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DISSERTATION ABSTRACT

Min Yong Ro

Doctor of Philosophy

Department of Mathematics

March 2015

Title: Approximate Diagonalization of Homomorphisms

In this dissertation, we explore the approximate diagonalization of unital

homomorphisms between C∗-algebras. In particular, we prove that unital

homomorphisms from commutative C∗-algebras into simple separable unital C∗-

algebras with tracial rank at most one are approximately diagonalizable. This

is equivalent to the approximate diagonalization of commuting sets of normal

matrices.

We also prove limited generalizations of this theorem. Namely, certain

injective unital homomorphisms from commutative C∗-algebras into simple

separable unital C∗-algebras with rational tracial rank at most one are shown to

be approximately diagonalizable. Also unital injective homomorphisms from AH-

algebras with unique tracial state into separable simple unital C∗-algebras of tracial

rank at most one are proved to be approximately diagonalizable. Counterexamples

are provided showing that these results cannot be extended in general.

Finally, we prove that for unital homomorphisms between AF-algebras,

approximate diagonalization is equivalent to a combinatorial problem involving

sections of lattice points in cones.
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CHAPTER I

INTRODUCTION

One of the most significant theorem of linear algebra is the spectral theorem

which is often stated in the following way:

Theorem I.1 (Spectral Theorem). Let n ≥ 1 be an integer and let a ∈ Mn(C) be

given. Then a is a normal matrix if and only if there exist λi ∈ C for i = 1, 2, . . . , n

and a unitary matrix u ∈Mn(C) such that

uau∗ =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 0 λn


.

In this statement, the spectral theorem is apparently a statement regarding

the algebraic structure of finite-dimensional operators and thus about C∗-algebras.

This connection can be made more apparent by noticing that the following

statement implies the spectral theorem:

Theorem I.2. Let X be a compact Hausdorff space and let n ≥ 1 be an integer.

We denote by C(X) the C∗-algebra of complex-valued continuous functions on X

with pointwise operations and supremum norm. We denote by Mn the C∗-algebra

of n × n complex matrices with operator norm. For every unital homomorphism

φ : C(X) → Mn, there exist points ξi ∈ X for i = 1, 2, . . . , n and a unitary u ∈ Mn
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such that

uφ(f)u∗ =



f(ξ1) 0 · · · 0

0 f(ξ2) · · · 0

...
...

. . .
...

0 0 0 f(ξn)


for all f ∈ C(X).

Indeed, we can see that Theorem I.1 follows by applying this theorem to the

case where X = sp(a) is the spectrum of a and φ is the unital homomorphism

induced by continuous functional calculus. In addition to being a C∗-algebraic

statement, this theorem can be proved using C∗-algebraic techniques.

Proof. There is the induced injective unital homomorphism φ̄ : C(X)/ kerφ →

Mn(C). By Gelfand’s representation theorem, there exists a compact space Y such

that C(X)/ kerφ ∼= C(Y ). Since Mn(C) is finite-dimensional and φ is injective,

C(Y ) is finite-dimensional and so Y is finite. So there exists an integer k ≥ 1

such that C(Y ) ∼= Ck. And so φ can be written as the composition of two unital

homomorphisms α : C(X)→ Ck and β : Ck →Mn.

Let πj : Ck → C denote the the jth coordinate projection map for j =

1, 2, . . . , k. Since πj ◦ α is a homomorphism from C(X) to C, there exist points

ζj for i = 1, 2, . . . , k such that πj ◦ α(f) = f(ζj) for all f ∈ C(X). So

α(f) = (f(ζ1), f(ζ2), . . . , f(ζk))

for all f ∈ C(X).
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Let ej denote the jth standard basis vector of Ck for j = 1, 2, . . . , k. Since

the projections ej are mutually orthogonal, the projections qj = β(ej) are mutually

orthogonal and
∑k

j=1 qj = 1.

Let rj denote the rank of qj for j = 1, 2, . . . , k. Let sj =
∑j

i=1 ri for

j = 1, 2, . . . , k. Also we set s0 = 1. There exist mutually orthogonal rank one

projections pi for i = 1, 2, . . . , n such that

sj∑
i=sj−1

pi = qj

for j = 1, 2, . . . , k.

Since

φ(f) = β(α(f)) =
k∑
j=1

f(ζj)qj,

we set ξi = ζj for j = 1, 2, . . . , k and i such that sj ≤ i ≤ sj+1. So we have

φ(f) =
n∑
i=1

f(ξi)pi.

Finally, there exists a unitary matrix u ∈ Mn such that upiu
∗ = ei,i for

i = 1, 2, . . . , n, where ei,i ∈ Mn is the matrix with 1 in the i, i position and 0

otherwise. So we have

uφ(f)u∗ =
n∑
i=1

f(ξi)upiu
∗ =



f(ξ1) 0 · · · 0

0 f(ξ2) · · · 0

...
...

. . .
...

0 0 0 f(ξn)


.
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We will return to this homomorphism perspective in a moment, but

considering Theorem I.1, we notice that this formulation lends itself to a natural

generalization. In particular, if we replace C with a complex involutive algebra A,

we can consider the algebra Mn(A) of n × n matrices with entries in A and ask the

question: when is every normal matrix in Mn(A) unitarily equivalent to a diagonal

matrix? The converse is obvious, since a diagonal matrix is normal if and only if

each of its entries is normal. This question is particularly pertinent in the case

where A is a C∗-algebra due to the prevalence of amplification as a technique in

proofs.

It was with this generalization in mind that Richard Kadison proved the

following:

Theorem I.3 (Corollary 3.20 of [12]). Let N be a von Neumann algebra and let

n ≥ 1 be an integer. For any normal matrix a ∈ Mn(N), there exist ai ∈ N for

i = 1, 2, . . . , n such that

uau∗ =



a1 0 · · · 0

0 a2 · · · 0

...
...

. . .
...

0 0 0 an


.

To further understanding in the case of general C∗-algebras, Kadison posed

the question: for what topological spaces X is every normal matrix over C(X)

diagonalizable? In the same year, Karsten Grove and Gert Pedersen gave a full

answer to this question:

Theorem I.4 (Theorem 5.6 of [8]). Let X be a compact Hausdorff space and n ≥ 1

an integer. For every normal matrix f ∈ Mn(C(X)), there exist fi ∈ C(X) for
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i = 1, 2, . . . , n and a unitary matrix u ∈Mn(A) such that

ufu∗ =



f1 0 · · · 0

0 f2 · · · 0

...
...

. . .
...

0 0 0 fn


if and only if

1. X is sub-Stonean,

2. dimX ≤ 2,

3. H1(X0, Sm) is trivial for every closed subset X0 ⊆ X and all m, where Sm

denotes the symmetric group on m generators, and

4. H2(X0,Z) is trivial for every closed subset X0 ⊆ X.

Theorem I.4 suggests that diagonalization is rare in general. Beyond the

restrictive cohomological conditions, X being sub-Stonean corresponds to C(X)

being a SAW ∗-algebra. While a significant concept, it does not reflect the behavior

of more general C∗-algebras. For example, the only compact sub-Stonean spaces for

which C(X) is separable are those consisting of finitely many points (Corollary 1.6

of [9]).

With the commutative case as a guide, we should expect diagonalization only

in classes of C∗-algebras related to von Neumann algebras, such as the class of

AW ∗-algebras or SAW ∗-algebras. In particular, the proof of Theorem I.3 is based

on the abundance of projections in maximal abelian self-adjoint subalgebras in

von Neumann algebras, which does not hold in general. In fact, a generalization

of Kadison’s result has been made by Chris Heunen and Manuel Reyes in [10],

where the von Neumann algebra N is replaced with an AW ∗-algebra, where there
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is similar behavior in its maximal abelian self-adjoint subalgebras. Conversely,

constructing certain maximal abelian self-adjoint subalgebras with few projections

would be sufficient to show that diagonalization does not generally hold in that

C∗-algebra.

As an analytic method, when we know that a certain equation cannot

be solved exactly, we turn to approximations. Following this principle, since

diagonalization seems rare, we consider an approximate version.

Definition I.5. Let A and B be unital C∗-algebras and let n ≥ 1 be an integer. A

unital homomorphism φ : A → Mn(B) is approximately diagonalizable if for every

ε > 0 and every finite set F ⊆ A, there exist unital homomorphisms φi : A → B for

i = 1, 2, . . . , n and a unitary u ∈Mn(B) such that

∥∥∥∥∥∥∥∥∥∥∥∥∥
uφ(a)u∗ −



φ1(a) 0 · · · 0

0 φ2(a) · · · 0

...
...

. . .
...

0 0 0 φn(a)



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε

for all a ∈ F .

A matrix a ∈ Mn(A) is approximately diagonalizable if for every ε > 0, there

exist ai ∈ A for i = 1, 2, . . . , n and a unitary u ∈Mn(A) such that

∥∥∥∥∥∥∥∥∥∥∥∥∥
uφ(a)u∗ −



a1 0 · · · 0

0 a2 · · · 0

...
...

. . .
...

0 0 0 an



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε.
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Notice that a normal matrix a ∈ Mn(A) is approximately diagonalizable if

and only if the unital homomorphism induced by continuous functional calculus is

approximately diagonalizable.

We see that approximate diagonalization applies far more widely than

diagonalization does. Yifeng Xue proves in [30] that if X is a compact metric

space such that dim(X) ≤ 2 and Ȟ2(X,Z) = 0, then every self-adjoint matrix

over C(X) is approximately diagonalizable. If in addition to the conditions above,

Ȟ1(X,Z) = 0, then every unitary matrix is approximately diagonalizable.

Also, Huaxin Lin proves in [21] that if X is locally an absolute retract and Y

has dim(Y ) ≤ 2, then every unital homomorphism from C(X) to Mn(C(Y )) is

approximately diagonalizable for any integer n ≥ 1.

On the non-commutative side, Shuang Zhang proves in [31] that projections

in a C∗-algebra of real rank zero are diagonalizable and that therefore any matrix

that can be approximated by a matrix of finite spectrum. In particular the self-

adjoint matrices are approximately diagonalizable. Unfortunately, when K1 is non-

trivial, normal matrices cannot generally be approximated by matrices of finite

spectrum.

We point out that the definition of approximate diagonalization was chosen

to allow the choice of diagonal entries to rely on ε. This is the notion used in all of

the previous work. But there are times when a slightly stronger version holds. To

explain, we make the following definitions.

Definition I.6. Let A and B be two unital C∗-algebras. Two unital

homomorphisms φ : A → B and ψ : A → B are approximately unitarily equivalent if
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for every ε > 0 and every finite set F ⊆ A, there exists a unitary u ∈ B such that

‖φ(a)− uψ(a)u∗‖ < ε

for all a ∈ F .

So a homomorphism being approximately unitarily equivalent to a diagonal

homomorphism is equivalent to being approximately diagonalizable where the

diagonal homomorphisms do not depend on the choice of ε.

The main tool for this dissertation comes from the classification of

homomorphisms from AH-algebras up to approximate unitary equivalence,

which we discuss in Chapter II after reviewing some basic definitions for C∗-

algebras and the invariants used in the classification of C∗-algebras. In Chapter

III, we review some partially ordered abelian group theory. In Chapter IV, we

prove that homomorphisms from commutative C∗-algebras to C∗-algebras of

tracial rank at most one are approximately diagonalizable, which implies the

approximate diagonalization of normal matrices over those C∗-algebras. We also

show that certain homomorphisms from commutative C∗-algebras to C∗-algebras of

rational tracial rank at most one are approximately diagonalizable, but that these

homomorphisms are not generally approximately diagonalizable. In Chapter V,

we show that approximate diagonalization holds generally when the domain has

a unique tracial state or when the codomain has divisible K0. We finally show

that for AF-algebras with finitely generated K0, approximate diagonalization is

equivalent to a combinatorial problem involving lattice points in cones.
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CHAPTER II

C∗-ALGEBRAS AND THEIR INVARIANTS

Basic C∗-Algebra Theory

For the sake of completeness, we include some of the basic definitions of C∗-

algebras. The primary references used for the material in this section are [13] and

[3].

Definition II.1.1. A Banach algebra is a pair (A, ‖·‖) of an associative algebra

A and a submultiplicative norm ‖·‖ on A such that the metric induced by ‖·‖ is

complete.

A Banach algebra A is a C∗-algebra if there exists an operation a 7→ a∗ on A

such that

1. (a+ b)∗ = a∗ + b∗,

2. (λa)∗ = λ̄a∗,

3. (ab)∗ = b∗a∗,

4. (a∗)∗ = a, and

5. ‖a∗a‖ = ‖a‖2

for all a, b ∈ A and λ ∈ C.

A subalgebra B of A is called a C∗-subalgebra if b ∈ B implies b∗ ∈ B and B

is a closed set. In other words, B is a C∗-subalgebra if B itself is a C∗-algebra. We

say that B is a unital C∗-subalgebra if the unit of A is contained in B.

A C∗-algebra is unital if it contains a multiplicative identity 1. We note that

1∗ = 1 and ‖1‖ = 1 follow from the properties above.

A C∗-algebra is simple if it has no nontrivial closed two-sided ideals.

9



A C∗-algebra is separable if it contains a countable dense subset.

Based on operator theory language, we have the following notions for

elements of a C∗-algebra.

Definition II.1.2. Let A be a C∗-algebra. Let a ∈ A. We say that a is self-adjoint

if a∗ = a.

We say that a is normal if a∗a = aa∗.

We say that a is a projection if a = a∗ = a2.

When A is unital, we say that a is unitary if a∗a = aa∗ = 1.

We say that a is positive if there exists b ∈ A such that a = b∗b.

Furthermore, we denote the set of self-adjoint elements of A by Asa, the group

of unitaries of A by U(A), and the set of positive elements of A by A+. For a ∈ A+,

we will write a ≥ 0.

We define a partial ordering on Asa by a ≤ b if and only if b − a ∈ A+. A

C∗-subalgebra B of A is called hereditary if for any a ∈ A and b ∈ B, the inequality

0 ≤ a ≤ b implies a ∈ B.

While an algebraic homomorphism between Banach algberas may not be

continuous, an algebraic homomorphism between C∗-algebras that preserves the

adjoint operation is even contractive.

Definition II.1.3. Let A and B be C∗-algebras. A function φ : A → B is a

homomorphism if

1. φ(a+ b) = φ(a) + φ(b),

2. φ(λa) = λφ(a),

3. φ(a∗) = φ(a)∗, and

4. φ(ab) = φ(a)φ(b)
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for all a, b ∈ A and λ ∈ C. If in addition A and B are unital, a homomorphism

φ : A→ B is unital if φ(1) = 1.

Often, homomorphisms are too restrictive. At the same time, linear maps are

too general and do not reflect any of the algebraic properties of the C∗-algebra.

One of the proper balances is to use positive linear maps and in particular, the

positive linear functionals.

Definition II.1.4. Let A and B be C∗-algebras. A linear map φ : A → B is

positive if φ(A+) ⊆ B+.

If A is a unital C∗-algebra, a positive linear map σ : A → C is a state if

σ(1) = 1. A state τ is a tracial state if τ(ab) = τ(ba) for all a, b ∈ A.

The set of tracial states of A is denoted T (A) and is called the tracial state

space.

An important method of construction for C∗-algebras is to consider inductive

limits (in categorical language, colimits) of well-known C∗-algebras. More precisely,

an inductive limit of C∗-algebras is a colimit in the category of C∗-algebras or

unital C∗-algebras indexed by the category whose objects are positive integers and

for which a morphism from m to n exists if and only if m ≤ n.

Put concretely, for any sequence of C∗-algebras (An) with homomorphisms

φn : An → An+1, there exists a C∗-algebra A, unique up to homomorphism, and

homomorphisms φn,∞ : An → A such that φn,∞ = φn+1,∞ ◦ φn for all n, and A is the

smallest such C∗-algebra in the sense that for any C∗-algebra B and any sequence

of homomorphisms ψn : An → B such that ψn = ψn+1 ◦ φn for all n, there exists a

unique homomorphism from ψ : A→ B such that ψ ◦ φn,∞ = ψn for all n.

When a C∗-algebra is isomorphic to an inductive limit of finite-dimensional

C∗-algebras, we say that it is an AF-algebra. When a C∗-algebra A is isomorphic to
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an inductive limit of C∗-algebras of the form pMn(C(X))p, where p ∈ Mn(C(X))

is a projection and X is a finite CW -complex, we say that A is an AH-algebra.

We note that every compact metric space can be written as the inverse limit of

finite CW -complexes by using the geometric realizations of the nerves of finite open

covers. As a result, every separable, commutative, unital C∗-algebra is a unital

AH-algebra. Also by taking finite sets for X, we see that every AF-algebra is an

AH-algebra.

We will consider the AF-algebra Q particularly. This algebra Q is defined as

the inductive limit of Mn! with connecting maps defined by

a 7→



a 0 · · · 0

0 a · · · 0

...
...

. . .
...

0 0 0 a


,

where the latter is a block diagonal matrix consisting of n + 1 square blocks of size

n!.

Our main interest will be in tensoring Q with other C∗-algebras. Generally,

tensor products are complicated in C∗-algebras, but in the case where are tensoring

with an AF-algebra, we can described the situation concretely. Namely the C∗-

algebra A ⊗ Q is isomorphic to the inductive limit of Mn!(A) with analogous

connecting maps to the ones above.

We will also be considering the Jiang-Su algebra, denoted Z. The Jiang-

Su algebra is isomorphic to the inductive limit of certain C∗-subalgebras of

C([0, 1],Mn) known as dimension drop interval algebras. See [11] for a proper

definition and more information. We briefly mention the definition to note that as
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with Q, the tensor product with Z is well-defined even without the general theory

of tensor products.

Of particular interest are the C∗-algebras for which tensoring with Z gives

us the same C∗-algebra up to isomorphism. We will say that A is Z-absorbing if

A⊗Z ∼= A.

Critical to understanding C∗-algebras are the various notions of rank, which

try to generalize the notion of covering dimension for topological spaces. The most

important for this dissertation is the tracial rank, but its connection with real rank

and stable rank are worth mentioning.

Definition II.1.5. Let A be a C∗-algebra. For any integer n ≥ 0, the real rank of

A is at most n, written RR(A) ≤ n, if for every n+1 elements a1, a2, . . . , an+1 ∈ Asa

and ε > 0, there exist n + 1 elements b1, b2, . . . , bn+1 ∈ Asa such that
∑
b∗kbk is

invertible and ∥∥∥∥∥
n∑
k=1

(ak − bk)∗(ak − bk)

∥∥∥∥∥ < ε.

We write RR(A) = n if RR(A) ≤ n and RR(A) 6≤ n − 1, and say that A has

real rank n.

The case n = 0 is of particular interest. A C∗-algebras has real rank

zero if the invertible self-adjoint elements are dense in the self-adjoint elements.

A C∗-algebra having real rank zero is equivalent to the property FS, i.e. self-

adjoint elements with finite spectrum are dense in the set of self-adjoint elements.

See Theorem 3.2.5 of [13] or Theorem 2.6 of [1]. This is why projections being

(simultaneously) diagonalizable in a C∗-algebra of real rank zero implies that self-

adjoint matrices are approximately diagonalizable in the same C∗-algebra as noted

in Chapter I.

13



As stated above, real rank is a generalization of covering dimension of a

topological space. In particular, if X is a compact metric space, then RR(C(X)) =

dim(X) (see Corollary 3.2.10 of [13] or Proposition 1.1 of [1]).

Definition II.1.6. Let A be a C∗-algebra. For any integer n ≥ 0, the (topological)

stable rank of A is at most n, written tsr(A) ≤ n, if for every n elements

a1, a2, . . . , an ∈ A and ε > 0, there exists n elements b1, b2, . . . , bn ∈ A such that∑
b∗kbk is invertible and

∥∥∥∥∥
n∑
k=1

(ak − bk)∗(ak − bk)

∥∥∥∥∥ < ε.

We write tsr(A) = n if tsr(A) ≤ n and tsr(A) 6≤ n − 1, and say that A has

(topological) stable rank n.

Notice that a C∗-algebra has stable rank one if the invertible elements are

dense in the C∗-algebra. We will be exclusively concerned with the stable rank one

case. In particular, C∗-algebras of stable rank one are stably finite in the following

sense. See Propositon 3.3.4 of [13].

Definition II.1.7. Let A be a unital C∗-algebra. We say that A is finite if x∗x = 1

implies xx∗ = 1 for all x ∈ A. We say that A is stably finite if Mn(A) is finite for

every integer n ≥ 1.

Finally, we define the notion of tracial rank.

Definition II.1.8. For every integer n, we denote by In the class of C∗-algebras

consisting of unital hereditary C∗-subalgebras of C∗-algebras of the form C(X)⊗ F

where X is a finite CW -complex with dim(X) ≤ n and F is a finite-dimensional

C∗-algebra.
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Let A be a unital simple C∗-algebra. For any integer n ≥ 0, the tracial rank

of A is at most n, written TR(A) ≤ n if for any ε > 0, any finite set F ⊆ A and

any nonzero element a ∈ A+, there exist a nonzero projection p ∈ A and a unital

C∗-subalgebra B ∈ In of pAp such that

1. ‖px− xp‖ < ε for all x ∈ F ,

2. inf{‖pxp− y‖ : y ∈ B} < ε for all x ∈ F ,

3. 1− p ∼ q (see Definition II.2.1 below) for some projection q ∈ aAa.

We write TR(A) = n if TR(A) ≤ n and TR(A) 6≤ n− 1 and we say that A has

tracial rank n.

We note that if TR(A) <∞, then RR(A) ≤ 1 and tsr(A) = 1 (Theorem 6.9 of

[13]).

Elements of K-Theory

From the noncommutative topology viewpoint of C∗-algebras, we consider the

K-theory of C∗-algebras, which is closer to topological K-theory than to algebraic

K-theory. We will consider a version of algebraic K-theory in Section II.4.

Let A be unital C∗-algebra. We denote by M∞(A) the algebraic inductive

limit (in other words, the sequential colimit in the category of normed involutive

algebras) of Mn(A) with connecting maps

a 7→

 a 0

0 0

 .

Definition II.2.1. Two projections p and q in an involutive algebra A are Murray-

von Neumann equivalent, and we write p ∼ q, if there exists an element v ∈ A such

that p = v∗v and q = vv∗.
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We say that two projections p and q in M∞(A) are stably equivalent if there

exist integers m,n ≥ 0 such that

 p 0

0 1Mm(A)

 ∼
 q 0

0 1Mn(A)

 .

Let V (A) denote the stable equivalence classes of projections in M∞(A). We

denote the equivalence class of p by [p]. Then V (A) is a semigroup with addition

defined by

[p⊕ q] =

 p 0

0 q

 .

We define K0(A) to be the Grothendieck group of V (A). Further, by

considering V (A) as a cone in K0(A), we can consider K0(A) as a pre-ordered

abelian group (i.e. K0(A) has a translation-invariant pre-order). When A is stably

finite, K0(A) is a partially ordered abelian group. Also, when A is unital, it is

easy to see that [1A] is an order unit, since by definition of addition, we have

n[1A] = [1Mn(A)]. See Definition III.1.1.

K0 is a functor from the category of unital stably finite C∗-algebras

to the category of partially ordered abelian groups with order units. For a

unital homomorphism φ between unital C∗-algebras, we denote by K0(φ) the

homomorphism induced by the functor K0. More generally, K0 is a functor from

the category of C∗-algebras to the category of preordered abelian groups.

For every integer n ≥ 1, we denote by Un(A) the group of unitaries in Mn(A).

Let U0(A) denote the connected component of U(A) containing 1A and let Un
0 (A)

denote the connected component of Un(A) containing 1Mn(A). We note that Un
0 (A)

is a normal subgroup of Un(A).
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We define K1(A) = lim−→Un(A)/Un
0 (A) with connecting homomorphisms

Un(A)/Un
0 (A)→ Un+1(A)/Un+1

0 (A)

defined by

u 7→

 u 0

0 1

 .

We note that K1(A) is an abelian group. Also when A has stable rank one,

the stabilization is unnecessary in the sense that U(A)/U0(A) → K1(A) is an

isomorphism. For a unital homomorphism φ between unital C∗-algebras, we denote

the induced homomorphism

K1 is a functor from the category of C∗-algebras to the category of abelian

groups. For any unital homomorphism φ between C∗-algebras, we denote by K1(φ)

the homomorphism induced by the functor K1. More generally, K1 is a functor

from the category of C∗-algebras to the category of abelian groups.

Tracial State Spaces

When considered as a subspace of the dual space A∗ of bounded linear

functionals and equipped with the weak-∗ topology, T (A) is a compact, convex set.

Futhermore, T (A) is a Choquet simplex (see Theorem 3.1.18 of [28]), an infinite-

dimensional generalization of a classical simplex. We refer the reader to [26] or

Chapter 10 of [6] for more information about Choquet simplices. Some categorical

considerations will be necessary for the tracial state space.
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Definition II.3.1. Let K1 and K2 be convex subsets of real vector spaces V and

W . A function φ : K1 → K2 is affine if for all λ ∈ R with 0 ≤ λ ≤ 1, we have

φ(λx+ (1− λ)y) = λφ(x) + (1− λ)φ(y)

for all x, y ∈ K1.

Let K be a convex subset of a real vector space V . We say that x ∈ K is an

extreme point of K if for all y, z ∈ K and λ such that 0 < λ < 1 and

λy + (1− λ)z = x,

we have x = y = z. The set of extreme points of K is denoted by ∂eK. It is clear

that affine functions map extreme points to extreme points.

The category of compact convex sets is the category whose objects are

compact convex subsets of real Hausdorff locally convex topological vector spaces

and whose morphisms are continuous affine functions. See Chapter 5 of [6] for more

details.

There is a contravariant functor T (•) from the category of unital C∗-algebras

to the category of compact convex sets that maps a C∗-algebra A to the tracial

state space T (A) and that maps a homomorphism φ : A → B to its pullback

φT : T (B)→ T (A), which is defined by φT (τ) = τ ◦ φ for τ ∈ T (B).

Definition II.3.2. A real vector space V which is also a partially ordered abelian

group (see Definition III.1.1) is a partially ordered vector space if for all λ ∈ [0,∞)

and x ∈ V+, we have λx ∈ V+.
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There is also a contravariant functor Aff(•) from the category of compact

convex sets to the category of real partially ordered Banach spaces that maps

a compact convex set K to the space of real-valued positive continuous affine

functions on K denoted Aff(K), with pointwise operations and supremum norm

and which maps a continuous affine function φ : K1 → K2 to its pullback from

Aff(K2) to Aff(K1), defined by f 7→ f ◦ φ for all f ∈ Aff(K2).

We note that for a Choquet simplex K, the restriction from Aff(K) to

C(∂eK,R) the real vector space of continuous functions on ∂eK is an isometric

isomorphism. See Corollary 11.15 of [6] for more details.

There are several orderings that one could put on Aff(K). The one that we

will usually use is the pointwise ordering in which f ≤ g if f(x) ≤ g(x) for all

x ∈ K. When dealing with simple C∗-algebras, we also use the strict ordering in

which f � g if f(x) < g(x) for all x ∈ K.

By composing these functors, one obtains a covariant functor from the

category of unital C∗-algebras to the category of real partially ordered Banach

spaces. Given a unital homomorphism between unital C∗-algebras φ : A → B,

we denote the induced homomorphism by φ] : Aff(T (A)) → Aff(T (B)), which is

defined by

φ](f)(τ) = f(τ ◦ φ)

for f ∈ Aff(T (A)) and τ ∈ T (B).

In fact, the functor Aff(T (•)) maps the category of unital C∗-algebras to the

category of pointed real partially ordered Banach spaces. This category is defined

by taking the objects to be pairs (X, x0) consisting of a real partially ordered

Banach space X and a distinguished point x0 ∈ X. The morphisms from (X, x0)

to (Y, y0) are positive bounded linear maps L : X → Y such that L(x0) = y0. We
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will call these maps unital. For Aff(K), the distinguished element is the constant

function 1.

Furthermore, there is a natural transformation ρ• from K0(•) to Aff(T (•)).

Given an integer n ≥ 1 and a projection p = (pij) ∈Mn(A), we define

ρA([p])(τ) =
n∑
i=1

τ(pii).

We will denote the sum by (τ ⊗ Tr)(p). Given another unital C∗-algebra C and a

unital homomorphism from C to A, by naturality, we induce a commutative square

from this pairing. To consider a pair of morphisms induced from a C∗-algebra

homomorphism, we make the following definition.

Definition II.3.3. Let C and A be unital C∗-algebras. Let α : (K0(C), 1C) →

(K0(A), 1A) be a normalized positive group homomorphism and let

γ : Aff(T (C)) → Aff(T (A)) be a unital positive continuous linear map. The pair

(α, γ) is a compatible pair if ρA ◦ α = γ ◦ ρC .

Bivariant KL Groups and the Algebraic K1 Group

Let A be a C∗-algebra. Following Marius Dadarlat and Terry Loring in [2], we

define the K-groups with Z/k coefficients by Ki(A;Z/k) = Ki(A⊗ Ck), where Ck is

a commutative C∗-algebra with K0(Ck) ∼= Z/k and K1(Ck) = 0. We also make the

convention that Ki(A;Z/0) = Ki(A). We write

K(A) = K0(A)⊕K1(A)⊕
∞⊕
k=2

(K0(A;Z/k)⊕K1(A;Z/k)).
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Dadarlat and Loring prove in [2] that if C is a C∗-algebra satisfying UCT and A is

separable, then

KL(C,A) ∼= HomΛ(K(C), K(A)),

where we mean Z/2 ⊕ Z≥0 graded group homomorphisms that preserve certain

exact sequences induced by the so-called Bockstein operations. We will take this

isomorphism to be our definition of the KL groups. In particular, we will identify

Hom(Ki(C), Ki(A)) as a subgroup of KL(C,A).

We also note that a unital homomorphism φ : C → A induces an element of

KL. We will denote this element by KL(φ).

The only fact that we will need about KL groups is the UCT. To state this

fact, we first make some definitions.

Definition II.4.1. Let G be an abelian group. A subgroup H is pure if for every

integer n ≥ 1 and every g ∈ G, we have ng ∈ H implies g ∈ H. An extension

0→ H1 → G→ H2 → 0

is pure if H1 is a pure subgroup of G. Let Pext(H2, H1) denote the subgroup

generated by the equivalence classes of pure extensions in Ext(H2, H1). We define

ext(H2, H1) = Ext(H2, H1)/Pext(H2, H1).

We have a KL version of the UCT (see equation 2.4.9 of [27]) when C

satisfies the UCT:

0→ ext(K∗(C), K∗+1(A))
ε−→ KL(C,A)

Γ−→ Hom(K∗(C), K∗(A))→ 0,
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Note that we use Γ instead of the more standard γ for the group homomorphism

KL(C,A)→ Hom(K∗(C), K∗(A)) due to our use of γ.

Following the notation found in [16], [20], and [22], we make the following

definitions.

Definition II.4.2. We denote by KLe(C,A)++ the set of κ ∈ KL(C,A) such that

κ(K0(C)+ \ {0}) ⊆ K0(A) \ {0} and κ([1C ]) = [1A].

Let κ ∈ KLe(C,A)++ and let γ : Aff(T (C)) → Aff(T (A)) be a unital positive

continuous linear map. We say that (κ, γ) is a compatible pair if the restriction of κ

to K0(C) and γ are compatible.

For any unital C∗-algebra C, let CU(C) denote the normal subgroup

generated by the group commutators of U(C). More precisely,

CU(C) = {uvu∗v∗ : u, v ∈ U(C)}

and define CU0(C) = CU(C) ∩ U0(C). We also define

U∞(C) = lim−→Un(C),

U∞0 (C) = lim−→Un
0 (C),

CU∞(C) = lim−→CUn(C), and

CU∞0 (C) = lim−→CUn
0 (C),

where, as before, we use the connecting homomorphisms

u 7→

 u 0

0 1

 .
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Also for every unitary u ∈ U(C), we denote the equivalence class in U(C)/CU(C)

of u by ū.

If A is a unital, simple C∗-algebra with TR(A) ≤ 1, then the map

U(A)/CU(A)→ U∞(A)/CU∞(A) is an isomorphism. See Corollary 3.5 of [17].

For each τ ∈ T (C), each u ∈ U∞0 (C), and each piecewise smooth path

ζ ∈ C([0, 1], U∞0 (C))

with ζ(0) = 1 and ζ(1) = u, we define

∆(ζ)(τ) =

∫ 1

0

(Tr⊗τ)

(
dζ(t)

dt
ζ−1(t)

)
dt.

As shown in [29], this induces a continuous homomorphism

∆̄: U∞0 (C)/CU∞0 (C)→ Aff(T (C))/ρC(K0(C)),

which provides a natural short exact sequence:

0→ Aff(T (C))/ρC(K0(C))→ U∞(C)/CU∞(C)→ K1(C)→ 0.

Since Aff(T (C))/ρC(K0(C)) is injective, this short exact sequence splits, though

unnaturally. We denote by πC the quotient map U∞(C)/CU∞(C)→ K1(C).

Given a unital homomorphism φ : C → A, we denote by φ‡ the induced

continuous homomorphism

φ‡ : U∞(C)/CU∞(C)→ U∞(A)/CU∞(A).
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Definition II.4.3. Let C and A be unital C∗-algebras. Let κ ∈ KLe(C,A)++, let

γ : Aff(T (C)) → Aff(T (A)) be a unital strictly positive continuous linear map, and

let η : U∞(C)/CU∞(C) → U∞(A)/CU∞(A) be a continuous group homomorphism.

We say that (κ, γ, η) is a compatible triple if

1. (κ, γ) is a compatible pair,

2. the restriction of η to Aff(T (C))/ρC(K0(C)) is equal to the homomorphism

induced from γ, and

3. the restrictions of η and κ to K1(C) are equal.

Approximate Unitary Equivalent Classes of Homomorphisms

In certain classes of C∗-algebras, the invariants defined above are

complete invariants. In other words, homomorphisms of the invariants induce

homomorphisms on the C∗-algebras. And consequently, C∗-algebras with

isomorphic invariants are isomorphic as C∗-algebras.

The first major result of this kind is due to George Elliott in [5], where it is

shown that unital AF-algebras are classified in this sense by their ordered K0 group

with order unit. Elliott conjectured that a large class of simple C∗-algebras can be

classified by their K-theory, which gave rise to what is often known as the Elliott

program.

A related question is that of classifying homomorphisms up to approximate

unitary equivalence from AH-algebras to a class of classifiable C∗-algebras.

Given the natural transformations involved, a unital homomorphism φ

between C∗-algebras induces a compatible triple (KL(φ), φ], φ
‡).

This compatible triple identifies the unital homomorphism φ uniquely up to

approximate unitary equivalence.
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Theorem II.5.1 (Theorem 5.10 of [22]). Let C be a unital AH-algebra and let A be

a unital separable simple C∗-algebra with tracial rank at most one. Let φ : C → A

and ψ : C → A be two unital injective homomorphisms. Then φ and ψ are

approximately unitarily equivalent if and only if

KL(φ) = KL(ψ),

φ] = ψ], and

φ‡ = ψ‡.

We note that the tracial rank zero case is found as Theorem 3.4 of [15], where

the last equation is no longer necessary. Also the same theorem with the additional

assumption that C satisfy the UCT is found as Corollary 11.8 of [20].

A more relaxed version of this uniqueness theorem will be needed as well:

Theorem II.5.2. Let C be a unital AH-algebra and let A be a separable simple

unital C∗-algebra with tracial rank at most one. Let φ : C → A be a unital, injective

homomorphism. For every ε > 0 and every finite subset F ⊆ C, there exist δ > 0, a

finite subset P ⊆ K(C), a finite subset U ⊆ U∞(C), and a finite subset G ⊆ C, such

that for any unital homomorphism ψ : C → A, if

1. KL(φ) = KL(ψ) on P,

2. dist(φ‡(z̄), ψ‡(z̄)) < δ for z ∈ U , and

3. |τ ◦ φ(g)− τ ◦ ψ(g)| < δ for g ∈ G,

then there exists a unitary u ∈ A such that

‖uφ(f)u∗ − ψ(f)‖ < ε
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for all f ∈ F .

This is simply Corollary 11.6 of [20] without the condition that C has

Property (J). The same proof works in light of Theorem 5.8 and Lemma 5.7(2)

of [22].

In addition to the fact that compatible triples determine the approximate

unitary equivalence class of a unital homomorphism, every compatible triple arises

from a unital homomorphism. More precisely:

Theorem II.5.3 (Theorem 6.10 of [22]). Let C be a unital separable AH-algebra

and let A be a unital infinite-dimensional separable simple C∗-algebra with tracial

rank at most one. For any κ ∈ KLe(C,A)++, any unital strictly positive continuous

linear map γ : Aff(T (C)) → Aff(T (A)), and any continuous group homomorphism

η : U∞(C)/CU∞(C) → U∞(A)/CU∞(A) such that (κ, γ, η) is a compatible triple,

there exists a unital homomorphism φ : C → A such that

KL(φ) = κ,

φ] = γ, and

φ‡ = η.

In a relatively recent development, the class of classifiable C∗-algebras has

grown to include simple unital C∗-algebras for which TR(A ⊗ Q) ≤ 1. See [19] for

more details. The quantity TR(A⊗Q) is called the rational tracial rank of A. This

expanded class of C∗-algebras includes the limits of generalized dimension drop

algebras, including the Jiang-Su algebra Z, which plays a major role in the Elliott

program (see [18]).
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The related question of determining the approximate unitary equivalence

classes of homomorphisms from AH-algebras to C∗-algebras of rational tracial rank

at most one has also been answered by Huaxin Lin and Zhuang Niu in [24] and

independently by Hiroki Matui in [25] for the case of rational tracial rank zero.

Theorem II.5.4 (Corollary 5.4 of [24]). Let C be a unital AH-algebra and let A be

a separable simple unital Z-stable C∗-algebra with rational tracial rank at most one.

Let φ : C → A and ψ : C → A be unital injective homomorphisms. Then φ and ψ

are approximately unitarily equivalent if and only if

KL(φ) = KL(ψ),

φ] = ψ], and

φ‡ = ψ‡.

There is also an existence theorem for these homomorphisms, though there is

a restriction on the K1 group of the domain.

Theorem II.5.5 (Theorem 6.10 of [24]). Let C be a unital AH-algebra such that

K1(C) is free and let A be a separable simple unital Z-stable C∗-algebra with

rational tracial rank at most one. For any κ ∈ KLe(C,A)++, any unital strictly

positive continuous linear map γ : Aff(T (C)) → Aff(T (A)), and any continuous

group homomorphism η : U∞(C)/CU∞(C)→ U∞(A)/CU∞(A) such that (κ, γ, η) is

a compatible triple, there exists a unital homomorphism φ : C → A such that

KL(φ) = κ,

φ] = γ, and

φ‡ = η.
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Unfortunately, the invariants of these C∗-algebras are not as well-behaved (see

Section III.4). This prevents approximate diagonalization generally for C∗-algebras

with rational tracial rank one, as we will discuss in Section IV.3.
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CHAPTER III

PARTIALLY ORDERED ABELIAN GROUPS

Riesz Interpolation Property

We adopt the language and notation for the material in this section from [6].

Definition III.1.1. An abelian group (G,+) together with a binary relation ≤ on

G is a pre-ordered abelian group if

1. a ≤ a (reflexive),

2. a ≤ b and b ≤ c implies a ≤ c (transitive),

3. a+ c ≤ b+ c implies a ≤ b (translation invariant),

for all a, b, c ∈ G.

If in addition, a ≤ b and b ≤ a implies a = b, then (G,+,≤) is a partially

ordered abelian group.

The set of g ∈ G such that g ≥ 0 is called the positive cone of G and is

denoted G+. Often, the order structure of a pre-ordered abelian group is defined by

designating a cone as its positive cone. If the cone is strict, the resulting group is

partially ordered. This is done for example in the case of K0(A), where the positive

cone is the image of V (A).

If G+ is a cofinal set in G, or equivalently for every a ∈ G there exist b, c ∈

G+ such that a = b− c, then G is directed.

We note that the K0 group of a unital C∗-algebra is always directed.

Definition III.1.2. A positive element u ∈ G+ of a partially ordered abelian

group G is an order unit if for all g ∈ G, there exists an integer n ≥ 1 such that

−nu ≤ g ≤ nu.
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Often, we consider partially ordered abelian groups with distinguished order

units. For example, for a unital, stably finite C∗-algebra A, we consider not only

the directed group K0(A) but also include the class of the identity [1A]. This means

that we also want to preserve these distinguished elements in the homomorphisms

we consider.

Definition III.1.3. Let G and H be partially ordered abelian groups. A group

homomorphism φ : G → H is positive if φ(G+) ⊆ H+. Let u ∈ G+ and v ∈ H+ be

order units. We say that a positive group homomorphism φ : G → H is normalized

if φ(u) = v. To keep track of the order units in consideration, we will also write

φ : (G, u)→ (H, v).

Definition III.1.4. A partially ordered group G satisfies the Riesz interpolation

property and is called an interpolation group if for all x1, x2, y1, y2 ∈ G such that

xi ≤ yj for i = 1, 2 and j = 1, 2, there exists z ∈ G such that xi ≤ z ≤ yj for i = 1, 2

and j = 1, 2.

Definition III.1.5. A partially ordered abelian group G has strict interpolation if

for all x1, x2, y1, y2 ∈ G such that xi < yj for all i, j, there exists z ∈ G such that

xi < z < yj for all i, j.

Strict versions of the Riesz decomposition properties follow with proofs

analogous to those of Propositions 2.1 and 2.2 of [6].

Proposition III.1.6. Let G be a partially ordered abelian group. The following are

equivalent:

(a) G has strict interpolation.

(b) If x, y1, y2 ∈ G satisfy 0 < x < y1 + y2, then there exist x1, x2 ∈ G+ \ {0}

such that x1 + x2 = x and xi < yi for i = 1, 2.
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(c) If x1, x2, y1, y2 ∈ G+ \ {0} satisfy x1 + x2 = y1 + y2, then there exist

zi,j ∈ G+ \ {0} for i, j = 1, 2 such that xi = zi,1 + zi,2 and yj = z1,j + z2,j for

i, j = 1, 2.

Proposition III.1.7. Let G be a partially ordered abelian group with strict

interpolation. Then the following hold:

(a) If x1, x2, . . . xn and y1, y2, . . . , yk are in G and satisfy xi < yj for all i, j,

then there exists z ∈ G such that xi < z < yj for all i, j.

(b) If x, y1, y2, . . . , yn ∈ G+ \ {0} satisfy x < y1 + y2 + . . . yn, then there exist

x1, . . . , xn ∈ G+ \ {0} such that x = x1 + · · ·+ xn and xi < yi for all i.

(c) If x1, . . . , xn, y1, . . . , yk ∈ G+ \ {0}, then there exist zi,j ∈ G+ \ {0} for i =

1, 2, . . . , n and j = 1, 2, . . . , k such that xi = zi,1 + · · ·+ zi,k and yj = z1,j + · · ·+ zn,j.

Considering an ordered abelian group as a Z-module, it is clear by induction

that multiplying by a positive element by a positive integer gives a positive

element. It is not true that if the multiple of an element by a positive integer is

positive, that the original element is positive. To ensure, this we make the following

definition.

Definition III.1.8. A partially ordered abelian group G is unperforated if for every

x ∈ G, if nx ≥ 0 for some integer n ≥ 1, then x ≥ 0.

A partially ordered abelian group G is weakly unperforated if for every x ∈ G,

if nx > 0 for some integer n ≥ 1, then x > 0.

We note that weakly unperforated groups only differ from unperforated

groups by allowing the possibility for torsion.

Definition III.1.9. A partially ordered abelian group G is a dimension group if G

is directed, unperforated, and satisfies the Riesz interpolation property.
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The K0 group of an AF-algebra is a dimension group and, conversely, every

countable dimension group is the K0 group of some AF-algebra. But it turns

out that for more general classes of stably finite C∗-algebras, we want to replace

“unperforated” with “weakly unperforated.” Despite its widespread use, the author

was unable to find a name in use for such a group. So, given its close relation to

dimension groups, we make the following definition:

Definition III.1.10. A partially ordered abelian group G is a weak dimension

group if G is directed, weakly unperforated, and satisfies the Riesz interpolation

property.

We note that the K0 group of a separable simple unital C∗-algebra with finite

tracial rank is a weak dimension group. See Theorem 6.11 of [14].

Affine Representation of Partially Ordered Abelian Groups

Definition III.2.1. Let (G, u) be a partially ordered abelian group with order

unit. A positive homomorphism σ : G→ R such that σ(u) = 1 is called a state. The

set of states of (G, u) is denoted S(G, u).

We note that S(G, u), just like the tracial state of a C∗-algebra, is a compact

convex set. In particular, when G is an interpolation group, S(G, u) is a Choquet

simplex. See Theorem 10.17 of [6]. We will call the extreme points of S(G, u) pure

states.

As with the tracial state space of a C∗-algebra, we have a covariant functor

Aff(S(•)) from the category of partially ordered abelian groups with order units to

the category of pointed, partially ordered real Banach spaces. Given a normalized

positive group homomorphism α : (G, u) → (H, v), the functor maps α to
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αρ : Aff(S(G, u))→ Aff(S(H, v)), defined by

αρ(f)(τ) = f(τ ◦ α)

for all f ∈ Aff(S(G, u)) and τ ∈ S(H, v).

Let U be the forgetful functor from the category of pointed partially ordered

Banach spaces to the category of partially ordered abelian groups with order units.

There is a natural transformation from the identity functor on partially

ordered abelian groups with order units to the functor U(Aff(S(•))). For a

partially ordered abelian group with order unit (G, u), we define ρG : (G, u) →

(Aff(S(G, u)), 1) by

ρG(g)(σ) = σ(g)

for σ ∈ S(G, u).

For a stably finite C∗-algebra A, we note that ρK0(A) is closely related to the

map ρA discussed in Section II.3. We will abbreviate S(K0(A), [1A]) as SK0(A). A

tracial state τ ∈ T (A) induces a state τ∗ ∈ SK0(A) defined by

τ∗([p]) = (τ ⊗ Tr)(p)

for all p ∈ M∞(A) and extending linearly. The map τ 7→ τ∗ is an affine continuous

map from T (A) to SK0(A). This induces a continuous positive unital linear map

from Aff(SK0(A)) to Aff(T (A)).
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Let C and A be unital C∗-algebras. Given a unital homomorphism from C to

A, we have the following commutative diagram:

K0(C) //

ρK0(C)

��
ρC

##

K0(A)

ρK0(A)

��
ρA

{{

Aff(SK0(C)) //

��

Aff(SK0(A)

��
Aff(T (C)) // Aff(T (A)).

A normalized positive group homomorphism α : (K0(C), [1C ]) → (K0(A), [1A])

will necessarily induce a commutative square with ρK0(A) ◦ α = αρ ◦ ρK0(C).

As a result, for α : (K0(C), [1C ]) → (K0(A), [1A]), a normalized positive group

homomorphism and for γ : Aff(T (C)) → Aff(T (A)) a continuous positive unital

linear map, if the square

Aff(SK0(C))
αρ //

��

Aff(SK0(A))

��
Aff(T (C))

γ // Aff(T (A))

commutes, then (α, γ) is a compatible pair. We will consider the following short

exact sequence often:

0→ ker ρG → G→ ρG(G)→ 0.

Note that this is often not a sequence of partially ordered groups since ker ρG is not

necessarily an order ideal, nor even a partially ordered group.

We note that when G is finitely generated, the image ρG(G) is a finitely

generated torsion-free group. Thus the group is free and we see that this short

exact sequence splits.
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In Chapter V, we will need to consider groups for which ker ρG = 0. We

therefore make the definition.

Definition III.2.2. A partially ordered group G is archimedian if for every x, y ∈

G such that nx ≤ y for all positive integers n ≥ 1, we have x ≤ 0.

The notion of archimedian is used differently in different contexts. As

suggested previously, being archimedian is equivalent to ρG being an injective

positive group homomorphism. See Theorem 7.7 of [6] for more details. Since

we can identify G as an ordered subgroup of Aff(S(G, u)), we see that the order

structure of an archimedian group is given by its states in the sense that g ≥ 0 if

and only if τ(g) ≥ 0 for all τ ∈ S(G, u).

Finally we note that for any partially ordered abelian group G, the group

ρG(G) is an archimedian group.

Simple Partially Ordered Abelian Groups

Definition III.3.1. A subgroup H of a partially ordered abelian group G is an

order ideal if H+ = G+ ∩ H is directed and for all g ∈ G and h ∈ H, if 0 ≤ g ≤ h,

then g ∈ H.

A partially ordered abelian group G is simple if the only order ideals are 0

and G.

Note that the K0 group of a stably finite, simple C∗-algebra is a simple

ordered group. See Proposition 3.3.7 of [13].

We note a useful concrete characterization of simple partially ordered groups

is that every nonzero positive element is an order unit. This follows from the fact

that an order ideal generated by a single positive element is the whole group if and
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only if the element is an order unit. This makes positive elements of simple ordered

groups well-behaved. For example, since for any order unit v, we have σ(v) > 0

for every state σ ∈ S(G, u), it follows that for a simple ordered group, σ(g) > 0

for every nonzero positive g ∈ G+. Also if in addition to being simple, G is weakly

unperforated, then the converse holds: if σ(g) > 0 for all σ ∈ S(G, u), then g is a

nonzero positive element of G.

Definition III.3.2. Let S be a partially ordered set with a least element 0. An

element x ∈ S is called an atom of S if there is no element y ∈ S for which 0 < y <

x.

In the K0 group of commutative C∗-algebras, we will see that atoms play an

important role in generating ρG(G). In contrast, when a partially ordered abelian

group G is simple, G+ has either one or no atoms. The former only occurs when

G is cyclic (see Lemma 14.2 of [6]). As a result, we have to treat Z separately. For

example, an interpolation group without atoms will satisfy strict interpolation. As

a result, noncyclic simple interpolation groups satisfy strict interpolation.

Simple dimension groups can be constructed from triples consisting of an

abelian group G, a Choquet simplex K, and a group homomorphism ψ : G →

Aff(K) with dense range. The ordering on G is determined by g ≥ 0 if either

g = 0 or ψ(g) � 0. In fact, these triples completely characterize noncyclic

simple dimension groups. See Chapter 14 of [6] for the proof and more details.

For our purposes, we mention this as a natural source of examples. In particular,

we will often look at dense subgroups of Aff(K), where K is a classical simplex, as

examples of simple dimension groups.

36



Tensor Products of Partially Ordered Abelian Groups

The K0 groups of C∗-algebras with rational tracial rank one are weakly

unperforated, but will not necessarily have the Riesz interpolation property. They

will have the following weaker version of the Riesz interpolation property:

Definition III.4.1. A partially ordered abelian group G has the rational Riesz

interpolation property if for any x1, x2, y1, y2 ∈ G with xi ≤ yj for i = 1, 2 and

j = 1, 2, there exist z ∈ G and integers m,n ≥ 1 such that

mxi ≤ nz ≤ myi

for i = 1, 2 and j = 1, 2.

See Section 5 of [23] for more details.

A useful characterization of rational Riesz interpolation is available if we

consider tensor products. The tensor product of two partially ordered abelian

groups G and H can be made into a partially ordered abelian group by taking the

positive cone

(G⊗H)+ =

{
n∑
i=1

gi ⊗ hi : gi ∈ G+ and hi ∈ H+, for n ≥ 1 and i = 1, 2, . . . , n

}
.

See Section 2 of [7] for more details.

It is clear that if u ∈ G+ and v ∈ H+ are order units, then u ⊗ v is an order

unit for G⊗H.

If σ1 ∈ S(G, u) and σ2 ∈ S(H, v), then σ1 ⊗ σ2, defined by

(σ1 ⊗ σ2)(g ⊗ h) = σ1(g)σ2(h),
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is a state on S(G⊗H, u⊗ v).

When G and H are partially ordered abelian groups, the pure states of G⊗H

are the pure tensors of pure states of G with the pure states of H. To be precise:

∂eS(G⊗H, u⊗ v) = {σ1 ⊗ σ2 : σ1 ∈ ∂eS(G, u) and σ2 ∈ ∂eS(H, v)}.

This is shown as Lemma 4.1 of [7].

So when G and H are simple weak dimension groups, we have a nice

computational characterization of the positive elements of G ⊗ H. Namely, a pure

tensor g ⊗ h is positive if and only if either g ⊗ h = 0 or (σ1 ⊗ σ2)(g ⊗ h) > 0 for all

σ1 ∈ ∂eS(G, u) and σ2 ∈ ∂eS(H, v).

It is shown in Proposition 5.7 of [23] that a countable weakly unperforated

simple partially ordered abelian group G has the rational Riesz interpolation

property if and only if G⊗Q is an interpolation group.

As an example, we consider Z2 with the strict ordering. The group Z2 is

simple since every non-zero element is an order unit and unperforated since Z is

unperforated. Also Z2 is not an interpolation group since we have

(1, 0)� (2, 2),

(1, 0)� (2, 3),

(0, 1)� (2, 2), and

(0, 1)� (2, 3),
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but there is no element (z1, z2) ∈ Z2 such that

(1, 0)� (z1, z2)� (2, 3) and

(0, 1)� (z1, z2)� (2, 2)

since this would require 1 < z1 < 2 and 1 < z2 < 2.

As an abelian group, we have Z2 ⊗ Q ∼= Q2 with an isomorphism satisfying

(x, y) ⊗ r 7→ (xr, yr). We claim that when Q2 has the strict ordering, this map

is an isomorphism of partially ordered groups. To check that the map is positive,

by definition, it suffices to check for pure tensors. If (x, y) � 0, then x > 0 and

y > 0 and so if r > 0, then xr > 0 and yr > 0 and so (x, y) ⊗ r 7→ (xr, yr) �

0. Take (a, b) ∈ Q2 and suppose that a > 0 and b > 0. Then there exists an

integer n ≥ 1 such that na and nb are positive integers. So the inverse maps (a, b)

to (na, nb)⊗ 1/n, which is a pure tensor with (na, nb) > 0 and 1/n > 0.

Since Q2 with the strict ordering is a simple dimension group, Z2 with the

strict ordering is a simple partially ordered group with rational Riesz interpolation.
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CHAPTER IV

APPROXIMATE DIAGONALIZATION OF NORMAL MATRICES

Ordered K0 Groups of Commutative C∗-Algebras

The main obstruction to approximate diagonalization, as we will see shortly,

is the ordered K0 group. The other invariants can either be extended from

other invariants as with the trace maps and the algebraic K1 group, or can be

decomposed in a rather trivial manner.

Let X be a compact metric space. Since X can be written as an inverse

limit of finite CW -complexes, K0(C(X)), as an abelian group, can be written

as the inductive limit of finitely generated abelian groups. So it is a relatively

straightforward matter to define homomorphisms from K0(C(X)). But the

ordering of K0(C(X)) is not easily determined. For example, the group may have

perforation.

Fortunately, if the target of the homomorphism is a simple weakly

unperforated group, then the order structure on K0(C(X)) can be managed and we

can define the positive group homomorphisms we need. There are a few properties

of K0(C(X)) that contribute to this relatively good behavior of homomorphisms,

which we describe now.

By the Riesz Representation Theorem, T (C(X)) can be identified with the

set of regular Borel probability measures. Given g ∈ K0(C(X))+, there exists an

integer n ≥ 1 and a projection-valued continuous function p : X → Mn(C) so that

[p] = g and we have

ρC(X)(g)(τ) =

∫
X

Tr(p) dµτ ,
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where µτ is the measure induced by the Riesz Representation Theorem and τ . Also,

since the extreme points of T (C(X)) are given by Dirac point masses and since

Aff(T (C(X))) ∼= C(∂eT (C(X)))sa
∼= C(X)sa,

we see that on the Dirac point mass δx and with g and p as above,

ρC(X)(g)(δx) =

∫
X

Tr(p) dδx = Tr(p(x)) ∈ Z,

since the trace of a projection is equal to its rank. As a result, the range of ρC(X) is

isomorphic to C(X,Z). Consequently, the short exact sequence:

0→ ker ρC(X) → K0(C(X))→ C(X,Z)→ 0

splits. In fact, C(X,Z) is a free abelian group, but one can consider an explicit

splitting map from C(X,Z) to K0(C(X)), where a function f is mapped to the

vector bundle such that the restriction to any connected subset is trivial and has

rank f(x) at each point x. Furthermore, we will only being applying this to the

case where X has finitely many connected components, where it is apparent that

C(X,Z) is a finitely generated free abelian group.

The implied distinguished order unit of K0(C(X)) is the constant function

1. When X has finitely many connected components, this means that the

distinguished order unit can be written as the sum of the atoms of K0(C(X))+

without any repetition. This is particular useful when applying the Riesz

decomposition property.
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We now prove the main results about partially ordered abelian groups that

we will need for approximate diagonalization of homomorphisms from commutative

C∗-algebras.

Lemma IV.1.1. Let G be a partially ordered abelian group such that

G = ker ρG ⊕ ρG(G)

and G+ has finitely many atoms x1, x2, . . . , xk, which generate ρG(G), and so that

u =
∑k

j=1 xj is an order unit.

Let n ≥ 1 be an integer and let H be a simple, non-cyclic weak dimension

group with order units vi for i = 1, 2, . . . , n.

For any normalized positive group homomorphism α : (G, u) → (H,
∑n

i=1 vi)

such that kerα ∩ ρG(G) = 0, there exist normalized positive group homomorphisms

αi : (G, u) → (H, vi) for i = 1, 2, . . . , n such that kerαi ∩ ρG(G) = 0 for all i,

ker ρG ⊆ kerαi for i > 1, and

α = α1 + α2 + · · ·+ αn.

Proof. We have

α(x1) + α(x2) + · · ·+ α(xk) = α(u) = v1 + v2 + · · ·+ vn,
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with α(xj) > 0 since kerα ∩ ρG(G) = 0. Therefore, by strict decomposition, there

exist nonzero zi,j ∈ H+ for i = 1, 2, . . . , n and j = 1, 2, . . . , k such that

n∑
i=1

zi,j = α(xj) and

k∑
j=1

zi,j = vi.

We define αi : G→ H by setting αi(xj) = zi,j for all i and j, and by setting

αi(g) =


α(g) if i = 1

0 if i 6= 1

for g ∈ ker ρG. Since the set of atoms is Z-independent (Lemma 3.10 of [6]), αi is a

group homomorphism for all i. By construction, ker ρG ⊆ kerαi for i > 1.

Since
n∑
i=1

αi = α1 = α

on ker ρG and
n∑
i=1

αi(xj) =
n∑
i=1

zi,j = α(xj),

we have
n∑
i=1

αi = α.

Let x be a nonzero, positive element of G. There exist integers mj ≥ 0 for

j = 1, 2, . . . , k, at least one of which is nonzero, and g ∈ ker ρG such that

x = g +
k∑
j=1

mjxj.
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Take τ ∈ S(H,
∑
vi). Since τ ◦ αi is a scalar multiple of a state in S(G, u), we

have τ(αi(g)) = 0 for all i and so

τ(αi(x)) =
n∑
j=1

mjτ(zi,j) > 0,

since at least one mj is nonzero and τ(zi,j) > 0 for all i and j. So we have αi(x) >

0, and so αi is a positive group homomorphism for all i. Also

αi(u) = αi

(
k∑
j=1

xj

)
=

k∑
j=1

αi(xj) =
k∑
j=1

zi,j = vi.

So αi : (G, u)→ (H, vi) is a normalized positive group homomorphism for all i.

Lemma IV.1.2. Let G1 and G2 be partially ordered abelian groups such that for

s = 1, 2,

Gs = ker ρGs ⊕ ρGs(Gs),

G+
1 and G+

2 have finitely many atoms x1, x2, . . . , xk and y1, y2, . . . , ym, which

generate ρG1(G1) and ρG2(G2), respectively, and such that u1 =
∑k

j=1 xj and

u2 =
∑m

t=1 yt are order units.

Let n ≥ 1 be an integer and let H be a simple non-cyclic weak dimension

group with order units vi for i = 1, 2, . . . , n.

Let α : (G1, u1)→ (G2, u2) be a normalized positive group homomorphism such

that kerα ∩ ρG1(G1) = 0 and

(α ◦ ρG1)(G1) ⊆ ρG2(G2).
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For s = 1, 2, let βs : (Gs, us) → (H,
∑n

i=1 vi) be normalized positive group

homomorphisms such that ker βs ∩ ρGs(Gs) = 0. Further, assume β1 = α ◦ β2.

If there exist β1,i : (G1, u1) → (H, vi) for i = 1, 2, . . . , n such that ker β1,i ∩

ρG1(G1) = 0 for all i, ker ρG1 ⊆ ker β1,i for i > 1,

n∑
i=1

β1,i = β1,

then there exist β2,i : (G2, u2) → (H, vi) for i = 1, 2, . . . , n such that ker β2,i ∩

ρG2(G2) = 0 for all i, ker ρG2 ⊆ ker β2,i for i > 1, β1,i = β2,i ◦ α for all i, and

n∑
i=1

β2,i = β2.

Proof. Since α is a positive homomorphism, α(u1) = u2, and (α ◦ ρG1)(G1) ⊆

ρG2(G2), for each j = 1, 2, . . . , k there exists a non-empty subset Sj ⊆ {1, 2, . . . ,m}

such that

α(xj) =
∑
t∈S(j)

yt.

Furthermore, Si ∩ Sj = ∅ if i 6= j and
⋃k
j=1 Sj = {1, 2, . . . ,m}. So we have

∑
t∈Sj

β2(yt) = β2(α(xj)) = β1(xj) =
n∑
i=1

β1,i(xj).
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Since β2(yt) > 0 and β1,i(xj) > 0 for all i, t and j, by strict decomposition, there

exist nonzero zi,t ∈ H+ for t ∈ Sj and i = 1, 2, . . . , n so that

∑
t∈Sj

zi,t = β1,i(xj) and

n∑
i=1

zi,t = β2(yt).

We define β2,i : G2 → H by setting β2,i(yt) = zi,t for all i, t and by setting

β2,i(g) =


β2(g) if i = 1

0 if i 6= 1.

We see that β2,i is well-defined since the sets Sj partition {1, 2, . . . ,m} and β2,i is a

group homomorphism since atoms are Z-independent and the infinitesimals of G2

split. Since Sj is non-empty and zi,t > 0 for all i and t, ker β2,i ∩ ρG2 = 0 for all i.

By construction, ker ρG2 ⊆ ker β2,i for i > 1.

As before,
n∑
i=1

β2,i = β2,1 = β2

on ker ρG2 and
n∑
i=1

β2,i(yt) =
n∑
i=1

zi,t = β2(yt)

for all t. So
n∑
i=1

β2,i = β2.
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Notice that for all σ ∈ S(G2, u2), we have σ ◦ α ∈ S(G1, u1), so if g ∈ ker ρG1 ,

then (σ ◦ α)(g) = 0 for all σ ∈ S(G2, u2). So α(g) ∈ ker ρG2 . So

β1,i = 0 = β2,i ◦ α

on ker ρG1 when i > 1, and

β1,1 = β1 = β2 ◦ α = β2,1 ◦ α.

Also

β2,i(α(xj)) =
∑
t∈Sj

β2,i(yt) =
∑
t∈Sj

zi,t = β1,i(xj)

for all i, j. Thus β1,i = β2,i ◦ α for all i. Further, since α(u1) = u2, we have

β2,i(u2) = β1,i(u1) = vi.

Let x be a nonzero, positive element of G2. So there exist integers rt ≥ 0, at

least one of which is nonzero, for t = 1, 2, . . . ,m and g ∈ ker ρG2 so that

x = g +
m∑
t=1

rtyt.

Take τ ∈ S(H,
∑n

i=1 vi). Since τ ◦ β2,i is a scalar multiple of a state in S(G, u),

we see τ(β2,i(g)) = 0 and so

τ(β2,i(x)) =
m∑
t=1

rtτ(zi,t) > 0,

since at least one rt is positive and τ(zi,t) > 0 for all i and t.
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So the maps β2,i : (G2, u2) → (H, vi) are normalized positive group

homomorphisms with the required properties.

Matrices over C∗-Algebras with Tracial Rank One

First, to construct the necessary trace maps, we prove some elementary facts

about projections in a C∗-algebra of stable rank one that the author could not find

in the literature.

Lemma IV.2.1. Let A be a unital C∗-algebra with stable rank one, let p ∈ A a

projection, and let g ∈ K0(A)+ satisfy g ≤ [p]. There exists a projection q ∈ A such

that q ≤ p and [q] = g.

Proof. There exist projections q1, r ∈ M∞(A) such that [q1 ⊕ r] = [p]. Since A

has cancellation there exist an integer n ≥ 1 and element v ∈ Mn(A) such that

v∗v = q1 ⊕ r and vv∗ = p⊕ 0. So

v(q1 ⊕ 0)v∗ ≤ v(q1 ⊕ r)v∗ = p⊕ 0.

Notice that

v(q1 ⊕ 0)(q1 ⊕ 0)v∗ = v(q1 ⊕ 0)v∗ and

(q1 ⊕ 0)v∗v(q1 ⊕ 0) = q1 ⊕ 0.

So [v(q1 ⊕ 0)v∗] = g.

Also since v(q1⊕ 0)v∗ is in the hereditary subalgebra generated by p⊕ 0, there

exists a projection q ∈ A such that v(q1 ⊕ 0)v∗ = q ⊕ 0. So q is the projection with

the properties that we want.
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Lemma IV.2.2. Let A be a unital C∗-algebra with stable rank one. For any

projection p ∈ A and elements g1, g2, . . . , gn ∈ K0(A)+ such that

g1 + g2 + · · ·+ gn = [p],

there exist mutually orthogonal projections q1, q2, . . . , qn ∈ A such that

q1 + q2 + · · ·+ qn = p

and [qi] = gi for all i = 1, 2, . . . , n.

Proof. We proceed by induction on n. If n = 2, then by the previous lemma, there

exists q1 ≤ p with [q1] = p. Let q2 = p− q1. Notice that

q1q2 = q1(p− q1) = q1p− q1 = q1 − q1 = 0,

[q2] = [p]− [q1] = [p]− g1 = g2, and

q1 + q2 = q1 + p− q1 = p,

and so the result is true for n = 2.

Suppose the result holds for n. We wish to show it holds for n+ 1. By Lemma

IV.2.1, there exists a projection q1 in A such that [q1] = g1 and q1 ≤ p. By the

induction hypothesis, and since

[p− q1] = g2 + g3 + · · ·+ gn+1,
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there exist mutually orthogonal projections q2, q3, . . . , qn+1 such that [qi] = gi for

i = 2, 3, . . . , n+ 1 and

p− q1 = q2 + q3 + · · ·+ qn+1.

So the result holds for n+ 1. Thus by induction, the result holds for all n.

Lemma IV.2.3. Let C be a unital nuclear stably finite C∗-algebra and let A be a

unital separable stably finite C∗-algebras. Assume we are given:

1. a normalized positive group homomorphism α : (K0(C), [1C ]) → (K0(A), n ·

[1A]),

2. a strictly positive unital linear map γ : Aff(T (C))→ Aff(T (A)),

3. an element κ ∈ KLe(C,Mn(A))++ such that κ restricted to K0(C) is α,

and

4. a group homomorphism η : U∞(C)/CU∞(C)→ U(A)/CU(A) such that the

triple (κ, γ, η) is compatible.

Suppose there exist normalized positive group homomorphisms

αi : (K0(C), [1C ]) → (K0(A), [1A]) and strictly positive linear maps γi : Aff(C) →

Aff(A) for i = 1, 2, . . . , n such that the pairs (αi, γi) are compatible for i =

1, 2, . . . , n and

α = α1 + α2 + · · ·+ αn, and

γ = γ1 + γ2 + · · ·+ γn.

Then there exist elements κi ∈ KLe(C,A)++ and continuous group

homomorphisms ηi : U
∞(C)/CU∞(C) → U(A)/CU(A) for i = 1, 2, . . . , n such
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that the triple (κi, γi, ηi) is compatible,

κ = κ1 + κ2 + · · ·+ κn, and

η = η1 + η2 + · · ·+ ηn.

We note that the restrictions on C and A are only to ensure that the

invariants exist as written. With the appropriate modification, this lemma likely

holds in greater generality.

Proof. Let β : K1(C) → K1(A) be the restriction of κ to K1(C). We define group

homomorphisms βi : K1(C)→ K1(A) by

βi =


β if i = 1

0 if i 6= 1

for i = 1, 2, . . . , n. So
n∑
i=1

βi = β1 = β.

For 1 < i ≤ n, by the UCT, there exist κi ∈ KL(C,A) such that Γ(κi) =

(αi, βi). We set

κ1 = κ−
n∑
i=2

κi.

Notice that

Γ(κ1) = (α, β)−
n∑
i=2

(αi, βi) = (α1, β1).
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Since αi is a positive, normalized group homomorphism, compatible with γi, it

follows that κi ∈ KLe(C,A)++ is compatible with γi, and by construction,

κ1 + κ2 + · · ·+ κn = κ.

The compatible pair (κi, γi) induce the group homomorphism

η0
i : Aff(T (C))/ρC(K0(C))→ Aff(T (A))/ρA(K0(A)).

Recall that for any unital C∗-algebra B, we have a split exact sequence

0→ Aff(T (B))/ρB(K0(B))→ U∞(B)/CU∞(B)
πB−→ K1(B)→ 0.

So we extend η0
i to a homorphism

ηi : U
∞(C)/CU∞(C)→ U(A)/CU(A)

by setting

ηi(u) =


η(u) if i = 1

0 if i 6= 1.

for u ∈ K1(C). By naturality, we have

πA ◦ η1 = β ◦ πC = β1 ◦ πC ,

and so (κ1, η1) is a compatible pair. Since βi = 0 = ηi on K1(C) for i = 2, 3, . . . , n,

(κi, ηi) is a compatible pair for i = 2, 3, . . . , n. By construction, (γi, ηi) is a

compatible pair for i = 1, 2, . . . , n. We see that the triple (κi, γi, ηi) is compatible
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for i = 1, 2, . . . , n. Since ηi restrict to βi on K1(C) and ηi is induced from γi on

Aff(T (C))/ρC(K0(C)), we have

η1 + η2 + · · ·+ ηn = η

on U∞(C)/CU∞(C).

Theorem IV.2.4. Let X be a compact metric space with finitely many connected

components. Let A be a separable simple unital C∗-algebra with tracial rank at most

one. Let n ≥ 1 be an integer. Any unital injective homomorphism φ : C(X) →

Mn(A) is approximately unitarily equivalent to a diagonal homomorphism.

Proof. Since X has finitely many connected components, C(X,Z) is generated by

the atoms of K0(C(X))+, which are the characteristic functions of the connected

components of X. We denote the characteristic functions of the connected

components of X by χj for j = 1, 2, . . . , k and so

K0(C(X)) = C(X,Z)⊕ ker ρC(X).

Also, since φ is injective, kerK0(φ) ∩ C(X,Z) = 0. So by Lemma IV.1.1, there exist

normalized group homomorphisms αi : (K0(C(X)), [1C(X)]) → (K0(A), [1A]) such

that kerαi ∩ C(X,Z) = 0 for all i, kerαi = ker ρC(X) for i > 1 and

α1 + α2 + · · ·+ αn = K0(φ).

Since A has stable rank one, by Lemma IV.2.2, there exist non-zero, mutually

orthogonal projections pi,j ∈ Mn(A) for i = 1, 2, . . . , n and j = 1, 2, . . . , k such that
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[pi,j] = αi(χj) and
n∑
i=1

pi,j = φ(χj).

We define γi : C(X)sa → Aff(T (A)) such that

γi(f)(τ) =
k∑
j=1

τ(pi,jφ(f)pi,j).

Since the projections pi,j are non-zero and mutually orthogonal, γi is a positive

linear map with ker γi = 0. For all τ ∈ T (A) and j0, we have

γi(χj0)(τ) =
k∑
j=1

τ(pi,jφ(χj0)pi,j) = τ(pi,j0) = τ(ρA(αi(χj0)))

and so (αi, γi) is a compatible pair for i = 1, 2, . . . , n.

By Lemma IV.2.3, there exist κi ∈ KLe(C(X), A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ)

and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = φ‡

and (κi, γi, ηi) are compatible triples for i = 1, 2, . . . , n.
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So by II.5.3, there exist unital homomorphisms ψi : C(X) → A for i =

1, 2, . . . , n such that

KL(ψi) = κi,

τ(ψi(f)) = γi(f)(τ), and

ψ‡i = ηi.

Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.

We can see that

KL(ψ) =
n∑
i=1

KL(φi) =
n∑
i=1

κi = KL(φ),

τ(ψ(f)) =
n∑
i=1

τ(φi(f)) =
n∑
i=1

γi(f)(τ) = τ(φ(f)), and

ψ‡ =
n∑
i=1

φ‡i =
n∑
i=1

ηi = φ‡.

So by Theorem II.5.1, φ and ψ are approximately unitarily equivalent.

Theorem IV.2.5. Let X be a compact metric space. Let A be a separable simple

unital C∗-algebra with tracial rank at most one. Let n ≥ 1 be an integer. Any unital

injective homomorphism φ : C(X)→Mn(A) is approximately diagonalizable.

Proof. Let ε > 0 and let F ⊆ C(X) be a finite subset. By Theorem II.5.2, there

exist δ > 0, a finite subset F ⊆ C(X), a finite subset P ⊆ K(C(X)), and a finite
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subset U ⊆ U∞(C(X)) such that for any unital homomorphism ψ : C(X)→Mn(A),

if

1. KL(φ) = KL(ψ) on P ,

2. dist(φ‡(z̄), ψ‡(z̄)) < δ for z ∈ U , and

3. |τ ◦ φ(g)− τ ◦ ψ(g)| < δ for g ∈ G,

then there exists a unitary u ∈ A such that

‖uφ(f)u∗ − ψ(f)‖ < ε

for all f ∈ F . Recall that for every unitary u ∈ U(C), we denote the equivalence

class in U(C)/CU(C) of u by ū.

Since X is a compact metric space, there exist finite simplicial complexes Xm

for m ∈ Z≥0 and unital homomorphisms sm : C(Xm)→ C(Xm+1) such that C(X) ∼=

lim−→C(Xm). Let sm,∞ : C(Xm) → C(X) denote the homomorphisms induced by

the inductive limit. Let k(m) denote the number of connected components of Xm

and let χjm the characteristic functions of the connected components of Xm for j =

1, 2, . . . , k(m). We may assume that sm(χjm) 6= 0 for all j.

Since G is finite, there exist an integer M and a finite set G ′ ⊆ C(XM)sa such

that for every g ∈ G, there exists g′ ∈ G ′ such that ‖g − sM,∞(g′)‖ < δ/2.

Furthermore, by taking a possibly larger value of M , there exists a finite set

U ′ ⊆ U∞(C(XM))/CU∞(C(XM)) such that for every u ∈ U , there exists u0 ∈ U ′

such that dist(ū, s‡M,∞(ū0)) < δ/2.

We proceed in the exact same fashion as in the proof of Theorem IV.2.4.

Since XM has finitely many connected components, C(XM ,Z) is generated by the
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atoms of K0(C(XM))+ and so

K0(C(XM)) = C(XM ,Z)⊕ ker ρC(XM ).

In addition we see that since φ is injective, kerK0(φ) ∩ C(X,Z) =

0. So by Lemma IV.1.1, there exist normalized group homomorphisms

αi,M : (K0(C(XM)), 1C(XM )) → (K0(A), 1A) such that kerαi,M ∩ C(XM ,Z) = 0

for all i, kerαi,M = ker ρC(XM ) when i > 1 and

K0(φ ◦ sM,∞) =
n∑
i=1

αi,M .

Since A has stable rank one, by Lemma IV.2.2, there exist non-zero mutually

orthogonal projections pMi,j ∈ Mn(A) for i = 1, 2, . . . , n and j = 1, 2, . . . , k(M) such

that [pMi,j] = αi,M(χjM) and

φ(sM,∞(χjM)) =
n∑
i=1

pMi,j.

We define γi,M : C(XM)sa → Aff(T (A)) by

γi,M(f)(τ) =

k(M)∑
j=1

τ(pMi,jφ ◦ sM,∞(f)pMi,j).

Since the projections pMi,j are non-zero and mutually orthogonal, γi,M is a positive,

linear map with ker γi,M = ker sM,∞. For all τ ∈ T (A) and j0, we have

γi,M(χj0M)(τ) =

k(M)∑
j=1

τ(pMi,jφ(sM,∞(χj0M))pMi,j) = τ(pMi,j0) = τ(ρA(αi(χ
j0
M))).
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So (αi,M , γi,M) is a compatible pair for i = 1, 2, . . . , n.

We inductively apply Lemma IV.1.2 to construct normalized positive group

homomorphisms αi,m : K0(C(Xm)) → K0(A) for i = 1, 2, . . . , n and m ≥ M so that

K0(φ ◦ sm,∞) =
∑n

i=1 αi,m with αi,m = αi,m+1 ◦ sm, and kerαi,m ∩ C(Xm,Z) = 0 for

all i with kerαi,m = ker ρC(Xm) when i > 1.

As before, there exist non-zero mutually orthogonal projections pmi,j ∈ Mn(A)

for i = 1, 2, . . . , n and j = 1, 2, . . . , k(m) such that [pmi,j] = αi,m(χjm) and

φ ◦ sm,∞(χjm) =
n∑
i=1

pmi,j.

We see that γi,m is a positive unital linear map with ker γi,m = ker sm,∞. The pair

αi,m, γi,m) is compatible by a computation identical to the case where m = M .

Let αi be the homomorphism induced by the inductive limit and the

homomorphisms αi,m and let γi be the linear map induced by the inductive limit

and the linear maps γi,m. Since

K0(φ ◦ sm,∞) = α1,m + α2,m + · · ·+ αn,m,

by the uniqueness maps induced by the inductive limit, we have

K0(φ) = α1 + α2 + · · ·+ αn.

Since kerαi,m ∩ C(Xm,Z) = 0, it follows that kerαi ∩ C(X,Z) = 0 for all i. Also γi

is injective, since ker γi,m = ker sm,∞. And since (αi,m, γi,m) is a compatible pair, we

have that (αi, γi) is a compatible pair.
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By Lemma IV.2.3, there exist κi ∈ KLe(C(X), A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ)

and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = φ‡,

and such that (κi, γi, ηi) is a compatible triple for i = 1, 2, . . . , n.

We note that
n∑
i=1

ηi ◦ s‡M,∞ = (φ ◦ sM,∞)‡

on U∞(C(XM))/CU(C(XM)).

By Theorem 4.5 of [22], there exist unital injective homomorphisms

φi : C(X)→ A such that

KL(φi) = κi,

τ(φi(f)) = γi(f)(τ), and

φ‡i = ηi.

for all f ∈ C(X)sa and τ ∈ T (A). Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.
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So

KL(ψ) =
n∑
i=1

KL(φi) =
n∑
i=1

κi = KL(φ).

In particular, this holds for P .

Let f ∈ G and τ ∈ T (Mn(A)). There exists f ′ ∈ G ′ so that ‖f − sM,∞(f ′)‖ <

δ/2. Note that

τ(ψ(sM,∞(f ′))) =
n∑
i=1

γi(sM,∞(f ′))(τ)

=
n∑
i=1

k(M)∑
j=1

τ(pMi,jφ(sM,∞(f ′))pMi,j)

=

k(M)∑
j=1

τ(φ(sM,∞(χjM))φ(sM,∞(f ′))φ(sM,∞(χjM)))

= τ(φ(sM,∞(f ′))).

Consequently,

|τ(φ(f))− τ(ψ(f))| ≤ |τ(φ(f))− τ(φ(sM,∞(f ′)))|

+ |τ(φ(sM,∞(f ′))) − τ(ψ(sM,∞(f ′)))|

+ |τ(ψ(sM,∞(f ′)))− τ(ψ(f))|

< ‖τ ◦ φ‖ (δ/2) + ‖τ ◦ ψ‖ (δ/2)

= δ.
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Let u ∈ U . There exists u0 ∈ U ′ such that dist(ū, s‡M,∞(ū0)) < δ/2. So we have

dist(φ‡(ū), ψ‡(ū)) ≤ dist(φ‡(ū), (φ ◦ sM,∞)(ū))

+ dist((φ ◦ sM,∞)‡(ū), (ψ ◦ sM,∞)‡(ū))

+ dist((ψ ◦ sM,∞)‡(ū), ψ‡(ū))

≤ δ/2 + 0 + δ/2

= δ.

Therefore, there exists a unitary u ∈Mn(A) such that for all f ∈ F ,

∥∥∥∥∥∥∥∥∥∥∥∥∥
uφ(f)u∗ −



φ1(f) 0 · · · 0

0 φ2(f) · · · 0

...
...

. . .
...

0 0 0 φn(f)



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε.

Corollary IV.2.6. Let X be a compact metric space and let A be a simple

separable unital C∗-algebra with tracial rank at most one. Let n ≥ 1 be an integer.

Any unital homomorphism φ : C(X)→Mn(A) is approximately diagonalizable.

Proof. There exists a metric space Y such that C(Y ) ∼= C(X)/ kerφ. Let

ψ : C(Y ) → Mn(A) denote the induced injective homomorphism and let

π : C(X) → C(Y ) denote the canonical quotient. By Theorem IV.2.5, there exist
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unital homomorphisms ψn : C(Y )→Mn(A) and a unitary u ∈Mn(A) such that

∥∥∥∥∥∥∥∥∥∥∥∥∥
uψ(g)u∗ −



ψ1(g) 0 · · · 0

0 ψ2(g) · · · 0

...
...

. . .
...

0 0 0 ψn(g)



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε

for all g ∈ π(F ). So for all f ∈ F ,

∥∥∥∥∥∥∥∥∥∥∥∥∥
uψ(π(f))u∗ −



ψ1(π(f)) 0 · · · 0

0 ψ2(π(f)) · · · 0

...
...

. . .
...

0 0 0 ψn(π(f))



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε.

So by setting φi = ψi ◦ π, we obtain the result.

Corollary IV.2.7. Let A be a simple separable unital C∗-algebra with tracial

rank at most one. For any integer n ≥ 1, every normal matrix a ∈ Mn(A) is

approximately diagonalizable. Furthermore, when sp(a) has finitely many connected

components, a is approximately unitarily equivalent to a diagonal matrix.

Matrices over C∗-Algebras with Rational Tracial Rank One

Since we have a classification of homomorphisms from AH-algebras to C∗-

algebras with rational tracial rank one, we can use similar methods to prove

approximate diagonalization results. Without the Riesz interpolation, however,

approximate diagonalization won’t hold in general.
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Theorem IV.3.1. Let X be a compact, connected, metric space such that

K1(C(X)) is free. Let A be a simple separable unital Z-stable C∗-algebra with

rational tracial rank at most one. Let n ≥ 1 be an integer. Any injective unital

homomorphism φ : C(X) → Mn(A) is approximately unitarily equivalent to a

diagonal homomorphism.

Proof. Since X is connected, C(X,Z) ∼= Z and so

K0(C(X)) = Z⊕ ker ρC(X).

Also [1C(X)] = (1, 0) in this decomposition. We define normalized group

homomorphisms αi : (K0(C(X)), 1C(X)) → (K0(A), 1A) by αi(1C(X)) = 1A on

C(X,Z) and

αi =


K0(φ) if i = 1

0 if i 6= 1

on ker ρC(X). One can readily see that

α1 + α2 + · · ·+ αn = K0(φ).

We define γi : C(X)sa → Aff(T (A)) by

γi(f)(τ) = τ(φ(f))

for i = 1, 2, . . . , n. Since ρC(X)(C(X)) is cyclic and γi is unital, (αi, γi) is a

compatible pair for i = 1, 2, . . . , n.
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By Lemma IV.2.3, there exist elements κi ∈ KLe(C(X), A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ)

and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = φ‡

and (κi, γi, ηi) is a compatible triple for i = 1, 2, . . . , n.

So by Theorem II.5.5, there exist unital homomorphisms ψi : C(X) → A for

i = 1, 2, . . . , n such that

KL(ψi) = κi,

τ(ψi(f)) = γi(f)(τ), and

ψ‡i = ηi.

Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.
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We can see that

KL(ψ) =
n∑
i=1

KL(φi) =
n∑
i=1

κi = KL(φ),

τ(ψ(f)) =
n∑
i=1

τ(φi(f)) =
n∑
i=1

γi(f)(τ) = τ(φ(f)),

and ψ‡ =
n∑
i=1

φ‡i =
n∑
i=1

ηi = φ‡.

So by Theorem II.5.4, φ and ψ are approximately unitarily equivalent.

Corollary IV.3.2. Let A be a simple, separable, unital, Z-stable C∗-algebra with

rational tracial rank at most one. For any integer n ≥ 1, every normal matrix

a ∈ Mn(A) is approximately diagonalizable if sp(a) is connected and K1(C(sp(a))

is free. In particular, self-adjoint matrices with connected spectra are approximately

diagonalizable.

Unfortunately, the condition that X is connected is essential to Theorem

IV.3.1.

To construct a concrete counterexample, by Theorem 6.8 of [23], there exists a

simple, separable, unital C∗-algebra A0 with TR(A⊗Q) ≤ 1 such that K0(A) ∼= Z2

with the strict ordering and with order unit (2, 2), K1(A) = 0, and T (A) ∼= [0, 1].

As we’ve seen in Section III.4, the group Z2 with the strict ordering tensored

with Q is isomorphic to Q2 with the strict ordering. Since Q2 with the strict

ordering is a simple dimension group, it follows that Z2 satisfies the rational Riesz

property.

There exists a projection p ∈ M2(A0) such that [p] = (3, 1) in K0(A0). We

note that [p] is an atom, since if g ∈ G+ is a nonzero positive element with g < [p],
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then, writing g = (x, y), we have y > 0 and (3− x, 1− y)� (0, 0). So 1− y > 0, or

0 < y < 1, which is impossible.

So we see that not even projections are necessarily approximately

diagonalizable.

We see that this example fails when the K0 group of the codomain is not an

interpolation group. When the the K0 group of the codomain is a weak dimension

group, approximate diagonalization holds generally.

Theorem IV.3.3. Let X be a compact metric space such that K1(C(X)) is free.

Let A be a separable simple unital Z-stable C∗-algebra with rational tracial rank

at most one such that K0(A) = Z. Let n ≥ 1 be an integer. Any unital injective

homomorphism φ : C(X)→Mn(A) is approximately diagonalizable.

Proof. Let x0 ∈ K0(A)+ denote the unique atom of K0(A)+. There exists a unique

positive group isomorphism θ : K0(A)→ Z such that θ(x0) = 1. Since φ is injective,

we have K0(φ)([χ]) 6= 0 for any projection χ ∈ C(X). We see that X has no more

than m = θ(n[1A]) connected components. Otherwise, there would exist mutually

orthogonal projections χi for i = 1, 2, . . . ,m+ 1 such that

m+1∑
i=1

χi = 1C(X),

and we would have

m = n[1A] = K0(φ)([1C(X)]) =
m+1∑
i=1

K0(φ)(χi) ≥ m+ 1,

a contradiction. So C(X) has finitely many connected components. Enumerate

the connected components of X by Xj for j = 1, 2, . . . , k. Let χj denote the

characteristic function of Xj for j = 1, 2, . . . , k. Note that C(X) =
⊕k

j=1C(Xj).
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Since φ is unital, we have

k∑
j=1

K0(φ)([χj]) = n[1A].

So by the Riesz interpolation property, there exists zi,j ∈ K0(A)+ for i = 1, 2, . . . , n

and j = 1, 2, . . . , k such that

n∑
i=1

zi,j = [χj] and

k∑
j=1

zi,j = [1A]

For i = 1, 2, . . . , n, we define

N(i) = {j : zi,j 6= 0} and

N ′(i) = {j : zi,j = 0}.

We also denote Ci =
⊕

j∈N(i) C(Xj) and identify Ci as a subalgebra of C(X)

for i = 1, 2, . . . , n. Since
∑

j zi,j = [1A], for each j, there exists i such that zi,j 6= 0

or equivalently i ∈ N(j). Let

m(j) = inf{i : j ∈ N(i)}.
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Let αi : K0(Ci) → K0(A) be defined by We define αi : G → H by setting

αi(xj) = zi,j for all i and j, and by setting

αi(g) =


K0(φ)(g) if i = m(j)

0 if i 6= m(j)

for g ∈ ker ρC(Xj) ⊆ ker ρC(X). We note that αi is a strictly positive, normalized

group homomorphism for i = 1, 2, . . . , n. By extending αi to group homomorphisms

ᾱi : K0(C(X))→ K0(A) by setting ᾱi(g) = 0 for g ∈
⊕

j ∈ N ′(i)C(Xj), we see

K0(φ) = ᾱ1 + ᾱ2 + · · · ᾱn.

Since A has stable rank one, by Lemma IV.2.2, there exist non-zero, mutually

orthogonal projections pi,j ∈ Mn(A) for i = 1, 2, . . . , n and j ∈ N(i) such that

[pi,j] = αi(χj) and
n∑
i=1

pi,j = φ(χj).

We define γi : (Ci)sa → Aff(T (A)) such that

γi(f)(τ) =
k∑
j=1

τ(pi,jφ(f)pi,j).

Since the projections pi,j are non-zero and mutually orthogonal, γi is a positive

linear map with ker γi = 0. For all τ ∈ T (A) and j0 ∈ N(i), we have

γi(χj0)(τ) =
k∑
j=1

τ(pi,jφ(χj0)pi,j) = τ(pi,j0) = τ(ρA(αi(χj0)))

and so (αi, γi) is a compatible pair for i = 1, 2, . . . , n.
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By Lemma IV.2.3, there exist elements κi ∈ KLe(Ci, A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ)

and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = (φ)‡

and (κi, γi, ηi) is a compatible triple for j = 1, 2, . . . , k and i = 1, 2, . . . , n.

So by Theorem II.5.5, there exist unital homomorphisms ψi : C(X) → A for

i = 1, 2, . . . , n such that

KL(ψi) = κi,

τ(ψi(f)) = γi(f)(τ), and

ψ‡i = ηi.

We set ψi = 0 for i = 1, 2, . . . , n and j ∈ N ′(i). Let

ψ =



ψ1 0 · · · 0

0 ψ2 · · · 0

...
...

. . .
...

0 0 0 ψn


.
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We can see that

KL(ψ) =
n∑
i=1

KL(ψi) = KL(φ),

τ(ψ(f)) =
n∑
i=1

γi(f)(τ) = τ(φ(f)),

and ψ‡ =
n∑
i=1

k∑
j=1

ηji = φ‡.

So by Theorem II.5.4, φ and ψ are approximately unitarily equivalent.

In particular, self-adjoint matrices over the Jiang-Su algebra are

approximately diagonalizable.
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CHAPTER V

APPROXIMATE DIAGONALIZATION OF HOMOMORPHISMS

Approximate Diagonalization When Domain Has Unique Trace

As noted in Section IV.1, the K0 groups of commutative C∗-algebras

have nice properties that enable general approximate diagonalization results.

Unfortunately, the K0 groups of general AH-algebras are more diverse. In

particular, the infinitesimals do not always split and the natural choice of order

unit is not as amenable to the use of the Riesz decomposition property.

But this diversity does lead to a well-behaved class of AH-algebras for our

purposes which is nearly disjoint from the commutative C∗-algebras, namely

those AH-algebras with unique tracial state. Since the extreme tracial states of a

commutative C∗-algebra correspond to the points of the space, as shown in Section

IV.1, the only commutative C∗-algebra with a unique tracial state is C. In contrast,

many AH-algebras have unique tracial state. Every UHF-algebra, for example, has

a unique tracial state.

Lemma V.1.1. Let (G, u) and (H, v) be partially ordered abelian groups with

order units. Suppose that G has a unique state, that H is simple, and that there

is a normalized positive group homomorphism from (G, u) to (H, v). Then for any

/nteger n ≥ 1 and any normalized positive group homomorphism α : (G, u) →

(H,nv), there exist normalized positive group homomorphisms αi : (G, u) → (H, v)

such that

α1 + α2 + · · ·+ αn = α.
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Proof. Let β : (G, u) → (H, v) be a normalized positive group homomorphism.

Let σ ∈ S(G, u) denote the unique state. Since G has a unique state,

Aff(S(G, u)) ∼= R and so {ρG(u)} is a basis for Aff(S(G, u)). So for any positive

group homomorphism from G to H, the induced map from Aff(S(G, u)) to

Aff(S(H, v)) is determined by where u is mapped. In particular, we have

αρ = nβρ,

since α(u) = nβ(u) = nv. Now we define αi : G→ H by

αi =


α− (n− 1)β if i = 1

β if i 6= 1

for i = 1, 2, . . . , n. It is clear that αi is a group homomorphism and

α1 + α2 + · · ·+ αn = α.

By construction, αi : (G, u) → (H, v) is a normalized positive group homomorphism

for i = 2, 3, . . . , n. It suffices to show α1 is normalized and positive. Note that

α1(u) = α(u)− (n− 1)β(u) = nv − (n− 1)v = v.

So α1 : (G, u)→ (H, v) is normalized.

Let g ∈ G+. Since g is positive, σ(g) ≥ 0. We first assume that σ(g) > 0.

Note that for any τ ∈ S(H, v), τ ◦ β = σ since τ ◦ β ∈ S(G, u) and σ is the unique
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state of G. So for any τ ∈ S(H, v), we have

τ(α1(g)) = τ(α(g)− (n− 1)β(g))

= τ(α(g))− (n− 1)τ(β(g))

= αρ(τ)(g)− (n− 1)βρ(τ)(g)

= βρ(τ)(g)

= τ(β(g))

= σ(g) > 0.

Now suppose that g ∈ G+∩kerσ. As we’ve seen just now, for any τ ∈ S(H, v),

we have τ ◦ β = σ. So it follows that τ(β(g)) = 0. So β(g) ∈ H+ with β(g) ∈ ker ρH .

Since H is simple, it follows that β(g) = 0. Similarly, we have τ ◦ α = nσ and so

it follows that τ(α(g)) = 0. So α(g) ∈ H+ ∩ ker ρH and so by simplicity, α(g) = 0.

Hence α1(g) = 0. So α1 is a positive homomorphism.

Theorem V.1.2. Let C be a separable, unital AH-algebra with a unique tracial

state and let A be a separable, simple, unital C∗-algebra with tracial rank at most

one. Suppose there exists a unital homomorphism from C to A. Let n ≥ 1 be an

integer. Any unital, injective homomorphism φ : C → Mn(A) is approximately

unitarily equivalent to a diagonal homomorphism.

Proof. Let θ : C → A be a unital homomorphism. The induced map K0(θ) is a

normalized positive group homomorphism. Also since C is exact and has a unique

tracial state, K0(C) has a unique state. By Lemma V.1.1, there exist normalized

positive group homomorphisms αi : (K0(C), 1C)→ (K0(A), 1A) such that

α1 + α2 + · · ·+ αn = K0(φ).
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Let σ ∈ T (C) be the unique tracial state. Since C has a unique tracial state,

Aff(T (C)) ∼= Aff(S(K0(C)), [1C ]) ∼= R,

and so there exists a unique unital linear map γ : Aff(T (C)) → Aff(T (A)), which is

strictly positive unital and continuous.

As noted in Section III.2, to show compatibility it suffices to show that the

square

Aff(SK0(C))
(αi)ρ //

��

Aff(SK0(A))

��
Aff(T (C))

γi // Aff(T (A))

commutes for each i, but by uniqueness we have (αi)ρ = K0(θ)ρ and γi = θ]. So the

diagram does commute.

By Lemma IV.2.3, there exist κi ∈ KLe(C(X), A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ)

and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = φ‡,

and the triple (κi, γi, ηi) is compatible for i = 1, 2, . . . , n.
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So by II.5.3, there exist unital homomorphisms ψi : C(X) → A for i =

1, 2, . . . , n such that

KL(ψi) = κi,

τ(ψi(f)) = γi(f)(τ), and ψ‡i = ηi.

Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.

We can see that

KL(ψ) =
n∑
i=1

KL(φi) =
n∑
i=1

κi = KL(φ),

τ(ψ(f)) =
n∑
i=1

τ(φi(f)) =
n∑
i=1

γi(f)(τ) = τ(φ(f)),

and ψ‡ =
n∑
i=1

φ‡i =
n∑
i=1

ηi = φ‡.

So by Theorem II.5.4, φ and ψ are approximately unitarily equivalent.

Approximate Diagonalization When the Codomain Has Torsion-Free

Divisible K0

Theorem V.2.1. Let C be a separable unital AH-algebra and let A be a separable

simple unital C∗-algebra with tracial rank at most one such that K0(A) is torsion-

free and divisible. Let n ≥ 1 be an integer. Any unital injective homomorphism

φ : C →Mn(A) is approximately unitarily equivalent to a diagonal homomorphism.
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Proof. Since, as a torsion-free divisible group, K0(A) is a rational vector space, we

can define group homomorphisms αi : K0(C)→ K0(A) by

αi(g) =
1

n
K0(φ)(g)

for i = 1, 2, . . . , n and g ∈ K0(C).

It is clear that

αi(1C) =
1

n
K0(φ)(1C) =

1

n
· n · 1A = 1A,

and so αi is normalized. It is clear that αi is strictly positive.

We define γi : Aff(T (C))→ Aff(T (A)) by taking

γi =
1

n
φ],

which, as a scalar multiple of an induced map, is strictly positive unital and linear.

By construction, we have

γ1 + γ2 + · · ·+ γn = γ.

As we saw in the computation showing αi is positive above,

ρA(αi([p]))(τ) =
1

n
τ(φ(p)) = γi(ρC([p]))(τ)

for all p ∈M∞(A) and τ ∈ T (A). So (αi, γi) is a compatible pair for i = 1, 2, . . . , n.

By Lemma IV.2.3, there exist κi ∈ KLe(C(X), A)++ such that

κ1 + κ2 + · · ·+ κn = KL(φ),
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and group homomorphisms ηi : U
∞(C(X))/CU∞(C(X))→ U(A)/CU(A) such that

η1 + η2 + · · ·+ ηn = φ‡,

and (κi, γi, ηi) is a compatible triple for i = 1, 2, . . . , n.

So by Theorem II.5.3, there exist unital homomorphisms ψi : C(X) → A for

i = 1, 2, . . . , n such that

KL(ψi) = κi,

τ(ψi(f)) = γi(f)(τ),

ψ‡i = ηi.

Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.

We can see that

KL(ψ) =
n∑
i=1

KL(φi) =
n∑
i=1

κi = KL(φ),

τ(ψ(f)) =
n∑
i=1

τ(φi(f)) =
n∑
i=1

γi(f)(τ) = τ(φ(f)),

and ψ‡ =
n∑
i=1

φ‡i =
n∑
i=1

ηi = φ‡.

So by Theorem II.5.1, φ and ψ are approximately unitarily equivalent.
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Counterexample to Approximate Diagonalization

In this section, we will be considering two paricular AF-algebras to

demonstrate that approximate diagonalization does not hold generally and to

illustrate the ideas in the next section.

Let G0 be the subgroup of R2 generated by (1, 0), (0, 1), and (
√

2,
√

3) with

order induced from the strict ordering on R2. Take u = (1, 1).

Let H0 be the subgroup of R generated by 1 and
√

2 +
√

3 with order induced

from the usual ordering of R. Let v ∈ H+
0 be an arbitrary order unit. We will see

that approximate diagonalization will depend on the choice of v.

We note that G0 and H0 are countable simple dimension groups by Theorem

14.16 of [6]. By the Effros-Handelman-Shen Theorem (see Theorem 2.2 of [4]),

there exist unital simple AF-algebras C0 and B0 such that

(K0(C0), K0(C0)+, [1C0 ])
∼= (G0, G

+
0 , (1, 1)) and

(K0(A0), K0(A0)+, [1A0 ])
∼= (H0, H

+
0 , v).

For this and the next section, we wish to consider appropriate group

homomorphisms as elements of a group. Since positive group homomorphisms do

not form a group and the group of all group homomorphisms does not take into

account the order structure, we make the following definition.

Definition V.3.1. Let (G, u) and (H, v) be partially ordered groups with order

units. We denote by Homc(G,H) the set of group homomorphisms α : G → H such

that there exists a continuous linear map β : Aff(S(G, u))→ Aff(S(H, v)) such that

ρH ◦ α = β ◦ ρG.

78



We note that Homc(G,H) is a subgroup of Hom(G,H) and that every

positive group homomorphism from G to H is an element of Homc(G,H).

We also note that in general, different group homomorphisms can induce the

same linear map. But if the domain of the homomorphism is archimedian, then

ρG is injective and so different group homomorphisms in Homc(G,H) will induce

different linear maps from Aff(S(G, u)) to Aff(S(H, v)).

Returning to our specific example, we note that by Elliott’s classification

of AF-algebras (see Theorem 1.3.3 of [27]) and since we are considering finitely

generated groups, we see that approximate diagonalization is equivalent to

decomposing normalized positive group homomorphisms as the sum of normalized

positive group homomorphisms on the K0 groups.

The next few propositions show that positive group homomorphisms from

G0 to H0 are associated with rational approximations of an irrational number.

Furthermore, the choice of order unit v associates normalization with a bound

for the denominator of these approximations. So approximate diagonalization is

equivalent to the condition that certain rational approximations can be written as

the sum of other rational approximations, which is not often the case. This will be

made precise in Proposition V.3.5.

Proposition V.3.2. There is a one-to-one correspondence ∆: Z2 → Homc(G0, H0)

such that (x, y) 7→ α, where α((1, 0)) = y + x(
√

2 +
√

3) and α((0, 1)) = y − x(
√

2 +
√

3). Furthermore, ∆(x, y)(u) ∈ 2Z for all x, y ∈ Z.

Proof. First we need to prove that ∆ is well-defined. Given x, y ∈ Z, we have a

linear map β : R2 → R defined by β((1, 0)) = y + x(
√

2 +
√

3) and β((0, 1)) =

y − x(
√

2 +
√

3). The restriction of β to G is a group homomorphism from G to H
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if a set of generators of G maps to H. By construction (1, 0) and (0, 1) map to H.

Finally, consider

β((
√

2,
√

3)) =
√

2(y + x(
√

2 +
√

3)) +
√

3(y − x(
√

2 +
√

3))

= y
√

2 + 2x+ x
√

6 + y
√

3− x
√

6− 3x

= −x+ y(
√

2 +
√

3) ∈ H.

So the restriction of β to G is in Homc(G,H).

It is clear that ∆ is injective. Now fix α ∈ Homc(G,H). There exist integers

x1, x2, y1, y2 such that α((1, 0)) = y1+x1(
√

2+
√

3) and α((0, 1)) = y2+x2(
√

2+
√

3).

There exists a linear map β : R2 → R2 such that the restriction of β to G is α.

Consider

α((
√

2,
√

3)) = β((
√

2,
√

3))

=
√

2β((1, 0)) +
√

3β((0, 1))

=
√

2α((1, 0)) +
√

3α((0, 1))

=
√

2(y1 + x1(
√

2 +
√

3)) +
√

3(y2 + x2(
√

2 +
√

3))

= y1

√
2 + 2x1 + x1

√
6 + y2

√
3 + x2

√
6 + 3x2

= 2x1 + 3x2 + y1

√
2 + y2

√
3 + (x1 + x2)

√
6.

So y1 = y2 and x1 = −x2. So ∆ is surjective.
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Fix x, y ∈ Z. Notice

∆(x, y)((1, 1)) = ∆(x, y)((1, 0)) + ∆(x, y)((0, 1))

= y + x(
√

2 +
√

3) + y − x(
√

2 +
√

3)

= 2y.

So ∆(x, y) ∈ 2Z.

Proposition V.3.3. For (x, y) ∈ Z2, the homomorphism ∆(x, y) is positive if and

only if y ≥ x(
√

2 +
√

3) and y ≥ −x(
√

2 +
√

3).

Proof. Let α = ∆(x, y). We see that y ≥ x(
√

2 +
√

3) and y ≥ −x(
√

2 +
√

3) if and

only if α((1, 0)) ≥ 0 and α((0, 1)) ≥ 0. So if α is positive, then y ≥ x(
√

2 +
√

3) and

y ≥ −x(
√

2 +
√

3).

Let β : R2 → R denote a linear map such that β restricted to G is α. If

α((1, 0)) ≥ 0 and α((0, 1)) ≥ 0, then for all (a, b) ∈ G+
0 , we have a ≥ 0 and

b ≥ 0. So

α((a, b)) = β((a, b))

= aβ((1, 0)) + bβ((0, 1))

= aα((1, 0)) + bα((0, 1)) ≥ 0.

So α is positive.

For every x ∈ R, let bxc denote the largest integer not exceeding x.

Proposition V.3.4. For every integer n ≥ 1 and every v ∈ 2Z ∩H0, if

n

⌊
v

2(
√

2 +
√

3)

⌋
=

⌊
nv

2(
√

2 +
√

3)

⌋
,
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then for every normalized positive group homomorphism α : (G0, u) → (H0, nv),

there exist normalized positive group homomorphisms αi : (G0, u) → (H0, v) for

i = 1, 2, . . . , n such that

α1 + α2 + · · ·+ αn = α.

Conversely, if

n

⌊
v

2(
√

2 +
√

3)

⌋
<

⌊
nv

2(
√

2 +
√

3)

⌋
,

then there exists a normalized positive group homomorphism α : (G0, u) →

(H0, nv) such that α cannot be written as the sum of n normalized positive group

homomorphisms from (G0, u) to (H0, v).

Proof. First, assume

n

⌊
v

2(
√

2 +
√

3)

⌋
=

⌊
nv

2(
√

2 +
√

3)

⌋
.

By Proposition V.3.2, α is determined by α((1, 0)) = y + x(
√

2 +
√

3). From

the proof of the proposition, we have 2y = nv and from Proposition V.3.3, we have

|x| ≤ nv

2(
√

2 +
√

3)
.

Since x ∈ Z, we have

|x| ≤
⌊

nv

2(
√

2 +
√

3)

⌋
= n

⌊
v

2(
√

2 +
√

3)

⌋
.

So there exist integers x1, x2, . . . , xn such that x = x1 + x2 + · · ·+ xn and

|xi| ≤
⌊

v

2(
√

2 +
√

3)

⌋
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for all i. So there exists αi ∈ Homc(G,H) such that αi((1, 0)) = v/2 + xi(
√

2 +
√

3).

Furthermore, αi is a positive group homomorphism by Proposition V.3.3 satisfying

αi(u) = v. Since

α1((1, 0)) + α2((1, 0)) + · · ·+ αn((1, 0)) =
n∑
i=1

(v/2 + xi(
√

2 +
√

3))

= nv/2 + x(
√

2 +
√

3)

= α((1, 0)),

we have α = α1 + α2 + · · ·+ αn.

Now suppose that

n

⌊
v

2(
√

2 +
√

3)

⌋
<

⌊
nv

2(
√

2 +
√

3)

⌋
.

There exists a normalized positive group homomorphism α : (G, u) → (H,nv) such

that

α((1, 0)) = nv/2 +

⌊
nv

2(
√

2 +
√

3)

⌋
(
√

2 +
√

3).

Any normalized positive group homomorphism β : (G, u) → (H, v) has β((1, 0)) =

v/2 + z(
√

2 +
√

3) with z ∈ Z and

|z| ≤
⌊

v

2(
√

2 +
√

3)

⌋
.

The sum of n such integers will be at most

n

⌊
v

2(
√

2 +
√

3)

⌋
.

So the sum of n normalized positive group homomorphisms cannot equal α.
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Proposition V.3.5. Let n ≥ 1 be an integer. Every unital homomorphism

φ : C0 →Mn(A0) is approximately diagonalizable if and only if

n

⌊
[1A0 ]

2(
√

2 +
√

3)

⌋
=

⌊
n[1A0 ]

2(
√

2 +
√

3)

⌋
,

where we make the identification K0(A0) ⊆ R.

Proof. Since K0(φ) : (G0, u0) → (H0, n[1A0 ]) is a normalized group homomorphism,

by Proposition V.3.4, there exists αi : (G0, u0)→ (H0, [1A0 ]) such that

K0(φ) = α1 + α2 + · · ·+ αn.

By Proposition 1.3.4(iii) of [27], there exist unital homomorphisms φi : C0 → A0

such that K0(φi) = αi for i = 1, 2, . . . , n and by Proposition 1.3.4(i) of [27], φ and



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.

are approximately unitarily equivalent. So φ is approximately diagonalizable.

Conversely, suppose

n

⌊
[1A0 ]

2(
√

2 +
√

3)

⌋
<

⌊
n[1A0 ]

2(
√

2 +
√

3)

⌋
.

Let α : (G, u)→ (H,nv) be the normalized group homomorphism such that

α((1, 0)) =
n[1A0 ]

2
+

⌊
n[1A0 ]

2(
√

2 +
√

3)

⌋
(
√

2 +
√

3).
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By Proposition 1.3.4(iii) of [27], there exists a unital homomorphism φ : C0 →

Mn(A0) such that K0(α) = φ. Note that there exists a projection p ∈ C0

such that [p] = (1, 0). Suppose towards a contradiction that φ is approximately

diagonalizable. Then there exist unital homomorphisms φi : C0 → A0 for

i = 1, 2, . . . , n and a unitary u ∈Mn(A0) such that

∥∥∥∥∥∥∥∥∥∥∥∥∥
uφ(p)u∗ −



φ1(p) 0 · · · 0

0 φ2(p) · · · 0

...
...

. . .
...

0 0 0 φn(p)



∥∥∥∥∥∥∥∥∥∥∥∥∥
< 1.

So we have

K0(φ)((1, 0)) = K0(φ1)((1, 0)) +K0(φ2)((1, 0)) + · · ·+K0(φn)((1, 0)),

but

n∑
i=1

K0(φi)((1, 0)) ≤ n

⌊
[1A0 ]

2(
√

2 +
√

3)

⌋
(
√

2 +
√

3)

< K0(φ)((1, 0)),

a contradiction.

Homomorphisms between AF-algebras and Lattice Points

First we recall the notion of Minkowski sum and introduce some notation for

taking the n-fold sum of a set.
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Definition V.4.1. Let M,N be subsets of a vector space. We define M + N to be

the set

M +N = {x+ y : x ∈M, y ∈ N}.

For any subset S of a vector space, we denote by ΣnS the n-fold sum of

elements in S, or, more precisely,

Σ1S = S and

Σn+1S = {x+ y : x ∈ ΣnS, y ∈ S}.

Lemma V.4.2. Let G be an archimedian dimension group with finitely many pure

states. Let H be a finitely generated simple dimension group.

There exists a finite dimensional real vector space V , a discrete group L ⊆ V ,

and a bijection

θ : L → Homc(G,H).

Moreover, there exists a cone L+ ⊆ L such that θ(L+) = Hom+(G,H).

Furthermore, for each pair of order units u ∈ G+ and v ∈ H+, there exists an

affine subspace S ⊆ V such that θ(L+(G,H) ∩ S) is the set of normalized positive

group homomorphisms from (G, u) to (H, v)

Proof. Since, by Theorem 7.9 of [6], the rational span of ρG(G+) is dense in

Aff(S(G, u)), there exists a set B ⊆ G+ such that ρG(B) is a basis of Aff(S(G, u)).

Since G has finitely many pure states,

Aff(S(G, u)) ∼= C(∂eS(G, u),R) ∼= Rs,
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where s ≥ 1 is the number of pure states of G. So B contains s elements and we

label the elements B = {b1, b2, . . . , bs}.

Since H is a finitely generated, torsion-free abelian group, there exists some

integer k such that H ∼= Zk as groups. Fix a group isomorphism ζ : H → Zk. We

set V = Rsk.

Let

L = {(ζ ◦ α(b1), ζ ◦ α(b2), . . . , ζ ◦ α(bs)) ∈ Zsk : α ∈ Homc(G,H)}.

There is the group homomorphism

θ(α) = (ζ ◦ α(b1), ζ ◦ α(b2), . . . , ζ ◦ α(bs)).

By construction, θ is onto. We note that α ∈ ker θ if and only if α(bi) for

i = 1, 2, . . . , s. Since ρG(B) is a basis for Aff(S(G, u)), we have that the map from

S(G, u) to S(H, v) is 0 and so α = 0. So θ is an isomorphism.

We note that L is a subgroup of Zsk. So L is a discrete group.

Since H is finitely generated, H has finitely many pure states and so

Aff(S(H, v)) ∼= C(∂eS(H, v),R) is finite-dimensional. Consider ρH ◦ ζ−1 : Zk →

Aff(S(H, v)). By tensoring with the identity on R, we obtain a linear map λ : Rk →

Aff(S(H, v)). We denote by λm : Rk → R the linear functionals by composing λ

with evaluation at a pure state for m = 1, 2, . . . , t. So we see that h ≥ 0 if and only

if either h = 0 or λm(ζ(h)) > 0 for m = 1, 2, . . . , t.

Since G is archimedian and H is simple, we see that α ∈ Homc(G,H)

is a positive group homomorphism if and only if the induced linear map
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β : Aff(S(G, u)) → Aff(S(H, v)) satisfies (β(σi))(τm) > 0 for the pure states

σi ∈ S(G, u) and τm ∈ S(H, v) where i = 1, 2, . . . , s and m = 1, 2, . . . , t.

Since ρG(B) is a basis for Aff(S(G, u)), there exist ai,j ∈ R such that

σi =
s∑
j=1

ai,jρH(bj).

So α ∈ Homc(G,H) is positive if and only if

s∑
j=1

ai,jτm(α(bi)) > 0

for all i, j = 1, 2, . . . , s and m = 1, 2, . . . , t.

We define linear functionals µi : Rs → R for i = 1, 2, . . . , s and

(x1, x2, . . . , xs) ∈ Rs by

µi((x1, x2, . . . , xs)) =
s∑
j=1

ai,jxj.

Define the linear functionals ωi,m : V → R for i = 1, 2, . . . , s, m = 1, 2, . . . , t

and (v1, v2, . . . , vs) ∈ V where each vj ∈ Rk by

ωi((v1, v2, . . . , vs)) = αi(λm(v1), λm(v2), . . . , λm(vs)).

By construction, we have that α ∈ L+ if and only if ωi,m(θ(α)) > 0 for i =

1, 2, . . . , s, m = 1, 2, . . . , t if and only if α is a nonzero positive homomorphism.

Finally we note that u =
∑s

i=1 ci,jbj. So we set L+
u,v to be

L+
u,v(G,H) = {(v1, v2, . . . , vs) ∈ L+(G,H) :

s∑
i=1

ci,jλ(vi)} = ρH(v).

88



And we see that θ(α) ∈ L+
u,v if and only if α(u) = v.

This results in the following:

Lemma V.4.3. Let G be an archimedian dimension group with finitely many pure

states. Let H be a finitely generated simple dimension group. Let u and v be order

units of G and H.

Let n ≥ 1 be an integer. There exists a finite dimensional real vector space V ,

a discrete group L ⊆ V , a cone L+ ⊆ L and an affine subspaces S1, S2 ⊆ V such

that every normalized positive group homomorphism α : (G, u) → (H,nv) can be

written as the sum of n normalized positive group αi : (G, u) → (H, v) if and only if

ΣnL+ ∩ S1 = S2

Proof. Take V , L, L+ to be the same as in V.4.2 and S1 to be the affine subspace

associated with the order units u ∈ G+ and v ∈ H+. Take S2 to be the affine

subspace associated with the order units u ∈ G+ and v ∈ H+. Let θ : L →

Homc(G,H) be the isomorphism in V.4.2. We see that θ(ΣnL+ ∩ S1) is the set

of sums of n normalized positive group homomorphisms from (G, u) to (H, v).

Theorem V.4.4. Let C be a unital separable AF-algebra with finitely many pure

tracial states such that K0(C) is archimedian. Let n ≥ 1 be an integer. Let A be

a unital separable simple AF-algebra such that K0(A) is finitely generated. There

exists a finite dimensional real vector space V , a discrete group L ⊆ V , a cone

L+ ⊆ L and an affine subspaces S1, S2 ⊆ V such that every unital injective

homomorphism φ : C → Mn(A) is approximately unitarily equivalent to a diagonal

homomorphism if and only if ΣnL+ ∩ S1 = S2.

Proof. Take V,L,L+, S1, S2 as those in Lemma V.4.3. Suppose that ΣnL+ ∩ S1 =

S2. By Lemma V.4.3, there exists normalized positive group homomorphisms
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αi : K0(C)→ K0(A) such that

α1 + α2 + · · ·+ αn = K0(φ).

By Proposition 1.3.4(iii) of [27], there exists a unital homomorphism ψi : C →

A such that K0(ψi) = αi for i = 1, 2, . . . , n.

Let

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


.

Since

K0(ψ) =
n∑
i=1

K0(ψi) = K0(φ),

by Proposition 1.3.4(i) of [27], φ and ψ are approximately unitarily equivalent.

Suppose that ΣnL+ ∩ S1 6= S2. By Lemma V.4.3, there exists a normalized

positive group homomorphism α : (K0(C), [1C ]) → (K0(A), n[1A]) that cannot

be written as the sum of n normalized positive group homomorphisms from

(K0(C), [1C ]) to (K0(A), [1A]).

By Proposition 1.3.4(iii) of [27], there exists a unital homomorphism φ : C →

Mn(A) such that K0(φ) = α. Suppose, toward a contradiction, that there exist
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unital homomorphisms ψi : C → A such that

ψ =



φ1 0 · · · 0

0 φ2 · · · 0

...
...

. . .
...

0 0 0 φn


is approximately unitarily equivalent to φ. Then by Proposition 1.3.4(i) of [27], we

have

α = K0(ψ) =
n∑
i=1

K0(ψi),

which contradicts the fact that α cannot be written as the sum of n normalized

positive group homomorphisms.
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