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DISSERTATION ABSTRACT

Deborah A. Vicinsky

Doctor of Philosophy

Department of Mathematics

June 2015

Title: The Homotopy Calculus of Categories and Graphs

We construct categories of spectra for two model categories. The first is the

category of small categories with the canonical model structure, and the second

is the category of directed graphs with the Bisson-Tsemo model structure. In

both cases, the category of spectra is homotopically trivial. This implies that the

Goodwillie derivatives of the identity functor in each category, if they exist, are

weakly equivalent to the zero spectrum. Finally, we give an infinite family of

model structures on the category of small categories.
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CHAPTER I

INTRODUCTION

A model category is essentially a category in which there is a notion of

homotopy. The standard example is T op, the category of topological spaces.

Another example is the category Ch(R) of bounded-below chain complexes

of modules over an associative unital ring R, where homotopy means chain

homotopy. More formally, a model category is a category that has all small limits

and colimits together with a model structure, which consists of three classes

of morphisms called weak equivalences, fibrations, and cofibrations satisfying

certain axioms [Hov99].

In this dissertation, we consider model categories of graphs and categories.

Bisson and Tsemo [BT+09] defined a model structure on a category of directed

graphs, denoted Gph∗, in which a graph map is a weak equivalence if it is bijective

on n-cycles for all n ≥ 1. A similar but more complex category is Cat∗, in which

the objects are pointed small categories and the morphisms are functors [Rez96].

In Cat∗, the weak equivalences are equivalences of categories.

In the early 1990’s, Goodwillie invented a method for analyzing certain

functors F ∶ T op → T op in a way that mimics the method of Taylor series from

calculus [Goo03]. The Taylor series of a function f ∶ R → R gives us a way

to approximate the value of f using polynomial functions. Furthermore, under

the right circumstances, we can make our approximation arbitrarily close to the

correct answer, and the series converges to the value of the function. The goal

of Goodwillie calculus, also known as homotopy calculus, is to approximate

F with other functors that are homotopically simpler so that the values of the

1



approximations approach the value of the functor, at least for some inputs. These

approximating functors are called polynomial functors and are denoted PnF.

There are natural maps between these polynomial functors, which results in a

“Taylor tower”

. . . PnF → Pn−1F → . . . → P0F = ∗.

Ideally, the inverse limit of this tower is F. We define DnF to be the fiber of the

map PnF → Pn−1F. Each DnF corresponds to a spectrum, which is called the nth

derivative of F.

Goodwillie’s methods have been generalized to other model categories.

Although the domain and codomain of a functor need not be the same, the

derivatives of the identity functor 1 ∶ C → C on a model category C are of particular

interest. Here the analogy to regular calculus becomes more tenuous as 1 is rarely

polynomial itself. The complexity of 1 in terms of homotopy calculus is related to

the complexity of the homotopy theory of C.

The derivatives of 1 often have the structure of an operad, which is an object

that models a certain algebraic property. For example, there is an operad that

encodes commutativity and another that encodes associativity. There is one

operad, called the Lie operad, that determines if a vector space has the structure

of a Lie algebra. Walter showed that the derivatives of the identity functor on

DGLr, the category of differential graded Lie algebras over Q that are zero below

level r, have the structure of the Lie operad [Wal06].

In all known examples, the derivatives of a functor F ∶ C → C are objects

in the category of spectra on C [Hov01], which is denoted SpN(C, Σ) and is

called the stabilization of C. The objects of SpN(C, Σ) are sequences {Xi}i≥0 of

objects of C together with structure maps ΣXi → Xi+1, where Σ ∶ C → C is
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the suspension functor. Morphisms in SpN(C, Σ) act level-wise and respect the

structure maps. We show that Σ2X is weakly equivalent to the zero object in

Cat∗ for all X ∈ Ob(Cat∗) and, moreover, that any object in SpN(Cat∗, Σ) is weakly

equivalent to the zero spectrum {0, 0, . . .}. Therefore we expect the derivatives of

the identity functor 1 ∶ Cat∗ → Cat∗ to be homotopically trivial. In other words,

the derivatives would have the structure of the trivial operad.

We apply similar methods to the category Gph∗. We construct the suspension

functor Σ ∶ Gph∗ → Gph∗ and show that ΣX is weakly equivalent to the zero object

of the category for all X ∈ Ob(Gph∗). Although this is not enough to conclude

that there is a category of spectra SpN(Gph∗, Σ) having the properties necessary

to apply Goodwillie’s work, we show that if the derivatives of the identity functor

in this category exist, then they are homotopically trivial.

Overview

In chapter 2, we explain Goodwillie’s construction and give many of the

definitions related to model categories that we will use throughout this work. In

chapter 3, we review Walter’s result in detail. Chapter 4 contains a description of

the model category structure on Cat∗, and we show that Cat∗ has the properties

necessary to apply Goodwillie’s method. Then we construct the stabilization of

Cat∗ and prove that the stabilization is homotopically trivial. We discuss a version

of the Bisson-Tsemo category of directed graphs in chapter 5 and show that the

stabilization of this category, if it exists, must be homotopically trivial as well.

Finally, in chapter 6 we present a model structure on Cat∗ for each positive integer

n and make a conjecture about how the stabilization of Cat∗ depends on the choice

of model structure.
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CHAPTER II

HOMOTOPY CALCULUS

In calculus, one studies functions f ∶ R → R by studying the derivatives of

f . In particular, given a function f that is infinitely differentiable at a point x = a,

one may approximate f using its nth Taylor polynomial Tn(x) =
n
∑
i=0

f (i)(a)
i!

(x − a)i.

Then there is some interval on which the Taylor series converges to the value of

the function, that is,

f (x) =
∞
∑
i=0

f (i)(a)
i!

(x − a)i.

In the 1990’s, Goodwillie [Goo90], [Goo91], [Goo03] invented an analogous

method for analyzing functors on T op, the category of topological spaces, or

from T op to Sp, the category of spectra. This method, which is now known as

Goodwillie calculus or homotopy calculus, has since been applied to functors on

other appropriately nice categories. Essentially, one needs a category in which

there is some notion of homotopy. Such categories are called model categories.

2.1. Model Categories

Before we can define a model category, we will need some preliminary

definitions.

Definition 2.1. [Hov99, 1.1.1] Let C be a category.

1. A map f in C is a retract of a map g in C if and only if there is a commutative

diagram of the form
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A C A

B D B

f g f

where the horizontal composites are identities.

2. A functorial factorization is an ordered pair (α, β) of functors Mor C →Mor C

such that f = β( f ) ○ α( f ) for all f ∈ Mor C.

Definition 2.2. [Hov99, 1.1.2] Suppose i ∶ A → B and p ∶ X → Y are maps in a

category C. Then i has the left lifting property with respect to p and p has the right

lifting property with respect to i if, for every commutative diagram

A X

B Y

f

i

g

p

there is a lift h ∶ B → X such that hi = f and ph = g.

Definition 2.3. [Hov99, 1.1.3] A model structure on a category C consists of three

subcategories of C called weak equivalences, cofibrations, and fibrations, and two

functorial factorizations (α, β) and (γ, δ) satisfying the following properties:

1. (2-out-of-3) If f and g are morphisms of C such that g f is defined and two

of f , g and g f are weak equivalences, then so is the third.

2. (Retracts) If f and g are morphisms of C such that f is a retract of g and g is

a weak equivalence, cofibration, or fibration, then so is f .
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3. (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and

a weak equivalence. Similarly, define a map to be a trivial fibration if it is

both a fibration and a weak equivalence. Then trivial cofibrations have the

left lifting property with respect to fibrations, and cofibrations have the left

lifting property with respect to trivial fibrations.

4. (Factorization) For any morphism f , α( f ) is a cofibration, β( f ) is a trivial

fibration, γ( f ) is a trivial cofibration, and δ( f ) is a fibration.

Definition 2.4. [Hov99, 1.1.4] A model category is a category C with all small limits

and colimits together with a model structure on C.

We will denote weak equivalences by ≃Ð→, cofibrations by ↪, and fibrations by

↠ .

Since a model category C has all small limits, C contains the limit of the empty

diagram, which is a terminal object T of C. Similarly, C having small colimits

means that C contains the colimit of the empty diagram, which is an initial object

I of C. Therefore any model category contains an initial object and a terminal

object, though these are not necessarily the same.

An object X is called cofibrant if the unique map I → X is a cofibration and

fibrant if the unique map X → T is a fibration. It is always possible to replace an

object X by a cofibrant or fibrant object by part (4) of Definition 2.3. That is, we

may factor the map I → X as I ↪ Q(X) ≃Ð→ X, and we may factor the map X → T

as X ≃Ð→ R(X) ↠ T. We call Q(X) the cofibrant replacement of X and R(X) the

fibrant replacement of X.

For any model category, we can construct an associated model category

which is pointed, that is, which has a zero object 0.
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Definition 2.5. [Hir03, 7.6.1] If C is a category and A is an object of C, then the

category of objects of C under A, denoted A ↓ C, is the category in which

● an object is a map A → X in C,

● a map from g ∶ A → X to h ∶ A → Y is a map f ∶ X → Y in C such that f ○ g = h,

and

● composition of maps is defined by composition of maps in C.

This is also called the coslice category of C with respect to A.

Theorem 2.6. [Hir03, 7.6.4] If M is a model category, then the category A ↓ M is a

model category in which a map is a weak equivalence, fibration, or cofibration if it is one

inM.

Given a model categoryMwith terminal object T, the coslice category T ↓ M

is isomorphic to the category of pointed objects of M and basepoint-preserving

morphisms. That is, we may force T to be an initial object of M as well as

a terminal object. The weak equivalences, fibrations, and cofibrations are then

precisely the largest possible subsets of those classes in the unpointed case.

The archetypal example of a model category (and the motivation for its

definition) is the category of topological spaces.

Example 2.7. [DS95, 8.3] Call a map in T op

● a weak equivalence if it is a weak homotopy equivalence,

● a fibration if it is a Serre fibration, and

● a cofibration if it has the left lifting property with respect to trivial fibrations.
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With these choices, T op is a model category.

Example 2.8. [DS95, 7.2] Another example of a model category is Ch(R), the

category of non-negatively graded chain complexes of R-modules, where R is

an associative ring with unit. There is a model structure on Ch(R) in which a map

f ∶ M → N is

● a weak equivalence if f induces isomorphisms on homology Hk M → HkN

for all k ≥ 0,

● a cofibration if for each k ≥ 0 the map fk ∶ Mk → Nk is injective with a

projective R-module as its cokernel, and

● a fibration if for each k > 0 the map fk ∶ Mk → Nk is surjective.

Many constructions in T op have analogs in other model categories. For

example, one may construct suspension objects and loop objects in any pointed

model category.

Definition 2.9. [Qui67, I.2.9] Given a cofibrant object A in a pointed model

categoryM, the suspension ΣA is the pushout of the diagram

A ∨ A Cyl(A)

0

where a cylinder object Cyl(A) is an object of M that satisfies the following

diagram:
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AL

AL ∨ AR Cyl(A) A

AR

≃

id

id

Here the maps AL → AL ∨ AR and AR → AL ∨ AR are inclusions, and the

composition AL ∨ AR ↪ Cyl(A) → A is the coproduct map.

Definition 2.10. [Qui67, I.2.9] Given a fibrant object B in a pointed model category

M, ΩB (“loops on B”) is the pullback of the diagram

BI

0 B × B

where a path object BI is an object ofM that satisfies the following diagram:

BL

B BI BL × BR

BR

≃

id

id

Here the composition B → BI ↠ BL × BR is the diagonal map, and the maps

BL × BR → BL, BL × BR → BR are projections.

Note that cylinder objects and path objects exist in any model category M

becauseM has functorial factorizations.
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Proposition 2.11. ΩB ≃ X, where X is the homotopy pullback of the diagram

0

0 B

Proof. Let i ∶ B → BI and p ∶ BI → B × B be the maps from Definition 2.10. Let

πL ∶ B × B → B and πR ∶ B × B → B be the projections onto the left and right factors

of the product, respectively. Note that by the two-out-of-three property, πR ○ p is

a weak equivalence. Also, πR ○ p is a fibration since both πR and p are fibrations.

Similarly, πL ○ p is a trivial fibration.

Let Y be the pullback of the diagram

BI

0 B

πR ○ p

Let γ ∶ Y → BI and 0 ∶ Y → 0 be the maps defined by this pullback. The class of

trivial fibrations in M is closed under pullbacks [Hir03, 7.2.12], so 0 ∶ Y → 0 is a

trivial fibration. Note πR ○ p ○γ = 0.

Let Y be the pullback of the diagram

BI

B B × B

p

(id, 0)

Let γ ∶ Y → BI and δ ∶ Y → B be the maps defined by this pullback. Note that

p ○γ = (id, 0) ○ δ, so πL ○ p ○γ = δ and πR ○ p ○γ = 0.
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We claim that Y ≅ Y. To see this, consider the following diagrams:

Y

Y BI

0 B

πR ○ p

γ

α

γ

Y

Y BI

B B × B

p

γ

(id, 0)

β

πL ○ p ○ γ

γ

By the above relations, both diagrams commute, and so α and β are unique.

Consider the commutative diagram

Y

Y

Y BI

0 B

πR ○ p

β
γ

γ

α
γ

Since the square is a pullback, the map α ○ β ∶ Y → Y is unique. However, idY also

makes the diagram commute, and so α ○ β = idY. A similar argument shows that

β ○ α = idY. Therefore Y and Y′ are isomorphic.

11



Since Y ≃ 0 and πL ○ p ○ γ ∶ Y → B is a fibration, X is weakly equivalent to the

pullback X of the diagram

Y

0 B

πL ○ p ○ γ

Thus we have two pullback squares

X Y BI

0 B B × B

γ

pπL ○ p ○ γ

(id, 0)

It follows that the outer square is also a pullback square. Therefore X is weakly

equivalent to the pullback ΩB of the diagram

BI

0 B × B

p

An important class of model categories are those which are cofibrantly

generated. We describe this below.

Definition 2.12. [Hov99, 2.1.9] Let C be a category containing all small colimits.

Let I be a set of maps in C. A relative I-cell complex is a transfinite composition of

pushouts of elements of I. The collection of relative I-cell complexes is denoted

by I-cell.
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Definition 2.13. [Hov99, 2.1.3] Let C be a category containing all small colimits,

D a collection of morphisms in C, A an object of C, and κ a cardinal. We say that

A is κ-small relative to D if, for all κ-filtered ordinals λ and all λ-sequences

X0 → X1 → . . . → Xβ → . . .

such that each map Xβ → Xβ+1 is in D for β + 1 < λ, the map of sets

colimβ<λ C(A, Xβ) → C(A, colimβ<λ Xβ) is an isomorphism. We say that A is small

relative to D if it is κ-small relative to D for some κ. We say that A is small if A is

small relative to C.

Definition 2.14. [Hov99, 2.1.17] A model category M is cofibrantly generated if

there are sets of maps I and J inM such that

● the domains of the maps of I are small relative to I-cell;

● the domains of the maps of J are small relative to J-cell;

● the fibrations are exactly those maps that have the right lifting property with

respect to J;

● the trivial fibrations are exactly those maps that have the right lifting

property with respect to I.

We call I the set of generating cofibrations and J the set of generating trivial

cofibrations.

It turns out to be very important that a model category have enough small

objects. A related notion is that of a compact object. We say that an object X

is compact if mapping out of it commutes with filtered colimits. That is, given a
13



functor F ∶ D → C, X is compact if colimC(X, F(D)) → C(X, colim F(D)) whenever

D is a filtered category.

Definition 2.15. [Wal06, 2.4.3] A nonempty category D is filtered if

● for every pair of objects A, B in D there exists an object D in D and maps

A → D, B → D, and

● for every pair of maps f , g ∶ A → B, there exists an object D in D and a

morphism h ∶ B → D such that h f = hg.

The following definitions will help us understand especially nice model

categories, i.e. those that are cellular (2.17), combinatorial (2.19), accessible (2.20),

proper (2.22), or simplicial (2.24).

Definition 2.16. [Hir03, 10.9.1] Let C be a category that is closed under pushouts.

The map f ∶ A → B in C is an effective monomorphism if f is the equalizer of the pair

of natural inclusions B ⇉ B ⊔A B, i.e. if

A B

B B ⊔A B

f

f

is a pullback diagram.

Definition 2.17. [Hir03, 12.1.1] A model category M is cellular if there is a set

of cofibrations I and a set of trivial cofibrations J making M into a cofibrantly

generated model category and also satisfying the following conditions:

● The domains and codomains of I are compact relative to I.
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● The domains of J are small relative to I.

● Cofibrations are effective monomorphisms.

Definition 2.18. [Dug01, 2.2] A category C is locally presentable if it has all small

colimits and if there is a regular cardinal λ and a set of objects A in C such that

● every object in A is small with respect to λ-filtered colimits, and

● every object of C can be expressed as a λ-filtered colimit of elements of A.

Definition 2.19. [Dug01, 2.1] A model category M is combinatorial if it is

cofibrantly generated and the underlying category is locally presentable.

Definition 2.20. [AR94, 2.1] A category C is accessible if there is a regular cardinal

λ such that

● C has λ-directed colimits, and

● C has a set A of λ-presentable objects such that every object is a λ-directed

colimit of objects from A.

Proposition 2.21. [Cen04] The coslice category of an accessible category is

accessible.

Definition 2.22. [Hir03, 13.1.1] A model categoryM is left proper if every pushout

of a weak equivalence along a cofibration is a weak equivalence. M is right proper

if every pullback of a weak equivalence along a fibration is a weak equivalence.

IfM is both left proper and right proper, we say thatM is proper.

Proposition 2.23. [Hir03, 13.1.3] If every object of M is cofibrant, then M is left

proper. If every object ofM is fibrant, thenM is right proper.
15



Definition 2.24. [Hir03, 9.1.6] A simplicial model category is a model category M

that is enriched over simplicial sets. That is, for every two objects X and Y ofM,

Map(X, Y) is a simplicial set, and these sets satisfy composition, associativity, and

unital conditions. Also:

● For every two objects X and Y of M and every simplicial set K, there are

objects X ⊗K and YK of M such that there are isomorphisms of simplicial

sets

Map(X⊗K, Y) ≅ Map(K, Map(X, Y)) ≅ Map(X, YK)

that are natural in X, Y, and K.

● If i ∶ A → B is a cofibration inM and p ∶ X → Y is a fibration inM, then the

map of simplicial sets

Map(B, X)
i∗×p∗ÐÐÐ→Map(A, X) ×Map(A,Y)Map(B, Y)

is a fibration and is a trivial fibration if either i or p is a weak equivalence.

This condition is known as the pushout-product axiom.

The “right” notion of equivalence of two model categories is that of a Quillen

equivalence.

Definition 2.25. [Hov99, 1.3.1] Let C and D be model categories. A pair of adjoint

functors F ∶ C ⇆ D ∶ U is a Quillen adjunction if the following equivalent definitions

are satisfied:

● F preserves cofibrations and trivial cofibrations.

● U preserves fibrations and trivial fibrations.
16



We call F a left Quillen functor and U a right Quillen functor.

Definition 2.26. [Hov99, 1.3.12] A Quillen adjunction is a Quillen equivalence if

whenever X is a cofibrant object of C and Y is a fibrant object of D, a morphism

X → U(Y) is a weak equivalence in C if and only if the adjunct morphism

F(X) → Y is a weak equivalence in D.

A Quillen equivalence preserves the model structure on a category. In other

words, if two model categories are Quillen equivalent, then they have the same

homotopy theory. For example, the geometric realization and singular functors

∣ − ∣ ∶ sSet ⇆ T op ∶ Sing provide a Quillen equivalence between the category sSet

of simplicial sets and T op. The advantage is that one can transport combinatorial

results from sSet to T op, where calculations tend to be significantly more difficult.

2.2. The Taylor Tower

The goal of this section is to explain Goodwillie’s main theorem [Goo03, 1.13],

which is stated as follows.

Theorem 2.27. A homotopy functor between two appropriate model categories F ∶ C → D

determines a tower of functors PnF ∶ C → D with maps from F

⋮

P2F(X) D2F(X)

P1F(X) D1F(X)

F(X) P0F(X)

q2F

q1F

p2F

p1F

p0F

17



where the functors PnF are n-excisive, pnF is universal among maps from F to n-excisive

functors, the maps qnF are fibrations, the functors DnF = hofib(qnF) are n-homogeneous,

and all the maps are natural.

The sequence

. . . → P2F → P1F → P0F

is called the Taylor tower of F. Ideally, but not necessarily, the inverse limit of the

tower is F. In this section, we explain when and how we construct this tower.

Hypothesis 2.28. The tools of homotopy calculus are applicable in model

categories that are pointed, left proper, and simplicial [Kuh07]. Let C and D

be categories that satisfy these conditions. Additionally, we assume that in

D, the sequential homotopy colimit of homotopy cartesian cubes is homotopy

cartesian. Let F ∶ C → D be a homotopy functor, i.e. a functor that preserves weak

equivalences. We also require that F commutes with filtered homotopy colimits.

Let S be a finite set. Denote the power set of S by P(S) = {T ⊆ S}, which is

partially ordered by inclusion. Let P0 = P(S) ∖ ∅ and P1 = P(S) ∖ S. An n-cube

in C is a functor χ ∶ P(S) → C with ∣S∣ = n. We say χ is (homotopy) cartesian if

χ(∅) → holimT∈P0(S)χ(T) is a weak equivalence, and χ is (homotopy) cocartesian if

hocolimT∈P1(S) → χ(S) is a weak equivalence.

Example 2.29. A 0-cube χ(∅) is cartesian if and only if it is cocartesian if and only

if χ(∅) ≃ 0.

A 1-cube f ∶ χ(∅) → χ({1}) is cartesian if and only if it is cocartesian if and

only if it is a weak equivalence.

18



A 2-cube

χ(∅) χ({1})

χ({2}) χ({1, 2})

is cartesian if it is a homotopy pullback square and cocartesian if it is a homotopy

pushout square.

We say that χ is strongly cocartesian if every two-dimensional face of χ is

cocartesian.

Definition 2.30. [Kuh07, 4.10] A functor F ∶ C → D is n-excisive or polynomial of

degree at most n if, whenever χ is a strongly cocartesian (n + 1)-cube in C, then

F(χ) is a cartesian cube in D.

For example, the identity functor in Sp is 1-excisive because homotopy

pushout squares and homotopy pullback squares coincide in this category.

Another example of a 1-excisive functor is the spectrification functor

Σ∞ ∶ T op → Sp, which preserves homotopy pushouts. In fact, both of these

functors are n-excisive for all n ≥ 1 by the following lemma. For this reason,

we simply refer to 1-excisive functors as excisive or linear.

Lemma 2.31. [Kuh07, 4.16] If F is n-excisive, then F is k-excisive for all k ≥ n.

We wish to construct an n-excisive functor PnF for each n ≥ 0. The idea will be

to construct particular strongly cocartesian (n + 1)-cubes for which this condition

is satisfied and then to show that the condition must be satisfied for all strongly

cocartesian (n + 1)-cubes.
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If T is a finite set and X is an object in C, let X∗T (“X join T”) be the homotopy

cofiber of the folding map ⊔TX → X. That is, X ∗ T is the homotopy pushout of

the diagram

⊔TX X

0

For example, in T op∗:

● X ∗∅ ≃ X

● X ∗ {1} ≃ CX

● X ∗ {1, 2} ≃ ΣX.

In general, if T is a k-element set, then X ∗T is equivalent to k cones identified

at the open ends.

Let X ∈ Ob(C), let ∣S∣ = n + 1, and let T ⊆ P(S). It turns out that the map

T → X ∗ T defines a strongly cocartesian (n + 1)-cube. The following functor is an

intermediary step in defining the n-excisive functors.

Definition 2.32. [Kuh07, 5.1] Let TnF ∶ C → D be defined by

TnF(X) = holimT∈P0(S)F(X ∗ T).

Note that there is a natural transformation tn(F) ∶ F → TnF since the initial

object of the cube is F(X ∗∅) ≃ F(X). Furthermore, tn(F) is a weak equivalence if

F is n-excisive.
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For example, T1F(X) is the homotopy pullback of

F(X ∗ {1})

F(X ∗ {2}) F(X ∗ {1, 2})

or, equivalently,

F(CX)

F(CX) F(ΣX)

If F(0) ≃ 0, we say that F is reduced. In this case, F(CX) ≃ 0, so T1F(X) is the

homotopy pullback of

0

0 F(ΣX)

which is weakly equivalent to ΩF(ΣX) by Proposition 2.11.

This process can be repeated. That is, T2
1 F(X) ≃ T1(T1F)(X) is the homotopy

pullback of the diagram

T1F(X ∗ {1})

T1F(X ∗ {2}) T1F(X ∗ {1, 2})

But T1F(X ∗ {1}) ≃ T1F(0) ≃ ΩF(Σ(0)) ≃ ΩF(0) ≃ Ω(0) ≃ 0, and

T1F(ΣX) ≃ ΩF(ΣΣX) ≃ ΩF(Σ2F). Finally, the homotopy pullback of
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0

0 T1ΩF(Σ2X)

is T2
1 F(X) ≃ Ω2F(Σ2X).

Definition 2.33. [Kuh07, 5.2] Let PnF ∶ C → D be defined by

PnF(X) = hocolim{F(X) tn(F)ÐÐÐ→ TnF(X) tn(TnF)ÐÐÐÐ→ T2
n F(X) → . . .} .

So in our example,

P1F(X) = hocolim{F(X) → ΩF(ΣX) → Ω2F(Σ2X) → . . .}

≃ hocolimn→∞ΩnF(ΣnX).

The composition of the tn’s gives a natural transformation pnF ∶ F → PnF. If F

is n-excisive, then pnF is the homotopy colimit of weak equivalences, so pnF is a

weak equivalence.

The following results are proven in [Goo03] when C = T op∗ and D is T op∗

or Sp, but the proofs apply equally well for any functor F and categories C,D

satisfying Hypothesis 2.28.

Proposition 2.34. 1. PnF is a homotopy functor.

2. PnF is n-excisive.

3. PnF is universal among n-excisive functors G such that F → G.
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Next, we show that there are natural maps qnF ∶ PnF → Pn−1F for all n ≥ 1.

Note that there is a natural map qn,1 ∶ TnF → Tn−1F because TnF comes from the

homotopy limit of an n + 1-cube, and Tn−1F comes from the homotopy limit of

one of the n-dimensional faces of this cube. Similarly, the inclusion of n-cubes

into (n + 1)-cubes gives natural maps qn,i ∶ Ti
nF → Ti

n−1F for all i ≥ 1. Moreover,

there is a commutative diagram

F TnF T2
n F . . .

F Tn−1F T2
n−1F . . .

tn F tnTn F tnT2
n F

tn−1F tn−1Tn−1F tn−1T2
n−1F

qn,1 qn,2=

We define qn as the induced map of the horizontal homotopy colimits.

The homotopy fiber of the map qnF ∶ PnF → Pn−1F is denoted DnF.

Equivalently, for each X ∈ Ob(C), DnF(X) ≃ holim(0 → Pn−1F(X)
qn←Ð PnF(X)). In

the analogy with calculus, PnF is like the nth Taylor polynomial of a function. The

functor DnF behaves like the nth term in the Taylor series. In particular, one can

recover PnF if one knows Pn−1F and DnF. Pictured as in Theorem 2.27, we call PnF

the nth stage of the Taylor tower of F and DnF the nth layer. Each functor DnF

is homogeneous of degree n, which means PnDnF ≃ DnF (DnF is n-excisive) and

Pn−1DnF ≃ ∗ (DnF is n-reduced) [Goo03, 1.17]. That is, homogeneous functors

are n-excisive with trivial (n − 1)-excisive part. This terminology is inspired by

homogeneous polynomials, which are concentrated in a single degree.

The following two results are often helpful in proving that DnF is n-excisive

and n-reduced. Again, although Goodwillie assumed that C = T op∗ and D is T op∗

or Sp, the proofs hold for any functor F and categories C,D satisfying Hypothesis

2.28.
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Proposition 2.35. [Goo91, 3.4] Let ∆ ∶ C → Cn be the diagonal inclusion. If

F ∶ Cn → D is ki-excisive in the ith variable for all 1 ≤ i ≤ n, then the composition

F ○∆ is k-excisive, where k = k1 + . . . + kn.

Proposition 2.36. [Goo03, 3.1] Let ∆ ∶ C → Cn be the diagonal inclusion. If

F ∶ Cn → D is 1-reduced in the ith variable for all 1 ≤ i ≤ n, then the composition

F ○∆ is n-reduced.

If F ∶ T op∗ → T op∗, then

DnF(X) ≃ Ω∞(A ∧ (Σ∞X)∧n)hΣn

where A is a spectrum with an action of the nth symmetric group Σn [Goo03]. This

spectrum A is called the nth derivative of F and is denoted ∂nF. In cases where C is

a sufficiently nice simplicial model category, given a homotopy functor F ∶ C → C,

the layers of the Taylor tower have the form

DnF(X) ≃ Ω∞
C (∂nF⊗ (Σ∞

C X)⊗n)hΣn

where ∂nF is a C-spectrum with Σn-action, ⊗ is the symmetric monoidal product

in the category of spectra on C induced by the smash product of simplicial sets,

and Σ∞
C and Ω∞

C are the canonical Quillen adjoint pair between C and the category

of spectra on C [Wal06, p. 5]. We will explain what we mean by the category of

spectra on C in section 4.2.

The identity functor is especially interesting to study because the derivatives

of the identity functor provide a measure of how complicated the homotopy

theory of a category is. There are several categories in which the derivatives of
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the identity functor are known to have extra structure, specifically, the structure

of an operad.

2.3. Operads

Definition 2.37. [MSS02, I.1.4] Let V be a symmetric monoidal category. An

operad O in V consists of a set of objects O(n), n ≥ 1 of V equipped with

● an action of the symmetric group Σn on O(n),

● an element e ∈ O(1) called the identity, and

● structure maps, also known as composition operations,

γk;n1,...,nk
∶ O(k) ⊗O(n1) ⊗O(n2) ⊗ . . .⊗O(nk) →O(n1 + n2 + . . . + nk).

These data must also satisfy compatibility and associativity conditions, but

we do not list those here. Operads are useful for bookkeeping because they are

an abstraction of a family of composable functions of n variables for various n.

Thus operads encode algebraic properties.

Definition 2.38. We say that an object A in V is an algebra over the operad O if

there is a family of Σn-equivariant morphisms µn ∶ O(n) ⊗ A⊗n → A which are

compatible with the structure morphisms of O.

That is, we interpret O(n) as objects of actual n-ary operations on an object

A. We discuss a few common examples.

Example 2.39. Let Ass denote the associative operad, so-named because a vector

space V over a field k is an algebra over the associative operad if and only if V
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is an associative algebra. Here A(n) = k⟨Σn⟩, the vector space over k with basis

σ1, . . . , σn! ∈ Σn. The action of Σn on A(n) is the composition of permutations, so

(
n!
∑
i=1

kiσi) g =
n!
∑
i=1

ki(σig).

The identity is the unit in A(1). Finally, the maps

γn;m1,...,mn ∶ A(n) ⊗ A(m1) ⊗ . . . A(mn) → A(m1 + . . . +mn)

simply multiply elements.

Suppose that a vector space V is an algebra over Ass. The map

µn ∶ A(n) ⊗V⊗n → V is given by µn(σ, v1, . . . vn) = vσ−1(1) ⋅ . . . ⋅ vσ−1(n). For example,

(123) is a basis element of A(3), and (123) ⊗ v ⊗ w ⊗ z = zvw. The existence of

the map A(2) ⊗V ⊗V → V shows that V has multiplication, so V is an algebra,

and the associativity condition from the definition of an operad implies that V is

associative.

Example 2.40. Let Com denote the commutative operad, so-named because a vector

space V over k is a commutative algebra if and only if V is an algebra over the

commutative operad. Here C(n) = k for all n ≥ 1. The action of Σn on C(n) is the

trivial action, i.e. g ⋅ x = x for all g ∈ Σn and x ∈ C(n) = k . The identity is the unit

in C(1). Again, the structure maps multiply elements.

Suppose that a vector space V is an algebra over the commutative operad.

The map µn ∶ C(n) ⊗V⊗n → V is given by k1 ⋅ (v1, . . . , vn) ↦ k1v1 . . . vn. As before,

the algebra structure comes from µ2. By the equivariance condition, given σ ∈ Σn,

µn(σ(k1), σ(v1, . . . , vn)) = µn(k1, v1, . . . , vn),
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or

k1vσ(1) . . . vσ(n) = k1v1 . . . vn,

so the algebra must be commutative.

Example 2.41. Let Lie denote the Lie operad. A vector space over k is a Lie algebra

if and only if it is an algebra over the Lie operad. Here Lie(n) is the differential

graded vector space concentrated in degree 0 generated by all abstract bracket

expressions of n elements (e.g. [x1, [x2, . . . , [xn−1, xn]⋯]]) modulo anti-symmetry

and the Jacobi identity. Note that the dimension of Lie(n) as a k-vector space is

(n−1)! [GK+94, 1.3.9]. The action of Σn on Lie(n) is generated by the permutation

of the elements in a bracket expression with no negative signs. The identity is the

unit in Lie(1) ≅ k. The maps µn “plug in” elements. For example, given a Lie

algebra g, µ3 ∶ Lie(3) ⊗ g⊗3 → g behaves as

[x1, [x2, x3]] ⊗ x⊗ y⊗ z ↦ [x, [y, z]]

[x2, [x3, x1]] ⊗ x⊗ y⊗ z ↦ [y, [z, x]]

[x3, [x1, x2]] ⊗ x⊗ y⊗ z ↦ [z, [x, y]]

The link between Goodwillie calculus and operads is that there are several

categories in which the derivatives of the identity functor are known to be the

objects of an operad. Such categories include

● T op∗ [Chi05],

● Sp [AC11],

● the category of algebras over an operad in the category of symmetric spectra

[HH13], and
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● DGLr, the category of differential graded Lie algebras over Q that are 0

below grading r [Wal06].

In fact, the derivatives of the identity functor in DGLr are the objects of the

Lie operad, though the grading is shifted. We prove this result in the next chapter.
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CHAPTER III

DIFFERENTIAL GRADED LIE ALGEBRAS

A differential graded vector space (DG) is V = (V●, dV), where V● is a graded

vector space and dV = {di ∣ di ∶ Vi → Vi−1} is a differential. If v ∈ Vn, we say

that the degree of v is n and write ∣v∣ = n. Given differential graded vector spaces

V = (V●, dV) and W = (W●, dW), a DG map f ∶ V → W is a family of vector space

maps fk ∶ Vn →Wn+k for all n. The integer k is called the degree of f . Let DG denote

the category of differential graded Q-vector spaces with degree 0 maps. A quasi-

isomorphism of DGs is a map that induces an isomorphism on homology.

A DG V is called r-reduced if Vk = 0 for all k < r. We write DGr for the full

subcategory of DG consisting of all r-reduced DGs. The r-reduction functor

redr ∶ DG → DGr acts by (redrV)k = Vk for k > r, (redrV)k = 0 for k < r, and

(redrV)r = ker(dr ∶ Vr → Vr−1). Note that Hk(redr(V)) = Hk(V) for all k ≥ r, and

Hk(redr(V)) = 0 for all k < r. There are also shift functors s, s−1 ∶ DG → DG given

by (s(V))i = Vi−1 and (s−1(V))i = Vi+1. The category of graded vector spaces is

denoted G, and the category of r-reduced graded vector spaces is denoted Gr.

We are interested in differential graded Lie algebras, which are DGs with

extra structure.

Definition 3.1. [Wal06, 4.1] A differential graded Lie algebra (DGL) L = (L●, dL, [−,−]L)

consists of a differential graded vector space (L●, dL) equipped with a linear,

degree zero, graded DG map

[−,−] ∶ (L●, dL) ⊗ (L●, dL) → (L●, dL)
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satisfying

● [x, y] = −(−1)∣x∣⋅∣y∣[y, x] (graded anti-symmetry) and

● [x, [y, z]] + (−1)∣x∣(∣y∣+∣z∣)[y, [z, x]] + (−1)∣z∣(∣x∣+∣y∣)[z, [x, y]] = 0 (graded Jacobi

identity).

We call [−,−] the Lie bracket map. Because the Lie bracket is a DG map,

dL[x, y] = [dLx, y] + (−1)∣x∣[x, dLy]. Maps of DGLs are degree 0 graded vector space

maps f ∶ V● → W● such that f (dV x) = dW f (x) and f ([x, y]) = [ f (x), f (y)]. We

denote the category of DGLs with these maps by DGL.

A DGL L is r-reduced if Lk = 0 for all k < r. The category of all r − reduced

DGLs and DGL maps is denoted DGLr. The reduction functor redr ∶ DGL → DGLr

is the restriction of the reduction functor on DG. The category of graded Lie

algebras and degree 0 Lie algebra maps is denoted GL. Given V ∈ Ob(DG), we

write [V]DGL to represent the DGL that has V as the underlying DG and a trivial

Lie bracket, i.e. [v, w] = 0 for all v, w ∈ V. Similarly, we write [L]DG when we want

to consider an object L of DGL as an object of DG and [L]GL when we want to

forget the differential of L.

We define (−)ab ∶ DGLr → DGr by (L)ab = L/[−,−], the graded abelianization

of L. By (L)ab, we really mean [(L)ab]DG since (L)ab is actually an object of DGL

with a trivial Lie bracket. Note that (−)ab ∶ DGLr ⇄ DG ∶ [−]DGL ○ redr are adjoint

functors.

Quillen showed that DGLr is a model category for each r ≥ 1.

Theorem 3.2. [Qui69, 5.1] There is a model structure on DGLr, r ≥ 1 in which

the weak equivalences are quasi-isomorphisms, the fibrations are degree-wise
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surjections in degrees k > r, and the cofibrations are maps which have the left

lifting property with respect to trivial fibrations.

We need to describe the cofibrant objects in this category. Given V ∈ Ob(Gr),

we construct LV ∈ Ob(DGLr) by taking the tensor algebra TV =⊕
k

V⊗k, defining

the Lie bracket as [x, y] = x⊗ y − (−1)∣x∣⋅∣y∣y⊗ x, and taking LV to be the sub-Lie

algebra of TV generated by V. We say that L ∈ Ob(DGLr) is free if [L]GL ≅ LV for

some graded vector space V. The cofibrant objects in DGLr are these free DGLs

[Wal06, 4.2.3]. We write fDGLr to denote the full subcategory of free DGLs in

DGLr.

Note that the functor L(−) ∶ Gr → GLr defined by V ↦ LV is the left adjoint

of the forgetful functor [−]Gr ∶ GLr → Gr. We point out that L(−) is not left adjoint

to the forgetful functor [−]DGr ∶ DGLr → DGr, as one might expect from the name

“free DGL.” That is, LV is free in GLr but not in DGLr. The forgetful functor

[−]DGr does have a left adjoint L(−) ∶ DGr → DGL, which is defined as above but

on differential graded vector spaces rather than graded vector spaces, thus with

consequences for the differential on the resulting DGL. DGLs which are free in

this sense are known in the literature as “truly free” DGLs.

Homotopy theorists are interested in differential graded Lie algebras because

DGL1 and the category of rational simply connected topological spaces, T opQ,

have equivalent homotopy categories. In particular, Quillen [Q69] constructed

a chain of Quillen equivalences from T opQ to DGL1 in which the homology of

the DGL corresponding to a rational simply-connected space XQ is equal to the

shifted homotopy of XQ.

Because of this relationship, it is reasonable to ask what the category of

spectra on DGL1 is, and more generally, what the category of spectra on DGLr−1
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is for r ≥ 2. One may construct rational spectra by considering the stabilization of

DGLr−1. In particular, we have the following definition.

Definition 3.3. [Wal06, 6.2.1] A DGL-spectrum E is a sequence of DGLs {Li}i≥0

equipped with maps Li → ΩLi+1 = [redr(s−1[Li+1]DG)]DGL.

In fact, the category of DGL-spectra is isomorphic to DG [Wal06, 6.2.3].

Therefore DG is to DGL as Sp is to T op. Differential graded rational vector spaces

behave like rational spectra, and differential graded rational vector spaces that

are r-reduced behave like (r − 1) − connected rational spectra. Moreover, there is a

spectrification functor analogous to Σ∞ ∶ T op → Sp.

Definition 3.4. [Wal06, 6.2.5] Define Σ∞
DGL ∶ DGLr−1 → DGr by Σ∞

DGL(L) = s(L)ab

and Ω∞
DGL ∶ DGr → DGLr−1 by Ω∞

DGL(V) = [s−1redrV]DGL.

Lemma 3.5. [Wal06, 6.2.6] Σ∞
DGL and Ω∞

DGL are adjoint functors.

Walter’s main theorem is stated as follows.

Theorem 3.6. [Wal06, 8.1.1] The nth derivative of the identity functor

1DGL ∶ DGLr−1 → DGLr−1, r ≥ 2 is Lie(n) graded in degree (1 − n) with Σn-action

twisted by the sign of permutations.

The goal of this chapter is to present Walter’s proof. First, Walter shows that

Theorem 2.27 applies in DGLr−1. In particular, since 1DGL is a homotopy functor,

there is a universal approximating tower of fibrations

. . . → Pn1DGL → Pn−11DGL → . . . → P11DGL → P01DGL

with homotopy fibers Dn1DGL → Pn1DGL → Pn−11DGL.
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Let L ∈ Ob( fDGLr−1). It suffices to consider free DGLs because the cofibrant

replacement of any DGL is free, and Dn1DGL is a homotopy functor. Because of

our analogy with T op, we expect these homotopy fibers to have the form

Dn1DGL(L) ≃ Ω∞
DGL(∂n1DGL ⊗ (Σ∞

DGLL)⊗n)Σn

≃ [s−1(∂n1DGL ⊗ (s(L)ab)⊗n)Σn]DGL

≅ [(sn−1∂n1DGL ⊗ ((L)ab)⊗n)Σn]DGL

where ∂n1DGL is a DG with Σn-action. Here Σn acts on [s(L)ab]⊗n
DG and

[(L)ab]⊗n
DG by permutation of elements with signs according to the Koszul

convention and on sn−1 by multiplication by (−1)sgn(σ). That is, the Σn-equivariant

isomorphism on the last line is given by applying s−1 to the Σn-equivariant map

(sx1 ⊗⋯⊗ sxn) ↦ (−1)ksn ⊗ x1 ⊗⋯⊗ xn, where k =
n−1
∑
j=1

j

∑
i=1

∣xi∣ is the sign incurred by

moving all of the s’s to the beginning of the expression.

We will show that the Taylor tower of 1DGL is the same as a tower of quotients

of the lower central series of L. Recall that the lower central series of L is

L ⊃ [L, L] ⊃ [L, [L, L]] ⊃ . . .

Let L = Γ1(L), [L, L] = Γ2(L), [L[L, L]] = Γ3(L), etc. Then this chain of inclusions

induces the following tower by taking quotients:
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⋮

L/Γ3(L) =∶ B2(L)

L/Γ2(L) =∶ B1(L)

L/L = 0

Each map is degree-wise surjective, so each map is a fibration in DGL. The

limit of this tower is L. This is because L being (r − 1)-reduced means that Γn(L)

is n(r − 1) reduced, so Lk = (L/Γn(L))k for n sufficiently large. When L is free, this

tower is called the bracket-length filtration of L since, for L = (LV , d), we have

Bn(L) = ((T≤nV) ∩LV , d = d0 + . . . + dn). That is, Bn(L) consists of the elements of

LV with bracket-length at most n. Here di is a differential on LV that increases

bracket length by i.

Let Hn = hofib(Bn
f
Ð→ Bn−1). By [Wal06, 4.2.13], Hn = redr((s−1Bn−1 × Bn), d, [−,−]),

where

● d(s−1a, b) = (s−1( f (b) − d(a)), db)

● [s−1a, b] = 1
2 s−1[a, f (b)]Bn−1

● [b1, b2] = [b1, b2]Bn

● [s−1a1, s−1a2] = 0

Note Hn(L)/(Tn ∩LV) ≃ hofib(Bn−1
idÐ→ Bn−1), and this homotopy fiber has

zero homology. Hence Hn(L)/(Tn ∩LV) has zero homology, meaning the
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inclusion (Tn ∩LV) ↪ Hn(L) = (s−1Bn−1 × Bn) given by x ↦ (0, [x]) is a quasi-

isomorphism. Therefore Hn(L) ≃ Tn ∩ LV , i.e. Hn(L) is all elements of L of

bracket length n.

However, [(Lie(n)⊗ ((L)ab)⊗n)Σn]DGL also represents the elements of L with

bracket length n. This is because Lie(n) is the nth space of the Lie operad, and

[(Lie(n) ⊗ ((L)ab)⊗n)Σn]DGL is a free Lie algebra concentrated in bracket length

n. Since L = LV and the free object of the Lie operad on V both give a free Lie

algebra on (L)ab ≅ V, we must have Hn(L) ≃ [(Lie(n) ⊗ ((L)ab)⊗n)Σn]DGL.

Next, we show that Hn ∶ fDGLr−1 → DGLn(r−1) is an n-homogeneous functor.

Consider the case when n = 1. We observe that H1(L) ≃ T1 ∩LV ≃ (L)ab. We must

show that P1H1 = H1 and P0H1 ≃ ∗. First, consider the homotopy pushout square

of free DGLs

LV LW

LX LX⊕sV⊕W

Applying H1 to this square, we get

V W

X X⊕ sV ⊕W

Since V ≃ X ⊕ s−1(X ⊕ sV ⊕ W) ⊕ W, this is a homotopy pullback square,

and hence H1 is 1-excisive. Certainly if V ≃ 0, then LV ≃ 0. Also, if LV ≃ 0,

then H1(LV) = (LV)ab ≃ V ≃ 0. Therefore H1 is 1-reduced. By Proposition 2.35,

since the functor (−)ab is 1-excisive, the functor ((−)ab)⊗n is n-excisive. Similarly,
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by Proposition 2.36, (−)ab being 1-reduced implies that ((−)ab)⊗n is n-reduced.

Cartesian cubes of dimension n + 1 are preserved by tensoring with Lie(n). It

follows that Hn is n-excisive and n-reduced.

Now we show that Bn is n-excisive for all n by induction. Note that

B0 = L/L = 0, so the fiber sequence H1 → B1 → B0 implies H1 ≃ B1. Since H1 is

1-homogenous, so is B1.

Assume that for all 1 ≤ i ≤ n − 1, Bi is i-excisive. Note this implies that

B0, . . . , Bn−1 are n-excisive. Consider the following diagram.

Hn(L) Bn(L) Bn−1(L)

PnHn(L) PnBn(L) PnBn−1(L)

Since Hn and Bn−1 are n-excisive, the outside vertical maps are equivalences.

Each of the horizontal sequences induces a long exact sequence in homology.

By the Five Lemma, H∗(Bn(L)) → H∗(PnBn(L)) is an isomorphism. Thus

Bn(L) → PnBn(L) is a weak equivalence, so Bn is n-excisive.

Therefore this tower is an approximating tower of fibrations of n-excisive

functors converging to 1DGL in the sense that the maps L → Bn(L) are vector

space isomorphisms up to degree n(r − 1). By the universality of Pn1DGL, we

know Pn1DGL ≃ PnBn, and PnBn ≃ Bn since Bn is n-excisive. Therefore the bracket-

length filtration is the rational Taylor tower of 1DGL evaluated on L. By defining

∂n1DGL to be Lie(n) graded in degree (1 − n) with Σn-action twisted by the sign

of permutations, we find that [(Lie(n) ⊗ ((L)ab)⊗n)Σn]DGL matches the expected

Dn1DGL(L) ≃ [(sn−1∂n1DGL ⊗ ((L)ab)⊗n)Σn]DGL
.
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CHAPTER IV

THE CATEGORY OF SMALL CATEGORIES

In this chapter, we consider Cat∗, the category of pointed small categories

and functors between them. Our goal is to calculate the derivatives of the identity

functor on Cat∗. As we have previously noted, the derivatives should be objects

in the category of spectra on Cat∗. In order to construct this category of spectra,

we must first determine how the suspension functor behaves in Cat∗.

The zero object 0 in Cat∗ is the category with one object and only the identity

morphism. Then any category C has a chosen morphism 0 → C. We call the image

of this morphism the basepoint of C and denote it by *. We use the canonical

model structure on Cat, which was first explicitly described by Rezk [Rez96, 3.1].

That is, we define a morphism to be

● a weak equivalence if it is an equivalence of categories (equivalently, if it is

fully faithful and essentially surjective),

● a cofibration if it is injective on objects, and

● a fibration if it is an isofibration. An isofibration is a functor F ∶ C → D such

that for any object C ∈ Ob(C) and any isomorphism φ ∶ F(C) ≅Ð→ D, there is

an isomorphism ψ ∶ C ≅Ð→ C′ such that F(ψ) = φ.

Let T be the category with two objects and only identity morphisms:

∗ A
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Let I be the category with a disjoint basement, two other objects, and unique

isomorphisms between them:

∗ A B≅

Let 1 be the category with a disjoint basepoint, two other objects, and a map

α between them:

∗ A B
α

Let 1̇ be the maximal subcategory of 1 not containing α:

∗ A B

Finally, let P = 1 ⊔1̇ 1 be the category consisting of a disjoint basepoint, two

other objects, and a pair of parallel arrows:

∗ A B

That is, P is the pushout of the diagram (1 ← 1̇ → 1), where both of the maps are

inclusions.
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Proposition 4.1. The canonical model structure on Cat∗ is cofibrantly generated with

generating trivial cofibration J = {j}, where j = T ↪ I, and generating cofibrations

I = {u, v, w}, where u ∶ 0 → T and v ∶ 1̇ → 1 are inclusions and w ∶ P → 1 identifies

the parallel arrows.

Proof. This is the pointed version of the structure given by Rezk, and the proof is

analogous. First, consider a commutative square

T C

I D

Fj

Note that a lift exists precisely when F is an isofibration, so J determines the

fibrations.

Next, we show that a functor F is a trivial fibration if and only if F has the

right lifting property with respect to every map in I. Each map in I is a cofibration,

and hence every trivial fibration has the right lifting property with respect to each.

Conversely, suppose F ∶ C → D has the right lifting property with respect to each

map in I. Since F has the right lifting property with respect to u, F is surjective

on objects. Since F has the right lifting property with respect to v, F is surjective

on Hom sets. Finally, since F has the right lifting property with respect to w, F

is injective on Hom sets. Therefore F is a weak equivalence. Note that F also has

the right lifting property with respect to j, and so F is a trivial fibration.

Proposition 4.2. Cat∗ is a proper model category.
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Proof. Clearly, all objects in Cat∗ are cofibrant. It is also true that all objects in Cat∗

are fibrant. It suffices to show that every map C → 0 has the right lifting property

with respect to j ∶ T ↪ I. Indeed, given a commutative square

T C

I 0

we define a lift by sending both non-basepoint objects of I to the image of the

non-basepoint object of T in C and the isomorphism of I to the identity morphism

on that object. By Proposition 2.23, Cat∗ is proper.

Proposition 4.3. Cat∗ is a simplicial model category.

Proof. Rezk shows that Cat satisfies the pushout-product axiom [Rez96, 5.1], and

the proof for the pointed case is analogous. We define a pair of adjoint functors

π ∶ sSet∗ ⇄ Cat∗ ∶ µ

as follows. Let µ take a category C to the simplicial nerve of the subcategory C′ ⊆ C

having Ob C′ = Ob C and having as morphisms the isomorphisms of C. Let π take

a simplicial set K to the category πK, where Ob(πK) = K0, and where there is

a generating isomorphism k ∶ d1k → d0k for each k ∈ K1 subject to the relation

d0l ⋅ d2l = d1l for each l ∈ K2. The category πK is called the fundamental groupoid of

K.

We show that (π, µ) is a Quillen adjunction by showing that π preserves

cofibrations and trivial cofibrations. Since the cofibrations in sSet∗ are injective on
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n-simplices for all n, it is immediate that π preserves cofibrations. Consider the

generating trivial cofibrations in sSet∗

ιn,k ∶ Λk[n] → ∆[n], n ≥ 1, 0 ≤ k ≤ n.

For n > 1, the map πιn,k is an isomorphism because both the source and target

are mapped to the category with n + 1 objects and trivial automorphism groups.

Also, π∆[1] is the category with two objects and unique isomorphisms between

them, so πι1,k ∶ 0 → π∆[1] is an equivalence of categories for k = 0, 1. Therefore

each πιn,k is a trivial cofibration in Cat∗. Since π preserves the generating trivial

cofibrations, π preserves all trivial cofibrations.

Let DC = Hom(C,D) denote the category whose objects are functors F ∶ C → D

and whose morphisms are natural transformations. Define the tensoring

⊗ ∶ Cat∗ × sSet∗ → Cat∗ by C ⊗K = (C ×πK)/(∗ ×πK). By ∗ × πK, we mean the

category where Ob(∗ ×πK) ≅ Ob(πK) and Mor(∗ ×πK) ≅ Mor(πK). Define the

powering Cat∗ × sSetop
∗ → Cat∗ by CK = CπK and the enrichment Catop

∗ × Cat∗ → sSet∗

by Map∗(C,D) = µ(DC).

We must show that these definitions satisfy the isomorphisms of Definition

2.24. Let C,D ∈ Ob(Cat∗) and K ∈ Ob(sSet∗). Then
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Map∗(C ⊗K,D) = µ(Hom(C ⊗K,D)) by definition of the enrichment

≅ µ(Hom(πK, Hom(C,D)))

≅ µ(Hom(πK,DC))

≅ Map∗(K, µ(DC))

≅ Map∗(K, Map∗(C,D)) by definition of the powering

and

Map∗(C ⊗K,D) = µ(Hom(C ⊗K,D)) by definition of the enrichment

≅ µ(Hom(C, Hom(πK,D)))

= µ(Hom(C,DK)) by definition of the powering

≅ Map∗(C,DK) by definition of the enrichment.

4.1. Suspensions of Categories

We will identify the cylinder objects in Cat∗ and use this to construct

suspensions (see Definition 2.9). Fortunately, there is a natural choice of cylinder

object in any simplicial model category [Pel11, 1.6.6].

Proposition 4.4. Given C ∈ Ob(Cat∗), a cylinder object for C is Cyl(C) = C ⊗∆1.

Proof. Label the objects in π∆1 by ∗ and C, and let f denote the unique

isomorphism ∗ → C. The objects of Cyl(C) are pairs of the form (A,∗) or

(A, C), where A ∈ Ob(C). Note that (∗,∗) = (∗, C), so Cyl(C) has the same
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objects as C ∨ C. In particular, C ∨ C ↪ Cyl(C). Furthermore, there is a unique

isomorphism fA = (idA, f ) between (A,∗) and (A, C) for all A ∈ Ob(C), so

MorCyl(C)((A, C), (A′, C′)) ≅ MorC(A, A′). Therefore the map given by projection

onto the first factor Cyl(C) → C is a weak equivalence.

Definition 4.5. Given two objects a and b in a category C, if there is a zig-zag of

morphisms from a to b, then we say that a and b are in the same component of C.

Proposition 4.6. Given a category C, ΣC has one object A, and End(A) = F(n − 1), the

free group on n − 1 generators, where n is the number of components of C.

Proof. In taking the pushout of the diagram

C ∨ C Cyl(C)

0

we identify all the objects of Cyl(C) with the unique object of 0 and all the

morphisms of C ∨ C with the unique morphism of 0. If there is a morphism

α ∶ ∗ → a in C, then fa ○ α = α implies that im( fa) ○ id0 ≃ id0, or equivalently,

im( fa) ≃ id0 in the pushout. In turn, the uniqueness of the isomorphisms fa and

fb implies that all morphisms in the same component as the basepoint of Cyl(C)

get identified to id0 in the pushout. If a and b are in a component of C that does

not contain the basepoint and there is a morphism α ∶ a → b, then fb ○ α = α ○ fa

implies that im( fb) ○ id0 ≃ id0 ○ fa, or equivalently, im( fa) ≃ im( fb) in the pushout.

Therefore we are left with one isomorphism for each component of C that does

not contain the basepoint.
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We have shown that the category F(n − 1) completes the diagram. In order

to prove that F(n − 1) is the pushout, we must show that for any other category

D that makes the diagram commute, there is a unique map p ∶ F(n − 1) → D that

makes both triangles commute.

C ∨ C Cyl(C)

0 F(n − 1)

D

g

h

p

Since the outer square commutes, h sends all objects of Cyl(C) to the

basepoint of D, which we denote by ∗D, and all morphisms of Cyl(C) to

isomorphisms of ∗D. In particular, h maps all morphisms of C to the identity

morphism of ∗D, and the same argument as above shows that if a and b are in the

same component of C, then h( fa) = h( fb).

Define p ∶ F(n− 1) → D by p(∗Fn−1) = ∗D and p(g( fa)) = h( fa) for all a ∈ Ob(C).

Since p is determined by g and h, p is unique. We remark that p defines an

isomorphism between F(n − 1) and some subcategory of D.

Corollary 4.7. For any category C, Σ2C ≃ 0.

Proof. For any category C, ΣC has one component. Thus Σ2C has one object A and

End(A) ≃ F(0) ≃ idA.

Similarly, there is a standard path object in any simplicial model category

[Pel11, 1.6.7].
44



Proposition 4.8. Given C ∈ Ob(Cat∗), a path object for C is C I = Hom(π∆1,C).

Proof. The objects in C I are isomorphisms g ∶ A0 → A1 in C. Morphisms u ∶ g → h

between g and h ∶ B0 → B1 are pairs u = (u0, u1) so that u1 ○ g = h ○u0. The basepoint

of C I is the morphism π∆1 → ∗.

Note that there is a functor f ∶ C → C I given by A ↦ idA and that f is a weak

equivalence. Let (s, t) ∶ C I → C × C, where s is the source map and t is the target

map. Then the composition C → C I → C × C is the diagonal map. Also, (s, t) is a

fibration. Let a ∶ A0 → A1 be an object of C I , and let (u0, u1) ∶ (A0, A1) → (B0, B1) be

an isomorphism in C × C. Then there is a unique isomorphism b ∶ B0 → B1 making

the square commute. Thus u = (u0, u1) defines an isomorphism a → b in C I such

that (s, t)(u) = (u0, u1).

Proposition 4.9. For any category C, Ω2C ≃ 0.

Proof. The pullback ΩC of the diagram

C I

0 C × C

(s, t)

has the set of objects {a ∶ A0 → A1 ∣ s(a) = t(a) = ∗}. That is, ΩC has one object

for each isomorphism of the basepoint of C. Let f , g ∈ Ob(ΩC), so f , g ∶ ∗ → ∗.

A morphism u ∶ f → g in ΩC is a pair of morphisms u = (u0, u1) satisfying the

commutative diagram
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∗ ∗

∗ ∗

u1

g

f

u0

and such that (s, t)(u) = (u0, u1) = (id, id). Thus Mor( f , g) = (id, id) if f = g. If f ≠ g,

then there are no such commutative diagrams, and so Mor( f , g) = ∅. Finally, Ω2C

is the pullback of the diagram

ΩC I

0 ΩC ×ΩC

which has one object for each isomorphism of the basepoint of ΩC. The basepoint

of ΩC corresponds to the identity morphism of the basepoint of C, and the only

morphism of the basepoint of ΩC is (id, id). Therefore Ω2C ≃ 0.

4.2. Categories of Spectra

Now we are ready to define the category of spectra on Cat∗. Hovey [Hov01]

gives a method for constructing a category of spectra SpN(C, G) for certain model

categories C and functors G ∶ C → C.

Definition 4.10. [Hov01, 1.1] Let G be a left Quillen endofunctor of a left proper

cellular model category C. Define SpN(C, G), the category of spectra on C, as follows.

A spectrum X is a sequence {Xn}n≥0 of objects of C together with structure maps

σ ∶ GXn → Xn+1 for all n. A map of spectra from X to Y is a collection of maps

fn ∶ Xn → Yn so that the following diagram commutes for all n:
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GXn Xn+1

GYn Yn+1

σX

G fn

σY

fn+1

We are interested in the category SpN(Cat∗, Σ). By Proposition 2.23, since all

objects of Cat∗ are cofibrant, Cat∗ is left proper. However, we still cannot use

Hovey’s construction as it is given.

Proposition 4.11. Cat∗ is not cellular.

Proof. Consider the generating cofibration w ∶ P → 1. Note 1 ⊔P 1 = 1, so

eq(1 ⇉ 1 ⊔P 1) = 1, not P. Therefore w is not an effective monomorphism.

Fortunately, Hovey only requires cellularity in order to guarantee that a

particular Bousfield localization exists. We will take advantage of the fact that

localizations also exist in left proper combinatorial model categories. We will say

more about this later, but for now, we proceed with the construction.

Given n ≥ 0, the evaluation functor Evn ∶ SpN(Cat∗, Σ) → Cat∗ takes X to

Xn. The evaluation functor has a left adjoint Fn ∶ Cat∗ → SpN(Cat∗, Σ) defined by

(FnX)m = Σm−nX if m ≥ n and (FnX)m = 0 for m < n with the obvious structure

maps. By results in [Hov01], SpN(Cat∗, Σ) is bicomplete and can be given what is

called the projective model structure. This is a preliminary step toward making

the model structure that we actually wish to use, the stable model structure.

Definition 4.12. In the projective model structure on SpN(Cat∗, Σ), a map of spectra

f ∶ X → Y is

● a weak equivalence if fn ∶ Xn → Yn is a weak equivalence in Cat∗ for all n ≥ 0.
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● a fibration if fn ∶ Xn → Yn is a fibration in Cat∗ for all n ≥ 0.

● a cofibration if f has the left lifting property with respect to all trivial

fibrations in SpN(Cat∗, Σ).

Furthermore, this model structure is cofibrantly generated with generating

cofibrations IΣ = ⋃n Fn I and generating trivial cofibrations JΣ = ⋃n Fn J, where I

and J are the generating cofibrations and generating trivial cofibrations of Cat∗.

Note that the zero object in SpN(Cat∗, Σ) is the spectrum 0, where 0n = 0 for all

n ≥ 0.

The functor Σ extends to a functor on SpN(Cat∗, Σ) called the prolongation

of Σ. The prolongation of Σ is given by Σ ∶ SpN(Cat∗, Σ) → SpN(Cat∗, Σ), where

(ΣX)n = ΣXn with the obvious structure maps. The functor Σ is a left Quillen

functor with respect to the projective model structure. However, Σ is not a Quillen

equivalence. For example, ΣF(1) ≃ 0, but F(1) is not weakly equivalent to Ω0 ≃ 0.

Our goal is to define a model structure on SpN(Cat∗, Σ), called the stable model

structure, with respect to which Σ is a Quillen equivalence. In order to do so, we

need SpN(Cat∗, Σ) to be a combinatorial model category. We begin by showing

that Cat∗ is combinatorial.

Proposition 4.13. Cat∗ is a proper combinatorial simplicial model category.

Proof. We have already seen that Cat∗ is cofibrantly generated (Proposition 4.1),

proper (Proposition 4.2), and simplicial (Proposition 4.3). Note that Cat is locally

(finitely) presentable because it is equivalent to the category of models of a finite

limit sketch [BW08]. In particular, this category is accessible. By Proposition

2.21, Cat∗ is accessible. Therefore Cat∗ is also locally presentable and hence

combinatorial.
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Proposition 4.14. [Hov01, 1.15] A map i ∶ A → B in SpN(Cat∗, Σ) is a (trivial)

cofibration in the projective model structure if and only if the maps A0 → B0 and

An ⊔ΣAn−1 ΣBn−1 → Bn for n ≥ 1 are (trivial) cofibrations in Cat∗.

Proposition 4.15. Every object in SpN(Cat∗, Σ) is cofibrant with respect to the projective

model structure.

Proof. Let B ∈ Ob(SpN(Cat∗, Σ)). Certainly 0 → B0 is a cofibration in Cat∗. Also,

0 ⊔0 ΣBn−1 ≃ ΣBn−1 → Bn is a cofibration in Cat∗ for all n ≥ 1 since ΣBn−1 has one

object.

The above proposition together with Proposition 2.23 implies that

SpN(Cat∗, Σ) is left proper. We also could have used the following lemma.

Lemma 4.16. [Hov01, 1.14] With the projective model structure, SpN(C, Σ) is left

proper (resp. right proper, proper) if C is left proper (resp. right proper, proper).

Lemma 4.17. [Sch97, 2.1.5] Let C be a pointed proper simplicial model category

which admits the small object argument. Then SpN(C, Σ) is a simplicial model

category.

In particular, if X is a spectrum, define X ⊗ K by (X ⊗ K)n = Xn ⊗ K. The

powering and enrichment over simplicial sets is also defined level-wise.

Proposition 4.18. SpN(Cat∗, Σ) is a left proper combinatorial simplicial model category.

Proof. By Lemmas 4.16 and 4.17, since Cat∗ is proper and simplicial, so is

SpN(Cat∗, Σ). Also, we showed in the proof of Proposition 4.13 that Cat∗ is locally
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presentable. Thus there is a set of morphisms K that generate all morphisms

in Cat∗ over colimits. Let KΣ = ⋃n FnK. Then KΣ is a set, and KΣ generates the

morphisms of SpN(Cat∗, Σ) over colimits because colimits in SpN(Cat∗, Σ) are

computed level-wise. Since SpN(Cat∗, Σ) is cofibrantly generated, we conclude

that SpN(Cat∗, Σ) is combinatorial.

Now we describe Bousfield localization. Bousfield localization is a procedure

that takes a model structure and produces a new one with the same cofibrations

and more weak equivalences. It allows us to turn the maps of a set S into weak

equivalences while keeping the model category axioms satisfied.

Let A be an object in a simplicial model categoryM. By [Hir03, 16.1.3]), there

is a functorial cosimplicial resolution of A induced by the functorial factorizations

ofM. This cosimplicial resolution A● is given by An = QA⊗∆[n]. In general, A●

is a cofibrant replacement for the constant cosimplicial object cc∗A in the Reedy

model structure onM∆. By mapping out of this cosimplicial resolution, we get a

simplicial set Mapl(A●, RX). The face and degeneracy maps of this simplicial set

are induced by the coface and codegeneracy maps of A●.

Dually, there is a functorial simplicial resolution X● of X, where X● is a fibrant

replacement of the constant simplicial object cs∗X in the Reedy model category

structure onM∆op
. By mapping into it, we get a simplicial set Mapr(QA, X●). We

define the homotopy function complex

map(A, X) ∶= Mapr(QA, RX) ≅ Mapl(QA, RX),
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where these two sets are naturally isomorphic in the homotopy category of

simplicial sets. In fact, map(A, X) ≅ Map(QA, RX).

Definition 4.19. [Hov01, 2.1] Let S be a set of maps in a simplicial model category

M.

1. An S-local object of M is a fibrant object W such that, for every f ∶ A → B

in S , the induced map map(B, W) → map(A, W) is a weak equivalence of

simplicial sets.

2. An S-local equivalence is a map g ∶ A → B inM such that the induced map

map(B, W) →map(A, W) is a weak equivalence of simplicial sets for all

S-local objects W.

The stable model structure on SpN(Cat∗, Σ) is a Bousfield localization of the

projective model structure. This process does not necessarily produce a model

structure given any model categoryM and any set of maps S , but it does whenM

is combinatorial. For the following theorem, the reader should take the universe

X to be Set, the category of sets. Then, for example, “X-combinatorial” matches

our definition of combinatorial.

Theorem 4.20. [Bar10, 4.7] If M is left proper and X-combinatorial (X some

universe), and S is an X-small set of homotopy classes of morphisms ofM, the left

Bousfield localization LSM ofM along any set representing S exists and satisfies

the following conditions.

● The model category LSM is left proper and X-combinatorial.

● As a category, LSM is simplyM.
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● The cofibrations of LSM are exactly those ofM.

● The fibrant objects of LSM are the fibrant S-local objects ofM.

● The weak equivalences of LSM are the S-local equivalences.

Definition 4.21. Define a set of maps in SpN(Cat∗, Σ) by S = {Fn+1ΣC sCnÐ→ FnC}, as

C runs through the set of domains and codomains of the maps of I and n ≥ 0. Here

sCn is adjoint to the identity map of ΣC. The stable model structure on SpN(Cat∗, Σ)

is the localization of the projective model structure with respect to S . We call

the S-local weak equivalences stable equivalences and the S-local fibrations stable

fibrations.

Theorem 4.22. [Hov01, 3.8] The functor Σ ∶ SpN(Cat∗, Σ) → SpN(Cat∗, Σ) is a

Quillen equivalence with respect to the stable model structure.

We now have a model structure on our category of spectra that makes

SpN(Cat∗, Σ) analogous to Sp. However, it turns out that SpN(Cat∗, Σ) is actually

very simple homotopically.

Proposition 4.23. Every object in SpN(Cat∗, Σ) is cofibrant with respect to the stable

model structure.

Proof. By Proposition 4.15, every object in SpN(Cat∗, Σ) is cofibrant with respect

to the projective model structure, and cofibrations in the stable model structure

are the same as in the projective model structure.
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Proposition 4.24. Every object in SpN(Cat∗, Σ) is stably equivalent to 0.

Proof. Certainly 0 is fibrant. Also, Ω2(0) ≃ 0 for all n ≥ 0. This is because Ω is

a right adjoint, 0 is the limit of the empty diagram, and right adjoints preserve

limits. Finally, for any (cofibrant) object X ∈ Ob(SpN(Cat∗, Σ)), Σ2X ≃ 0 in the

projective model structure, and all level-wise weak equivalences are still weak

equivalences after Bousfield localization. Since Σ is a Quillen equivalence, having

a weak equivalence Σ2X ≃Ð→ 0 implies that the adjunct morphism X → Ω2(0) ≃ 0 is

a weak equivalence.

Note that we could repeat this argument in any similar category in which

there is some number of suspensions after which any object becomes equivalent

to the zero object. This leads to the following theorem.

Theorem 4.25. IfM is a pointed, left proper, simplicial, cellular or combinatorial model

category, and if there is n ∈ Z≥0 such that ΣnX ≃ 0 for all X ∈ Ob(M), then every object

in SpN(M, Σ) is stably equivalent to 0.

Since Cat∗ satisfies Hypothesis 2.28 and the identity functor 1 is a homotopy

functor, Goodwillie’s construction applies. In particular, we expect the nth layer

of the Taylor tower of 1Cat∗ to have the form

Dn1Cat∗(C) ≃ Ω∞(∂n1Cat∗ ⊗ (Σ∞C)⊗n)hΣn ,

where Ω∞ = Ev0, Σ∞ = F0, and the nth derivative ∂n1Cat∗ is an object of

SpN(Cat∗, Σ). Hence ∂n1Cat∗ ≃ 0 for all n, which implies that Dn1Cat∗(C) ≃ 0 for

all n and for all C ∈ Ob(Cat∗). Again, we may generalize this result to any similar

category.
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Corollary 4.26. In any category M satisfying the conditions of Theorem 4.25, the

derivatives of the identity functor ∂∗1M exist and ∂∗1M ≃ 0.

Remark 4.27. On the surface, this example seems analogous to the example in

calculus of the function f ∶ R → R defined by f (x) = e−1/x2
for x ≠ 0 and f (0) = 0.

For all i, the ith derivative at a = 0 is f (i)(0) = 0. Hence the Taylor series of f about

a = 0 is T(x) =
∞
∑
i=0

f i(0)
i!

xi = 0. Thus the series converges for all x, but T(x) = f (x)

if and only if x = 0. Here Dn1Cat∗(C) ≃ 0 for all C ∈ Ob(Cat∗), so Pn1Cat∗(C) ≃ 0

for all C ∈ Ob(Cat∗). Therefore the inverse limit of the Taylor tower of 1Cat∗ exists

and is equivalent to 0 for all C, and so the value of the limit of the Taylor tower

is equivalent to the value of the identity functor if and only if C ≃ 0. However,

the analogy would be better if the only linear function ψ ∶ R → R were ψ(x) = 0.

In this case, the only possible derivatives of a function f would be f (i) = 0, just

as we determined that ∂∗1Cat∗ ≃ 0 by showing that this was the only option.

Furthermore, we would expect the derivatives of any functor F ∶ Cat∗ → Cat∗ to

be objects in SpN(Cat∗, Σ), and so ∂∗F would also be weakly equivalent to 0. This

means that no endofunctors of Cat∗ are analytic.

In short, the world of categories is very different from the usual setting of

calculus.
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CHAPTER V

THE CATEGORY OF DIRECTED GRAPHS

Definition 5.1. A directed graph X = (V(X), E(X), s, t), where V(X) is a set of

vertices, E(X) is a set of edges, and s, t ∶ E(X) → V(X) are functions that specify

the source and target vertices of each edge. If e is an edge with s(e) = v and

t(e) = w, we write e ∶ v → w. Denote the set of edges in X with source vertex x by

X(x,−).

A morphism of directed graphs f ∶ X → Y is a pair of functions

fV ∶ V(X) → V(Y) and fE ∶ E(X) → E(Y) such that s ○ fE = fV ○ s and t ○ fE = fV ○ t.

Let Gph be the category of directed graphs and graph morphisms. Note that

the terminal object in Gph is the graph with one vertex and one edge. We force this

graph to be the initial object in our category as well. Thus every graph X comes

with a chosen graph morphism 0 → X, which means that X has a designated

looped basepoint, denoted ∗. Let Gph∗ be the category of pointed graphs and

basepoint-preserving graph morphisms.

The categorical product of two graphs A × B has vertex set V(A) ×V(B) and

edge set E(A) × E(B), where there is an edge e = (e1, e2) ∶ (v1, w1) → (v2, w2)

in A × B if e1 ∶ v1 → v2 is an edge in A and e2 ∶ w1 → w2 is an edge in B. The

basepoint of A × B is the vertex (∗,∗) together with the loop at this vertex. The

categorical coproduct is the wedge, so V(A ∨ B) = (V(A) ⊔V(B))/(∗A ∼ ∗B) and

E(A ∨ B) = E(A) ⊔ E(B), where the loops at the basepoints of A and B have also

been identified.

Let Cn be the unpointed graph with n vertices labeled 0, 1, . . . , n − 1 and n

edges labeled ei for i = 0, . . . , n − 1, where s(ei) = i and t(ei) = i + 1 mod n. The
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image of Cn in a graph is called an n-cycle. We denote the cycle graph with a

disjoint basepoint by Cn,∗.

A tree T is an unpointed graph with a unique vertex r called the root of T

such that there are no edges with target r and such that, for every other vertex x

in T, there is a unique path in T from r to x. Let Ti1 , . . . , Tik be trees. Let Tn,k be

a graph obtained by taking Cn,∗ ⊔ Ti1 ⊔ . . . ⊔ Tik and identifying the root of Tij with

the vertex vij of Cn,∗. Note that Cn,∗ can also be considered as a graph of the type

Tn,k, where each Tij is a tree with one vertex.

Bisson and Tsemo [BT+09] showed that there is a model structure on Gph in

which the

● weak equivalences are acyclic graph morphisms. A graph morphism

f ∶ X → Y is acyclic when f is a bijection on n-cycles for all n ≥ 1.

● fibrations are surjectings. A graph morphism f ∶ X → Y is a surjecting when

the induced function f ∶ X(x,−) → Y( f (x),−) is surjective for all x ∈ V(X).

● cofibrations are those maps that have the left lifting property with respect

to trivial fibrations.

We use the Bisson-Tsemo model structure and Theorem 2.6 to put a model

structure on Gph∗.

Let G be the following graph:

∗ v we

Let G′ be the subgraph
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∗ v

Let s ∶ G′ ↪ G and in ∶ 0 ↪ Cn,∗ be inclusions. Let jn ∶ Cn,∗ ∨ Cn,∗ → Cn,∗ be the

coproduct graph morphism. Finally, set K = {in, jn ∶ n ≥ 1}.

The following statements are based on results in [BT11]. The proofs for Gph∗

are analogous to the proofs for Gph.

Proposition 5.2. 1. The above model structure on Gph∗ is cofibrantly generated with

generating trivial cofibration J = {s} and generating cofibrations I = J ∪K.

2. A graph X is cofibrant if and only if X is a wedge of graphs of the form Tn,k.

3. A graph X is fibrant if and only if every vertex of X is the source of some edge.

As before, we wish to construct the suspension functor, and so we must first

construct cylinder objects.

Proposition 5.3. Given any graph A, Cyl(A) = (AL ∨ AR)/ ∼, where vL ∼ vR for all

vertices v ∈ V(A) and eL ∼ eR if e ∈ E(A) is part of a cycle.

Proof. Note that Cyl(A) has the same cycles as A because we have identified the

two copies of each cycle in AL ∨ AR. Thus Cyl(A) ≃Ð→ A, where the map from

Cyl(A) → A collapses any remaining duplicate edges. Clearly the composition

A ∨ A → Cyl(A) → A is the identity on each copy of A. It remains to show that

the gluing map q ∶ AL ∨ AR → Cyl(A) is a cofibration. Let f ∶ X → Y be a trivial

fibration, and consider a commutative square
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A ∨ A X

Cyl(A) Y

j

q

g

f

Suppose e ∈ E(Cyl(A)) is part of a cycle C. Then g(e) is part of a cycle g(C)

in Y, which lifts to a unique cycle C′ in X since f is a trivial fibration. Define

a lift h on e by h(e) = e′, where e′ is the edge of C′ satisfying f (e′) = g(e). Since

e is part of a cycle, there are two edges (which are also parts of cycles) which q

maps to e. Denote these by eL and eR. By the commutativity of the square, since

gq(eL) = gq(eR), we have f j(eL) = f j(eR). Since f is a weak equivalence and j(eL)

and j(eR) are each part of a cycle in X, we conclude j(eL) = j(eR). Therefore h

makes both triangles commute.

Now suppose e ∈ E(Cyl(A)) is not part of a cycle. Then there is a unique

edge e′′ in A ∨ A that is also not part of a cycle satisfying q(e′′) = e. Define a

lift by h(e) = j(e′′). By the commutativity of the diagram, gq(e′′) = f j(e′′). Thus

gq(e′′) = f hq(e′′), or g(e) = f h(e), so g = f h.

Theorem 5.4. For any cofibrant graph A, ΣA ≃ 0.

Proof. In taking the pushout of the diagram below, we identify all the vertices of

Cyl(A) with the unique vertex of 0 and all the edges of Cyl(A) with the unique

edge of 0 because both of these maps are surjective.

A ∨ A Cyl(A)

0
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Theorem 5.5. For any fibrant graph B, ΩB ≃ 0.

Proof. Let B have vertex set V and edge set E. We define BI as well as the map

BI → B × B using induction. Let B0 = B, and let f0 ∶ B0 → B × B be the diagonal

map. For each vertex v ∈ V, and for each edge e ∈ E × E such that s(e) = (v, v) and

e ∉ im( f0), add an edge e′ and vertex v′ to B0 so that s(e′) = (v, v) and t(e′) = v′.

Call this new graph B1. There is a map f1 ∶ B1 → B × B such that f1∣B0 = f0 and

f1(e′) = e. Thus f1 surjects onto the vertices of im( f0).

Suppose we have constructed B1, . . . , Bn together with maps fi ∶ Bi → B × B

so that fi∣Bi−1 = fi−1 and fi surjects onto the vertices of im( fi−1) for each 1 ≤ i ≤ n.

For each vertex v ∈ V(Bn) and for each edge e ∈ E × E such that s(e) = fn(v) and

e ∉ im( fn), add an edge e′ and vertex v′ to Bn so that s(e′) = v and t(e′) = v′. Call

this new graph Bn+1. Define fn+1 by fn+1∣Bn = fn and fn+1(e′) = e. Note fn+1 surjects

onto the vertices of im( fn).

Define BI = lim
→

Bi, and define f ∶ BI → B × B by f = lim
→

fi. By construction,

f is a surjecting. Also, BI is weakly equivalent to B because BI was formed by

attaching trees to B.

Recall that ΩB is the pullback of the diagram

BI

0 B × B

f

Thus the graph ΩB has vertices V = {(v,∗) ∈ V(BI) ×V(0) ∣ f (v) = ∗B×B} and

edges E = {(e,∗) ∈ E(BI) × E(0) ∣ f (e) is the 1-cycle at ∗B×B}. By construction, the

subgraph of BI that maps to the basepoint of B × B contains the basepoint of
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BI and a (possibly infinite) disjoint union of edges that are not part of a cycle.

Therefore ΩB ≃ 0.

One would hope that Gph∗ is left proper and either cellular or combinatorial

so that we may repeat the argument we used to construct a category of spectra

for Cat∗. However, only one of these properties holds.

Proposition 5.6. Gph∗ is combinatorial.

Proof. An unpointed directed graph is equivalent to a presheaf over the unpointed

category with two objects and two parallel non-identity morphisms. Here the

objects correspond to sets of vertices and edges, and the two morphisms specify

the source and target vertex for each edge. A category of presheaves is locally

presentable; indeed, another definition of a locally presentable category is as

a localization of a category of presheaves [AR94]. Therefore Gph is locally

presentable, and hence Gph∗ is locally presentable.

Proposition 5.7. Gph∗ is not cellular.

Proof. Consider the generating cofibration X = Cn,∗ ∨ Cn,∗
jnÐ→ Cn,∗ = Y. Note

Y ⊔X Y = Y, so eq(Y ⇉ Y ⊔X Y) = Y, not X. Therefore jn is not an effective

monomorphism.

Proposition 5.8. Gph∗ is not left proper.

Proof. We provide an example of a weak equivalence f that is not preserved

by pushout along a cofibration. Consider the generating cofibration

j3 ∶ C3,∗ ∨C3,∗ → C3,∗ and the pushout diagram
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C3,∗ ∨C3,∗ X

C3,∗

f

j3

in which X is the graph

∗ a b

c

a′ b′

c′

e

and f is the inclusion. In the pushout, we glue together the vertices a and a′, b

and b′, and c and c′ along with the corresponding pairs of edges. However, the

edge e is not in the image of f . Hence the pushout is

∗
im(e)

This graph is not weakly equivalent to C3,∗ because it contains a 2-cycle.

This means that the construction we used to define a category of spectra on

Cat∗ does not apply to Gph∗. It may still be the case that SpN(Gph∗, Σ) exists.

However, since ΣX ≃ 0 for all X ∈ Ob(Gph∗), we would expect any category of

spectra on Gph∗ to be homotopically trivial.
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CHAPTER VI

OTHER MODEL STRUCTURES ON CAT

The canonical model structure is not the only model structure on Cat∗ that

we could have used. In this chapter, we describe an infinite family of model

structures on Cat, the category of unpointed small categories, which we believe

induce homotopically trivial categories of spectra on Cat∗. We obtain these model

structures by transporting them from other model categories across Quillen

adjunctions. Recall that by the remarks following Theorem 2.6, each model

structure on Cat determines a model structure on Cat∗.

Definition 6.1. [Hir03, 10.5.15] Let I be a set of morphisms in a model category

M. We say that I permits the small object argument if the domains of the maps in I

are small with respect to I-cell.

Theorem 6.2. [Hir03, 11.3.2] Let M be a cofibrantly generated model category

with generating cofibrations I and generating trivial cofibrations J. Let N be a

category that is closed under small limits and colimits, and let F ∶ M ⇆ N ∶ U be

a pair of adjoint functors. If we let FI = {Fu ∣ u ∈ I} and FJ = {Fv ∣ v ∈ J}, and if

● both of the sets FI and FJ permit the small object argument, and

● U takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on N in which FI

is a set of generating cofibrations, FJ is a set of generating trivial cofibrations,

and the weak equivalences are the maps that U takes to weak equivalences inM.

Furthermore, with respect to this model category structure, (F, U) is a Quillen

adjunction.
62



This theorem is due to Kan and is often called the transfer theorem. We note

that the new model structure is not necessarily Quillen equivalent to the original

model structure.

Proposition 6.3. [MP12, 16.2.3] If the pair (F, U) satisfies the hypotheses of the

transfer theorem, then (F, U) is a Quillen equivalence if and only if the unit of the

adjunction ηX ∶ X → UFX is a weak equivalence inM for all cofibrant X ∈ Ob(M).

Proof. (⇐) Suppose that ηX ∶ X → UFX is a weak equivalence for all cofibrant

X ∈ Ob(M). Fix a particular X, and suppose that f ∶ FX → Y is a weak equivalence

in N . Consider the commutative diagram

X UY

UFX
ηX U f

Since f is a weak equivalence, U f is a weak equivalence. Therefore the

composition U f ○ ηX ∶ X → UY is a weak equivalence.

Now suppose that the adjunct morphism X → UY is a weak equivalence.

By the two-out-of-three property, U f is also a weak equivalence. By the transfer

theorem, f is a weak equivalence.

(⇒) Let X ∈ Ob(M) be cofibrant, and suppose (F, U) is a Quillen equivalence.

Let FX RÐ→ Y be a fibrant replacement of FX in N . Then

FX idÐ→ FX RÐ→ Y

is a weak equivalence, and thus the adjunct composition

X UFX UY
ηX UR

≃
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is a weak equivalence. Also, UR is a weak equivalence because U preserves weak

equivalences. By the two-out-of-three property, X ≃Ð→ UFX.

Now we consider the “n-equivalence” model structures on T op, which we

define in the next paragraph. We will use these and Theorem 6.2 to put a model

structure on Cat∗ for each n ≥ 1.

Definition 6.4. [EDHP95, 2.1] A map of topological spaces f ∶ X → Y is a

weak n-equivalence if for all k = 0, . . . , n and for each x ∈ X, the induced map

πk( f ) ∶ πk(X, x) → πk(Y, f (x)) is an isomorphism. The identity of the empty space

is also a weak n-equivalence.

A map of simplicial sets f ∶ X → Y is a weak n-equivalence if ∣ f ∣ ∶ ∣X∣ → ∣Y∣ is a

weak n-equivalence in T op.

For all n ≥ 1, there is a model structure on sSet [EDHP95] in which

● the weak equivalences are weak n-equivalences.

● the fibrations are n-fibrations. We say f ∶ X → Y is an n-fibration if f has the

right lifting property with respect to Λp
k → ∆[p] for 0 < p ≤ n + 1, 0 ≤ k ≤ p

and with respect to Λn+2
k → ∆̇[n + 2], 0 ≤ k ≤ n + 2.

● the cofibrations are n-cofibrations, i.e. maps that have the left lifting property

with respect to all trivial n-fibrations.

This model structure is cofibrantly generated with generating cofibrations

I = {∆̇[q] → ∆[q] ∣ 0 ≤ q ≤ n + 1}
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and generating trivial cofibrations

J = {Λp
k → ∆[p] ∣ 0 < p ≤ n + 1, 0 ≤ k ≤ p} ∪ {Λn+2

k → ∆̇[n + 2] ∣ 0 ≤ k ≤ n + 2}.

We call sSet with this model structure sSetn. If n ≠ m, then sSetn and sSetm

are not equivalent. In addition, each of these categories is different from sSet

with the Quillen model structure, in which the weak equivalences are those

morphisms whose geometric realization is a weak homotopy equivalence of

topological spaces, the cofibrations are level-wise injections, and the fibrations

are Kan fibrations [Hir03, 7.10.8].

In [Tan13], Tanaka puts a cofibrantly generated model structure on Cat using

the pair of adjoint functors c ∶ sSet1 ⇆ Cat ∶ N. Here c is the categorization

functor, which is defined as follows. The set of objects in cX is X0, and morphisms

in cX are freely generated by the set X1 subject to relations given by elements

of X2, namely, x1 = x2x0 in cX if there exists a 2-simplex x such that d2x = x2,

d0x = x0, and d1x = x1. The right adjoint N is the nerve functor, which is defined

by NnC = Cat([n],C) and maps

di( f1, . . . , fn) = ( f1, . . . , fi−1, fi+1 ○ fi, fi+1, . . . , fn)

sj( f1, . . . , fn) = ( f1, . . . , f j, 1, f j+1, . . . , fn).

We remark that (c, N) are the same functors as (π, µ) from Chapter IV. We

adopt different notation because we are now considering unpointed categories.
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Tanaka shows that (c, N) is a Quillen equivalence. He calls Cat with the

model structure obtained using the transfer theorem and this adjunction Cat1.

This model structure is also related to the canonical model structure on Cat.

Proposition 6.5. [Tan13, 3.20] Let I be the unpointed category with two objects

and one morphism between them. Let S∞ = c∆1 be the unpointed category

with two objects and a unique isomorphism between them. The Tanaka model

structure on Cat is the left Bousfield localization of the canonical model structure

on Cat with respect to the inclusion φ ∶ I → S∞.

More generally, we consider the adjunction c ∶ sSetn ⇆ Cat ∶ N.

Proposition 6.6. For n ≥ 2, Cat with the model structure obtained by using the transfer

theorem with (c, N) is not Quillen equivalent to sSetn.

Proof. Since the fibrations in sSetn have the right lifting property with respect to

maps of the form Λp
k → ∆[p] for 0 < p ≤ n + 1, 0 ≤ k ≤ p, in particular, the trivial

fibrations of sSetn are surjective on k-simplices for all 0 ≤ k ≤ n + 1. Since the

inclusion ∅ → ∆̇[3] has the left lifting property with respect to all such maps,

∆̇[3] is cofibrant. However, Nc∆̇[3] ≃ ∆[3] /≃ ∆̇[3]. Applying Proposition 6.3, we

conclude that the adjunction is not a Quillen equivalence.

Upon reflection, it is unsurprising that c ∶ sSet ⇆ Cat ∶ N is only a Quillen

equivalence when n = 1 because c only uses the information of a simplicial set up

to the 2-simplices. Now we consider another pair of adjoint functors between sSet

and Cat.

Theorem 6.7. [Tho80] Let Sd be the subdivision endofunctor of sSet, and let Ex be

its right adjoint. Then Cat with the model structure obtained by using the transfer
66



theorem and the adjunction cSd2 ∶ sSet ⇄ Cat ∶ Ex2N is Quillen equivalent to sSet

with the Quillen model structure.

Proposition 6.8. There is a model structure on Cat where

● the weak equivalences are those maps f such that Ex2N f is a weak n-equivalence.

● the fibrations are those maps f such that Ex2N f is an n-fibration.

● the cofibrations have the left lifting property with respect to all trivial fibrations.

We call Cat with this model structure Catn.

Proof. We must show that Catn satisfies the hypothesis of the transfer theorem.

First, Catn is closed under small limits and colimits because Cat is. Next, cSd2 I and

cSd2 J permit the small object argument because the domains of these sets contain

finitely many objects and morphisms. Finally, we must show that Ex2N takes

relative cSd2 J-cell complexes to weak equivalences. Note that every cSd2 J − cell

complex is cSd2 applied to a relative J-cell complex. Let f ∈ J-cell, so f is a

weak equivalence [Hov99, 2.1.19]. By [FL81], Id → Ex2NcSd2 is a weak homotopy

equivalence, and so f ≃ Ex2NcSd2 f . Thus Ex2NcSd2 f is a weak equivalence, i.e.

Ex2N takes relative cSd2 J-cell complexes to weak equivalences.

Proposition 6.9. Catn is Quillen equivalent to sSetn.

Proof. By the transfer theorem, (cSd2, Ex2N) is a Quillen adjunction. Since

X ≃Ð→ Ex2NcSd2(X) for all X ∈ Ob(sSetn), in particular, this holds for all cofibrant

objects of sSetn. By Proposition 6.3, (cSd2, Ex2N) is a Quillen equivalence.
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Let ∅ ≠ X ∈ Ob(T op). Note that πk(ΣnX) = 0 for all k < n. Therefore

in the (n − 1)-equivalence model structure on T op, ΣnX ≃ ∗. If T opn satisfies

the hypotheses of Theorem 4.25, then this theorem implies that every object in

SpN((T opn)∗, Σ) is stably equivalent to 0. Hovey [Hov01, 5.5] shows that under

certain conditions, a Quillen equivalence Φ ∶ C → D induces a Quillen equivalence

SpN(Φ) ∶ SpN(C, Σ) → SpN(D, Σ). In light of these results, we make the following

conjecture.

Conjecture 6.10. The category of spectra SpN((Catn)∗, Σ) exists, and every object

in SpN((Catn)∗, Σ) is stably equivalent to 0.
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