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DISSERTATION ABSTRACT

James Dilts

Doctor of Philosophy

Department of Mathematics

June 2015

Title: The Einstein Constraint Equations on Asymptotically Euclidean Manifolds

In this dissertation, we prove a number of results regarding the conformal

method of finding solutions to the Einstein constraint equations. These results

include necessary and sufficient conditions for the Lichnerowicz equation to

have solutions, global supersolutions which guarantee solutions to the conformal

constraint equations for near-constant-mean-curvature (near-CMC) data as well

as for far-from-CMC data, a proof of the limit equation criterion in the near-

CMC case, as well as a model problem on the relationship between the asymptotic

constants of solutions and the ADM mass. We also prove a characterization

of the Yamabe classes on asymptotically Euclidean manifolds and resolve the

(conformally) prescribed scalar curvature problem on asymptotically Euclidean

manifolds for the case of nonpositive scalar curvatures.

Many, though not all, of the results in this dissertation have been

previously published in [Dil14], [DIMM14], [DL14], [DM15], and [DGI15]. This

dissertation includes previously published coauthored material.
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CHAPTER I

INTRODUCTION

General relativity, Albert Einstein’s theory of gravity, has proven remarkably

successful in describing the universe from planetary to intergalactic scales. In

this theory, Einstein made the surprising claim that gravity is equivalent to the

curvature of space [Ein15b]. In other words, mass and energy bend and stretch

space itself.

In our solar system, the stretching is very slight; even passing over the

surface of the sun, the error is much less than one percent. However, this slight

stretching has been confirmed by numerous tests. The first physical confirmation

was the orbit of Mercury. The oval orbit of mercury precesses (rotates) by a small

amount each year. However, the observed precession is about eight percent greater

than Newtonian gravity predicts. By taking into account the stretching of space,

Einstein [Ein15a] correctly explained the observed precession.

Some other confirmations of the accuracy of general relativity include the

bending of light in gravitational fields, the gravitational red-shift effect, and the

Shapiro time delay. General relativity has become the most accurate theory of

gravity known. It has led to remarkable technologies, such as GPS, and remarkable

physical predictions, such as the Big Bang and black holes, cf. [Wal84].

In general relativity, the universe is described by a Lorentzian manifold,

called a spacetime. Vectors in the spacetime with positive inner product represent

space-like directions, while those with negative inner product represent time-like

directions. Those with zero inner product can be interpreted as the directions that

light can travel. As mentioned earlier, mass and energy stretch spacetime itself.
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This is represented by the equations of general relativity:

Rµν −
1

2
Rγµν + Λγµν = κTµν . (1.1)

Here, γµν is the metric, Rµν and R are the Ricci and scalar curvatures respectively,

Λ is the cosmological constant and κ is a constant depending on the units chosen.

In what follows, we choose units such that κ = 1. The tensor Tµν is the stress-

energy tensor, which combines both mass and energy into one object.

While easy to write down, the Einstein equations (1.1) are not easy to solve.

Minkowski space, Rn equipped with a flat Lorentzian metric, solves them trivially.

The first non-trivial exact example is the Schwarzschild solution. This solution

is spherically symmetric in spatial (spacelike) directions, and describes the space

surrounding a star. For many years, general relativity was a business of finding

special, symmetric solutions to the Einstein equations. Many of these are quite

important, such as the Kerr metric, which generalizes the Schwarzschild metric to

allow rotation and represents, it is thought, the end state of black holes, and the

FLRW metric, a family of spatially homogeneous and isotropic solutions that are

the basis of the Big Bang and the standard model of cosmology. See [Wal84] for

more information on these solutions.

In most scientific theories, one wants to be able to specify initial conditions,

such as the location of particles and their momenta, and then evolve the system to

predict where the particles will be in the future. This is called the initial value

problem. It took about forty years before the initial value problem for general

relativity was put on a firm theoretical footing.

In Newtonian physics, the initial data of particles and their momenta is freely

specifiable. This is not the case in general relativity. In general relativity, initial
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data is (usually) given on a Riemannian spatial submanifold of the spacetime.

Using the Gauss and Codazzi equations, one can reduce the Einstein equations

(1.1) on the submanifold to the Einstein constraint equations,

Rg + (trgK)2 − |K|2g = Tnn, (1.2a)

∇i
gKij −∇j(trgK) = 2Tin, (1.2b)

where g is the induced Riemannian metric, K is the second fundamental form, n

is the unit normal direction, and latin indices indicate spatial directions. Equation

(1.2a) is known as the Hamiltonian constraint while equation (1.2b) is known as the

momentum constraint. A standard reference on these equations is [BI04].

The constraint equations (1.2) must hold on any spatial submanifold of a

spacetime satisfying the Einstein equations (1.1). In 1952, Yvonne Choquet-Bruhat

[FB52] proved the converse: given a Riemannian manifold (M, g) and a symmetric

2-tensor K, there is a spacetime satisfying the Einstein equations (1.1) where

(M, g) is a submanifold and K is the second fundamental form of this submanifold.

Later, Choquet-Bruhat and Robert Geroch [CBG69] proved the existence of an

appropriate “maximal” spacetime containing (M, g), called the maximal globally

hyperbolic development.

Due to these results, instead of trying to find and classify all solutions of the

Einstein equations, one may instead find and classify the solutions of the constraint

equations. In addition, the initial value problem is vital in finding solutions in

complicated situations, such as inspiraling binary black holes; exact solutions are

difficult, if not impossible, to find, but computers can approximate these solutions

using the initial value formulation.
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Thus one would like to understand the full set of solutions to the constraint

equations (1.2), and, in particular, to parameterize this set. The constraint

equations are an underdetermined system of elliptic PDEs. Roughly speaking, for

an n dimensional spacetime, there are n functions determined by the constraint

equations, while the rest of the data is freely specifiable. However, it is not

immediately obvious which of the quantities or components of tensors we

should attempt to specify and which we should attempt to solve for. A useful

decomposition of the data is needed. One of the most useful decompositions is

known as the conformal method.

1.1. The Conformal Method

The conformal method was developed by Lichnerowicz, Choquet-Bruhat, and

York in order to parameterize all the solutions of the constraint equations (1.2). To

date it has been the most successful method in doing so.

The main idea behind the conformal method, as described in the previous

section, is to decompose the initial data into freely specifiable and determined data.

Over the years, several variations of the conformal method have been introduced,

which did not appear to be equivalent. Fortunately, David Maxwell [Max14a]

recently showed that all of the conformal methods lead to the same set of solutions,

and so are effectively equivalent. Indeed, there is a straightforward transformation

of the specifiable data from any of the methods to data from any of the others.

Because of this, we present and use the method that appears to have the most

advantages, which Maxwell refers to as the “conformal thin sandwich-Hamiltonian”

formulation, or CTS-H for short.
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In this method, the initial data consists not only of a Riemannian manifold

(M, g) and a symmetric 2-tensor K, but also of a function N , called the lapse

function. When solving for the complete spacetime, the lapse function controls

the relative length of the unit normal to the submanifold and the coordinate vector

∂t. However, the N found via the conformal method need not be used in finding

the spacetime; it is called the lapse function due to the derivation of the CTS

formulations.

In the CTS-H formulation of Einstein’s theory with matter sources, one first

specifies a manifold M and a background metric g. One then chooses functions τ, r,

a function N > 0 going to 1 at infinity, a vector field J , and a transverse-traceless

(i.e., divergence-free and trace-free) symmetric 2-tensor σ. We call (g, τ,N, σ, r, J)

the “seed data.” One then seeks a function φ > 0 and a vector field W solving the

conformal constraint equations:

−a∆φ+Rφ+ κτ 2φq−1 −
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 φ−q−1 − rφ−q/2 = 0 (1.3a)

div
1

2N
LW = κφqdτ + J. (1.3b)

Here, all quantities and operators are calculated relative to g, q = 2n
n−2 , κ = n−1

n
,

a = 4(n−1)
n−2 , and L is the conformal Killing operator, defined by

LWab = ∇aWb +∇bWa −
2

n
∇cW

cgab. (1.4)

We refer to Equation (1.3a) as the Lichnerowicz equation, while equation (1.3b)

is called the vector equation. The system is also called the LCBY (Lichnerowicz-

Choquet-Bruhat-York) equations.
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Once (φ,W ) is found, the initial data solving (1.2) is reconstructed as follows:

gab = φq−2gab, (1.5)

Kab = φ−2
(
σab +

1

2N
LWab

)
+

1

n
τgab, (1.6)

Tnn = φ−
3
2
q+1r, (1.7)

Tin = φ−qJ. (1.8)

We make several notes on this. First, given φ, York [Yor73] proved that such a

decomposition of K exists and is unique. Indeed the decomposition is L2(M)

orthogonal, i.e., ∫
M

〈σ, LW 〉 = 0, (1.9)

though they are not in general orthogonal pointwise. Next, note that τ = trgK.

Thus τ represents the mean curvature of the initial data. Also, though we could

allow r < 0, this represents a negative energy density. For the rest of the thesis we

assume the weak energy condition, which in this case is equivalent to saying that

r ≥ 0.

Finally, note that the metric g was, in the end, only specified up to a

conformal factor. Perhaps the greatest strength of the CTS-H formulation over

the other formulations of the conformal method is that it is conformally covariant.

Specifically, we have the following proposition, as proven in [Max14a, Prop 6.4].

Proposition 1.1.1. Let (g, τ,N, σ, r, J) be CTS-H seed data, and let ψ be a smooth

positive function. Then (φ,W ) solve the conformal constraint equations (1.3) for

the data (g, τ,N, σ, r, J) if and only if (ψ−1φ,W ) solve the conformal constraint
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equations for the data

(ψq−2g, τ, ψqN,ψ−2σ, ψ−
3
2
q+1r, ψ−qJ). (1.10)

Both yield the same solution (g,K) of the constraint equations.

As a consequence of this, when we attempt to find solutions to the conformal

constraint equations, we can, without loss of generality, do all calculations with

respect to any convenient representative g̃ ∈ [g]. Usually we use this freedom to

choose a representative with convenient scalar curvature. In the more traditional

conformal method, the corresponding conformal constraint equations (essentially

(1.3) with N ≡ 1
2
) are not conformally covariant.

The Lichnerowicz equation (1.3a) is a semilinear elliptic PDE. If σ +

1
2N
LW, r ≡ 0, the Lichnerowicz equation becomes the (conformally) prescribed

scalar curvature equation. In particular, if φ solves (1.3a) with σ + 1
2N
LW, r ≡ 0,

then the scalar curvature of φq−2g is −κτ 2. The prescribed scalar curvature

problem is closely related to the solvability of the Lichnerowicz equation (and the

conformal constraint equations overall) as we see below.

The vector equation (1.3b) is a linear elliptic PDE. In the absence of

conformal Killing fields, the vector equation is completely understood. However,

in the presence of conformal Killing fields, it is not well understood. A conformal

Killing field V is one such that LV ≡ 0, and represents a symmetry of some

conformally related metric. On a compact manifold, in the vacuum case (i.e.,
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(r, J) ≡ 0),

0 =

∫
M

−1

4N
〈LW,LV 〉

=

∫
M

〈
V, div

1

2N
LW

〉
=

∫
κφq〈V, dτ〉

(1.11)

by integration by parts. (The adjoint of L is −2div.) Thus φqdτ must be L2

orthogonal to all conformal Killing fields for there to be a solution W to the vector

equation (1.3b). In the case dτ ≡ 0, i.e., the constant mean curvature (CMC) case,

this is not a problem. However, in general, since φ is also unknown, this is a serious

complication. The “drift formulation” by Maxwell [Max15b], described below in

Section 1.3, is an extension of the CTS-H formulation that, among other things,

attempts to resolve this problem. In this thesis, we assume that the metric does

not allow any conformal Killing fields. Fortunately, it is well known [BCS05] that

generic metrics do not admit any conformal Killing fields.

Earlier, we described the CTS-H conformal method as splitting the initial

data into freely specifiable and determined data. This is not precisely the case. For

instance, on a compact manifold, if τ is a constant, then the solution to the vector

equation is W ≡ 0. If, in addition, R > 0 and σ, r ≡ 0, the maximum principle

implies that the Lichnerowicz equation (1.3a) has no positive solution. Thus the

seed data is not freely specifiable. The goal, then, becomes to determine which

seed data sets lead to (a hopefully unique) solution of the conformal constraint

equations. If fully understood, this leads to a parameterization of the solutions to

the constraint equations (1.2). The case that is most fully understood is the case

where M is a compact manifold without boundary.
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1.2. The Compact Case

The simplest case is the constant mean curvature case, i.e., when dτ ≡ 0. In

this case, the conformal constraint equations (1.3) decouple. If J is L2 orthogonal

to any conformal Killing fields, the vector equation (1.3b) has a solution, and W is

not dependent on φ. Thus we can reduce the conformal constraint equations to a

single equation:

−a∆φ+Rφ+ κτ 2φq−1 − β2φ−q−1 − rφ−q/2 = 0 (1.12)

where β =
∣∣σ + 1

2N
LW

∣∣.
As before, the sign of the scalar curvature R affects whether or not equation

(1.12) has any solutions. This leads us to the Yamabe problem. The Yamabe

problem asks whether a metric can be conformally transformed to one with

constant scalar curvature. The answer is yes (cf. [LP87]), with the sign of the

target scalar curvature being prescribed by a conformal invariant called the Yamabe

invariant. The Yamabe invariant of a metric, Y (g), is defined by

Y (g) := inf
u∈C∞(M),u6≡0

∫
M
a|∇u|2 +Ru2

‖u‖2q
. (1.13)

If Y (g) > 0, we say g is Yamabe positive, and similar for Yamabe null and negative.

The resolution of the Yamabe problem says that g is Yamabe positive if and only

if g can be conformally transformed to a metric with constant positive scalar

curvature, and similar statements hold for Yamabe null and negative metrics. Since

the CTS-H method is conformally covariant (cf. Proposition 1.1.1), we can assume

the scalar curvature R is constant of the appropriate sign.
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For compact manifolds, the CMC case (with r ≡ 0) was completed by Jim

Isenberg in [Ise95]. The case r ≥ 0 is proven essentially the same way, and so we

include it here also. The solvability of equation (1.12) is detailed in Table 1.

TABLE 1. Solvability of the CMC Conformal Constraint Equations

τ = 0, β, r ≡ 0 τ = 0, β, r 6≡ 0 τ 6= 0, β, r ≡ 0 τ 6= 0, β, r 6≡ 0
Y (g) > 0 No Yes No Yes
Y (g) = 0 Yes* No No Yes
Y (g) < 0 No No Yes Yes

In all cases the solution φ to equation (1.12) is unique, except in the case

Y (g) = 0, τ = 0 and β, r ≡ 0 (marked with a ∗), in which case there is a one

parameter homothety family of solutions, namely φ ∈ R+. This gives a complete

parameterization of the CMC solutions of the constraint equations (1.2), cf. [Ise87].

Similar results have been found for other topologies and asymptotic conditions.

If every spacetime could be evolved from CMC initial data, Isenberg’s

work would be enough to parameterize the solutions of the Einstein equations.

Unfortunately, not all spacetimes can be obtained this way, as proved in [CIP05]. It

is not known whether or not generic spacetimes can be obtained from CMC initial

data. Thus for a complete parameterization of solutions to the Einstein equations,

we must consider the conformal constraint equations with generic mean curvature

τ .

We first consider the Lichnerowicz equation (1.3a). Unsurprisingly, the

solvability of the Lichnerowicz equation mirrors the solvability of the CMC

conformal constraint problem as tabulated in Table 1, but with one caveat. On a

compact manifold, if Y (g) < 0, the Lichnerowicz equation has a solution if and only

if g can be conformally transformed to a metric with scalar curvature −κτ 2. For

10



τ 2 > 0, this is always true. For τ with zeroes, the solvability is discussed in [Rau95],

[DM15] and Chapter IV below. This problem is completely understood.

Excepting that caveat, one might expect the solvability of the generic

conformal constraint equations to mirror that of the CMC case, as shown in Table

2.

TABLE 2. Hypothesized Solvability of the Conformal Constraint Equations

τ 6≡ 0, β, r ≡ 0 τ 6≡ 0, β, r 6≡ 0
Y (g) > 0 No Yes
Y (g) = 0 No Yes
Y (g) < 0 Yes Yes

For nearly CMC data, this solvability is realized, at least in the case where

there are no conformal Killing fields. The near-CMC conditions typically come in

two flavors. If τ is a constant for which the CMC conformal constraint equations

have a solution, then the inverse function theorem can be used to show that any

nearby τ (in W 1,p
δ−1) also leads to a solution. In the second case, the condition is

that ‖dτ‖p is sufficiently small compared to inf τ . Using these types of conditions,

the Yamabe negative near-CMC case was settled in 1996 [IM96], the nonexistence

cases for Yamabe nonnegative metrics in 2004 [IÓM04], and the remaining cases in

2008 [ACI08]. (These results prove results for manifolds with scalar curvature of a

strict sign; Maxwell’s conformal covariance of the CTS-H formulation [Max14a] is

needed to make them apply to the entire Yamabe classes.) All of these results rely

on there being no conformal Killing fields, for the reasons discussed above.

The only generic result known for the arbitrary mean curvature case was

proven by Holst, Nagy, and Tsogtgerel [HNT09], then improved by Maxwell

[Max09]. This result essentially says that on a Yamabe positive compact

manifold, given an arbitrary τ , if σ, r, and J are small enough, then the conformal

11



constraint equations (1.3) have a (not necessarily unique) solution. More recently,

however, Nguyen [Ngu14] showed that all such solutions are merely rescalings of

perturbations off of the maximal (τ ≡ 0) case. We discuss this in Corollary 5.2.7.

Thus the only generic far-from-CMC result known is, essentially, a near-CMC

result.

Another attempted method to find solutions to the conformal constraint

equations is the “limit equation” criterion. First explored by Dahl, Gicquaud, and

Humbert [DGH12], this method says that either the conformal constraint equations

or the limit equation

div
1

2N
LW = α0

√
κ |LW | dτ

2Nτ
(1.14)

(for some α0 ∈ (0, 1]) have a (nontrivial) solution. As was suspected, Nguyen

recently showed [Ngu14] that both can in fact have solutions.

The limit equation was originally found via a subcriticality argument. If the

exponent of φ in the vector equation (1.3b) is reduced by epsilon, the coupling of

the conformal constraint equations is weak enough so that solutions are relatively

simple to find. As ε → 0, if these subcritical solutions are bounded, they must

converge to a solution to the conformal constraint equations. If they are instead

unbounded, it can be shown that they converge to a solution of the limit equation

(1.14).

The limit equation criterion is that if the limit equation has no solutions, then

the conformal constraint equations must have a solution. While this method may

be used for the far-from-CMC case, so far, it has only been used to find solutions in

the near-CMC case, as in [DGH12].

In order to better explore the far-from-CMC regime, Maxwell studied a

model problem with high symmetry [Max11]. He studied seed data on T n with

12



the flat metric, where the data depended on only one coordinate (i.e., with Un−1

symmetry). For some particular data, he showed that if τ was sufficiently far-

from-CMC in some sense, then there were no solutions to the conformal constraint

equations (in the symmetry class of the data). Given such a τ , however, if the

transverse traceless part of the data were sufficiently small, then there were at least

two solutions.

This is in contrast to the CMC and near-CMC case, where solutions are

unique. Also, the nonexistence for far-from-CMC data is in contradiction with the

hypothesized solvability described in Table 2. However, this model problem may

be a special case for several reasons. First, the background metric is flat, which is

known to be a very special case, even in the CMC theory. Second, the background

metric has conformal Killing fields, which is known to be non-generic. Third, the

mean curvature function τ has jump discontinuities. Finally, the non-existence/non-

uniqueness only occurs when τ changes signs. However, this could also represent

new phenomena, or, perhaps, limitations of the conformal method.

Maxwell [Max14b] later studied a related problem. On flat T n, and arbitrary

τ , again with Un−1 symmetry, he found seed data that led to either flat Kasner or

static-toroidal solutions of the constraint equations. It was shown that there was

in fact a one parameter family of solutions to the conformal constraint equations if

and only if

τ ∗ :=

∫
S1 Nτdx∫
S1 Ndx

= 0, (1.15)

where the integrals are respect to the flat metric. While τ ∗ appears to be

determined by N and τ , the reality is more complicated.

Recall that the CTS-H method is conformally covariant, as described in

Proposition 1.1.1. However, equation (1.15) is not conformally covariant. Thus,
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if we started with arbitrary seed data on T n that happened to lead to one of these

solutions, we would need to calculate τ ∗ with respect to the solution metric and not

the background metric. In general, then, there is no way of determining whether or

not a set of seed data leads to a one parameter family until after the solution has

already been found. This presents serious problems for the goal of parameterizing

all solutions to the constraint equations (1.2), since these one parameter families

are essentially impossible to detect.

1.3. The Drift Formulation

In an attempt to avoid the pitfalls for parameterizing solutions to the

constraint equations described in the last section, Maxwell introduced the drift

formulation of the conformal method, originally in [Max14b], and expanded in

[Max15b]. In the standard CTS-H method, the mean curvature τ is specified in

the seed data, and is unchanged by the conformal factor found by solving the

Lichnerowicz equation (1.3a). This, however, makes calculating τ ∗ impossible

without first finding the solution to the conformal constraint equations (1.3).

Maxwell’s idea was to specify the constant τ ∗ directly, and then define τ by

adding τ ∗ to a conformally varying term, given by something he calls a drift, for

reasons explained in [Max15b]. Since τ ∗ is specified directly, the one parameter

families of solutions described in the previous section occur only when τ ∗ is

specified to be zero. The drift formulation also has the advantage of making it

possible to find solutions even in the presence of conformal Killing fields.

Though Maxwell introduces several possible ways to construct such τ , we

discuss only one. In this formulation, which he calls CTS-H with volumetric drift,

the drift is given by a vector field V which is specified up to a conformal Killing
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field Q. Given seed data (g, τ ∗, V,N, σ, r, J), one tries to find a solution (φ,W,Q) to

−a∆φ+Rφ+ κ

(
τ ∗ +

φ−2q

N
div(φq(V +Q))

)2

φq−1 −
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 φ−q−1 − rφ−q/2 = 0

(1.16a)

div
1

2N
LW = κφqd

(
τ ∗ +

φ−2q

N
div(φq(V +Q))

)
+ J.,

(1.16b)

which is the same as (1.3), except that we replaced τ with

τ := τ ∗ +
φ−2q

N
div(φq(V +Q)). (1.17)

The data is then reassembled as before, except

Kab = φ−2
(
σab +

1

2N
LWab

)
+

1

n

(
τ ∗ +

φ−q

N
divV

)
gab, (1.18)

where div is the divergence with respect to g. Note that for V ≡ 0, this method

reduces to the CMC CTS-H method.

The drift method has several advantages over the CTS-H formulation. First,

the one parameter families found in [Max14b] occur if and only if τ ∗ = 0. Thus

at least that obstruction to parameterization is overcome. Also, Maxwell proved

[Max15b, Thm 10.1] that the vector equation (1.16b) has a solution for some

Q, even if g has conformal Killing fields. Thus it becomes possible to solve the

constraint equations in the presence of conformal Killing fields.

However, the drift formulation equations (1.16) are much more complicated

analytically. For example, in the original vector equation (1.3b), one can find an
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upper bound on LW based on an upper bound for φ. In the drift vector equation,

a similar upper bound naively requires bounds on ‖φ‖C2 . Perturbation methods,

such as those used to produce solutions in the CTS-H formulation, are expected to

extend to the drift setting [Max15a]. Since all known generic results for the CTS-H

method are near-CMC results, this would show that the drift formulation is at least

as useful as the CTS-H method. The drift formulation is a promising approach to

finding the parameterization of the constraint equations.

1.4. This Dissertation

In this dissertation, we discuss the conformal constraint equations, in

particular focusing on the asymptotically Euclidean (AE) case. In Chapter II,

we introduce AE manifolds and the appropriate Banach spaces for analysis, and

then discuss elliptic operator theory on AE manifolds. Because the vector equation

(1.3b) is relatively simple, we discuss its solvability in this chapter. This chapter

serves as a common introduction to all the subsequent chapters.

In Chapter III, we discuss the solvability of the Lichnerowicz equation (1.3a).

In particular, we show that the Lichnerowicz equation is solvable if an only if the

metric can be conformally transformed to one with scalar curvature −κτ 2. We

then leverage this result to obtain a circumstance where the conformal constraint

equations do not admit a solution, and also show an example of the blowup of

solutions. The results in this chapter, though written solely by the author of this

dissertation, will appear in [DGI15].

In Chapter IV we discuss when the prescribed scalar curvature problem from

the previous chapter has a solution. We give a necessary and sufficient condition for

the problem to have a solution; namely, that the zero set of the prescribed scalar
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curvature has positive Yamabe invariant, as defined in this chapter. Because of this

problem’s close relation to AE Yamabe classes, we also give a characterization of

the AE Yamabe classes. This chapter is taken from [DM15].

In Chapter V, we prove the existence of solutions for the conformal constraint

equations for arbitrary mean curvature, assuming the tensor σ and the matter

terms r and J are sufficiently small. We also show existence in the near-CMC case.

This part is taken from [DIMM14]. We also discuss a new solvability criterion,

related to Nguyen’s “local supersolution” from [Ngu14].

In Chapter VI, we discuss the limit equation criterion for AE manifolds.

Unfortunately, we only show that the solution of the limit equation is nontrivial

in the near-CMC case. We show that arbitrarily near-CMC data, in the sense

required, does not ever occur. This is unpublished joint work with Romain

Gicquaud and Jim Isenberg.

In Chapter VII, we discuss the relation of the ADM mass to the asymptotics

of the solution of the conformal constraint equations (1.3). We then present

a model problem for this relation, which shows that the ADM mass is not

monotonically dependent on the asymptotics of the solution.
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CHAPTER II

ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

Perhaps the simplest solution to the Einstein constraint equations (1.1)

is Euclidean space, with the second fundamental form K and stress-energy

tensor T vanishing. Physically this represents space with no matter and no tidal

forces. Heuristically, far from any mass and energy, space should become more

and more like Euclidean space. Far from any star, gravity becomes very weak.

Mathematically, this kind of initial data is represented by asymptotically Euclidean

(AE) manifolds.

A manifold (Mn, g) is called asymptotically Euclidean (AE) if there exists a

compact set K ⊂ M such that M \K is a (finite) collection of components Ei, each

diffeomorphic to the exterior of a ball in Euclidean space, Rn \ BR(0), and on each

end, g is asymptotic to the Euclidean metric gEuc. The Ei are called the ends of M .

In order to be precise, we must first define appropriate weighted Sobolev

and Hölder norms. First, fix a Euclidean coordinate system on each end, i.e., a

distinguished diffeomorphism from Ei to Rn \ BR(0). Let ρ ≥ 1 be a smooth

function which agrees with the radial coordinate on each end. We say a function

f ∈ W s,p
δ (M) if ∑

|j|≤s

‖ρ−δ−
n
p
+|j|∇jf‖Lp <∞, (2.1)

where j is a multi-index, and ∇j is calculated with respect to a frame agreeing with

the Euclidean frame on each end. We denote this quantity by ‖f‖W s,p
δ (M), without

the (M) if the domain is understood. If s = 0, we denote the space as Lpδ(M)

and the norm as ‖f‖p,δ. To extend this space and norm to tensors, we require
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the same regularity and decay for each component of the tensor with respect to

the Euclidean frame in the background Euclidean metric gEuc. Note that our

convention on δ is chosen such that f ∈ W s,p
δ (M) implies that, using the little-o

notation, f is o(ρδ); other conventions exist in the literature.

For α ∈ [0, 1], we say a function f ∈ Cs,α
δ (M) if

sup
B,|j|≤s

{
|∇jf |ρ|j|−δ, [∇sf ]B;αρ

s−δ} <∞, (2.2)

where the supremum is over all balls B ⊂ M of unit radius, and [·]B;α is the Hölder

seminorm on that ball. We denote Cs,0
δ (M) by Cs

δ (M) for simplicity. We extend

this space to tensors similarly.

We then say that g is a W s,p
δ AE manifold if δ < 0 and

g|Ei − gEuc ∈ W
s,p
δ (2.3)

on each end Ei. We similarly define Cs,α
δ AE manifolds.

We state some basic properties of these spaces in the following two

propositions, the first of which is taken from [Max05, Lemma 1]:

Proposition 2.0.1 (Properties of Weighted Sobolev Spaces). The following

properties hold for the weighted Sobolev spaces defined by (2.1):

1. If p ≥ q and δ′ < δ then Lpδ′ ⊂ Lqδ and the inclusion is continuous.

2. For s ≥ 1 and δ′ < δ the inclusion W s,p
δ′ ⊂ W s−1,p

δ is compact.

3. If s < n/p then W s,p
δ ⊂ Lrδ where r = np/(n− sp). If s = n/p then W s,p

δ ⊂ Lrδ

for all r ≥ p. If s > n/p then W s,p
δ ⊂ C0

δ . These inclusions are continuous,

and the last is compact.
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4. If m ≤ min(j, s), p ≤ q, ε > 0, and m < j + s − n/q, then multiplication

is a continuous bilinear map from W j,q
δ1
×W s,p

δ2
to Wm,p

δ1+δ2+ε
for any ε > 0. In

particular, if s > n/p and δ < 0, then W s,p
δ is an algebra.

Proposition 2.0.2 (Properties of Weighted Hölder Spaces). The following

properties hold for the weighted Holder spaces defined by (2.2):

1. If s + α ≥ s′ + α′, α 6= 1, and δ ≤ δ′ then the inclusion Cs,α
δ ⊂ Cs′,α′

δ′ is

continuous.

2. If s+ α > s′ + α′ and δ < δ′ then the inclusion Cs,α
δ ⊂ Cs′,α′

δ′ is compact.

3. Assume s+α ≤ s′+α′. Then multiplication is a continuous bilinear map from

Cs,α
δ × C

s′,α′

δ′ to Cs,α
δ+δ′. In particular, if δ ≤ 0, then Cs,α

δ is an algebra.

The standard Poincaré and Sobolev inequalities on Rn, with appropriately

chosen weights, also hold on AE manifolds, as shown in [DM15, Lem 2.1].

Lemma 2.0.3. There exist constants c1, c2 such that

‖∇u‖p,−n/p ≥ c1‖u‖p,1−n/p (2.4)

‖∇u‖2 ≥ c2‖u‖q (2.5)

for all u ∈ u ∈ W 1,2
δ∗ (M) and p ∈ [1, n).

We refer the reader to [Bar86] for further properties of weighted Sobolev

spaces.

2.1. Elliptic Operators

Elliptic operator theory on AE manifolds is well established, going back at

least to [McO79]. For more references, see also [Max05], [CBIY00], and appendix C
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in [CMP12]. While more general results are available, we focus our attention on the

Laplacian and vector Laplacian. The following result is adapted from [DIMM14].

Proposition 2.1.1. Suppose (Mn, g) is a W s,p
γ AE manifold, with s ≥ 2, s > n/p,

and γ < 0. Suppose V ∈ W s−2,p
γ−2 . Let P be either the operator −a∆ + V or the

operator div 1
2N
L, where L is the conformal Killing operator (1.4). Then for δ ∈

(2− n, 0) the operator

P : W s,p
δ → W s−2,p

δ−2 (2.6)

is Fredholm of index zero, and

‖u‖W s,p
δ
≤ C

(
‖Pu‖W s−2,p

δ−2
+ ‖u‖Lp

δ′

)
(2.7)

holds for some C > 0, any δ′ and all u ∈ W s,p
δ . The map (2.6) is an isomorphism

if and only if P has trivial null space in W s,p
δ . If (2.6) is an isomorphism, then the

estimate (2.7) can be strengthened to

‖u‖W s,p
δ
≤ C‖Pu‖W s−2,p

δ−2
. (2.8)

Similarly, if (M, g) is a Cs,α
γ AE manifold, then

P : Cs,α
δ −→ Cs−2,α

δ−2 (2.9)

is Fredholm of index zero, with a corresponding a priori estimate. If P has trivial

nullspace in Cs,α
δ , then there exists a constant C > 0 such that

‖u‖Cs,αδ ≤ C‖Pu‖Cs−2,α
δ−2

. (2.10)
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Because Proposition 2.1.1 requires s ≥ 2, and for simplicity, we will assume

s = 2 for the rest of this paper, unless mentioned otherwise. In other words, g is

either a W 2,p
γ or C2,α

γ AE manifold. In any case, if g ∈ W s,p for s > 2 and s > n/p,

Sobolev embedding 2.0.1, implies that g ∈ W 2,p′ with p′ > n/2.

We now prove two maximum principles, taken from [Max05].

Proposition 2.1.2 (A Maximum Principle for AE Manifolds). Suppose (M, g) and

V are as in Proposition 2.1.1, and suppose V ≥ 0. Suppose u ∈ W 2,p
δ for some

δ < 0. If

−a∆u+ V u ≥ 0, (2.11)

then u ≥ 0.

Proof. Let

v = (u+ ε)− := min{0, u+ ε} (2.12)

for some ε > 0. Since u→ 0 on each end, we see that v is compactly supported. By

Sobolev embedding, v ∈ W 1,2 as well. Since

∫
M

a|∇v|2 =

∫
M

−av∆u ≤
∫
M

−V uv ≤ 0, (2.13)

we know u ≥ −ε. Letting ε→ 0, we find u ≥ 0.

Proposition 2.1.3 (A Strong Maximum Principle for AE Manifolds). Suppose

(M, g) and V are as in Proposition 2.1.1. Suppose u ∈ W 2,p
loc is nonnegative and

satisfies

−a∆u+ V u ≥ 0. (2.14)

If u(x) = 0 somewhere, then u ≡ 0.
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Proof. Suppose u(x) = 0. The weak Harnack inequality from [Tru73a] applies to

u; i.e., for some radius R sufficiently small and some exponent q sufficiently large,

there exists C > 0 such that

‖u‖Lq(B2R(x)) ≤ C inf
BR(x)

u = 0. (2.15)

Thus u vanishes on a neighborhood of x, and a connectivity argument shows that

u ≡ 0.

In order to discuss when the operator P = −a∆ + V is an isomorphism, we

need to first discuss the Yamabe invariant. The Yamabe invariant on AE manifolds

is defined similarly to how it is defined on compact manifolds (cf. Equation (1.13)),

except that the test functions must have compact support. Precisely,

Y (g) := inf
u∈C∞0 (M),u 6≡0

∫
M
a|∇u|2 +Ru2

‖u‖2q
, (2.16)

where C∞0 (M) represents smooth functions with compact support. As before, we

say g is Yamabe positive if Y (g) > 0. The Yamabe classes on AE manifolds appear

to behave very differently than the Yamabe classes on compact manifolds, but they

are in fact equivalent to each other in some sense. This idea is discussed further in

Chapter IV. We now can prove the following isomorphism theorem.

Proposition 2.1.4. The operator −a∆ + V from Equation (2.6) is an isomorphism

either if V ≥ 0 or if V = Rg and g is Yamabe positive.

No C2,α
γ AE manifold allows a conformal Killing field in C2,α

δ . Also, if p > n,

no W 2,p
γ AE manifold allows a conformal Killing field in W 2,p

δ . Thus the operator
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div 1
2N
L is always an isomorphism on C2,α

δ , and is an isomorphism on W 2,p
δ if p > n

or if the metric admits no conformal Killing fields.

Proof. Suppose V ≥ 0 and (−a∆ + V )u = 0. By the maximum principle 2.1.2,

u ≥ 0 and −u ≥ 0. Thus u ≡ 0, and so −a∆ + V is an isomorphism.

Suppose V = Rg and g is Yamabe positive, but that −a∆ + R is not an

isomorphism. Then there exists a nontrivial solution u ∈ W 2,p
δ ⊂ C0,α

δ solving

(−a∆ +R)u = 0. By Sobolev embedding 2.0.1, u ∈ Lq. Integration by parts implies

that
∫
a|∇u|2 + Ru2 = 0. Estimating u by smooth functions with compact support,

we find that Y (g) = 0 (see the definition (2.16)), which is a contradiction.

The facts about conformal Killing fields are found in [Max05]. That the

kernel of div 1
2N
L is the set of conformal Killing fields follows from the calculation

(1.11).

On compact manifolds, the constants are harmonic functions; i.e., they satisfy

∆u = 0. On AE manifolds, the constants are harmonic functions, but in addition,

if for each end Ei, we specify a constant ui, there is a unique harmonic function u

such that u − ui ∈ W 2,p
δ (Ei) (cf. [DIMM14, Lem 4.1]). We introduce the following

notation.

Definition 2.1.5. For any set of constants ui, the “asymptotic function” ů is the

unique harmonic function such that ů → ui on Ei. Such a function has the same

regularity as the metric; i.e., if (M, g) is a W 2,p
γ AE manifold, ů ∈ W 2,p and ů−ui ∈

W 2,p
δ (Ei) for any δ ∈ (2 − n, 0). The existence of such a function is guaranteed by

[DIMM14, Lem 4.1]. When we refer to ů we do not mention the constants ui.

Corollary 2.1.6. The function ů satisfies mini ui ≤ ů ≤ maxi ui with equality if

and only if mini ui = maxi ui.
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Proof. The maximum principle 2.1.2 implies that mini ui ≤ ů ≤ maxi ui.

If mini ui = ů somewhere, the strong maximum principle 2.1.3 implies that

mini ui = supu = maxi ui. If mini ui = maxi ui, all the ui are the same, and so

ů ≡ ui is the desired harmonic function.

When searching for solutions to the Lichnerowicz equation (1.3a), there is no

reason to restrict ourselves to φ such that φ → 1 on each end, since φ approaching

any other constant simply scales the Euclidean coordinates on that end. Indeed,

as we see in Chapter V, assuming φ approaches some other constant can assist in

finding solutions. Thus, we generally assume φ→ ů on each end.

While the operator div 1
2N
L appears in a linear equation (1.3b), the

Lichnerowicz equation (1.3a) is semilinear, and so Proposition 2.1.4 is not sufficient

to find solutions of this equation. A useful tool for finding solutions to semilinear

equations is the method of sub and supersolutions.

Consider the nonlinear problem

−a∆u = f(x, u) (2.17)

for a function f(x, y) : M × R→ R which takes the form f(x, y) =
∑j

i=1 ai(x)ybi for

specified functions ai and constants bi, where we use the convention that ybi ≡ 1 if

bi = 0. We also assume that ai(x) ∈ Lpδ−2 for some δ < 0 (or, similarly, that ai(x) ∈

C0,α
δ−2). Note that, depending on the value(s) of bi, y

bi is smooth on (0,∞), [0,∞),

or (−∞,∞). We say a function f is “ regular” if it satisfies these properties, and

the largest interval for which all the ybi are smooth is f ’s “interval of regularity” I.

Note that the Lichnerowicz equation (1.3a) takes this form, as long as we require
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sufficient regularity of the seed data. Recall that u− is called a subsolution of (2.17)

if −a∆u− ≤ f(x, u−), and similarly (with ≥ replacing ≤) for a supersolution u+.

Theorem 2.1.7 (Sub and Supersolution Theorem for AE Manifolds). Let (M, g)

be a W 2,p
γ AE manifold with p > n/2 and γ < 0. Suppose f(x, y) is regular (as

defined above) for some δ ∈ (2−n, 0). Suppose that there are sub and supersolutions

u± ∈ L∞ such that u− ≤ u+ and inf u− ∈ I. Suppose ů is such that, sufficiently far

out on each end, u− ≤ ů ≤ u+. Then Equation (2.17) admits a solution u such that

u− ≤ u ≤ u+ and u− ů ∈ W 2,p
δ .

A similar theorem holds for C2,α
γ AE manifolds if f is C0,α

δ regular and u± ∈

C0,α. The solution then satisfies u− ů ∈ C2,α
δ .

Remark 2.1.8. This is essentially Theorem 1 in Appendix B.2. in [CBIY00], but

with lower regularity requirements, and generalized asymptotics. We mirror their

proof. Note that if some bi < 0, the theorem requires u− > ε > 0 for some ε > 0.

Proof. We only prove the Sobolev case. The Hölder case is proven similarly.

We construct a solution by induction, starting from φ−. Let k be a positive

function on M such that k ∈ Lpδ and

k(x) + sup
y∈Range(u±)

fy(x, y) ≥ 0. (2.18)

Such a k exists by our assumptions on u± and f .

Let v1 ∈ W 2,p
δ be the unique solution to

−a∆v1 + kv1 = f(x, u−) + k(u− − ů) (2.19)

and let u1 = v1 + ů. The solution v1 exists by Proposition 2.1.4.
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Using the equality and inequality satisfied by v1 and u− respectively, we find

that

−a∆(u1 − u−) + k(u1 − u−) ≥ 0. (2.20)

By the maximum principle 2.1.2, u1 ≥ u−. Similarly,

−a∆(u+ − u1) + k(u+ − u1) ≥ f(x, u+)− f(x, u−) + k(u+ − u−) (2.21)

= (u+ − u−)

(
k +

∫ 1

0

fy(x, u− + t(u+ − u−))dt

)
(2.22)

≥ 0, (2.23)

where the last line holds by our assumption on k, Equation (2.18). Again by the

maximum principle 2.1.2, u1 ≤ u+.

We then let ui = vi + ů, where vi ∈ W 2,p
δ solves

−a∆vi + kvi = f(x, ui−1)− kvi−1. (2.24)

Again using the maximum principle, we can show that ui is an increasing sequence;

i.e.,

u− ≤ u1 ≤ u2 ≤ · · · ≤ ui−1 ≤ ui ≤ · · · ≤ u+. (2.25)

Since the ui constitute a bounded increasing sequence, the ui converge to some

function u with u− ≤ u ≤ u+. We claim that u is a solution of Equation (2.17).

From Proposition 2.1.1, we have

‖vi+1‖W 2,p
δ
≤ C‖f(x, ui)− kvi‖Lpδ . (2.26)
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The right hand side is uniformly bounded by our assumptions on k and f , and

since vi and ui are bounded. Thus vi is uniformly bounded in W 2,p
δ .

The compact embedding of W 2,p
δ into C0,α

δ′ for any δ′ > δ and some α >

0 from Proposition 2.0.1 implies that ui → u in C0,α
δ′ , and that u − ů ∈ W 2,p

δ .

This convergence implies that f(x, ui−1) − kvi−1 converges in Lpδ , and so, since

−a∆ + k is an isomorphism, ui must converge to u in W 2,p
δ . Thus −a∆u = f(x, u),

as desired.
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CHAPTER III

SOLVABILITY OF THE LICHNEROWICZ EQUATION

The results in this chapter, though written solely by the author of this

dissertation, will appear in [DGI15], with coauthors Romain Gicquaud and James

Isenberg.

The Lichnerowicz equation (1.3a) is a semilinear elliptic equation. Because

of the mixed sign of the exponents, it is of a type not generally studied. However,

with appropriate sign restrictions on the coefficients, we can fully understand this

equation. Recall that in the compact case, the solvability of the Lichnerowicz

equation is given by Table 2, with one caveat. Namely, if g is Yamabe negative, the

Lichnerowicz equation is solvable if and only if g can be conformally transformed

to a metric with scalar curvature −κτ 2. The main result of this chapter is that,

regardless of Yamabe class, the Lichnerowicz equation on AE manifolds is solvable

if and only if g can be conformally transformed to a metric with scalar curvature

−κτ 2.

First we must discuss what kind of data we are looking for when we discuss

asymptotically Euclidean initial data. Clearly we want an AE manifold, (M, g).

The usual regularity we desire for g is W 2,p
δ . However, we also need K to decay at

infinity. Heuristically, we want this so that our spacelike slice (M, g) is not curled

up inside the spacetime near infinity. We thus require K ∈ W 1,p
δ−1. In order to

guarantee this regularity, we require that our seed data satisfies

(g − gEuc, τ, N − 1, σ, r, J) ∈ W 2,p
δ ×W

1,p
δ−1 ×W

2,p
δ × L

2p
δ−1 × L

p
δ−2 × L

p
δ−2, (3.1)
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with p > n/2 and δ ∈ (2 − n, 0), and similarly for C2,α
δ seed data. We then seek a

solution (φ,W ) with φ − ů ∈ W 2,p
δ and W ∈ W 2,p

δ . The reconstructed initial data

(g,K, Tnn, Tin) from (1.5) then has the desired regularity.

We must make one additional restriction on the sign of the seed data. In

particular, we must require r ≥ 0. This is known as the weak energy condition,

and is simply requiring that the matter density can never be negative. Equivalently,

it says that gravity is always an attractive force. This is a physically reasonable

assumption, though not strictly necessary for general relativity. For instance,

solutions of the Einstein equations with stable, traversable wormholes require

matter with negative energy density.

We can now prove the main result of this chapter.

Theorem 3.0.9 (Curvature Criterion for AE Solutions to the Lichnerowicz

Equation). Suppose that (M, g) is a W 2,p
δ AE manifold with p > n/2 and

δ ∈ (2 − n, 0). Assume that r,
∣∣σ + 1

2N
LW

∣∣2 and τ 2 are all contained in Lpδ−2,

and that r ≥ 0. Then the Lichnerowicz equation (1.3a) has a positive solution φ

with φ − ů ∈ W 2,p
δ if and only if there exists a positive conformal factor ψ with

ψ − ů′ ∈ W 2,p
δ such that g = ψq−2g has scalar curvature −κτ 2. The ů and ů′ are two

positive asymptotic functions, as defined in Definition 2.1.5. A similar result holds

for C2,α
δ regularity.

Proof. (⇒) Suppose there is such a solution φ to the Lichnerowicz equation. It is

well known that the desired ψ is a solution to

−a∆ψ +Rψ + κτ 2ψq−1 = 0. (3.2)
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Equation (3.2) clearly satisfies the conditions of the sub and supersolution

theorem 2.1.7 as a consequence of the regularity we have presumed. Note that the

scalar curvature R must be in Lpδ−2. For β ≥ 1, βφ is a supersolution for (3.2). If

β > sup ů′/ů, βφ satisfies the conditions of Theorem 2.1.7. For the subsolution,

we take ψ− ≡ 0. This is certainly regular. Also, we note that since the exponents

in (3.2) are positive, 0 lies in the interval of regularity for f(x, y). Together, these

conditions and Theorem 2.1.7 guarantee the existence of a solution ψ ≥ 0 of (3.2)

with the properties we desire, except that it may be zero somewhere.

However, we can easily argue that ψ cannot be 0 anywhere. Suppose it were

zero at some point. Since ψ ∈ W 2,p
loc , the strong maximum principle 2.1.3 implies

that ψ ≡ 0. But ψ → ů at infinity, a contradiction. Thus ψ > 0, proving the

implication.

(⇐) Suppose there is such a conformal factor ψ. Note that ψ must then

satisfy Equation (3.2). For β ≤ 1, βψ is a subsolution for the Lichnerowicz

equation. If β < inf ů/ů′, then βψ satisfies the conditions of Theorem 2.1.7.

To help find the supersolution, we use the conformal covariance of the

Lichnerowicz equation 1.1.1 and the conformal factor ψ to assume that the scalar

curvature is −κτ 2.

Proposition (2.1.4) shows that there exist solutions vε to the linear problem

−a∆vε + εκτ 2vε = ε

(∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 + r

)
(3.3)

such that vε − 1 ∈ W 2,p
δ for each ε ∈ [0, 1]. Note that v0 ≡ 1, and that the solution

map is continuous in ε. We claim that vε > 0 for all ε ∈ [0, 1]. By continuity, the

set of ε for which vε > 0 is open. Suppose some ε were on the boundary of the set
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for which vε > 0. By continuity, vε ≥ 0, and vε = 0 somewhere. By the strong

maximum principle 2.1.3, vε ≡ 0. However, this contradicts that vε → 1 at infinity.

Thus the set of ε for which vε > 0 is open. Since this set is also nonempty, it is all

of [0, 1].

We claim βv := βv1 is a supersolution to the Lichnerowicz equation (with

R = −κτ 2) for large β. Indeed, if we plug βv into the Lichnerowicz equation, we

get

− κτ 2βv − κτ 2βv +

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 β + rβ

+ κτ 2(βv)q−1 −
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 (βv)−q−1 − r(βv)−q/2

= κτ 2
[
(βv)q−1 − 2βv

]
+

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 [β − (βv)−q−1
]

+ r
[
β − (βv)−q/2

]
≥ 0

(3.4)

for sufficiently large β. If β > ů/ů′, the sub and supersolution theorem 2.1.7

provides the desired solution to the Lichnerowicz equation.

In light of this theorem, we make the following definition.

Definition 3.0.10. The seed data (g, τ,N, σ, r, J) is said to be “admissible” if there

is a conformal factor transforming g to a metric with scalar curvature −κτ 2.

It is important to understand for which AE metrics we can make this

conformal transformation. This question is resolved in Chapter IV. We note here,

however, that it is well known (cf. [Max05]) that g is Yamabe positive if and only

if g can be conformally transformed to a metric with identically vanishing scalar

curvature. We use this fact later in this chapter.
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If the seed data is admissible, the Lichnerowicz equation has a solution

asymptotic to any desired asymptotic function. This solution is unique.

Theorem 3.0.11 (Uniqueness of Solutions to the Lichnerowicz Equation). Suppose

that (M, g) is a W 2,p
δ AE manifold with p > n/2 and δ ∈ (2 − n, 0). Assume that r,∣∣σ + 1

2N
LW

∣∣2 and τ 2 are all contained in Lpδ−2, and that r ≥ 0. If φ1, φ2 both solve

the Lichnerowicz equation, and are such that φ1 − φ2 ∈ W 2,p
δ , then φ1 = φ2.

Proof. The following proof is taken from [CBIP06, Thm 8.3].

We use φi as a conformal factor and use the conformal covariance of the

Lichnerowicz equation (cf. Proposition 1.1.1) to get

Rφq−2
i g = −κτ 2 + |σ + LW |2φ−2qi + rφ

− 3
2
q+1

i . (3.5)

Therefore, using u := φ2/φ1, we obtain

− a∆φq−2
1 gu+

(
κτ 2 −

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 φ−2q1 + rφ
− 3

2
q+1

1

)
u

=

(
κτ 2 −

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 φ−2q2 + rφ
− 3

2
q+1

2

)
uq−1. (3.6)

This equation may be written as

−a∆φq−2
1 g(u− 1) + ξ(φ1, φ2)(u− 1) = 0 (3.7)

where ξ(φ1, φ2) is a positive expression in terms of φi and the seed data. Also, as

long as the φi are continuous and positive, ξ ∈ Lpδ−2. The operator −a∆ + ξ is thus

an isomorphism (cf. Proposition 2.1.4). Thus u− 1 ≡ 0 and so φ1 ≡ φ2.
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3.1. Non-existence of Solutions to the Constraints

Theorem 3.0.9 allows us to find seed data which cannot lead to solutions of

the conformal constraint equations (1.3).

Theorem 3.1.1. Suppose g is Yamabe non-positive. If τ ≡ 0, then the conformal

constraint equations allow no solutions. The class of such metrics is non-empty.

Proof. By Theorem 3.0.9, the Lichnerowicz equation is solvable if and only if g can

be conformally transformed to a metric with scalar curvature −κτ 2 ≡ 0. However,

since g is not Yamabe positive, there is no such conformally related metric (cf.

[Max05]). Thus there can be no solution to the conformal constraint equations.

Friedrich in [Fri11] showed the existence of an AE Yamabe null manifold. In

Proposition 4.4.3, we show that if a Yamabe null or negative compact manifold is

decompactified in a particular way, the related AE metric is also Yamabe null or

negative.

In general, if one cannot conformally transform the scalar curvature to −κτ 2,

there cannot be a solution to the conformal constraint equations. In Chapter IV,

we give a characterization of when this is possible.

In addition, we can show that if τi approaches some τ that does not allow

solutions, then any solutions φi,Wi of the constraint equations corresponding to

seed data with τi must blow up as i → ∞. We focus on the case τ ≡ 0, but the

techniques work in more general cases. We first prove a lemma.

Lemma 3.1.2. Suppose τ 21 ≥ τ 22 , with τi ∈ W 1,p
δ−1. Suppose φ solves the

Lichnerowicz equation with τ2 and any σ and LW . Suppose a conformal factor ψ

transforming the scalar curvature to −κτ 21 exists, and that ψ − ψ ∈ W 2,p
δ . Then

φ ≥ ψ.
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Proof. Let φ/ψ = φ̃. By conformal covariance 1.1.1, φ̃ solves

−a∆̃φ̃− κτ 21 φ̃+ κτ 22 φ̃
q−1 − ψ−2

∣∣∣∣σ +
1

2N
L̃W

∣∣∣∣2
ψq−2g

φ̃−q−1 − ψ−
3
2
q+1rφ̃−q/2 = 0, (3.8)

where ∆̃ and L̃ are operators with respect to ψq−2g.

Suppose, by way of contradiction, that φ < ψ somewhere. Thus φ̃ < 1

somewhere. Since φ̃ → 1 at infinity, it must have a global minimum at some point

p ∈M . On some small ball B(p) around p, φ̃ < 1, and so

−κτ 21 φ̃+ κτ 22 φ̃
q−1 ≤ 0 (3.9)

on B(p). Clearly, then, −∆̃φ̃ ≥ 0 on B(p).

Let

v = (φ̃− inf
∂B(p)

φ̃)− := min{0, φ̃− inf
∂B(p)

φ̃} ≤ 0. (3.10)

Since φ̃(p) is a global minimum, v = 0 on ∂B(p). Thus

∫
B(p)

a|∇v|2 =

∫
B(p)

−a∆̃φ̃v ≤ 0, (3.11)

and so v ≡ 0 on B(p). Thus inf φ̃ ≥ inf∂B(p) φ̃, and so φ̃ is constant on B(p). By

continuity, we can similarly argue that φ̃ < 1 everywhere. This contradicts that

φ̃→ 1 at infinity. Thus φ̃ ≥ 1, and so φ ≥ ψ.

Using a prescribed scalar curvature result from Chapter IV, we can show that

sequences of solutions with τi → 0 blow up.

Theorem 3.1.3. Suppose we have seed data (g, τi, N, σ, r, J) as in (3.1). Suppose

g is Yamabe non-positive, and has no conformal Killing fields. Suppose (φi,Wi) are
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solutions to the conformal constraint equations (1.3) for the data with τi. If τi → 0

in C0
δ−1 ∩W

1,p
δ−1, then supφi →∞.

Proof. Since τi → 0 in C0
δ−1, κτ

2
i ≤ Cρ2δ−2 for some C > 0. Since the τi are

admissible, Lemma 4.3.3 shows that there exists a conformal factor ψ transforming

g to a metric with scalar curvature −Cρ2δ−2. Then, by Lemma 3.1.2, φi ≥ ψ > 0

for all i. Thus the φi are uniformly bounded below.

Suppose the φi are bounded above. Then φqidτi → 0 in Lpδ−2. By the

continuity of the vector equation, and since there are no conformal Killing fields

on g (cf. Proposition 2.1.4), Wi → 0 in W 2,p
δ .

Since the φi are bounded above and below,

F (φi) := Rφi + τ 2i φ
q−1
i −

∣∣∣∣σ +
1

2N
LWi

∣∣∣∣2 φ−q−1i − rφ−q/2i (3.12)

is bounded in Lpδ−2. Since φi solves the Lichnerowicz equation (1.3a), estimate

(2.7) shows that the φi are uniformly bounded in W 2,p
δ . By compact embedding,

φi converge strongly in L∞ to some φ∞. Thus F (φi) converges strongly in Lpδ−2 to

F (φ∞). This in turn shows that φi converges in W 2,p
δ to φ∞.

However, since τi → 0, τ 2i φ
q−1
i → 0. Also, LWi → LW∞, where LW∞ is the

solution of

div
1

2N
LW∞ = J. (3.13)

Thus ∣∣∣∣σ +
1

2N
LWi

∣∣∣∣2 φ−q−1i →
∣∣∣∣σ +

1

2N
LW∞

∣∣∣∣2 φ−q−1∞ . (3.14)
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Since φi converge in W 2,p
δ , φ∞ solves

−a∆φ∞ +Rφ∞ −
∣∣∣∣σ +

1

2N
LW∞

∣∣∣∣2 φ−q−1∞ − rφ−q/2∞ = 0. (3.15)

which is impossible because, in this equation, τ ≡ 0, which is not admissible. Thus

φi cannot be bounded above.

Theorem 3.1.4. Suppose we have seed data (g, τi, N, σ, r, J) as in (3.1). Suppose

g is Yamabe non-positive, and has no conformal Killing fields. Suppose (φi,Wi) are

solutions to the conformal constraint equations (1.3) for the data with τi. If τi → 0

in C0
δ−1 ∩W

1,p
δ−1, and τi ≥ τi+1, then for any choice of radial function ρ ≥ 1 and for

any p > n, one of the following occurs:

– for all η ∈ (2− n, 0), ‖τ 2i φ
q−1
i ‖Lpη−2

is unbounded.

– for all η ∈ R, ‖φi‖Lpη is unbounded.

Proof. Since the τi are admissible, let ψi be the conformal factors transforming g

to a metric with scalar curvature −κτ 2i . Suppose, by way of contradiction, that

both ‖τ 2i ψ
q−1
i ‖Lpη−2

and ‖ψi‖Lp
η′

are bounded, for some choices of p, η, η′ and radial

function ρ. By the estimate (2.7),

‖ψi‖W 2,p
η
≤ C‖τ 2i ψ

q−1
i ‖Lpη−2

+ C‖ψi‖Lp
η′
, (3.16)

which is bounded by assumption. Since ψi is uniformly bounded in W 2,p
η , by

Sobolev embedding 2.0.1 a subsequence, which we also denote by ψi, converges

in C0. Mirroring the proof of Theorem 3.1.3, we can find a limit ψ∞ which again

contradicts that g is Yamabe nonpositive. Thus either ‖τ 2i ψ
q−1
i ‖Lpη−2

or ‖ψi‖Lp
η′

is

unbounded.
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By Lemma 3.1.2, φi ≥ ψi, and so φi must be unbounded in the same way as

ψi.
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CHAPTER IV

PRESCRIBED SCALAR CURVATURE AND YAMABE CLASSES

This work is (lightly) adapted from a paper posted to arXiv.com [DM15] in

March, 2015. David Maxwell and I collaborated on the original research, and wrote

the paper together. This paper is quoted with his permission.

One formulation of the prescribed scalar curvature problem asks: given

Riemannian manifold (Mn, g) and some function R′, is there a conformally related

metric g′ with scalar curvature R′? If we define g′ = φN−2g for N := 2n
n−2 , 1 this is

equivalent to finding a positive solution of

−a∆φ+Rφ = R′φN−1. (4.1)

On a compact manifold the Yamabe invariant of the conformal class of g

poses an obstacle to the solution of (4.1). For example, in the case where M is

connected and R′ is constant, problem (4.1) is known as the Yamabe problem, and

it admits a solution if and only if the sign of the Yamabe invariant agrees with the

sign of R′ [Yam60][Tru68][Aub76][Sch84]. More generally, if R′ has constant sign,

we can conformally transform to a metric with scalar curvature R′ only if the sign

of the Yamabe invariant agrees with the sign of the scalar curvature. Hence it is

natural to divide conformal classes into three types, Yamabe positive, negative, and

null, depending on the sign of the Yamabe invariant.

We are interested in solving equation (4.1) on a class of complete Riemannian

manifolds that, loosely speaking, have a geometry approximating Euclidean space

1In this chapter, and this chapter alone, we use the notation N := 2n
n−2 instead of q. Since the

lapse N does not appear in the chapter, there should be no confusion about the two N ’s.
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at infinity. These asymptotically Euclidean (AE) manifolds also possess a Yamabe

invariant, but the relationship between the Yamabe invariant and problem (4.1)

was not, up until this work, well understood in the AE setting, except for some

results concerning Yamabe positive metrics. We have the following consequences of

[Max05] Proposition 3.

1. An AE metric can be conformally transformed to an AE metric with zero

scalar curvature if and only if it is Yamabe positive. As a consequence, since

the scalar curvature of an AE metric decays to zero at infinity, only Yamabe

positive AE metrics can be conformally transformed to have constant scalar

curvature.

2. Yamabe positive AE metrics have conformally related AE metrics with

everywhere positive scalar curvature, and conformally related AE metrics

with everywhere negative scalar curvature.

3. If an AE metric admits a conformally related metric with non-negative scalar

curvature, then it is Yamabe positive.

Note that it was at one time believed that transformation to zero scalar curvature

is possible if and only if the manifold is Yamabe non-negative [CB81]. The proof

of this contention in [CB81] contains an error, and the statement and proof were

corrected in [Max05]. See also [Fri11], which shows that there exist Yamabe-null

AE manifolds and hence the hypotheses of [CB81] and [Max05] are genuinely

different.

As a consequence of the above three facts, the situation on an AE manifold

is somewhat different from the compact setting. In particular, although positive

scalar curvature is a hallmark of Yamabe positive metrics, negative scalar curvature
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does not characterize Yamabe-negative metrics. Indeed, reporting joint work with

David Maxwell, we show in this chapter that given an AE metric g, and a strictly

negative function R′ that decays to zero suitably at infinity, the conformal class

of g includes a metric with scalar curvature equal to R′ regardless of the sign of

the Yamabe invariant. So every strictly negative scalar curvature is attainable

for every conformal class, but zero scalar curvature is attainable only for Yamabe

positive metrics. Thus we are lead to investigate the role of the Yamabe class in the

boundary case of prescribed non-positive scalar curvature.

Rauzy treated the analogous problem on smooth compact Riemannian

manifolds in [Rau95], which contains the following statement. Suppose R′ ≤ 0

and R′ 6≡ 0. Observe that if R′ is the scalar curvature of a metric conformally

related to some g, then g must be Yamabe-negative, and without loss of generality

we assume that g has constant negative scalar curvature R. Then there is a metric

in the conformal class of g with scalar curvature R′ if and only if

aλR′ > −R (4.2)

where a is the constant from equation (4.1) and where

λR′ = inf

{∫
|∇u|2∫
u2

: u ∈ W 1,2, u ≥ 0, u 6≡ 0,

∫
R′u = 0

}
. (4.3)

Rauzy’s condition (4.2) is not immediately applicable on asymptotically Euclidean

manifolds, in part because of the initial transformation to constant negative scalar

curvature. However, recalling that R is constant we can write aλR′ + R as the

infimum of ∫
a|∇u|2 +Ru2∫

u2
(4.4)
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over functions u supported in the region where R′ = 0. So, in effect, inequality (4.2)

expresses the positivity of the first eigenvalue of the conformal Laplacian of the

constant scalar curvature metric g on the region {R′ = 0}. The connection between

the first eigenvalue of the conformal Laplacian and prescribed scalar curvature

problems is well known, but its use is more technical on non-compact manifolds

where true eigenfunctions need not exist. For example, [FCS80] shows that a metric

on a noncompact manifold can be conformally transformed to a scalar flat one

if and only if the first eigenvalue of the conformal Laplacian is positive on every

bounded domain.

In this chapter, following [DM15], we extend these ideas in a number of ways

to solve the prescribed non-positive scalar curvature problem on asymptotically

Euclidean manifolds, and we obtain a related characterization of the Yamabe class

of an AE metric. In particular, we show the following.

– Every measurable subset V ⊆ M can be assigned a number y(V ) that

generalizes the Yamabe invariant of a manifold. The invariant depends on

the conformal class of the AE metric, but is independent of the conformal

representative.

– We can assign every measurable subset V ⊆ M a number λδ(V ) that

generalizes the first eigenvalue of the conformal Laplacian. These numbers

are not conformal invariants, and are not even canonically defined as they

depend on a choice of parameters (a number δ and a choice of weight function

at infinity). Nevertheless the sign of λδ(V ) agrees with the sign of y(V ),

regardless of the choice of these parameters.
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– Given an AE metric g and a candidate scalar curvature R′ ≤ 0, there is a

metric in the conformal class of g with scalar curvature equal to R′ if and

only if {R′ = 0} is Yamabe positive; i.e., y({R′ = 0}) > 0.

– A metric is Yamabe positive if and only if for every function R′ ≤ 0 there is a

conformally related metric with scalar curvature equal to R′.

– A metric is Yamabe null if and only if for every function R′ ≤ 0, except for

R′ ≡ 0, there is a conformally related metric with scalar curvature equal to

R′.

– A metric is Yamabe negative if and only if there is a function R′ ≤ 0, R′ 6≡ 0,

such that no conformally related metric has scalar curvature equal to R′. We

also present some results concerning which scalar curvatures have Yamabe

positive zero sets.

– Additionally, a metric is Yamabe positive/negative/null if and only if it

admits a conformal compactification to a metric with the same Yamabe type.

These results carry over to compact manifolds, where we obtain some

technical improvements. First, Rauzy’s condition (4.2) is equivalent to our

condition y({R′ = 0}) > 0 (or equivalently λδ({R′ = 0}) > 0). But the condition

y({R′ < 0}) > 0 can be checked without reference to a particular background

metric. Moreover, we work with fairly general metrics (W 2,p
loc with p > n/2), and

candidate scalar curvatures in Lp(M). Finally, there is an error in Rauzy’s proof,

closely related to the gap in Yamabe’s original attempt at the Yamabe problem,

that we correct in our presentation. 2

2We thank Rafe Mazzeo for useful conversations concerning this correction.
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The prescribed scalar curvature problem on AE manifolds for R′ ≥ 0, or for

functions R′ which change sign, remains open. Of course if R′ ≥ 0 the problem can

only be solved if the manifold is Yamabe positive, but it is not known the extent to

which this condition is sufficient. For prescribed scalar curvatures that change sign,

little is known for any Yamabe class. Nevertheless, the case R′ ≤ 0 that we treat

here has an interesting application to general relativity; see below. For comparison,

we note that the prescribed scalar curvature problem on a compact manifold is also

not yet fully solved. On a Yamabe-positive manifold it is necessary that R′ > 0

somewhere, and on a Yamabe-null manifold it is necessary that either R′ ≡ 0,

or R′ > 0 somewhere and
∫
R′ < 0 when computed with respect to the scalar

flat conformal representative. See [ES86] which shows that these conditions are

sufficient in some cases. See also [BE87] for obstructions posed by conformal Killing

fields.

4.1. Asymptotically Euclidean Manifolds

We mention a few extensions of what has been discussed above in Chapter

II which will be applicable in this chapter. We will work exclusively with W 2,p
α AE

metrics with p > n/2, and we henceforth assume

p > n/2 and α < 0. (4.5)

A W 2,p
α metric is Hölder continuous and has curvatures in Lpα−2.

The Laplacian and conformal Laplacian of a W 2,p
α metric are well-defined as

maps from W 2,q
δ to Lqδ−2 for q ∈ (1, p], they are Fredholm with index 0 if δ ∈ (2 −

n, 0), and indeed the Laplacian is an isomorphism in this range; see, e.g., [Bar86]
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Proposition 2.2. Note that [Bar86] works on a manifold diffeomorphic to Rn, but

the results we cite from [Bar86] extend to manifolds with general topology and any

finite number of ends.

Many of the results in this chapter hold for both asymptotically Euclidean

and compact manifolds, and indeed we can often treat a W 2,p metric on a compact

manifold as a W 2,p
α metric on an asymptotically Euclidean manifold with zero ends,

in which case the weight function ρ is irrelevant and could be set to 1 if desired.

For the sake of brevity, throughout Section 4.2 we interpret a compact manifold

as an AE manifold with zero ends. In the remaining sections there are differences

between the two cases and we assume that AE manifolds have at least one end.

The weight parameter

δ∗ =
2− n

2
(4.6)

plays a prominent role in this chapter, and it reflects the minimum decay needed to

ensure
∫
|∇u|2 is finite. At this decay rate, LNδ∗ = LN and we have the inequalities

that generalize the Poincaré and Sobolev inequalities, Lemma 2.0.3.

Lemma 2.0.3 evidently fails on compact manifolds, as can be seen by taking

u to be a constant. For our proofs that treat the compact and non-compact case

simultaneously it will be helpful to have a suitable inequality that works in both

settings. Observe that for any δ > 0 there exists c2 such that

‖u‖2,δ + ‖∇u‖2 ≥ c2‖u‖N . (4.7)

This follows from the standard Sobolev inequality on compact manifolds and

follows trivially from inequality (2.5) on non-compact manifolds. Recall, again,

that in this chapter, N := 2n
n−2 .
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4.2. The Yamabe Invariant of a Measurable Set

Throughout this section, let (M, g) be a W 2,p
α AE manifold with p > n/2 and

α < 0, with the convention that a compact manifold is an AE manifold with zero

ends. For u ∈ C∞c (M) (i.e., smooth functions of compact support), u 6≡ 0, the

Yamabe quotient of u is

Qy
g(u) =

∫
a|∇u|2 +Ru2

‖u‖2N
(4.8)

and the Yamabe invariant of g is the infimum of Qy
g taken over C∞c (M). Here and

in other notations we drop the decoration g when the metric is understood. Our

principal goal in this section is to define a similar conformal invariant for arbitrary

measurable subsets of M and to analyze its properties.

It will be convenient to work with a complete function space, and we claim

that the domain of Qy can be extended to W 1,2
δ∗ \ {0} where δ∗ is defined in

equation (4.6). To see this, first note from the embedding properties of weighted

Sobolev spaces that W 1,2
δ∗ embeds continuously in LN = LNδ∗ and that u 7→ ∇u

is continuous from W 1,2
δ∗ to L2; indeed δ∗ is the minimum decay needed to ensure

these conditions. To treat the scalar curvature term in Qy, we have the following.

Lemma 4.2.1. The map

u 7→
∫
Ru2 (4.9)

is weakly continuous on W 1,2
δ∗ . Moreover, for any δ > δ∗ and ε > 0, there is constant

C > 0 such that ∣∣∣∣∫ Ru2
∣∣∣∣ ≤ ε‖∇u‖22 + C‖u‖22,δ. (4.10)
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Proof. Recall that R ∈ Lpα−2 where p > n/2 and α < 0. So there is an s ∈ (0, 1)

such that

1

p
= s

2

n
. (4.11)

Set σ = δ∗ − α/2. Since s < 1 and σ > δ∗, W 1,2
δ∗ embeds compactly in W s,2

σ , where

the interpolation (Sobolev) space W s,2
σ is described in [Tri76a][Tri76b]. Moreover,

W s,2
σ embeds continuously in Lqσ where

1

q
=

1

2
− s

n
=

1

2

(
1− 1

p

)
. (4.12)

Since

1

p
+

2

q
= 1 (4.13)

and since

α− 2 + 2σ = 2δ∗ − 2 = −n, (4.14)

Hölder’s inequality implies the map (4.9) is continuous on Lqσ, and from the

previously mentioned compact embedding the map (4.9) is therefore weakly

continuous on W 1,2
δ∗ . Moreover, Hölder’s inequality implies there is a constant C

such that ∣∣∣∣∫ Ru2
∣∣∣∣ ≤ C‖u‖2

W s,2
σ
. (4.15)

From interpolation [Tri76b] we have

‖u‖W s,2
σ
≤ C‖u‖s

W 1,2
δ∗
‖u‖1−s2,δ (4.16)

where δ satisfies

sδ∗ + (1− s)δ = σ. (4.17)
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Since σ = δ∗ − α/2, we find

δ = δ∗ − α/2

1− s
, (4.18)

and since α < 0 and s ∈ (0, 1), δ > δ∗. Indeed, by raising α close to zero, or

lowering p close to n/2 (which raises s up to 1), we can obtain any particular δ >

δ∗. We conclude from inequalities (4.15), (4.16) and the arithmetic-geometric mean

inequality that ∣∣∣∣∫ Ru2
∣∣∣∣ ≤ ε‖∇u‖2

W 1,2
δ∗

+ C‖u‖22,δ. (4.19)

This establishes inequality (4.10) on a compact manifold, and we obtain (4.10) in

the non-compact case by applying the Poincaré inequality (2.4).

Corollary 4.2.2. The map

u 7→
∫
a|∇u|2 +Ru2 (4.20)

is weakly upper semicontinuous on W 1,2
δ∗ .

Proof. This follows from the weak upper semicontinuity of u 7→
∫
|∇u|2 along with

Lemma 4.2.1.

Definition 4.2.3. Let V ⊆ M be a measurable set. The test functions supported in

V are

A(V ) :=
{
u ∈ W 1,2

δ∗ (M) : u 6≡ 0, u|V c = 0
}
, (4.21)

where V c is the complement of V .

Definition 4.2.4. Let V ⊆M be measurable. The Yamabe invariant of V is

yg(V ) = inf
u∈A(V )

Qy(u). (4.22)
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If V has measure zero, and hence A(V ) is empty, we use the convention yg(V ) =

∞.

Since C∞c (M) is dense in W 1,2
δ∗ (M), for V = M , this agrees with the usual

definition of the Yamabe invariant.

In principle, the infimum in the definition of the Yamabe invariant could be

−∞. The following estimate, which will be useful later in the paper as well, shows

that this is not possible.

Lemma 4.2.5. Let δ ∈ R. There exist positive constants C1 and C2 such that for

all u ∈ W 1,2
δ∗ ,

‖u‖W 1,2
δ∗
≤ C1

[∫
a|∇u|2 +Ru2

]
+ C2‖u‖22,δ. (4.23)

Proof. It is enough to establish inequality (4.23) assuming δ > δ∗. From Lemma

4.2.1, there is a constant C such that

∣∣∣∣∫ Ru2
∣∣∣∣ ≤ a

2

∫
|∇u|2 + C‖u‖22,δ (4.24)

and hence ∫
a|∇u|2 +Ru2 ≥ a

2

∫
|∇u|2 − C‖u‖22,δ. (4.25)

Consequently ∫
|∇u|2 ≤ 2

a

[∫
a|∇u|2 +Ru2

]
+

2C

a
‖u‖22,δ. (4.26)

Inequality (4.23) now follows trivially in the compact case, and follows from the

Poincaré inequality (2.4) in the non-compact case.

Lemma 4.2.6. For every measurable set V , y(V ) > −∞.

Proof. Let uk be some minimizing sequence for Qy normalized so that ‖uk‖N = 1.

Lemma 4.2.5 and the continuous embedding LN ↪→ L2
δ implies that uk is uniformly
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bounded in W 1,2
δ∗ . Estimate (4.10) then implies that Q(uk) is uniformly bounded

below.

As one might expect, y(V ) is a conformal invariant.

Lemma 4.2.7. Suppose g′ = φN−2g is a conformally related metric with φ − 1 ∈

W 2,p
α . Then

yg′(V ) = yg(V ). (4.27)

Proof. The conformal transformation laws

dVg′ = φNdVg

Rg′ = φ1−N(−a∆gφ+Rgφ)

(4.28)

together with an integration by parts imply

∫
M

|∇u|2g′ +Rg′u
2 dVg′ =

∫
M

|∇(φu)|2g +Rg(φu)2 dVg (4.29)

for all u ∈ W 1,2
δ∗ (M). Since ‖ · ‖g′,N = ‖φ · ‖g,N , it follows that

Qy
g′(u) = Qy

g(φu) (4.30)

for all u ∈ W 1,2
δ∗ (M) as well. Since A(V ) is invariant under multiplication by φ,

yg′(V ) = yg(V ).

We will primarily be interested in the sign of the Yamabe invariant.

Definition 4.2.8. A measurable set V ⊆ M is called Yamabe positive, negative, or

null depending on the sign of yg(V ).
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The Yamabe invariant involves the critical Sobolev exponent N and hence

can be technically difficult to work with. On a compact manifold, however, the sign

of the Yamabe invariant can be determined from the sign of the first eigenvalue of

the conformal Laplacian. These eigenvalues enjoy superior analytical properties

(for instance, it is simpler to show that the related eigenfunctions exist), and we

now describe how to extend this approach to measurable subsets of compact or

asymptotically Euclidean manifolds.

For δ > δ∗ we define the Rayleigh quotients

Qg,δ(u) =

∫
a|∇u|2 +Ru2

‖u‖22,δ
. (4.31)

Our previous arguments for the Yamabe quotient imply that Qg,δ is well-defined for

any u ∈ W 1,2
δ∗ \ {0}, and indeed Qg,δ is continuous on this set.

Definition 4.2.9. The first δ-weighted eigenvalue of the conformal Laplacian is

λg,δ(V ) = inf
u∈A(V )

Qg,δ(u). (4.32)

By convention, if V has measure zero then λg,δ(V ) = ∞. We will write Qδ and λδ

when the metric is understood.

The value of λδ(V ) is not particularly meaningful; it depends on the choice

of weight function ρ and it is not a conformal invariant. Nevertheless, its sign is a

conformal invariant independent of the choice of ρ.

Proposition 4.2.10. For any measurable set V ⊆M , the following are equivalent:

1. y(V ) > 0.

2. λδ(V ) > 0 for all δ > δ∗.
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3. λδ(V ) > 0 for some δ > δ∗.

Proof. We assume that V has positive measure since the equivalence is trivial

otherwise. The implication 1 ⇒ 2 follows from the inequality ‖u‖2,δ ≤ C‖u‖N

applied to Qy. The implication 2⇒ 3 is trivial. So it remains to show that 3⇒ 1.

Let V be a measurable set with λδ(V ) > 0 for some δ > δ∗. Suppose to

produce a contradiction that y(V ) ≤ 0. Then there is a sequence uk ∈ A(V ),

normalized so that
∫
a|∇uk|2 + ‖uk‖22,δ = 1, such that Qy(uk) ≤ 1/k. Then

λδ(V )‖uk‖22,δ ≤
∫
a|∇uk|2 +Ru2k ≤

1

k
‖uk‖2N ≤

c

k

[∫
a|∇uk|2 + ‖uk‖22,δ

]
≤ c

k

(4.33)

by the Sobolev inequality (4.7). In particular, ‖uk‖22,δ → 0. Using inequality (4.33),

we also find that ∫
Ru2k ≤

c

k
−
∫
a|∇u|2 → −1. (4.34)

However, by Lemma 4.2.1, there exists C > 0 such that

∣∣∣∣∫ Ru2k

∣∣∣∣ ≤ a

2
‖∇uk‖22 + C‖uk‖22,δ →

1

2
, (4.35)

which is a contradiction.

Corollary 4.2.11. For a measurable set V ⊆ M , the signs of y(V ) and λδ(V ) are

the same for any δ > δ∗.

Proof. Proposition 4.2.10 shows that y(V ) is positive if and only if λδ(V ) is also.

Choosing an appropriate test function shows that y(V ) is negative if and only if

λδ(V ) is also. Together, these imply that y(V ) is zero if and only if λδ(V ) is.
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The decay rate δ∗ is critical for Corollary 4.2.11. For δ < δ∗, W 1,2
δ∗ is not

contained in L2
δ and hence our definition of λδ does not extend to this range. One

could minimize Qδ over smooth functions instead to define λδ, but using rescaled

bump functions on large balls as test functions, it can be shown that λδ(Rn) = 0 for

δ < δ∗, despite the fact that Lemma 2.0.3 implies y(Rn) > 0. Note that we have not

addressed equality in the threshold case δ = δ∗.

We now turn to continuity properties of λδ. Monotonicity is obvious from the

definition.

Lemma 4.2.12. Let δ > δ∗. If V1 and V2 are measurable sets with V1 ⊆ V2, then

λδ(V1) ≥ λδ(V2).

Note that Lemma 4.2.12 holds even for V1 = ∅, and that this relies on our

definition λδ(∅) = y(∅) = ∞. To obtain more refined properties of λδ, we start

by showing that minimizers of the Rayleigh quotients exist and are generalized

eigenfunctions.

Proposition 4.2.13. Let V be a measurable set with positive measure and let δ >

δ∗. There exists a non-negative u ∈ A(V ) that minimizes Qδ over A(V ). Moreover,

on any open set contained in V ,

−a∆u+Ru = λδ(V )ρ2(δ
∗−δ)u. (4.36)

Proof. Let uk be a minimizing sequence in A(V ); this uses the hypothesis that

V has positive measure. Without loss of generality we may assume that each

‖uk‖2,δ = 1. Since

a

∫
M

|∇uk|2 +Ru2k = Qδ(uk), (4.37)
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and since uk is a minimizing sequence, Lemma 4.2.5 implies {uk} is bounded in

W 1,2
δ∗ (M) and hence converges weakly in W 1,2

δ∗ (M) and strongly in L2
δ(M) to a limit

u ∈ W 1,2
δ∗ (M) with ‖u‖2,δ = 1. Since each uk = 0 on V c, from the strong L2

δ

convergence we see u = 0 on V c, and since u 6≡ 0 we conclude that u ∈ A(V ). Weak

upper semicontinuity (Corollary 4.2.2) implies that u minimizes Qδ over the test

functions A(V ). Noting that |u| is also a minimizer, we may assume u ≥ 0.

Suppose V contains an open set Ω. Then any φ ∈ C∞c (Ω) with φ 6≡ 0 belongs

to A(V ), and we can differentiate Qδ(u + tφ) at t = 0 to find that u is a weak

solution in Ω of equation (4.36).

Lemma 4.2.14 (Continuity from above). Let V ⊆ M be a measurable set. If {Vk}

is a decreasing sequence of measurable sets with ∩Vk = V , then

lim
k→∞

λδ(Vk) = λδ(V ). (4.38)

Proof. From the elementary monotonicity of λδ, Λ = limk→∞ λδ(Vk) exists and

λδ(Vk) ≤ Λ ≤ λδ(V ) (4.39)

for each k. So it is enough to show that

Λ ≥ λδ(V ). (4.40)

We may assume that Λ is finite, for inequality (4.40) is trivial otherwise. As a

consequence, each Vk is nonempty and Proposition 4.2.13 provides minimizers uk
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of Qδ over A(Vk) satisfying ‖uk‖2,δ = 1. For each k, since ‖uk‖2,δ = 1,

∫
a|∇uk|2 +Ru2k ≤ Λ. (4.41)

From inequality (4.41) and the boundedness of the sequence in L2
δ(M), Lemma

4.2.5 implies that the sequence is bounded in W 1,2
δ∗ (M). A subsequence converges

weakly in W 1,2
δ∗ (M) and strongly in L2

δ(M) to a limit v with ‖v‖2,δ = 1. From

weak upper semicontinuity (Corollary 4.2.2) we conclude that Qδ(v) ≤ Λ as well.

Moreover, v ∈ A(V ) since v = 0 on V c
k . So λδ(v) ≤ Λ.

Note that Lemma 4.2.14 is false for the Yamabe invariant. For example, one

can take a sequence of balls in Rn that shrink down to the empty set. It is easy to

see that the Yamabe invariant is scale invariant and hence is a finite constant along

the sequence. Yet the Yamabe invariant of the empty set is infinite. In contrast, if

Vn ↘ ∅, Lemma 4.2.14 implies λδ(Vn) → ∞, and in particular at some point along

the sequence λδ(Vn) > 0. The following result, which is an extension of [Rau95]

Lemma 2 to the AE setting, shows that in fact λδ(V ) is positive so long as a certain

weighted volume is sufficiently small.

Lemma 4.2.15 (Small sets are Yamabe positive). For any µ > n, there exists

C > 0 such that if Volµ(V ) :=
∫
V
ρ−µ < C, V is Yamabe positive.

Proof. Suppose that u ∈ A(V ). Define δ by (−2δ − n)n
2

= −µ. Note that µ > n

implies that δ > δ∗. Then, by Hölder’s inequality,

‖u‖22,δ =

∫
u2ρ−2δ−n ≤

(∫
uN
)2/N (∫

V

ρ(−2δ−n)
n
2

)2/n

= ‖u‖2NVolµ(V )2/n. (4.42)
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By the Sobolev inequality (4.7), there exists C1 such that

‖u‖2N ≤ C1

[∫
a|∇u|2 + ‖u‖22,δ

]
. (4.43)

We also note that Lemma 4.2.1 implies there exists C2 such that

−C2‖u‖22,δ ≤
1

2

∫
a|∇u|2 +

∫
Ru2. (4.44)

Let η be defined by ηVolµ(V )2/nC1 = 1
2
. Using inequalities (4.42)-(4.44), we

calculate

(η − C2)‖u‖22,δ ≤ η‖u‖2NVolµ(V )2/n +

∫
Ru2 +

1

2

∫
a|∇u|2

≤ ηVolµ(V )2/nC1

[∫
a|∇u|2 + ‖u‖22,δ

]
+

∫
Ru2 +

1

2

∫
a|∇u|2

=

∫ (
a|∇u|2 +Ru2

)
+

1

2
‖u‖22,δ.

(4.45)

Dividing through by ‖u‖22,δ, inequality (4.45) reduces to

η − C2 −
1

2
≤ Qδ(u). (4.46)

As Volµ(V ) → 0, η → ∞. Thus there is a C > 0 such that if Volµ(V ) < C, then

Qδ(u) has a uniform positive lower bound for all u ∈ A(V ). Thus λδ(V ) > 0, and so

V is Yamabe positive by Corollary 4.2.11.

In Section 4.4 below we discuss the relationship between the Yamabe

invariant of an AE manifold and its compactification. After compactification,

for µ = 2n, the condition Volµ(V ) < C corresponds to the condition that the
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usual volume of the compactified set is sufficiently small. This is exactly Rauzy’s

condition, and the other choices of µ provide a mild generalization of his result.

Lemma 4.2.16 (Strict monotonicity at connected, open sets). Let δ > δ∗ and let Ω

be a connected open set. For any measurable set E in Ω with positive measure,

λδ(Ω \ E) > λδ(Ω). (4.47)

Proof. Let V = Ω\E. We may assume V has positive measure, for inequality (4.47)

is trivial otherwise.

Suppose to the contrary that λδ(V ) = λδ(Ω). Since V has positive measure,

Proposition 4.2.13 provides a function u ∈ A(V ) with Qδ(u) = λδ(V ). Hence u also

is a minimizer of Qδ over A(Ω), and Proposition 4.2.13 implies that u weakly solves

−a∆u+
[
R− λδρ2(δ

∗−δ)]u = 0 (4.48)

on Ω. Local regularity implies that u ∈ W 2,p
loc (Ω), and we may assume after

adjusting u on a set of zero measure that u is continuous. Since E has positive

measure, we can still conclude that u vanishes at some point in Ω. Following the

argument of Lemma 4 from [Max05], we may apply the weak Harnack inequality of

[Tru73b] to conclude that u vanishes everywhere on the connected set Ω, and hence

on all of M . Since u ∈ A(Ω), this is a contradiction.

The connectivity hypothesis in Lemma 4.2.16 is necessary to obtain strict

monotonicity. For example, two disjoint unit balls in Rn have the same first

eigenvalue as a single unit ball. On the other hand, the assumption that Ω is open
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is not optimal, and relaxing this condition would require a suitable replacement for

the weak Harnack inequality.

Although we have not established continuity from below for λδ, it holds in

certain cases. The following is a prototypical result that suffices for our purposes.

Lemma 4.2.17 (Continuity from below; prototype). Suppose V is measurable. Let

x0 ∈M and let Br(x0) be the ball of radius r about x0. Then for any δ > δ∗

lim
r→0

λδ(V \Br) = λδ(V ). (4.49)

Proof. Let u be a function in A(V ) that minimizes Qδ. Let χr be a radial bump

function that equals 0 on Br(x0), equals 1 outside B2r(x0), and has its gradient

bounded by 2/r. Defining ur = χru we claim that ur → u in W 1,2
δ∗ (M). Assuming

this for the moment, we conclude from the continuity of Qδ that

λδ(V ) ≤ λδ(V \Br) ≤ Qδ(ur)→ Qδ(u) = λδ(V ) (4.50)

and hence we obtain equality (4.49).

To show that ur → u in W 1,2
δ∗ , since ur → u in L2

δ∗ , it is enough to show that∫
|∇(u− ur)|2 → 0. However,

∫
|∇(u− ur)|2 ≤ 2

∫
(1− χr)2|∇u|2 + u2|∇(1− χr)|2. (4.51)

The first term on the right-hand side of inequality (4.51) evidently converges to

zero. For the second, we note from Hölder’s inequality that

∫
B2r

u2 ≤
[∫

B2r

uN
] 2
N
[∫

B2r

1

] 2
n

≤ Cr2
[∫

B2r

uN
] 2
N

. (4.52)
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Since u ∈ LNloc,
∫
B2r

uN → 0 as r → 0. Since ∇(1 − χr) is bounded by c/r,

we conclude that the second term of the right-hand side of inequality (4.51) also

converges to zero.

4.3. Prescribed Non-Positive Scalar Curvature

In this section, we prove the following necessary and sufficient condition for

an AE Riemannian manifold with at least one end to be conformally related to one

which has scalar curvature equal to a specified nonpositive function.

Theorem 4.3.1. Let (Mn, g) be a W 2,p
α AE manifold with p > n/2 and α ∈ (2 −

n, 0). Suppose R′ ∈ Lpα−2 is non-positive. Then the following are equivalent:

1. There exists a positive function φ with φ − 1 ∈ W 2,p
α such that the scalar

curvature of g′ = φN−2g is R′.

2. {R′ = 0} is Yamabe positive.

For compact Yamabe negative manifolds we have the following analogous

result. Since Rauzy’s condition (4.2) is equivalent to the set {R′ = 0} being

Yamabe positive, this theorem is a generalization to lower regularity and a

correction of the proof of part of Theorem 1 in Rauzy’s work [Rau95].

Theorem 4.3.2. Let (Mn, g) be a W 2,p compact Yamabe negative manifold with

p > n/2. Suppose R′ ∈ Lp is non-positive. Then the following are equivalent:

1. There exists a positive function φ with φ ∈ W 2,p such that the scalar curvature

of g′ = φN−2g is R′.

2. {R′ = 0} is Yamabe positive.
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For the most part, the proof of Theorem 4.3.2 can be obtained from the proof

of Theorem 4.3.1 by treating a compact manifold as an asymptotically Euclidean

manifold with zero ends. So we focus on Theorem 4.3.1 and then present the few

additional arguments needed to prove Theorem 4.3.2 at the end of the section.

Turning to Theorem 4.3.1, the proof that 1) implies 2) is short, so we delay it

and concentrate on the direction 2) implies 1). Suppose that {R′ = 0} is Yamabe

positive. We show that we can make the desired conformal change using a sequence

of results proved over the remainder of this section. It suffices to work under the

following simplifying hypotheses.

1. We may assume that the prescribed scalar curvature R′ is bounded since

Lemma 4.3.3, which we prove next, shows that we can the lower scalar

curvature after first solving the problem for a scalar curvature that is

truncated below.

2. We may assume {R′ = 0} contains a neighborhood of infinity, since continuity

from above (Lemma 4.2.14) shows that we can truncate R′ in a “small”

neighborhood of infinity such that its zero set remains Yamabe positive, and

we can subsequently lower the scalar curvature after solving the modified

problem.

3. We may assume that the initial scalar curvature satisfies R = 0 in a

neighborhood of infinity, since Lemma 4.3.4, which we prove below, shows

that we can initially conformally transform to such a scalar curvature, and

since the hypotheses of Theorem 4.3.1 are conformally invariant.
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Lemma 4.3.3. Suppose (M, g) is a W 2,p
α AE manifold with p > n/2 and α ∈

(2 − n, 0). Suppose R′ ∈ Lpα−2. If Rg ≥ R′, then there exists a positive φ with

φ− 1 ∈ W 2,p
α such that g′ = φN−2g has scalar curvature R′.

Proof. We seek a solution to −a∆φ + Rgφ = R′φq−1. Note that 0 is a subsolution

and, since Rg ≥ R′, 1 is a supersolution. By [Max05] Proposition 2, there exists a

solution φ with 0 ≤ φ ≤ 1 and φ − 1 ∈ W 2,p
α . Since φ ≥ 0 solves −a∆φ + (R −

R′φq−2)φ = 0, and since φ → 1 at infinity, the weak Harnack inequality [Tru73b]

implies that φ is positive.

Lemma 4.3.4. Suppose (M, g) is a W 2,p
α AE manifold with p > n/2 and α ∈

(2−n, 0). There exists φ > 0 with φ− 1 ∈ W 2,p
α such that the metric g′ = φN−2g has

zero scalar curvature on some neighborhood of infinity.

Proof. We prove this result for a manifold with one end; the extension to several

ends can be done by repeated application of our argument. Let Er be the region

outside the coordinate ball of radius r in end coordinates. By Lemma 4.2.15,

y(Er) > 0 for r large enough. Following Proposition 3 in [Max05] we claim that

−a∆ + ηR : {u ∈ W 2,p
α (ER) : u|∂Er = 0} → Lpα−2(ER) (4.53)

is an isomorphism for all η ∈ [0, 1]. Because we assume homogenous boundary

conditions, the argument in Propositions 1.6 through 1.14 in [Bar86] showing that

−a∆ + ηR is Fredholm of index zero requires no changes except imposing the

boundary condition. Suppose, then, to produce a contradiction, that there exists

a nontrivial u in the kernel. An argument parallel to Lemma 3 in [Max05] implies

that u ∈ W 2,p
α′ for any α′ ∈ (2 − n, 0). In particular, the extension of u by zero

to M belongs to W 1,2
δ∗ (M) and hence also to A(Er). Integration by parts implies
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Qy(u) = 0, which contradicts the fact that Er is Yamabe positive. Thus −a∆ + ηR

is an isomorphism.

Let uη be the nontrivial solution in {u ∈ W 2,p
α (Er) : u|∂Er = 0} of

−a∆uη + ηRuη = −ηR. (4.54)

Then φη := uη + 1 solves

−a∆φη + ηRφη = 0 (4.55)

on Er. Let I = {η ∈ [0, 1] : φη > 0}. Since φ0 ≡ 1, I is nonempty. The set of

solutions uη such that uη > −1 is open in W 2,p
α ⊂ C0

α. Thus, by the continuity

of the map η 7→ uη, I is open. Suppose η0 ∈ I. If φη0 = 0 somewhere, the weak

Harnack inequality [Tru73b] implies that φη0 ≡ 0, which contradicts the fact that

φη0 → 1 at infinity. Thus φη0 > 0 on Er, and so I is closed. Thus I = [0, 1], and

φ1 > 0. We set φ to be an arbitrary positive W 2,p
α extension of φ1|Er ; φ satisfies the

properties claimed in this lemma.

Consider the family of functionals

Fq(u) =

∫
a|∇u|2 +

∫
R(u+ 1)2 − 2

q

∫
R′ |u+ 1|q (4.56)

for q ∈ [2, N).

Broadly, the strategy of the proof of Theorem 4.3.1 is to construct minimizers

uq of the subcritical functionals, and then establish sufficient control to show that

(1 +uq) converges in the limit q → N to the desired conformal factor. The following

uniform coercivity estimate, which we prove following a variation of techniques

found in [Rau95], is the key step in showing the existence of subcritical minimizers.
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Proposition 4.3.5 (Coercivity of Fq). Suppose that {R′ = 0} is Yamabe positive,

that δ > δ∗, and that q0 ∈ (2, N). For every B ∈ R there is a K > 0 such that for

all q ∈ [q0, N) and all u ∈ W 1,2
δ∗ with u ≥ −1, if ‖u‖2,δ > K then Fq(u) > B.

Proof. For η > 0 let

Aη =

{
u ∈ W 1,2

δ∗ , u ≥ −1 :

∫
|R′||u|2 ≤ η‖u‖22,δ

∫
|R′|
}
. (4.57)

Morally, u ∈ Aη if it is concentrated on the zero set

Z = {R′ = 0}, (4.58)

with greater concentration as η → 0.

Fix a constant L ∈ (0, λδ(Z)). We first claim that there is an η0 < 1 such that

if u ∈ Aη0 , then ∫
a|∇u|2 +Ru2 ≥ L‖u‖22,δ. (4.59)

Suppose to the contrary that this is false, and let ηk be a sequence converging to 0.

We can then construct a sequence vk with each vk ∈ Aηk such that ‖vk‖2,δ = 1 and

∫
a|∇vk|2 +Rv2k < L. (4.60)

Note that L is finite even if λδ(Z) = ∞. So from the boundedness of the sequence

vk in L2
δ and Lemma 4.2.5, the sequence vk is bounded in W 1,2

δ∗ , and a subsequence

(which we reduce to) converges weakly in W 1,2
δ∗ and strongly in L2

δ to a limit v with
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‖v‖2,δ = 1. Now

0 ≤
∫
|R′|v2k ≤ ηk

∫
|R′| → 0. (4.61)

Since |R′|v2k → |R′|v2 in L1 we conclude that v = 0 outside of Z. From weak upper

semicontinuity (Corollary 4.2.2) we conclude that

∫
a|∇v|2 +Rv2 ≤ L (4.62)

as well. However, since v is supported in Z

∫
a|∇v|2 +Rv2 ≥ λδ(Z)‖v‖22,δ = λδ(Z) > L, (4.63)

which is a contradiction, and establishes inequality (4.59).

Let B ∈ R and suppose q ∈ (q0, N), u ∈ W 1,2
δ∗ and u ≥ −1. We wish to

show that there is a K independent of q so that if ‖u‖2,δ > K then Fq(u) > B. It is

enough to find a choice of K under two cases depending on whether u ∈ Aη0 or not.

If u is concentrated on Z, the coercivity follows from the fact that Z is Yamabe

positive (as used to obtain inequality (4.59)), and if u is not concentrated on Z

then the coercivity follows from the fact that R′ < 0 away from Z.

Suppose that u 6∈ Aη0 , so

∫
|R′||u|2 > η0‖u‖22,δ

∫
|R′|. (4.64)
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We calculate

Fq(u) =

∫
a|∇u|2 +

∫
R(u+ 1)2 +

2

q

∫
|R′||u+ 1|q

≥
∫
a|∇u|2 − 2

∫
|R|(u2 + 1) +

2

q

∫
|R′|(|u|q − 1)

≥
∫
a

2
|∇u|2 − C‖u‖22,δ − 2

∫
|R|+ 2

q

∫
|R′|(|u|q − 1)

≥
∫
a

2
|∇u|2 − C‖u‖22,δ − 2

∫ (
|R|+ 1

q
|R′|
)

+
2

q

∫
|R′||u|q.

(4.65)

Here we have applied Lemma 4.2.1, and have used the fact that (u + 1)q ≥ |u|q − 1

for u ≥ −1. Inequality (4.64) and Hölder’s inequality imply

η0‖u‖22,δ
∫
|R′| <

∫
|R′||u|2 ≤

(∫
|R′||u|q

) 2
q
(∫
|R′|
)1− 2

q

(4.66)

and hence

(η0)
q
2‖u‖q2,δ

∫
|R′| ≤

∫
|R′||u|q. (4.67)

Using the fact that η0 < 1 and q < N , inequalities (4.65) and (4.67) imply at last

that

Fq(u) ≥
∫
a

2
|∇u|2 − C‖u‖22,δ − 2

∫ (
|R|+ 1

q
|R′|
)

+
2

q
(η0)

N
2 ‖u‖q2,δ

∫
|R′|. (4.68)

We note that
∫
|R′| > 0, for otherwise condition (4.64) is impossible, and hence the

coefficient on ‖u‖q2,δ is positive. Since q > 2, there is a K such that if ‖u‖2,δ > K,

then Fq(u) ≥ B. Note that since C is independent of q ≥ q0, so is the choice of K.

65



Now suppose u ∈ Aη0 , so inequality (4.59) holds. Then for any ε > 0,

Fq(u) ≥
∫
a|∇u|2 +

∫
R(u+ 1)2

=

∫
a|∇u|2 +Ru2 +

∫
R
[
(u+ 1)2 − u2

]
≥
∫
a|∇u|2 +Ru2 −

∫
|R|
[
εu2 + 1 +

1

ε

]
≥ (1− ε)

[∫
a|∇u|2 +Ru2

]
+ ε

∫
(a|∇u|2 − 2|R|u2)−

(
1 +

1

ε

)∫
|R|

≥ (1− ε)L‖u‖22,δ + ε

(∫
a

2
|∇u|2 − C‖u‖22,δ

)
−
(

1 +
1

ε

)∫
|R|

≥ [(1− ε)L − εC] ‖u‖22,δ + ε

∫
a

2
|∇u|2 −

(
1 +

1

ε

)∫
|R|.

(4.69)

Here we have applied Lemma 4.2.1, inequality (4.59), and the fact that (u + 1)2 −

u2 ≤ εu2 + 1 + (1/ε) for all u ≥ −1 and all ε > 0. We can pick ε sufficiently

small so that the coefficient of ‖u‖2,δ in the final expression of inequality (4.69) is

at least L/2. Hence there is a K such that if ‖u‖2,δ ≥ K, then Fq(u) ≥ B. Since C

is independent of q ≥ q0, so is ε and the choice of K.

Lemma 4.3.6. For q < N the operator Fq is weakly upper semicontinuous on W 1,2
δ∗ .

Proof. Lemma 4.2.1 together with the weak continuity of continuous linear maps

implies that

u 7→
∫
a|∇u|2 +R(u+ 1)2 (4.70)

is weakly upper semicontinuous on W 1,2
δ∗ . Hence it suffices to show that

u 7→
∫
R′|u+ 1|q−1 (4.71)

is weakly continuous on W 1,2
δ∗ . But fixing δ > δ∗ we know that the embedding

W 1,2
δ∗ ↪→ Lqδ is compact and that the map (4.71) is continuous on Lqδ.
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We now obtain existence of subcritical minimizers from the coercivity of Fq,

along with uniform estimates in W 1,2
δ∗ for the minimizers.

Lemma 4.3.7. For any q0 ∈ (2, N), for each q ∈ [q0, N), there exists uq > −1,

bounded in W 1,2
δ∗ and independent of q, which minimizes Fq and is a weak solution

of

−a∆(uq + 1) +R(uq + 1) = R′(uq + 1)q−1. (4.72)

Moreover, uq ∈ W 2,p
σ for every σ ∈ (2− n, 0).

Proof. Let B =
∫
R +

∫
|R′|, let δ > δ∗, and let q0 ∈ (2, N). Observe that

Fq(0) ≤ B (4.73)

for all q ∈ (q0, N). Let K be the constant associated with B, δ and q0 obtained

from Proposition 4.3.5. Fix q ∈ (q0, N) and let uk be a minimizing sequence in W 1,2
δ∗

for Fq. Without loss of generality, we can assume each uk ≥ −1 since Fq(uk) =

Fq(max(uk,−2 − uk)). We can assume that each Fq(uk) ≤ Fq(0) ≤ B and hence

Proposition 4.3.5 implies that each ‖uk‖2,δ ≤ K. Since

∫
a|∇uk|2 +R(1 + uk)

2 ≤ Fq(uk) < B (4.74)

as well, Lemma 4.2.5 implies that there is a C > 0 such that each ‖uk‖W 1,2
δ∗
≤ C.

Note that C depends on K and B, which are independent of q ≥ q0. A subsequence

(which we reduce to) converges weakly in W 1,2
δ∗ and strongly in Lqδ to a limit

uq ≥ −1. Lemma 4.3.6 shows that Fq is weakly upper semicontinuous, so uq is a

minimizer. Moreover, ‖uq‖W 1,2
δ∗
≤ C as well.
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Since uq is a minimizer, we find that (1 + uq) is a weak solution of

[
−a∆ +R−R′(1 + uq)

q−2] (1 + uq) = 0. (4.75)

Since R′ ∈ L∞loc and since uq ∈ LNloc, an easy computation shows that R′(1 + uq)
q−2 ∈

Lrloc for some r > n/2. Since R ∈ Lploc and g ∈ W 2,p
loc with p > n/2, we find that

the coefficients of the differential operator in brackets in equation (4.75) satisfy the

hypotheses of the weak Harnack inequality of [Tru73b]. Hence, since 1 + uq ≥ 0 and

since the manifold is connected, either 1 + uq > 0 everywhere or uq ≡ −1. But uq

decays at infinity, and so we conclude that 1 + uq is everywhere positive.

We now bootstrap the regularity of uq, which we know initially belongs to

LNδ∗ . Fix σ ∈ (2 − n, 0). Suppose it is known that for some r ≥ N that uq ∈ Lrloc.

From equation (4.75), uq solves

−a∆uq = R′(1 + uq)
q−1 −R(1 + uq). (4.76)

Recall that R′ ∈ L∞loc and R ∈ Lploc and both have compact support. Then R′(1 +

uq)
q−1 belongs to Lt1σ with

1

t1
=
q − 1

r
≤ 1

r
+
q − 2

N
<
N − 1

N
, (4.77)

and R(1 + uq) belongs to Lt2σ with

1

t2
=

1

r
+

1

p
. (4.78)

Let t = min(t1, t2) and note that t < p since t2 < p. From [Bar86] Proposition

1.6 we see that uq is a strong solution of (4.76) and from [Bar86] Proposition 2.2,
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which implies ∆ : W 2,t
σ → Ltσ is an isomorphism for 1 < t ≤ p, we conclude that

uq ∈ W 2,t
σ . From Sobolev embedding we obtain uq ∈ Lr

′
σ where

1

r′
=

1

t
− 2

n
, (4.79)

so long as 1/t > n/2, at which point the bootstrap changes as discussed below.

Now
1

t1
− 2

n
≤ 1

r
+
q − 2

N
− 2

n

=
1

r
+

q

N
−
[

2

N
+

2

n

]
=

1

r
+
[ q
N
− 1
]
.

(4.80)

Also,

1

t2
− 2

n
=

1

r
+

[
1

p
− 2

n

]
. (4.81)

Let ε = min(1 − q/N, 2/n − 1/p) and note that ε is positive and independent of r.

Inequalities (4.80) and (4.81) imply

1

r′
≤ 1

r
− ε (4.82)

Hence, after a finite number of iterations (depending on the size of ε, and hence

on how close q is to N) we can reduce 1/r by multiples of ε until 1/r ≤ ε. At this

point the bootstrap changes, and in at most two more iterations we can conclude

that uq ∈ L∞σ and also uq ∈ W 2,p
σ .

The uniform W 1,2
δ∗ bounds of Lemma 4.3.7 are enough to obtain the existence

of a solution u in W
2,N/(N−1)
σ of equation (4.72) with q = N . At the end of Section

IV.6 of [Rau95] it is claimed that on a compact manifold in the smooth setting that
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elliptic regularity now implies u is smooth. But in fact this is not quite enough

regularity to start a bootstrap: W
2,N/(N−1)
σ embeds continuously in LNσ , which

implies no more regularity than was known initially. To start a bootstrap and

ensure the continuity of u we need the following improved estimate, which follows a

modification of the strategy of [LP87] Proposition 4.4.

Lemma 4.3.8. For each compact set K, the minimizers uq are uniformly bounded

in LM(K) for some M > N .

Proof. Let χ be a smooth positive function with compact support that equals 1 in

a neighborhood of K. Let v = χ2(1 + uq)
1+2σ where uq is a subcritical minimizer

and where σ is a small constant to be chosen later. Note that since uq ∈ L∞loc∩W
1,2
loc ,

v ∈ W 1,2
δ∗ . Setting w = (1 + uq)

1+σ, a short computation shows that

∫
χ2|∇w|2 = −2

1 + σ

1 + 2σ

∫
〈χ∇w,w∇χ〉+

(1 + σ)2

1 + 2σ

∫
〈∇uq,∇v〉 . (4.83)

Applying Young’s inequality to the first term on the right-hand side of equation

(4.83) and merging a resulting piece into the left-hand side we conclude there is a

constant C1 such that

‖χ∇w‖22 ≤ C1‖w∇χ‖22 + 2
(1 + σ)2

1 + 2σ

∫
〈∇uq,∇v〉 . (4.84)

Since uq is a subcritical minimizer,

a

∫
〈∇uq,∇v〉 =

∫
R′(1 + uq)

q−2χ2w2 −
∫
Rχ2w2

≤
∣∣∣∣∫ Rχ2w2

∣∣∣∣
≤ ε‖∇(χw)‖22 + Cε‖χw‖22.

(4.85)
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We applied Lemma 4.2.1 in the last line and used the fact that for functions with

support contained in a fixed compact set, weighted and unweighted norms are

equivalent. Note also that the fact that R′ ≤ 0 everywhere is used in going from

line 1 to line 2 in (4.85). Noting that there is a constant C2 such that

‖∇(χw)‖22 ≤ C2(‖χ∇w‖22 + ‖w∇χ‖22), (4.86)

we can combine inequalities (4.84), (4.85), and (4.86) to conclude that, if ε is

sufficiently small to absorb the term from inequality (4.85) into the left-hand side,

then there is a constant C3 such that

‖∇(χw)‖22 ≤ C3

[
‖w∇χ‖22 + ‖wχ‖22

]
. (4.87)

Finally, from the Sobolev inequality (4.7), there is a constant C4 such that

‖χw‖2N ≤ C4

[
‖w∇χ‖22 + ‖wχ‖22

]
(4.88)

as well. Now uq is bounded uniformly in LN on the support K ′ of χ, and hence we

can take σ sufficiently small so that w is bounded independent of q in L2(K ′) as

well. Thus (1 + uq) is bounded uniformly in LM(K) for M = N(1 + σ).

Corollary 4.3.9. Let p be the exponent such that g is a W 2,p
α AE manifold and let

σ ∈ (2− n, 0). The subcritical minimizers uq are bounded in W 2,p
σ as q → N .

Proof. Consider a subcritical minimizer uq, which is a weak solution of

−a∆uq = −R(1 + uq) +R′(1 + uq)
q−1. (4.89)
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Let K be a compact set containing the support of R and R′, and let M > N

be an exponent such that we have uniform bounds on uq in LM(K). We wish to

bootstrap this to better regularity for uq.

Since the bootstrap for the two terms is different, we concentrate first on the

interesting term, R′(1 + uq)
q−1, and suppose for the moment that the other term is

absent. Let us write

1

M
=

1

N
− ε (4.90)

for some ε > 0. Now

|R′(1 + uq)
q−1| ≤ |R′|(1 + |1 + uq|N−1). (4.91)

Since R′ is bounded, the term R′|1 + uq|N−1 belongs to Ls(K) with

1

s
=

1

M
(N − 1)

=

(
1

N
− ε
)

(N − 1)

=
2

n
+

1

N
− ε(N − 1).

(4.92)

Since R′ is zero outside of K we conclude R′(1 + uq)
q−1 ∈ Lsσ. Note that the

norm of R′(1 + uq)
q−1 in Lsσ depends on the norm of uq in LM(K) but is otherwise

independent of q. Since the functions uq are uniformly bounded in LM(K), we

obtain control of R′(1 + uq)
q−1 in Lsσ independent of q.

If s ≤ p then s ∈ (1, p] and we cite [Bar86] Proposition 2.2 to conclude

uq ∈ W 2,s
σ and therefore uq ∈ LM

′
(K) with

1

M ′ =
1

s
− 2

n
=

1

N
− ε(N − 1). (4.93)
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Similarly, after k iterations of this process we would find uq belongs to W 2,s
σ with

1

s
=

2

n
+

1

N
− ε(N − 1)k (4.94)

unless s > p, at which point the bootstrap terminates at uq ∈ W 2,p
σ with

norm depending on ‖uq‖LM (K) (which is independent of q) and on the number of

iterations needed to reach s ≤ p. Note that since N > 2, we will reach the condition

s ≥ p in a finite number of steps independent of q.

Now consider the bootstrap for the term −R(1 + uq) alone. Write

1

p
=

2

n
− ε′ (4.95)

for some ε′ > 0. The term −R(1 + uq) then belongs to Lt(K) with

1

t
=

1

p
+

1

M
=

2

n
− ε′ + 1

M
. (4.96)

Note that 1 < t < p and hence [Bar86] Proposition 2.2 implies uq ∈ W 2,t
σ . Note

that the norm of uq in W 2,t
σ depends on the norm of uq in LM(K) but is otherwise

independent of q. Consequently uq is controlled in LM
′
(K) independent of q where

1

M ′ =
1

t
− 2

n
=

1

M
− ε′. (4.97)

After k iterations we would find instead

1

M ′ =
1

M
− kε′ (4.98)
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and the bootstrap stops in finitely many steps independent of q if kε′ > 1/M ,

at which point we find that uq ∈ W 2,p
σ , with norm independent of q. There is an

exceptional case if kε′ = 1/M , but it can be avoided by an initial perturbation of

M .

The bootstrap in the full case follows from combining these arguments.

Proof of Theorem 4.3.1. (2. implies 1.) The uq are uniformly bounded in W 2,p
σ

by Corollary 4.3.9 for any σ ∈ (2 − n, 0). Thus they converge to some u strongly in

W 1,2
δ∗ and uniformly on compact sets. In particular, since the uq weakly solve (4.72),

φ := u+ 1 weakly solves

−a∆φ+Rφ = R′φN−1. (4.99)

Since each uq ≥ −1, φ ≥ 0, and since φ → 1 at infinity, φ 6≡ 0. Hence the

weak Harnack inequality [Tru73b] implies φ > 0.

Since σ ∈ (2 − n, 0) is arbitrary, φ − 1 ∈ W 2,p
α in particular. Note that the

rapid decay σ ≈ 2 − n uses the fact that R = 0 near infinity. The lesser decay

rate α in the statement of the theorem stems from the fact that we may have used

a conformal factor in W 2,p
α to initially set R = 0 near infinity or to lower the scalar

curvature after changing it to R′.

(1. implies 2.) Let Z = {R′ = 0}. The case where Z has zero measure

is trivial, for then y(Z) = ∞ > 0. Hence we assume Z has positive measure

and suppose there exists a conformally related metric g′ with scalar curvature R′.

Let δ > δ∗ be fixed and let u be a minimizer of Qg′,δ over A(Z) as provided by

Proposition 4.2.13. Note that ∫
R′u2dVg′ = 0 (4.100)

74



since R′ = 0 on Z and u = 0 on Zc. Hence

λg′,δ(Z) = Qg′,δ(u) = a

∫
|∇u|2g′dVg′
‖u‖g′,2,δ

. (4.101)

In particular, λg′,δ(Z) ≥ 0, and λg′,δ(Z) = 0 only if u is constant. But Z has

positive measure, and therefore A(Z) does not contain any constants. Hence

λg′,δ(Z) > 0, and Proposition 4.2.10 implies that Z is Yamabe positive.

This completes the proof of Theorem 4.3.1. Turning to the compact case

(Theorem 4.3.2) recall that we started the AE argument with the following

simplifying hypotheses:

1. The prescribed scalar curvature R′ is bounded.

2. The prescribed scalar curvature R′ has compact support.

3. The initial scalar curvature R has compact support.

The last two of these are trivial if M is compact, and the first is justified by

Lemma 4.3.10 below, which shows that we can lower scalar curvature after first

solving the problem for a scalar curvature that is truncated below. In the compact

case we require an additional condition which will be used in Lemma 4.3.11.

4. We may assume that the initial scalar curvature R is continuous and negative.

Indeed, from Proposition 4.2.13 there is a positive function φ solving −a∆φ +

Rφ = λδ(M)φ on M . Note that λδ(M) < 0 since g is Yamabe negative.

Using φ as the conformal factor we obtain a scalar curvature λδ(M)φ2−N . The

hypotheses of Theorem 4.2 are conformally invariant and hence unaffected by

this change.
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Lemma 4.3.10. Suppose (M, g) is a W 2,p compact Yamabe negative manifold.

Suppose R′ ∈ Lp. If 0 ≥ R ≥ R′, then there exists a positive φ with φ ∈ W 2,p such

that g′ = φN−2g has scalar curvature R′.

Proof. We wish to solve

−a∆φ+Rφ = R′φN−1. (4.102)

Note that φ+ = 1 is a supersolution of equation (4.102). To find a subsolution first

observe that R 6≡ 0 since the manifold is Yamabe negative. So, since −R ≥ 0 and

−R 6≡ 0, for each ε > 0 there exists a unique φε ∈ W 2,p solving

−a∆φε −Rφε = −R + εR′. (4.103)

If ε = 0 the solution is 1, and since W 2,p embeds continuously in C0 we can fix

ε > 0 such that φε > 1/2 everywhere. We claim that φ− := ηφε is a subsolution if

η > 0 is sufficiently small. Indeed,

−a∆φ− +Rφ− = η [R(2φε − 1)] + ηεR′

≤ ηεR′.

(4.104)

So φ− is a subsolution so long as

ηεR′ ≤ R′φN−1− . (4.105)

A quick computation shows that inequality (4.105) holds if η is small enough so

that η2−N ≥ φN−1ε /ε everywhere. We can also take η small enough so that φ− ≤

φ+ = 1, and hence there exists a solution φ ∈ W 2,p with φ ≥ φ− > 0 of equation

(4.102) ([Max05] Proposition 2).

76



The remainder of the proof of Theorem 4.3.2 closely follows the proof of

Theorem 4.3.1 by treating a compact manifold as an asymptotically Euclidean

manifold with zero ends. In particular, the cited results of Section 4.2 apply equally

in both cases, and differences arise only when the following facts are cited.

– A constant function in W 1,2
δ∗ is identically zero.

– The Laplacian is an isomorphism from W 2,p
σ to Lpσ for σ ∈ (2− n, 0).

Twice, we use the property that constants in W 1,2
δ∗ vanish: once in Lemma 4.3.7 in

showing 1 + uq 6≡ 0, and once in the final proof of Theorem 4.3.1 showing that in

the limit 1 + u 6≡ 0 as well. The following lemma provides the alternative argument

needed to ensure that these functions do not vanish identically in the compact case.

Lemma 4.3.11. Suppose (M, g) is compact and that Rg is continuous and negative.

Fix q0 ∈ (2, N). Then ‖1 + uq‖2 ≥ C for some C independent of q ∈ (q0, N).

Moreover, the limit 1 + u is not identically zero.

Proof. Note that for any constant k,

Fq(k) = (1 + k)2
∫
R− 2

q
(1 + k)q

∫
R′. (4.106)

Since
∫
R < 0, for any k 6= −1 close enough to −1, Fq(k) < 0. Indeed, there are

constants k0 > −1 and c > 0 such that Fq(k0) < −c for all q ∈ (q0, N). But then

∫
R(1 + uq)

2 ≤ Fq(uq) ≤ Fq(k0) ≤ −c (4.107)

since uq minimizes Fq. Since R is continuous, and thus bounded below, ‖1 + uq‖2 ≥

C for some C independent of q ∈ (q0, N). Since uq → u in L2, we also have ‖1 +

u‖2 ≥ C, and so 1 + u is not identically zero.
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We use the fact that ‖∆u‖p,σ controls ‖u‖W 2,p
σ

twice as well, once in the

bootstrap of Lemma 4.3.7 and once in the bootstrap of Lemma 4.3.9. However,

on a compact manifold, ‖u‖W 2,p is controlled by the sum of ‖∆u‖p and ‖u‖2, and

the coercivity estimate from Proposition (4.3.5) ensures that ‖uq‖2 is uniformly

bounded as q → N . This provides the needed extra control for the bootstraps and

completes the proof of Theorem 4.3.2.

4.4. Yamabe Classification

In this section we provide two characterizations of the Yamabe class of an

asymptotically Euclidean manifold, one in terms of the prescribed scalar curvature

problem and one in terms of the Yamabe type of the manifold’s compactification.

Note that throughout this section AE manifolds have at least one end.

Theorem 4.4.1. Suppose (M, g) is a W 2,p
α AE manifold with p > n/2 and α ∈

(2− n, 0). Let R≤0 be the set of non-positive elements of Lpα−2.

1. M is Yamabe positive if and only if the set of non-positive scalar curvatures

of metrics conformally equivalent to g is R≤0.

2. M is Yamabe null if and only if the set of non-positive scalar curvatures of

metrics conformally equivalent to g is R≤0 \ {0}.

3. M is Yamabe negative if and only if the set of non-positive scalar curvatures

of metrics conformally equivalent to g is a strict subset of R≤0 \ {0}.

Proof. It suffices to prove the forward implications.

1) Suppose M is Yamabe positive, and hence so is every subset. If R′ ∈ R≤0,

then {R′ = 0} is Yamabe positive and Theorem 4.3.1 implies [g] includes a metric

with scalar curvature R′.
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2) Suppose M is Yamabe null. Since M is open and connected, Lemma

4.2.16 implies that if E ⊆ M has positive measure, then M \ E is Yamabe positive.

Hence for any R′ ∈ R≤0 with R′ < 0 on a set of positive measure, {R′ = 0} is

Yamabe positive, and Theorem 4.3.1 implies we can conformally transform to a

metric with scalar curvature R′. But R′ ≡ 0 is impossible, for otherwise Theorem

4.3.1 would imply M is Yamabe positive.

3) Suppose M is Yamabe negative. Since M is open, Lemma 4.2.17 shows

that there is a nonempty open set W ⊆ M such that M \ W is also Yamabe

negative. Suppose R′ ∈ Lpα−2 is non-positive and supported in W . Then {R′ = 0}

contains M \ W and is hence Yamabe negative. But then Theorem 4.3.1 shows

that we cannot conformally transform to a metric with scalar curvature R′. In

particular, R′ ≡ 0 is one of the unattainable scalar curvatures.

While Theorem 4.4.1 completely describes the set of allowable scalar

curvatures in cases 1) and 2), it does not in case 3). Of course, we already have

demonstrated a necessary and sufficient criterion for being able to make the

conformal change: the zero set of R′ must be Yamabe positive. Nevertheless, it

would be desirable to describe this situation more explicitly, and there are a few

things that can be said. First, by Lemma 4.2.15, if R′ ∈ R≤0 and the weighted

volume of {R′ = 0} is sufficiently small, then {R′ = 0} is Yamabe positive, and

thus g is conformally equivalent to a metric with scalar curvature R′. In particular,

if R′ < 0 everywhere, then it is attainable. Conversely, by Lemma 4.2.17, for any

sequence {R′k} ⊂ R≤0 such that {R′k < 0} ⊂ B1/k(x0) for some fixed x0 ∈ M , then

for k large enough, {R′k = 0} is Yamabe negative, and thus g is not conformally

equivalent to a metric with scalar curvature R′k. That is, the strictly negative part

of R′ cannot be constrained to a small ball. Similarly, an argument analogous to
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the proof of Lemma 4.2.17 shows that the complement of a sufficiently “small”

neighborhood of infinity is Yamabe negative, and hence the strictly negative part of

R′ cannot be constrained to a small neighborhood of infinity.

Our second characterization of the Yamabe class of an AE manifold involves

its compactification. An AE manifold can be compactified using a conformal factor

that decays suitably at infinity, and a compact manifold can be transformed into

an AE manifold using a conformal factor with a suitably singularity. We would like

to show that the sign of the Yamabe invariant is preserved under these operations,

and we begin by laying out the details of the compactification/decompactification

procedure. In particular, there is a precise relationship between the decay of the

metric at infinity and its smoothness at the point of compactification.

Lemma 4.4.2. Let p > n/2 and let α = n
p
− 2, so −2 < α < 0. Suppose (M, g) is a

W 2,p
α AE manifold. There is a smooth conformal factor φ that decays to infinity at

the rate ρ2−n such that ḡ = φN−2g extends to a W 2,p metric on the compactification

M .

Conversely, suppose (M, g) is a compact W 2,p manifold, with p > n/2 and p 6=

n. Given a finite set P of points in M there is conformal factor φ that is smooth

on M = M \ P, has a singularity of order |x|2−n at each point of P, and such that

g = φ
N−2

g is a W 2,p
α AE manifold with α = n

p
− 2.

Proof. For simplicity we treat the case of only one end.

Let (M, g) be a W 2,p
α AE manifold and let zi be the Euclidean end

coordinates on M , so

gij = eij + kij, (4.108)
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with k ∈ W 2,p
α . Let xi be coordinates given by the Kelvin transform xi = zi/|z|2, so

zi = xi/|x|2 as well.

We define a conformal factor φ = |z|2−n near infinity, and extend it

to be smooth on the rest of M . Let g = φN−2g and let M be the one-point

compactification of M , with P being the point at infinity. We wish to show that

g extends to a W 2,p(M) metric.

Near P , φN−2 = |z|−4 and

gij = eij + kij (4.109)

where

kij := kij −
4

|x|2
xaka(ixj) +

4

|x|4
xaxbkabxixj = O(k). (4.110)

and xa = eabx
b. Since kij → 0 at P , we set gij(P ) = eij to obtain a continuous

metric, and we need to show that k ∈ W 2,p(M). Since k ∈ W 2,p
loc (M), and since a

point is a removable set, we need only show that the second derivatives of k belong

to Lp(B) for some coordinate ball B containing P .

Let ∂̄ represent the derivatives in xi coordinates. Since ∂z
∂x

= O(|x|−2), we

calculate

∂̄k = O(∂k)O(|z|2) +O(k)O(|z|)

∂̄2k = O(∂2k)O(|z|4) +O(∂k)O(|z|3) +O(k)O(|z|2).
(4.111)

In order to show ∂̄2k ∈ Lp(B), it is sufficient to show that each of the three terms

in equation (4.111) is in Lp(B).

Note that near infinity

dV = φNdV = |z|−2ndV. (4.112)
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Hence the Lp norm of the O(k)O(|z|2) term of equation (4.111) is controlled by

∫ (
O(k)O(|z|2)

)p |z|−2ndV =

∫
O (|k|p)O

(
|z|2p−2n

)
dV

≤ C‖k‖p
W 2,p
α
,

(4.113)

where we have used the equality

2p− 2n = −n− αp (4.114)

and expression (2.1) defining the weighted norm. Hence the O(k)O(|z|2) term

of equation (4.111) belongs to Lp(B). The two remaining terms have the same

asymptotics and similar calculations show that they belong to Lp(B) as well.

For the converse, consider a W 2,p compact manifold (M, g) with p > n/2 and

p 6= n. Let P be a point to remove to obtain M = M \ {P}. Since g is continuous

we can find smooth coordinates xi near P such that g = e + k for some k ∈ W 2,p

which vanishes at P . Moreover, if p > n then g has Hölder continuous derivatives

and the proof of Proposition 1.25 in [Aub98] shows we can additionally assume

these are normal coordinates (i.e., the first derivatives of k vanish at P ). Finally,

since the result we seek only involves properties of k local to P , we can assume that

k = 0 except in a small coordinate ball B near P .

We claim there is a constant C such that

∫
B

|k|p

|x|2p
≤ C

∫
B

|∂̄2k|pdV and (4.115)∫
B

|∂̄k|p

|x|p
dV ≤ C

∫
B

|∂̄2k|pdV . (4.116)

82



Assuming for the moment that this claim is true, let zi = xi/|x|2. Let φ = |x|2−n

near P and extend φ as a positive smooth function on the remainder of M . Let

g = φ
N−2

g. Near P , φ
N−2

= |x|−4 and so g = e+ k near infinity, where

kij := kij −
4

|z|2
zaka(izj) +

4

|z|4
zazbkabzizj = O(k). (4.117)

Since k ∈ W 2,p
loc , we need only establish the desired asymptotics at infinity.

A computation similar to the one leading to equation (4.111) shows

∂k = O(∂̄k)O(|x|2) +O(k)O(|x|)

∂2k = O(∂̄2k)O(|x|4) +O(∂̄k)O(|x|3) +O(k)O(|x|2).
(4.118)

Also, dV = |z|−2ndV near P . Hence

∫
|∂2k|p|z|4p−2ndV =

∫
|∂2k|p|x|−4p|x|2ndV (4.119)

=

∫ (
O(∂̄2k)

)p
+
(
O(∂̄k)O(|x|−1)

)p
+
(
O(k)O(|x|−2)

)p
dV .

(4.120)

From inequalities (4.115) and (4.116), quantity (4.120) is finite. Noting

4p− 2n = −n− αp+ 2p (4.121)

we conclude |∂2k| ∈ Lpα−2, as desired. A similar calculation shows that |∂k| ∈ Lpα−1

and |k| ∈ Lpα. This concludes the proof, up to establishing inequalities (4.115) and

(4.116).
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Theorem 1.3 of [Bar86] implies that

∫
B

|f |p

|x|2p
dV ≤ c

∫
B

|∂̄f |p

|x|p
dV ≤ C

∫
B

|∂̄2f |pdV <∞ (4.122)

for smooth functions f that are compactly supported in B and vanish in a

neighborhood of P . This inequality relies on the fact that p 6= n, which corresponds

to the condition δ = 0 in [Bar86] Theorem 1.3.

Let fn be a sequence of smooth functions vanishing near P that converges to

k in W 2,p; such a sequence exists since k = 0 at P , since ∂k = 0 at P if p > n, and

since we have assumed that k vanishes outside of B. By reduction to a subsequence

we may assume that the values and first derivatives of sequence converge pointwise

a.e., and using Fatou’s Lemma we find

∫
B

|k|p

|x|2p
≤ lim inf

n→∞

∫
B

|fn|p

|x|2p

≤ C lim
n→∞

∫
B

|∂̄2fn|pdV

= C

∫
B

|∂̄2k|pdV <∞.

(4.123)

This is inequality (4.115), and a similar argument shows that inequality (4.116)

holds as well.

The threshold α = −2 in Lemma 4.4.2 arises because there is a connection

between the rate of decay of the AE metric and the rate of convergence of

the metric at the point of compactification in a chosen coordinate system:

roughly speaking, decay of order ρα corresponds to convergence at a rate of

r−α. For a generic smooth metric we can use normal coordinates to obtain

convergence at a rate of r2, but we cannot expect to do better generally. Hence
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the decompactification of a smooth metric typically does not decay faster than ρ−2.

Looking at the proof of Lemma 4.4.2, we note that it can be readily extended to

s > 2 to show that a W s,p
α AE metric with s ≥ 2, p > n/s and α = (n/p) − s

can be compactified to a W s,p metric. But the decay condition α = (n/p) − s is

quite restrictive for s > 2: smooth metrics decompactify generally to metrics with

decay O(ρ−2), but compactification of a W s,p
−2 metric would not be known to be C3,

regardless of how high s and p are. A more refined analysis for s > 2 would need to

take into account asymptotics of the Weyl or Cotton-York tensor, and we point to

Herzlich [Her97] for related results in the Cs setting.

Proposition 4.4.3. Let (M, g) and (M, g) be a pair of manifolds as in Lemma

4.4.2, related by g = φ
N−2

g. Then yg(M) = yg(M).

Proof. For simplicity we assume that M has one end. Let P ∈ M be the singular

point of φ. Note that W 1,2
c (M) is dense in W 1,2

δ∗ (M) and that

SP := W 1,2(M) ∩ {u : u|Br(P ) = 0 for some r > 0} (4.124)

is dense in W 1,2(M) since 2 < n. From upper semicontinuity of the Yamabe

quotient, the Yamabe invariants of g and g can be computed by minimizing the

Yamabe quotient over W 1,2
c and SP respectively. Note that u 7→ φu is a bijection

between W 1,2
c (M) and Sp. The proof of Lemma 4.2.7 shows that for u ∈ W 1,2

c ,

Qy
g(u) = Qy

g(φu) (4.125)

and hence yg(M) = yg(M).
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Combining Lemma 4.4.2 and Proposition 4.4.3 we obtain our second

classification.

Proposition 4.4.4. Let (M, g) be a W 2,p
α AE manifold with α ≤ n

p
−2. Then (M, g)

is Yamabe positive/negative/null if and only if some conformal compactification, as

described in Lemma 4.4.2, has the same Yamabe type.

Consequently, Yamabe classification on AE manifolds has the same

topological flavor as in the compact setting. For instance, since the torus does not

allow a Yamabe positive metric, the decompactified torus, which is diffeomorphic to

Rn with a handle, does not allow a metric with nonnegative scalar curvature.

We mention an application of Proposition 4.4.4 to general relativity. Recall

the Einstein constraint equations, (1.2), which initial data (M, g,K, Tnn, Tni) in

general relativity must satisfy. It is natural to suppose that the energy density

Tnn is everywhere nonnegative, which is known as the weak energy condition. If

the initial data is maximal, i.e., if the mean curvature trK is zero, then the weak

energy condition implies R ≥ 0. Thus, if the compactification of an AE manifold

has a topology that does not admit a Yamabe positive metric, then the original AE

manifold does not allow maximal initial data satisfying the weak energy condition.

We mention that the results in [IMP02] show that every AE manifold does admit

some solution of the constraints.
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CHAPTER V

SOLUTIONS OF THE CONFORMAL CONSTRAINT EQUATIONS

In this chapter, we find solutions of the conformal constraint equations (1.3)

following the setup introduced in [HNT09] and [Max09]. This method, based on a

fixed point theorem, is the first to allow solutions with arbitrary mean curvatures.

In Sections 5.1 and 5.2, we prove the appropriate analogues on asymptotically

Euclidean manifolds. This is mostly work with Isenberg, Mazzeo, and Meier from

[DIMM14].

Nguyen [Ngu14] later showed via a scaling argument that these solutions

with arbitrary mean curvatures could alternatively be interpreted as rescalings of

perturbations of CMC results. We discuss this argument. Also, Nguyen presented a

new method for finding solutions to the conformal constraint equations, using half-

continuity and a fixed point theorem. In Section 5.3, we present a simpler proof of

his result, and marginally strengthen it.

5.1. The Fixed Point Approach

A standard method of solving differential (and other) equations is the fixed

point method. In this method, one first finds a functional whose fixed points

are solutions of the desired equation. One then uses a priori estimates and other

properties of the functional to fulfill the conditions of one of the many fixed point

theorems, such as the Schauder fixed point theorem. These theorems guarantee

fixed points of functionals under very general circumstances. A good introduction

to these techniques is found in [Bro04].
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One of the first and most important fixed point theorems is the Brouwer fixed

point theorem. In its basic form, it says that any continuous function from a ball

in Rn to the same ball has a fixed point. Many other fixed point theorems, such as

the ones we use in this chapter, the Schauder fixed point theorem and the Leray-

Schauder alternative, are based on the Brouwer fixed point theorem. We now state

the Schauder fixed point theorem.

Theorem 5.1.1 (Schauder Fixed Point Theorem). Let S be a closed convex subset

of a normed linear space X and let F : S → S be a compact map. Then F has a

fixed point.

We introduce the map F that we use in this chapter. In essence, the map F

is an iteration map, taking a function φ, solving the vector equation for some W

using that φ, and then solving the Lichnerowicz equation using that W . In this

way, we iterate the coupling, which allows us to find solutions at each step. This

is similar to the proof of the sub and supersolution theorem 2.1.7, where we set

up an iteration scheme, using the solution of the previous step in order to fix the

nonlinearity of the equation −a∆u = f(x, u).

To be more precise, for any positive function v ∈ L∞, let W (v) be the

solution in W 2,p
δ of the vector equation (1.3b) with v replacing φ. Let G(W ) to

be the solution of the Lichnerowicz equation using W such that G(W ) − ů ∈

W 2,p
δ , where ů is the desired asymptotic function. Let E : W 2,p

δ → L∞ be

the compact Sobolev embedding map give by Proposition 2.0.1. We then define

F (v) := (E ◦ G ◦W )(v). Clearly, if F (φ) = φ, then (φ,W (φ)) is a solution to the

conformal constraint equations (1.3).

In order for F to be well defined, there are two requirements. First, for the

vector equation to have a solution, we must require that g has no conformal Killing
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fields. Recall that if p > n and g is a W 2,p
δ or C2,α

δ AE manifold, then this is known

to be true (cf. Theorem 2.1.4). Next, for the Lichnerowicz equation to have a

solution, we must assume that the seed data is admissible (cf. Definition 3.0.10);

i.e., that there is a conformal factor ψ that transforms the metric to one with scalar

curvature −κτ 2.

In order to define the domain set S, recall the definition of global sub and

supersolutions.

Definition 5.1.2. Functions φ± are “global sub and supersolutions” of the

Lichnerowicz equation (1.3a) if for any φ ≤ φ+, φ+ is a supersolution and φ− is

a subsolution of the Lichnerowicz equation with W = W (φ).

Suppose we could find global sub and supersolutions φ± with properties as in

the sub and supersolution theorem 2.1.7. Then S = {φ ∈ L∞ : φ− ≤ φ ≤ φ+} is

clearly closed and convex, and by the sub and supersolution theorem, F : S → S.

In order to show that F is compact, first recall that the composition of

compact maps and continuous maps is compact. The solution map W is continuous

by the continuity of φq and of
(
div 1

2N
L
)−1

. The map E is compact. Thus we only

need to show that G is continuous. We show that it is in fact C1 in the following

lemma.

Lemma 5.1.3. Given appropriately regular and admissible data, the solution map

G : W 2,p
δ → W 2,p

δ is continuously Gâteaux differentiable. A similar statement holds

for C2,α
δ data.

Proof. This lemma follows from the implicit function theorem. The proof we give

here is essentially the same as is used in proving [Max09, Prop 13], which is the

equivalent result for compact manifolds. Since the proof is identical for C2,α
δ data,
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we only prove the first case. For brevity, we equivalently prove that the solution

map G is continuous on the quantity β = σ + 1
2N
LW .

Let β0 ∈ W 1,p
δ−1 and set ψ0 = G(β0). We then define G̃(β) := ψ−10 G(ψ2

0β).

Thus, for g̃ = ψq−20 g and r̃ = ψ
− 3

2
q+1

0 , conformal covariance 1.1.1 implies that

φ = G̃(β) is the solution of

−a∆g̃φ+Rg̃φ+ κτ 2φq−1 − |β|2g̃φ−q−1 − r̃φ−
q
2 = 0 (5.1)

such that φ− 1 ∈ W 2,p
δ .

Thus to show that G is continuous in a neighborhood of β0, we only need to

show that G̃ is continuous near ψ−20 β0. We remark that G̃(ψ−20 β0) ≡ 1.

We define the map Φ : W 2,p
δ ×W

1,p
δ−1 → Lpδ−2 by

Φ(φ, β) = −a∆g̃φ+Rg̃φ+ κτ 2φq−1 − |β|2g̃φ−q−1 − r̃φ−
q
2 . (5.2)

Note that Φ(G̃(β), β) = 0. The Gâteaux derivative of Φ is given by

DΦφ,β(h, k) = −a∆g̃h+Rg̃h+ κ(q − 1)τ 2φq−2h

+ (q + 1)|β|2φ−q−2h− 2φ−q−1〈β, k〉+
q

2
rφ−

q
2
−1h. (5.3)

Thus

DΦ1,β0(h, 0) = −a∆g̃h+Rg̃h+ κ(q − 1)τ 2h− (q + 1)|β|2h− q

2
rh. (5.4)
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However, since G(ψ−20 β0) ≡ 1, we have that

Rg̃ = −κτ 2 + |β0|2 + r, (5.5)

and so

DΦ1,β0(h, 0) = −a∆g̃h+

[
κ(q − 2)τ 2 + (q + 2)|β|2 +

q + 2

2
r

]
h. (5.6)

Since the coefficient of h is positive and is contained in Lpδ−2 by assumption,

we see from Proposition 2.1.4 that DΦ1,β0 : W 2,p
δ → Lpδ−2 is an isomorphism.

The implicit function theorem on Banach spaces then implies that G is C1 in a

neighborhood of β0.

On compact manifolds, Maxwell [Max09] showed that, in fact, no global

subsolution is needed to construct a solution of the conformal constraint equations.

For Yamabe nonnegative metrics, he proves this using a Green’s function argument

to find a uniform lower bound on solutions. In the Yamabe negative case, he uses

a conformal factor transforming the metric to one with scalar curvature −κτ 2 as

a global subsolution. In the asymptotically Euclidean case, this conformal factor

argument works for all Yamabe classes, which makes the argument simpler. We

obtain the following existence theorem.

Theorem 5.1.4. Assume that the admissible seed data (g, τ,N, σ, r, J) has the

regularity specified in (3.1). Assume that r ≥ 0 and that g admits no conformal

Killing fields. Suppose there exists a positive global supersolution φ+, satisfying the

hypotheses of the sub and supersolution theorem 2.1.7. Then for any asymptotic

function ů with asymptotics less than that of φ+, there exist (φ,W ) solving the
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conformal constraint equations (1.3) such that φ is positive and φ − ů and W are

in W 2,p
δ .

A similar statement holds for C2,α
δ data.

Proof. We first find a global subsolution. Since the data is admissible, let ψ be

the positive conformal factor transforming the metric to one with scalar curvature

−κτ 2. Let φ− = αψ. As in the proof of Theorem 3.0.9, φ− is a subsolution of the

Lichnerowicz equation (1.3a) for any α ≤ 1, regardless of what W is. Thus φ− is

a global subsolution. We then choose α small enough such that φ− ≤ φ+ and such

that the asymptotics of ů are greater than those of φ−.

The sub and supersolution theorem 2.1.7 and the uniqueness theorem 3.0.11

now guarantee that the solution map G is well defined. Since φ± are global sub and

supersolutions, F maps S := {φ ∈ L∞ : φ− ≤ φ ≤ φ+} into itself. As discussed

above, F is also a compact map. Thus the Schauder fixed point theorem 5.1.1

shows there is a fixed point φ of F . Thus (φ,W (φ)) is a solution to the conformal

constraint equations.

Theorem 5.1.4 shows that, for any fixed choice of the seed data

(g, τ,N, σ, r, J) and supersolution φ+ satisfying the hypotheses of the theorem,

there is at least a k-dimensional family of solutions (where k is the number of

ends), parameterized by the product of the intervals (0, φ+,i], where φ+ → φ+,i on

the end Ei. This nonuniqueness leads one to enquire about the full extent of these

families of solutions: for what asymptotic functions ů are there solutions of the

conformal constraint equations? Unfortunately, neither the necessary analysis of the

linearizations of the operators in (1.3), nor the a priori estimates for the solutions,

is clear at this time, so we do not yet have more definitive results on the full family

of solutions.

92



5.2. Global Supersolutions

We have reduced the problem finding solutions of the conformal constraint

equations (1.3) to that of finding an appropriate global supersolution. We now

present two lemmas which prove useful in finding such supersolutions.

Lemma 5.2.1. Assume that g is a W 2,p
δ AE metric with vanishing scalar curvature.

There is a unique solution w to −a∆w = ργ−2 with w = cγ ρ
γ + ŵ, cγ = (γ2 + (n −

2)γ)−1, and ŵ ∈ W 2,p
γ′ where γ′ = 2γ if this number is greater than 2 − n (or else

γ′ ∈ (2− n, γ)).

Similarly, if g is a C2,α
δ AE metric then this unique solution w decomposes as

cγρ
γ + ŵ, with ŵ ∈ C2,α

γ′ .

Proof. Write w = cγ ρ
γ + ŵ and let g be a W 2,p metric which agrees with g away

from the ends but is exactly Euclidean on each Ej. Then we must solve

(−a∆ + R)ŵ =
(
ργ−2 − cγ(−a∆g +Rg)ρ

γ
)
− cγ ((−a∆ +R)− (−a∆g +Rg)) ρ

γ.

(5.7)

The first term on the right is Lp with compact support, while the second term lies

in Lp2γ−2, so the entire right hand side lies in Lp2γ−2 ⊂ Lpγ′−2. The result follows from

Theorem 2.1.4.

The proof in the Hölder setting is the same.

The second lemma is a slight weakening of the elliptic estimate (2.8), which is

adequate for our purposes.
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Lemma 5.2.2. If (M, g) is AE and has no conformal Killing fields, and if f ∈ Lpδ−2

with p > n, then the unique solution W ∈ W 2,p
δ to div 1

2N
LW = f satisfies

‖LW‖∞ ≤ C1ρ
δ−1‖f‖p,δ−2. (5.8)

Proof. Combining (2.8) and Sobolev embedding 2.0.1, we get

ρ1−δ|LW | ≤ ‖LW‖C0
δ−1
≤ C ′1‖LW‖W 1,p

δ−1
≤ C ′1‖W‖W 2,p

δ
≤ C1‖f‖p,δ−2, (5.9)

which implies (5.8).

In the first main result of this section we construct global supersolutions,

allowing the mean curvature to be arbitrary but requiring that the other data

(except the metric) be quite small.

Theorem 5.2.3 (Far-from-CMC Global Supersolution). Suppose that (M, g) is a

W 2,p
γ Yamabe positive AE manifold, with p > n and γ ∈ (2− n, 0), and set δ = γ/2.

Fix τ ∈ W 1,p
δ−1 and N ∈ W 2,p

δ . Suppose σ ∈ L∞δ−1, nonnegative r ∈ L∞2δ−2 and

J ∈ Lpδ−2 are sufficiently small (depending on τ , g and n). Then, for any ů, there

exists a global supersolution φ+ > 0 with φ+ − ηů ∈ W 2,p
γ′ for some constant η > 0

and any γ′ > γ.

Similarly, if (M, g) is a C2,α
γ Yamabe positive AE manifold, and if the

corresponding Hölder norms of σ, J and ρ are sufficiently small, then there exists a

global supersolution φ+ with φ+ − ηů ∈ C2,α
γ for some η > 0.

The main ideas used in this proof are similar to those used in the compact

case, but there are new issues arising in the construction of the supersolution on
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each end. Because the proofs in the Sobolev and Hölder settings are identical, we

present only the former.

Proof. Since g is Yamabe positive, by conformal covariance 1.1.1, we may assume

without loss of generality that R ≡ 0. By Lemma 5.2.1, there exists a (unique)

Ψ = ů+ cγρ
γ + Ψ̂, with Ψ̂ ∈ W 2,p

2γ , such that

−a∆Ψ = ργ−2, (5.10)

or equivalently

−a∆(Ψ− ů) = ργ−2. (5.11)

Note that, by the maximum principles 2.1.2 and 2.1.3, Ψ > 0.

Now set φ+ = ηΨ, where the constant η > 0 is to be chosen below. We claim

that, for appropriate η, φ+ is a global supersolution. To verify this, we first note

that from (5.8), with f = κφqdτ + J , we have

‖LW‖∞ ≤ Cρδ−1 (‖dτ‖p,δ−2‖φ‖q∞ + ‖J‖p,δ−2) , (5.12)

and hence

∣∣∣∣σ +
1

2N
LW

∣∣∣∣2 ≤ Cρ2δ−2(‖dτ‖2p,δ−2‖φ‖2q∞ + ‖σ‖2∞,δ−1 + ‖J‖2p,δ−2). (5.13)
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Since Ψ decays at the precise rate ργ (and is strictly positive), then deleting

subscripts denoting the norms for simplicity, we calculate

− a∆φ+ + κτ 2φq−1+ −
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 φ−q−1+ − rφ−q/2+ ≥

η ργ−2 − ρ2δ−2
(
C1η

q−1 + C2η
−q−1(‖σ‖2 + ‖J‖2) + C3η

−q/2‖r‖
)
. (5.14)

The constants C1, C2 and C3 depend only on ρ, N , and the dimension n. Since

2δ − 2 = γ − 2 < 0 and q − 1 > 1, we first choose η sufficiently small so that

1

2
η ργ−2 − C1η

q−1ρ2δ−2 > 0, (5.15)

and then choose ‖σ‖, ‖J‖ and ‖ρ‖ sufficiently small (depending on C1, F , n and η),

so that

1

2
η ργ−2 − ρ2δ−2

(
C2η

−q−1(‖σ‖2 + ‖J‖2) + C3η
−q/2‖ρ‖

)
> 0 (5.16)

as well. This proves that φ+ is a global supersolution.

The second main result is the existence of a global supersolution for near-

CMC data, i.e., where dτ is sufficiently small as compared to τ .

Theorem 5.2.4 (Near-CMC Global Supersolution). Suppose that (M, g) is a C2,α
γ ,

Yamabe positive AE manifold, where γ ∈ (2 − n, 0), and set δ = γ/2. Fix data

τ ∈ C1,α
δ−1, N ∈ C2,α

δ , σ ∈ C0,α
δ−1, nonnegative r ∈ C0,α

δ−2 and J ∈ C0,α
δ−2. Then, there

exists a constant B > 0, depending on the seed data, but not on τ , such that if τ

satisfies τ 2 − B‖dτ‖2
C0,α
δ−2

ρ2δ−2 ≥ 0, then there exists a global supersolution φ+ > 0

with φ+ − η ∈ W 2,p
γ for any constant η > 0 sufficiently large.
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Remark 5.2.5. The hypothesis τ 2 − B‖dτ‖2
C0,α
δ−2

ρ2δ−2 ≥ 0 is precisely where the use

of Hölder rather than Sobolev data is important for asymptotically Euclidean data.

Indeed, if τ satisfies this inequality, then in particular, τ ≥ Cρδ−1, so the norm of τ

in Lpδ−1 is necessarily infinite.

The condition τ 2 − B‖dτ‖2
C0,α
δ−2

ρ2δ−2 ≥ 0, which in particular imposes a lower

bound on the decay of τ and requires that τ never vanishes, may not be fulfilled by

any functions τ . Indeed, as we show in Chapter VI, similar near-CMC conditions

are not always fulfilled.

Proof. Since τ never vanishes, the data is admissible (cf. Definition 3.0.10), and

so by conformal covariance 1.1.1, we may assume without loss of generality that

R = −κτ 2. By Theorem 2.1.4, there exists a solution u to

−a∆u = r + |σ|2 (5.17)

with u− 1 ∈ C2,α
δ . Indeed, this is equivalent to

−a∆(u− 1) = r + |σ|2 ≥ 0, (5.18)

and so the maximum principle 2.1.2 shows that u ≥ 1. By the estimate (2.10),

supu is bounded and depends only on r, |σ| and g.
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Now set φ+ = ηu, where η is chosen below, and using estimate (5.12) and the

inequality φ ≤ φ+, we have

|LW |2 ≤ C2ρ2δ−2((supφ)q‖dτ‖C0,α
δ−2

+ ‖J‖C0,α
δ−2

)2

≤ 2C2ρ2δ−2((sup ηu)2q‖dτ‖2
C0,α
δ−2

+ ‖J‖2
C0,α
δ−2

)

≤ 2C2ρ2δ−2
(

(supu)2q‖dτ‖2
C0,α
δ−2

(ηu)2q + ‖J‖2
C0,α
δ−2

)
; (5.19)

the constant C is the same one appearing in (5.12).

Dropping the subscripts on the norms, and using the fact that τ 2 ≥ Cρ2δ−2

for some C > 0, we calculate

− a∆φ+ − κτ 2φ+ + κτ 2φq−1+ −
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 φ−q−1+ − rφ−q/2+

≥ κτ 2
[
(ηu)q−1 − ηu

]
+ r

[
η − (ηu)−q/2

]
−
∣∣∣∣σ +

1

2N
LW

∣∣∣∣2 φ−q−1+ + |σ|η

≥ 1

2
κτ 2

[
(ηu)q−1 − ηu− C‖J‖‖τ‖−2(ηu)−q−1

]
+(ηu)q−1

[
1

2
κτ 2 − Cρ2δ−2(supu)2q‖dτ‖2

]
≥ 0, (5.20)

for all η large enough, as long as

Cρ2δ−2(supu)2q‖dτ‖2 ≤ τ 2, (5.21)

which has been assumed. This shows that φ+ is a global supersolution.

We now present a scaling argument of Nguyen [Ngu14], which shows that the

far-from-CMC result 5.2.3 is simply a rescaling of a near-CMC result.
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Proposition 5.2.6. (φ,W ) is a solution of the conformal constraint equation (1.3)

for the seed data (g, τ,N, σ, r, J) if and only if (C−1φ,C−q/2−1W ) is a solution of

the conformal constraint equations for the data (g, Cq/2−1τ,N,C−q/2−1σ,C−q/2−1r, C−q/2−1J).

Proof. Plugging the scaled data and solutions into conformal constraint equations

gives this immediately.

Corollary 5.2.7. Given a far-from-CMC solution to the conformal constraint

equations, as given by Theorem 5.2.3, there is a solution of the conformal constraint

equations equivalent to it, in the sense of Proposition 5.2.6, which is a perturbation

of the CMC case, τ ≡ 0.

It is well known (see [CBIY00]) that perturbations of the CMC case always

lead to solutions of the conformal constraint equations. This means that the far-

from-CMC result is simply the rescaling of a previously known near-CMC result.

This means, unfortunately, that virtually nothing is known about the far-from-

CMC case in the general sense, i.e., with σ, r and J arbitrary. We do note that

most existing near-CMC results require that dτ be sufficiently small as compared

to inf τ 2, or similar, while the near-CMC condition for the perturbation of τ ≡ 0 is

that the W 1,p
δ−1 norm is sufficiently small. In particular, τ can have zeroes.

It is also interesting to consider the range of allowed asymptotic functions.

The far-from-CMC result allows only very small asymptotic functions, while this

rescaled near-CMC result allows arbitrarily large asymptotic functions, as long

as τ is sufficiently small. Since all asymptotic functions are allowed if the seed

data (τ, σ, r, J) vanishes (since we are then just solving ∆φ = 0), this leads one

to wonder whether large asymptotic functions are only ever attainable if τ is small.
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5.3. Local Supersolutions

The search for global supersolutions for more general cases than those

considered in the previous section has been very difficult, partly since any such

construction seems to require an estimate on LW like (5.12), which in turn seems

to allow only either τ to be small or the rest of the data to be small. However,

requiring a global supersolution in order for solutions of the conformal constraints

to exist is likely stricter than necessary. In order to give new tools for finding

solutions to the conformal constraint equations, Nguyen introduced the idea of

“local supersolutions.”

Definition 5.3.1. A function φ+ ∈ L∞ is a “local supersolution” of the conformal

constraint equations if for every positive function φ ≤ φ+ with φ = φ+ somewhere,

there exists p ∈ M such that F (φ)(p) ≤ φ(p). (For the definition of F , see Section

5.1.)

Local supersolutions are more general than global supersolutions.

Proposition 5.3.2. A global supersolution is a local supersolution.

Proof. Let φ+ be a global supersolution, and suppose φ is a positive function such

that φ ≤ φ+ and φ(p) = φ+(p) at p ∈ M . Then, by the definition of global

supersolution, F (φ)(p) ≤ φ+(p) = φ(p), and thus φ+ is a local supersolution.

Nguyen originally used the idea of half-continuity along with a fixed point

theorem allowing for half-continuous maps to show that the existence of a local

supersolution leads to a solution of the conformal constraint equations. The

following result is Theorem 4.12 in [Ngu14].
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Theorem 5.3.3. Suppose the seed data (g, σ, 1/2, τ, 0, 0), M compact, p > n,

are such that the zero set of τ has zero measure and g allows no conformal Killing

fields. If g is Yamabe nonnegative, assume σ 6≡ 0. If g is Yamabe negative, assume

there is a conformal factor changing the metric to one with scalar curvature −κτ 2.

Let F : L∞ → L∞ be the iteration map for the constraint equations, as described in

Section 5.1. If there exists a local supersolution ψ, then there exists a fixed point φ

for F with φ ≤ ψ. In particular, the conformal constraint equations have a solution.

The seeming advantage of this result over using a global supersolution is that

one needs only to check that the solution is smaller at a single point, rather than

on the entire manifold. We present a simpler proof of a slightly stronger result. The

new proof is based on the Leray-Schauder alternative.

Theorem 5.3.4 (Leray-Schauder Alternative). Let F : X → X be a compact,

continuous map of a normed linear space. Let Ω be a bounded star-shaped open

subset of X containing 0, and suppose that x ∈ ∂Ω implies that F (x) 6= λx for any

λ > 1. Then F has a fixed point on Ω.

Theorem 5.3.5. Let (g, τ,N, σ, r, J) be seed data. Suppose g has no conformal

Killing fields. If M is AE, suppose the data is admissible. If M compact and g is

Yamabe nonnegative, assume σ 6≡ 0. If M is compact and g is Yamabe negative,

assume there is a conformal factor changing the metric to one with scalar curvature

−κτ 2. Suppose there exists ψ ∈ L∞ such that for any 0 < φ ≤ ψ, with inf |φ− ψ| =

0, that F (φ) 6= λφ for all λ > 1. Then there exists a fixed point φ for F with φ ≤ ψ.

In particular, the conformal constraint equations have a solution.

Proof. Define F ′(φ) = F (|φ|). The map F : L∞ → L∞ is a compact continuous map

by the proof of Theorem 5.1.4, and so F ′ is as well. Thus we only need to find an

appropriate set Ω, as in Theorem 5.3.4.
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Let Ω = {φ ∈ L∞ : −ψ < φ < ψ}. Clearly Ω is bounded, open, star-

shaped, and contains zero. Suppose there were some φ ∈ ∂Ω and λ > 1 such that

F ′(φ) = λφ. In particular, this means that inf |φ − ψ| = 0. Since F ′ outputs only

positive solutions, φ > 0. By assumption, there are no such φ. Thus Ω fulfills the

conditions of Theorem 5.3.4, and so F ′ has a fixed point φ with φ > 0. Since φ > 0,

F ′(φ) = F (φ), and so F has a fixed point as well.

Note that for M compact, inf |φ − ψ| = 0 means φ = ψ somewhere. For AE

manifolds, though, φ may not equal ψ anywhere.

Other than applying to AE manifolds, Theorem 5.3.5 has a few advantages

over Theorem 5.3.3. The main advantage is that one only needs to show that

F (φ) 6= λφ instead of showing that F (φ)(p) ≤ φ(p) for appropriate φ, a slightly

more general condition. This allows one to assume that the solution for the

Lichnerowicz equation is a multiple of the function one began with, rather than

an arbitrary solution. Unfortunately, no local supersolution that is not also a global

supersolution has yet been found.
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CHAPTER VI

THE LIMIT EQUATION CRITERION

Another method of finding solutions to the conformal constraint equations

(1.3) is the limit equation criterion, originally introduced in [DGH12]. This result

says that if a particular equation, called the limit equation, has no solutions, then

the conformal constraint equations have a solution. To be precise, the main result

of [DGH12] says the following:

Theorem 6.0.6. Suppose the seed data (g, σ, 1/2, τ, 0, 0), M compact, p > n,

are such that τ > 0 and g allows no conformal Killing fields. If g is Yamabe

nonnegative, assume σ 6≡ 0. If g is Yamabe negative, assume there is a conformal

factor changing the metric to one with scalar curvature −κτ 2. Then at least one of

he following holds:

– The conformal constraint equations (1.3) admit a solution (φ,W ) with φ > 0.

Furthermore, the set of solutions (φ,W ) ∈ W 2,p ×W 2,p is compact.

– There exists a nontrivial solution W ∈ W 2,p of the limit equation

divLW = α0

√
1/κ|LW |dτ

τ
(6.1)

for some α0 ∈ (0, 1].

The name “limit equation” comes from the original method of proof. In

[DGH12], they first show that a “subcritical” version of the conformal constraint

equations always have a solution. They make the equations subcritical by changing

the exponent of φ in the vector equation (1.3b) from q to q − ε. This allows global
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supersolutions to be easily found. Dahl, Gicquaud, and Humbert then show that if

a sequence of these solutions with ε → 0 are bounded, then they must converge to

a solution of the original equation. If they are unbounded, then they must converge

to a solution of the limit equation (6.1). Since then, another, simpler method has

been found for setting up the sequence (cf. [Ngu14]), though the argument for

convergence is essentially the same.

The two conclusions of Theorem 6.0.6 are not a dichotomy. Nguyen in

[Ngu14] showed that there is seed data on the sphere that allows solutions to both

the conformal constraint equations and the limit equation. Thus, unfortunately,

the use of the limit equation is limited to the case mentioned earlier. If one can

show, for particular seed data, that the limit equation has no solutions, then the

conformal constraint equations must have a solution.

Though the limit equation criterion itself is not limited to this case, the

criterion has only been successfully applied for near-CMC seed data. In particular,

in [DGH12], they find that the limit equation (6.1) has no nontrivial solutions if

either the C0 or Ln norm of dτ/τ is sufficiently small. The reason it is difficult to

prove stronger results is that the usual method of proving nonexistence is to find

an estimate for the right hand side of (6.1) that provides a contradiction. In order

to do this, seemingly the only tool that one has is to make dτ/τ small, since LW

appears on both sides of the limit equation.

In this chapter, we prove most of the limit equation criterion in the AE

setting, except for the vital condition that the solution W of the limit equation

must be nontrivial. The proof breaks down only at this point. It can be repaired if

the data is near-CMC. Since the compact case has only been applied to near-CMC

data, this seems like a reasonable assumption. However, since we must also require
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that τ → 0 at infinity and that τ > 0, arbitrarily near-CMC data does not exist,

and thus the near-CMC condition is very difficult to check. This chapter is based

on an unpublished collaboration with Jim Isenberg and Romain Gicquaud.

6.1. Setup on Asymptotically Euclidean Manifolds

The main difficulty in translating the limit equation criterion to

asymptotically Euclidean manifolds is the fall off rate of τ . In the original proof,

the assumption that τ > ε > 0 is vital; this is most easily seen by noticing that

we divide by τ in the limit equation (6.1). However, for the seed data to lead to

asymptotically Euclidean initial data, τ must converge to zero. These competing

conditions lead to most of the additional difficulty in the AE case.

The proof is simpler when using Hölder norms for essentially the same reasons

as discussed in Remark 5.2.5. Put together, our assumptions are as follows.

Assumption 6.1.1 (Seed Data Assumption). The seed data (g, τ,N, σ, r, J) satisfy

the conditions

– (M, g) is a C2,α
δ AE manifold, with δ ∈ (2 − n, 0), allowing no conformal

Killing fields.

– τ ∈ C1,α
δ−1, and |τ | ≥ Cρδ−1 > 0. Without loss of generality, assume that τ > 0.

– N − 1 ∈ C2,α
δ .

– σ ∈ C0,α
δ−1. Thus |σ| ≤ Cτ .

– 0 ≤ r, and r ∈ C0,α
δ−2. Thus r ≤ Cτ .

– J ∈ C0,α
δ−2.
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We can now state the main result of this chapter.

Theorem 6.1.2. Suppose the seed data satisfies Assumption 6.1.1. Then at least

one of the following holds:

– For any asymptotic function ů, the conformal constraint equations (1.3) admit

a solution (φ,W ) with φ > 0 and φ− ů and W in C2,α
δ .

– There exists a (perhaps trivial) solution W ∈ W 2,p
δ of the limit equation

div
1

2N
LW = α0

√
1/κ|LW | dτ

2Nτ
(6.2)

for some α0 ∈ [0, 1]. Furthermore, |W | ≤ Cρδ and |LW | ≤ Cρδ−1 for some C

dependent only on g and ‖dτ‖C0
δ−2

. If

κτ 2 − 1

4N2
|LW0|2 ≥ cτ 2 (6.3)

for some c > 0 and for all solutions W0 of the vector equation (1.3b) with

J ≡ 0 and φ ≤ 1, then the solution W of the limit equation is nontrivial, and

α0 6= 0.

The near-CMC condition (6.3) is phrased oddly because it is easier to work

with later. Similar to estimate (5.8),

‖LW0‖C0
δ−1
≤ C‖φq|dτ |+ J‖C0

δ−2

≤ C‖dτ‖C0
δ−2
. (6.4)
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Note that the constant C only depends on g. Thus a sufficient condition for (6.3)

to hold is that there exists a C > 0 depending only on g and N , such that τ 2 −

C‖dτ‖2
C0
δ−2
ρ2δ−2 ≥ cτ 2. This is more clearly a near-CMC condition.

The simpler proof of the limit equation criterion presented in [Ngu14] is based

on the Schaefer fixed point theorem.

Theorem 6.1.3 (Schaefer Fixed Point Theorem). Assume that F : X → X is a

compact map on a Banach space, and assume that the set

K = {x ∈ X : ∃t ∈ [0, 1] such that x = tF (x)} (6.5)

is bounded. Then F has a fixed point.

Let F be the iteration map, as in Chapter V, giving a solution of the

Lichnerowicz equation with asymptotic function ů. Recall that F is a compact map

on L∞. We use the Schaefer fixed point theorem by setting

K := {φ ∈ L∞ : ∃t ∈ [0, 1] such that φ = tF (φ)}. (6.6)

Note that the definition of K does not directly mention the asymptotic function of

φ. However, since φ = tF (φ), we know that φ− t̊u ∈ W 2,p
δ , for some t ∈ (0, 1].

6.2. Convergence of Solutions

In this section, we show that if K is unbounded, then the limit equation has a

solution. By conformal covariance, and since τ 2 > 0, it follows from the prescribed

scalar curvature theorem 4.3.1 that we can assume without loss of generality that

R = −κτ 2. The definition of K shows that K being unbounded is equivalent to the
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existence of an unbounded sequence (φi, ti) with ti ∈ (0, 1] solving

−a∆φi − κτ 2φi + κτ 2φq−1i −
∣∣∣∣σ +

1

2N
LWi

∣∣∣∣2 φ−q−1i − rφ−q/2i = 0 (6.7a)

div
1

2N
LW = κ(tiφi)

qdτ + J. (6.7b)

Lemma 6.2.1. Suppose such a sequence (φi, ti) exists. Then there exists a (perhaps

trivial) solution W ∈ W 2,p
δ of the limit equation

div
1

2N
LW = α0

√
1/κ|LW | dτ

2Nτ
(6.8)

for some α0 ∈ [0, 1]. Furthermore, |W | ≤ Cρδ and |LW | ≤ Cρδ−1 for some C

dependent only on g and ‖dτ‖C0
δ−2

. If

κτ 2 − 1

4N2
|LW0|2 ≥ cτ 2 (6.9)

for some c > 0 and for all solutions W0 of the vector equation (1.3b) with J ≡ 0

and φ ≤ 1, then the solution W of the limit equation is nontrivial, and α0 6= 0.

Proof. We claim the sequence Wi := W (φi) (sub)converges to a solution of the limit

equation, up to rescaling. In the original proof of the limit equation criterion, the

sequence of subcritical solutions was renormalized by an energy based on |LWi| :=

|LW (tiφi)|. While this energy has some advantages which we discuss below, its use

requires proving an estimate of the form supφqi ≤ sup{1,
∫
|LW |2}. Despite some

effort, we were unable to prove an analogous estimate for AE data. The problem is

that |LWi| falls off as τ , but the convergence of a renormalized |LWi| is only in a

weaker space. It is essentially for this same reason that we are only able to prove

nontriviality of the solution of the limit equation for near-CMC data.
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Instead of an energy based on |LWi|, we bound supφi directly. By assumption

supφi → ∞. Let Γi = supφi. We start by rescaling the seed data and solutions by

certain powers of the energy. In particular, we rescale σ, r, J, φi, and Wi (we do not

rescale the metric, N , or τ) as follows

φ̃i := Γ−1i φi, W̃i := Γ−qi Wi, σ̃i := Γ−qi σ, r̃i := Γ
−3q
2

+1

i r, J̃i := Γ−qi J. (6.10)

Then, dividing the conformal constraint equations (6.7) by certain powers of the

energy, and substituting in these rescaled quantities, we obtain

1

Γq−2i

(
−a∆φ̃i − κτ 2φ̃i

)
+ κτ 2φ̃q−1i −

∣∣∣∣σ̃i +
1

2N
LW̃i

∣∣∣∣2 φ̃−q−1i − r̃iφ̃−q/2i = 0, (6.11a)

div
1

2N
LW̃i = κ(tiφ̃i)

qdτ + J̃i. (6.11b)

Proceeding, we substantially follow the original proof from [DGH12]. Similar

to the estimate (6.4),

‖Wi‖C1,β
δ
≤ C‖tqiφ

q
i |dτ |+ J‖C0

δ−2

≤ CΓqi

(
‖dτ‖C0

δ−2
+ ‖J/Γqi‖C0

δ−2

)
. (6.12)

Note that the constant C only depends on g, N , and our choice of β > α.

Consequently, W̃i is uniformly bounded in C1,β
δ and LW̃i is uniformly bounded in

C0,β
δ−1. Using the compact Sobolev embedding 2.0.2, a subsequence of W̃i converges

in C1,α
δ′ for any δ′ > δ to some W̃∞ ∈ C1,β

δ . Thus, in particular,

|W̃∞| ≤ Cρδ and |LW̃∞| ≤ Cρδ−1, (6.13)
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for C dependent only on g, N , and β. We cannot, however, be certain that W̃∞ 6≡

0.

Heuristically, as i → ∞ we would expect all the terms in the rescaled

Lichnerowicz equation (6.11a) except the τ 2 and LW̃i terms to go to zero. Thus,

we define the function φ̃∞ by

κτ 2φ̃q−1∞ :=
1

4N2
|LW̃∞|2φ̃−q−1∞ , (6.14)

which reduces to

φ̃q∞ =
|LW̃∞|
2N
√
κτ
. (6.15)

Comparing expression (6.15) with the rescaled vector constraint equation (6.11b),

we see that if φ̃i → φ̃∞ in an appropriate space, and if W̃∞ is a solution (in an

appropriate sense) to the limit of equation (6.11b) as i → ∞, then it follows that

W̃∞ is a solution to the limit equation (6.8). So long as φ̃∞ is not identically zero,

this solution is non-trivial. Therefore, we focus on verifying these limits.

For any ε > 0, we claim there is an i0 such that if i ≥ i0 that

|φ̃i − φ̃∞| < ερε. (6.16)

If (6.16) holds (for small ε), it then follows that φ̃i → φ̃∞ in C0
ε′ for any small

ε′ > 0. Recalling the definition of φ̃∞ from (6.15), we let φ̃+ be any C2 function

for which the inequality

φ̃∞ +
ε

2
ρε ≤ φ̃+ ≤ φ̃∞ + ερε. (6.17)

110



holds. We claim that φ̃+ ≥ φ̃i everywhere for i large enough. Since φ̃i ≤ 1, it

is immediately clear that this is true except on a compact set depending only on

ε. On that compact set, we claim that φ̃+ is a (pointwise) supersolution of the

rescaled Lichnerowicz equation (6.11a) for all i is large enough.

Multiplying the rescaled Lichnerowicz equation (6.11a) by φ̃q+1
+ , we need to

verify the inequality

φ̃q+1
+

Γq−2

(
−a∆φ̃+ − κτ 2φ̃+

)
+ κτ 2φ̃2q

+ ≥
∣∣∣∣σ̃ +

1

2N
LW̃i

∣∣∣∣2 + r̃φ̃q/2+1. (6.18)

Since, by definition,

φ̃2q
+ ≥

(
φ̃∞ +

ε

2
ρε
)2q
≥ φ̃2q

∞ +
( ε

2
ρε
)2q

, (6.19)

inequality (6.18) is satisfied provided that

φ̃q+1
+

Γq−2i

(
−a∆φ̃+ − κτ 2φ̃+

)
+ κτ 2

( ε
2
ρε
)2q

≥
∣∣∣∣σ̃i +

1

2N
LW̃i

∣∣∣∣2 − 1

2N
|LW̃∞|2 + r̃iφ̃

q/2+1. (6.20)

Recalling that LW̃i → LW̃∞, we readily verify that all of the terms in

equation (6.20) go to zero pointwise as i → ∞ except for the ε term. Thus for

any fixed compact set, there exists an i0 such that for all i ≥ i0, φ̃+ is a pointwise

supersolution on that compact set.

We want to use the sub and supersolution theorem to prove that φ̃+ ≥ φ̃i

for large i. Since φ̃+ is only a supersolution on a compact set, we cannot use the

sub and supersolution theorem on AE manifolds 2.1.7. However, in the complement

of the compact set { ε
2
ρε ≤ 1}, we know φ̃+ ≥ φ̃i. Thus we can use the sub and
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supersolution theorem on compact manifolds with boundary (cf. [Dil14]) to find a

solution of (6.11a) less than φ̃+ on that compact set. (For convenience, we can use

αΓ−1i for the subsolution. It is a global subsolution for any α ≤ 1, independent of

ε.) Since such solutions are unique, it must be φ̃i. Thus we obtain the pointwise

inequality

φ̃i ≤ φ̃+ ≤ φ̃∞ + ερε. (6.21)

everywhere on M .

We prove a similar (subsolution type) result for any C2 function φ̃− satisfying

φ̃∞ − ερε ≤ φ̃− ≤ φ̃∞ −
ε

2
ρε. (6.22)

Since φ̃i > 0, we only need to show that φ̃− is a subsolution of the Lichnerowicz

equation where φ̃− is positive. The proof follows similarly, using φ̃+ as our

supersolution. We thus have

φ̃i ≥ φ̃∞ − ερε (6.23)

for large enough i.

Using the two inequalities (6.21) and (6.23), we conclude that φ̃i → φ̃∞ in C0
ε′

for any ε′ > 0. This implies that φ̃qidτ → φ̃q∞dτ in Lpδ−2+ε′q. Also, a subsequence of

tqi converges to a number α0 ∈ [0, 1]. Thus W̃i → W̃∞ in W 2,p
δ+ε′q for ε′ < −δ/q. The

W̃∞ weakly satisfies the limit equation (6.8). Since the right hand side of the limit

equation is in C0,α
δ−2 (since LW̃∞ ∈ C0,β

δ−1), we can conclude by Proposition 2.1.1 that

W̃∞ ∈ C2,α
δ .

Our only remaining task is to verify that W∞ 6≡ 0 in the near-CMC case.

In this case, if α0 = 0, any solution of the limit equation is a conformal Killing

field, which implies that W∞ ≡ 0, a contradiction (cf. Proposition 2.1.4). To show
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that W∞ is not trivial, we repeat the previous argument with a few changes. This

implies that W̃∞ 6≡ 0.

Assume that LW̃∞ ≡ 0, which by definition implies that φ̃∞ ≡ 0. Let φ̃+ be

a constant less than 1. We can derive the equivalent of equation (6.20) for this φ̃+,

namely

− φ̃
q+2
+

Γq−2i

κτ 2φ̃+ + κτ 2φ̃2q
+ ≥

∣∣∣∣σ̃i +
1

2N
LW̃i

∣∣∣∣2 + r̃iφ̃
q/2+1. (6.24)

We note that as i → ∞, the J term in equation (6.12) goes to zero. Thus, by our

near-CMC assumption,

κτ 2φ̃2q
+ −

∣∣∣∣σ̃i +
1

2N
LW̃i

∣∣∣∣2 ≥ cτ 2 (6.25)

for large enough i, φ̃+ sufficiently close to 1, and some small c > 0. The other terms

in (6.24) go to zero in C0
2δ−2, and so for i large enough, (6.24) holds on all of M .

Using the sub and supersolution theorem on AE manifolds, we can deduce

φ̃i ≤ φ̃+ < 1. (6.26)

Since φ̃i = 1 somewhere, this is a contradiction.

The main result is now easily proved.

Proof of Theorem 6.1.2. Let F be the iteration map, as in Chapter V, giving a

solution of the Lichnerowicz equation with asymptotic function ů. Let

K := {φ ∈ L∞ : ∃t ∈ [0, 1] such that φ = tF (φ)} (6.27)
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If K is bounded, then the Schaefer fixed point theorem 6.1.3 gives a solution

to the conformal constraint equations. If K is unbounded, Lemma 6.2.1 shows the

limit equation has a solution.

We now make a number of remarks on the proof of Lemma 6.2.1, which

is the heart of the limit equation criterion. On compact manifolds, it is easy to

show that φ̃∞ is nontrivial. By definition, φ̃i = 1 at some point pi, and since

M is compact, the pi converge to some point p∞. Since the φ̃i converge in L∞,

we have φ̃∞(p∞) = 1, and so φ̃∞ and W̃∞ are nontrivial. On AE manifolds, this

argument breaks down at two points. First, since M is noncompact, the points pi

may wander off to infinity. Indeed, if they were contained on a compact set, then

the φ̃i would converge to a nontrivial φ̃∞ in a similar fashion. Second, we are only

able to show that φ̃i converges to φ̃∞ in C0
ε′ for ε′ > 0, and thus W̃i only converges

to W̃∞ in C1,β
δ+ε′q. In particular, if W̃∞ were trivial, |LW̃i|2 converges to zero only in

C0
2δ−2+2ε′q, and so we can only show the inequality (6.24) on compact sets, unless

we make the near-CMC assumption that we did. Fixing either of these two points

would show that the solution to the limit equation is nontrivial.

Another idea, as discussed above, is to use some relative of ‖LWi‖2 as

the energy. If LW̃i converges in that norm, then ‖LW̃∞‖2 would be 1, and thus

nontrivial. This type of argument works in the compact case, and is in fact what

Dahl, Gicquaud, and Humbert originally did in [DGH12]. Unfortunately, proving

convergence of the φ̃i requires an estimate related to supφqi ≤ C max{‖LWi‖2, 1}.

We have tried to prove such an estimate for AE manifolds, but were unable to do

so. The problem is, again, that |LWi| and τ have the same falloff at infinity.

One possible reason why the proof of the limit equation criterion for AE

manifolds has proven difficult is its relationship with asymptotic functions. The
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limit equation criterion 6.1.2, as long as the limit equation has no solutions, gives

a solution for any asymptotic constant. In chapter V, however, except in the near-

CMC case, our proof strongly depends on the asymptotic function being sufficiently

small. Using the rescaling of Proposition 5.2.6, the asymptotic function is allowed

to be larger, as long as τ scaled towards zero, a kind of near-CMC condition. Thus,

perhaps, the limit equation criterion for more arbitrary τ may be easier to prove as

long as the asymptotic function is sufficiently small. Unfortunately, we were also

unable to leverage this idea.

We can use a modification of the argument in Lemma 6.2.1 to show that if τ

is sufficiently near-CMC, then the conformal constraint equations have a solution.

Proposition 6.2.2. If

κτ 2
(

1

2

)2q

− 1

4N2
|LW0|2 ≥ cτ 2 (6.28)

for some c > 0 and all solutions W0 of the vector equation (1.3b) with J ≡ 0 and

φ ≤ 1, then the conformal constraint equations have a solution as in Theorem 6.1.2.

Proof. Suppose τ satisfies (6.28). Let K be as in (6.27). Suppose K is unbounded.

Then we can proceed as in the proof of Lemma 6.2.1.

Let W̃∞ and φ̃∞ be constructed as in the proof of Lemma 6.2.1. Then, using,

φ̃∞ to define W0, condition (6.28) reduces to

φ̃2q
∞ :=

|LW̃∞|2

4N2κτ 2
≤
(

1

2

)2q

− ε (6.29)

for some small ε > 0. In particular, φ̃∞ is bounded above by a number strictly less

than 1/2.

Let φ̃+ be a constant function such that φ̃∞ + 1
2
< φ̃+ < 1 ≤ φ̃∞ + 1.
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Using the near-CMC condition (6.28), φ̃+ ≥ φ̃i everywhere, as is shown in the

proof of Lemma 6.2.1. But φ̃i = 1 somewhere and φ̃+ < 1. This is a contradiction,

so for such τ , K must be bounded. Thus the Schaefer fixed point theorem 6.1.3

gives a solution to the conformal constraint equations.

As discussed in the introduction of this chapter, since the limit equation

criterion has only been applied in the near-CMC case, it might seem reasonable to

assume that κτ 2 − 1
4N2 |LW0|2 ≥ cτ 2. Unfortunately, we can show that τ cannot be

arbitrarily near-CMC, in the sense that there are constants C > 0 sufficiently large

such that no τ > ρδ−1 satisfies the related inequality τ 2 − C‖dτ‖2
C0
δ−2
ρ2δ−2 ≥ cτ 2.

This makes it very difficult to verify that the near-CMC condition in the limit

equation criterion 6.1.2 or Proposition 6.2.2 is fulfilled.

Proposition 6.2.3. There is a constant C > 0 sufficiently large such that for any

C ′ > 0, no τ satisfying τ > C ′ρδ−1 also satisfies

τ 2 − C‖dτ‖2C0
δ−2
ρ2δ−2 ≥ 0. (6.30)

Proof. Suppose to the contrary that there are τi such that, after scaling, τi ≥ ρδ−1

and ‖dτi‖C0
δ−2

< 1/i. Using the Poincaré inequality 2.0.3, for p ∈ (n/2, n), we have

‖τi‖p,1−n/p ≤ C‖dτi‖p,−n/p ≤ C‖dτi‖C0
δ−2
≤ C

1

i
. (6.31)

This contradicts the fact that τi ≥ ρδ−1.
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CHAPTER VII

ADM MASS AND THE ASYMPTOTIC FUNCTION

Ó Murchadha [ÓM05] showed that, in the compact, CMC case, the volume

of the solution to the conformal constraint equations (1.3) is monotonically related

to the constant curvature τ . In particular, instead of specifying a constant τ , one

could equivalently specify the volume of the solution manifold.

In the asymptotically Euclidean case, τ must vanish at infinity, and so there

is only one choice for constant τ , τ ≡ 0. However, there is a new “constant” that

one may specify, the asymptotic function. An AE manifold does not have (finite)

volume, but it seems logical to ask what, if anything, the choice of asymptotic

function controls. In analog to volume for the compact case, the ADM mass is a

natural candidate.

In general relativity, it is very difficult to define the mass of a non-isolated

object, such as a star. However, there are good definitions for the mass of an entire

system. One such definition is the ADM mass, a metric invariant for AE manifolds

first described by Arnowitt, Deser, and Misner in [ADM61]. This mass describes

the total mass of all matter in the AE manifold, as measured by the mass’s effects

on the asymptotics of the metric. The usual definition for the ADM mass is

MADM(g) :=
1

16π
lim
t→∞

∑
i

∫
St

(gij,i − gii,j)νjedSe, (7.1)

where St is the Euclidean coordinate sphere of radius t on an end, νje is the

Euclidean unit normal to St and dSe is the Euclidean spherical volume element.

Bartnik [Bar86] showed that the ADM mass is independent of the choice of
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Euclidean coordinates. As expected, for Euclidean space, the ADM mass is zero.

For the Schwarzschild family of solutions, the mass is exactly the standard mass

parameter M .

If g does not fall off to the Euclidean metric e fast enough, the mass may not

exist. For this reason, we assume that δ < 1 − n/2 for this chapter. If g is a W 2,p
δ

AE metric, then MADM(g) exists. Also, since the mass is dependent on only one

end of the AE manifold, we ignore the other ends, and use an asymptotic constant

c instead of the more general asymptotic function ů. This makes no difference in

our calculations below.

Suppose φ − c := f ∈ W 2,p
δ . Let g̃ = φq−2g, as usual. In order to calculate the

mass, we have to use coordinates such that g̃ → e in those coordinates. If c 6= 1,

this means we must scale the coordinates. Let xi be the Euclidean coordinates for

g. Let xi = cq/2−1xi. Then, denoting g̃ in x coordinates as g, we have

gijdx
idxj = gijc

2−qdxidxj = g̃ijdx
idxj = φq−2gijdx

idxj. (7.2)

Thus, as functions on M (not as tensors), gij = (φ/c)q−2gij.

Let e be the Euclidean metric in the x coordinates. Then dSe =

c(q/2−1)(n−1)dSe and ∂f
∂x

= ∂f
∂x
c1−q/2. Finally, since we are integrating over spheres,

tracing with νje picks the radial component. Since the radial direction is the same

for both metrics, the scaling of the derivatives/metric takes care of this term.

Combining these facts, we have

MADM(g) =
1

16π
lim
t→∞

∑
i

∫
St

(gij,i − gii,j)ν
j
edSe (7.3)

=
c(q/2−1)(n−2)

16π
lim
t→∞

∑
i

∫
St

[(
(φ/c)q−2gij

)
,i
−
(
(φ/c)q−2gii

)
,j

]
vjedSe. (7.4)
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Using (q/2− 1)(n− 2) = 2 and (φ/c)q−2 = 1 + (q− 2)f/c+L.O.T., and ignoring the

lower order terms, which vanish in the limit, we find

MADM(g) = c2MADM(g) +
c(q − 2)

16π
lim
t→∞

∑
i

∫
St

[gijf,i − giif,j] vjedSe (7.5)

= c2MADM(g) +
c(q − 2)(1− n)

16π
lim
t→∞

∫
St

∂rfdSe, (7.6)

where ∂r is the Euclidean radial derivative.

Starting with W 2,p
δ seed data, the Lichnerowicz equation (1.3a) implies that

∆φ ∈ L1. Applying integration by parts,

∫
Bt

∆φdVg =

∫
St

∇iφν
i
gdSg. (7.7)

If t→∞, we can drop lower order terms, and thus

∫
M

∆φdVg = lim
t→∞

∫
St

∂rφdSe. (7.8)

Thus

MADM(g) = c2MADM(g) +
c(q − 2)(n− 1)

16πa

∫
M

−a∆φdVg. (7.9)

7.1. Model Problem

We now discuss a (relatively) simple model problem. Assume we have seed

data with regularity as in Assumption 3.1, with p > n. Let τ ≡ 0, i.e., the

CMC case. In this case, the metric g must be Yamabe positive in order for the

Lichnerowicz equation (1.3a) to have a solution, and so, without loss of generality,

we may assume that R ≡ 0. For simplicity, we also assume that r ≡ 0 and J ≡ 0.
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Also, since dτ ≡ 0, we know LW ≡ 0. We ignore the degenerate case σ ≡ 0. Thus

the conformal constraint equations reduce to a single equation,

−a∆φ− |σ|2φ−q−1. (7.10)

Let φc be the solution to (7.10) such that φc − c ∈ W 2,p
δ . Such solutions exist

for all c by Theorem 3.0.9. We first prove a lemma.

Lemma 7.1.1. Let η = 2δ − 4 + n.There exists a positive solution u ∈ W 2,p
η+2 of

−a∆u− ρη = 0 (7.11)

such that C0ρ
2−n ≤ u ≤ C1ρ

η+2.

Proof. Note that η ∈ (−n,−2) since δ ∈ (2 − n, 1 − n/2). Thus Proposition

2.1.1 shows that ∆ : W 2,p
η+2 → Lpη is an isomorphism, and so there exists a solution

u ∈ W 2,p
η+2 of

−a∆u− ρη = 0 (7.12)

such that u ≤ Cρη+2. The maximum principle 2.1.2 shows that u is positive.

We claim that u ≥ Cρ2−n for some C > 0. A straightforward extension of

[Bar86] shows that ∆ : u 7→ (∆u, u|∂ER) is an isomorphism between the spaces

W 2,p
δ (ER)→ Lpδ(ER)×W 2−1/p,p(∂ER), where ER is the exterior of the ball of radius

R in the end. Using this result, we can also extend the sub and supersolution

theorem 2.1.7 to allow (smooth) internal boundaries with Dirichlet boundary data.

Let v ∈ W 2,p
δ be the unique solution of

∆v = 0 on ER and v = 1 on ∂ER. (7.13)
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Clearly, for small enough α > 0, αv is a subsolution to (7.12) on ER. Since u is

a solution, and thus a supersolution, the extension of the sub and supersolution

theorem shows that u ≥ αv.

We claim that v > Cρ2−n for some C > 0, which completes the proof.

Consider the functions v± = α±(C±ρ
2−n ∓ ρ2−n+δ/2) for appropriately chosen

constants α+,, α−, C+, and C−. We claim that the functions v± are respectively

super and subsolutions of the boundary value problem (7.13). Indeed, using the

decomposition

∆ = ∆e + kij∂i∂j + gijΓkij∂k, (7.14)

and the fact that W 2,p
δ ⊂ C1

δ , it is clear that ∆ρ2−n = O(ρ−n+δ) since ∆eρ
2−n = 0.

(Recall that ρ is the radial coordinate sufficiently far out on each end.) We

similarly get that ∆ρ2−n+δ/2 = O(ρ−n+δ/2). This is the highest order term that

remains. Then, because of this term’s sign, it eventually dominates, making v±

a super or subsolution. Finally, α± can be made large or small to ensure the

boundary condition falls between v±. Again using the extension of the sub and

supersolution theorem, along with the fact that ∆ is an isomorphism, v− ≤ v ≤ v±,

and so v > Cρ2−n, as claimed.

We now list a number of properties of the solutions φc of the reduced

Lichnerowicz equation (7.10) and their derivatives, δφc := ∂
∂c
φc.

Proposition 7.1.2 (Properties of φc). The function φc satisfies

c < φc ≤ c−q/2C2u+ c, (7.15)
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for some C2 > 0 independent of c. Also,

0 < φ1 − 1 ≤ φc (7.16)

for all c > 0. Finally,

sup

{
0,
q + 1

c
(c− φc) + 1

}
≤ δφc ≤ 1. (7.17)

In particular, as c→∞, φc → c and δφc → 1.

Proof. First, note that c is a subsolution for (7.10). We claim that c−q/2C2u + c is a

supersolution for (7.10) for some C2 > 0 independent of c. Note that c < c−q/2Cu+c

since u > 0, and so the sub and supersolution theorem 2.1.7 combined with the

uniqueness of solutions of the Lichnerowicz equation from Theorem 3.0.11 shows

that c ≤ φc ≤ c−q/2C2u+ c.

For c−q/2C2u + c to be a supersolution to the reduced Lichnerowicz equation

(7.10), we must show

−a∆(c−q/2Cu+ c)− |σ|2(c−q/2Cu+ c)−q−1 ≥ 0. (7.18)

Using |σ|2 ≤ Sρ2δ−2 and C0ρ
2−n ≤ u ≤ C1ρ

η+2, where η = 2δ− 4 +n, this reduces to

c−q/2C2ρ
η ≥ |σ|2(c−q/2C2u+ c)−q−1 (7.19)

C2C0c
−q/2−1ρ2−n + 1 ≥ S1/(q+1)C

−1/(q+1)
2 c

q
2(q+1)

−1ρ
2−n
q+1 . (7.20)

For some C2 large enough, independent of c, this is true, and so c−q/2C2u + c is a

supersolution. The calculation to show this is long and unenlightening, so we do
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not include it. Essentially, the 1 bounds the right hand side if ρ and/or c are large,

while the other term bounds the right hand side if ρ and/or c are small.

Note that φc − c ∈ W 2,p
δ and that −a∆(φc − c) ≥ 0. Since φc ≥ c and φc 6≡ c,

by the strong maximum principle 2.1.3, φc − c > 0, and so φc > c.

A quick calculation shows that φ1 − 1 + ε is a subsolution to (7.10) for any

0 < ε < 1. Using φc as a supersolution, the sub and supersolution theorem 2.1.7

combined with uniqueness from Theorem 3.0.11 show that φc ≥ φ1 − 1 + ε. Letting

ε→ 0, we have φc ≥ φ1 − 1 > 0.

Taking the variation of (7.10), we find that δφc satisfies

(−a∆ + (q + 1)|σ|2φ−q−2c )δφc = 0. (7.21)

Since φc changes at a rate of one near infinity, we require δφc → 1 at infinity. By

Proposition 2.1.4, δφc−1 ∈ W 2,p
δ . Then, since (−a∆+(q+1)|σ|2φ−q−2c )(δφc−1) ≤ 0,

the maximum principle 2.1.2 shows that δφc − 1 ≤ 0, and so δφc ≤ 1.

To show that δφc ≥ 0, note that for c′ > c, φc′ is a supersolution for φc,

i.e., for the reduced Lichnerowicz equation (7.10). Thus φc is nondecreasing, and so

δφc ≥ 0.

We claim that q+1
c

(c − φc) + 1 is a subsolution of (7.21), which then implies

that it is a lower bound for δφc. Indeed,

(
−a∆ + (q + 1)|σ|2φ−q−2c

) [q + 1

c
(c− φc) + 1

]
= |σ|2φ−q−1c

[
−q + 1

c
(q + 2) +

(q + 1)(q + 2)

φc

]
≤ 0

(7.22)

since φc ≥ c.
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With those properties of φc, we can now understand how the integral term in

(7.9) behaves as c→ 0 or c→∞. In this model problem, the integral term, modulo

a constant, becomes c
∫
M
|σ|2φ−q−1c .

Proposition 7.1.3. For all c large enough, the integral term in (7.9) strictly

decreases and approaches 0 as c→∞.

If σ has compact support, the integral term goes to zero as c→ 0.

If |σ|2 ≥ Cρα for some α > 2n
n−1δ −

n
n−1 and C > 0, the integral term becomes

unbounded as c→ 0.

Remark 7.1.4. The lower bound on σ need not hold on all of M . Indeed, it is

sufficient for σ to be bounded below only on some wedge of positive angle, perhaps

far out on the end. Also, note that, for α = 2δ − 2, the inequality for α reduces to

δ < 1 − n/2, which was already assumed. Finally, note that the δ from the lower

bound on α is the δ ∈ (2− n, 0) from the inequality |σ|2 ≤ Cρ2δ−2. In particular, the

result can hold even if σ falls off faster than the metric.

Proof. For all c,

0 < c

∫
M

|σ|2φ−q−1c ≤ c−q
∫
M

|σ|2, (7.23)

and so the integral term approaches zero as c→∞.

The derivative of the mass as a function of c is

∂

∂c
MADM(g) = 2cMADM(g) + C0

∫
|σ|2φ−q−1c

[
1− (q + 1)

c

φc
δφc

]
. (7.24)

Since c/φc → 1 and δφc → 1 uniformly in c, the integrand in (7.24) is negative for

large c. Thus the integral term decreases monotonically for all c large enough.
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Suppose σ has compact support. Then

c

∫
M

|σ|2φ−q−1c ≤ c

∫
M

|σ|2(φ1 − 1)−q−1. (7.25)

Since φ1 − 1 > 0 and σ has compact support, the integral term is finite. Thus, as

c→ 0, the integral term of the mass (7.9) vanishes.

Suppose that |σ|2 ≥ Cρα for some α > 2n
n−1δ −

n
n−1 and C > 0. Recall that by

Equation (7.15) and Lemma 7.1.1, φc ≤ c−q/2Cρη+2 + c, where η := 2δ − 4 + n.

Dropping all constants not depending on c, one has on an end E,

∫
E

|σ|2φ−q−1c dV ≥
∫
E

ρα+n−1

(c−q/2ρη+2 + c)q+1
dρdσ (7.26)

= c−q−1+
(1+q/2)(α+n)

η+2

∫ ∞
Cc

1+q/2
−η−2

rα+n−1

(1 + rη+2)q+1
dr (7.27)

The first line is true for some integration form dσ. For the second line, we pulled

out c’s and used the substitution ρ = rc
1+q/2
η+2 , and integrated out the dσ. Since the

final integral converges as c→ 0, we may bound it by a constant. Thus,

∫
E

|σ|2φ−q−1c dV ≥ C0c
−q−1+ (1+q/2)(α+n)

η+2 . (7.28)

If −q − 1 + (1+q/2)(α+n)
η+2

< −1, then the integral term of the mass (7.9) blows up

as c → 0. Using η = 2δ − 4 + n, this condition reduces to α > 2n
n−1δ −

n
n−1 . This

establishes the final claim of the proposition.

While the original hope was that mass and asymptotic constants were in one

to one correspondence, Proposition 7.1.3 unfortunately shows that this is not the

case. If MADM(g) = 0, and there are σ which have compact support, then for

those σ, the mass is not a monotonic function of c. For any positive mass, since
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c2MADM(g) is zero as c → 0 and unbounded as c → ∞, for σ which do not fall off

very quickly, the mass is again not monotonic as a function of c.
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