We also have⊗
m+n=lMd(m,n) = M(l−1)!.) Now we can apply Lemma IV.8 to get a strongly outer map β in the

standard form required.

Corollary IV.10. Let G be a discrete maximally almost periodic group. There exists a strongly

outer product type action

α : G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

51



Proof. Lemma IV.2 gives us an embedding that we can compose with Ad to get a product type

action α of the form

α : G ↪→
∞∏
n=1

U(Mn)→ AutQ

such that kerα = {1}. Now Proposition IV.9 applies.

We now show that no generality is lost when only considering Q as opposed to the other

UHF algebras. The existence of strongly outer product type actions of G on Q will imply the

existence of such G-actions on any UHF algebra (not necessarily of infinite type). We will

eventually reduce to the following case, which is an example of the bump-up principle at work.

Lemma IV.11. Suppose G is a discrete maximally almost periodic group and let g ∈ G with order

k for some 1 ≤ k ≤ ∞. Then for any (nl)l∈N there is a regrouping (Nl)l∈N and a map

β[g] : G↪→
∞∏
l=1

U(MNl)
Ad→ AutM(Nl)l∈N ,

such that β[g]g is an automorphism with the order k tracial Rokhlin property.

Proof. By Corollary IV.10 we have a strongly outer product type action of the form

α : G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

In particular, αg has the order k tracial Rokhlin property by Theorem IV.7 and we can apply

Lemmas III.12 and III.13 for (nl)l∈N to get (Nl)l∈N and sequences of integers (Ql)l∈N, (rl)l∈N

and an automorphism βg of M(Nl)l∈N with the order k tracial Rokhlin property. Now define an

embedding βl[g] : G → U(MNl) by h 7→ diag(h ⊗ 1Ql , 1rl) for all h ∈ G. Combining these for all

l ∈ N, we get a map

β[g] : G↪→
∞∏
l=1

U(MNl)
Ad→ AutM(Nl)l∈N ,

such that β[g]g is equal to βg and hence has the order k tracial Rokhlin property.

We come to our conclusion, which says that any group which can act on a UHF algebra

with an injective product type action, acts on every UHF algebra with a strongly outer product

type action.
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Theorem IV.12. Suppose G is any countable discrete maximally almost periodic group and

A is any UHF algebra. Then there exists a strongly outer product type action α of G on A.

Furthermore, if G is also elementary amenable, then α has the tracial Rokhlin property.

Proof. Suppose that A ∼= M(nl)l∈N for some sequence (nl)l∈N. We can partition this sequence into

disjoint subsequences (nl(g))l∈N indexed by g ∈ G whose union is (nl)l∈N. Since G is a discrete

maximally almost periodic group, by Lemma IV.11, for each g ∈ G (of order k(g)), there is a

sequence (Nl(g))l∈N of the same type as (nl(g))l∈N (and therefore the union is also the same type)

and a map

β[g] : G↪→
∞∏
l=1

U(MNl(g))
Ad→ AutM(Nl(g))l∈N ,

such that β[g]g is an automorphism with the order k(g) tracial Rokhlin property. Combining these

maps into a map to the product, we get

β : G ↪→
∏
g∈G

∞∏
l=1

U(Mn)↪→
∏
g∈G

∞∏
l=1

U(MNl(g))
Ad→ Aut

(⊗
g∈G

⊗
l=1

MNl(g)

)

with the pointwise tracial Rokhlin property by Lemma III.15 and hence the action is strongly

outer. Reordering the factors by Lemma IV.5 we get a conjugate product type action (which we

will also call β)

β : G ↪→
∞∏
l=1

U(MNl)
Ad→ Aut

( ∞⊗
l=1

MNl

)
,

which therefore is also strongly outer. If G is elementary amenable, (37, Theorem 3.7) says that

strongly outer actions are equivalent to actions with the tracial Rokhlin property, which completes

the proof.

It would seem that most of our effort was exerted upon transfering the actions between

different UHF algebras and that exhibiting a strongly outer product type action on any given

UHF algebra of infinite type (as in Proposition IV.9) is quite direct.

This result highlights the robustness of the tracial Rokhlin property. We know this cannot

be true for the Rokhlin property because we know that even finite group actions require the UHF

algebra to be compatible with the group and essentially of infinite type. We will get a clearer

picture of this comparison in the following sections.
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Examples of Strongly Outer Product Type Actions

We give here a sufficient condition for a tensor product automorphism to be strongly outer

in terms of only its trace in U(Mn) for all n ∈ N. We then use it to exhibit some examples of

abelian group actions on Q.

Abelian Groups

Proposition IV.13. Every countable discrete abelian group is isomorphic to a subgroup of

∞⊕
n=1

(Q⊕Q/Z).

Proof. We sketch a proof relying on the basic theory of abelian groups. First every abelian

group is a subgroup of a divisible group. Every divisible group is a direct sum of copies of Q

and Z[1/p]/Z ⊂ Q/Z. So then every abelian group is a subgroup of a direct sum of copies of

Q and copies of Q/Z. When our groups are countable we will need at most countably many

summands.

Strongly Outer Product Type Actions on Q

Lemma IV.14. Let A be a unital C∗-algebra and let τ be a tracial state on A. For every ε > 0

there is δ > 0 such that whenever u ∈ A is a unitary satisfying Re(1 − τ(u)) < δ, we have

|1− τ(u)| < ε.

Proof. This proof was provided by N. C. Phillips. Without loss of generality let ε < 1. Set δ =

ε4/64. Let τ be a tracial state on A and let u ∈ A be a unitary such that Re(1 − τ(u)) < δ. The

Riesz Representation Theorem gives a Borel probability measure µ on S1 such that τ(f(u)) =∫
S1 f dµ for all f ∈ C(S1).

Set

E =
{
ζ ∈ S1 : Re(ζ) < 1− ε2/8

}
.

We have

ε4

64
= δ > Re(1− τ(u)) =

∫
S1

Re(1− ζ) dµ(ζ) ≥
∫
E

Re(1− ζ) dµ(ζ) ≥ ε2µ(E)

8
.
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So µ(E) < ε2/8.

We claim that ζ ∈ S1 \ E implies |1 − ζ| ≤ ε/2. To prove the claim, let ζ ∈ S1 \ E. Write

ζ = α+ βi with α, β ∈ R. The definition of E implies that α ≥ 1− ε2/8. Therefore

β2 = 1− α2 ≤ 1−
(

1− ε2

8

)2

=
ε2

4
− ε4

64
.

Also 1− α ≤ ε2/8. Therefore

|1− ζ|2 = (1− α)2 + β2 ≤ ε4

64
+

(
ε2

4
− ε4

64

)
=
ε2

4
.

The claim follows.

Now

|1− τ(u)| =
∣∣∣∣∫
S1

(1− ζ) dµ(ζ)

∣∣∣∣ ≤ ∫
S1

|1− ζ| dµ(ζ)

=

∫
E

|1− ζ| dµ(ζ) +

∫
S1\E

|1− ζ| dµ(ζ)

≤ 2µ(E) +
( ε

2

)
µ(S1 \ E) ≤ ε2

4
+
ε

2
<
ε

2
+
ε

2
= ε.

This completes the proof.

Let τ be the unique tracial state on Q. For unitaries u and v denote their commutator by

[u, v]U = uvu∗v∗.

Proposition IV.15. Suppose there are sequences of unitaries (un)n∈N and (vn)n∈N with un, vn ∈

U(Mn) such that τ([un, vn]U(Mn)) does not converge to 1. Then α =
⊗

Adun and β =
⊗

Ad vn

are both strongly outer as automorphisms of Q.

Proof. Applying Lemma II.13 with An = Mn and [un, vn] in place of u, we check

‖β(u(n))− u(n)‖22 = τ((vnunv
∗
n − un)∗(vnunv

∗
n − un))

= τ(1− u∗nvnunv∗n − vnu∗nv∗nun + 1)

= 2− τ(u∗nvnunv
∗
n)− τ(vnu

∗
nv
∗
nun)

= 2− τ(vnunv
∗
nu
∗
n)− τ(unvnu

∗
nv
∗
n)

= 2− τ([un, vn]∗)− τ([un, vn])

= 2[1− Re τ([un, vn])].
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Note now that if (wn)n∈N is a sequence of unitaries and τ(wn) 9 1, then Re τ(wn) 9 1 by

Lemma IV.14. Hence we see that β is strongly outer. Now τ([un, vn]) = τ([vn, u
∗
n]) implies that

α−1 is strongly outer and hence α is strongly outer.

Lemma IV.16. There is a strongly outer action

R/Z↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

Proof. Define a homomorphism R→ U(Mn) by

vn(r) = diag(e2πilr)nl=1,

whose kernel is Z, so we get an injective map

R/Z↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

We use the condition in Proposition IV.15 to check that it is strongly outer. Let un be the

permutation matrix corresponding to the cycle (123 . . . n). Then

τ([un, vn(r)]) = τ(Adun(vn(r))vn(r)∗)

= τ(diag(e2πinr, e−2πir, . . . , e2πi(n−1)r) diag(e−2πilr)nl=1)

= τ(diag(e2(n−1)πir, e−2πir, e−2πir, . . . , e−2πir))

=
1

n
(e2(n−1)πir + (n− 1)e−2πir)

= e−2πir(n−1e−2nπir + n−1(n− 1))

→ e−2πir.

Lemma IV.17. There is a strongly outer action

R↪→
∞∏
n=1

U(Mn)
Ad→ AutQ.

56



Proof. Let θ be an irrational number and let

θn =


1 if n is odd

θ if n is even.

For each r ∈ R and n ∈ N, define a homomorphism R→ U(Mn) by

vn(r) = diag(e2πθnilr)nl=1,

We again use the condition in Proposition IV.15 to check that it is strongly outer. Let un

be the permutation matrix corresponding to the cycle (123 . . . n). Then

τ([un, vn(r)]) = τ(Adun(vn(r))vn(r)∗)

= τ(diag(e2πθninr, e2πθnir, . . . , e2πθni(n−1)r) diag(e−2πθnilr)nl=1)

= τ(diag(e2(n−1)πθnir, e−2πθnir, e−2πθnir, . . . , e−2πθnir))

=
1

n
(e2(n−1)πθnir + (n− 1)e−2πθnir)

= e−2πθnir(n−1e−2nπir + n−1(n− 1)).

Now two of the limit points of this, corresponding to odd and even n, are e−2πθir and e−2πir.

If these are both equal to 1 then r must be both irrational in the first case and rational in the

second, which is impossible unless r = 0.

Corollary IV.18. There exist strongly outer product type actions of Q and Q/Z on Q.

Proof. For Q, restrict the homomorphism in Lemma IV.17 from R to Q and for Q/Z restrict the

map from Lemma IV.16.

The above two lemmas represent the hardest case of abelian groups in two senses. The first

is that these groups are not residually finite and the second is that showing they can act with

strongly outer product type actions actually implies that every countable abelian group can also

using the next lemma.
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Lemma IV.19. If for each j ∈ N, Gj has a strongly outer product type action of the form

αj : Gj ↪→
∞∏
n=1

U(Mn)
Ad→ AutQ,

then there exists a strongly outer product type action α of the infinite direct sum G =
⊕

j∈NGj on

Q.

Proof. We will try to fit each of the direct summands into mutually disjoint subsequences of

factors. For this it suffices to show that there is an appropriate embedding

( ∞∏
n=1

U(Mn)

)
⊕

( ∞∏
n=1

U(Mn)

)
↪→

∞∏
n=1

U(Mn)

First we see that there is an obvious embedding

∞∏
n=1

U(Mn2) ↪→
∞∏
n=1

U(Mn),

which when combined with the obvious embedding

U(Mn)× U(Mn) ↪→ U(Mn2)

gives the required embedding. This embedding is appropriate because when we restrict to Gj , the

action is of the form αj ⊗ id, which is strongly outer by Theorem IV.7 combined with Lemma

III.15. Map G1 to the first factor and repeat the duplication process for the second factor. In

this systematic way the embedding n-th summand can be defined for all n, which gives us an

embedding of the direct sum over all n.

We have enough now to get a strongly outer product type action of any countable discrete

abelian group.

Corollary IV.20. Every countable discrete abelian group G has a strongly outer product type

action of the form

G↪→
∞∏
n=1

U(Mn)
Ad→ AutQ,
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Proof. Combining Lemmas IV.17 and IV.19 we see that there exists a strongly outer product type

action of
∞⊕
n=1

(Q⊕Q/Z)

on Q. We know from Proposition IV.13 that every countable abelian group appears as a subgroup

of this group.
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CHAPTER V

GROUP ACTIONS ON THE UNIVERSAL UHF ALGEBRA

Almost Abelian Groups

Definition V.1. A discrete group is said to be almost abelian if it has an abelian subgroup of

finite index.

We will also observe throughout the course of this dissertation that countable discrete

almost abelian groups are maximally almost periodic.

Lemma V.2. Suppose that G is a discrete group with an abelian subgroup H of finite index. Then

the subgroup

N =
⋂
g∈G

gHg−1

is normal and abelian with finite index. In particular, every almost abelian group is elementary

amenable.

Proof. The subgroup N is abelian because it is a subgroup of H. It is a normal subgroup of G by

construction. If suffices to show that G/N is finite in which case G is an extension of an abelian

group N by a finite group G/N and we are done. Now N is exactly the kernel of the action of G

on G/H, which is a finite set and hence G/N is isomorphic to a subgroup of the symmetric group

S[G:H] making it finite.

Lemma V.3. Let G be a discrete group, let H be a subgroup of G with finite index k and let

N =
⋂
g∈G

gHg−1.

If there is a unitary representation of H on Cn with corresponding homomorphism

ρH : H → U(Mn),

then there exists an induced representation with corresponding homomorphism given by

ρGH : G→ U(Mn ⊗Mk)
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such that the restriction of ρGH to N is unitarily equivalent to k copies of the restriction of ρH to

N . That is to say ρGH |N = ρH |N ⊗ idMk
.

Proof. Let {g1, . . . , gk} be a set of coset representatives for H and define the induced

representation on Cnk by first writing

Cnk = g1Cn ⊕ g2Cn ⊕ · · · ⊕ gkCn,

which now suggests how the G action is defined. Let v1, . . . , vk ∈ Cn and let σ be the permutation

of {1, . . . , k} induced by G acting on G/H. For 1 ≤ j ≤ k there exists hj ∈ H such that ggj =

gσ(j)hj . Then define

g(gjvj)1≤j≤k = (gσ(j)(hjvj))1≤j≤k.

We can check that this defines a unitary representation of G with corresponding homomorphism

ρGH : G→ U(Mn ⊗Mk).

Now let h ∈ N . We see that for 1 ≤ j ≤ k there is a unique hj ∈ N such that h = gjhjg
−1
j . This

means that N preserves the decomposition

Cnk = g1Cn ⊕ g2Cn ⊕ · · · ⊕ gkCn.

We also see that with the obvious basis, h has the following diagonal matrix representation:

h 7→ diag(ρH |N (h1), ρH |N (h2), . . . , ρH |N (hk)).

This map is unitarily equivalent to the embedding

ρH |N ⊗ 1Mk
: N → U(Mn)⊗ 1Mk

↪→ U(Mn)⊗ U(Mk),

with matrix representation

h 7→ ρH |N (h)⊗ 1Mk
,

via the unitary matrix
⊕

1≤j≤k(ρGH(gj)
∗|gjCn).
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Lemma V.4. Suppose G is a discrete almost abelian group. Then every irreducible representation

of G is finite dimensional. Furthermore, there exists an M ∈ N such that the dimension of every

irreducible representation is at most M .

Proof. There being a uniform bound on the irreducible representations is due to Kaplansky (17,

Theorem 1 and Theorem 3).

Product Type Actions with the Pointwise Rokhlin Property

We begin this section by recalling Proposition III.4, which says that actions of a finite

group G can be found on A ⊗M|G|∞ . We first generalise this to include groups that are certain

extensions by finite groups and record it as Theorem V.7. We then use this along with our

examples from Section 3 to show that almost abelian groups can act on Q with the pointwise

Rokhlin property. In particular this result will be independent of Section 2. We then conclude

with some remarks about why this is about as good as one can hope for.

Proposition V.5. Let G be a discrete group with a normal subgroup N and let q : G → G/N

be the quotient map. Suppose A and B are unital nuclear C∗-algebras, α is an action of G on A

such that α|N has the pointwise Rokhlin property, and β is an action of G/N on B that has the

pointwise Rokhlin property. Then the action γ of G on A ⊗ B, defined by γ = α ⊗ (β ◦ q), has the

pointwise Rokhlin property.

Proof. Note that if g ∈ N , then αg is an automorphism with the Rokhlin property and if g /∈ N ,

then (β ◦ q)g is an automorphism with the Rokhlin property. We will now try to apply Lemma

III.15 which involves considering the order of γg.

– Suppose γg has infinite order and (β ◦ q)g has infinite order. Then g /∈ N meaning that

(β ◦ q)g has the Rokhlin property and we are done by applying Lemma III.15 with the roles

of A and B reversed.

– If (β ◦ q)g has finite order k and αg has infinite order, then gk ∈ N and so αkg = αgk has the

Rokhlin property and (β ◦ q)g has the Rokhlin property. This case is the content of Lemma

III.15.
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– If γg has finite order, then the orders of αg and (β ◦ q)g are also finite. Let k be the order

of (β ◦ q)g. Then once again, gk ∈ N and αkg have the Rokhlin property, so Lemma III.15

applies.

Lemma V.6. Suppose G is a countable discrete group, H is a subgroup of G with finite index k

and let

N =
⋂
g∈G

gHg−1.

Also suppose that A is a UHF algebra and there is a product type action

αH : H ↪→
∞∏
l=1

U(Mnl)→ AutA

of H on A with the pointwise Rokhlin property. Then there is an extension of α to a product type

action

αGH : G→
∞∏
l=1

U(Mnl ⊗Mk∞)→ Aut
(
M(nl)l∈N ⊗Mk∞

)
,

of G on A⊗Mk∞ whose restriction to N has the pointwise Rokhlin property.

Proof. For each homomorphism H → U(Mnl) coming from αH apply Lemma V.3 to get an

induced homomorphism G→ U(Mnl ⊗Mk) such that when we put all of the maps together we get

a map

αGH : G→
∞∏
n=1

U(Mn ⊗Mk)→ Aut
( ∞⊗
n=1

(Mnl ⊗Mk)
)

such that αGH |N is conjugate to the action αH |N ⊗ idMk∞ , which has the pointwise Rokhlin

property by Lemma III.15.

Theorem V.7. Suppose G is a countable discrete group with a subgroup H of finite index and

normal subgroup of index k given by

N =
⋂
g∈G

gHg−1.

Suppose also that A is any UHF algebra. If H has a product type action on A with the pointwise

Rokhlin property, then there is a product type action of G on A ⊗Mk∞ with the pointwise Rokhlin

property.
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Proof. Let q be the quotient map by N . By assumption, there exists a product type action

α : H ↪→
∞∏
l=1

U(Mnl)→ AutA

of H on A which has the pointwise Rokhlin property. Let k′ be the index of H which we note

divides k. We then have by Proposition V.6 an action

αGH : G→
∞∏
l=1

U(Mnl ⊗Mk′)→ AutM(nlk′)l∈N

of G on A⊗Mk∞ whose restriction to N has the pointwise Rokhlin property. Now since G/N is a

finite group of size k then by Proposition III.4 there is a product type action

β : G/H →
∞∏
l=1

U(Mk)→ AutMk∞

of G/N on Mk∞ with the pointwise Rokhlin property. Combine these in the way specified by

Proposition V.5 to get an action αGH ⊗ (β ◦ q) of G on M(nlk′)l∈N ⊗Mk∞ with the pointwise Rokhlin

property and that we easily see is of the form

G ↪→

( ∞∏
l=1

U(Mnlk)

)
×

( ∞∏
l=1

U(Mk)

)
→ Aut(M(nlk′)l∈N ⊗Mk∞).

Reordering the factors we get a conjugate action (keeping the same name) of the form

αGH ⊗ (β ◦ q) : G ↪→
∞∏
n=1

U(Mnlk′k)→ Aut(M(nlk′k)l∈N).

Since k′ divides k we have M(nlk′k)l∈N
∼= A⊗Mk∞ and we are done.

We notice that when H is trivial, G is a finite group. We now look at the UHF algebra Q,

the only algebra that can possibly have an existence theorem for the pointwise Rokhlin property

like that of Theorem IV.12.

Here we see the cut-down principle in action.

64



Lemma V.8. Suppose G is a countable discrete abelian group and let g ∈ G with finite order k.

Then there is a map

α[g] : G↪→
∞∏
l=1

U(Mk)↪→AutMk∞

such that α[g]g is an automorphism with the Rokhlin property.

Proof. By Corollary IV.20 there is a strongly outer action α of G on Q. Hence αg has the order k

tracial Rokhlin property. Assume αg has order k and without loss of generality the image of g is

diagonal in U(Mn). Let (Nl)l∈N define a regrouping with respect to αg as in Lemma III.14. Now

regroup our action accordingly and by Lemma IV.4 we have a conjugate action

G→
∞∏
l=1

U(MNl)→ AutM(Nl)l∈N .

Now since G is abelian, we can simultaneously diagonalise the image of G in U(MNl) and assume

the first k entries are those for which αg satisfies Lemma III.14. Then restricting to those entries

we get a map

G→ U(MNl)→ U(Mk).

Combining these into a product gives

α[g] : G↪→
∞∏
l=1

U(Mk)↪→AutMk∞

where the image of g has the Rokhlin property by Lemma III.14.

Theorem V.9. Let Q be the universal UHF algebra and let G be any countable discrete almost

abelian group. Then there exists a product type action

G ↪→
∞∏
n=1

U(Mn)→ AutQ

of G on Q with the pointwise Rokhlin property.
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Proof. By Theorem V.7 it suffices to assume that G is abelian. In this case combining Corollary

IV.20 with Lemma V.8 we have for each g ∈ G of finite order k(g) a map

α[g] : G↪→
∞∏
l=1

U(Mk(g))↪→AutMk(g)∞

such that α[g]g is an automorphism with the strict Rokhlin property. For g ∈ G with infinite

order, let α[g] be any strongly outer product type action given by Corollary IV.20. The

automorphism α[g]g will have the Rokhlin property in this case because we have from Kishimoto

(20, Theorem 1.4) every strongly outer Z-action on Q is outer conjugate. In particular they are

outer conjugate to the one from Proposition III.2 which has the Rokhlin property on M2∞ ⊗ Q.

We can assume for all g ∈ G that our maps are of the form

α[g] : G↪→
∞∏
n=1

U(Mn)↪→AutQ.

Then combining these maps we get a map to the product

α : G↪→
∞∏
m=1

∞∏
n=1

U(Mn)↪→Aut

( ∞⊗
m=1

∞⊗
n=1

Mn

)

where every g ∈ G acts via an automorphism with the Rokhlin property. Hence α has the

pointwise Rokhlin property. We now apply Lemma IV.5 to get a product type action of the form

required.

Notice that since we made use of the example in Section 3 to provide the strongly outer

actions of abelian groups, the above proof is logically independent of the results in Section 2.

We look at an example which was studied in Matui-Sato (37) as the first classification

result for a group that was neither finite nor abelian. It is however almost abelian.

Thr Klein Bottle Group

The Klein bottle group has presentation

Z o Z = 〈a, b | bab−1 = a−1〉.
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We will omit the action in the notation since there is only one non-trivial action of Z on Z. It

was shown in Matui-Sato (37, Theorem 7.9) that every strongly outer action of Z o Z on a UHF

algebra A that absorbs M2∞ is equivalent at least in the sense that the crossed products Ao (Z o

Z) are all the same (their equivalence is stronger) and the same is true on a UHF algebra with no

tensor factor isomorphic to M2. We will present here a model action of Z o Z on M2∞ with the

pointwise Rokhlin property using the principles of Theorem V.9. Notice that Z o Z is an almost

abelian group with subgroup N generated by a and b2 isomorphic to Z⊕Z . This subgroup clearly

has index 2 and is therefore normal. We have a Z action on M2∞ given by Proposition III.2.

Duplicating the finite stages of this map we get a map Z ⊕ Z → U(M2l) × U(M2l) for each l ∈ N.

Embedding this into U(M22l) we get a product type action of Z ⊕ Z on M2∞ with the pointwise

Rokhlin property. Now extend to Z o Z → U(M22l ⊗M2) by inducing as in Lemma V.3. Since

N is normal we see that this will be enough to get the pointwise Rokhlin property upon taking a

product. Let g /∈ N . We see that there is a basis for C22l ⊗ C2 for which g acts for some h ∈ N as

0 1

1 0

⊗ h.
Putting this together as an infinite tensor product we have by Lemma III.15 that g acts with the

order 2 Rokhlin property. Hence we have a model action of Z o Z on M2∞ with the pointwise

Rokhlin property.
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CHAPTER VI

MODEL GROUP ACTIONS ON THE UNIVERSAL UHF ALGEBRA

We look further into actions with the pointwise Rokhlin property and see if simpler model

actions can be found for almost abelian groups. Whereas the previous chapter was themed around

finite dimensional representations of groups, here we will be concerned with group actions on

finite sets. We will not be able to get all of the almost abelian groups as before but many of the

common ones do appear.

When restricting the adjoint action of U(Mn) on Mn to the group of permutation matrices

we get actions of subgroups of a product of symmetric groups on Q. That is, subgroups of

∞∏
n=1

Sn,

where Sn is the symmetric group. These are known as residually finite groups and we will show

that they behave well with respect to taking “almost”. So to find almost abelian groups it suffices

to look for abelian groups. Residually finite abelian groups are necessarily residually cyclic, in the

sense that they will appear as a subgroup of a product of cyclic groups

∞∏
n=1

Z/nZ.

Actions of Abelian Groups

Abelian Groups

Here we give a list of abelian groups and their notation that are fundamental to the study

of abelian groups. Let p be a prime number and let r ∈ N be a natural number.
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Symbol Description

Z Ring of integers

Z/prZ Ring of integers modulo pr

Z[p−1] Ring of integers adjoin p−1

Zp Ring of p-adic integers

Z(p) Ring of integers localised at the prime ideal (p)

Z[p−1]/Z Prüfer p-group

Q Ring of rational numbers

All these groups are countable except for the p-adic integers.

Definition VI.1 (p-adic integers). The most convenient construction of the p-adic integers will

be as the inverse limit of the system of quotient maps Z/pZ← Z/p2Z← . . . , that is

Zp =

{
(ar) ∈

∞∏
n=1

Z/prZ | ak = al mod pk for all k ≤ l

}
.

Definition VI.2. An abelian group G is said to be p-divisible if for each g ∈ G there is a g′ ∈ G

such that g = pg′. It is divisible if it is p-divisible for all primes p.

The Prüfer p-groups and Z[ 1
p ] are p-divisible, while Q is divisible.

Lemma VI.3. If G is a p-divisible abelian group then G does not have subgroup of index a power

of p. In particular, if G is divisible, then G does not have a proper subgroup of finite index.

Proof. Suppose H is a subgroup of G with [G : H] = pr for some r ≥ 0. Let g ∈ G. By divisibility

there exists g′ ∈ G such that g = prg′. But this means that g ∈ H. Hence r = 0 and H = G. If G

has a non-trivial finite index subgroup, then it must also have a index p subgroup for some prime

p and therefore cannot be divisible.

An element g ∈ G is said to be a torsion element if it has finite order. The torsion elements

form a subgroup. If this subgroup is zero, then G is said to be torsion-free. The groups Z/prZ and

the Prüfer p-groups are torsion groups while the other groups in Table 1 are torsion-free.

Theorem VI.4 (Prüfer). Suppose G is a countable abelian p-group. Then G is a direct sum of

finite cyclic groups if and only if
∞⋂
n=1

pnG = 0.
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Proof. See for example Kaplansky (16, Theorem 11).

A Class of Abelian Groups

Let Z/nZ be the cyclic group of order n. Let F0 be the set of all abelian groups G for

which there is an embedding i : G ↪→
∏∞
n=1 Z/nZ satisfying i(G) ∩

⊕∞
n=1 Z/nZ = {0}.

We now investigate the kinds of groups that are in F0. As a part of this investigation we

will see which of the basic abelian groups in the table of the previous section can and cannot be

represented this way. By Lemma VI.3, we are fundamentally limited to non-divisible groups. That

is

– Z[p−1]/Z /∈ F0 for all primes p,

– Q /∈ F0.

Lemma VI.5. There is an isomorphism
∏∞
n=1 Z/nZ ∼= (

∏∞
n=1 Z/nZ)N under which the subgroup⊕∞

n=1 Z/nZ corresponds to
⊕

n∈N
⊕∞

n=1 Z/nZ.

Proof. We only outline the proof to avoid being overwhelmed by notation. Decompose each

Z/nZ into a product of Z/prZ according to the prime factorisation of n. Then reorder the factors

accordingly so the same sequence of prime powers appears on the left and right hand side of the

isomorphism. Since finite products are the same as finite direct sums, each summand and hence

the infinite direct sum will be preserved by these oprations.

Proposition VI.6. The class F0 contains
∏∞
n=1 Z/nZ and is closed under countable direct sums

and subgroups.

Proof. For the first claim, take the diagonal embedding of
∏∞
n=1 Z/nZ into (

∏∞
n=1 Z/nZ)N, which

clearly intersects the direct sum trivially. Hence the claim follows by Lemma VI.5. The closure

under taking subgroups is obvious. Countable direct sums also follows from Lemma VI.5 since

each summand can map into a different factor in the product.

The following computation along with Prüfer’s Theorem shows that the only countable

torsion groups in F0 are direct sums of finite cyclic groups.
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Lemma VI.7. Suppose G is a residually finite abelian p-group. Then

∞⋂
n=1

pnG = {0}.

Proof. We see for fixed m that pn(Z/mZ) will not have p-torsion for sufficiently large n. Hence an

element of the intersection cannot have p-torsion in any of its cyclic quotients and must therefore

be zero.

Lemma VI.8. Let p be a prime number and let Zp = lim←−Z/pnZ. There is a natural inclusion

Zp
i
↪→

∞∏
n=1

Z/pnZ,

which satisfies i(Zp) ∩
⊕∞

n=1 Z/pnZ = {0}. Consequently, Zp ∈ F0.

Proof. The construction of Zp as a inverse limit given in Definition VI.1 gives a natural inclusion

of Zp into
∏∞
n=1 Z/pnZ whose image must intersect

⊕∞
n=1 Z/nZ trivially since Zp is torsion free.

Theorem VI.9. Let P be the set of all primes. The class F0 contains all of the subgroups of the

infinite direct sum
∞⊕
r=1

⊕
p∈P

(Z(p) ⊕ Z/prZ).

Proof. By Proposition VI.6 it suffices to show that Z(p) ∈ F0 and Z/prZ ∈ F0 for all primes p ∈ P

and r ∈ N. Since Z(p) ⊂ Zp for each p ∈ P , we get Z(p) ∈ F0 by Lemma VI.8. We also have

Z/prZ ∈ F0 as an obvious consequence of Proposition VI.6.

The groups in our table which are not divisible are all in F0 and the divisible groups are

definitely not in F0. Therefore in terms of describing a class of groups as subgroups of a fixed

group, this is the largest fixed group possible. One might think that we could still include the

inverse of some power of p to Z(p) ⊂ Q but this group will actually be isomorphic to Z(p).

Lemma VI.10. Let G be the subgroup of Q generated by Z(p) and p−r for some r ≥ 1. Then G is

isomorphic to Z(p).

Proof. Define a map ϕ : G → Z(p) by multiplication by pr with inverse defined by composing the

inclusion Z(p) ↪→ G with multiplication by p−r. The main part of checking this is to show that if
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x ∈ Z(p) then x/pr ∈ G. Since x can be written as a fraction m/n, it suffices to show that 1
npr ∈ G

for all n coprime to p.

Let n be coprime to p. Then there exists a, b ∈ Z so that apr + bn = 1 and we have

1

prn
=
apr + bn

npr
=
a

n
+

b

pr
∈ G.

Product Type Actions of Abelian Groups

Here we reveal the significance of the groups in F0.

Definition VI.11. An automorphism α is said to be uniformly outer if for every a ∈ Q, every

non-zero projection p ∈ Q and every ε > 0, there exists k > 0 mutually orthogonal projections

p1, . . . , pk such that p = p1 + · · ·+ pk and piaα(pi) ≈ε 0 for 1 ≤ i ≤ k.

Let ρ :
∏∞
n=1 Z/nZ→

∏∞
n=1 U(Mn) be the product of the natural representations.

Proposition VI.12. Suppose G is an abelian group for which there is an action α on Q of the

form

α : G
i
↪→

∞∏
n=1

Z/nZ
ρ
↪→

∞∏
n=1

U(Mn)
Ad→ AutQ.

Then α has the pointwise Rokhlin property if and only if α satisfies i(G) ∩
⊕∞

n=1 Z/nZ = {0}.

Proof. Since
⊕∞

n=1 Z/nZ acts by inner automorphisms, it will be necessary for i(G) to intersect

that subgroup trivially. We now prove that this condition is sufficient. We break the proof into

two parts. In the first part we show that g /∈
⊕∞

n=1 Z/nZ implies Ad(ρ(i(g))) is uniformly outer

and deduce that if g has infinite order, then it acts with the Rokhlin property. In the second part

we verify directly that a group element of finite order k has the order k Rokhlin property.

Let g ∈ G such that i(g) is not in the direct sum. Let a ∈ A, let p ∈ A be a non-zero

projection and let ε > 0. Without loss of generality we can assume ‖a‖ = 1. By the direct limit

construction, there exists N ∈ N, b ∈MN ! and a projection q ∈MN ! such that a ≈ε b and p ≈ε q.

By assumption we can choose n > N such that i(g)n has order k 6= 1. By the action of

Z/nZ on Mn we can find mutually orthogonal projections q′′1 , . . . , q
′′
k that sum to 1n and form an

orbit in the obvious way under the action of the group generated by i(g)n. Define
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– q′1 =
∑
i 6=k odd q

′′
i ,

– q′2 =
∑
i even q

′′
i and

– q′3 = q′′k if k is odd and 0 otherwise.

Then define p′1 = pq′1p, p
′
2 = pq′2p and p′3 = pq′3p. Note that q1 + q2 + q3 = p and q1, q2 and q3 are

close to some orthogonal projections p1, p2 and p3 in pAp. Hence p1 + p2 + p3 = p since the sum is

a projection close to the unit in pAp. We check the remaining condition. Let 1 ≤ i ≤ 3. We have

(noting α is isometric)

piaα(pi) ≈ p′ibα(p′i)

≈ qq′ibα(q′iq)

= qbq′iα(q′i)α(q)

= 0.

Hence g acts via a uniformly outer automorphism. By Kishimoto (20), any two automorphisms

whose powers are all uniformly outer are outer conjugate. In particular g acts with the Rokhlin

property since there exist automorphisms that act with the Rokhlin property.

Now assume g has finite order k and k = pr11 · · · prss is a unique factorisation into distint

primes. The assumption that no power of i(g) is in the direct sum guarantees for 1 ≤ i ≤ s that

prii dividies infinitely many i(g)n.

Let ε > 0 and let a1, . . . , an ∈ Q. We proceed to find k projections to witness the order k

Rokhlin property.

Since Q is a direct limit, there exists N ∈ N and b1, . . . bn ∈ MN ! such that ai ≈ε/2

bi. Also there exists for 1 ≤ j ≤ s, Nj > N such that i(g)Nj has order divisible by P
rj
j . So

(gNj )1≤j≤s ∈
∏

1≤j≤s Z/NjZ has order divisible by k. We will now be able to find k projections in

MN1 ⊗ · · · ⊗MNs to witness the order k Rokhlin property.

So F0 can also be defined as the set of all abelian groups G for which there is an action α

on Q of the form

α : G
i
↪→

∞∏
n=1

Z/nZ
ρ
↪→

∞∏
n=1

U(Mn)
Ad→ AutQ

satisfying pointwise Rokhlin property.
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Product Type Actions of Residually Finite Groups

Definition VI.13. A group G is said to be residually finite if for every g ∈ G there is a a finite

group F and a group homomorphism ϕ : G → F such that ϕ(g) 6= 0. Equivalently, there is an

embedding

G ↪→
∞∏
n=1

Sn,

where Sn is the symmetric group.

Definition VI.14. Suppose G is a group and H is a subgroup. Denote by G/H the set of cosets

of H in G. Given an H-set Y , let ∼ be equivalence relation on G × Y generated by (gh, y) ∼

(g, hy). Then the induced G-set is defined to be

G×H Y = (G× Y )/ ∼ .

Lemma VI.15. Let G be a group and let H be a subgroup of finite index k. Let {g1, . . . , gk} be a

set of coset representatives of H in G. Let Y be a H-set and write formally gY = {gy | y ∈ Y }.

There is an isomorphism of G-sets

G×H Y ∼=
k⋃
i=1

giY,

where the action on the right hand side is the natural one.

Proof. Define f :
⋃k
i=1 giY → G ×H Y by giy 7→ (gi, y) and define f− : G ×H Y →

⋃k
i=1 giY as

follows. For g ∈ G choose i and h ∈ H such that g = gih. Then set f−(g, y) = gi(hy). The second

map is well-defined because for g = gihi, we have f−(gh, y) = gi(hihy) = f−(g, hy). We check that

they are inverse to each other. First we have

f−f(giy) = f−(gi, y) = giy

and in the reverse direction we have

ff−(g, y) = f(gi(hiy)) = (gi, hiy) ∼ (gihi, y) = (g, y).

74



Let ρn : Sn → U(Mn) be the natural representation obtained from permuting the standard

basis vectors of Cn and let ρ =
∏∞
n=1 ρn :

∏∞
n=1 Sn →

∏∞
n=1 U(Mn). Define

∞∏
n=1

Sn
ρ→
∞∏
n=1

U(Mn)
Ad→ AutQ.

Let F be the set of all discrete groups G such that there is an action α of G on Q

represented by

α : G ↪→
∞∏
n=1

Sn
ρ→
∞∏
n=1

U(Mn)
Ad→ AutQ

that has the pointwise Rokhlin property.

We now see how groups in F0 can be promoted to groups in F .

Theorem VI.16. Let G be a countable discrete group with an abelian subgroup H of finite index.

If H ∈ F0, then G ∈ F .

Proof. Since F0 is closed under taking subgroups, we can replace H by
⋂
g∈G gHg

−1 if necessary

and assume H is normal. Let k be the index of the normal subgroup H. We know from Lemma

V.2 that k is finite. Since H ∈ F0 there is an embedding

ι : H ↪→
∞∏
n=1

Z/nZ

such that for each h ∈ H there are infinite many n for which h is able to act on the diagonal

projections of Mn with no fixed points.

For each n ∈ N we have the coordinate map ιn : H → Z/nZ which corresponds to the

action of H on a set Yn = {e1,1, . . . , en,n} of mutually orthogonal rank one projections in Mn.

Take the fibred product to get a G-set

Xn = G×H Yn,

where the elements of Xn correspond to rank one orthogonal projections in Mnk. So we have

maps κn : G→ Snk, which combine to form a map

κ : G ↪→
∞∏
n=1

Snk.
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By construction, there will for each g ∈ G be infinite many n for which g acts on Xn with no fixed

points and hence g will act by a uniformly outer automorphism since this is the only property

we needed in the proof of Proposition VI.12. Hence if g has infinite order we argue as above to

conclude that g acts with the Rokhlin property.

So to show that this embedding will give an action of G with the pointwise Rokhlin

property it suffices to consider elements in G of finite order.

Let g ∈ G and suppose the image of g in G/H has order m = P r11 · · ·P rss . Let h = gm with

finite order m′ = P
r′1
1 · · ·P

r′s
s (without loss of generality). Let ε > 0 and let {a1, . . . , at} be a finite

subset. Choose N large enough so that elements in Mn commute with {a1, . . . , at} up to ε for all

n > N . Now find N1, N2, . . . , Ns > N so that we can find P
r′l
l mutually orthogonal projections

cycled by h in MNl . We can write these projections as sums of the el,l and call these y
(l)
1 , . . . , y

(l)

P
r′
l
l

.

Now pick coset representatives for H in G of the following form

g1 gg1 g2g1 · · · gm−1g1

g2 gg2 g2g2 · · · gm−1g2

. . . . . . . . . . . . . . .

gk/m ggk/m g2gk/m · · · gm−1gk/m,

We can write Xn =
⋃
j,k g

jgkYn, where gjgkYn = {gjgke1,1, . . . , g
jgken,n} corresponds to a set of

rank one orthogonal projections. Define the rank kNl

mP
r′
l
l

projections

x
(l)
i,j = gjg1y

(l)
i + gjg2y

(l)
i · · ·+ gjgk/my

(l)
i .

These form a single orbit of size P
r′l
l m from the action of the group generated by g. By adding

projections we can define z
(l)
i,j with orbit size P

r′l+rl
l . Define the rank

∏s
l=1

kNl

P
r′
l
+rl

l

projection

p1 = z
(1)
1,1 ⊗ z

(2)
1,1 ⊗ · · · ⊗ z

(s)
1,1

to generate our orbit of mm′ projections inside MkN1
⊗ · · · ⊗ MkNs whose ranks sum to

(kN1) · · · (kNs).
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CHAPTER VII

GROUP ACTIONS ON SIMPLE NUCLEAR C∗-ALGEBRAS

A Family of Group Actions on the Jiang-Su Algebra

We will introduce the Jiang-Su algebra Z as a very important example of a strongly

self-absorbing C∗-algebra. Most of what we prove only uses this property of Z (along with

its simplicity and having a unique tracial state, which are implied by the property). Another

important example is the universal UHF-algebra Q.

Definition VII.1 ((48)). A C∗-algebra A is called strongly self-absorbing if there is an

isomorphism Ψ : A→ A⊗ A and a sequence of unitaries (vn)n∈N in A such that for any a ∈ A, we

have

lim
n→∞

Ad vn ◦Ψ(a) = a⊗ 1.

Definition VII.2. A C∗-algebra A is called Z-stable if A⊗Z ∼= A.

Lemma VII.3. There is an isomorphism

Z ∼= lim−→
(
Z⊗n, idZ⊗n ⊗1

)
.

Proof. This is well-known and first appeared as (15, Corollary 8.8).

Definition VII.4. Let G be a countable discrete group and identify Z with Z⊗G =⊗
g∈GZ using Lemma VII.3 and countability of G. Now define an action β of G on Z via this

identification by

βg :
⊗
h∈G

zh 7→
⊗
h∈G

zg−1h.

Again using Lemma VII.3 to identify Z with Z⊗N, we define the action γ of G on Z by

γg :
⊗
n∈N

zn 7→
⊗
n∈N

βg(zn).

For any group automorphism ϕ, we define βϕ to be the action of G on Z given by g 7→ βϕ(g). So

we have βidG = β. We can define γϕ analogously using γ instead of β and also get γidG = γ.
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We first show that all of the βϕ are conjugate for different ϕ so we only need to consider

βidG = β from here without loss of generality. A similar thing happens when a different ordering

of G is taken to define the infinite tensor product.

Lemma VII.5. Let ϕ be a group automorphism of G and let ϕ̂ denote the induced automorphism

on Z given by

ϕ̂ : z =
⊗
h∈G

zh 7→
⊗
h∈G

zϕ(h).

Then for all g ∈ G, we have

βϕg = ϕ̂ ◦ βg ◦ ϕ̂−1.

Proof. Let g ∈ G and let z =
⊗

h∈G zh ∈ Z⊗G. We have

(ϕ̂−1 ◦ βϕg ◦ ϕ̂)(z) = (ϕ̂−1 ◦ βϕg ◦ ϕ̂)

(⊗
h∈G

zh

)

= (ϕ̂−1 ◦ βϕg )

(⊗
h∈G

zϕ(h)

)

= ϕ̂−1

(⊗
h∈G

zϕ(g−1)ϕ(h)

)

=
⊗
h∈G

zg−1h

= βg(z).

We now move from “one dimensional thinking” to “two dimensional thinking”.

Theorem VII.6. Suppose G is a countable discrete group. Then γ is conjugate to β. In

particular, both γ and β are strongly outer.

Proof. Since βg 6= id for all g ∈ G \ {1} and Z has unique trace, we apply Lemma ?? with α = β

and A = Z to get that γ is strongly outer. Now we annotate with subscripts our copies of Z in

the tensor product decomposition of Z⊗G to emphasise their position. That is,

Z⊗G =
⊗
h∈G

Zh.
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The action β acts by permuting these factors. We note that for each h, the factor Zh can be

further decomposed using Lemma VII.3 into an infinite tensor product of copies of Z, where we

denote each copy by Z(l)
h to emphasise its placement in the decomposition of Zh. That is,

Zh ∼=
⊗
l∈N
Z(l)
h .

We see that for each l ∈ N, β leaves the subalgebra Z(l) =
⊗

h∈GZ
(l)
h invariant and we recover

the action β when we identify Z(l) with Z. Hence we have that β is conjugate to β⊗N acting on⊗∞
l=1Z(l), which is conjugate to γ acting on Z.

Let G be a countable discrete group. Let A be a unital C∗-algebra. We use γ of the

previous section to define an action ω(G,A) of G on A ⊗ Z. We show here that when G is

elementary amenable and A is tracially approximately divisible then ω(G,A) has the tracial

Rokhlin property in the sense of Matui-Sato, whose definition we record here.

The Action ω(G,A)

Definition VII.7. Let γ be as in Definition VII.4. For any C∗-algebra A, define the action ωA on

A⊗Z by

ωA = idA⊗γ.

Remark VII.8. If A is unital, the action ωA is pointwise approximately inner because all

automorphisms on Z are approximately inner.

The Matui-Sato Tracial Rokhlin Property

Definition VII.9. A group action α of G on a C∗-algebra A has the Matui-Sato tracial Rokhlin

property if for every finite subset F ⊂ G and ε > 0, there is a finite (F, ε)-invariant subset K in G

and a central sequence (pn)n∈N in A consisting of projections such that for g, h ∈ K with g 6= h

– limn→∞ αg(pn)αh(pn) = 0

– limn→∞maxτ∈T (A) |τ(pn)− |K|−1| = 0.

Let Mk denote the full k × k matrix algebra with identity written 1k.
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Lemma VII.10. For any finite subset F ⊂ G and ε > 0, there is a finite (F, ε)-invariant subset

K of G such that for each n ∈ N there is m(n) ∈ N and a projection qn ∈Mm(n) ⊗Z satisfying the

following

ω
Mm(n)
g (qn)ω

Mm(n)

h (qn) ≈1/n 0 for all g, h ∈ K with g 6= h,

τ(qn) ≈1/n |K|−1.

Proof. Let F be a finite subset of G and let ε > 0. By Lemma ??, id⊗γ is a strongly outer action

on Q ⊗ Z. Therefore by Theorem IV.7 it also has the tracial Rokhlin property. So we have from

Definition VII.9 a finite subset K in G and a central sequence (q′n) consisting of projections in

Q⊗Z such that for all g, h ∈ K with g 6= h, we have

– limn→∞(idQ⊗γg)(q′n)(idQ⊗γh)(q′n) = 0,

– limn→∞maxτ∈T (Q⊗Z) |τ(q′n)− |K|−1| = 0.

By passing to a subsequence if necessary and noting that Q⊗Z has unique trace, we have

(idQ⊗γg)(q′n)(idQ⊗γh)(q′n) ≈1/3n 0 for all g, h ∈ K with g 6= h,

τ(q′n) ≈1/n |K|−1.

Since Q is a UHF-algebra, there are m(n) and q′′n ∈ Mm(n) self-adjoint such that q′n ≈1/15n q′′n.

Hence by functional calculus there is a projection qn ∈ Mm(n) such that qn ≈5/15n q′n (see for

example (21, Lemma 2.5.5)). We see now, since automorphisms are isometric and idQ⊗γ restricts

to idm(n)⊗γ on Mm(n) ⊗Z, that

(idm(n)⊗γg)(qn)(idm(n)⊗γh)(qn) ≈1/3n (idQ⊗γg)(q′n)(idm(n)⊗γh)(qn)

≈1/3n (idQ⊗γg)(q′n)(idQ⊗γh)(q′n)

≈1/3n 0 for all g, h ∈ K with g 6= h.

We also have

τ(qn) = τ(q′n) ≈1/n |K|−1.
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Group Actions on Tracially Approximately Divisible C∗-algebras

Definition VII.11 (Tracially approximately divisible). Let A be a unital simple separable C∗-

algebra. We say that A is tracially approximately divisible if for every ε > 0, every l ∈ N, every

finite subset {a1, a2, . . . ak} ⊂ A and any non-zero y ∈ A+, there exists a finite dimensional algebra

B with each simple summand’s rank exceeding l, and a ∗-homomorphism ϕ : B → A, such that for

all i ≤ k and e ∈ B with ‖e‖ ≤ 1,

– [ai, ϕ(e)] ≈ε 0,

– 1− ϕ(1B) � y.

Simple tracially approximately divisible algebras automatically satisfy strict comparison

because they are tracially Z-stable (see (14, Definition 2.1, Theorem 3.3)). If we assume strict

comparison, then the definition above is equivalent to the following definition, which will serve as

our working definition.

Definition VII.12 (Tracially approximately divisible with strict comparison). Let A be a unital

simple separable C∗-algebra with strict comparison. We say that A is tracially approximately

divisible if for every ε > 0, every n ∈ N, every finite subset {a1, a2, . . . ak} ⊂ A, there exists N > n

and a ∗-homomorphism ϕ : MN → A such that for all i ≤ k, e ∈MN with ‖e‖ ≤ 1 and τ ∈ T (A),

– [ai, ϕ(e)] ≈ε 0,

– supτ∈T (A) |1− τ(ϕ(1N ))| ≈ε 0.

Theorem VII.13. If A is a unital simple separable tracially approximately divisible C∗-algebra,

G is a countable discrete elementary amenable group and ωA is an action of G on A ⊗ Z as in

Definition VII.7, then ωA has the tracial Rokhlin property.

Proof. Let F be a finite subset of G and let ε > 0. We aim to show that there is a finite (F, ε)-

invariant subset K in G and a central sequence (pn)n∈N consisting of projections in A ⊗ Z such

that

– limn→∞ ωAg (pn)ωAh (pn) = 0 for all g, h ∈ K,

– limn→∞maxτ∈T (A⊗Z) |τ(pn)− |K|−1| = 0.
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We begin by introducing some notation for this proof. Define

Z⊗n =
⊗
j≤n

Z with action β⊗n = ⊗j≤nβ,

and

Z⊗(N\n) =
⊗
j>n

Z with action β⊗(N\n) = ⊗j>nβ.

There are obvious action preserving isomorphisms

ρn : (Z, γ)→ (Z⊗n ⊗Z⊗(N\n), β⊗n ⊗ β⊗(N\n))

and

σn : (Z, γ)→ (Z⊗(N\n), β⊗(N\n)).

Fix a dense sequence x1, x2, . . . in A⊗Z. We will proceed to define for each n ∈ N a projection pn

to satisfy our initial requirements. To do this, it will be helpful to also establish for j ≤ n,

[pn, xj ] ≈5/n 0.

Let n ∈ N. Find ai,j ∈ A and zi,j ∈ Z such that for j ≤ n, we have

xj ≈1/n

l(j)∑
i=1

ai,j ⊗ zi,j .

Write

Ln =
∑
j≤n

∑
i≤l(j)

‖ai,j‖.

There exists n′ ∈ N such that for all j ≤ n and i ≤ l(j), there are z′i,j ∈ Z⊗n′ satisfying

ρn′(zi,j) ≈ 1
nLn

z′i,j ⊗ 1Z⊗(N\n′) .

Define an action preserving isomorphism

χn : A⊗Z → A⊗Z⊗n
′
⊗Z
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by

χn = (idA⊗Z⊗n′ ⊗σ
−1
n′ ) ◦ (idA⊗ρn′).

For j ≤ n and i ≤ l(j), we get

χn(xj) ≈ 2
n

l(j)∑
i=1

ai,j ⊗ z′i,j ⊗ 1Z . (VII.1)

The calculation for (VII.1) is included here for convenience:

∥∥∥∥∥∥χn(xj)−
l(j)∑
i=1

ai,j ⊗ z′i,j ⊗ 1Z

∥∥∥∥∥∥ ≈1/n

∥∥∥∥∥∥
l(j)∑
i=1

ai,j ⊗ ((id⊗σ−1
n′ )ρn′(zi,j)− z′i,j ⊗ 1Z)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
l(j)∑
i=1

ai,j ⊗ ((id⊗σ−1
n′ )(ρn′(zi,j)− z′i,j ⊗ 1Z⊗(N\n′)))

∥∥∥∥∥∥
≤

l(j)∑
i=1

‖ai,j‖‖((id⊗σ−1
n′ )(ρn′(zi,j)− z′i,j ⊗ 1))‖

=

l(j)∑
i=1

‖ai,j‖‖ρn′(zi,j)− z′i,j ⊗ 1))‖

≤
l(j)∑
i=1

‖ai,j‖
1

nLn

=
1

nLn

l(j)∑
i=1

‖ai,j‖

≤ Ln
nLn

=
1

n
.

We now apply Lemma VII.10 to get an m ∈ N, a finite (F, ε)-invariant subset K of G and a

projection qn ∈Mm ⊗Z satisfying:

((idm⊗γg)(qn)) ((idm⊗γh)(qn)) ≈1/n 0 for all g, h ∈ K with g 6= h,

(τm ⊗ τZ)(qn) ≈1/n |K|−1.

Thinking of qn as a matrix with entries yk,l ∈ Z, we have

qn =

m∑
k,l=1

ek,l ⊗ yk,l,
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where the ek,l are standard matrix units. Also define for convenience,

L′n =

n∑
j=1

l(j)∑
i=1

m∑
k,l=1

‖yk,l‖‖z′i,j‖.

Since A is tracially approximately divisible, there exists by Definition VII.12, an m′ ∈ N, a ∗-

homomorphism ϕ : Mm′ → A, satisfying for all j ≤ n, i ≤ l(j), and e ∈Mm′ with ‖e‖ ≤ 1,

[ai,j , ϕ(e)] ≈ 1
nL′n

0 (VII.2)

τ(ϕ(1m′)) ≈ 1
n

1 (VII.3)

m′ > mn. (VII.4)

Now write m′ = Nm+ r with 0 ≤ r < m, and N ∈ N and define an embedding

ψn : Mm ⊗Z ↪→ A⊗Z⊗n
′
⊗Z

on generators for e ∈Mm and z ∈ Z by

e⊗ z 7→ ϕ(diag(e⊗ 1N , 0r))⊗ 1⊗ z,

where diag(e ⊗ 1N , 0r) denotes a block diagonal matrix with the first N blocks e and zeros for the

remaining r × r block. We see that this embedding respects the group action and the image of qn

is

ψn(qn) =

m∑
k,l=1

ϕ(diag(ek,l ⊗ 1N , 0r))⊗ 1⊗ yk,l. (VII.5)

We now define the promised projections pn ∈ A⊗Z by

pn = (χ−1
n ◦ ψn)(qn).

We first check for all j ≤ n that

[pn, xj ] ≈5/n 0.
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Let j ≤ n. Then

χn([pn, xj ]) = [χn(pn), χn(xj)]

= [ψn(qn), χn(xj)]

(use (VII.1)) ≈ 4
n

ψn(qn),

l(j)∑
i=1

ai,j ⊗ z′i,j ⊗ 1Z


(use (VII.5)) =

l(j)∑
i=1

m∑
k,l=1

[ϕ(diag(ek,l ⊗ 1N , 0r))⊗ 1⊗ yk,l, ai,j ⊗ z′i,j ⊗ 1Z ]

=

l(j)∑
i=1

m∑
k,l=1

[ϕ(diag(ek,l ⊗ 1N , 0r)), ai,j ]⊗ z′i,j ⊗ yk,l

(use (VII.2)) ≈1/n 0.

We now show that (pn)n∈N satisfies the conditions in the definition of the tracial Rokhlin

property.

– It is clear that K is a finite (F, ε)-invariant subset of G.

– The sequence (pn)n∈N is central: Let x ∈ A ⊗ Z and ε > 0. We have from density that for

some j ∈ N,

x ≈ε xj .

Now let n ≥ j be such that 1/n < ε, then

χn([pn, x]) = [χn(pn), χn(x)]

≈2ε [χn(pn), χn(xj)]

≈5/n 0.

Hence for our choice of n we have

[pn, x] ≈7ε 0.
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– Orthogonality: Let g, h ∈ K with g 6= h. Then

χn(ωAg (pn)) = ωAg (χn(pn))

= (id⊗β⊗n
′

g ⊗ γg)(ψn(qn))

= (id⊗ id⊗γg)(ψn(qn))

= ψn((id⊗γg)(qn)).

So

χn(ωAg (pn)ωAh (pn)) = χn(ωAg (pn))χn(ωAh (pn))

= ψn((id⊗γg)(qn))ψn((id⊗γh)(qn))

= ψn((id⊗γg)(qn)(id⊗γh)(qn))

≈1/n 0.

– Trace condition: let τ ∈ T (A), and let τZ and τk be the unique tracial states on Z and Mk

respectively. Then

(τ ⊗ τZ)(pn) = (τ ⊗ τZ⊗n′ ⊗ τZ)(χn(pn))

= (τ ⊗ τZ⊗n′ ⊗ τZ)(ψn(qn))

= (τ ⊗ τZ)(qn)

= (τ ⊗ τZ)(ϕ(diag(1m ⊗ 1N , 0r))⊗ 1Z)(τm ⊗ τZ)(qn)

= τ(ϕ(diag(1m ⊗ 1N , 0r)))(τm ⊗ τZ)(qn)

= τ(ϕ(1m′))τm′(diag(1m ⊗ 1N , 0r))(τm ⊗ τZ)(qn)

=
m′ − r
m′

τ(ϕ(1m′))(τm ⊗ τZ)(qn)

(use (VII.3)) ≈1/n τ(ϕ(1m′))(τm ⊗ τZ)(qn)

(use (VII.4)) ≈1/n (τm ⊗ τZ)(qn)

≈1/n |K|−1.

Therefore we have

max
τ∈T (A⊗Z)

|τ(pn)− |K|−1| ≤ 3

n
,

from which it follows the limit is 0.
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Corollary VII.14. For any unital simple separable Z-stable tracially approximately divisible

C∗-algebra A and any discrete countable elementary amenable group G, there exists a pointwise

approximately inner action ω of G on A with the tracial Rokhlin property. Furthermore, ω can be

taken to be isomorphic to ωA from Theorem VII.13.

Proof. If A is Z-stable, ωA in Theorem VII.13 is such an action on A.

Corollary VII.15. For any unital simple separable nuclear tracially approximately divisible

C∗-algebra A and any discrete countable elementary amenable group G, there exists a pointwise

approximately inner action ω of G on A with the tracial Rokhlin property. Furthermore, ω can be

taken to be isomorphic to ωA from Theorem VII.13.

Proof. Since simple tracially approximately divisible algebras are tracially Z-stable ((14,

Definition 2.1)), then A being nuclear implies it is in fact Z-stable (see (14, Theorem 4.1)). Now

use Corollary VII.14.

Corollary VII.16. If A is a unital simple separable nuclear infinite-dimensional C∗-algebra

of tracial rank at most one and G is any discrete countable elementary amenable group, then

there exists a pointwise approximately inner action ω of G on A with the tracial Rokhlin property.

Furthermore, ω can be taken to be isomorphic to ωA from Theorem VII.13.

Proof. Lin (29, Theorem 5.4) shows that A is tracially approximately divisible. Since A is also

nuclear, we can apply Corollary VII.15.
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CHAPTER VIII

CROSSED PRODUCTS FROM UNIFORMLY HYPERFINITE C∗-ALGEBRAS

We examine the crossed products from UHF algebras by product type actions with the

tracial Rokhlin property and show that they belong to a familiar class of classifiable C∗-algebras.

Crossed Products by Product Type Actions

Recall we write M(nl)l≤m to stand for Mn1⊗· · ·⊗Mnm . We give a direct limit decomposition

of M(nl)l∈N oα G when α is a product type action with corresponding homomorphism of the form

α : G→
∞∏
l=1

U(Mnl)
Ad→ AutM(nl)l∈N .

Let αm denote the restriction of α to M(nl)l≤m and let αg,m denote the restriction of αg. Let 1m

be the identity in Mnm and let

φm : M(nl)l≤m →M(nl)l≤m+1

be defined by x 7→ x⊗ 1m. Let

φn,∞ : M(nl)l≤m →M(nl)l∈N

be the canonical embedding into the direct limit. For all g ∈ G, write u
(m)
g for the canonical

unitary implementing αg,m in M(nl)l≤m oαm G. For the group homomorphism defined by g 7→

u
(m+1)
g , we have

u(m+1)
g φm(x)(u(m+1)

g )∗ = (αg)m+1(x⊗ 1m+1)

= αg,m(x)⊗ 1m+1

= φm(αg,m(x)).

Hence there is a ∗-homomorphism

ψm : M(nl)l≤m oαm G→M(nl)l≤m+1
oαm+1

G
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given on generators x ∈M(nl)l≤m and u
(m)
g for g ∈ G by

xu(m)
g 7→ φm(x)u(m+1)

g .

Denoting by ψm,∞ the canonical map to lim−→
(
M(nl)l≤m oαm G,ψm

)
given by the completion of

{(xm) ∈
∏
mM(nl)l≤m | ∃n : ψk(xk) = xk+1∀k > n}
{(xm) | limm xm = 0}

we see for x ∈M(nl)l≤m and g ∈ G that

ψm,∞(xu(m)
g ) = (0, . . . , 0, xu(m)

g , φm(x)u(m+1)
g , (φm+1 ◦ φm)(x)u(m+2)

g , . . . ).

Lemma VIII.1. Let α : G → AutM(nl)l∈N be a product type action preserving the natural

decomposition of M(nl)l∈N . Then

M(nl)l∈N oα G ∼= lim−→
(
M(nl)l≤m oαm G,ψm

)
.

Proof. We will define ∗-homormorphisms in both directions and check they are inverse to each

other. Let ug implement αg in M(nl)l∈N oα G. Similarly to the case for ψm we can define a map

ψ′m,∞ : M(nl)l≤m oαm G→M(nl)l∈N oα G

on generators x ∈M(nl)l≤m and u
(n)
g for g ∈ G by

xu(m)
g 7→ φm,∞(x)ug.

We check that

(ψ′m+1,∞ ◦ ψm)(xu(m)
g ) = ψ′m+1,∞(φm(x)u(m+1)

g )

= φm+1,∞(φm(x))ug

= φm,∞(x)ug

= ψ′m,∞(xu(m)
g ).
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So we have a map

lim−→(ψ′m,∞) : lim−→
(
M(nl)l≤m oαm G,ψm

)
→M(nl)l∈N oα G.

Now we define the inverse map. We have a map

ψm,∞|M(nl)l≤m
: M(nl)l≤m → lim−→

(
M(nl)l≤m oαm G,ψm

)
and we check for x ∈M(nl)l≤m

(ψm+1,∞ ◦ φm)(x) = (0, . . . , 0, φm(x), (φm+1 ◦ φm)(x), . . . )

= (0, . . . , 0, x, φm(x), (φm+1 ◦ φm)(x), . . . )

= ψm,∞(x).

So we have a map from the universal property of the limit

φ : M(nl)l∈N → lim−→
(
M(nl)l≤m oαm G,ψm

)
.

now define a group homomorphism

G→ U
(

lim−→
(
M(nl)l≤m oαm G,ψm

))

for g ∈ G by

g 7→ (u(m)
g )m∈N

and check the covariance condition on the generators. Let x ∈M(nl)l≤m and g ∈ G. We have

(u(m)
g )n∈Nφ(x)(u(m)

g )∗m∈N = (0, . . . , 0, u(m)
g x(u(m)

g )∗, u(m+1)
g φm(x)(u(m+1)

g )∗, . . . )

= (0, . . . , 0, αm(x), αm+1(φm(x)), . . . )

= (0, . . . , 0, αm(x), φm(αm(x)), . . . )

= φ(αm(x))

= φ(α(x)).
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Hence there is a map

ψ : M(nl)l∈N oα G→ lim−→
(
M(nl)l≤m oαm G,ψm

)
,

which we now check is inverse to lim−→(ψ′m,∞) on generators. Let x ∈ M(nl)l≤m and let g ∈ G. We

have

(ψ ◦ lim−→(ψ′m,∞))(ψm,∞(xu(m)
g )) = ψ(ψ′m,∞(xu(m)

g ))

= ψ(φm,∞(x)ug)

= ψm,∞(xu(m)
g ).

Let x ∈M(nl)l≤m and let g ∈ G. We have

(lim−→(ψ′m,∞) ◦ ψ)(φm,∞(x)ug) = lim−→(ψ′m,∞)(φ(φm,∞(x))(u(m)
g )m∈N)

= lim−→(ψ′m,∞)(ψm,∞(x)(u(m)
g )m∈N)

= ψ′m,∞(xu(m)
g )

= φm,∞(x)ug.

Define the (full) group C∗-algebra C∗(G) of a group G to be the C∗-algebra with the

presentation

C∗(G) = 〈g ∈ G | g∗ = g−1〉.

Lemma VIII.2. If G is a countable discrete amenable maximally almost periodic group, then

C∗(G) is amenable quasidiagonal and satisfies the UCT. Furthermore, if G is almost abelian then

C∗(G) is type I.

Proof. That C∗(G) is amenable when G is amenable is due to Guichardet (10). That C∗(G) is

quasidiagonal when G is amenable and maximally almost periodic is discussed in the introduction

of (4) among other places. Also, C∗(G) satisfies the UCT by (6, Proposition 6.1). That C∗(G) is

type I when G is almost abelian follows from Lemma V.4.

Lemma VIII.3. The map θm : M(nl)l≤m ⊗ C∗(G)→M(nl)l≤m oαm G defined by

θm : x⊗ g 7→ x(g−1
1 ⊗ · · · ⊗ g−1

n )ug

91



is a ∗-isomorphism with inverse defined by

θ−1
m : xug 7→ x(g1 ⊗ · · · ⊗ gn)⊗ g.

Proof. Note that the action of Ad((g−1
1 ⊗ · · · ⊗ g−1

n )ug) on M(nl)l≤m is by design trivial and hence

(g−1
1 ⊗ · · · ⊗ g−1

n )ug, which is the image of 1 ⊗ g, commutes with the image of x ⊗ 1, which lies in

M(nl)l≤m . Therefore θm is well-defined. For θ−1
m , we have

θ−1
m (ug)x = ((g1 ⊗ · · · ⊗ gn)⊗ g)(x⊗ 1)

= ((g1 ⊗ · · · ⊗ gn)x)⊗ g

= αg(x)θ−1
m (ug),

and hence θ−1
m is well-defined. Therefore both maps are well-defined by the universal properties of

the presentations for these algebras. The fact that they are inverses only needs to be checked on

the generators where it is obvious, hence θm and θ−1
m are ∗-isomorphisms.

We arrive at the following theorem.

Theorem VIII.4. Let A be a UHF algebra, let G be a discrete group and let α be a product type

action of G on A preserving the decomposition A ∼= M(nl)l∈N for some sequence (nl)l∈N. Let gm be

the image of g in U(Mnm) and suppose

Φm : M(nl)l≤m ⊗ C
∗(G)→M(nl)l≤m ⊗ C

∗(G)

is the ∗-homomorphism defined on generators by

x⊗ g 7→ ((x⊗ 1nm+1
)gn+1)⊗ g.

Then

Aoα G ∼= lim−→
(
Φm,M(nl)l≤m ⊗ C

∗(G)
)
.
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Proof. From Lemmas VIII.1 and VIII.3, it suffices to define the maps Φm so that the following

diagrams commute

M(nl)l≤m oαm G
ψm−−−−→ M(nl)l≤m+1

oαm G.

θm

x yθ−1
m+1

M(nl)l≤m ⊗ C∗(G)
Φm−−−−→ M(nl)l≤m+1

⊗ C∗(G).

We have for x ∈M(nl)l≤m and g ∈ G that

Φm(x⊗ g) = (θ−1
m+1 ◦ ψm ◦ θm)(x⊗ g)

= (θ−1
m+1 ◦ ψm)(x(g−1

1 ⊗ · · · ⊗ g−1
m )u(m)

g )

= θ−1
m+1(φm(x(g−1

1 ⊗ · · · ⊗ g−1
m ))u(m+1)

g )

= φm(x(g−1
1 ⊗ · · · ⊗ g−1

m ))((g1 ⊗ · · · ⊗ gm+1)⊗ g)

= (x(g−1
1 ⊗ · · · ⊗ g−1

m )⊗ 1m+1)((g1 ⊗ · · · ⊗ gm+1)⊗ g)

= ((x⊗ 1m+1)gm+1)⊗ g

= (φm(x)gm+1)⊗ g.

Corollary VIII.5. Suppose G is a countable discrete amenable maximally almost periodic group

and suppose A is any UHF algebra. If α is a product type action of G on A, then A oα G is

nuclear quasidiagonal and satisfies the UCT. Furthermore, if G is almost abelian then A oα G is

locally type I.

Crossed Products by Outer Actions

We note here the advantages of the tracial Rokhlin property for determining the crossed

product. The following is based on Kishimoto (19, Lemma 4.3).

Lemma VIII.6. Suppose α is an action of G on A with the pointwise tracial Rokhlin property

and τ is any tracial state on Aoα G. Then τ(aug) = 0 for all a ∈ A and all g ∈ G \ {1}.

Proof. Let g ∈ G \ {1} with order k, let a ∈ A and ε > 0. Without loss of generality also assume

‖a‖ ≤ 1. By definition of the order k tracial Rokhlin property, there exists k′ ≥ k mutually

orthogonal projections p1, . . . , pk′ such that with p = p1 + · · ·+ pk′ , we have
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– [pi, a] ≈ε/2 0

– αg(pi) ≈ε/2 pi+1 for 1 ≤ i ≤ k′ − 1

– τ(p) ≈ε2 1.

First we show that for 1 ≤ i ≤ k′ − 1

‖piaα(pi)‖ < ε. (VIII.1)

Let 1 ≤ i ≤ k′ − 1. We have

piaα(pi) ≈ε/2 apiα(pi)

≈ε/2 apipi+1

= 0.

Now we have

|τ(aug)| = |τ(paug) + τ((1− p)aug)|

≤ |τ(paug)|+ τ(1− p)1/2τ(a∗a)1/2

≈ε |τ(paug)|

=

k′∑
i=1

τ(piaug)

=

k′∑
i=1

τ(piaugpi)

=

k′∑
i=1

τ(piaαg(pi)ugpi)

≤
k′∑
i=1

τ(pi‖piaαg(pi)‖2pi)1/2τ(pi)
1/2

<

k′∑
i=1

ετ(pi)

= ετ(p)

≈ε2 ε

Hence τ(aug) ≈2ε+ε2 0.

Proposition VIII.7. Let G be a countable discrete group, let A be a UHF algebra and let α be an

action of G on A. Then

(i) if G is amenable and α is outer, then Aoα G is nuclear and simple,
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(ii) if α has the pointwise tracial Rokhlin property, then Aoα G has a unique tracial state,

(iii) if G is amenable and α has the tracial Rokhlin property, then A oα G is Z-stable and has

real rank zero.

Proof. We find general results from the literature and specialise them to our case.

(i) Rosenberg (45) shows that crossed products are amenable when G is amenable. Simplicity

follows from Kishimoto (18, Theorem 3.1) since the action is outer.

(ii) Lemma VIII.6 shows that there is at most one trace τ on A oα G, namely the one given by

composing the conditional expectation with the unique tracial state of A.

(iii) Matui-Sato (37, Theorem 4.9) tells us the crossed product is Z-stable. In the presence of

Z-stability we use a characterisation of real rank zero from Rordam(44, Corollary 7.3(ii)).

Since the image K0(A) under the trace is already dense in R and the image of K0(A oα G)

contains the image of K0(A), then Aoα G has real rank zero.

The Crossed Products M(nl)l∈N oα G

Let A be a unital C∗-algebra, let G be a countable discrete group and let α be an action

of G on A. It is clear that A oα G is unital and separable. We will also assume that A is a

UHF algebra and note the advantages for determining A oα G when α is a product type action.

Nonetheless this is not enough to get everything that one would desire. For example, we know

that with only this we cannot guarantee that A oα G has a unique tracial state or has real rank

zero (see for example (20, Theorem 1.3)). However, these missing properties are exactly why we

looked for the tracial Rokhlin property.

We combine the advantages of the tracial Rokhlin property with being a product type

action in the following theorem.

Theorem VIII.8. Suppose G is a countable discrete maximally almost periodic amenable group,

A is any UHF algebra and α is a product type action of G on A with the tracial Rokhlin property.

Then A oα G is unital simple separable nuclear with tracial rank zero and satisfies the Universal

Coefficient Theorem. Moreover, Aoα G has a unique tracial state.
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Proof. By a result of W. Winter (50, Theorem 2.1), to prove A oα G has tracial rank zero, it

suffices to show A oα G is Z-stable with real rank zero and finite decomposition rank. We have

real rank zero and Z-stability from Proposition IX.16 (iii). So it suffices to show that A oα G

has finite decomposition rank. Now using Matui-Sato (38, Corollary 1.2), it suffices to show that

A oα G is simple nuclear quasidiagonal with a unique tracial state. Simplicity and nuclearity

come from Proposition IX.16 (i), while quasidiagonality follows from Corollary VIII.5. Having a

unique tracial state comes from Proposition IX.16 (ii). The Universal Coefficient Theorem is from

Corollary VIII.5.

Corollary VIII.9. Suppose G is a countable discrete maximally almost periodic elementary

amenable group, A is any UHF algebra and α is a strongly outer product type action of G on A.

Then A oα G is unital simple separable nuclear with tracial rank zero and satisfies the Universal

Coefficient Theorem. Moreover, A oα G has a unique tracial state. Furthermore, if G is almost

abelian then Aoα G is locally type I.

Proof. When G is elementary amenable, the tracial Rokhlin property is equivalent to strong

outerness by Matui-Sato’s theorem, reproduced here as Theorem IV.7. Hence Theorem VIII.8

applies.
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CHAPTER IX

CROSSED PRODUCTS FROM JIANG-SU-STABLE ALGEBRAS

The Crossed Products Z oG

Z oβ G and Z oγ G

Let β and γ be as in Definition VII.4. Simple C∗-algebras with rational tracial rank zero

are important because they help define a large class of C∗-algebras which can be classified by their

Elliott invariants. We investigate the classifiability of Z oγ G by examining its rational tracial

rank, that is, the tracial rank of Q⊗ (Z oγ G). We investigate Z oβ G and Z oγ G simultaneously

because they are isomorphic.

We first summarize what can be deduced in a straightforward manner from the literature

about Z oγ G in the following proposition.

Proposition IX.1. If G is a countable discrete elementary amenable group, then Z oγ G

– is unital and separable,

– is simple,

– has a unique tracial state,

– is nuclear,

– and is Z-stable.

Proof. It is clear that Z oγ G is unital and separable. For unique trace it suffices to show that

Q ⊗ (Z oγ G) has unique trace. In this case we have Q ⊗ (Z oγ G) ∼= (Q ⊗ Z) oid⊗γ G and

id⊗γ = ωQ is a strongly outer action (by Lemma II.13) on Q ⊗ Z, which is isomorphic to Q. So

Proposition VIII.7(ii) tells us QoG has unique trace. For nuclearity use Rosenberg (45, Theorem

1). For Z-stablity use Matui-Sato (37, Corollary 4.11).

We could also let A = Z in Proposition IX.16 and apply Proposition IX.13 to obtain the

above proposition minus the claim about unique trace.
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Definition IX.2. If A ⊂ B(H) is separable then A is a quasidiagonal set of operators if there

exists an increasing sequence of finite rank projections, q1 ≤ q2 ≤ q3 · · · , such that for all a ∈ A,

[a, qn] → 0 and qn → 1H strongly. A separable C∗-algebra is quasidiagonal if it has a faithful

representation whose image is a quasidiagonal set of operators.

Remark IX.3. It is clear from this definition that a subalgebra of a quasidiagonal C∗-algebra is

quasidiagonal.

Corollary IX.4. The following are equivalent:

– Z oγ G is quasidiagonal

– Z oγ G has rational tracial rank zero

– Z oγ G has rational tracial rank at most one.

Proof. If Z oγ G is quasidiagonal, then Proposition IX.1 combined with Matui-Sato (38, Theorem

6.1) allows us to conclude that Z oγ G has rational tracial rank zero. The next implication

is obvious. Finally, if Z oγ G has rational tracial rank at most one, then it is isomorphic to a

subalgebra of Q⊗ (Z oγ G). Since Q⊗ (Z oγ G) has tracial rank at most one, it is quasidiagonal

by Lin (32, Corollary 6.7). Hence Remark IX.3 tells us that Z oγ G is quasidiagonal.

Lemma IX.5. Let Gi be a sequence of groups acting of Z with the β action in each case denoted

βi. If G = lim−→(Gi, ϕi) with ϕi injective and Z oβi Gi is quasidiagonal for all i, then Z oβ G is

quasidiagonal.

Proof. Use the injectivity of ϕi to define a ∗-homomorphism

Ψi : Z⊗Gi → Z⊗Gi+1

on generators by

z =
⊗
g∈Gi

zg 7→ 1Z⊗(Gi+1\ϕi(Gi)) ⊗
⊗

h∈ϕi(Gi)

zϕ−1
i (h).
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We check this is covariant with respect to βi. For g ∈ Gi, we have

ϕi(g)Ψi(z)ϕi(g)∗ = βi+1
ϕi(g)

1Z⊗(Gi+1\ϕi(Gi)) ⊗
⊗

h∈ϕi(Gi)

zϕ−1
i (h)


= 1Z⊗(Gi+1\ϕi(Gi)) ⊗

⊗
h∈ϕi(Gi)

zϕ−1
i (ϕi(g)−1h)

= 1Z⊗(Gi+1\ϕi(Gi)) ⊗
⊗

h∈ϕi(Gi)

zg−1ϕ−1
i (h)

= Ψi

(⊗
h∈Gi

zg−1h

)

= Ψi(β
i
g(z)).

Hence we have a sequence of injective maps Ψi o ϕi : Z oβi Gi → Z oβi+1 Gi+1 of quasidiagonal

algebras, hence the limit is quasidiagonal (see (2, Section 9)). Now we show that this limit is

isomorphic to Z⊗G oβ G. First notice that lim−→(Z⊗Gi ,Ψi) ∼= Z⊗G and get the obvious maps

Z⊗Gi ↪→ Z⊗G ↪→ Z⊗G oβ G

and

Gi ↪→ G ↪→ Z⊗G oβ G.

We can show covariance in much the same way as before to get

Z⊗Gi oβi Gi ↪→ Z⊗G oβ G.

We check that these maps are compatible with the increasing i and conclude there is an injective

map

lim−→(Z⊗Gi oβi Gi,Ψi o ϕi) ↪→ Z⊗G oβ G.

This map is also surjective because its image contains Z⊗G and G, which generate the target

algebra.

Lemma IX.6. If H is a subgroup of G and ZoγG is quasidiagonal, then ZoγH is quasidiagonal.
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Proof. It suffices to show that the obvious map ZoγH → Zoγ G is injective. One way to see this

is to recall that Z oγ H is simple.

Proposition IX.7. If G is a finite group, then Z oγ G is quasidiagonal.

Proof. Let n = |G|. We define an embedding of Z oγ G into Mn(Z) as follows. First define

A→Mn(Z) for a ∈ A by

a 7→ diag(γg(a))g∈G.

Then define G → U(Mn) ⊗ 1Z → U(Mn(Z)) via its left regular representation. One check that

these satisfy the covariance relations and hence we get our embedding after noting Z oγ G is

simple.

Proposition IX.8. If G is a countable discrete abelian group, then Z oγ G is quasidiagonal.

Proof. Lin (33, Theorem 9.11) shows that if the crossed product of any AH-algebra and any

finitely generated abelian group has an invariant tracial state, then the crossed product is

quasidiagonal. We apply this to (Q⊗ Z) oid⊗γ G ∼= Q⊗ (Z oγ G) when G is a finitely generated

abelian group to show the crossed product is quasidiagonal. Now Z oγ G is a subalgebra of

Q ⊗ (Z oγ G) and hence quasidiagonal. By Lemma ??, Z oβ G is quasidiagonal for finitely

generated groups G. The condition on G being finitely generated can be removed by Lemma IX.5.

Finally, one last application of Lemma ?? gives the result.

Remark. The quasidiagonality of Z oγ Z can be shown directly using earlier results of Brown (3)

and even earlier results of Voiculescu (47), applied again to Qoω Z.

We summarize the findings of this section in the next theorem.

Theorem IX.9. Let γ be as in Definition VII.4 and let C be the class of countable discrete groups

generated by abelian groups and finite groups under increasing unions and taking subgroups. Then

Z oγ G is a unital separable simple nuclear Z-stable C∗-algebra with rational tracial rank zero for

any G ∈ C.

Proof. We combine Lemmas IX.6 and IX.5 with Propositions IX.7 and IX.8 to get Z oγ G is

quasidiagonal for all G ∈ C and hence has rational tracial rank zero by Corollary IX.4. The

remaining properties are those listed in Proposition IX.1.
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Corollary IX.10. Let γ be as in Theorem IX.9. Then Z oγ Z is unital separable simple nuclear

Z-stable with rational tracial rank zero and has a unique tracial state as well as and satisfying the

UCT. We also have for i = 0 or 1 that

Ki(Z oγ Z) = Z.

Moreover, if α is any other strongly outer Z-action on Z, then there exists an automorphism σ of

Z and a unitary u ∈ Z such that

α = Adu ◦ σ ◦ γ ◦ σ−1.

In particular, Z oα Z ∼= Z oγ Z.

Proof. Since Z ∈ C, putting G = Z in Theorem IX.9 shows that Z oγ Z is unital separable simple

nuclear Z-stable with unique tracial state and rational tracial rank zero. Crossed products by Z

always satisfy the UCT. The K-groups are obtained using the Pimsner-Voiculescu six-term exact

sequence. The uniqueness statement is due to Sato (46, Theorem 1.3).

The Crossed Products Z oω G

We make use of Matui-Sato (37) to show that γ and ωZ are equivalent in some sense as

actions on Z. The following lemma unpackages the definition of cocycle conjugacy as applied to

actions on Z.

Lemma IX.11. There exists θ ∈ Aut(Z), and collections of unitaries (v′g)g∈G and (vn)n∈N such

that for each g ∈ G,

θγgθ
−1 = Ad v′gω

Z
g

lim
n→∞

vnω
Z
g (v∗n) = v′g.

Proof. We know that γ has the weak Rokhlin property by Theorem VII.6. Therefore (37,

Theorem 4.9) applies (specialized to actions on Z).

Definition IX.12. We say that two actions are stably outer conjugate with respect to θ, v and v′

if they satisfy the conclusion of Lemma IX.11.
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Proposition IX.13. The actions γ and ωZ are stably outer conjugate. If they are stably outer

conjugate with respect to θ, v and v′, then there is an isomorphism

Ψ : Z oγ G→ Z oωZ G

zug 7→ θ(z)v′gu
′
g,

where ug and u′g are the standard unitaries implementing γ and ωZ respectively in the crossed

product.

Proof. The first part is a restatement of Lemma IX.11, from which showing the crossed products

are isomorphic is standard.

The Crossed Products Aoω G

Let A be a unital C∗-algebra and let G be a discrete group. Let ω be as in Theorem VII.13

and let γ be as in Definition VII.4. If A is Z-stable, then ωA is conjugate to an action of G on A

that we will also call ω.

Proposition IX.14. For g ∈ G let ug and u′g be the implementing unitaries for ωg and γg

respectively. There is an isomorphism

i : (A⊗Z) oω G→ A⊗ (Z oγ G),

such that

i : (a⊗ z)ug 7→ a⊗ (zu′g).

Proof. Define

iA : A→ A⊗ (Z oγ G)

by

a 7→ a⊗ 1ZoG,

which is obviously a ∗-homomorphisms and define

iZ : Z → A⊗ (Z oγ G)
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by

z 7→ 1A ⊗ (zu1),

which again is obviously a ∗-homomorphism. Now since the image of iA and iZ commute, there is

a map

iA⊗Z : A⊗Z → A⊗ (Z oγ G)

given on generators by

a⊗ z 7→ a⊗ zu1.

We also have a group homomorphism

u : G→ U(A⊗ (Z oγ G))

given by

g 7→ 1⊗ ug.

We check that these two maps are covariant:

u(g)iA⊗Z(a⊗ z)u(g)∗ = (1⊗ ug)(a⊗ zu1)(1⊗ u∗g)

= a⊗ (ugzu
∗
gu1)

= a⊗ (γg(z)u1)

= iA⊗Z(a⊗ γg(z))

= iA⊗Z(ωg(a⊗ z)).

Hence by the universal property of crossed products, we get the desired map i. We now construct

its inverse map j by similar considerations.

Let vg be the unitary implementing the action of ω. Define

jA : A→ (A⊗Z) oω G

by

a 7→ (a⊗ 1)v1,
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which is clearly a ∗-homomorphisms along with

jZ : Z → (A⊗Z) oω G

z 7→ (1⊗ z)v1.

Finally, define

v : G→ U((A⊗Z) oω G)

g 7→ vg.

We see that jZ and v are covariant:

v(g)jZ(z)v(g) = vg(1⊗ z)v1v
∗
g

= ωg(1⊗ z)v1

= (1⊗ γg(z))v1

= jZ(γg(z)).

So by the universal property, there is a ∗-homomorphism

jZoG : Z oγ G→ (A⊗Z) oω G

zug 7→ (1⊗ z)vg.

We check that the image of jA commutes with the image of jZoG:

jA(a)jZoG(zug) = (a⊗ 1)v1(1⊗ z)vg

= (1⊗ z)(a⊗ 1)vg

= (1⊗ z)vgωg(a⊗ 1)v1

= (1⊗ z)vg(a⊗ γg(1))v1

= (1⊗ z)vg(a⊗ 1)v1

= jZoG(zug)jA(a).
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Hence we get a map by the universal property of tensor products

j : A⊗ (Zoγ)G→ (A⊗Z) oω G

a⊗ (zug) 7→ (a⊗ z)vg.

We check that the maps i and j are inverse to each other.

– j ◦ i = id

j(i((a⊗ z)vg)) = j(a⊗ (zug))

= (a⊗ z)vg.

– i ◦ j = id

i(j(a⊗ (zug))) = i((a⊗ z)vg)

= a⊗ (zug).

Lemma IX.15. If A is Z-stable, then there is a ∗-isomorphism

Q⊗ (Aoω G) ∼= (Q⊗A)⊗ ((Z oγ G)⊗Q).

Proof. We use Proposition IX.14 and Q ∼= Q⊗Q to write

Q⊗ ((A⊗Z) oω G) ∼= Q⊗ (A⊗ (Z oγ G))

∼= (Q⊗A)⊗ ((Z oγ G)⊗Q).

Now since A is Z-stable, we are done.

Proposition IX.16. Suppose A is a unital separable Z-stable C∗-algebra and G is any countable

discrete amenable group. Then Aoω G is a unital separable Z-stable C∗-algebra and we also have:

– If A is simple, then Aoω G is simple.

– If A is nuclear, then Aoω G is nuclear.

– T (Aoω G) = T (A).
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– If A has real rank zero, then Aoω G has real rank zero.

Proof. It is clear that the crossed product is unital and separable since A is unital and separable,

and G is countable. If A is simple, then Lemma II.13 shows that ω is pointwise outer. Hence

Kishimoto (18, Theorem 3.1) shows the (reduced) crossed product is simple. Nuclearity follows

from Rosenberg (45, Theorem 1). For Z-stablity we use Proposition IX.14 to get

Z ⊗ (Aoω G) ∼= Z ⊗ (A⊗ (Z oγ G))

∼= (Z ⊗A)⊗ (Z oγ G).

∼= A⊗ (Z oγ G)

∼= Aoω G.

For the claim about the tracial state spaces, let τγ be the unique tracial state on Z oγ G

(Proposition IX.1) and define a map T (A) → T (A ⊗ (Z oγ G)) given by τ 7→ τ ⊗ τγ . This map is

obviously affine and injective, while for surjectivity we make use of a brief argument which can be

found as (22, Lemma 5.15). Now by Proposition IX.14 we have T (A ⊗ (Z oγ G)) ∼= T (A oω G).

Since our algebras are Z-stable, we use the characterization of real rank zero by Rørdam (44,

Theorem 7.2) that K0(A) is uniformly dense in the space of affine functions on T (A) under the

standard mapping ρA gotten by evaluation. Since K0(A) ⊂ K0(A oω G) via p 7→ p ⊗ 1, under the

identification T (A) = T (A oω G), ρAoωG(K0(A)) = ρA(K0(A)), which is already uniformly dense.

Hence the image of ρAoωG is uniformly dense and we are done.

Theorem IX.17. Suppose A is a unital separable simple nuclear Z-stable C∗-algebra. Let C be

as in Theorem IX.9, let G ∈ C, let ω be as in Theorem VII.13 and let γ be as in Definition VII.4.

Then ω is isomorphic to an action of G on A and A oω G is a unital separable simple nuclear

Z-stable C∗-algebra. Furthermore:

– If A has rational tracial rank at most one, then AoωG has rational tracial rank at most one.

– If A has rational tracial rank zero, then Aoω G has rational tracial rank zero.

– If A has tracial rank at most one, satisfies the UCT and Z oγ G satisfies the UCT, then

Aoω G has tracial rank at most one and satisfies the UCT.
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– If A has tracial rank zero, satisfies the UCT and Z oγ G satisfies the UCT, then Aoω G has

tracial rank zero and satisfies the UCT.

Proof. Since A is Z-stable, ω is isomorphic to an action on A. Since G ∈ C and A satisfy the

hypotheses of Proposition IX.16, the conditions of being unital, separable, simple, nuclear and

Z-stable, are retained by the crossed product. To determine the rational tracial rank of A oω G

we use Lemma IX.15 and apply Hu-Lin-Xue (31, Theorem 4.8), which says that the tracial rank of

a tensor product is bounded by the sum of the tracial ranks of the factors, to the algebra on the

right hand side of the lemma. Since G ∈ C, the tracial rank of Q ⊗ (Z oγ G) is zero by Theorem

IX.9, which means the tracial rank is bounded by the rational tracial rank of A. This gives us

both claims about rational tracial rank. Now we address the claim for A being of tracial rank at

most one. We will use (30, Theorem 4.7) with our A as their B and Z oγ G as their A to show

that A ⊗ (Z oγ G) has tracial rank at most one and satisfies the UCT. Hence by Proposition

IX.14 A oω G has tracial rank at most one and satisfies the UCT. Now if A was also tracial rank

zero, then it is real rank zero and Proposition IX.16 tells us that Aoω G is real rank zero. But we

know that if an algebra is unital simple of tracial rank at most one and real rank zero, then it has

tracial rank zero (see for example (28, Lemma 3.2)).

Here is a curious result in the converse direction.

Theorem IX.18. Suppose A is a unital separable simple nuclear Z-stable C∗-algebra satisfying

the UCT. Let C be as in Theorem IX.9, let ω be as in Theorem VII.13 and let γ be as in

Definition VII.4. If there exists G ∈ C such that Z oγ G satisfies the UCT and A oω G has

rational tracial rank at most one, then A has rational tracial rank at most one.

Proof. Let B = Z oγ G and note A⊗B = AoωA G by Proposition IX.14. We now apply Lin-Sun

(30, Theorem 4.8 (1,2,13)) with reference to Propositions IX.1 and IX.16, and Theorem IX.9 to

verify the hypotheses there. Hence we get a conclusion that is equivalent (by (22, Theorem 3.6))

to our claim.

We specialise Theorems IX.17 and IX.18 to the case of the integers.

Corollary IX.19. Suppose A is a unital separable simple nuclear Z-stable C∗-algebra satisfying

the UCT and ω is as in Theorem VII.13. Then A oω Z is a unital separable simple nuclear Z-

stable C∗-algebra satisfying the UCT. We also have:
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– A has rational tracial rank at most one if and only if A oω Z has rational tracial rank at

most one.

– If A has rational tracial rank zero, then Aoω Z has rational tracial rank zero.

– If A has tracial rank at most one, then Aoω Z has tracial rank at most one.

– If A has tracial rank zero, then Aoω Z has tracial rank zero.

– Ki(Aoω Z) = K0(A)⊕K1(A) for i = 0 or 1.

Proof. The group Z is amenable and so Proposition IX.16 tells us that A oω Z is unital separable

simple nuclear and Z-stable. The UCT will always be preserved by crossed products by Z. For

the claim about rational tracial rank, we note that Z ∈ C and that the forward implication is given

by Theorem IX.17 with G = Z and the converse by Theorem IX.18 with G = Z. Since Z oγ Z

always satisfies the UCT, the next three claims all follow from Theorem IX.17 with G = Z. For

the calculation of K-groups, we use the Künneth Theorem for tensor products combined with

knowing the K-groups of Z oγ Z from Corollary IX.10.
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