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Introduction 

Defining Memory 

How can something that one utilizes and needs for everyday functioning be so 

poorly understood? Memory is much more complex than simply the process of 

remembering; that is merely the surface concerning the full-range of memory functions 

and capabilities. Past empirical data and behavioral experiments have allowed for the 

development of cognitive theories and the distinguishing of memory processes. For 

example, the American Psychological Association now defines memory as: "The mental 

capacity to encode, store, and retrieve information" (2014). Essentially, memory 

formation follows a three-step process: the encoding or receiving of information, 

storage of this encoded information, and finally the actual recollection of that 

information. However, such experiments and simplistic definitions are only the 

beginning and do not acknowledge the brain as memory’s biological substrate. 

Cognitive-neuroscience aims to elucidate this definition and begin to understand just 

what is occurring in the brain during these processes. The end goal being the 

developmentof a “neural-map” that can merge the gap between theory (i.e. different 

types of memory) and underlying neural mechanisms. With improved technologies, the 

vague understanding of memory will continually evolve and no longer will memory 

descriptions need to be rooted in observed behavior. As a result, research requires 

constant refinement by psychologists and scientists alike. They must employ a cycle 

between empirical research and theoretical mechanisms in order to understand the 

interlinkagesof memory’s unique yet simultaneous processes.  
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To that end, memory is modernly divided into two, primary theoretical 

categories: Working and Long-Term Memory. Working Memory (WM) refers to the 

transient storage and manipulation of information (Baddeley 1992), and Long Term 

Memory (LTM) is information that is retained for an enduring period of time 

(Gazzaniga et. al 1998). The overall discernment between LTM and WM proves 

increasingly difficult as these functions occur simultaneously and continually. For 

example, consider recalling an event that occurred a week ago. The recall or 

“remembering” involves LTM processes while the current representation in mind (the 

“remembered representation”) relies on the mechanisms concerning WM. The inverse is 

also true; information cannot bypass initial decoding and awareness (WM processes) to 

be stored as a LTM. They are continually in sync. This difficulty cements the need for 

continual research and refinement in order to understand this relationship and thus 

isolate the underlying mechanisms for just what is occurring in the brain as someone 

retrieves a memory. As LTM is the primary focus of this study, it is necessary to outline 

its two subdivisions: declarative and non-declarative. Non-declarative refers to 

knowledge we no longer have conscious access to (e.g. riding a bike). It is closely 

associated with “semantic memories” in literature (Tulving 1998). Semantic memory 

refers to the display of certain knowledge without any recollection of obtaining that 

knowledge. In contrast, declarative refers to information that one has the conscious 

knowledge of (i.e. one is aware of their own personal knowledge or autobiography). It 

is also closely related to “episodic memories” (a polar to semantic) in that one maintains 

an “episode” of when certain events occurred or how the knowledge was attained (i.e. 

the story behind the memory, fact, event etc.) (Tulving 1989). Declarative (conscious) 
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LTM is the focus of this study as the experiment relies on exact retrieval of previously 

learned stimuli; as well as participants possessing the awareness that they studied and 

have access to this particular stimulus (specific experimental methods will be 

extrapolated in subsequent sections).  

 

Relevant Cognitive Neuroscience Background 

The above definition of memory merely presents its primary functions: the 

encoding, storing, and retrieving of memories. While this definition fails to map these 

specific roles onto subdivisions of memory and the constituents of the brain, it serves as 

a foundation to meticulously expand upon. As previously noted, research supports 

divisions (distinguished by type and role) within the memory system (Macdonald 2008). 

Certain areas of the brain are believed to be associated with these divisions in the 

memory system: the temporal lobe (forms and strengthens new memories), the 

prefrontal cortex (encodes and retrieves), and the temporal cortex (stores memories). If 

the focus is Long-Term Memory (LTM) and its eventual retrieval, how is it stored 

initially? Information in WM becomes a LTM through consolidation. Consolidation, in 

this context, refers to stabilizing a memory after its initial acquisition (Macdonald 

2008). This typically involves the repetition of this knowledge or stimulus in addition to 

creating meaningful associations/connections (Carrier et. al 2003). This is the process 

participants will undergo in the experiment at hand. 

What is occurring physiologically during this consolidation? The hippocampus 

is involved with the strengthening of a memory from WM to LTM (Kesner RP 2013). 

Research suggests the hippocampus may have a role in the dynamic nature of neural 
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connections up to three months or more after initial acquisition of the memory (Kesner 

RP 2013). Essentially, when knowledge (or a stimulus) is presented, various neurons 

“fire” and are aroused. During acquisition, and the subsequent learning/rehearsal, neural 

networks in the brain  (circuits of neurons) “communicate.” This communication and 

connection between neurons is known as the firing of nerve synapses (structures that 

allow neurons to pass information to other neurons). An important distinction to note is 

that neuron synapses are also involved in WM. However, it is the augmenting of this 

repetition that distinguishes it from WM and thus solidifies this knowledge as a LTM. 

This entire process is modernly referred to as “Long-Term Potentiation”  (LTP). LTP is 

the extension of  “Hebb’s Law” which states: “if a weak and strong input act on a cell at 

the same time, the weak synapse becomes stronger” (Gazzaniga et. al 1998).  In other 

words, neurons that fire together, wire together (Sadananda 2012). This reveals that 

neurons function in a group and can be strengthened and/or trained. This is particularly 

useful in our study where retesting and testing allows the subject to strengthen those 

neurons that “fire” for a certain stimulus (this notion will be further related to the 

experiment in methodologies).  While this describes how a memory is consolidated 

from WM to LTM, what about the reverse? Consider a “pathway analogy” to visualize 

a respective neuron circuit. In strengthening these neural synapses, a familiar “pathway” 

is created for this information. This path is a “two-way street” between WM and LTM 

and thus allows for activation from pillar to post. When stimulated, these neurons fire 

and bring the information from “storage” to WM awareness. This phenomenon, and the 

underlying mechanisms concerning retrieval, is the aim of the study.  
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Frequencies 

In order to properly understand the subsequent data, it is important to examine 

the specific neural frequency bands. As previously noted through the Hebb’s law, 

neurons that fire together, due to their preference for a certain stimulus (e.g. color, 

spatial, etc.), wire together and strengthen. This allows a previously learned stimulus to 

activate the group of neurons (neuron circuit) that were initially activated and 

consolidated through initial acquisition. This synchronized arousal of neurons is 

manifested through an oscillation at a certain frequency. These resulting frequencies are 

distinguished as respective, neural bands. Specifically, Theta and Alpha bands 

correspond to rhythmic oscillations of 4-7 Hz and 8-12 Hz respectively (Jensen et al., 

2002). Research has associated recognition and recollection of previously learned 

information with the “Alpha” band of neurons in WM (Rihs et. al 2006; Worden et al., 

2000; Yamagishi et al., 2005; Thut et al., 2006). Further, a study by Khaderet. al (2010) 

examined both WM and LTM in conjunction: “the more effort within the WM system 

(increased memory load) supports successful LTM encoding. Thus, the same neural 

processes underlying WM maintenance support LTM encoding. This research suggests 

that Alpha has a prominent role in LTM, decoding, and retrieval. Alpha has also been 

suggested to inhibit “distractors” in the rehearsal stage of consolidating items into WM 

(Jiang et. al 2010).  

 

Tracking the Contents of Working Memory 

In order to discuss the potential of tracking the contents of Long Term Memory 

(LTM), it is important to discuss the literature in Working Memory (WM). How can 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05278.x/full#b15
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05278.x/full#b14
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one track the contents of any type of memory? The answer to this begins with the notion 

of the Sensory Recruitment Hypothesis (SRH). Details are represented in WM via the 

recruitment of the same neural structures that encoded the stored info. In other words, 

the SRH allows us to keep specific, detailed info about a stimulus in mind. For example, 

if two lines with different angle orientations are shown (e.g. 45 and 135 degrees), FMRI 

studies (i.e. the recording of blood flow in the brain) reveal multi-voxel patterns of 

activity are represented through a series of varying data or vectors (Serences et. al 

2009). Specifically, the voxels represent a neuron firing at a rate for that particular 

orientation. Because the patterns were different for the orientations, yet in the same 

brain region, this notion of multi-voxel classification supports the idea of recruiting 

neural structures and creating an active representation via previously stored encoding. 

This activity was further able to discern a color through patterns in the “what” region of 

the brain while the “where” was revealed in the upper dorsal. Two separate features 

(color and orientation) showed different patterns in different areas thus allowing one to 

“read” someone’s mind and determine stimulus specific info of a given object (i.e. 

discern two different things about an object as its two facets of memory). In short, one 

can estimate the degree to which each voxel is responding to each of the stimuli.  

This same concept is extended to EEG literature. Electrodes measure the power 

of the bands at different locations on the scalp (electrodes centered over different 

regions). These electrodes provide the values or vector (similar to the voxel paradigm). 

Unlike the voxels, however, these values were encoded via EEG analysis. In looking at 

EEG-based Channel Tuning Functions (CTFs), the spatial distribution of EEG power at 

the identified frequency contained reliable information concerning the orientation of the 
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stimulus (able to encode what was “in mind”) (Garcia et al 2013). During the delay 

period of a WM task, the goal is look at the ongoing neural activity, which is associated 

with storage. In so doing, one can decode stimulus specific activity related to neural 

processes. As aforementioned, it has been continually postulated that neurons 

representing items in WM are synchronized with specific frequency bands 

(Lisman&Idiart, 1995) (Raffone and Wolters 2001). In this analysis, it is the alpha 

frequency band (8-12 Hz) that revealed a constant effect throughout the delay period of 

the task thus associating the alpha band with WM. This analysis revealed a method for 

tracking memory precision with “near real-time” temporal precision. It also showed that 

neural activity related to WM is manifested in alpha frequency band synchronization. 

The above analysis described is known as Fourier analysis and will be utilized in 

creating and analyzing Channel Tuning Functions (CTF) in this LTM experiment.  

 

Foundational Research 

Recent literature serves as the catalyst for this study. Research by Rihs and 

colleagues (2007) suggests that Alpha is highly associated with spatial Working 

Memory (WM) as their study evoked strong alpha oscillations during the encoding 

process (act of memorization); thus, the alpha band can reveal the focus of spatial 

attention.  Additionally, it is possible to track the contents of WM (spatial) through 

alpha band activity (Foster et. al in prep). This previous research reveals the need to 

include long-term memory focused experiments to attempt to refine the mapping of 

frequency bands to the memory system. 
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General Research Questions 

The research question at hand is twofold in nature as it relies on the 

complementary results of both EEG and behavioral data. On one hand, the question 

seeks to clarify the relationship between Long Term Memory (LTM) and Working 

Memory (WM). Theoretically, the processes are continuous and not mutually exclusive, 

and thus EEG data should reflect that. In other words, processes associated with WM, at 

some point in a LTM task, should be activated and replicated. With previous data 

associating alpha signals with WM encoding, it would be beneficial to elucidate this in 

a LTM task to gain insights concerning similarities or differences in the underlying 

neural mechanisms responsible. Are the mechanisms the same? In retrieving a memory, 

what is the nature of this representation? Is it identical to WM only tasks? Will Alpha 

come back on and when? Further, from the behavioral data, what kind of conclusions 

can one draw from the repeated study and consolidation of objects spatially? Do 

participants improve in overall recollection and precision? If so, by how much? What 

does this imply concerning the nature and relationship between LTM and WM? The 

study aims to gain insight on such questions through a LTM task that incorporates the 

consolidation of WM into LTM. It accomplishes such consolidation through studying 

various objects and their subsequent retrieval the following the day.  
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Methods 

Participants 

Thirty participants aged 18- 35 completed the study. Three participants were 

excluded due to excessive EEG artifacts (described below) leaving 27 subjects whose 

data were analyzed. Participants received monetary compensation ($10 per hour). Based 

on self-report, all participants had normal or corrected-to-normal vision. They gave 

informed consent in accordance with regulations set by the University of Oregon and 

the Institutional Review Board. 

 

Methods Summary 

The task took place over the course of two, consecutive days. On day 1, 

participants signed a consent form and were given detailed instructions about the task. 

They then learned a series of clipart images and their respective position for 

approximately two hours. On day 2, participants were tested over the same objects 

while their brain waves were being recorded for approximately 3 hours. Subjects were 

then debriefed on the experiment.  

 

Stimuli 

For the tasks, 120 unique, clipart images were collected through a google search. 

These images were all recognizable objects/silhouettes as opposed to abstract shapes 

(see Fig. 1). These images were all a consistent teal color (please note that the object is 

black in Fig. 1 for clarity purposes but all objects were teal), so that only spatial position 

and object identification were required to successfully complete the task.  
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Task Specifications 

The task was generated through MATLAB using the Psychophysical Toolbox 

Extension, which was displayed from a 17-inch, flat, cathode ray tube computer screen. 

Stimuli were rendered against a gray screen, and this computer featured a refresh rate of 

120 HZ. Participants sat approximately 100 cm away from the screen. Stimuli were 

presented as a series of 120 different clip art images all of which were a teal blue. Each 

clipart position was presented with a unique position within the 360-degree space. 

There were 960 trials in all (8 blocks of 120 trials).  

 

Day 1 

Each trial began with a space bar bush. A blank display appears at a variable 

length between 800-1500 ms.This was followed by a single image, centered in the 

screen, which subjects viewed for 1 second. This second allowed for participants to tell 

exactly what it was. The object then moved to its position for half a second. This was 

done 10 images at a time and followed by a testing period of the preceding ten items 

(Roediger and Karpicke 2006). In the testing period, image order was randomized in 

order to mitigate the Recency Effect (Holbrook 2008). Additionally, the object was 

presented in the center of a 360-degree array, and the subject was asked to click on the 

correct position of the array. The ring and centered image were on screen for one 

second before the cursor appears. During this one-second, participants were asked to 

keep their eyes centered and not to move them to the anticipated response location.This 

was to ensure proper recording of the retrieval process without interference from eye 
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and muscle movements. Response was not timed and feedback was given immediately 

and appeared for 500 ms (e.g. -30 if the subject was 30 degrees to the left from the 

correct position). This continued for all 120 images (10 at a time, test on each 10 in 

random order for a total), and was then followed by a testing period of all 120 at the 

conclusion, which was also randomized and featured the same specifications (e.g. object 

presented for one second). This process is repeated twelve times for the 120 objects for 

a total of two hours. Participants signed up for the part two EEG/Capping experiment 

the following day. 

 

Day 2 

After learning the objects during day 1, subjects came back in and were capped 

and prepped for EEG recording (please see the subsequent “Collection and Artifact 

Rejection” for precise EEG recording procedures). The task was comparable to the 

testing phase of day 1 as they were tested on all 120 objects in a random order. This was 

repeated 8 times (however, some subjects only had time to complete 7 rounds of 

testing). Similar to the first day, the task began with a space bar push and then a blank 

screen for 800-1500ms (varied). The recall cue was then presented for 1250 ms (object 

appeared centered in the 360 degree array) (See Fig. 1). Subjects were asked to remain 

fixated on the object and not move their eyes nor think about where they were going to 

respond (subjects who did move their eyes/impede on collection were removed). 

Subjects were asked to retrieve all 120 items in a random order 8 times for a total of 960 

trials. Detailed information about collection and rejection will be discussed in the 
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subsequent section. Participants then responded by clicking on the remembered position 

of the array and were once more given feedback in degrees.  

 
 

EEG Collection and Artifact Rejection 

EEG data were collected using the lab’s standard recording and analysis 

procedures. This includes the rejection of trials where blinks and large eye movements 

hinder the data.  The recording was done through twenty-two, tin electrodes mounted in 

an elastic cap (Electro-Cap international) and utilized the International 10/20 system. 

All sites were recorded with a left-mastoid reference, and the data were referenced, and 

the data was re-referenced offline to the algebraic average of the left and right mastoids. 

Horizontal electro-oculogram (EOG) was recorded from electrodes placed 

approximately 1 cm to the left and right of the external canthi of each eye to measure 

horizontal measures. The EEG was amplified with an SA instrumentation amplifier with 

a bandpass of .01-80 Hz and were digitized at 250 HZ in labVIEW 6.1 on a PC. In order 

to detect blinks, vertical EOG was recorded from an electrode mounted beneath the left 

eye and referenced to the left mastoid to detect eye movements. Subjects data were 

included only if they had 550 artifact free trials. 3 subjects were excluded for excessive 

artifacts.  

 

Channel Tuning Functions 

As previously mentioned, recent computational advances allow for the decoding 

of the aggregate measure of electrophysiological scalp measurements. Specifically, 

researchers can decode the various cortical regions’ respective orientation selectivity 
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through the Forward Encoding Model (Brouwer and Heeger 2009). EEG electrodes act 

as sensors that read the non-uniform distribution of orientation-selective cells. This 

allows for the classification of neural responses. Through this applied model, one can 

summate the orientation-selective responses. These responses yield the average activity 

measured by each electrode.  The spatially global sensors are able to measure alpha 

waves as the sensors reveal the aggregate measure of neural activity in a group of cells.  

Data featuring stronger amplitudes (as measured by sensors) will reveal the cells 

that prefer a given orientation. This is known as orientation selectivity. For example, 

consider a spatial representation at 90 degrees. The group of neurons that prefer a 90-

degree orientation will fire strongly for 90 degrees and that effect will slowly reduce the 

farther the orientation moves from 90. An example of this is evident in a study by 

Garcia and colleagues (2013). The researchers were able to show above-chance 

classification of stimulus values. These values were based on the response profiles 

created by the sensors and reflecting the specific neural firing patterns for various 

stimuli. Essentially, the different activity relevant to unique orientations allows one to 

accurately portray the population code. In this case of this experiment, the same logic 

applies to neurons firing for specific spatial locations.  

Neural population codes are used to simplify the raw, orientation-specific 

responses. Specifically, populations codes divides the 180 degrees into 8 channels each 

pertaining to unique 22.5 degrees. These channels are “bins” which represent spatial 

preferences in the channel tuning functions. If the x-axis plots the spatial preference, 

then one can assume that the 8 channels each produce their own, unique tuning function 

relevant to the neural preference. These tuning functions look like bell-curves or 
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traditional distributions (the peak of the amplitude referring to the peak arousal for a 

population of neurons and then diminishing the farther away from the peak). The 

forward encoding model (Brouwer and Heeger 2009) is used to obtain a summation of 

the 8 Channel Tuning Functions. This model assumes that each neural response is the 

product of the weighted, linear sum of 8 tuning functions where the peak amplitude is 

centered over the preferred stimulus channel. This pattern (i.e. a distribution where the 

peak is centered and diminishes from left to right) is the primary reason for presenting 

the data from each channel together. This conceptual overview of CTF’s sets the 

foundations for the following results section and how one can analyze and represent 

EEG frequencies for a specific stimulus.  

 

Mixture Modeling 

While Channel Tuning Functions allow EEG data to be represented and 

analyzed, a mixture-model is relevant in analyzing the behavioral data  (Zhang & Luck 

2008). Specifically, this model fits the two types of possible responses (guess and 

remembered) of a given participant across all trials. This model shows the probability of 

selecting each spatial location on the 360 degree array (+/- 180) for each object. In order 

to so, the model must include the probability of the participants guessing on any given 

trial in relation to correct responses (probability of retrieval) as well as the range of 

responses for an item in memory centered around 0 (mnemonic precision). Guessing 

refers to having the object not in memory and thus having equal likelihood of selecting 

every spatial location (including the correct one). In this way, the mixture model (Zhang 

& Luck 2008) accounts for the flat distribution expected as a response for an object not 
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in memory. As a mixture model combines guess and remembered responses, standard 

estimation is employed to arrive at the components separately (i.e. probability of having 

the item in memory and probability of a guess). Probability of retrieval (the likelihood 

of an “in memory” response) is then derived from subtracting the guesses from the total 

number of responses (calculated as the vertical onset from the uniform guess 

distribution or flat line). In other words, the flat line, representing equal distribution of a 

guess, and the tall curve representing responses in memory are collapsed across trials 

and form one bell curve.  Even with the object in memory, the representation is not 

perfect. As such, precision is calculated by how many degrees the response was from 

the correct position for an object that is in memory (e.g. if the participant chose the 190 

degree location for an object studied at 170 degrees, 30 degrees is the precision).  In this 

experiment, a response error histogram for one subject illustrates the mixture of objects 

in memory and not in memory (see Fig. 2). Specifically, the histogram shows an 

average of one participant's responses in relation to the correct response across all trials 

(correct spatial location represented as 0 degrees). Essentially, the mixture model 

attributes performance error to the differences in memory representations and gives rise 

to the behavioral measures reported and discussed in subsequent sections.  
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Results 

 

Hypothesis 

In order to cater to the breadth of aforementioned research questions, I generated 

a hypothesis for both behavioral and EEG data. From a performance perspective, I 

hypothesized that participants would become both more accurate and precise in 

identifying objects and remembering their respective spatial locations as the task 

progressed. This would be due to the repeated studying and testing on the objects. This 

hypothesis is partially based on the knowledge of the “testing effect” as supported in 

recent findings by Roediger and Karpicke (2006).   

Previous literature has revealed the role of the alpha frequency during Working 

Memory (WM) Tasks (Rihs et. al 2007), so I hypothesized that a Long Term Memory 

 (LTM) task would reflect the shift from a LTM retrieval to a WM representation based 

on the return of the alpha signal. In other words, I hypothesized that during Day 1 

studying/testing, objects were being studied in WM and consolidated into LTM. After 

retrieval, WM and thus the alpha signal, are back online while the object is held in mind 

to complete the task. The holding in mind of reconstructed LTM representations should 

invoke an alpha signal similar to that of a WM task. If my hypothesis holds true, results 

will confirm WM’s association with the alpha signal while elucidating the relationship 

between WM and LTM. Further, it provides a timeline of the retrieval process (i.e. the 

approximate time needed to retrieve an object's spatial information from LTM).  
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Behavioral Data 

 

Probability of Retrieval 

Probability of retrieval refers to the participant’s ability to accurately recognize 

and place an object. After 7 blocks of 840 trials, participants were able to correctly 

identify nearly all of the objects (See Fig 3). There were 8 blocks in all, but not all 

participants were able to complete 8 in the time constraint. Thus, the subsequent data 

will only report on 7 blocks for standardization purposes. As such, accuracy was 

recorded and averaged across the 7 blocks and participants had a 90 percent chance of 

accurately retrieving the object from LTM (M= .90, SD= .11). Overall, probability of 

recall increased by 12.6 percent. Individual averages and standard deviations were 

recorded for each Block in order to examine the differences within subjects (e.g. Block 

1 (M=82.5%, SD=12%) through Block 7 (M=94.5%, SD=8.6%)). This reveals a 

positive, linear relationship between number of blocks and probability of recall.  

 

Mnemonic Precision 

As previously mentioned in the methodology and probability of retrieval, 

subjects received feedback in degrees concerning their precision of response (e.g. a 

feedback of -30 if they were off 30 degrees to the left). A feedback of 0 indicated a 

perfect response in the 360-degree response array. Across all subjects, the average 

mnemonic precision was within approximately 13.5 degrees with a standard deviation 

of 4.87 for the combined 7 blocks (See Fig. 4). Overall, precision increases by about 

4.11 degrees after completing 7 blocks.  As with probability of retrieval, individual 



 
 

18 
 

averages were obtained for each block (e.g. Block 1 (M=16.3, SD=8.2) through Block 7 

(M=12.2, SD=4.33)). These values refer to the average deviation of every participant in 

a specific block as opposed to all blocks combined.  Comparable to probability of recall, 

results reveal a positive relationship between number of blocks and precision. However, 

unlike probability of recall, which consistently increases with each block progression, 

there is little to no improvement in precision between Blocks 4-7.  

 

EEG Data 

The resulting Channel Tuning Function reveals an induced, aggregate alpha 

signal across all electrodes at approximately 600 ms into the task (See Fig. 5). This is 

during the retrieval portion of Day 2 testing (See Fig. 1). This signal remains activated 

and consistent throughout the 1000 millisecond recording time per trial (Fig. 5).  
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Discussion 

 
I hypothesized that the alpha response typical of Working Memory (WM) tasks 

would also occur during a Long Term Memory (LTM) task. Specifically, that this signal 

return would correspond with the active representation held in mind that was retrieved 

from Long Term storage.  This was proven to be true as an alpha signal is invoked and 

sustained midway through the retrieval component of the task. Specifically, it occurs at 

approximately 600ms. This differs from spatial WM Tasks that provide an alpha 

response immediately after the onset of a stimulus(Rihs et. al 2006; Worden et al., 

2000; Yamagishi et al., 2003; Thut et al., 2006). The observed alpha signal return in an 

LTM task has several implications on the understanding of memory. The first being that 

this study replicates the alpha frequency’s role in spatial WM rehearsal.This is due to 

the similar alpha response in memories containing specific spatial information that are 

held in mind from LTM and WM rehearsal tasks. Evidently then, alpha responses are 

associated with active maintenance of stimuli, which is something that occurs in both 

WM and LTM retrieval tasks. However, this alpha response is invoked immediately in 

WM tasks and later in LTM spatial tasks. This suggests holding spatial information in 

mind retrieved from LTM (at approx. 600 ms) and spatial WM rely on similar neural 

mechanisms. Thus, it is intuitive that holding items in mind retrieved from LTM is re-

activating WM processes.  In other words, LTM involves retrieving a memory and re-

representing it in WM to invoke the same response that occurs immediately in WM 

tasks. The observed Alpha spike is thus indicative of the completed retrieval and the 

onset of a reconstructed spatial, WM representation. This study provides evidence for 
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the complementary nature or “pathway” between spatial LTM and WM on a 

neurological basis. Finally, because the signal is delayed for approximately 600 ms, this 

allows one to estimate how long it takes to retrieve a spatial memory.  

The study presents many follow up questions and future directions. There is 

little research studying LTM in isolation as it is incredibly difficult to isolate LTM and 

WM. However, this study provides a novel insight on its retrieval. Particularly, the 

length of time required to retrieve a spatial memory. This study is one of the first to 

show the onset of the alpha signal as synonymous to the end of LTM retrieval.  In 

addition to elucidating the relationship between LTM and WM on a neural level, it 

provides quantitative insights and a methodology that will help fuel future experiments. 

Particularly, experiments that test LTM retrieval times with a variety of different stimuli 

and features. This study examined the neural activity post retrieval/the maintenance of a 

LTM, spatial representation. A logical follow up is designing experiments that examine 

the retrieval period itself. What exactly is occurring in the brain before that 600 ms 

mark? Is a different frequency band induced? This will help uncover a neural 

mechanism for the actual remembering of the stimuli. There has been a large emphasis 

on the notion that this pertains only to spatial LTM. It would be beneficial to extend 

research to a variety of features and complexities. This will help elucidate the 

relationship between the frequency bands and memory processes. Just how associated 

are specific frequency bands with a certain type of memory? Are they not at all and 

rather solely feature dependent? Is it a combination of both? Further, this experiment 

serves as a catalyst for further research in examining the time of retrieval. The overall 

average was approximately 600 ms, but what attributes individual variances in retrieval 
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time? Is it Working Memory capacity or IQ differences? Further, does time of retrieval 

vary not only within subjects but also within trials and why? Are memories that are 

more precise more quickly recalled? Finally, is retrieval time dependent on feature? In 

other words, would one expect a similar time for retrieving color or other features from 

LTM? Additional research is needed to address these new questions generated from this 

study.  

My hypothesis was also supported in the accuracy and precision of participants’ 

performance. In both the “probability of recall” and “mnemonic precision” conditions, 

subjects improved across trials. There was a positive, linear relationship in probability 

of recall as subjects had nearly a 95 percent chance of correctly recalling an object by 

the final block. With each progression, performance improved which replicates the 

efficacy of the Testing Effect. Testing oneself on the material is truly the best way to 

remember material as the participant would have intuitively acquired 100 percent 

probability of recall if trends continued. Considering the large amount of items, this is 

an impressive feat and has generalizable implications concerning how one approaches 

studying and academia. The positive and effective results from testing periods changes 

the way society views testing. It is no longer just a means of assessment but also an 

incredibly effective way to learn (and prepare for such assessment). Precision also 

improved as a function of repetition and progression. It would be valuable for further 

research to test just how many blocks/tests are needed to attain perfect retrieval for this 

amount of objects. At what amount of objects or features would the testing effect begin 

to diminish for? This would help researchers acquire insights into the capacity limits of 

LTM rehearsal. However, unlike probability of recall, results were relatively stagnant 
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after the third block. This suggests that precision of memories is more difficult to 

improve or increase and that LTM spatial representations may have a precision 

threshold around 12 degrees. The data suggests that precision would remain around 12 

for every block after 7. This has broad implications concerning the limitations on our 

memories and how precise they can be. Further research is needed to examine this trend 

or perhaps reflect a similar threshold. From a societal standpoint, does a lack of 

precision reveal the need for skepticism in human accounts such as eyewitness 

testimony? Or is the precision threshold a minor detail that does not impact memories 

enough for them to prove invalid? Further research is needed to address such questions.  

The overarching goal of this experiment, and similar literature, is to bridge the 

gap between neural mechanisms and mental processes. The end goal being a “neural 

map” of memory processes which would allow full understanding and association 

between neural activity and observed phenomena. How can a phenomenon like 

memory, that is so essential, and constantly occurring, be so poorly understood?  If the 

sects of memory function as a holistic process, you must first dissect and attempt to 

isolate each for improved understanding. With this heightened understanding, this 

research provides potential implications for the clinical treatment and interventions of 

neurological disorders (e.g. in order to fix a car engine, you must understand each part, 

how it works, and how it works together). Understanding these relationships may also 

refine certain therapies based on the wiring and association of neurons in addition to 

enhancing or creating other therapies for cognitive or memory disorders. Further, the 

creation of a neural map that has associated neural frequencies to brain functions 

provides many benefits. One could examine discrepancies in those frequencies 



 
 

23 
 

whichreveals malfunctions in the brain. This could serve as the catalyst for 

pharmaceuticals that are able to manipulate various areas of the brain and neural 

activity responsible for various cognitive functions.  
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Figures 

Figure 1: Task Figure for “Day 2” EEG Testing with Relevant Times (ms) 
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Figure 2: Response Error Histogram Representing a Mixed Model 
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Figure 3: Behavioral Data for Probability of Recall as a Percent 

 
 

 

Figure 4: Behavioral Data for Mnemonic Precision (SD) 
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Figure 5: Average Alpha (8-12 Hz) Channel Tuning Functions for all participants 

observed in EEG Testing 
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