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Myotonic dystrophy is the most common form of adult-onset muscular 

dystrophy and appears in two forms: myotonic dystrophy 1 (OM 1) and 2 (DM2). Both 

diseases arc characterized by progressive muscle degeneration, myotonia. iridescent 

cataracts, and in severe cases neurodcgcncration and cardiac dysfunction. Both fonns of 

myotonic dystrophy arc caused by an expansion of repeat DNA in distinct loci in the 

genome. In DM 1, a CTG repeat is expanded from less than 50 repeats in nonnal 

individuals to up to several thousand repeats in DM 1 patients. The molecular basis of 

this disease relics on the transcription of these repeats from DNA into RNA. Small 

molecules that can specifically target the repeats at the DNA level and inhibit their 

transcription - and thus alleviate the disease symptoms - represent a prime target for the 

development of therapeutics. This study investigates the capacity of two small 

molecules, pentamidine and actinomycin D, to reverse the molecular symptoms of DM I 

through transcriptional inhibition and provides insight into their DNA target specificity 

and potential mechanisms of action. 
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INTRODUCTION 

Myotonic dystrophy: physiology and molecular basis 

 Myotonic dystrophy is the most common form of adult-onset muscular 

dystrophy and is characterized by many multisystemic symptoms: progressive muscle 

atrophy, myotonia (i.e. the inability to relax one's muscles after contracting them), 

iridescent cataracts, cardiac defects, and in severe cases neurological defects1. It is a 

dominantly inherited genetic disease that affects more than 1 in 8,000 individuals 

globally1. The disease exists in two forms that are genetically distinct but result in 

nearly identical symptoms: myotonic dystrophy 1 (DM1) and 2 (DM2). Both diseases 

are caused by different repeat expansions in non-coding regions of different genes. 

DM1 is caused by a CTG repeat expansion in the 3' untranslated region (3' UTR, the 

region at the 3' end of a transcript that follows a stop codon) of the DMPK gene, ranging 

from about 30-50 or less repeats in unaffected individuals to up to several thousand in 

DM1 patients1,2. DM2 is caused by a CCTG repeat expansion in the first intron of the 

CNBP gene, and repeat numbers vary from less than 75 in unaffected individuals to a 

mean of approximately 5000 repeats in DM2 patients3.  

 Given the facts that the DM1 and DM2 are autosomal-dominantly inherited (i.e. 

only one, non-sex chromosome containing the expanded repeats is necessary to cause 

Figure 1. CUG repeat RNAs form foci in the nucleus of neurons of DM1 patients and colocalize with 
splicing regulator MBNL1. Panel G shows neurons from DM1 patients: CUG repeats in red (visualized 
via fluorescence in situ hybridization, FISH), MBNL1 protein in green (visualized via 
immunofluorescence), and DAPI (fluorescent DNA stain) in blue. Panel H shows neurons from non-
DM1 individuals: no foci or colocalization observed.7  
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the disease) and disease severity increases and age of onset decreases with increasing 

repeat length, a small handful of potential mechanisms exist whereby these expanded 

repeats become pathological. The expanded CTG repeats in DM1 have been shown to 

reduce expression of DMPK and the nearby gene SIX5, and indeed mice homozygous  

(i.e. both chromosomal copies) for non-functioning DMPK – DMPK knockout mice – 

develop cardiac conduction abnormalities while mice homozygous for non-functioning 

SIX5 develop cataracts4,5. While these phenomena likely contribute to DM1 pathology, 

they are independent of the major 

clinical symptom of DM1 and DM2: 

muscle myotonia. Instead of acting at 

the DNA level to disrupt local gene 

expression, the prevailing model shows 

that, following transcription, expanded 

CTG and CCTG repeats become toxic, 

gain-of-function RNAs. Expanded 

CUG repeat RNAs form foci in the nuclei of muscle cells and neurons of DM1 patients, 

and these foci are found to colocalize with the protein MBNL1 (Fig. 1)7.  

 MBNL1 is an evolutionarily conserved protein whose primary cellular function 

is the regulation of many different pre-mRNA alternative splicing events in the nucleus 

of a cell and is implicated as an important regulator of tissue differentiation and 

development in mammals8. Many different types of alternative splicing events exist 

(Fig. 2), but MBNL1 primarily regulates cassette exon (also known as skipped exon) 

events. MBNL1 colocalization with toxic CUG RNA may then indicate its sequestration 

Figure 2. Different 
forms and outcomes of 
alternative splicing. 
Constitutively spliced 
exons (black boxes) and 
alternatively spliced 
exons may be spliced 
together in many 
different ways. Each 
alternative splicing 
event produces a new 
transcript (and 
potentially protein) 
isoform. MBNL1 
regulates many cassette 
exon (skipped exon) 
events.6 
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and that free, functional MBNL1 is depleted from 

the nucleus in DM1 patient cells. Indeed, many 

MBNL1-regulated alternative splicing events are 

found to be mis-spliced (i.e. the ratio of the two 

potential splicing isoforms is significantly 

changed, often shifted towards greater production 

of a non-functional isoform). Mis-splicing of the 

insulin receptor (INSR) transcript causes the 

insulin resistance that is observed in DM1 

patients, mis-splicing of the voltage-

sensitive chloride channel 1 (CLCN1) 

transcript causes the hallmark myotonia, and 

mis-splicing of cardiac troponin T type 2 

and 3 (TNNT2 and TNNT3) transcripts may 

cause DM1 cardiomyopathy9,10. Additionally, 

MBNL1 knockout mice develop cataracts and 

abnormal skeletal muscle histology, and 

microarray experiments show that the vast majority of mis-splicing events in mice 

expressing long CUG repeat RNA and in MBNL1 knockout mice are shared between 

the two conditions. These data altogether help to cement the primary molecular cause of 

DM1 and DM2 as the depletion of free MBNL1 via sequestration on toxic CUG (DM1) 

or CCUG (DM2) repeat RNA and subsequent dysregulation of MBNL1-regulated 

alternative splicing events10,11.  

Figure 3. Pentamidine rescues mis-splicing and 
reduces CUG repeat:MBNL1 foci. a) The 
structure of pentamidine. b) The derivatized 
compound heptamidine reverses Clcn1 mis-
splicing in mice expressing toxic CUG repeat 
RNA (HSALR mice)13. c) In HeLa cells 
expressing a transcript containing 960 CUG 
repeats, MBNL1 (green) colocalizes with CUG 
repeat RNA (red). This colocalization is 
significantly reduced by 75 μM pentamidine14.  

a 

b 

c 
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Disrupting MBNL1 interactions with CUG repeats through use of small molecules 

 Knowing the fundamental mechanism by which the expanded CTG repeats in 

the DMPK gene cause disease opens the door for the design of therapeutic agents – 

typically small molecules which may 

be easily chemically synthesized and 

derivatized to modify biological 

functionality – to disrupt any number 

of biological processes that occur in 

DM1 pathogenesis. MBNL1 is an 

RNA-binding protein, and it is 

through this RNA binding that it 

normally regulates alternative splicing. In vitro RNA binding experiments show that 

MBNL1 selectively recognizes and binds to the sequence YGCY (where Y is either 

pyrimidine C or U) in its RNA substrates, explaining its high affinity for toxic CUG 

repeat RNA12. Attempting to identify compounds that may be able to disrupt this 

MBNL1:CUG repeat RNA interaction, a screen of small molecules revealed that the 

compound pentamidine is able to reverse some of the mis-splicing effects caused by the 

toxic CUG repeat RNA as well as reduce the number of CUG repeat:MBNL1 nuclear 

foci (Fig. 3)13,14. It was originally thought that pentamidine may bind directly to the 

CUG repeat RNA to displace MBNL1, but it is now known that this is likely not the 

mechanism by which pentamidine is able to reverse DM1 mis-splicing events.  

 HeLa cells expressing long CUG repeat RNA show decreased CUG RNA levels 

on northern blots with increasing pentamidine concentrations, suggesting that 

Figure 4. Pentamidine binds DNA, inhibits T7 
transcription. a) Crystal structure of pentamidine 
(space-filling model) binding to AATT in the minor 
groove of dsDNA15. b) Pentamidine concentration at 
which 50% of transcription is inhibited (IC50) as a 
function of template AT content13.  

b a 
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pentamidine may be either inhibiting transcription of the repeats or destabilizing the 

repeats and hastening their degradation13. Pentamidine is known to bind the minor 

groove of DNA with a particular preference for binding in A/T-rich regions (Fig. 4a)15. 

In vitro transcription reactions using the viral T7 RNA polymerase and doped with 

pentamidine show that the production of RNA is generally inhibited more strongly 

when the template sequence has greater A/T content – however, transcription from 

templates containing 54 CTG or CAG repeats is preferentially inhibited by pentamidine 

despite its relatively low A/T content (Fig. 4b)13. We hypothesize that pentamidine is 

able to rescue DM1 mis-splicing events by preferentially binding to CTG repeat DNA 

and inhibiting the elongation of the RNA polymerase through the repeats, thus reducing 

toxic CUG repeat RNA levels and increasing levels of free MBNL1.  

 Based on this hypothesis, a drug that has been classically known for its strong 

DNA binding and potent inhibitory effects on transcription, actinomycin D, was 

investigated. Actinomycin is a complex small molecule that is synthesized by 

Streptomyces spp. soil bacteria and 

has been FDA approved as a 

chemotherapeutic agent since 1964, 

owing to its potent ability to inhibit 

transcription in fast-growing tumor 

cells. Since actinomycin has been 

previously crystallized bound to a 

CTG stem-loop (Fig. 5), we 

hypothesize that actinomycin may 

 

b a 

Figure 5. Actinomycin D binds CTG duplex DNA. a) The 
structure of actinomycin D, consisting of two depsipeptide 
rings (top) connected to a phenoxazone ring (bottom). b) 
Two actinomycin molecules  (yellow and green) 
intercalating at GpC steps in an ATGCTGCAT duplex16. 
Actinomycin is known to bind preferentially to GpC steps17.  
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have – at sub-therapeutic doses wherein the drug does not inhibit global transcription – 

a specificity for binding to CTG repeats and effectively inhibiting their transcription16.  

 In this study, we investigate the capacity of actinomycin to reverse DM1 mis-

splicing events in an in cellulo splicing system, both individually and in combinatorial 

treatments with pentamidine. We furthermore observe changes in transcriptional 

profiles of HeLa cells expressing toxic CUG repeat RNA and treated with a titration of 

either pentamidine or actinomycin using the recently-developed and powerful DNA 

sequencing technology known as massively parallel or next-generation sequencing. This 

sequencing technology became available in 2005 and quickly developed into a 

revolutionary tool for genetic studies. Prior to the advent of this technology, DNA 

sequencing was typically performed using Sanger sequencing, which allows for the 

determination of only one DNA sequence at a time with a limit of about 1000 bp for 

each sequence. For comparison, the haploid human genome comprises about 3.2 billion 

bp of DNA, requiring about 3.2 million runs of Sanger sequencing to cover the human 

genome once. The Human Genome Project – which spanned 13 years of research from 

1990 to 2003, depended on the work of thousands of researches, and cost $2.7 billion – 

employed Sanger sequencing to construct its draft of the human genome. Now, a single 

researcher could use the same Illumina Hi-Seq 2000 massively parallel sequencer used 

in this project to sequence a full human genome thirty times over in a little more than a 

week at a cost of less than $10,000. Instead of investigating how any single gene at a 

time responds to some treatment – as one would have to do using prior technology – 

researchers can apply this sequencing technology to determine how the entire genome 

responds to a treatment, or they may use this technology to search for single-nucleotide 
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mutations (a veritable needle in the haystack that is the 6.4 billion bp diploid human 

genome) in a population to help determine the genetic determinants of a heretofore 

unexplained disease. Massively parallel sequencing is a key instrument in the 

forthcoming era of personalized medicine, wherein some drug treatments and 

therapeutics may be customized to each patient based upon associations between 

studied variations within his fully sequenced genome and genetic interactions with 

certain therapeutic treatments.  

 This sequencing technology has also become a powerful tool on the other end of 

the drug development pipeline. Traditionally, useful drugs – the majority of which are 

small molecules, often extracted from natural sources or chemically synthesized – have 

been identified via large screens of compounds for activities that are relevant to certain 

disease processes. With the aid of recently available technology, such as 

computationally-demanding molecular modeling and massively parallel DNA 

sequencing, rational drug design has sought to investigate and target a molecule's 

interactions with cellular processes from the ground up, and this movement has become 

a potent force in drug discovery and development. In our investigation of pentamidine 

and actinomycin and their respective potentials as starting points in the development of 

possible therapeutics for myotonic dystrophy 1, the utilization of massively parallel 

sequencing technology allows for the swift characterization of many aspects of how 

these drugs interact with the cell, since cellular responses are often carried out via 

regulation of genetic networks, resulting in the production of different amounts of RNA 

from differentially expressed genes. All the RNA produced in a cell can then be 

enzymatically copied out into DNA fragments that can then be submitted for massively 
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parallel sequencing – a method known as RNA-Seq. By identifying all the genes that 

are either activated or deactivated upon drug treatment through the use of next-

generation sequencing technology, we are able to better understand how these drugs 

interact with a multitude of cellular processes, and we may infer whether these 

interactions are mediated through direct and sequence-specific interactions of each drug 

with DNA in certain genes or whether it is mediated through cellular activation of 

transcriptional networks in response to the drug's presence. Since we are effectively 

sequencing a very large sample of all the RNAs in our cell cultures, we are also able to 

detect changes in alternative splicing across the transcriptome – the suite of all 

transcripts that a cell produces – and characterize these changes. This global approach 

provides a much more complete picture of the efficacy and specificity of these small 

molecule drugs and provides insight into both their potential mechanisms of action as 

well as further strategies in the development of small molecule therapeutics for DM1.  

METHODS 

In cellulo reverse transcription-polymerase chain reaction splicing assay 

 The cell culture splicing assay comprises the main tool for directly determining 

whether small molecules are capable of reversing DM1-induced, MBNL1-regulated 

mis-splicing events (workflow shown in Fig. 6 and described in Coonrod, et al.13). 

Briefly, HeLa cells (originally taken from a human cervical adenocarcinoma) are 

cultured in Dulbecco's Modified Eagle Medium (DMEM high glucose with 

GlutaMAX™, Life Technologies) supplemented with 5% fetal bovine serum (FBS) to 

approximately 85-90% confluency. These cells are subsequently trypsinized 

(TrypLE™, Life Technologies) and plated in 6-well plates at 2.0x105 cells per well. 
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Plated cells are grown for approximately 24 hrs in DMEM, after which they are washed 

with 1X PBS (phosphate buffered saline) and placed in Opti-MEM® reduced serum 

media (Life Technologies) and transfected with 1000 ng total of plasmid DNA using 

Lipofectamine 2000® (Life Technologies) as described by the manufacturer's protocol. 

In control samples (wild-type, WT), cells are transfected with 500 ng of reporter 

minigene plasmid (whose transcript contains a single, MBNL1-regulated alternative 

splicing event) and 500 ng of empty vector (pcDNA3) plasmid. In experimental 

samples, cells are transfected with 500 ng of reporter minigene plasmid and 500 ng of 

DMPK960 plasmid. DMPK960 plasmid consists of a genomic fragment containing exons 

11 through 15 of the human DMPK gene with 960 interrupted CTG repeats in the 3' 

UTR of exon 15, and its expression is driven by a strong cytomegalovirus (CMV) 

promoter18.  

 Six hours following transfection, cells are washed with 1X PBS, placed in 

DMEM, and experimental samples are drugged with either pentamidine (hydrochloride 

salt, synthesized on site), actinomycin (Sigma-Aldrich), or a combination of the two. 

Eighteen hours following drugging, whole-cell RNA is harvested using an RNeasy kit 

(Qiagen) and quantitated using a NanoDrop 2000 UV spectrophotometer (Thermo 

Fisher). 500 ng of RNA from each sample is DNased with DNase I (New England 

Figure 6. Schematic of cell culture splicing assay. Circles represent plasmid vectors. Colored boxes 
represent exons (in this case exons 10, 11, and 12 of the INSR minigene). Dashed arrows represent 
reporter-specific RT and PCR primers.  
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BioLabs) for 1 hr at 37 °C, and 100 ng of DNased-RNA is then subject to reverse 

transcription (RT) with SuperScript II reverse transcriptase (Life Technologies) using 

reporter-specific primers for 1 hr at 42 °C22. The resulting cDNAs are then amplified 

via polymerase chain reaction (PCR) using reporter-specific primers18,19. PCR products 

are then separated on a 6% 19:1 bis:acrylamide non-denaturing polyacrylamide gel, 

which is then stained with 

SYBR Green I dye (Life 

Technologies) and imaged 

using an Alpha Imager HP 

system (Alpha Innotech). 

Bands representing 

alternatively spliced 

transcripts are quantified 

using Alpha Imager HP 

software (Alpha Innotech), 

and percent exon inclusion is 

calculated as the ratio of the 

intensity of the included band to the sum of intensities of included and excluded bands 

(and vice versa for percent exon exclusion).  

Massively parallel sequencing of transcriptomic RNA (RNA-Seq) and analysis 

 RNA-Seq is an increasingly popular method of characterizing cellular RNA 

expression profiles (i.e. the transcriptome) by taking advantage of technological 

advances in massively parallel sequencing of short DNA fragments21. Whole-cell RNA 

Figure 7. Schematic of ScriptSeq v2 sequencing library 
preparation22. cDNA fragments from each sample were amplified 
using reverse PCR primers with unique barcode sequences to 
allow for multiplexing during sequencing.  
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from two replicates of DM1 HeLa cells expressing an INSR reporter minigene plasmid 

and treated with none, 5 nM, and 25 nM actinomycin D (as described previously) was 

used for RNA-Seq. For each sample, 10 μg of RNA was treated with DNase RQ1 

(Promega) for 1 hr  at 37 °C to remove any contaminating DNA, and the DNased RNA 

was recovered via phenol-chloroform-

isoamyl alcohol extraction followed 

by ethanol precipitation and 

quantitated by NanoDrop. 

Subsequently, 1.3 μg of DNased RNA 

was depleted of abundant ribosomal 

RNA (rRNA) using a Ribo-Zero™ 

rRNA removal kit (Epicentre). rRNA-

depleted RNA was quantitated using a 

Qubit Fluorometer (Life 

Technologies) and approximately 15 

ng of rRNA-depleted RNA was used 

to generate sequencing libraries using 

the ScriptSeq™ v2 kit (Epicentre) as 

described by the manufacturer's 

protocol. The ScriptSeq workflow is 

outlined in Fig. 7. Thirteen rounds of 

PCR amplification of the finished 

sequencing libraries were performed, 

Figure 8. Schematic of TopHat alignment and 
Cufflinks transcript assembly24. a) TopHat aligns short 
reads to reference genome. b-e) Cufflinks generates a 
model of possible transcript isoforms at each locus 
based on aligned reads and uses minimum path and 
maximum likelihood algorithms to estimate isoform 
abundance.  
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and the amplified libraries were size-selected and purified using Agencourt AMPure XP 

beads (Beckman-Coulter) and quantitated and characterized via Qubit Fluorometer and 

Fragment Analyzer™ capillary electrophoresis (Advanced Analytical). Each of the six 

libraries was combined in equimolar amounts to a total of 20 nM and submitted for 

single-end, 101-base pair sequencing on the Illumina Hi-Seq 2000 massively parallel 

sequencer at the University of Oregon Genomics Core Facility. An analogous procedure 

was used with cells treated with none (two replicates), 10 μM, 20 μM, 40 μM, 50 μM, 

60 μM, and 80 μM pentamidine. While the pentamidine RNA-Seq experiment did not 

contain true replicates in the treated samples, gene expression between the closest 

paired dosages (10 and 20 μM, 40 and 40 μM, and 60 and 80 μM) were found to 

correlate well with each other and were thus used as replicates for differential analysis 

(Appendix Fig. A7).  

 Following sequencing, raw sequencing reads (approximately 25 million for each 

sample) were aligned to the human genome using the splicing-aware aligner TopHat2, 

transcript models  of aligned reads were assembled using Cufflinks, and differential 

analysis between samples was performed using Cuffdiff2 (Fig. 8)23,24,25. The previously 

mentioned programs were run using University of Oregon's Applied Computational 

Instrument for Scientific Synthesis (ACISS) supercomputing cluster. Aligned reads 

were visualized using Integrative Genomics Viewer (IGV)26. Differential analysis data 

was explored using the CummeRbund package for R and parsed and analyzed using the 

Bash, R, and Python programming environments. Differential splicing analysis was 

performed using Mixtures of Isoforms (MISO)27. Motif enrichment analysis was 

performed using Hypergeometric Optimization of Motif Enrichment (HOMER)28.  
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RESULTS 

Actinomycin D and pentamidine have different effects on DM1 mis-splicing events 

 In order to determine if actinomycin and pentamidine have additive or 

synergistic effects on MBNL1-regulated splicing events, actinomycin was titrated into 

HeLa cells expressing a reporter transcript and 960 CUG repeats (CUG960), as described 

in Fig. 6, both alone and in combination with 20 μM pentamidine. By comparing 

marginal splicing rescue of actinomycin alone and 20 μM pentamidine alone with the 

corresponding combinatory treatment, additive or synergistic effects may be deduced. 

The effects of actinomycin and pentamidine on alternative splicing of three reporter 

transcripts (insulin receptor, cardiac troponin T, and MBNL1) are shown in Fig. 9. Both 

Figure 9. Effects of actinomycin and pentamidine treatment (individual and combinatorial) on DM1 mis-
splicing events. Actinomycin (actD) and pentamidine (pent) were titrated into cells (alone or in 
combination) expressing a reporter transcript and 960 CUG repeats (DMPK960). Representative gels with 
resolved alternatively spliced reporter products shown along with quantification of replicate experiments 
(a, b, and c). Red bars depict actD-only treatments and blue bars depict actD plus 20 μM pent 
treatments. Wild-type and DM1 samples received no drug treatment.  

a 

c 

b 
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actinomycin and pentamidine rescue wild-type splicing in INSR (Fig. 9a), and this 

splicing rescue has an EC50 (effective concentration at which half of full rescue is 

achieved) of approximately 20-25 nM actinomycin or a combination of 10 nM 

actinomycin and 20 μM pentamidine. Actinomycin and pentamidine appear to have 

additive effects at low concentrations, while at high concentrations (25 nM actD and 

μM pent) more splicing rescue is observed than would be expected by summing the 

marginal splicing rescues achieved with separate 20 nM actinomycin and 20 μM 

pentamidine treatments (Appendix Fig. A8). Additionally, at high combinatorial doses 

significant over-rescue is observed, wherein exon inclusion levels far exceed that of the 

wild-type state.  

 Despite the similar effects of actinomycin and pentamidine on the INSR splicing 

event, the two drugs have opposite effects on cTNT splicing (Fig 9b). While 

pentamidine rescues strongly on its own at 20 μM, actinomycin drives splicing levels 

towards a more diseased-like state, decreasing exon 5 exclusion away from wild-type 

levels and less than DM1 levels. This mis-rescue is modulated by combinatorial 

treatment with pentamidine, but actinomycin appears to mask much of the rescuing 

effects of pentamidine (supplementary Fig. A8). In the alternative splicing event found 

in the MBNL1 transcript, actinomycin D has no apparent effects, neither significantly 

rescuing nor mis-rescuing splicing, while pentamidine weakly mis-rescues MBNL1 

splicing (Fig. 9c).  

Many splicing factors are differentially expressed following drug treatment 

 Although actinomycin D strongly decreases the levels of CUG960 RNA by 5 nM 

as observed in northern blots (Siboni, R., unpublished data), it has inconsistent effects 
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on MBNL1-regulated splicing events, suggesting that the drug is altering MBNL1-

regulated splicing via processes other than decreasing CUG960 RNA levels and 

increasing free MBNL1 levels. Pentamidine likewise has inconsistent effects on  

Fig. 10. Clustered heatmap of log2(foldchange) in expression at low (10, 20 μM), medium (40, 50 μM), 
and high (60, 80 μM) pentamidine compared to no drug treatment of  135 significantly differentially 
expressed (q < 0.05 between none and high) genes associated with the gene ontology term "RNA 
splicing" (GO:0008380). 
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Figure 11. Clustered 
heatmap of 
log2(foldchange) in 
expression at 5 nM 
(low) and 25 nM 
(high) actinomycin D 
compared to no drug 
treatment of 
significantly 
differentially 
expressed (q < 0.05 
between none and 
high) genes associated 
with the gene ontology 
term "RNA splicing" 
(GO:0008380).  

Figure 12. FPKM (fragments mapped per kilobase of gene exon model per million mapped reads) of 
splicing factors that are implicated in DM1 and are significantly differentially expressed at 25 nM 
actinomycin D. Blue bars depict no actinomycin, magenta bars depict 5 nM (low) actinomycin, and 
green bars depict 25 nM (high) actinomycin. Each dot represents the value of a replicate experiment.  
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MBNL1-regulated splicing events, rescuing INSR and cTNT but slightly mis-rescuing 

MBNL1. An RNA-Seq experiment was performed to examine pentamidine- and 

actinomycin-induced global changes in transcriptomic profiles of CUG960-expressing 

cells that may help to explain the observed changes in alternative splicing. At 60-80 μM 

pentamidine, 135 genes with the associated Gene Ontology term "RNA splicing"  

(GO:0008380) are significantly differentially expressed (q < 0.05) (Fig. 10), while at 25 

nM actinomycin, 86 genes such genes are differentially expressed (Fig. 11). 

Pentamidine induces an approximately two-fold increase in MBNL2 and MBNL3, 

which are thought to be able to act as alternative splicing regulators redundant with 

MBNL1 and may account for some of the observed splicing rescue29
.
 Most striking in 

actinomycin-treated cells is the observation that the gene that decreases the greatest in 

expression is MBNL1 at an approximately four-fold decrease (Fig. 12), which is 

accompanied by an approximately 1.5-fold decrease in MBNL2. Many proteins 

involved in the basal splicing complex are also changed in expression, with U2AF1, 

U2AF2, SF1, and SF3B3 decreasing and SF3B4 increasing in expression. U2AF1 and 

U2AF2 are together responsible for binding the intronic polypyrimidine tract, while SF1 

is responsible for binding the intronic branch-point sequence, and all are required for 

canonical assembly of the spliceosome. SF3B3 and SF3B4 are subunits of the U2 

snRNP, a component of the major spliceosome, and SNRNP25 is a component of the 

U12 minor spliceosome complex.  

 Of the 86 differentially expressed genes with the associated Gene Ontology 

"RNA splicing", several have been previously implicated in DM1-misplicing: CELF1, 

hnRNP H1, hnRNP H3, DHX9, and DDX530. CELF1 and hnRNP H1 are thought to 
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generally antagonize MBNL1-promoted splicing outcomes (i.e. if MBNL1 promotes 

exon inclusion in a certain splicing event, these factors will promote exclusion)30.  

These factors were previously identified as increasing two- to three-fold in DM1 

myoblasts expressing expanded CUG repeats compared to those expressing normal 

CUG repeat tracts, and upon treatment with 25 nM actinomycin all but one significantly 

decreases in expression (Fig. 12)30. PTBP1 has been previously identified as co-

regulating several alternative splicing events with MBNL1, and both PTBP1 and 

PTBP2 are decreased in expression following actinomycin treatment31.  

Figure 13. Changes in cassette exon alternative splicing following actinomycin D treatment. a) 
Sashimi plots of previously examined splicing events. The INSR event represents the spliced transcript 
from the transfected reporter, while the MBNL1 event is endogenous. Connecting arcs depict splice 
junction-spanning reads, and estimated PSI (percent spliced in) distributions are shown at the right. b) 
Cassette exon splicing events that experienced significant change (Bayes factor greater than 20 and 
change in PSI of greater than 0.05) between 0 and 25 nM actinomycin were separated into groups by 
either decreasing (424 events) or increasing (309 events) PSI. Upstream and downstream sequences 
flanking these exons in a window of 50 bp into the exon and 450 bp into the intron were subjected to 
motif enrichment analysis using HOMER with a background set of analogous sequences from 3000 
randomly chosen cassette exon splicing events. P-values for motifs shown range from 10-6 to 10-14. 

a 

b 
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Actinomycin D causes widespread changes in cassette exon alternative splicing 

 Alternative splicing of the transfected INSR reporter, as detected in the RNA-

Seq data by the program MISO, is observed to increase in exon inclusion at 25 nM 

actinomycin in concordance with previously performed splicing experiments with this 

reporter, while alternative splicing of the endogenous MBNL1 transcript likewise 

increases slightly in exon inclusion at 25 nM actinomycin (Fig 13a). However, with a 

large number of proteins involved in RNA splicing changed in expression at 25 nM 

actinomycin, one may expect pronounced changes in alternative splicing across the 

transcriptome that are not limited to MBNL1-regulated events. Indeed, at 25 nM 

actinomycin 424 annotated cassette exon alternative splicing events were significantly 

decreased in percent exon inclusion (PSI, percent spliced in) and 309 events were 

significantly increased in PSI as identified by MISO. Since many regulators of 

alternative splicing are RNA-binding proteins (including MBNL1, CELF1, PTBP1, and 

hnRNPs) whose specificity is at least in part governed by sequence-specific RNA 

binding, it may be expected that the RNA sequences flanking these differentially 

spliced exons are enriched in regulatory sequences that correspond to the binding sites 

of differentially expressed splicing factors. As such, the sequences extending from 50 

bp inside these cassette exons to 450 bp into the upstream or downstream introns were 

subjected to motif enrichment analysis with analogous sequences from 3000 randomly 

chosen annotated cassette exon splicing events as a background model using HOMER. 

Selected enriched motifs from each group of sequences are shown in Fig. 13b.  

 Of note, each group of sequences is enriched for motifs containing G/A runs, 

and all but one contains the sequence GGGA. This GGGA motif forms the core of the 
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consensus binding sequence of hnRNP H1, which is decreased two-fold at 25 nM 

actinomycin32. MBNL1's consensus sequence YGCY appears frequently in downstream 

sequences of exons that decreased in PSI and upstream sequences of exons that 

increased in PSI. Other common motifs are A/U-rich sequences and U/G-rich 

sequences.  

Specificity of actinomycin D 

 Although actinomycin does reduce the levels of CUG960 RNA, it is clear that it 

also affects the expression of many other genes at the same time. At 5 nM actinomycin, 

Figure 14. Significantly differentially expressed genes (q < 0.05) between 0 and 5 nM actinomycin. a) 
Clustered heatmap depicting log2(foldchange) in expression of 89 genes between none and either 5 nM 
(low) or 25 nM (high) actinomycin. b) log2(foldchange) in normalized aligned read counts between 
none and low (blue) or high (red) actinomycin across the transfected exons of DMPK.  

a 

b 
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only 89 genes are significantly (q < 0.05) differentially expressed, and of these 74 genes 

are decreased in expression, suggesting that many of these decreases in expression are 

directly caused by actinomycin-mediated transcriptional inhibition (Fig. 14a). Of these 

89 genes, the most enriched Gene Ontology is "regulation of cell proliferation" 

(GO:0042127) with 17/89 genes and p-value of 2.3 x 10-6, and the most enriched Swiss-

Prot Protein Information Resource keyword is "phosphoprotein" with 53/89 genes and 

p-value of 2.1 x 10-6 as calculated by the DAVID Functional Annotation tool, and as 

such at least some of the differential expression observed in this set is likely due to 

cellular signaling and subsequent activation of regulatory networks in response to the 

drug rather than the direct binding of actinomycin to DNA in these genes and 

subsequent inhibition of transcription33.  

 Yet these 74 genes that decreased in expression at 5 nM actinomycin are most 

sensitive to the drug, and they offer insight to the sequence specificity of actinomycin 

binding and inhibiting transcription. Viewing aligned reads in the IGV genome browser 

reveals a shift in the distribution of reads in early gene regions of several genes, wherein 

increasing actinomycin trends with increasing reads in the first approximately 10 kb of 

a gene, including intronic regions (Appendix Fig. A9). To quantify this trend, the 

average log2(foldchange) in read counts at each base position from the annotated gene 

start to 50 kb downstream between none and either low or high actinomycin samples 

was calculated (Fig. 15a). On average, high actinomycin causes increased reads in early 

gene regions, between approximately 1 and 10 kb downstream from the gene start site. 

The inset in Fig. 15a shows the pseudo-periodic nature of these changes in read counts, 

and early peaks are spaced apart by approximately 150 bp. A single-sample t-test shows 
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that the change in read counts between 2 and 5 kb are significantly different from 0 with 

p-values ranging from 5.2 x 10-9 to 0.038. Since this region is intronic for many of the 

genes in this set, it could be proposed that these increases in aligned reads are a result of 

increased intron retention due to spliceosomal deficiency. This is an attractive concept, 

considering the number of components of the spliceosome that are differentially 

expressed at 25 nM actinomycin, yet the portion of aligned intronic features across the 

genome only increases 1.1-fold relative to the portion of aligned exonic features (Fig. 

Figure 15. Actinomycin changes the distribution of aligned reads in early gene sequences of the 74 
significantly decreased genes at low actinomycin dosage. a) The log2(foldchange) in average aligned 
read counts at each base position from the annotated gene start to 50 kb downstream shows that at 25 
nM actinomycin (red) causes an increase in reads in early gene regions. The inset shows a magnification 
of the region from 0 to 3 kb, depicting the periodic nature of the change in read counts. Dotted line: zero 
change in read counts; gray curves: lines of best fit using a 9th-degree polynomial to aid visualization of 
trajectories. b) Actinomycin slightly decreases the number of exonic features and increases the number 
of intergenic features in aligned reads across the genome. Intronic features remain constant with respect 
to total aligned features but increase slightly relative to exonic features.  

a 

b 
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15b) and as such this is likely not the source of the observed accumulation of nascent 

transcripts in early gene regions.  

 Increased read counts in these early gene regions suggest that there may be 

certain sequence motifs in these regions to which actinomycin binds strongly, causing 

elongating polymerases to pause and – along with their nascent transcripts – accumulate 

along this region. The DMPK transcript decreases about two-fold in expression at 5 nM 

actinomycin (Fig. 14a) and the number of detected transcripts decreases most 

dramatically downstream of the CTG repeat tract in exon 15 compared to the other 

exonic portions of the transfected construct (Fig. 14b), suggesting that the expanded 

CTG repeat tract may be particularly sensitive to actinomycin, and the CTG motif may 

be such a determinant 

of decreased 

expression in early 

gene regions. 

Sequences flanking the 

gene start site for these 

74 genes were probed 

for occurrences of 

simple motifs, which 

were then correlated 

with changes in 

expression. As shown 

in Fig. 16, counts of 

Figure 16. CTG motifs correlate with decreased expression following 
actinomycin treatment. Each red dot represents a gene that decreased 
significantly between none and 5 nM (low) actinomycin.  
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CTG and CAG (representing CTG on the opposite strand) in a region extending from 1 

kb upstream to 10 kb downstream of gene start sites correlate negatively (r = -0.282) 

with log2(foldchange), suggesting some specificity for sequences with high CTG 

content. This correlation has greater magnitude than the average absolute values of 

correlation in this region across all 3-mers or 4-mers, which is 0.178 and 0.166, 

respectively (Appendix Fig. A10).   

 Actinomycin and pentamidine both bind DNA in the minor groove (actinomycin 

furthermore intercalates DNA when bound), preferentially binding GpC dinucleotides 

and A/T-rich tracts, respectively. G/C-rich sequences are generally associated with wide 

minor grooves while A/T-rich sequences are generally associated with narrow minor 

grooves, and for this reason tetranucleotide sequences with approximated average minor 

groove widths were counted in a region 1 kb upstream to 10 kb downstream of 

annotated gene start sites of all genes that decreased significantly at low drug dosage, 

and these counts were correlated with log2(foldchange) and plotted in Fig. 1734. These 

correlations were then compared with respective average minor groove widths, 

producing an overall correlation of r = 0.650 for pentamidine and r = -0.439 for 

actinomycin. These observed trends suggest that pentamidine and actinomycin may 

recognize DNA structure in addition to DNA sequence: pentamidine may bind strongly 

to narrow minor grooves, more severely inhibiting transcription of genes with many of 

these binding sites (and producing a positive overall correlation of expression with 

minor groove width) while actinomycin may bind more strongly to wide minor grooves 

to more severely inhibit transcription (producing a negative overall correlation).  
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 At higher dosages, actinomycin appears to have very widespread effects on 

differential expression across the genome, as 3947 genes are significantly (q < 0.05) 

differentially expressed at 25 nM actinomycin. The most enriched gene ontology as 

identified by DAVID is "regulation of transcription" (GO:0006355) with p-value less 

than 10-24, and as such a large amount of the differential expression observed at this 

dosage is likely due to activation of signaling pathways and regulatory networks. 

Indeed, promoter regions of these genes in a region extending 350 bp upstream to 50 bp 

downstream of the transcription start site are enriched in sequences that correspond well 

with previously established DNA binding motifs of several ubiquitous transcription 

Figure 17. Average minor groove width may be a predictor of small molecule-gene interactions. a) 
Correlations of counts of tetranucleotide sequences in early gene regions with respective average minor 
groove widths with log2(foldchange) in expression of 641 genes that decreased significantly (q < 0.05) 
in expression at low pentamidine dosage. This trend has a correlation of r = 0.650 with average minor 
groove widths. b) Analogous correlations with 74 genes that decreased significantly at low actinomycin 
dosage, with r = -0.439 for this trend of correlations with average minor groove widths. Dashed line 
represents average minor groove width as calculated by Rohs, et al.34. 

b 

a 
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factors, including p53 (TP53) and members of the SMAD, STAT, and IRF (interferon-

regulatory factor) families (Fig. 18).  

DISCUSSION 

Actinomycin likely affects alternative splicing via differential expression of splicing 
factors 

 As observed in the in 

cellulo splicing results (Fig. 9), 

actinomycin has varying effects on 

MBNL1-regulated alternative 

splicing events – rescuing wild-

type INSR splicing, but mis-

rescuing cTNT splicing – despite 

its capacity to strongly decrease 

the abundance of CUG960 RNA at 

as little as 5 nM. As such, 

actinomycin must be affecting 

alternative splicing through 

cellular processes other than 

MBNL1 sequestration on long CUG repeats, and indeed RNA-Seq shows that 86 genes 

with the gene ontology "RNA splicing" are differentially expressed at 25 nM 

actinomycin. Of these genes, MBNL1 decreases the most severely, and MBNL2, which 

is able to regulate alternative splicing events similarly to MBNL1, decreases in 

expression as well. Conversely, four splicing regulators that have been found to be 

upregulated two- to three-fold in DM1 myoblasts were decreased in expression 

Figure 18. Enriched motifs (above dashed lines) and p-values 
of enrichment in promoter regions 350 bp upstream to 50 bp 
downstream of transcription start sites of the 3947 
differentially expressed genes at 25 nM actinomycin. 
Previously determined binding sequences of transcription 
factors are shown below the dashed lines of their respective 
enriched motifs.  
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approximately two-fold at 25 nM actinomycin. Together, these results help to explain 

actinomycin's inconsistent ability to rescue wild-type alternative splicing: the INSR, 

cTNT, and MBNL1 splicing events are all regulated by MBNL1, yet each is also likely 

regulated by a suite of other factors that may not regulate the other events. CELF1, for 

example, promotes exclusion of INSR exon 1135. If inclusion of this exon is strongly 

negatively regulated by CELF1 and only weakly positively regulated by MBNL1, then 

decreases in both CELF1 and MBNL1 may result in greater exon inclusion as is 

observed. In addition, several MBNL1 splicing events, including INSR and cTNT, 

show differing sensitivity to MBNL1 levels in an MBNL1-inducible cell culture system 

(Wagner, S., unpublished data). These experiments reveal that the INSR splicing event 

is marginally sensitive to MBNL1 levels, requiring only a relatively small amount of 

MBNL1 in order to achieve maximum exon inclusion, whereas cTNT is more sensitive 

to MBNL1 levels and requires much more induced MBNL1 in order to achieve 

maximum exon exclusion. These trends support the observed rescue of INSR splicing 

and mis-rescue of cTNT splicing following actinomycin-mediated MBNL1 depletion, 

assuming that INSR exon inclusion is additionally promoted by changing levels of 

another splicing regulator such as the loss of CELF1. In this fashion, decreases in 

MBNL1 levels in combination with differential expression of many other splicing 

regulators will affect many different splicing events in a myriad of different – and 

difficult to predict – ways.  

 In addition to revealing the large number of splicing factors that are 

differentially expressed at 25 nM actinomycin, RNA-Seq also exposed transcriptome-

wide changes in alternative splicing, including 424 cassette exon splicing events that 
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decreased in PSI by at least 0.05 and 309 such events that increased in PSI. Differential 

splicing observed in these events is likely a result of differential expression of splicing 

factors, and as a result the RNA sequences flanking these cassette exons contain some 

RNA targets of enriched or depleted splicing factors. MBNL1's consensus binding 

sequence, YGCY, is found in downstream sequences of exons that decreased in PSI and 

in upstream sequences of exons that increased in PSI (Fig. 13b). Additionally, the motif 

UUGC, which occurs in downstream sequences of exons that decreased in PSI, closely 

matches that previously found as MBNL1's target sequence in an in vitro high-

throughput binding and sequencing experiment36. This corroborates the general trend 

that MBNL1 promotes inclusion when bound downstream of an exon and exclusion 

when bound upstream of an exon, since following MBNL1 depletion at 25 nM 

actinomycin the opposite trends in PSI are observed, assuming that these enriched 

MBNL1-binding motifs represent true, regulatory MBNL1 binding sites. Likewise, the 

motifs UGU and UGUGU are found throughout all groups of sequences and may 

represent targets of CELF1, which has been reported to bind UGU motifs37,38. CELF1 

antagonizes MBNL1-regulated splicing in a number of transcripts, and the 

approximately three-fold decrease in CELF1 at 25 nM actinomycin may help to 

diminish some of the splicing dysregulation caused by a depletion of MBNL1 at this 

dosage39.  

 At 25 nM actinomycin, ten hnRNPs – including PTBP1 (hnRNP I) and RALY 

(an hnRNP C homolog) are differentially expressed, and all but one are decreased in 

expression40. hnRNPs are generally expressed ubiquitously and at high levels in human 

tissues, binding to nascent transcripts as part of an hnRNP complex that mediates a 
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diverse range of processes, including RNA splicing, export, and stability40,41. hnRNP D 

binds to A/U-rich sequences and is decreased approximately two-fold at 25 nM 

actinomycin (Fig. 11), and A/U-rich motifs appear in all groups of sequences except for 

upstream sequences of events that increased in PSI41. hnRNP H, which is decreased 

approximately two-fold at 25 nM actinomycin, is known to bind a GGGA core, and 

CLIP-Seq studies have identified G/A runs as strong binding sequences as well40,42. 

These G/A runs are found in all groups of enriched motifs, suggesting that hnRNP H 

may regulate exon inclusion in a complex fashion, independent of whether it binds up- 

or downstream of the exon. Another splicing factor that decreases approximately two-

fold in expression, hnRNP M, binds U/G-rich sequences, and these may be found in 

upstream sequences of exons that decreased in PSI (GGUUUGU) as well as scattered 

throughout the other groups of sequences42. Since hnRNPs are involved in many 

different aspects of RNA processing other than splicing, it may be expected that these 

processes, such as polyadenylation, RNA stability, RNA export, and RNA localization 

are likewise affected by actinomycin treatment. In the case of polyadenylation, the 

number of reads containing poly(A) runs of 100 or greater consecutive As increases 

approximately 1.5-fold from 0 to 25 nM actinomycin, although it is not possible to 

determine if this observed increase truly reflects retained competency of the 

polyadenylation complex or if it is due to other effects, such as a regulatory shift 

towards polyadenylated transcripts. It is worthwhile to note, however, that two 

components of the polyadenylation complex, CSTF1 and CPSF2, increase and decrease 

respectively in expression at 25 nM actinomycin.  
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CTG motifs, wide minor groove DNA motifs, and increased early gene transcripts 
are associated with decreased expression upon actinomycin treatment 

 While 733 cassette exon alternative splicing events are differentially spliced at 

25 nM actinomycin, only 237 such events are differentially spliced at 5 nM 

actinomycin. Likewise, at 25 nM actinomycin 3947 genes are differentially expressed 

while only 89 genes are differentially expressed at 5 nM actinomycin. The DMPK 

transcript containing 960 CUG repeats is particularly sensitive to 5 nM actinomycin, 

decreasing in expression approximately two-fold and decreasingly mostly severely in 

the region just downstream of the CTG repeat tract (Fig. 14b). Additionally, 

occurrences of CTG motifs in early gene regions correlate with greater decreases in 

expression at 5 nM (Fig. 16). Together, these results suggest that actinomycin may bind 

CTGs particularly strongly to preferentially inhibit transcription of a small number of 

genes at low concentrations. CTGs and other G/C-rich sequences generally confer 

greater width to the DNA minor groove, and actinomycin is classically known to bind 

preferentially at GpC dinucleotides. Indeed, sequences with narrow minor grooves 

typically correlate positively with expression of the 74 decreased genes at low 

actinomycin while sequences with wide minor grooves correlate negatively (Fig. 17b). 

In effect, genes containing greater numbers of narrow minor groove sequences were 

associated with less decrease in expression while genes containing greater numbers of 

wide minor groove sequences were associated with greater decreases in expression, 

which may be caused by actinomycin preferentially binding to sequences with wide 

minor grooves.  In contrast, the opposite trend is observed regarding the 642 genes that 

decreased significantly at low pentamidine dosage, suggesting that pentamidine 

preferentially binds and inhibits the transcription of narrow minor grooves (Fig. 17a).  
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 The 74 genes that significantly decreased in expression at 5 nM actinomycin 

exhibit a distinctive pattern when examining base-by-base changes in expression in 

early gene regions: at 25 nM actinomycin, the number of mapped reads decreases from 

approximately 0 to 100 bp downstream of the annotated gene start site and then 

increases significantly from 1 to 6 kb with a peak of about 1.5-fold increase in mapped 

reads, eventually returning to near zero change in expression at about 35 kb downstream 

of the gene start (Fig. 15a). An attenuated parallel of this trend is also observed at 5 nM 

actinomycin. This increase in mapped reads in early – and often intronic – gene regions 

implies increased polymerase pausing, causing a back-up of polymerases and increase 

of aligned reads in early gene regions despite an overall decrease in gene expression. 

This pausing would preclude splicing of the nascent transcript if the polymerases pause 

after passing a 5' splice site but before reaching a 3' splice site, and as such many of 

these regions of increased aligned reads fall in the gene's first intron (Appendix Fig. 

A9). Actinomycin has been shown to pause DNA polymerases in vitro by binding 

single-stranded DNA with sequence specificity and forming heat-stable complexes, and 

high-affinity binding to unwound DNA in transcription bubbles and inhibiting 

elongation is hypothesized to be actinomycin's biological mechanism of action43,44.  

 The inset of Fig. 15a shows a magnification of the region from 0 to 3 kb 

downstream of the gene start, exposing the pseudo-periodic nature of changes in aligned 

reads: in the first 600 bp, each trough in the curve representing 5 nM actinomycin is 

separated by about 150 bp. While this may simply be an artifact in the data, this trend 

could potentially represent chromatin-dependent interactions of actinomycin with DNA, 

since about 146 bp of DNA are wound around each histone octamer and each 
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nucleosome is connected by about 20 bp of linker DNA in classical 10 nm 

euchromatin45. Since both histones and actinomycin are tight minor groove binders, it 

may be that actinomycin does not bind easily to DNA packaged into histones but rather 

binds readily to the histone-free linker DNA to cause a periodic pattern of polymerase 

pausing. A ChIP-Seq experiment with RNA polymerase II would reveal in much better 

detail any conspicuous patterns of polymerase pausing during elongation in the 

presence of actinomycin.  

 Increases in aligned reads in these early gene regions may be caused by 

increased intron retention across the transcriptome (as could be expected considering 

the observed differential expression of many components of the core spliceosome), but 

the portion of all intronic features in genome-wide aligned reads stays constant with 

respect to all aligned features and decreases only 1.1-fold with respect to aligned exonic 

features (Fig. 15b). Of note, the portion of intergenic features increases two-fold from 0 

nM to 25 nM actinomycin. Further analysis will be necessary to characterize the nature 

of these actinomycin-inducible intergenic transcripts: they may be unannotated protein-

coding genes, unannotated long non-coding RNAs (lncRNAs), or potentially products 

of bidirectional transcription initiation (as is observed in PRKCA in Appendix Fig. A9).  

Actinomycin activates transcriptional regulatory pathways at higher doses 

 While 5 nM actinomycin does not appear to induce any widespread regulatory 

cascades, by 25 nM it is clear that signal transduction is driving a substantial portion of 

the differentially expressed genes. Actinomycin is a strong inducer of p53 signaling at 

as low as 10 nM, and p53's DNA target sequence is found enriched in promoters of 

genes that are differentially expressed at 25 nM actinomycin (Fig. 18)46. p53 is a 
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ubiquitous tumor-suppressor protein whose disruption is observed in a large number of 

cancers, and as such its activation may be beneficial in actinomycin's use as a 

chemotherapeutic. IRF transcription factors mediate many cellular immune responses to 

pathogens, the STAT protein family regulates cell growth and apoptosis in response to 

growth factors and cytokines, E2F transcription factors regulate the cell cycle and 

apoptosis, and SMAD proteins are involved in signal transduction across multiple 

signaling pathways47. DNA binding sequences of each of these transcription factor 

families are enriched in promoters of differentially expressed genes at 25 nM 

actinomycin, depicting the wide scope of signaling pathways that actinomycin  

activates. DNA-binding motifs for IRF, STAT, and E2F transcription factors are found 

in the promoter regions of MBNL1 and MBNL2, offering potential regulatory 

mechanisms by which MBNL transcript levels are strongly downregulated upon 

treatment with 25 nM actinomycin. 
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APPENDIX 

A Primer on the Central Dogma of Molecular Biology 

 As first stated by Francis Crick (of Watson and Crick 

fame) in 1958, the central dogma of molecular biology 

describes the flow of genetic information that underlies cellular 

processes: genetic information is stored in deoxyribonucleic 

acid (DNA) and copied out as messenger ribonucleic acid 

(mRNA) which then serves as a code for the production of 

proteins, which are the major functional units of organisms. The 

term dogma is, as admitted by Crick himself, an unfortunate 

misnomer given the endless amount of scientific evidence that 

affirms these biological processes. Furthermore, the central dogma does not consider 

many processes that have only in the past few decades become well-understood, such as 

alternative splicing of mRNA. In order to understand the molecular – and thus 

ultimately physiological – effects and implications of myotonic dystrophy and its 

potential small molecule therapeutics, we must briefly review nucleic acid structure and 

synthesis, RNA transcription, and mRNA splicing. 

 Each type of nucleic acid (DNA and RNA) is composed of four major 

nucleotide bases that form a polymer of certain length and sequence (Fig. A1). DNA 

may contain adenosine (A), cytidine (C), guanine (G), and/or thymidine (T) bases, 

while RNA may contain A, C, G, and/or uridine (U) bases. The bases of nucleic acids 

are complementary, owing to the specific hydrogen bonds that may be formed between 

bases and similar width of complementary base pairs: A in one strand of nucleic acid 

Figure A1. Structure of 
nucleic acid bases. a) 
Adenosine, a nucleotide 
base of RNA. b) RNA and 
DNA ribose rings differ by 
one oxygen at the 2' 
position.  

a 

b 
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pairs with T or U on another strand (and vice versa) and similarly 

C pairs with G. Nucleic acids also have directionality. A single 

strand of nucleic acid has a 5' end and a 3' end (as designated by 

either a free 5' phosphate group or a free 3' -OH group as seen in 

Fig. A1). Between each free end of a nucleic acid strand, each 

nucleotide is connected to its neighbors through these 

aforementioned groups, forming phosphodiester bonds (Fig. A2). 

While RNA is typically single-stranded, DNA is almost always 

double-stranded (dsDNA), with each strand running antiparallel in an opposite direction 

(5' to 3' vs  3' to 5') to the other (Fig. A3).   

 The complementary nature and directionality of nucleic acids provide a basis for 

the transcription of genes from DNA into RNA copies. Genes may be loosely defined as 

stretches of DNA that are transcribed to ultimately produce a functional product, 

typically protein although this ultimate product 

may be RNA. Gene expression is exquisitely 

regulated in eukaryotes (i.e. in a very general 

sense organisms whose cells have nuclei and 

various membrane-bound organelles), perhaps 

most so at the level of transcription. Genes 

contain many different regulatory elements that 

interact with protein factors to regulate the 

initiation of transcription by the RNA-

producing enzyme, RNA polymerase (Fig. A4a). RNA polymerase then catalyzes the 

a b 

Figure A2. Three DNA 
nucleotides connected 
by two phospho-diester 
bonds.1 

 

 

Figure A3. dsDNA structure. a) Schematic of 
antiparallel DNA strands, showing hydrogen 
bonds between bases. b) Structural 
representation of dsDNA, showing major and 
minor grooves.2  
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synthesis of an RNA that is complementary to the template strand of DNA and identical 

to the coding (or non-template) strand of DNA (replacing Ts with Us) in the 5' to 3' 

direction (Fig. A4b).  

 Following the transcription of an RNA copy from a gene, the RNA often 

undergoes extensive processing in the nucleus, of 

which we will primarily focus on splicing. The 

primary, unprocessed transcript consists of units 

called exons and introns (Fig. A5). Exons are 

stretches of the primary transcript that are included 

in the processed, mature RNA by the nuclear 

splicing machinery while introns are stretches of the 

primary transcript that are ultimately excised during 

this process. Each splicing reaction is facilitated by a 

complex of proteins and RNA known as the 

spliceosome. Exons may be considered constitutive 

if they are always included in the final RNA product 

(such as exons 1, 2, and 4 in Fig. A5a), or they may be alternatively spliced if they are 

not always included (such as exon 3 in Fig A5a). About 94% of human genes are 

estimated to produce alternatively spliced products4. The decision of whether to include 

or exclude an alternatively spliced exon depends on a multitude of factors, but a 

substantial contribution comes from the presence and abundance of specific proteins 

that regulate specific alternative splicing events. These proteins often bind directly to 

the primary transcript RNA and interact with the spliceosome in such a way as to 

 

Figure A4. Transcription initiation and 
elongation. a) Many regulatory DNA 
elements and protein factors assemble 
and determine the frequency of 
transcription initiation1. b) RNA 
polymerase catalyzes the 5'-3' 
synthesis of RNA complementary to 
the template DNA strand3. 

a 

b 
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enhance or repress the inclusion of a certain exon. One such regulator of alternative 

splicing that is central in the 

pathology of myotonic dystrophy is 

the protein MBNL1.  

 Following processing, the 

mature RNA may then be exported 

from the nucleus and into the 

cytoplasm of the cell, where – if the 

RNA is a protein-encoding mRNA 

– it undergoes translation to 

produce a protein product. Each three-letter sequence in a mature mRNA is called a 

codon and corresponds to a specific amino acid. The ribosome – a large complex of 

proteins and RNA – loads onto the 5' end of the mRNA and decodes each codon, 

incorporating the corresponding amino acid into the nascent protein polymer as it reads 

forward through each codon (Fig. A6). The 

reading frame of a mature mRNA is then 

determined by a start codon – typically AUG – 

which determines where protein synthesis begins 

and ends at a stop codon – UGA, UAA, or UAG –  

which signals the ribosome to terminate 

translation and release the completed protein 

product. 

 

 
Figure A6. Polymerization of amino acids 
(colored units) into nascent proteins on the 
ribosome. Each amino acid is carried to 
the ribosome by an attached transfer RNA 
(tRNA), which specifically pairs with the 
presented mRNA codon3.  

Figure A5. Splicing of a primary transcript. a) A canonical 
eukaryotic gene (in blue) contains exons (thick boxes) and 
introns (thin lines). The resulting transcript may be 
alternatively spliced in various ways to include or exclude 
certain exons from the mature RNA product. b) A canonical 
intron, showing conserved 5' splice site (GU), 3' splice site 
(AG), branch-point A, and the polypyrimidine tract, all of 
which are involved in exon or intron recognition by the 
spliceosome.1  

b 

a 



38 
 

APPENDIX REFERENCES 

1. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. 
(2000). Molecular Cell Biology, 4th edition. New York: W.H. Freeman.  
 
2. Lodish, H. , Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, 
H., and Matsudaira, P. (2007). Molecular Cell Biology, 6th edition. New York: W.H. 
Freeman.  
 
3. Berg, J.M., Tymoczko, J.L., and Stryer, L. (2002). Biochemistry, 5th edition. New 
York: W.H. Freeman.  
 
4. Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, 
S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human 
tissue transcriptomes. Nature 456:470-6.   



39 
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Figure A7. Samples used as replicates in pentamidine titration correlate well with each other. 
Sequencing data from different pentamidine dosages were paired and used as replicates for differential 
analysis, and the log10(FPKM+1) of all genes in each sample trends well with its replicate pair. Dashed 
line represents one-to-one correspondence between samples. Red dots represent genes where greater 
than a 1.5-fold difference in (FPKM+1) occurred between replicates.  
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Figure A8. Marginal splicing rescue (as a percentage of rescue between wild-type and DM1 splicing 
levels) achieved by actinomycin and pentamidine treatment (data transformed from Fig. 8). Black bars 
superimposed on actinomycin-only treatments represent expected splicing rescue if actinomycin and 
20 μM pentamidine act additively, while blue bars represent the observed splicing rescue at these 
respective combinatorial dosages. Actinomycin and pentamidine appear to have additive effects on 
INSR splicing at 10 nM actD and 20 μM pent, while past this dosage synergistic effects are observed. 
Actinomycin appears to mask much more of the rescuing effects of pentamidine than would be 
expected if the two drugs acted additively in cTNT splicing. While each drug appears to have additive 
effects in MBNL1 splicing, this is confounded by actinomycin's marginal effects on splicing in this 
event.  
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Figure A9. Several of the 74 significantly decreased genes exhibit a shift in the distribution of early gene 
region reads. EPHB2 (positive strand) and CTBP2 (negative strand) decrease in aligned reads in the first 
exon, but increase in aligned reads in the first several kb of their respective first introns at 25 nM 
actinomycin. PRKCA and FNDC3B increase in intronic reads in the first 10-20 kb of their first introns at 
25 nM actinomycin.  
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Figure A10. Correlations of occurrences of all 3-mers (top) and all 4-mers (bottom) in early gene regions 
(1 kb upstream of gene start to 10 kb downstream of gene start) with change in expression of the 74 
significantly decreased genes at 5 nM actinomycin. The average magnitude of correlation |r| is 0.178 for 
all 3-mers and 0.166 for all 4-mers. Average correlations (without taking absolute values) are 0 for both 
cases.  
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