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DISSERTATION ABSTRACT
Christin Bibby
Doctor of Philosophy
Department of Mathematics
June 2015

Title: Abelian Arrangements

An abelian arrangement is a finite set of codimension one abelian subvarieties
(possibly translated) in a complex abelian variety. We are interested in the topology
of the complement of an arrangement. If the arrangement is unimodular, we provide a
combinatorial presentation for a differential graded algebra (DGA) that is a model for
the complement, in the sense of rational homotopy theory. Moreover, this DGA has a
bi-grading that allows us to compute the mixed Hodge numbers. If the arrangement is
chordal, then this model is a Koszul algebra. In this case, studying its quadratic dual
gives a combinatorial description of the Q-nilpotent completion of the fundamental
group and the minimal model of the complement of the arrangement.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

This dissertation explores the topology of an elliptic analogue of hyperplane
arrangements. In doing so, we highlight the analogy between three cases of
arrangements: rational, trigonometric, and elliptic. The rational case consists of
linear arrangements, which are finite sets of codimension one linear subspaces of a
complex vector space. The trigonometric case consists of toric arrangements, which
are finite sets of codimension one subtori in a complex torus. The elliptic case
consists of abelian arrangements, which are finite sets of codimension one abelian
subvarieties in a complex abelian variety. Moreover, we consider a fourth case of
graphic arrangements of higher genus projective curves. In each case, we study a
differential graded algebra (DGA) that is a model (in the sense of rational homotopy
theory) of the complement of the arrangement.

For linear arrangements, the complement is formal, which means that the
cohomology algebra with trivial differential is itself a model. A combinatorial
presentation for this algebra is given by Orlik and Solomon [OS]. For toric
arrangements, the complement is also formal, and in the unimodular case a
combinatorial presentation of the cohomology ring is given by De Concini and Procesi
[DCP1]. For abelian arrangements, the complement is not necessarily formal, but in
the unimodular case a combinatorially presented model (with nontrivial differential)
is given in Chapter III.

Totaro [Tot] and Kriz [Kri] each independently studied the cohomology of
configuration spaces of smooth complex projective varieties. In particular, their

work gives a presentation of a model for the cohomology in the special case of
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an ordered configuration space on an elliptic curve (the complement of the braid
arrangement ), which we state as an example (Example 3.12). In Section 3.1, we
generalize Totaro’s method to compute the rational cohomology of the complement
of any abelian arrangement A in a complex abelian variety X. We denote this
complement by M(A), and arrive at our results by studying the Leray spectral
sequence of the inclusion f : M(A) < X. Specifically, we use Hodge theory to
show degeneration of this spectral sequence at the F3 term. Most results stated in
the section are valid when considering a complex torus rather than an abelian variety;
we need the algebraic structure when discussing the Hodge theory.

As seen in Section 3.2, our results are particularly nice in the case where A
is unimodular, which means that all multiple intersections of subvarieties in A are
connected. In this case, we give a presentation of a differential graded algebra A(.A) in
terms of the combinatorics of A (the partially ordered set consisting of all intersections
of subvarieties in .A). The cohomology of A(.A) is isomorphic as a graded algebra to the
cohomology of M(.A), by Theorem 3.8. Moreover, A(A) admits a second grading, and
its cohomology is canonically isomorphic as a bi-graded algebra to gr H*(M(A); Q),
the associated graded with respect to Deligne’s weight filtration. Thus it allows us

to compute the mixed Hodge numbers of M (A).

Remark 1.1. While the weight filtration on the cohomology of the complement
of a linear or toric arrangement is trivial (by [Lool), for an abelian arrangement
it is always interesting. For a basic example, consider a punctured elliptic curve
M(A) = E~{p1,...,pe}. Here, the first filtered piece of H'(M(A); Q) consists of

the image of the restriction map from H'(E;Q), which is neither trivial nor surjective.



This can be seen in the short exact sequence

0— HY(E;Q) — H'(E~Ap1,...,pe};Q) = Q(—1)*“"D — 0.

Levin and Varchenko [LV] computed cohomology of elliptic arrangements with
coefficients in a nontrivial rank one local system. Dupont [Dup1] also studied the more
general case of the complement to a union of smooth hypersurfaces which intersect
like hyperplanes in a smooth projective variety. Dupont used a similar but alternative
method to that presented here to find the same model as described in Section 3.1,
but he does not give the combinatorial presentation in Section 3.2.

In [Dup2], Dupont uses our decomposition on the Leray spectral sequence in
Lemma 3.1 to show that all toric arrangements are formal. In [Suc], Suciu uses the
model given in Theorem 3.8 to study resonance varieties and formality of elliptic
arrangements.

In Chapter IV, we focus our attention on unimodular and supersolvable
arrangements, which are classified by chordal graphs and are therefore called chordal
arrangements. In this case, the above models are Koszul; this is due to Shelton and
Yuzvinsky for linear arrangements [SY], and we prove it in the toric, abelian, and
higher genus cases (Section 4.2). By studying the quadratic dual of the model, one
can obtain a combinatorial presentation for a Lie algebra and use it to compute the Q-
nilpotent completion of the fundamental group and the minimal model. This is done
by Papadima and Yuzvinsky in the linear case [PY], and the toric case is completely
analogous. In the abelian and higher genus cases, the lack of formality makes this
computation more subtle: we need to use nonhomogeneous quadratic duality, where

the dual to a Koszul differential graded algebra is a quadratic-linear algebra. With



this tool, we extend Papadima and Yuzvinsky’s results to the abelian and higher
genus settings (Section 4.3).

We also prove that complements of chordal arrangements are rational K (m,1)
spaces. In the rational and toric cases, this follows from formality and Koszulity [PY].
In the abelian case (where we lack formality) it is not automatic, but we obtain it
from our concrete description of the minimal model (Corollary 4.13).

Bezrukavnikov [Bez| studied the Kriz-Totaro model of the configuration space
of an arbitrary smooth, projective, complex curve; he showed that this model was
Koszul, gave a presentation for the dual Lie algebra, and described the minimal model.
The results in Chapter IV for chordal arrangements are generalizations of those given
by Bezrukavnikov. This chapter also includes material from a joint project with

Justin Hilburn.



CHAPTER II

PRELIMINARIES

In this chapter, we provide necessary definitions and collect known results from

arrangement theory that will be used in the later chapters.

2.1. Definitions

We consider an arrangement A = {Hy, ..., H,} of smooth connected divisors in a
smooth complex variety X, which intersect like hyperplanes. When we say that they
intersect like hyperplanes, we mean that for every p € X, there is a neighborhood
U C X of p, a neighborhood V' C T, X of 0, and a homeomorphism ¢ : U — V that
induces H;, NU = T,H; NV for all H, € A.

There are three particularly interesting cases of arrangements. A linear
arrangement is a finite set of codimension one linear subspaces in a complex
vector space. A toric arrangement is a finite set of codimension one subtori in a
complex torus. An abelian arrangement is a finite set of codimension one abelian
subvarieties in a complex abelian variety. In each case, denote the complement of
an arrangement A in X by M(A) := X \ UgeaH. We will also consider the affine
analogues of these arrangements, where we allow translations of such subvarieties.
We say that an arrangement is central if the intersection of all of the subvarieties in
A is nonempty.

A component of an arrangement A is a connected component of an intersection
Hg = ﬂ H for some subset S C A. Note that, except for linear arrangements, the
intersegciegns themselves need not be connected. We say that the arrangement is

unimodular if the intersection Hg is connected for all subsets S C A.
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The rank of a component is defined as its complex codimension in X. Note that
for a subset S C A with nonempty intersection Hg, the rank of its components is
constant. Hence, we define the rank of a subset S C A as the rank of a connected
component of Hg, which does not depend on the choice of component. We say
that S is independent if rk(S) = |[S|. Otherwise, rk(S) < |S| and we say that
S is dependent. If A is central, then these definitions determine a matroid on A,
describing the combinatorics of the arrangement.

For a given order on the subvarieties in A, a tuple of subvarieties in A is called
standard if the hyperplanes are written in increasing order. A standard tuple S is a
broken circuit if there is some H € A larger than all those in S such that SU{H}
is a circuit (that is, a minimally dependent set). We say that a standard tuple S is
nbc (non-broken circuit) associated to F' if F' is a connected component of Hg and

it does not contain any broken circuits.

Example 2.1. The terminology in arrangement theory is motivated by arrangements
that arise from a matrix. We describe this with a special case of elliptic arrangements,
where we have a complex elliptic curve E, X = E™ and an n x ¢ integer matrix. Each
column corresponds to a map «; : E” — E. Assume that each column is primitive,
so that each H; = ker «; is a connected abelian subvariety of X.

In this case, an intersection Hg is the kernel of an n x |S| submatrix, taking
the corresponding columns «; for H; € S. The codimension of Hg is the rank of
the corresponding matrix. In this way, the dependencies of the hyperplanes in A
correspond to the dependencies of the corresponding «;’s in Z".

Further suppose that A is a unimodular arrangement and that the rank of the
n X ¢ matrix is equal to n. Then all n x n submatrices will have determinant 41 or
0. Otherwise, an intersection of subvarieties (that is, the kernel of the corresponding
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submatrix) would be disconnected. This agrees with the usual notion of a unimodular

matrix.

Let F be a component of the arrangement A. For any point z € F, define an
arrangement .Agf) in the tangent space T, X consisting of hyperplanes Hl(f) =T,H
for all H O F. If X has complex dimension n, then Agf) is a central hyperplane

arrangement in 7, X = C", and we denote its complement by

This arrangement may be referred to as the localization of A at F', with respect to

the point x € F.

Remark 2.2. We say that a point x € F' is a generic point of F' if = is not contained
in any smaller component of A. By our assumption that the divisors intersect like
hyperplanes, for a generic point x € F', there is a neighborhood U C X of z such

that U N M(A) 22 M(AY).

Remark 2.3. Also by our assumption that the divisors intersect like hyperplanes,
the intersection lattice of the arrangement A(;) does not depend on the choice of
x € F. Since the cohomology of M (Agf)) only depends on the combinatorics of Agf)
(see Theorem 2.7), we may write H*(M(Ar); Q) to mean the cohomology of M(.A;f))
for some (any) = € F.

If A is an abelian arrangement, then even more can be said. Not only does the
cohomology not depend on the choice of x € F, but for any two points x and y of F',

we have a canonical homeomorphism (via translation) M (.Agf)) =M (.A%)).



2.2. Graphic Arrangements

An ordered graph is a graph I' = (V,£) with an ordering on the vertices V.
We will assume throughout that our graphs are simple (that is, they have no loops
or multiple edges). An ordered graph can be considered as a directed graph in the
following way: For each edge e € &, label its larger vertex by h(e) (for “head” of an
arrow) and its smaller vertex by t(e) (for “tail” of an arrow). An order on the vertices
of I" induces an order on the edges by setting e < €’ if h(e) < h(e’) or if h(e) = h(€)
and t(e) < t(e).

Let I' = (V, &) be an ordered graph. Let C' be C, C*, or a complex projective
curve, and let CY be the complex vector space (respectively torus or projective variety)

whose coordinates are indexed by the vertices V. For each edge e € £, let

H, = {xy € O | xpe) = w40 }-

The collection A(T,C') = {H, | e € £} is a graphic arrangement in CV. In the case
that C' is C, C*, or a complex elliptic curve, A(T',C) is a linear, toric, or abelian

arrangement, respectively.

Example 2.4. Let C' = C, C*, or a complex projective curve. If I' is the complete
graph on n vertices, then A = A(T', C) is the braid arrangement, and its complement

M (.A) is the ordered configuration space of n points on C.

Let C' be C, C*, or a complex projective curve, and let I' = (V, £) be a simple
graph. If I is chordal (that is, every cycle with more than three vertices has a chord),
then the graphic arrangement A(I", C') is said to be chordal.

A perfect elimination ordering is an order on the vertices so that for all

v € V, v is a simplicial vertex (a vertex whose neighbors form a clique) in the graph
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I, =T—{v €V |v >wv}. Such an ordering exists if and only if I" is chordal [FG,
p. 851]. From now on, we will use such an order when discussing chordal graphs.
Note that our definition of circuits (and hence broken circuit or nbc) coincides
with that in graph theory. Let F' C & be a flat of the matroid of I'; and consider the
subgraph I'[F] of I, which has edges F' and vertices adjacent to edges in F. A set

S C & is an nbc set associated to F'if S C F' and S spans I'[F].

Remark 2.5. In the case of linear, toric, or abelian arrangements, the essential
property that we need for our results in Chapter IV is that the arrangement
is unimodular (for Theorems 2.10 and 3.8) and supersolvable (for Theorems 4.3
and 4.7). We could state all of our results in the language of unimodular and
supersolvable arrangements; however, this isn’t any more general than the language
of chordal graphs. This is because Ziegler showed that a matroid is unimodular and
supersolvable if and only if it is chordal graphic (Proposition 2.6 and Theorem 2.7
of [Zie]). In fact, since the edge set of I' — v is a modular hyperplane when v is a
simplicial vertex [Zie, Proposition 4.4], the maximal chain of modular flats in the

matroid corresponds exactly to our ordering on the vertices.

2.3. Rational Homotopy Theory and Quadratic Duality

In this section, we briefly state results that will be used to study the rational
homotopy theory of chordal arrangements in Section 4.3. The fundamental problem
of rational homotopy theory is to understand the topology of the Q-completion of a
space X, which is determined by the quasi-isomorphism type of a particular DGA
App(X) with H*(Apr(X),d) = H*(X,Q) (see [Qui, Sul, BG]). A model for a space

X is a differential graded algebra A which is quasi-isomorphic to App(X).



In the case that a model is Koszul, the following theorem tells us how to use
nonhomogeneous quadratic duality (constructing a quadratic-linear algebra from a
DGA, see [Pri, Pos, Bez]) to obtain more information about the rational homotopy

theory of the space.

Theorem 2.6. [BH, Bez] Let X be a space with a quadratic model A(X). Let U(L)
be the quadratic dual to A(X), which is the universal enveloping algebra of a Lie

algebra L.

1. U(L) = Q[m(X)], where the completions are each with respect to the

augmentation ideal. This isomorphism respects the Hopf algebra structures.

2. The completion of L with respect to the filtration by bracket length is isomorphic
to the Malcev Lie algebra of m(X), which determines the Malcev (or Q-

nilpotent) completion of 7 (X).

3. If A(X) is Koszul, and L is graded by bracket length and finite dimensional in
each bracket length, then the graded standard (or Chevalley-Eilenberg) complex

of L, Q(L*®), is the minimal model of X.
4. Under the hypotheses of (3), the Q-completion of X is a K(7, 1) space.

Bezrukavnikov [Bez] laid the framework for this theorem, while the author and
J. Hilburn [BH] stated this theorem more generally. Papadima and Yuzvinsky [PY]

stated the analogous results in the case that X is formal.

2.4. Hyperplane Arrangements

For linear arrangements, a combinatorial presentation for the cohomology ring

was first given by Orlik and Solomon [OS]. The fact that the complement of a
10



linear arrangement is formal (that is, its cohomology ring is a model for the space) is

originally due to Brieskorn [Bri].

Theorem 2.7. [OT, Theorems 3.126¢95.89] Let A = {H,,..., H,} be a hyperplane
arrangement in a complex vector space, with complement M (A). Then M(A) is
formal and H*(M(.A), Q) is isomorphic to the exterior algebra on the Q-vector space

spanned by {g1, ..., g,} modulo the ideal generated by

1. gi, - gi, whenever S ={H,,,...,H; } is such that Hg = ().
:
2. z:(—l)jge1 “+Ge, = * ge,, Whenever {H;, < --- < H; } is dependent.
7j=1

The Orlik-Solomon algebra presented in Theorem 2.7 has a particularly nice basis
indexed by the nbc sets (see [OT, Yuz]). That is, the set of g;, - - - g;, for all nbc-sets
{H;, <--- < H,;,} is a basis for H*(M(A); Q). Moreover, this basis is compatible

with the decomposition given by Brieskorn’s Lemma:

Lemma 2.8. [Bri, p. 27 Let A be a hyperplane arrangement with complement
M(A). Then
H*(M(A)) = @pH " (M(Ar))

where the sum is taken over all components (flats) F' of the arrangement.

A basis of H*F)(M(AF)) is indexed by the nbc sets S associated to F.
Since we will restrict ourselves to graphic arrangements for the remainder of
this section, we will state this presentation in the specific case of a graphic linear

arrangement.

Example 2.9. Let ' = (V,€) be an ordered graph, and let A = A(T',C).
H*(M(A),Q) is isomorphic to the exterior algebra on the Q-vector space spanned by

{ge | e € £} modulo the ideal generated by
11



> (=1 gey =+ Ge; -+ - ge, whenever {e) < --- < e} is a cycle.

Yuzvinsky proved that the Orlik-Solomon ideal has a quadratic Grobner basis
when A is supersolvable (eg. chordal), which implies that H*(M(.A)) is Koszul [Yuz,
Corollary 6.21]. Though Koszulity was first proven by Shelton and Yuzvinsky [SY],
we outline Yuzvinsky’s technique in [Yuz] applied to chordal arrangements as we will
use similar techniques in the toric, abelian, and higher genus cases.

For ease of notation, whenever S = {e; < --- < e} we will use gs := ge, - * ge,
and dgs = > ;(=1)ge; =+ Je; =+ ge- Let T = (V,€) be a chordal graph with a
perfect elimination ordering on the vertices (and edges).

First, Yuzvinsky showed that the set G = {Jgs | S is a circuit} is a Grébner
basis for the ideal I = (G) in the exterior algebra A(g. | e € &), with the degree-
lexicographic order such that g. < g whenever e < ¢’. The leading (or initial) term
of dgs is In(dgs) = gsr where S” C S is the broken circuit associated to S. Recall
that a subset G of an ideal I is a Grébner basis if In(1) = (In(G)). To prove that this
is a Grobner basis, Yuzvinsky used the fact that the set of monomials not in In(7)
form a basis for H*(M(A)) = A(ge)/I. The set of monomials not in In(7) is the basis
{gs | S is nbc}.

Moreover, since I' is chordal, this Grobner basis can be reduced to a quadratic
Grobner basis. This is because we have the following property (which follows
immediately from Proposition 6.19 of [Yuz|): S C & is an nbc set if and only if
for all distinct e, e’ € S we have h(e) # h(e’). A circuit S is not nbc, hence there
exist distinct edges e, e’ € S such that h(e) = h(e’). But then {e, e’} contains (and
hence is) a broken circuit, and so it is contained in some circuit 7" with |T'| = 3. Thus
In(0gr) = gege divides In(dgs), and we can reduce our Grébner basis to a quadratic
one.

12



Let I' = (V,€) be a chordal graph, and let A = A(I',C). Papadima and
Yuzvinsky [PY] describe the holonomy Lie algebra, L, of M(A) and show that it
is the Lie algebra dual to the cohomology ring H*(M(A)). They also show that the
standard complex of L is the minimal model of M(A) [PY, Propositions 3.1&4.4].
Moreover, Kohno [Koh] shows that the holonomy Lie algebra is isomorphic to the
Malcev Lie algebra L(mi(M(.A))).

This Lie algebra L can be described as the free Lie algebra generated by ¢, for

e € £ modulo the relations
(i) [ce,ce] = 01if e and €' are not part of a cycle of size 3, and
(i) [Ceys Cey + Ces] = 0 if {€1, €2, €3} is a cycle.

If X is a formal space, then H*(X) is Koszul if and only if X is rationally
K(m, 1) [PY, Theorem 5.1]. In particular, M(A) is a rational K(m, 1) space. Falk
first showed that M (.A) is a rational K (m, 1) space when studying the minimal model
[Fal, Proposition 4.6], but the generality of Papadima and Yuzvinsky’s arguments

allows us to directly apply them to toric arrangements in Section 4.1.

2.5. Toric Arrangements

De Concini and Procesi studied the cohomology of the complement of a toric
arrangement. If A is a unimodular toric arrangement, they show that the complement
M (A) is formal and give a presentation for the cohomology ring. Here, we state the

result for graphic arrangements (which are always unimodular).

Theorem 2.10. /[DCP1, Theorem 5.2] Let I' = (V,€) be an ordered graph, and let

A= A(T,C*). Then M(A) is formal and H*(M(A),Q) is isomorphic to the exterior

13



algebra on the Q-vector space spanned by {z,,g. | v € V,e € £} modulo the ideal

generated by:

(ia) whenever eg,eq, ..., e, is a cycle with t(eg) = t(e1), h(eg) = h(en), and h(e;) =

(i)

t(ejq1) for i =1,...,m — 1 (as pictured below)

e}v N

W

€o

we have

Ge1Ges " Gem, — Z(_1)|I\+m+8196i1 o 'geik¢5j1 o '¢51m_k—1g€0

where the sum is taken over all [ = {i; < --- < it} € {1,...,m} with
complement {j1 < -+ < Jm—i}, Ve, = Ti(e,) — Ti(e,), and sy is the parity of

the permutation (i1, ...,%k, j1,-- -, Jm—k)-

if we again have a cycle, but have some arrows reversed, relabel the arrows so
that e; < -+ < e, < e, then take the relation from (ia) and replace each
e, with —1,, and each g., with —g., — ¥., whenever e; points in the opposite

direction of eg.

(Thie) — Ti(e))ge for e € &,

The presentation encodes both the combinatorics of the arrangement and the

geometry of the ambient space. The generators x, come from the cohomology of C*,

while the generators g, are similar to that of the Orlik-Solomon algebra for its rational

counterpart. However, the toric analogue of the Orlik-Solomon relation is much more

complicated.
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2.6. Arrangements of Higher Genus Curves

We are particularly interested in the case of abelian arrangements, and the special
case of elliptic arrangements. However, some results will hold when we consider
projective curves of higher genus. The following result overlaps with Theorem 3.8 in
the case of graphic elliptic arrangements.

By the work of Dupont and Bloch, we have the following presentation for graphic

arrangements in the case that C' is a complex projective curve of higher genus [Dupl].

Theorem 2.11. [Dupi] Let C' be a complex projective curve with genus g > 1.
Define the differential graded algebra A(A) as the exterior algebra on the Q-vector
space spanned by

{20y g |lveEV,ec&i=1,...,g}
modulo the ideal generated by the following relations:
(i) 22;(=1)ge; =+ ge; -+~ Ge,, Whenever {e; < --- < e} is a cycle,
(ii) (xﬁl(e) — xi(e))ge, (?J;L(e) - yi(e))ge, for each e € &,
(ifia) whyl, 2y, ypy) for i # j, and
(iith) xyy;, — 2]yl
The differential is defined by putting dz! = dy’ = 0 and
g
dge = Thie)Une) + Tie)Yite) — Z (Zhie) Yie) T Tie)Vh(e)) -
i—1

The DGA A(A) is a model for M (A).

Just as before, this algebra encodes both the combinatorics of the arrangement

and the geometry of the ambient space. The generators z,y’ come from the
15



cohomology of OV, and we write these generators and relations here explicitly since
we will use this presentation to show that the algebra is Koszul in Section 4.2. A
more elegant way of writing the differential is to say that the generator g. maps to
[A.] € H?(CY), where A, is the diagonal corresponding to the coordinates indexed

by h(e) and t(e) in CV.
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CHAPTER III

RATIONAL COHOMOLOGY

In this chapter, we study the rational cohomology of an abelian arrangement.
We describe a method to compute it and give a combinatorial presentation in the case
of unimodularity. We then discuss some more combinatorics and finish the chapter

with some examples.

3.1. Leray Spectral Sequence

Let A= {Hy,...,Hs} be a set of smooth connected divisors that intersect like
hyperplanes in a smooth complex variety X, and denote the complement of their
union in X by M(A). The inclusion f: M(A) — X gives a Leray spectral sequence
of the form

EP? = HP(X; Rf,Q) = H""(M(A);Q).

Recall that RYf,Q is the sheafification of the presheaf on X taking an open set U to
HY(U N M(A);Q). To make use of this spectral sequence, we need to examine the
sheaves RIf,Q.

Let x € X. In the following discussion, the localization of A at a flat will always
be with respect to the point x, and we will drop the superscript from our notation
for localizations. Take the unique smallest component F, of A containing x. Note

that x is a generic point of F,, and so for a small neighborhood U around x, we have

UNM(A) = M(Ag,). This means that the stalk of our sheaf R?f,Q at x is given by

HY(UNM(A); Q) = HI(M(AF,); Q).
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Note that the rank-¢ components (flats) of Ag, correspond exactly to the rank-
g components of A that contain F,. For such an F, we can consider the usual
localization of Apg, (a central hyperplane arrangement) at the component (flat)
corresponding to F' in Ap, , denoted by (Ag,)p. This is the same arrangement as

Ap. Then Brieskorn’s Lemma (Lemma 2.8) implies that

HY(M(Ar,):Q) = P H(M((Ar)r): Q) =
FDF, FOF,
rk(F)=q rk(F)=q

I
N
Z
©

Since x was a generic point of F},, the rank-¢ components containing F, are exactly
the rank-¢ components containing x. Thus, the stalk at x € X can be decomposed

as

(R1.Q. = @ H(M(A):Q).
F>x
rk(F)=q

Now, it is clear that the sheaf RYf,Q is supported on the union of the rank-q
components of A. We will define a sheaf e, for each component F', that is supported
on F'. Then we will show that R?f,Q is isomorphic to the direct sum of these constant
sheaves ep, taken over all rank-¢ components. This will help us prove the following

lemma:

Lemma 3.1. Let A = {Hy,...,H;} be a set of smooth connected divisors that

intersect like hyperplanes in a smooth complex variety X. Then

HP(X; RO £,Q) = @HP Q) ® H'(M(Ar); Q).

rk(F)=

Proof. Let F be a component of rank ¢, and consider the divisors in .4 that contain

F. These form an arrangement in X, which we denote by A|r. Also denote its
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complement in X by M(A|r). The inclusion g : M(A|r) — X defines a sheaf
er = RigFQ on X. First, observe that the support of e€p is equal to F. For any
x € F| there is a small neighborhood U of z in X such that U N M (A|r) = M(Ar).
This means that the stalk at any point x € F'is (ep), = HY(M(Ar); Q).

Moreover, the sheaf ep is constant on F. This is because, as we have previously
discussed, H*(M (A;i”)); @), and hence the stalks of ex, can be canonically identified

for any two points in F.

Let € := @ €r, a sheaf on X. The stalk at x € X is
tk(F)=q

= @D () @ H(MU)Q)

tk(F)=q tk(F)=q,
zeF

For every open U C X, there is an inclusion U N M (A) < U N M(A|r), which
then induces a map HY(UNM (A|r); Q) - HY(UNM(A); Q). This gives a (presheaf)
map € — RIf,Q. It is also an isomorphism on stalks, hence a sheaf isomorphism
€= R11,Q.

Returning to the F, term of our Leray spectral sequence for the inclusion f :

M(A) — X, we now have that

HP(X; Rf,Q) = H”(X;e)

EB H?(X;ep)

tk(F)=q

~ P H'(F;Q @ H(M(Ar); Q).

tk(F)=q

I
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If we further take X to be a projective variety, then the E, term of the spectral

sequence is all that is needed to calculate the cohomology of M (A).

Lemma 3.2. Let A = {H;,...,H,} be a set of smooth connected divisors that
intersect like hyperplanes in a smooth complex projective variety X, and denote its
complement by M (.A). Then all differentials d; in the Leray spectral sequence for the

inclusion f: M(A) — X are trivial for j > 2.

Proof. To show that higher differentials are trivial, we consider the weight filtration

on

HP(X;R1.Q) = P HP(F;Q) @ HY(M(Ap); Q).

rk(F)=q
Note that since F' is a smooth complex projective variety, HP(F;Q) is pure of
weight p. Since M(Ap) is the complement of a rational hyperplane arrangement,
HY(M(AF); Q) is pure of weight 2¢ (by [Sha]). This implies that H?(X; RIf.Q) is
pure of weight p + 2q.

Now, the differentials must be strictly compatible with the weight filtration, as
explained in the proof of Theorem 3 of [Tot]. Since the (p, ¢) position on the E; term
will also have weight p 4 2¢, the differential d; will map something of weight p+ 2¢ to
something of weight (p+ ) +2(¢—j+1) = p+2q — j + 2. Being strictly compatible

with weights implies that the only nontrivial differential must be when 5 = 2. O]

Moreover, if we consider only the cohomological grading (by p + ¢) on the Es

term, we have the following theorem.

Theorem 3.3. Let A = {Hy,...,H,} be a set of smooth connected divisors that
intersect like hyperplanes in a smooth complex projective variety X. The rational
cohomology of M (.A) is isomorphic as a graded algebra to the cohomology of Fs(.A)

with respect to its differential.
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Proof. By Lemma 3.2, the Leray spectral sequence degenerates at the F5 term. This
implies that the associated graded of H*(M(.A); Q) with respect to the Leray filtration
is isomorphic to the cohomology of Es(.A).

The groups EY? = EP4 that contribute to the k-th rational cohomology (when
p + q = k) each have distinct weight (as described in the proof of Lemma 3.2), and
so the Leray filtration is exactly the weight filtration. By the work of Deligne [Del,
p. 81}, the associated graded of H*(M(.A); Q) with respect to its weight filtration is

isomorphic to H*(M(A); Q) as an algebra. O

Remark 3.4. The E, term of the spectral sequence forms a differential bi-graded
algebra, denoted by F3(.A). The main result of this section was that we have an

isomorphism of algebras

H*(Ey(A)) = gr H*(M(A); Q),

where the right hand side is the associated graded with respect to the weight filtration.
In particular, if we consider the bi-grading (and not just the cohomological grading)
of Ey(A), we have

HP9(Ey(A)) 2 gr, o, H™ (M (A); Q).

and we can compute the mixed Hodge numbers of M(A).

Remark 3.5. The same method could be used to study the cohomology of an affine
hyperplane arrangement in C" or of a toric arrangement in (C*)". In fact, this is
originally due to Looijenga [Loo]. In these cases, Lemma 3.1 applies, but Lemma 3.2

and Theorem 3.3 do not.

1. Let A = {Hy,...,Hs} be an affine arrangement of hyperplanes in a complex

affine space X of dimension n, and denote the complement M(A) = X \ U, H;.
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For the Leray Spectral Sequence of the inclusion f : M(A) — X, the Es-term
decomposes into Ey? = G ry=gH(M(Ar); Q) and EY? = 0 for p # 0. This
forces the differentials to all be trivial, and we see that E5(.A) is the Orlik-

Solomon algebra H*(M(A); Q).

2. Let A = {Hy,...,Hy} be an arrangement of codimension-one subtori in a
complex torus X = (C*)", and denote the complement by M(A) = X \ U; H;.
The Es-term of the Leray Spectral Sequence for the inclusion f : M(A) — X

decomposes into components, so that

By = ®ur)— 1" (F; Q) @ HY(M (Ar); Q).

Here, F' is a complex torus and so E¥? is pure of weight 2(p 4+ ¢). Since the
differentials d; respect the weights, d; must be trivial for all j. Thus, Ey(A) =
gr;, H*(M(A);Q), the associated graded with respect to the Leray filtration.
This decomposition of the cohomology is the decomposition given by De Concini
and Procesi in [DCP1, Remark 4.3]. However, Fy(.A) and H*(M(A); Q) are not

isomorphic as algebras in this case.

Remark 3.6. Another interesting result for an abelian arrangement A4 in X comes
from considering the deletion and restriction arrangements, with respect to some
fixed Hy € A. Here, we mean the analogous notion to the theory of hyperplane
arrangements, where the deletion of Hy is the arrangement A" = A\ {Hy} in X and
the restriction to Hy is the arrangement A” of nonempty {H N Hy : H € A’} in

Hy. In the theory of hyperplane arrangements, the long exact sequence of the pair
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(M(A"), M(A)) relates the cohomologies of M(A), M(A"), and M(A"), as follows:

coo = HY(M(A)) = H(M(A)) = H Y M(A")) — HT(M(A) — ---

Moreover, this long exact sequence splits into short exact sequences relating these
cohomologies. In the abelian arrangement case, we can get the same kind of long
exact sequence. However, it does not split into short exact sequences. To study the
(nontrivial) boundary map, we can derive this long exact sequence in another way,

by taking the long exact sequence induced by a short exact sequence of complexes

0 — Ey(A)* — Ey(A)* — Ep(A") 1 = 0.

The boundary map is then seen to be

T HTH(M(A"):; Q)(=1) — H™H (M (A); Q)

where 7 : M(A") — M(A') is the closed immersion.

Remark 3.7. Dupont [Dupl] independently found the same differential graded
algebra as described here. He considers the cohomology of the complement of a
union Y = Y; U --- UY, of smooth hypersurfaces which intersect like hyperplanes
in a smooth complex projective variety X, and for simplicity he assumes that the
arrangement is unimodular. Dupont’s method uses the Gysin spectral sequence,
which degenerates at the F, term and has a differential graded algebra M*(X,Y") as
the Fy term. Setting A = {Y,...,Y;}, the differential graded algebras E5(.A) and
M*(X,Y) are isomorphic. Moreover, Dupont constructs a wonderful compactification
of these arrangements, so that the space X \ Y can be realized as the complement of
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a normal crossings divisor Y in a smooth projective variety X. Dupont also shows
functoriality of M* so that M*(X,Y) is quasi-isomorphic to M *()? , }7)

By the work of Morgan [Mor], the differential graded algebra M*(X,Y) is a
model for the space X \ Y = X \ }7, in the sense of rational homotopy theory. Since
our differential graded algebra F5(.A) is isomorphic to M*(X,Y) and hence quasi-

isomorphic to M*(X,Y), E3(A) is a model for the space M(A) = X \ Y.

3.2. Unimodular Abelian Arrangements

To explicitly describe the QQ-algebra structure of the F, term of the spectral
sequence, we assume further that A is a unimodular abelian arrangement. Recall
that we allow the H; € A to be a translation of an abelian subvariety of X; denote
this subvariety by H;. For each H; € A, let £; = X / H;, an elliptic curve, so that H;
is the kernel of the projection «; : X — FE;. The F5 term is a bi-graded algebra with

a differential, which we denote by E5(A). The (p, ¢)-th graded term is isomorphic to

P H'(F;Q) @ HY(M(Ar); Q)

rk(F)=q

by Lemma 3.1.

The multiplication of F5(.A) can be described as follows: Let 27 ® y; be in
HP (F1;Q) @ H' (M (AR, ); Q), and let 25 ® yo be in HP?(Fy; Q) @ H2(M(AR,); Q).
If /1N Fy, =0, then (z; @ y1) - (2 @ y2) = 0. Otherwise, let F' = F; N F, (which
by unimodularity is a component of A), p = p; + p2, and ¢ = ¢; + ¢2. Also let, for

J=1,2,7;: F— Fjand n; : M(Ar) — M(Ap,) be the natural inclusions. Then

(1 @) - (22 @ y2) = (1) (77 (21) U (22)) @ (107 (1) Uns(y2)),
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an element of HP(F; Q) @ H1(M(Ar); Q).
In particular, consider the case that F; = H; and F5, = X. For 1 ® g in
H(H; Q) ® HY(M(Apy,); Q) and z ® 1 in H?(X; Q) ® H°(M(Ax); Q), we have

(1®@g)-(z@1) = (=1 (x) ® g € H'(H;) @ HI(M(Ag,); Q).

Since H; is (a possible translation of) the kernel of some map «; : X — Fj, the kernel
of 7/ contains the image of o] in positive degree. This means that for p > 0, and any
element © € H?(X; Q) that is in the image of o, (1®g) - (z® 1) = 0.

We further observe that the row ¢ = 0 inherits an algebra structure from
H*(X;Q), and the column p = 0 inherits an algebra structure from the Orlik-
Solomon algebra. In particular, if A is central, then the column p = 0 inherits an
algebra structure from H*(M (Ap); Q) where Ay is the localization at the intersection
of all hyperplanes in A. These algebras are generated in degree one; moreover, they
will generate the entire Fy(A) algebra. This is because the map v* : H*(X;Q) —
H*(F;Q), where F' is a component and v : F < X is the natural inclusion, is
surjective.

Since the algebra is generated by F,° and Ey', it suffices to describe the
differential on H°(H;; Q) @ H'(M(Ag,); Q) for each H; € A. This has a canonical
generator, since the Orlik-Solomon algebra H*(M (Ag,); Q) has a canonical generator
in degree one. The differential here is determined by the differential of the Leray
spectral sequence for the inclusions X \ H; < X, which takes the generator to
[H;] € H*(X;Q).

Now we will describe an algebra A(A) determined by the arrangement .4
and then prove in Theorem 3.8 that this algebra is isomorphic to FEy(A). Let

B(A) = H*(X;Q)g1, - - -, g¢], a graded-commutative, bigraded algebra over Q, where
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H'(X;Q) has degree (i,0) and each g; has degree (0,1). Let I(A) be the ideal in

B(A) generated by the following relations:
(1) gi, - gs, whenever Nf_ | H; = 0.

k
(2) z:(—l)j_lgi1 =G, "+ i, Whenever H; ..., H; are dependent.

Jj=1

(3) ai(x)gi, where a; defines H; and x € H'(E;; Q).

For notational purposes, we denote gs = g;, - - - ¢;, for S ={H,;,,..., H;, } and dgg =
Zj}:l(_l)j—lgil i Gy

Let A(A) = B(A)/I(A). Since I(A) is homogeneous with respect to the grading
on B(A), A(A) is a bi-graded algebra over Q. Moreover, there is a differential on
A(A) defined by dg; = [H;] € H*(X;Q) and dz = 0 for z € H*(X;Q).

Theorem 3.8. Assume that A = {H,..., Hy} is a unimodular abelian arrangement.

Then there is an isomorphism of bi-graded differential algebras
¢ :A(A) = Ey(A).

Proof. First, we show that there is a surjective homomorphism ¢, by defining a map

0 : B(A) — E»(A) which induces ¢ as follows: Let
0(g:) =1®e; € H'(H;Q) @ H' (M (Ay,); Q)
where e; is the canonical generator of H'(M(Apg,); Q), and for z € H'(X;Q), let

O(z) =2®1€c H(X;Q)® H'(M(Ax); Q).

26



We have already observed that Fy(A) is generated by Fy° and EY'. Even more
explicitly, the elements 1 ® e; and = ® 1 as above generate the algebra. Thus, 6 is
surjective.

By our observations above, it is easy to see that 6(gs) = 0 whenever Hg = ().

For relation (2), suppose S is a dependent subset of A. Then

0(9gs) = 1 ® (9es) € H'(Hs: Q) © H™ (M (Ap,); Q)

which is zero since deg = 0 in the Orlik-Solomon algebra H*(M (Ap,); Q). Also, by
our observations above, 6(a;(z)g;) is equal to zero. Therefore, 6(1(A)) = 0 and hence
6 induces the desired surjection ¢ : A(A) — Es(A).

We can decompose B(.A) with respect to the components of the arrangement,
B(A) = ®rBp, where Bp is the Q-vector space spanned by xgs for all standard
tuples S of hyperplanes in A whose intersection is exactly F', and all z € H*(X;Q).
The ideal I(.A) is homogeneous with respect to this grading. Thus, A(A) can be
decomposed by A(A) = ®rAp, where Ap = Bp/Ip with Ir := I(A) N Bp.

The FE; term of the Leray spectral sequence can also be graded by the
components. Here, we have Fy(A) = @pFy(F), where for each component F,
Ey(F) = H*(F; Q) ® H*")(M(Ap); Q).

It suffices to show that, as Q-vector spaces, Arp = FE5(F). We do this by
examining Arp. We have Br = ©gH*(X;Q) - gs, where the direct sum is taken
over all standard tuples S of hyperplanes in A with Hg = F'. If we consider just the

ideal I; generated by relations (1) and (2), then

Br/(Ii N Bp) = @sH*(X;Q) - gs,

27



where the sum is taken over all non-broken circuits S with Hg = F. This is because
relations (1) and (2) are just the Orlik-Solomon relations on the g;’s associated to F.

Next, we claim that relation (3) implies that for all H; O F, all S C A with
Hg = F, and all z € H'(E;; Q), we have o} (z)gs € I. This implies that relation (3)
depends only on the component F', and not on the choice of subset S. This claim is
clearly true when H; € S. If H; ¢ S, then take a maximal independent subset of S,
denoted by T'. Then C := T U {H,} is a dependent set, and Ho = Hr = F. We may
assume, for ease of notation, that our hyperplanes are ordered so that gs = g(s—1)gr
and go = ¢g;gr. Then we have gr — ¢;0g9r = 0gc € I, since C is dependent. This
implies that
a;(z)gs = o (x)g(s-m)gr

= a; (2)g(s-1) (97 — 9:09r) + o] (2)g(s-1)9:097

el

Let Jp be the ideal in H*(X;Q) generated by o (z) for all H; O F and x €

HY(E;; Q). Now, since H*(F;Q) = H*(X;Q)/Jr, we must have that

Ap 2 QH"(F;Q) - g5

where the sum is taken over all non-broken circuits S with Hg = F. This is then
isomorphic to H*(F; Q)@ H1 (M (Ar); Q) = Ey(F'), since the non-broken circuits form
a basis for H1(M(Ar); Q). O

Remark 3.9. If A is not unimodular, we can still define the bi-graded differential

algebra A(A) and the homomorphism ¢ : A(A) — E3(A), but it will no longer be
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surjective. The problem is that if an intersection Hg of subvarieties has multiple
components, the image of ¢ will include the element 1 € H°(Hg;Q), but it will not

include the corresponding classes for the individual components.

3.3. Combinatorics

For both linear and toric central arrangements, the Poincaré polynomial of the
complement is a specialization of the Tutte polynomial, which is determined by the
associated matroid (see [DCP2, Moc]). While the combinatorial model in Theorem
3.8 gives a way of computing cohomology of a unimodular abelian arrangement, it
is still unknown if there is a combinatorial formula for the Poincaré polynomial (or
Betti numbers). However, this model does give us a combinatorial formula for the
Euler characteristeric and E-polynomial as a specialization of the Tutte polynomial.
In fact, using the arithmetic Tutte polynomial (see [Moc]|), these results will work for
non-unimodular arrangements, but for simplicity we assume unimodularity.

The E-polynomial is a specialization of the Hodge polynomial, which can be

computed using the bi-grading on A(A) by
E(t) =) dim(AP9)@H2a(— 1)+,
P

The Tutte polynomial for the matroid on A is defined as

T(x,y) = Z (z — 1)AEB) () _ 1)IBI=k(B),
BCA

Theorem 3.10. Let A be a unimodular central abelian arrangement with rk(A) = n.

2t —1
Then the E-polynomial is E(t) = (—t*)"T (—, 0).

t2
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Proof. The proof is very similar to Moci’s proof in the toric case (that the Poincaré
polynomial of a toric arrangement is a specialization of the Tutte polynomial) [Moc,
Theorem 5.10]. In fact, we will use Lemmas 5.5 and 5.9 from [Moc], whose proofs
are valid in our case as well. These lemmas give us that for each component F', the

number of non-broken circuits associated to F' is

nbe(F) = (=)™ 3 (~)lPl
BCA

Then we have (where P is the set of components of A):

BCA
_ Z Z t2 rk(B 75)2(1171&((3))(_1)|B|7rk(B)
FeP BCA
Hp=F
_Z t2 rk(F —t) 2(n— rkF) rkF) Z |B|
FeP BCA
HpeF

— Z an t2 rk(F) (1 . t)Q(n—rk(F))

Frep

y (nbc oy S <z(n —;k(F))) (_ﬂp)

FeP »

- Z Z < )4 nbe( )Zdime(F)(—t)p>
rk(F) q p

= Z Z dim(HP(F)) dim(HI (M (Ap)))tP+H22(—1)P+a

F
rtk(F)=q

— E(t).
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Now, since the Fuler characteristic is a specialization of the E-polynomial, we

get the following corollary:

Corollary 3.11. If A is a unimodular central abelian arrangement with rk(.A) = n,

then the Euler characteristic of M(A) is equal to

where the sum on the right is over all dimension-zero components F'.

3.4. Examples

We will state the case of an ordered configuration space (the complement of the
braid arrangement) on an elliptic curve, which is the model give by Kriz [Kri] and

Totaro [Tot].

Example 3.12. Let I' be the complete graph on n vertices, and A = A(T', E) for
a complex elliptic curve E. Then A(A) is a differential graded algebra which is the

quotient of the graded-commutative Q-algebra generated by

{x17"'7$n7y1a"'7ynagab | 1 Saabgn;a#b}7

with each z; and y; in degree (1,0) and g, in degree (0, 1), by the following relations:
(1) Gab = Gba,
(2) GabGac + GoeGva + Geager = 0 for a, b, ¢ distinct, and

(3) (o — 2b)9abs (Ya — Yb)Yab-

The differential is given by g = (x4 — ) (Yo — Up)-
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Next, we will show an example in which the presentation from Theorem 3.8 is
used to compute the cohomology of M(.A). Moreover, if we consider the bi-grading
on A(A) = Ej(A), then we can compute the dimension of gr; H(M(A);Q), the
associated graded with respect to the weight filtration. By Remark 3.4, the (p, ¢)-th
graded piece of H*(A(A)) will be isomorphic to gr,,,, H?*(M(A); Q). We encode
the information about dimension in a two-variable polynomial H(¢,u), where the

coefficient of t*u/ is the dimension of gr; H'(M(A); Q).

Example 3.13. Let X = E? for an elliptic curve E, and let o : E? — E be
projection onto the i-th coordinate. Consider the arrangement A = {H;, Hy, H3} in
E? with H, = ker oy, Hy = ker ap, and Hs = ker(cr; — ). Pick generators x and y
for H*(F;Q), where zy is the class of the identity of E. Then H*(E?; Q) is generated
by z; = of(z) and y; = o (y) for i = 1,2. This then implies that the algebra B(.A) is
the exterior algebra with generators {x1, y1, 2, Y2, g1, 92, g3 }-

The relations in /(.A) can be written as
(1) no relations of the type gs (since all intersections are nonempty)
(2) 9293 — 193 + G192 (since {Hy, Hy, H3} is minimally dependent)

(3) 191, Y191, 292, Y292, (x1 — 2)gs, and (y1 — y2)gs.

The differential of A(A) = B(A)/I(.A) is defined by dz; = 0, dy; = 0, dg; = [H;]| =
L1y, dgs = [Ha] = xay2, and dgs = [H3| = 2191 — T1y2 — Tayr + T2ypa.

Computing cohomology, the polynomial described above becomes

H(t,u) = 1+ 4tu + 3t*u* + 2t°u>.
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Setting u = 1, we obtain the Poincaré polynomial P(t) = 1 + 4t + 5t%. Setting
t = —1, we obtain the E-polynomial F(u) = 2u® + 3u® — 4u + 1. Finally, the Euler

characteristic is P(—1) = E(1) = 2.

To compute the next examples, and many more, we could use Macaulay2 [GS].
In particular, I have written a program that computes the two-variable Hodge
polynomial for any elliptic arrangement defined from a unimodular matrix. The

following is a list of some computations for graphic arrangements on four vertices.

Example 3.14. Consider the following graph, which defines an abelian arrangement

by taking the columns of the given matrix.

9 3 -1 0 0 -1
1 -1 0 O
0o 1 -1 0
1 4
o 0 1 1

Using Macaulay2 to compute cohomology of our algebra, we find the two-variable

Hodge polynomial

H(t,u) = 265" 4 3t5ub + 4t°u® + 4t*u’ + 6" 4 19tu*

+ 2630 + 3t%u* + 326303 + 248%u® + Stu + 1.

Example 3.15. Consider the following graph, which defines an abelian arrangement

by taking the columns of the given matrix.

22— 3
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Using Macaulay?2 to compute cohomology of our algebra, we find the two-variable

Hodge polynomial

H(t,u) = 220" + 7t2u® + 4t5u® + 4t*uS + 18t4® + 18t*u?

+ 2630 + 15630 + 30830 + 46%u® + 236202 + Stu + 1.

Example 3.16. Consider the following graph, which defines an abelian arrangement

by taking the columns of the given matrix.

2——3

Using Macaulay2 to compute cohomology of our algebra, we find the two-variable

Hodge polynomial

H(t,u) = 4t°u” + 10%u® + 4t3u® + 8t*uS + 28t*° + 17t4u*

+ 4t30° + 26830t + 283> + 8t2ud + 22t%u% + Stu + 1.

Also note that the E-polynomial is

BE(u) = H(—1,u) = —(u—1)*(2u — 1) (v* + 2u — 1)(2u® + 2u — 1)

and the Euler characteristic is equal to 0.
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CHAPTER IV

RATIONAL HOMOTOPY THEORY

The results stated in this chapter are from a joint project with Justin Hilburn.
This material was written entirely by me, with editorial assistance from my co-author.
Moreover, I was the primary contributor to the proofs on Koszulity (Sections 4.1
and 4.2) and made a significant contribution to the application of quadratic duality
to the rational homotopy theory of abelian arrangements (Section 4.3). Justin’s
contribution to the method of using quadratic duality to extract information about

rational homotopy theory was invaluable.

4.1. Toric Arrangements

Since the complement to a chordal toric arrangement is formal (as in the linear
case), we want to show that its cohomology ring is Koszul. Our argument will be
similar to (but slightly more complicated than) the linear case. We will provide a
Q-basis for the cohomology ring, use it to show that our generating set of the ideal

is a Grobner basis, and then reduce the Grobner basis to a quadratic one.

Lemma 4.1. Let I' = (V,€) be a chordal graph. Let F' be a flat of the arrangement
A = A(T,C*), and let S be a non-broken circuit associated to F'. Define I to be

the ideal generated by

{zhe) —2ue) | € € F}

in A(z, |veV)= H*((C*)), and let Hp = NeepH, C (C*)Y.
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1. With the degree-lexicographic order and x, < x,» whenever v < v’, the set

Gg = {xh(e) — T(e) | e € S}

is a Grobner basis for Ip.

2. The set {x;, ---x;, | h(e) & {i1,...,i,.} for each e € S} is a basis for

H*(Hp) = Az, | v € V)/Ir

and this basis does not depend on the choice of nbc set S.

Proof. For linear relations, finding a Grobner basis is equivalent to Gaussian
elimination, and so consider the matrix Mp whose rows are indexed by edges e € F,
whose columns are indexed by the vertices in decreasing order, and whose entries
are zero except (Mp)ene) = 1 and (Mp)eye) = —1 (so that row e corresponds to
the element xj() — 24)). Note that since |S| = rk(S5) = rk(MF), we may use row
operations so that the rows corresponding to elements of S remain unchanged while
all other rows are zero. Moreover, since |{h(e) | H. € S}| = |S], the matrix is in row
echelon form. Thus, Gg is a Grobner basis for .

For part (2), by Grobner basis theory, the set of monomials not in In(/z) form a
basis for H*(Hp). Since the ideal In(/r) is generated by In(Gg) = {xpe)|e € S}, the
monomials not in In(/g) are precisely those stated. Since S is an nbc set associated
to F', it spans the subgraph I'[F]. Thus {h(e) | e € F'} = {h(e) | e € S} and the basis

given does not depend on S. [

36



For ease of notation, we will use

TAGSs ‘= Tay **LapGey * Yoy,

where A = {a; < --- <a,}and S = {c; < --- < ¢}. We will also denote relations

(ia) and (ib) from Theorem 2.10 by rg for a cycle S.

Lemma 4.2. Let I' = (V, £) be a chordal graph, and let A = A(I", C*). Define P to
be the set of all monomials z4gs such that S is a non-broken circuit and h(e) ¢ A

for all e € S. Then P is a basis for H*(M(A)).

Proof. There is a decomposition into the flats of A [DCP1, Remark 4.3(2)] (see also
Lemma 3.1), which is given by the following: For a flat F, let Hp = NeepH, C (C*)Y,

and let Vg be the vector space spanned by gg for all nbc sets S associated to F'. Then

H*(M(A)) = @pH (Hr) ® Vp.

Denote H*(Hp) ® Vg by Ap. To show that P is a basis for H*(M(.A)), it suffices to

show that

PN Ap ={zagc | h(c) ¢ A for c € C,C is an nbc set associated to F'}

is a basis for Ar. But this follows from Lemma 4.1. O
Theorem 4.3. Let A be a chordal toric arrangement. Then H*(M(A)) is Koszul.

Proof. Fix a degree-lexicographic order on H*(M(A)) that is induced by our order

on V. That is, g. < ger if e < €/, and p(e) < ge < Tp(e)+1. We will show that

G = {(%(e) — Tye))Ge,Ts | € €E, S a circuit}
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is a Grobner basis with this order which can be reduced to a quadratic Grobner basis.

We have

In(G) = {ne)ge, 9s | € € E, S is a broken circuit} .

Then P is the set of monomials that are not in (In(G)). Since (In(G)) C In(f), P
contains the monomials that are not in In(/). Since the set of monomials not in In(7)
is a basis for H*(M (A)) contained in the basis P, and H*(M (A)) is finite dimensional,
we must have equality throughout. That means that the monomials in (In(G)) are
exactly the monomials in In(/). Since these ideals are generated by monomials, they
must be equal. Note that the relations of type (ii) are already quadratic. In a similar

way as in the linear case, we can reduce our relations rg to quadratic ones as well. [

Recall that if X is a formal space, then H*(X) is Koszul if and only if X is
rationally K (m, 1) [PY, Theorem 5.1]. We saw this result used in the linear case.
Since formality holds in the toric case, we can apply their work to obtain the following

theorem:
Theorem 4.4. Let I' = (V,£) be a chordal graph and A = A(T",C*).
1. The holonomy Lie algebra of M(.A) is the Lie algebra dual to H*(M(A)).

2. The minimal model of M (.A) is the standard (or Chevalley-Eilenberg) complex
of L, Q(L*).

3. M(A) is a rational K (m, 1) space.
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4.2. Koszulity of A(A)

We first show that A(.A) is Koszul in the case of abelian arrangements, and then
we extend to curves of higher genus.

Let I' = (V, £) be a chordal graph, and let £ be a complex elliptic curve. For the
chordal abelian arrangement A = A(T", E), consider the algebra A(.A) from Theorem
3.8 (ignoring the differential). In this section, we will prove that A(A) is Koszul. The

proof is very similar to (but slightly more complicated than) the toric case.

Lemma 4.5. Let I' = (V,€) be a chordal graph. Let F© C & be a flat of the
arrangement A = A(T', E), and let S be a non-broken circuit associated to F'. Define

I to be the ideal generated by

{xh(e) — Ty(e)s Yn(e) — Ye(e) | € € F}

in A(z,,y, |veEV)= H*(EY), and let Hp = NeepH, C EY.

1. With the degree-lexicographic order and x, < y, < z, < 3, whenever v < v/,

the set Gg := {xh(e) — Ti(e), Yn(e) — Yi(e) | € € S} is a Grobner basis for .

2. The set {x;, - z,.y5, - y;, | h(e) & {t1,... 9, J1,..., 5t} for each e € S} is a
basis for

H*(Hp) = My, yo | vEV)/Ip

and this basis does not depend on the choice of nbc set S.

Proof. Consider the matrix Mg from the proof of Lemma 4.1. Build a 2 x 2 block
matrix, where the upper left and lower right blocks are copies of Mg and the other
blocks are zero. In the upper half of the matrix, row e corresponds to () — Ty,

and in the lower half of the matrix, row e corresponds to yu(e) — Yi(e)- By a similar
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argument as before, we can eliminate rows that don’t correspond to elements of S
and we're left with a matrix in row echelon form. Thus, we have a Grobner basis.

The proof of the second statement mimics the proof in the toric case, with

In(Gg) = {Ih(e),yh(e) | e € S}. L]

Lemma 4.6. Let I' = (V,€) be a chordal graph, and let A = A(I', E). Define
P to be the set of all monomials x4yggs such that S is a non-broken circuit and

h(e) ¢ (AU B) for all e € S. Then P is a basis for A(A).

Proof. By Lemma 3.1, there is a decomposition into the flats of A, given by the
following: For a flat F, let Hr = NeerpH, C EY, and let Vr be the vector space

spanned by gs for all nbc sets S associated to F. Then

Denote H*(Hp) @ Vg by Ap. To show that P is a basis for A(A), it suffices to show

that

PN Ap ={zaypgs | h(c) ¢ (AU B) for c € S, S is an nbc set associated to F'}

is a basis for Ar. But this follows from Lemma 4.5. O
Theorem 4.7. Let A be a chordal abelian arrangement. Then A(.A) is Koszul.

Proof. Fix a degree-lexicographic order on A(.A) that is induced by our order on V.

That is, g < g if e < €', and pe) < Yn(e) < ge < Th(e)+1 < Yn(e)+1- We claim that

G = {(a;h(e) — Ty(e))Je> (Yn(e) — Yi(e)) e, Ogs | e € E, S a circuit}
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is a Grobner basis with this order. Here,
In(G) = {xh(e)ge, Yn(e)9e, 9s | € € €,S is a broken circuit}

and P from Lemma 4.6 is the set of monomials not in (In(G)). By an argument similar
to that in the toric case, we can conclude that G is a Grobner basis. Moreover, using
the fact that we have a chordal graph, we can again reduce this (in the same way) to

a quadratic Grobner basis, thus proving Koszulity. ]

Now we extend our results to higher genus curves. Let T' = (V, £) be a chordal
graph, and let C' be a complex projective curve of genus g > 1. For the chordal
arrangement A = A(T, C'), consider the algebra A(A) from Theorem 2.11 (ignoring
the differential). We will prove that A(A) is Koszul. The proof is very similar to that

of the abelian case just discussed.

Lemma 4.8. Let I' = (V,€) be a chordal graph. Let F© C &£ be a flat of the
arrangement A = A(T", C'), and let S be a non-broken circuit associated to F'. Denote
Hp = NeerpH, C CY. Then H*(Hp) = A(z!,y |v e V,i=1,...,9)/Ir where I is

the ideal generated by the relations
(1) Thie) = Tite) Yn(e) — Yie) for € € F,
(i) i, yyyd, wiyl for i # j, and
(iil) zhy; — 2yl
This algebra has basis

{xhl---xfﬂlgyél---y%g | AinB; =0 fori>1;{h(e) | e € S} N (A UDB;) =0Vi}
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and this basis does not depend on the choice of S.

Proof. The relations generating the ideal form a Grobner basis because the relations

(ii) and (iii) form a Grobner basis in the exterior algebra

Aty |vé{h(e)|e€ F}i=1,...,9)

Just as in the proof of Lemmas 4.1 and 4.5, we can reduce the relations to only needing
e € S, and the choice of S does not matter since {h(e) | e € F'} = {h(e) | e € S}. The

basis given is a basis because it is the set of monomials not in the initial ideal. O

Lemma 4.9. Let I' = (V,€) be a chordal graph, and let A = A(",C). Define P
to be the set of all monomials z} --- xigyih X -ng gs such that S is a non-broken
circuit, h(e) ¢ (A; U B;) for all e € S and all 4, and A; N B; = () for ¢ > 1. Then P is
a basis for A(A).

Proof. There is again a decomposition into the flats of A, given by the following: For
aflat F, let Hp = N.cpH, C CY, and let Vr be the vector space spanned by gg for

all nbe sets S associated to F'. Then

Denote H*(Hp) ® Vi by Ap. To show that P is a basis for A(A), it suffices to show

that PN Ap is a basis of Ar. But this follows from Lemma 4.8. O

Theorem 4.10. Let C' be a complex projective curve of genus g > 1, and let A be a

chordal arrangement in CY. Then A(A) is Koszul.

42



Proof. Fix a degree-lexicographic order on A(A) that is induced by our order on V.

We claim that

G = {(The) — The))9er Whiey — Yi(e))9e, Ogs, R | e € €,5 a circuit}

is a Grobner basis with this order, where R denotes the set of relations (iiia) and

(iiib) in A(A). Here,

In(G) = {ZyYys Thie)Ges YieyJer 95 | B a broken circuit}

and P from Lemma 4.9 is the set of monomials not in (In(G)). By an argument
similar to the previous cases, we can conclude that GG is a Grobner basis. Moreover,
using the fact that we have a chordal graph, we can again reduce this (in the same

way) to a quadratic Grobner basis, thus proving Koszulity. O]

4.3. Abelian Arrangements and Higher Genus Curves

Given a chordal abelian arrangement A, we compute the quadratic dual to the
quadratic DGA A(A) and give a combinatorial presentation for the Lie algebra dual
to A(A). This then gives us a combinatorial description of m, the Malcev
Lie algebra L(m(M(A))), and the minimal model of M (A). Finally, we will show that
M (A) is a rational K (7, 1) space. These results are also stated here for projective
curves of higher genus.

Fix a complex projective curve C' of genus g > 0 and a chordal graph I' = (V, £),
and consider the chordal abelian arrangement A = A(I",C). We will use quadratic-

linear duality to study the rational homotopy theory of M(A).
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Let L be the free Lie algebra generated by af,bi c. for v € V, e € £, and

v YU

1=1,...,¢g subject to the following relations:

(1) lay, @] = [by, 0] = 0 for v,w €V,

(ua) [b;‘l(e)’ af‘:(e)] = [bf‘:(e)’ a;L(e)] = Ce for e € 87

(iib) [a!,b7] = 0 if v # w and there is no edge connecting v and w, or if v # w and
L F 7

(iic) 29 [al,bl] = Zce for v eV,

or t(e) v
(ilia) [a, c.] = [b%,c.] =0 for e € € and h(e) # v # t(e),
(iiib) [al, T at( s Ce] = [bﬁb(e) + bi(e), c.]=0forecg,

(iva) [ce, cer] = 0 whenever e and €’ are not part of a 3-cycle, and
(ivb) [Ce,, Cey + Ces] = 0 whenever {eq, ez, €3} is a cycle.

It is clear that {a!,b! | v € V,i =1,...,p} is enough to generate the Lie algebra.

However, when we consider the universal enveloping algebra U(L) as a quadratic-

linear algebra in Theorem 4.11, we want the classes c. to lie in the first filtered piece.

One may also note that relations (iiib) and (ivb) follow from the other relations.
The following theorem generalizes the elliptic curve case of the main theorem of

[Bez]. Using the Lie algebra dual to A(A), this theorem gives a description of the

Malcev Lie algebra of M(A) when A is chordal.

Theorem 4.11. Let I' = (V, ) be a chordal graph, A = A(T',C), and L be the Lie

algebra described above. Then we have the following:
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1. Consider the universal enveloping algebra U(L) as a QLA whose first filtered

piece is spanned by al,bi,c, for v € V and e € £ Then U(L) is a Koszul

v v

quadratic-linear algebra which is the nonhomogeneous quadratic dual to the

Koszul DGA A(A).

2. U(L) = Q[m(M(A))], where the completions are each with respect to the

augmentation ideal. This isomorphism respects the Hopf algebra structures.

3. L = L(m(M(A))), where the completion of L is with respect to the filtration

by bracket length.

4. The completion of L with respect to the filtration by bracket length is isomorphic

to the Malcev (or Q-nilpotent) completion of (M (A)).

Proof. By computing the quadratic-linear algebra dual to A(A), we see that it is
indeed U(L). Since A(A) is Koszul by Theorem 4.7 or 4.10, U(L) is also Koszul.

Statements (2) and (3) follow from Theorem 2.6. O

Since A(A) is a Koszul model for M(A), Theorem 2.6 gives us the following
proposition and corollary, which describes the minimal model of M(A) and shows

that M (.A) is rationally K (m,1).

Proposition 4.12. Let C' be a complex projective curve of genus g > 1, I' = (V, €)
a chordal graph, A = A(T', C), and L be the Lie algebra described above. Consider
L* with the grading by bracket length. Then the standard (or Chevalley-Eilenberg)

complex (L*) is the minimal model for M (A).

Corollary 4.13. Let C be a complex projective curve of genus g > 1 and I a chordal
graph, so that A = A(T",C) is a chordal arrangement. Then the complement M (.A)

is a rational K (m,1) space.
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Remark 4.14. Not only is M (.A) rationally K (7, 1), but it is not hard to show that
M(A) is also K(m,1). As an easy case, the punctured elliptic curve is homotopic
to a wedge of circles and hence is K(m,1). Then by induction on |V| and using the
long exact sequence in homotopy of a fibration, one can show if that if I' = (V,€) is
chordal, then the complement to A(I" — v, E') is K(m,1). The fibration arises as the
restriction of the projection EY — EYV™" to X ar ) — XaAr—v,p), where v € V is the
maximum vertex in our perfect elimination ordering. The fiber of this fiber bundle is

homeomorphic to E \ {k points} where k = |E \ (€ — v)].

Remark 4.15. Since we have a description of the minimal model via this Lie algebra,
this provides an alternative method of computing cohomology. We saw one method
in Chapter III (particularly Section 3.4), but we could instead compute cohomology

using Lie algebra homology.

Theorem 4.16. Let E be a complex elliptic curve of genus ¢ > 1 and I' a chordal
graph, so that A = A([', E) is a chordal arrangement. If I' has at least one cycle,

then M(.A) is not formal.

Proof. By Corollary 4.13, M(.A) is rationally K(m,1). If it was also formal, then
by [PY, Theorem 5.1], the cohomology of A(A) would have to be a Koszul algebra.
However, we argue that H*(A(A)) is not even generated in degree one, which implies
that it is not quadratic (hence not Koszul). We do this by explicitly producing an
element of H*(A(A)) that cannot be generated by anything of lower degree.

Label the vertices in the cycle by e; < es < e3, and label the vertices of the cycle
by v1 = t(e1) = t(e2), va = h(e1) = t(es), and vs = h(ez) = h(ez). Denote z; = x,,
and g; = g.,. Consider the element v = (z9—x3)go+(x1—13)g3+(x3—22)g1 € AVL(A).
It is easy to check that « defines a nontrivial element of H%(A(A)) (that is, dy = 0

and + is not in the image of d).
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Next, we claim that H%! = 0 so that H'(A(A)) = H** = H*(CY). We need only
show that d : A% — A2%0 has a trivial kernel. Assume that some linear combination

Zeeg Cefe € ker(d> Then

0= Z Cedge

e

= Z <Ce$h(e)yh(e) + CeyeyYu(e) T Z CeheyYi(e) T Cext(e)yh(e))>

:ZZ c(v, w,Dzyy,, + Y c(v)y,

v,weY =1 veY

where the coefficients are ¢(v, w, i) = ¢, if there is an edge e connecting v and w and 0
otherwise, and ¢(v) = Y j(e)=v or Ce. Note that the set {z}y,, 2Ly’ | v # w} is linearly
independent, which impligsfe:fr coefficients must be zero. In particular, each ¢, must
be zero.

Now, since H*(A(A)) = H'(CY), the subring of H*(A(A)) must only contain

elements of pure weight. Our element v is not of pure weight, and so it is not generated

by H*(A(A)). m
We end with an example, demonstrating non-formality.

Example 4.17. Consider the case of an elliptic curve. The braid arrangement of
type Ag corresponds to the complete graph I' on three vertices V = {1 < 2 < 3} with
edges labeled {12, 13,23}.

The DGA A(A) is the quotient of the exterior algebra A(x,,y,,g.) by the ideal
generated by

(1) (x5 —x5)9i5, (i — ;)95
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(i) 912913 — 912923 + G13923

with differential dg;; = (z; — ;) (yi — y;)-
By a computation similar to that in Example 3.13, we get the two-variable Hodge

polynomial

H(t,u) = 1+ 6tu + 12t%u® + 2t%u® + 106%u° + 4t3u* + et*u® + 2t"0°.

We can see explicitly that the degree one part of the cohomology is pure, but we
have higher cohomology that is not pure, demonstrating that the algebra cannot be
generated in degree one. In fact, our element v from the proof of Theorem 4.16 and

its y-counterpart are the only two extra generators that we need.
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