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The Fock-Tani (unitary) transformation of the second- 
quantized Hamiltonian gives a representation which treats 
reactants and products symmetrically, and composites 
exactly. Each term in the Fock-Tani potential corresponds 
to a specific physical process and contains terms 
orthogonalizing continuum states to the bound states. The 
difficulty in carrying out this transformation can be 
lessened by working in a center of mass system, giving 
(n-1) reduced mass particles.

After a general analysis of such systems, the Fock- 
Tani transformations in the 3+2-body case are carried out 
for the react ons

a++(b+c")+(a+c )+b+ (1)
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and

a~+ (b+c”)-► (a”b+) +c” . (2)

It is found that for (2) the transformation in the 
symmetrical reduced mass system can easily be carried out, 
but the Jacobi reduced mass system requires the more 
complicated d-matrix approach. This transformation has not 
yet been attempted in the full 3-body system but is likely 
to be as difficult as that for (1).

First order differential and total cross sections are 
computed for resonant charge transfer in (1) for a proton- 
hydrogen initial state. The Fock-Tani T-matrix for the 
initial-state Jacobi system is found to be identical to 
that for the full 3-body system. That for the symmetrical 
reduced mass system gives an error of order l/mprot in the 
incident wave vector.

A comparison of the Jacobi version and a previous 
special case Fock-Tani transformation, where the proton 
mass is taken as infinite, is also made. Cross sections 
for (ls+ls) positronium formation in positron-hydrogen 
collisions, calculated using the same program as for the 
proton-hydrogen case, are found to disagree with the 
previous Fock-Tani result, probably due to lack of 
convergence of the previous result. Cross sections for 
reactions (1) involving muons in hydrogenic isotopes (of 
interest in quantum electrodynamics and catalyzed fusion)
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are also calculated.
Finally, extension of the results to higher order is 

considered. Polarized Schrodinger wave functions for a 
system containing a hydrogenic atom and a fully kinetic 
external charge are found to first order. These would be 
used in the Fock-Tani matrix elements to account for some 
initial- and final-state effects. Calculations of 
distorted second-quantized states and second and third 
order T-matrix elements are also outlined.
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CHAPTER I 

INTRODUCTION

Atomic 3-body systems provide an ideal testing ground 
for theories of scattering incorporating bound states 
because the wave functions are known. One of the most 
severe tests lies in the ability to account for virtual 
rearrangement processes in the intermediate states of any 
given process. A recent calculation1 has shown that 
virtual positronium formation is the leading contributor to 
the dynamics of elastic scattering of positrons from 
hydrogen in its ground state at energies below the thresh­
old for positronium formation. The problem of virtual 
rearrangments is difficult to handle using conventional 
representations which have different Hamiltonians for the 
different arrangements. Thus a representation that can 
accurately account for various arrangements simultaneously 
would be of great utility.

A representation (Fock-Tani) has been developed2 which 
does give a Hamiltonian that treats reactants and products 
symmetrically and composites exactly. This representation 
involves a unitary transformation of the second-quantized 
Hamiltonian to a Hilbert space in which creation and 
annihilation operators corresponding to bound states 
satisfy elementary commutation relations and therefore are



2

kinematically independent of the unbound states. The 
potentials between the latter have orthogonalization terms 
subtracted from them so that there is not enough energy to 
bind (this binding being already accounted for in the 
creation and annihilation operators for the composite 
states). An added benefit is that each term in the Fock- 
Tani potential corresponds to an immediately identifiable 
and specific physical process. All interactions are of 
smaller magnitude due to terms orthogonalizing continuum 
the states to the bound states. Therefore the Born series 
in Fock-Tani representation is more convergent than the 
Born series in Fock (or Schrodinger) representation and the 
reliability of first-order approximations should be 
improved. In fact, this has been shown for resonant charge 
exchange in proton-hydrogen collisions by Ojha et al.3

The drawback of the Fock-Tani representation is the 
difficulty in actually carrying out the transformation.
The transformation has been done for a full 3-body system. 
This is useful for a variety of problems but certainly 
should not exhaust the potential of the Fock-Tani approach.

The first goal of this dissertation is carrying out 
the Fock-Tani transformation starting in center-of-mass 
coordinate systems in which the degrees-of-freedom have 
been reduced by the coordinates and momenta of one 
particle, a 3-*2-body, reduced-mass system. If such systems
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give the same physical result as the full 3-body system, 
they would be of great utility in actualizing the Fock-Tani 
transformation for 4 bodies.

In Chapter II two methods for reducing an n-body 
Hamiltonian to (n-1) bodies are re-derived as an aid in 
understanding the physics of such systems. For reduced 
systems in which one particle is fixed at the origin, the 
inertial potentials arising in these accelerated systems 
are analyzed to determine the regions in which they may be 
neglected. A fortuitous result of the generation of 
asymptotic states for such systems is a direct relation 
between these symmetrical reduced-mass systems and the more 
conventional unsymmetrical (initial- and final-state) 
center-of-mass systems. This immediately gives a relation 
between the initial- and final-state Jacobi systems.

In Chapter III the Fock-Tani transformations for both 
the symmetrical and Jacobi 3+2-body systems are derived to 
account for arrangement channels of the reaction

a++(b+c")-(a+c_)+b+ . (1.1)
This transformation is an almost trivial extension of that 
derived by Girardeau* for the infinite-mass special 
case. It is found that the Fock-Tani Hamiltonian derived 
in the Jacobi system gives a first-order T-matrix for 
charge transfer which is identical to that for the Fock- 
Tani Hamiltonian derived for the full 3-body system. But



the Hamiltonian derived for the symmetrical reduced-mass 
system gives a first-order T-matrix with error (in atomic

4

units) of order l/mproton in the initial state. This 
error, which is not negligible for impact energies of order 
5 keV, is a result of the sequestering of terms of the 
Fock-Tani Hamiltonian into the various physical processes. 
The inertial potentials which would presumably correct this 
error do not appear in the first-order term which gives the 
charge transfer T-matrix.

Next, the Fock-Tani transformation for the reaction

a“+(b+c”)-̂ (a“b+)+c” (1.2)

is carried out in the symmetrical reduced-mass system, and 
is found to be much easier than that for (1.1) because 
both a and c are bound to the particle fixed at the origin 
so that the operators corresponding to the bound states of 
one species commute with all operators associated with the 
other species. The transformation for the Jacobi initial- 
state system must be done by the much more complicated 
d-matrix method. The Fock-Tani transformation for (1.2) 
has not yet been carried out in the full 3-body system, but 
is expected to be as difficult as that for (1.1). Given 
the small error in the T-matrix for reaction (1.1) noted 
for the symmetrical reduced-mass system in Fock-Tani 
representation, one should closely examine the initial 
state before using this Hamiltonian and make ad hoc



corrections at the matrix element level to bring the 
initial state in line with what is physically expected.
In any case the value of reduced-mass systems is clearly 
demonstrated.

In Chapter IV the T-matrix for (1.1) is analytically 
reduced to a tractable numerical problem and the differential 
and total cross sections for (abc) = {(ppe), (epe), (yipu), 
(ydy), and (iity)} are calculated. A comparison with the 
Fock-Tani result for (ppe) given in Ojha et al.3 shows that 
their approximations give an error of order 10 percent. A 
comparison with the Fock-Tani result for (epe) given by 
Ficocelli Varrachio and Girardeau5 shows that the present 
result does not agree with theirs. The discrepancy is 
attributed to a lack of convergence in their calculations.
The Fock-Tani total cross sections for (upu) are compared 
with those for the first Born and distorted wave Born 
approximations of Ma et al.6 and to the classical-trajectory 
Monte Carlo result of Ohsaki et al.7 It is found that the 
Fock-Tani and distorted wave results are in excellent 
agreement near the peak of the cross section and in good 
agreement for other energies. Finally, the differential 
and total cross sections for (upu)* (yidii), and (tityi) are 
compared. Differences among these isotopes are found near 
the energy threshold for these reactions, which is near the 
peak in the total cross section, but they give essentially 
the same cross sections at higher energies.
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the same cross sections at higher energies.
Because the first-order Fock-Tani total cross section 

for resonant charge transfer3 does not fit the data well 
at energies less than 10 keV, and because the differential 
cross sections at 25, 60, and 125 keV do not fit the data 
for large angles, one must consider higher-order effects. 
One would expect that polarization effects would be 
important at lower energies, where such effects would have 
more time to develop in a scattering process, and at larger 
angles corresponding to smaller impact parameters. In 
Chapter V the first-order wave function for a system 
containing a hydrogenic atom and a fully kinetic external 
charge is found. The method is easily extended to higher- 
order. This wave function would be used as a better 
approximation to the Lippmann-Schwinger in-state than the 
asymptotic eigenstate (a plane wave multiplied by a 
hydrogenic wave function) used previously.

The adiabatic limit of this wave function is found to 
match the adiabatic wave function of Dalgarno and Stewart.8 
The kinetic terms are found to depend directly on the 
magnitude of the momentum of the external particle, rather 
than inversely, so that these wave functions do not have 
the expected energy dependence. As a check on this 
dependence, the polarization potential is calculated from 
the virial theorem and compared with the non-abiabatic 
polarization potential found by Seaton and Steenman-Clark9
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and by Drachman.10 Kinetic effects in the present result 
enter at a slightly lower order in 1/R than in previous 
results, k/R5 rather than k2/R6, but show the same 
qualitative sort of energy dependence.

Chapter VI is an outline of a method for including 
higher-order effects within the second-quantized Fock-Tani 
representation. It is shown that the differential equation 
for distorted waves can be solved approximately, but to 
infinite order in the distortion, for large R. This 
solution is to be matched to the numerical solution for 
small R, resulting in a significant savings in computer 
time and probably reducing roundoff errors. The use of 
this approximate distorted state in the reduction of first-, 
second-, and third-order terms (in the remaining potential) 
of the T-matrix is discussed.

Chapter VII contains a summation of the present 
work and explores directions that show promise for the 
future.

Atomic units ()l-me=e*l) are used throughout.
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CHAPTER II

THE REDUCED HAMILTONIAN 

Introduct ion

A technique for eliminating the motion of the nucleus 
from the dynamics of an (n-1)-electron atom was introduced 
in 1930 by Hughes and Eckart.1 The explicit derivation, 
given in Bethe and Salpeter,2 involves a change of 
variables in the general n-body momentum operator, to the 
center-of-mass coordinate and the relative coordinates 
between the (n-1) electrons and the nucleus. This introduces 
cross-terms in the momenta of the electrons which are 
referred to as "mass polarization terms"3 or "specific mass 
shift terms"* in the literature. These terms produce 
shifts in the observed spectra* of isotopes of atoms in 
addition to the normal mass shift due to replacing the 
electron mass by the reduced-mass. Girardeau5 has given a 
derivation for arbitrary masses based on a unitary 
transformation.

Because the momentum cross-terms lead to inertial 
forces in the equations of motion for this accelerated 
reference frame, it seems more appropriate to refer to them 
as "inertial potentials," their physical meaning, rather than 
specific mass shift terms, their spectroscopic effect. Mass
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polarization refers to the dominant physical process for 
the ground state of 2-electron atoms2 so this label is not 
general enough.

This chapter is devoted to a deeper understanding of 
these inertial potentials so that their inclusion or 
neglect may be justified on physical grounds for the 
scattering processes considered. A comparison is also made 
to the discussion for bound systems in Bethe and Salpeter. 
Next a general derivation of the asymptotic states is 
given. And finally the relations between this symmetrical 
reduced-mass system and the inertial reduced-mass systems 
(which contains no intertial potentials) are examined.
These latter, unsymmetrical, Jacobi coordinates were 
recently found to simplify a calculation by Drachman6 of 
the fine-structure splitting of the Rydberg states of 
helium.

The Fock-Tani transformations in Chapter 3 are greatly 
simplified by reducing the Hamiltonian from 3- to 2-bodies 
using these reduced-mass systems. A comparison of their
relative merit in the Fock-Tani case will be given in the 
next chapter, where it will be shown that for electron
capture reactions, the Fock-Tani Hamiltonian can be derived
in both the symmetrical and inertial systems. Whereas the
latter gives the same result as the full 3-body
calculation,7 the former gives an error of order l/mproton 
in the initial state energy and in the initial momentum
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wave function of the first-order T-matrix. It is shown in 
Chapter III that the Fock-Tani transformation divides the 
potential into 10 (for the inertial system) or 11 (for the 
symmetrical system) terms corresponding to the possible 
physical processes. Because it is a second-quantized 
representation, only one term in the potential contributes 
to a given process at first-order because of the coupling, 
or lack thereof, of the creation and annihilation operators 
to the initial and final states. So it is not surprising 
that some term that would make the correspondence between 
these two systems might be seques tered at first-order from 
the process at hand.

Finally, it is shown that the Fock-Tani transformation 
for the process u“ + (e“p+) -► (v“p+) + e” is greatly 
simlified when the symmetrical reduced-mass system is used, 
while the transformation for the inertial reduced-mass 
system still requires half the work of the full 3-body 
transformation.

Reducing the N-body Hamiltonian to (N-l)-bodies

Girardeau's unitary transformation method of finding 
the n-body symmetrical reduced-mass Hamiltonian, (2.11), is 
outlined first, but with a little more detail. Next, a 
derivation is given which is essentially equivalent to 
that of Bethe and Salpeter2 except that it is for arbitrary
masses.
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One starts with the n-body Hamiltonian with transla­
tion invariant potential,

H - l _£a + V ( r ...,r ) , (2.1)
a-1 2m 1 na

where

V(?1+ a,...,rn+ a) = V(rlf...,rn) .

By using Taylor's theorem,

exp(a»$j )f (?lf... ,...) = f (r^,..., r.+ a,...) ,
where Pj= -i^j, one can remove the Hamiltonian's depend­
ence on the first coordinate by the unitary transformation,

S * exp(-iA) , A = ?1*(p - p^) = ^1*1 Pb f (2.2)b=2

in that

■ V(0,r2,...,?n)^(r1,...,?n) . (2.3)

This, together with the commutation relations

[ (iA)m,p ] = -mfi i l Pl UA)"'1 , m > 0 , (2.4)
B»2

gives
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n 2
S"1HS = l £a_ + V(0,r 

a=1 2ua r • • • r t • • • t (2.5)

where

Ul= m^ , and ( 2 . 6 )

The 2-body momentum-dependent potentials in which the 
remaining particles move,

arise from the accelerated coordinate system in which the 
first particle is at rest, and give rise to inertial forces 
in the equations of motion.

Energy and total-momentum eigenstates of the original 
Hamiltonian, ¥ such that

a=2 m^ 2<a<b<n m ̂
(2.7)

H¥ = E¥ and p¥ = q¥ (2 .8 )

can be written in the general form

¥ = (2Tr)"3/2exp[ iq«?(?1,...,?n) ]u(r (2.9)

where u is an eigenfunction of total momentum zero, and is 
therefore translation invariant, and 1 is a weighted average.
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The conventional choice is 1 * Scm . The corresponding 
eigenfunctions, with the same eigenvalues, in the 
transformed representation are

$ = S"1* =

* (2Tr)”3/2exp{i[q«r1+ q«t(0,?2,... ,rn) ]}u(0,r2,... ,?n) ,

( 2 . 10)

which are products of eigenstates of p^ by states depending 
only on r2,...?n. As noted by Girardeau (for 1 = r^),5 t*1*3 
is what one would expect since S~1HS commutes with p^ . The 
momentum operator of the first particle in the transformed 
system therefore takes on the meaning of the total momentum 
operator of the original system.

Starting with the center-of-mass system, in which q=0, 
the corresponding $ states are eigenstates of the 
(n-l)-body reduced Hamiltonian obtained by setting p^* 0,

Hred= I + V(0,r2, ...,rn) + £ . (2.11)a=2 2ua 2<a<b<n m ̂

Now to a re-derivation of (2.11) from a coordinate 
transformation approach is given that is equivalent to 
the derivation of Bethe and Salpeter,2 but generalized to
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arbitrary masses.
Starting with (2.1) one changes variables to 

Pa = ?a- rx , for a > 1 , 

and

5 = £ mara , where M = J m . (2.12)
a=l M a=l

Then the transform as ra
$ = ml$p - f « , and « = ma$p + « for a > 1 .
rl “M R a* 2 pa ra -M R pa

(2.13)

But a transformation of the metric of the original coordi­
nate system to that of the new system8 using these 
relations gives off-diagonal terms in the new metric which 
are non-zero except for those with index 1 . Because this 
transformation is given by inner products of pairs of 
partial derivatives, the only possible structure for each 
of these terms is the paired cross-term form of (2.7).
This gives the final term of (2.11), apart from constants. 
The equation of motion for such a metric9 contains inertial 
force terms reflecting the accelerated frame.

In a notation where q = -i$p and q = -i$ ,
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2m
and p23

for a > 1 (2.14)

Substituting these expressions into the momentum terms of
(2.1), and setting the total momentum q equal to zero,
(2.11) is reproduced if if the q's are renamed as p's.

One might sense a contradiction inherent in a zero- 
total-momentum coordinate system in which one particle is 
fixed at the origin. Can momentum be zero in such a 
system? In the familiar case of the transformation from a 
2-body system to the reduced-mass system, one is left with 
a single "fictitious particle" moving in a potential 
centered’at the origin. How can one "particle" conserve 
momentum? This is resolved by noting that in a 
relative/center-of-mass decomposition, the choice of 
internal (relative) coordinates is not unique.10 Choosing 
internal coordinates relative to the position of one 
particle or a geometrical center (a choice which also 
results in momentum cross-terms10) is as reasonable as 
choosing them relative to the center-of-mass. Once the 
total momentum has been accounted for, there need not be 
any further restrictions on the relationships among the 
particles other than reducing the degrees of freedom by 
three through some choice of internal relations.
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The Inertial Potentials

Considering the complication of the Hamiltonian (2.11) 
due to the intertial potentials, one would like to know in 
which regions they can be neglected. The W's arise, 
physically, from the passage to the rest frame of the first 
particle, which is being accelerated, through the 
V-interactions, by all other particles. It is for this 
reason that they are refered to as "inertial potentials"
(the physical meaning) rather than "specific mass shift 
terms" (the spectroscopic effect) in this dissertation.

Given this physical meaning for these momentum depend­
ent potentials, one can examine their importance for various 
regions. First, if all other particles are infinitely 
separated from the first, assuming that the V-interactions 
go to zero at infinite separation, all forces on particle 1 
go to zero, and hence the inertial potentials should also.

Suppose particle 2 is bound to particle 1, and all 
others, {j}, are at infinity. Since any correlation 
between 2 and any j is established through the Coulomb 
interactions (V), which go to zero at infinite separation, 
the dot product of the momenta of 2 and {j}, representing 
their correlation or average in the time dependent 
formalism, should go to zero in the time independent 
formalism.

Suppose more than one particle is bound to the first
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particle, say {2,...,A}. Again dot products of {2,...,$,} 
with the other {fl,+l,...,n} would be expected to be zero if 
the latter are at an infinite distance from the former.
And if the W arise solely from the acceleration of the 
first particle, one would expect the dot products among the 
{Jl+l,...,n} , even if some are clustered together, to 
go to zero (in the time independent formalism) if these 
clusters are infinitely removed from particle 1 . If some 
terms in W arose partially from some additional peculiarity 
in the choice of coordinates, then the latter assertion 
might be false. But the second derivation of (2.11) 
clearly shows that the only peculiarity of this system is 
that it is the accelerated rest frame of the first particle.

Finally, the dot products of the momenta of pairs of 
particles bound to 1 can be zero in the time independent 
Hamiltonian formulation only if the probability densities 
of their wave functions are spherically symmetrical (so that 
these products would average to zero in the time dependent 
formalism). For Fermions, the Pauli exclusion principle 
additionally dictates that these products are zero only for 
two particles, {2,3}, bound to 1 in an s-state. The exclu­
sion of the third and fourth bound particles, {4,5}, from 
the ground state is a correlation mechanism. So even if 4 
and 5 reside in an s-state, the dot products of the momenta 
of 4 and 5 with the momenta of 2 and 3 are expected to be
non-zero.



19

Bethe and Salpeter2 examine the case of {2,3} bound to 
particle 1 in more detail. Initially ignoring any 
polarization effects, they examine the energy shift due to 
the Pauli interaction of 2 and 3. If the solution, U, of
(2.11) is approximated by a sum of products of eigenfunctions 
belonging to the individual (non-interacting) electrons,
U = 2”1/2[u (1)v (2) ± u(2)v(l)], then the energy shift (in 
atomic units) is

e2= )v*(2) • [u(l)^2v ^2  ̂ ± v(l)$2u (2) •

But the first term is zero since the expectation value of 
the momentum of a bound electron, in any direction, is zero. 

The second term,

e2 = ±ill^u*vdT!2 '
is the optical transition probability for going from one 
occupied state to another. Since one of the electrons is 
in the Is state, £2 is zero except for p states. This 
supports the reasoning, above, that if both electrons are 
in spherically symmetric states, this term is zero.

Turning to the correlation effect due to polarization, 
produced by the electrostatic repulsion of the electrons, 
Bethe and Salpeter note that the exact wave function would 
not be of the above form, but would depend on the inter­
electron distance. For excited states the largest contribu­
tor would again be the l = 1 term (due to the dipole
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symmetry of the problem). But because of the close proxim­
ity of the electrons, the ground state polarization cannot 
be neglected . A recent calculation11 of the specific mass 
shifts between 3He and "He, agreeing well with experiment*, 
shows the s, p, and d state frequency shifts in the propor­
tion of 2200, -1100, and 0 MHz, respectively.

For scattering problems it is important to know the 
range of R (the projectile-target distance) for which the 
inertial potentials are negligible. It is shown in Chapter 
V that they can be neglected in calculating the first-order 
energy shift of a hydrogenic atom due to the presence of a 
free charge at R > l/(2mi).

The range of projectile momenta in which the intertial 
potentials can be neglected might also be considered. As 
noted by Girardeau, these terms are suppressed by a factor 
of 1/mi relative to the potentials V, for all values of the 
radius vectors. Calculations7 for the reaction 
p+ + H(ls) -► H(Is) + p+ have revealed that one can generally 
neglect terms of this order for projectile energies * 5 keV 
or smaller, and this is precisely the region in which 
polarization effects should be important.

However, despite these considerations, correlation 
between the projectile (s) and the atomic electron (s) is 
the mechanism of polarization, so neglecting these terms in 
a determination of polarized asymptotic states, as in 
Chapter V, would seem to be inconsistent. It is found that
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an additional coordinate transformation from this acceler­
ated system to the inertial center-of-mass system (in which 
no momentum cross-terms appear) is useful for a calculation 
of such effects, as well as for a calculation of the 
asymptotic energy eigenvalue. It should be noted that if 
the W terms of the reduced systems are neglected, a 
transformation to the coordinates appearing in the asympto­
tic states, in order to calculate quantities of physical 
interest, produces cross-terms in the new momenta of the 
same form as the original W's rather than an inertial 
system. It is therefore important not to neglect these 
terms too early in a calculation, even when such an 
approximation is physically justified.

Next is a general derivation of the asymptotic states. 
For the reaction of two composites with component transfer,

+■ (j , j+1,..., A,... ,n) + (1,2,..., j-1) , 
in the original total-center-of-mass system, one can also 
define the centers of mass of the composites,

The Asymptotic States

(£,$,+!,... ,n) + (1,2 , . . . , 8.-1) ♦

(2.15)
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where a = fc,l,j,l and b = n,fl,-l,n,j-i for compositeo S
label, s, equal to projectile-initial (pi), target-initial 
(ti), projectile-final (pf), and target-final (tf), respec­
tively.

Then the zero-total-momentum eigenstates of the orig­
inal Hamiltonian are

= (2ir)~3/2exp[ ilL* (8 )u( ?1, ..., ?n) (2.16)

and

= (2ir)~3/2exp[ i£f • (S f- ^tf )u(?ir ... ,?n) . (2.17)

The reaction in the reduced system is represented by 
(A,£+1,... ,n) + ((1 ),2,...,H-l) -►

(],j^‘l,»..,i,».»,n)  ̂ ((1 ) ,2,..., j-1) ,

where the notation for the ghosted particle, fixed at the 
origin, is (1 ). The corresponding reduced states are

4.i
Jl-1

(2ir)~3/2exp[ iiL-($ .- £
a-2

ma?a)3u(f
Mti

and

(2.18)

4f (2Tr)“3/2exp[ iitf • (Spf - 'iVallul?,a=2-MTf 2 (2.19)

For the 3-body atomic charge transfer reaction 
(3) + ((i) , 2) ■+> (2,3) + ((1 )) , the reduced asymptotic
states are
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#. = (2ir)~3/2exp[ ii?. • ( r- - l 1 o m 2r2 ( 2 . 2 0 )

ml+ m2
and

*f = (2ir)~3/2exp[ iltf * (m2r2 * m3r3) (r?- ?3) . (2.21)
m2+ m3

To check this the variables in the 3+2-body reduced 
Hamiltonian,

Hrerf I J k  + V(0,?2,r3) + p2*p3 , (2.22)a=2 2u m,a l

are changed to

5. - r3 - m2r2 and ri = ?2 , (2.23)
m1+ m2

or

* = m2r2 * m3r3 and rf = r2 - ?3 . (2.24)
m 2 + m^

Using (2.23) and (2.24), the relations between initial- 
and final-state coordinates, which are not all obvious from 
a graph of the system, may be written down as
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$f= + ir , rf= yr - $ ,

and

5 = X$f- irf r_ . r = £rf+ Sf ,

where

_ = m3 = m2
 ̂ m 2 + m 2 ' n m^* m 2 *

____

ml+ m2 '
m.

X = m, + m-

and

i = cX+n • (2.24)

The momentum cross-terms- exactly cancel in the new 
coordinate system, giving initial and final Hamiltonians 
for coulomb potentials (easily generalizable to other types 
of potentials)

H ZAZP
l5+c(l-v)rI I5-cvrI

(2.25)

where
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R = Ri , r = r i '

A = (( 1),2) , P = (3) ,

C = +1 , v -  ” 1 .m1+ m2

M = m3(m2+ ml) . and 
m1+ m2+ m3

m = m2ml . (2.26i) 
m1+ m2

or

R = Rf , r = rf ,

A = (2,3) , P = ( ( 1 ) ) ,
H

iitu v = m3 
m^+ mj

M = ml(m2+ m3] . and
m1+ m 2 + m3

m = m2m3 . (2.26f) 
m3+ ®2

For later reference, the asymptotic energy eigenvalues
of initial and final states (in atomic units), are
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E
2n2a0

(2.27)

where aQ = 1/m.
If Girardeau's approximate eigenstates, in which m 2 is 

neglected, had been the starting point, there would have 
been an error in E of order n^/m^, which is negligible. 
However, in this approximation, conservation of energy 
would give a much more complicated expression for the 
relation between initial and final momenta than does the 
exact energy relation.

Equations (2.25) are just the relative initial and 
final Hamiltonians for the standard (Jacobi) center-of-mass 
system. The present derivation starts from a system in 
which the first particle is at the origin, so the relations 
defining the inter-cluster and intra-cluster coordinates,
(2.23) and (2.24), do not contain the coordinates of 
particle 1 that appear in the standard derivation of this 
coordinate system (see, for example, C. J. Joachain12).

The Relation to Inertial Coordinates

In calculating initial and final polarized states, as
in Chapter V, the inertial coordinate system is the most 
convenient one to work in because the arguments of the mo­
mentum and atomic wave functions of (2.18) and (2.19) are
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independent variables. The transformation for the 3-body 
case is given in (2.23) and (2.24). A discussion of the 
relative merit of the two types of systems and a look at 
the feasibility of finding transformations to inertial 
coordinates in the general case follows. Although trans­
formations for n>3 will not be used in the present work, 
specific examples of these will be presented for complete­
ness. As noted earlier, these relations comprise a very 
direct tool for finding a relation between initial- and 
final-state coordinates. Such relations for complex 
systems are not easily found by other methods.

The standard Jacobi center-of-mass Hamiltonian is 
in two dynamic variables, r and p in the notation of 
Joachain's (19.20), and an energy conserving delta function 
appears as a prefactor of the matrix elements of physical 
interest. Equation (2.22) is also a Hamiltonian in two 
dynamic variables with energy conservation accounted for.

Given the essential equivalence of both approaches, 
and the problems with the 3-body Lippmann-Schwinger 
equations noted for the Jacobi form,1* it would be expected 
that the symmetric Hamiltonian, (2.22), would lead to the 
same problems. Indeed, the trace of the Born Kernel is 
infinite in this case also, due to integrals over squares 
of delta functions of the momenta which do not participate 
in a given interaction, such interactions existing between 
particles 2 or 3 and the origin.
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One might ask what has been gained by the trans­
formation to obtain (2.22). It is found in Chapter III 
that carrying out the Fock-Tani transformation for the 
system containing two negative charges and one positive 
charge is greatly facilitated by starting with the Fock 
version of (2.22). A more convoluted method of finding 
the Fock-Tani Hamiltonian1* would have to be used if the 
Jacobi 3+2-body or a full 3-body Fock Hamiltonian were the 
starting point.

An attempt at realizing a coordinate transformation 
which would eliminate the momentum cross-terms from the 
n+(n-l)-body Hamiltonian could not succeed due to the 
impossiblility ofsolving non-linear (momentum
cross-term) equations in (n-1)2 unknowns (the coefficients 
of the old to new coordinate relations). For a specific n, 
the problem can be reduced somewhat by inducing that one 
new coordinate is the projectile-target relative coordinate 
and that the remaining (n-2) new coordinates are intra­
cluster relative coordinates for which all coefficients of 
the old coordinates except for one, in each such relation, 
may be set to unity. Finally, pattern recognition from 
simpler systems gives the general form for a trial set of 
equations for a given n. However one must still solve non­
linear equations. It is found that this approach succeeds 
for both 3-body sytems, (2.23) and (2.24), two 4-body sys­
tems and one 5-body system for all masses. For the special
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case of all projectile masses being equal, solutions exist 
for the remaining 4-body system, one 5-body system and one 
6-body system (for which three target masses are also 
equal). Systems of 7-bodies and higher were not explored.

In each of the following cases, one new coordinate is 
the projectile-target relative coordinate which appears in 
the momentum wave function of (2.18) or (2.19),

k - 1
mara ,Ia-2 M t

(2.28)

where k is the number of target particles. The intra­
cluster relative coordinates are as follows:
For the 4-body system (3,4) + ((i),2) ,

P3 = r4- and P1= ?2 , (2.29)

and for (4) + ((i),2,3) ,

P3 and (2.30)

For the 5-body system (4,5) + ((i),2,3) ,

p5 = r4' r5 ' p3‘ r2~ r3 ' and p2= r2+ r3 * (2‘31)

For the special cases of equal projectile masses in 
equation (2.25), a solution exists for the 4-body system
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(2,3,4) + ((1)) ,

5 = (1/3)(?2+ ?3+ ?4) ,

P3 = r2~ ?3 and P4= ?2+ ?3- 2?4 , (2.32)

and for the 5-body system (3,4,5) + ((0,2) ,

5 = (1/3)(r2+ ?3+ r4) - m2r2 ,
m1+ m2

P = r 2 / P3 = r2- r3 , and p4= r2+ r3- 2r4 . (2.33)

For the 6-body system, with m5= m^ and m2= m3= m4 , 
(5,6) + ((1),2,3,4)

5 = (1/2)(rg+ rg) - (1/4)(?2+ r3+ ?4) ,
-> + -► -> ■>
p6 = r5” r6 ' p4 = r2+ r3" r4 ' p3= r2+ r4" r3 ' and

P2= r3+ r4- r2 . (2.34)

These are transformations from the accelerated, zero- 
total-momentum coordinate system to coordinate systems in 
which the effects of acceleration, the momentum-dependent 
cross terms (W), are absent. Hence, these new systems must 
be the inertial center-of-mass systems for 4-, 5- and 
6-bodies. The equations are similar to transformations
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directly from the Hamiltonian of (2.1), in which the 
coordinate of the first particle is not zero. In such a 
transformation some of the relations for ft and the p's 
would be modified by an r^ term. As with (2.24), relations 
(2.28) through (2.33) constitute a very direct method of 
finding a relationship between initial- and final-state 
systems in 4- and 5-body systems. Such relations would be 
virually impossible to discern correctly from a graph of 
the system.

There is a final consideration in the use of the term 
"(n-1)-bodies". If the ghosted particle, (1 ), were truly 
eliminated from the reduced Hamiltonian, (2.11), one would 
expect that if a transformation to inertial coordinates 
could be found from the system containing 3 projectiles and 
(0+1) target particle, (3,4,5) + ((i),2) , then a 
transformation from the system containing 1 projectile and 
(0+3) target particles, (5) + ((i),2,3,4), could also be 
found. Likewise, if a transformation to the inertial 
system from the system (5,6)+ ((i),2,3,4) exists, then 
one would expect a transformation from the system 
(4,5,6) + ((i)r2,3) . But this symmetry does not hold, 
implying that the n-*(n-1)-body system is not a true 
(n-l)-body system in all its facets. A similar implication 
was noted previously arising from a consideration of the 
V-interactions in the Born Kernel.
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CHAPTER III

THE FOCK-TANI TRANSFORMATION 

Introduction

Fock-Tani representation1'2 has been shown3 to be a 
very convenient one to work in for rearrangement reactions 
because reactants and products are treated symmetrically, 
and composites exactly, within a single Hamiltonian. These 
composites are kinematically independent from the unbound 
states, and interactions between the latter are reduced by 
orthogonalization corrections so that they can no longer 
support bound states. Furthermore, the physical meaning of 
the various terms in the Hamiltonian is transparent and 
their inclusion or exclusion from a specific process is 
automatic due to the coupling (or lack thereof) to the 
creation and annihilation operators of the asymptotic states. 
In a field-theoretic optical potential approach to elastic 
scattering of positrons by hydrogen, at energies above the 
threshold for positronium formation, Ficocelli Varracchio 
has shown1* that the inclusion of Fock-Tani corrections 
should give a good fit to the benchmark variational 
calculations of Bhatia et al.5 Finally, a first-order 
calculation of the cross sections for the charge transfer 
process p++ H H + p+ in Fock-Tani representation6 matches
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the data7 for energies greater than 10 KeV and for 
differential angles less than 1 mrad.

The cost for this convenience is the task of actually 
carrying out the (Fock-Tani) unitary transformation of the 
Fock Hamiltonian. Such a transformation has been done on 
the subspace of the Fock-Tani state space containing one 
electron and two positive particles starting with the full 
3-body Fock Hamiltonian6 and also starting with the 
special case of the 3->2-body Hamiltonian, (2.22), with 
mi^« .3 In this chapter the latter is generalized to allow 
for finite masses. The transformation starting from the 
initial-state Hamiltonian, (2.25) is done and compared to 
the full 3-body Hamiltonian approach.

Finally, the transformation is found for the case of 
one positive particle fixed at the origin and any number 
of negatively charged particles of two types. The proton 
fixed at the origin is a "ghost" particle— one only sees 
its coulomb field. Therefore, each bound state involves 
the creation operator of only one particle, which anti­
commutes with that for the other (unbound) particle, so 
that the transformation is formally much easier than 
previous transformations3'6 (although one must still keep 
careful track of variables). Furthermore, in this case 
the transformation needs no restriction on the number of 
negatively charged particles of either species, a 
restriction required for the previous cases.3'6 This
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demonstrates the full power of the reduced Hamiltonian 
approach of Chapter II.

Fock Representation

The nonrelativistic Fock Hamiltonian for an electron 
with creation operator e (y), a particle of charge Za 
with creation operator a (x), and a particle of charge 
fixed at the origin is

Hp= /dxa^(x)Ha(x)a(x) + /dye^(y)He(y)e(y)

+ Jdxdya^(x)e*(y)(v (xy) + W (xy))e(y)a(x) . (3.1)36 oc

The notation convention will be that x = (r ,o ), where aa a
is the spin of the particle, and Jdx * Z/dra ' excePt 
where the context determines otherwise. A similar convention 
is used for y. The Schrodinger operators in (3.1) are 
given by (2,22), with labels {1,2,3} ■* {b,a,e}. It is 
assumed the charge of e is -1 but the mass is arbitrary 
(although labeled "e," it may be a negative muon). Also it 
is assumed that a and e are distiguishable. Atomic 
units are used throughout (K=melectron=e=l).
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Za Z}̂
H (x)3 T (x) + — —  a a x

- - ZbHe(y)= Te(y) - —  ,

r

vae(xy)= - 7 T T 7  - an<*lx-yl

Equation (2.6) gives

(3.2)

“a =
m niia d

ma+ m, and
m  in. e d

m + m, e d
(3.3)

First consider the case where a has positive charge. 
The creation operators for an electron bound to the origin 
and bound to particle a are, respectively,

E* = Jdyu^(y)e+(y) (3.4)
and

= Jdxdy<t>^(xy)a^(x)e^(y) . (3.5)

The final state wave function is

♦* = (2irr3/V * * (C* + T1̂ )u^(y - x) , (3.6)

where \i = {k,u},



37

n (3.7)

and where the functions u\ are orthonormal, free orbitals 
for the bound states of A or E. In Girardeau (1982)3 it was 
stated that these could also be distorted orbitals, but in 
Chapter 5 it is shown that uE would also have to depend on 
the position of the distorting particle, a.

The electron and a fields satisfy the standard anti­
commutation relations

{e(y),e(y')}={a(x),a(x')}={e(y),a(x)}={e(y),at(x)}=0 ,

(3.8)
whereas the bound state fields satisfy extremely complicated 
(anti-) commutation relations with the free particles and 
among themselves.3 For this reason a transformation to a 
new representation in which all of the fields satisfy 
elementary (anti-) commutation relations is done.

(e(y),e+(y')}=6(y-y')=6(re-re')6aa' 

{a(x),a*(x')} = 6(x-x') , and

Fock-Tani Representation

The Fock-Tani transformation involves enlarging the
state space so that the Fock space F, the physical space, 
will be isomorphic to the subspace Iq of the enlarged space
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J.
A.4. -A.4.One defines operators and as representing the

composite states of an electron bound to the origin and to 
the particle a, respectively. They are to be kinematically 
independent of the free particle states so that the commutation 
([,]) and anti-commutation ({,}) relations involving the
"ideal" composite states are

A

{e ,

A i

el)
A= [a ,Z*i- 6U V U ' V y v

A

{e fU
A

S }
A

= { e u , S ( + ) ( y ) } = U u ,C( + )r Cl

A

CV
/V

V
A

=  [a
U
,e( + )( y > ] = t « u .~( + ) r Cl

A  A

u' V (3.9)

Initially these ideal composites have no physical content 
on the subspace I0,

N I > = 0 if I > is in I0 , where N = £b B̂B B v vv

for 8= {a,e} . (3.10)
One then transforms the physics on the enlarged space 

I from the subspace J0 to the subspace Jc on which these 
ideal3 composite operators represent the physical composite 
states and the fields a (x) and e (y) are continuum states 
that will not have enough interaction energy for binding.

The Hamiltonian is transformed by means of the unitary 
operator3
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A  A  A  A  — A  A  A  A  A  A  A  AU= UAUE , where Uft= e x p ^ F j  , Fa= a ^ )  ,

and , UE= exp(fF£) , F£= ^ E v> . (3.11)

The Fock-Tani Hamiltonian is given by
A  A  __ 4 A  A  A   4 A  ̂  4 A  A  A  A  ^H= u‘ 1HFu = ue1(u; 1hfua)ue= H0 + V . (3.12)

The states are transformed as

lva) = a^lO> 
and

/A _  , /S +

U a V 0 >

|v e ) = e^|0> = Ue1E^|0> . (3.13)

The ordering of the U's is critical since they do not 
commute in general.2 For the opposite ordering, the second 
equation of (3.13) is violated unless a and b are identical 
particles, in which case the ordering gives the post-prior 
discrepancy familiar in scattering theory.®

The mechanics of the transformation are given in detail 
in Gilbert9 (who has the opposite sign for all terms due to 
his sign in the equivalent of (3.11)) and in Girardeau.3 
The explicit result, below, differs somewhat from Girardeau’s 
equations (34) through (42).10 The rightmost y's in the second 
and fourth matrix elements in his equation (41), which should 
be y' and y2* respectively, are given correctly in (3.23)
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below. The a-a matrix elements (ip-ip in his notation) which 
are diagonal in label are zero. In fact those which 
involve two labels of the same parity are zero. Hence the 
corresponding energy in the unperturbed Hamiltonian, Hq , 
is not renormalized as in his equation (38), and the lack 
of terms of the same parity in V is indicated below by a 
prime on the summation sign. And finally, the momentum 
dependent potential, W of (3.2), is included below.

There are no bound state terms in W included in Hq 
since operating with the bare terms in W (a given matrix 
element excluding the orthogonalization corrections) which 
are diagonal in species (whether diagonal in label or not) 
on the asymptotic bound states gives zero.

The free-electron/free-positron (species diagonal, of 
any energy label) bare matrix element containing W is non­
zero but still is included in V rather than Hq because, as 
discussed in Chapter II, this term goes to zero asymptoti­
cally. When particles a and e are both far from the proton 
fixed at the origin, whether moving with correlated motion 
or not, the acceleration of the proton (the source of W) 
goes to zero. If either particle is near the origin while 
the other is at infinity, the coulomb potentials between 
these two, which would establish correlated motion, go to 
zero and hence W should also go to zero. Finally, if both 
free particles are near the origin W could be large, but 
such an asymptotic state is unstable and therefore would



41

not be found in experiment, nor could it be considered a 
viable Lippmann-Schwinger asymptotic state.11

The potentials V and W are spectators to the unitary 
transformation of second-quantized operators in (3.12), so 
W may be added to V of Girardeau1s equations (21) through 
(26).3 These equations are simplified using the 
eigenvalue relations [the latter a finite mass generaliza­
tion of Girardeau's equation (26)],

He<y>uEv<y> = ®v«E(y) . (3 .1 4 )

and

(Ta(x) + Te(y) + Vge(xy) + Wge(xy) )**(xy) = E ^ x y )  ,
(3.15)

where

+ E u M =
m, (m + in ) d a e
m, + m^+ in d a e

(3.16)

and E\ is the bound state energy of the atom of type A or 
E.

The resulting terms in the Fock-Tani Hamiltonian are
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H = Ye e+e + fE a+a + Jdye*(y)T (y)e(y) + Jdxa*(x)T (x)a(x) O v v v i i u u  e av M (3.17)
and

Z.Z,_ >s

V = Jdydy' ê* (y) (y IV I y ' J ' e (y') + Jdxaf(x)- a-yb a(x)

+ (UI v. I y )<*v+ f Jdxdy (ot*̂(yIVh Ixy) ''e(y)a(x) + H . c. )

+ HJd*(«!<ulvb lSv)'cva(5> y v u
+ H.c.)

+ Jdxdydx'dy'a*(x)e*(y)(xylHaeIx'y')''e(y')a(x')

+ Jfdxdydx'(a+(x)e+(y)(xy|Haelx'v)''eva(x') + H.c.]

+ £5Jdxdx'a+(x)e^(xvlHaelx't )'e a(x') , 
VT (3.18)

where H.c. stands for "Hermitian conjugate" and $ implies 
a sum over discreet variables and integration over the 
continuous variables in the a-state label. The primed 
matrix elements are renormalized by orthogonalization to 
the a bound states. Those doubly primed are also orthogo­
nal ized to the e bound states. In order of appearance 
they are
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(y IV I y') '= - r^6(y-y') - I®vuE(y)u* (y') , 
1 v

(3.19)

(ulVjjly) = /dxdy<|)**(xy)T(xy)$*(xy) , (3.20)

(uIV, I xy) ' ' = (uIV, Ixy)' - Jdy’ AE(y',y) (uIV. I xy' ) ' , (3.21)

(ulV^lxv)'= /dytulV^Ixy) ’uE(y) , (3.22)

( x y l H I x ' y ' ) ' '  = ( xy IH I x ' y ' ) ' -  J dy , AE( y , y , ) ( xy ,  IH I x ' y ' ) 'ae ae ae

- Jdyt(xy|Haelx'y1)'AE(yl,y')

+ Jdy,dy2AE(y,y,) (xy, lHa(Jx'y2)' AE(y2,y') ,

(3.23)

(xylHa e lx'v) ' ' = /dy'(xy|Haelx'y')'i)iE(y')

- /dy'dyjA (y,y ,) (xy, lHaelx'y')'i()v(y') ,
(3.24)

and

(xvlH Ix 't ) Jdydy'u^ (y)(xy|H lx'y')'u!.(y') , (3.25)V ac l
where
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(ulvb lxy)' = 4>**(Sy)T(xy)

- Jdx'dy'<|>**(x'y’ )T(x'y' )AA(x'y’ ,xy) , (3.26)

(xylH Ix'y')'= (V (xy) + Wae(xy))5(x-x')6(y-y'> '30 dts

- |E $A(xy)$ (x'y') + (xylV Ix'y')' t (3.27)
J P H  H b

and

(xyIVb Ix'y ')'= -(T(xy) - T(x'y'))AA(xy,x'y')

+ Jdxldy1AA(xy,x1y 1)T(x1y 1)AA(x1y 1,x'y') .
(3.28)

The potential arising from the coulomb field of the charge 
Zb is

Z Z, ZKT(xy) = , (3.29)

and the e and a bound-state kernels are, respectively, 

Ae(y,y') = Iu^(y)u^*(y') (3.30)

and

(3.31)



Girardeau3 has shown that the bound-state kernels are 
diagonal in spin indices.
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Comparison to Schrodinqer Representation

The initial asymptotic states for the charge transfer 
reaction a++ (b+e~) -► (a+e~) + b+ are

|<|>.) = (2tr) 3/2J*dxexp( ii^ *x)a+(x)£p I 0> , (3.32)

with energy eigenvalue

E.= k2 + E ,
1 2iT p

(3.33)

and

(♦r l  a <0la_ , (3.34)i a

with energy eigenvalue given by (3.16). The result in
(3.33) is not equal to the initial state energy eigenvalue 
found in Chapter II due to the mass denominator \ia which 
differs from the correct value Mi by a factor of l/m^ .
Such an error in energy is acceptable for proton masses, 
but an additional error in the exponents of the initial 
momentum wave function is found, which is not negligible 
for incident kinetic energies greater than 5 keV.

The first-order approximation to the T-matrix for this
reaction is
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T f j -  ( ♦f I Vl *i ) = T*? + T J? ( 3 . 35)

where

T“  = (2ff)-3/2; d W o* ( 5 5 ) ( ^
X

— )u^(y)exp(ifc.*x)
y

(3.36)

and

- ( 2it ) ~3/2 Jdxdygx'dy'$A*(S'y'K ZaZb

xiA(x'y' ,xy)Up(y)exp( ilc^x) . (3.37)

Substituting (3.6) into (3.36) and changing variables 
to

r = y - x (3.38)
gives

= <2x)-3/d?d?e-ia-?uA*<r)(^2- XI U v i ̂  ily-rl
-2)uE(y)e

y w (3.39)
where a = {kf,u},

t = Kj- ?icf, 8' = £.- itf , (3.40)

and c is given by (3.7). Apart from factors of 2ir, this 
would equal the post form of the first Born term found by 
Jackson and Schiff11 [their Equations (12) and (8')], and
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would also equal the result from the Fock-Tani Hamiltonian 
derived from the full 3-body system [Equation (4.6) of 
Appendix A], if in 8' had a coefficient mb/(mb+me) .
*fhe first Born result of Massey and Mohr12 also contains 
this approximation in B', but they were calculating cross 
sections for electron capture from hydrogen by an incident 
positron of energy 6.8 to 100 eV. At these energies such 
an error is negligible. For the incident energies of order 
10 to 100 keV appearing in Jackson and Schiff's cross 
sections and those in Appendix Br for reasonant charge 
transfer in proton-hydrogen scattering, ki is large enough 
that the error from such an approximation is not negligible.

It has been shown that the first-order matrix element 
for charge transfer of the present Fock-Tani Hamiltonian 
does not contain the correct initial momentum eigenstate, 
nor does the initial asymptotic eigenstate give the correct 
energy. One is led to wonder whether the Fock-Tani 
Hamiltonian corresponding to the specialized initial-state 
Schrodinger Hamiltonian, (2.25), would correct these 
problems.

The Initial-state Version of the Fock-Tani Hamiltonian

The Fock-Tani Hamiltonian derived from the initial 
state form of the Fock Hamiltonian, (2.25), is
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H . = fd$a+($)T ($)a($) + /dre+(r)H (r)e(r)F1 3 “

+ /d$dra+(£)e+(r)(Vae($r) + vab<5r))e(r)a(S) , (3.41)

where

^ - zbHe(r)= Te(r) - —  ,

Ta(5)= - 2M r

v <S?)------- -aae 1
, and

Y r

Z Z,
V (Sr) = — — —  ab iS+Xrl

(3.42)

where X and y are given in (3.49) below. Equation
(2.26) gives

M =
in (m, + m ) a b e
m + m,+ ni a d e

and m memb 
me+ mb

(3.43)

Equation (3.41) differs physically from (3.1) in that a 
is a fictitious particle with a 3-body reduced mass rather 
than a 2-body reduced mass. Also the Schrodinger operators 
in the first and third terms are slightly different.

The Fock creation operators for bound species are as
in (3.4) and (3.5),
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E* = Jdru*(r)e+(r) (3.44)

and

A* = /d5dr<|»^(5r)a+($)et(r) , (3.45)

except that the coordinates for the latter bound state 
orbital must be transformed from the natural set, 
to the set (R,r) appearing in (3.45) using the relations 
given in (2.24)

$f= 5$ + ir , rf= $ ,

and

$ = xSf- irf , and r = £rf+ , (3.46)

where

m + rn ' a e
m

n = m + m ' a e
(3.47)

Y mb
m^+ m

m.
X = mr m and (3.49)

i = £X+n . (3.50)

The wave function is,



50

♦£<»> = (21rr3/2eilE'S' A /•*
V r:) =

= (2ir)*3/2ei1i,(51 + ^ ^ ( y? - 8 ) , (3.51)

where \i = {k,u} .
The electron and a fields satisfy the same anti­

commutation relations as in (3.8),

{e(r),e*(r')}=5(r-r')=5(re-re')6ocy' f

(a(R) ,a+(8')}=6($-?t') , and

{e(r),S(r')}={a(8),2(8')}={e(r),a(8)}={e(r),2+(8)}=0

(3.52)
Again, the bound state fields satisfy extremely complicated 
(anti-) commutation relations with the free particles and 
among themselves.

As in (3.9) one defines ideal bound state creation
a+ /v̂operators £v and such that
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A  A l  /N A i t

{V ev} = [V av]=6UV ’

{ V * v }={V * ' T '(?)}={V a 'T,(S)}=0 ' and
(t) (t)

[Su,Sv] = [Su,e( + )(r)] = [Sii,a( + )(ft)] = [Su,eJ+)]=0 . (3.53)

The Fock-Tani transformation is the same as (3.11) 
through (3.16), although (3.14) and (3.15) need to be 
rewritten

He(r)u^(r) E a (r)V V (3.54)

and

(Tg(R) + Te(r) + Vae(Rr))<|>*(Rr) = E^tRr) (3.55)

The operators in the last expression can be expressed in 
{$f,rf} to give the right-hand side.

The resulting Fock-Tani Hamiltonian is given by
A  A  r  A  A  X  A

H = yE  £Te + £E aTa 0 v v v  U U U  v ]i
Jdre+(r)T (r)e(?) e JdSa+(fi)T (S)a(R) a

(3.56)
and
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= Jdrdr'e^(r)(rIIr')'e(r')

+ a^(ulVjJY)a + f JdSdrfa^u I V,l5r)' 'e(r)a($)

+ j!JJd$(a*(ulVb l$v)'e a($) + H.c.) 
pv u

+ Jd$drd8'dr'a+(R)e+(r)(£rlH |$'r')''e(r')a(£')ae

+ £Jd$drdS'(a*(5)e*(r)($r|Hael5'v)''e^afS') + H.

+ yy/difo5'a+(5)e+($vlH |g'T)'e a(5') .
LLJ v ae tVT

The matrix elements are

(?|v !?')'= - - W , < r ) u E*(r'> ,
V

(uIVb IY> = /d$dr<|>**(Rr)T(Rr)<t>*($r) ,

(ulvb l5r)"= ()i|Vb l5r)' - Jdr'AE(r',r)(ulVb i5r')' ,

+ H.c.)

c-)

(3.57)

(3.58)

(3.59) 

(3.60)

(ulVb l$v)'= Jdr(ulVb l5r)'uE(r) , (3.61)
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(SrIH I S'r'QC

(Sr IHaeIS' v )

and

(5v |H„|5't )QC
where

( y l v b lfcr) '  =

(SrlH _l5'r'ac

) "-(Sr|Ha e lS'r')'- Jdrl4E(r,rl)(8rlIH lelS'r')' 

- Jdr1(RrlHael$'r1)'4E(rl,r')

+ J'dr1dr2AE(r,r1) (8rt lHaelS'r2)' AE(r2 ,r') ,

(3.62)

= Jdr'(5rlHael5'r')'<(>E(r')

- /dr'drlAE(r,r1)(5rllHaelS'r')'*E(r') ,

(3.63)

’= ;drdr'uE*(r)(8rlHaelS'r')'uE(r') , (3.64)

(t>A*(Sr)T(Rr)

JdS'dr'<t>A*(S'r’ )T(R'r')AA(S'r' ,Sr) ,
(3.65)

'= (Vae(8r) + Vab(5r))6(S-S')S(r-r') ,

- JE <|>A(Rr)<(>* (R'r') + (Rr IV iR'r') ’ , (3.66)U U U b

and
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($rlVb l$'r')'= -(T (Rr) - T(R'r'))AA(Rr,R'r')

+ j Ae(Sr ,5 tr 1)T(R t) Aa(S tr l(5'r ’) .
(3.67)

The potential arising from the coulomb field of the charge 
Zb is

T(Rr) 2azb 
8+Xr l (3.68)

and the e and a bound-state kernels are, respectively,

AE(r,r') = IuEv(r)uEv (?') (3.69)

and

AA(Sr,£'r') = j!*A(S?)^ (S'r') . 
m (3.70)

This differs from the Fock-Tani Hamiltonian, (3.17) 
and (3.18), derived in the symmetrical coordinate system. 
The mass denominator of Ta in Hq is changed from ua to M . 
The second term in 7 of (3.18) does not appear in (3.57). 
The physical content of this term appears in (3.66) 
instead, replacing the inertial potential of (3.27) (which 
does not appear in this inertial system).

The initial asymptotic states for the charge transfer 
reaction a++ (b+e“) -► (a+e“) + b+ are
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(2ir)”3/2JdRexp( i£. •$) a*($) e* I 0>1 p (3.71)

with energy eigenvalue

(3.72)

and

( $ f l = <0 |aa , (3.73)

with energy eigenvalue given by (3.16). The result in 
(3.72), unlike that for the non-specialized Fock-Tani ver­
sion, (3.35), is equal to the initial state energy eigen­
value (2.27).

The first-order approximation to the T-matrix for this 
reaction is

(3.74)

where

(3.75)

and
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T^9 = -(2n)'2/3;d5drd5'dr',|.A*(5'r'}(— ---
fl a ifc'+Xr'l r

x4A(5'r' ,5r)Up(r)exp( ilt ̂ *5) . (3.76)

Substituting (3.51) into (3.75) and changing variables 
to

r' - yr - 5 (3.77)
gives

ZaZb Zb^ e ( \ i§*r — —  - — )u (r)e
Ir-r I r K

(3.78)
where a = {kf,u},

2 = iÊ - S = , (3.79)

and c is given by (3.7).
Apart from a factor of 2tt, this equals the post form 

of the first Born term found by Jackson and Schiff11 
[their Equations (12) and (8')] and equals the result from 
the Fock-Tani Hamiltonian derived within the full 3-body 
system [Equation (4.6) in Appendix B], Although (3.41) 
is the prior Fock Hamiltonian, the order of the unitary 
transformations in (3.12) produces the post form of the 
T-matrix, as in the symmetrical Fock Hamiltonian (3.1) 
case. Given the opposite ordering in (3.12), the prior

T18 = (27r) 3Jdr'3re
f  i J

-i2' U u (r' ) (
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form of the T-matrix would result from transforming either 
the symmetric Fock Hamiltonian, (3.1), or the initial-state 
Fock Hamiltonian, (3.41).

The equivalence of post and prior forms of the first 
order T-matrix is well known.13 It seems reasonable that 
a first-order T-matrix derived from the non-specialized 
Schrodinger Hamiltonian, (2.22), [or Fock Hamiltonian,
(3.1)] would also be equivalent to the first-order T-matrix 
derived from the post and prior Schrodinger Hamiltonians,
(3.25) [or prior Fock Hamiltonian, (3.41), and its post 
equivalent]. This equivalence must be true for the exact 
T-matrix because of the equivalence of frames of reference. 
Furthermore, the T-matrices derived from the post form of 
the Fock-Tani Hamiltonians, produced by the ordering in
(3.12), and the prior form, given by the opposite ordering 
in (3.12), should be equivalent provided one starts with 
the same Fock Hamiltonian in both cases. However, as 
demonstrated by the differences between (3.40) and (3.78), 
the Fock-Tani transformation of the various Fock Hamil­
tonians does not necessarily produce equivalent first-order 
T-matrices. In fact one can not even set up the trans­
formation of the post Fock Hamiltonian in the present 
reduced-mass scheme because the crucial definition of the 
Fock composite state consisting of the electron bound to 
the origin would not be of the form of an integral over one 
variable, as in (3.3) and (3.44).
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The Fock-Tani transformation mixes terms according to 
the Fock-space operators, not the Schrodinger operators, so 
that the inertial potential W, containing the effects of 
the accelerated coordinate system, (3.1), does not appear 
in many of the terms in the Fock-Tani Hamiltonian, (3.17) 
and (3.18), which represent the various physical processes. 
One would have to go to the second-order T-matrix (or 
higher) before the effects of W would be present in a 
given process.

It is found that this neglect in first-order is accept­
able for projectile momenta not greater than the mass of the 
particle fixed at the origin. With this restriction in 
mind, the Fock-Tani transformation of a system of 
negatively charged particles of two kinds and a positive 
charge fixed at the origin will be derived.

The Fock-Tani Hamiltonian for a~ + (b*e~) + (a~b*) + e~

To illustrate of the full potential of the symmetrical 
3+2-body reduced Hamiltonian, (2.22), the Fock-Tani 
Hamiltonian for a system consisting of one particle of 
positive charge (Z^) fixed at the origin and a negatively 
charged particles of each of two species with creation 
operators e (y) (with unit charge and reduced mass Ue)* an<*
A 4.a (x) (with charge -Za and reduced-mass ya) is found.
The Z^ will be kept general but states of more than one 
particle (a or e) bound to the origin will not be considered.
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The Fock Hamiltonian is

H = Jdxa+(x)H (x)a(x) + Jdye*(y)H (y)e(y)

A _ A

+ /dxdyaT(x)eT(y)(Vae(xy) + Wag(xy))e(y)a(x) ,

where

2aZj3
Ha(x)= Ta(c) - — - * zbHe(y)= t8(5) - T  ,

T (x) = a _i_ V22ua Vx ' Te(y)= - £  VJ .

Vae(xy)=
x-y

, and W (xv)= - waev ml3vxvy '

and where

m mK a b
^a m + m, a o

and membu = ------ .Ke m + m.e b

The number operators

N = Jdxa^(x)a(x)

and

N = Jdye+(y)a(y)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

are not necessarily equal to one.
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The creation operators for particles e and a bound 
to the origin are, respectively,

E* = Jdyu^(y)e+(y) (3.85)

and

* Jdxu^(x)a^(x) (3.86)

where

Hbu®(w) = Evu®(w) (3.87)

for (b,B,w) = {(a,A,x) or (e,E,y)}.
The e and a fields satisfy the anti-commutation 

relations (3.8) and the Fock bound state fields, (3.85) and 
(3.86), satisfy non-elementary commutation relations with 
the free particles.

As with (3.11) the Fock space is enlarged to include 
bound state operators and a^, which satisfy the 
elementary (anti-) commutation relations (3.9). The 
Hamiltonian and the states are transformed to the subspace 
e and a have physical content using

u= uAue , V  exp(-jFg) A  A  4* /V A «la AF = y(B 0 - S B  ) 0 V V V V

(3.88)
where a generic notation, B = {A or E} and 0 = {a or e}, 
is introduced for convenience. The states are transformed 
as in (3.13) and the transformed Hamiltonian is given by
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h - u"'h fu = ue '(u a 'h fu a)ue= Hq + V + X . (3.89)A F A

In the present case the ordering of (3.89) is not 
important since

Because the nucleus of both bound states is fixed to 
the origin and, therefore, does not enter the dynamics one 
can bypass the lengthy "d matrix" approach to the trans­
formation for the a bound states, given in Gilbert8 and 
Girardeau,3 in favor of their approach for the e bound 
states for both species.

For a generic operator B of either type (a, A, a, e, 
E, or e), define the transformed operator as

where Fg is given in (3.88). This is solved using the 
corresponding "equation of motion,"

The explicit equations for the relevant operators are

[Fa,Fg] = 0 . (3.90)

(3.91)

(3.92)

3t (3.93)
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3Bv(t)
T t "Bv(t) ' (3.94)

and

3b(w,t) ^
3t = I uT(v)bT(t) (3.95)

Equations (3.93) and (3.94) have solutions, satisfying the
A Ainitial condition Bit) = B ,

Sv(t) = 8vcost - B^sint

and

B^(t) = 8vsint + B^cost . (3.96)

Substituting these into (3.95), taking the indefinite integral 
of both sides, and setting t=ir/2 gives
A , A A

U~1a(x)U = a(x) - Jdx'AA(x,x')a(x') + YuA(x)ot (3.97)A A ** T T

and

~-iAU ^(yiU * e(y) - Jdy'AE(yfy' )e(y') + ]>uE(y)e . (3.98)
n

Because of (3.8) and (3.9),

UE1a(x)UE= a(x)
A A

ua e(y)uA= «(y>and (3.99)
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Defining the functional

0[xy] = H (x) + J*dye^(y)(V (xy) + W (xy))e(y) ,ae ae

the first part of the transformation (3.89) is

H_U = Jdye+(y)H (y)e(y) + Jdx(a+(x){0[xy]a(x)-1
A *‘F w A

- J*dx' 0 [ xy ] AA (x, x ')a(x') + £o[xy]uA(x)av}
v

+ f dxdx' dx x a**" (x x) Aa (x x, x) 0 [ xy ] Aa (x, x') a (x

- £Jdxdx'{ot^uA*(x)0[xy]AA(x,x')a(x') + H. 
v

+ IIJdxa*u** <X)0[xy ]u* (x)av

(3.100)

+ H.c.)

' )

(3.101)

Upon changing variables in the integrals and substituting 
(3.100) this becomes
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- 1
A

A A

H n F A |Halv)a + Jdxdx'a^(x)(x|Ha lx')'a(x')

+ Jdye*(y)Q£a^(xIVWlvy)av + £dxa*( t I VWl xy)' a(x)
TV T

+ H (y) + Jdxdx'a^(x)(xyIVWlx'y')'a(x'))e(y) ,
(3.102)

where

(T|Ha lv) = Et6tv f (3.103)

(x|Ha lx')' = Ha5(x-x') - £e ^uA(x )ua (x ') , (3.104)

(xylVWlvy) = JdxuA*(x)T(xy)uA(x) , (3.105)

(xyIVWIxy)' = uA (x)T(xy) - Jdx'uA (x')T(x'y)AA(x',x) ,
(3.106)

(xy|VW|x1y)' = T(xy)5(x-x’) - [T(xy) + T(x'y)]AA(x,x') 

+ Jdx1AA(x,x1)T(Xjy)AA(xt,x') f
(3.107)

and
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T (xy) = V (xy) + W (xy) . (3.108)
06 06

Equation (3.89) has been to simplify these. It should 
be noted that there is no a^a(x) term in (3.102) because

(xlH lx)' = u a * ( x )H (x ) - J*dx'uA (x')H (x ' ) A a (x ', x ) = 0 . a t a t a
(3.109)

The second transformation in (3.89) gives the final 
Fock-Tani Hamiltonian,

Hq= J[Evavav+ Jdxa (x)T (x)a(x) + Jdye (y)T0(y)e(y) ,
v X

(3.110)
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V = Jdxdx'a+(x)(x||x')'a(x') + Jdydy'eT(y)(yIVg Iy')'e(y')A *,

+ IU&Y&Y'***?$) ̂ Ty I VWl vy') 'e(y' )av
A A

TV

+ £ £ Jdxdx' a^( x) e^(xti I VWl x' X) 'e^a(x' )
nx

+ £Jdydy'dx[a^e+(y)(tyIVWlxy')''e(y')a(x) + H.c.]
A A

+ JJdxdydx'[a^(x)e^(y)(xyIVWlx'X)''e^a(x') + H.c.] 
X

+ JJJdxdyCa^e^(y)(xyIVWlxX)''e^a(x) + H.c.] 
xX

+ Jdxdydx'dy'a^(x)e^(y)(xyIVWlx'y')''e(y')a(x') , (3.111)
A A

and

= m i < W T n l v w l v * ) exavtnvX

+ tti I VWl xX) ' e^a(x) + H.c.]tnX

+ n U dyCate+(y)(Tyivwivx)'exav + h .c .] 
tXv

(3.112)
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The terms in X involve a superposition of both a and 
e bound to the origin. These terms must be considered as 
very rough approximations to the scattering, creation, and 
breakup processes for the (a“b+e“) molecular state, 
respectively.

The matrix elements are

(3.113)
T

(3.114)

(xylVWlvy')' = (xy|VW|vy')6(y-y')

- [(xylVWlvy') + (xy'IVW|vy)]AE(y,y')

+ /dy1AE(y,y1)(xyxIVWlvy')AE(yx ,y') , (3.115)

(xnlVWlx'X)' = /dyuE*(y)(xyIVWlx'y)'u^(y) , (3.116)
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(xyIVWIxy')''

(xylVWlx'X)''

(xylVWlx'X)''

(xylVWlx'y')'

= (xyIVWIxy')'5(y-y')

- [(xyIVWlxy')' + (xy'IVWlxy)']AE(y,y')

+ Jdy1AE(y,y1)(xyAIVWlxy')'AE(y1,y') ,

= [(xylVWlx'y)'

- /3yAE(y,y') (xy' I VWl x'y) ' ]uÊ(y) , (

38 [(xylVWlx'y)'

- /3yAE(y,y' ) (xy' I VWl x'y) ' ]uÊ(y) , (

' = (xylVWlx'y')'5(y-y')

- [(xylVWlx'y')' + (xy'|VWIx'y)]'AE(y,y ' 

+ J*dy1AE(y,y1) (xyt I VWlxy')'AE(y1 ,y') ,

(3.117)

3.118)

3.119)

)

(3.120)

(xnlVWl vX) = J*dyuE*(y) (xy I VW| vy)u^(y) , (3.121)
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(TTilVWlxX)' = /dyu^*(y)(Ty|VWlxy)'uEx(y) , (3.122)

and

(xylVWlvX)' = [(xylvwlvy)'_ .

- j3yAE(y,y')(xy'IVWlvy)']u^(y) , (3.123)

where

T(xy) = Vae(xy) + Wge(xy) . (3.124)

Using (3.103) through (3.107) one can show that this 
Fock-Tani Hamiltonian is completely symmetric if all 
functions, functionals, and operators associated with the 
a and a fields are interchanged with those associated with 
the e and e fields. This symmetry is a consequence of the 
commutation relation (3.90).

Considering the discrepancy (of order l/m^) between 
the initial state energy and the initial momentum eigen­
state of the Fock-Tani Hamiltonian, (3.17) and (3.18), 
[which was derived from the symmetrical reduced-mass Fock 
Hamiltonian, (3.1)] and those found in Schrodinger 
representation8, one is cautioned to look for such 
discrepancies in the present Fock-Tani Hamiltonian, (3.10) 
through (3.12).

The transformation for a system containing a positive
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charge fixed at the origin and negative charges of two types 
(where no 3-particle bound states have been considered) is 
thus done with relative ease. That the complicated method 
of previous calculations2'3 can be bypassed is a direct 
consequence of working in the symmetrical 3+2-body reduced-mass 
system.

Notice also that, unlike the previous approach, the 
present transformation has no restriction on the number 
of particles of types a and e. However, there is a 
restriction on the asymptotic states arising from the 
definition of the unitary operator (3.88). All particles 
must be well separated. If one wanted to calculate cross 
sections for reactions of the present type in a plasma of 
negatively charged particles, for instance, the generalized 
unitary operator recently found by Girardeau,13 which 
allows finite densities in the asymptotic states, should be 
used instead of (3.88).

Starting, instead, with the initial-state Fock 
Hamiltonian, (3.41) with Za + - Za, in defining the final 
bound state, the simple three-dimensional integral form of 
(3.86) would not be possible. The reason is that the 
final-state wave function written in initial coordinates 
would depend on both K^and r^. Using the same method as 
that leading to (2.23) and (2.24),one can show that for the 
present arrangements
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= (l-Xt)r^ - and (3.125)

where

and X (3.126)

Because the simple properties of the present 
transformation are dependent on the creation operators 
describing one bound species (anti-) commuting with all 
annihilation operators (bound state and continuum) 
associated with the other species, the initial state system 
cannot be transformed in this way. One would have to 
resort to the more complicated d matrix method.2'3

In this Chapter it has been shown that the symmetrical 
reduced-mass coordinate system, derived in Chapter II, 
greatly facilitates the process of creating a representa­
tion that fully accounts for bound states. The discrepancy 
of order l/m^ in the initial energy and the initial 
asymptotic momentum eigenstate of this Fock-Tani Hamilton­
ian is well compensated by this facility. And it is likely 
that ad hoc adjustments can be made at the Schrodinger 
level of the T-matrix for a given processes [like those 
that would produce (3.79) from (3.40)] that would yield a 
result in conformance with the Fock-Tani Hamiltonian found 
by transforming the full 3-body Fock Hamiltonian.
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CHAPTER IV

EVALUATION OF THE T-MATRIX AND FIRST-ORDER RESULTS

Introduction

To test the reduced-mass Fock-Tani representation, the 
differential and total cross sections for the reactions 
p++ H(Is) -► H(Is) + p+ and e++ H(ls) Ps(ls) + p+ will 
be calculated, where Ps is the positronium atom, (e+e“).
The T-matrixl (transition matrix) is

Tfi“ <<!>£ I Vlipt) , (4.1)

where the final asymptotic state, ($fl, is given by (3.73) 
and the Lippmann-Schwinger in-state2, |i|>t), is given by

Hit) = |<j>.) + GqV U iT) , (4.2)
/Nand V is given by (3.57). The latter equation contains the 

initial asymptotic state, l$i), given by (3.71), and

St = (E - H0+ ie) , (4.3)

where the limit e+0+ is implied and Hg is given by (3.56).
The differential cross section for rearrangement 

collisions contains reduced masses for both initial and 
final momentum states, given by (2.26), and both
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center-of-mass momenta, related by (2.27). It is

|g(e*) = (2x) * lTfil2 . (4.4)
ki

The coefficient, (2tt)6-2 larger than Davidov's,3 
is consistent with the present (2tt)~3/2 momentum wave
function normalization. The total cross section is 

a = ;da|2(0(|)) . (4 .5 )

The First-order T-matrix

The calculations of this chapter will contain the 
approximation ItyT) = l<()̂ ). A formal analysis of higher- 
order corrections is included in Chapters VI and VII. The 
first-order approximation to the T-matrix, given in (3.74) 
through (3.79), is

T ^ =  (4>f IVU».) = + Tf? . (4.6)

The first term is

tJ? = (2ir)-3/2;<i8dr+**(8r)(4^- “ — K<r)exp< ifc.-S) 11 a IR+Xrl r p 1
(4.7)

= (2ir)_3/dr'dre-i^*^ Uy*(r ’) (ZaZb Zb, e , ,
“ — ) V r ) eIr-r I y H

i2* r

where a = {kf,u}. (4.8)
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We define

£ = 1^- and

where

C =
m

m + in a e and

(4.9)

Y me
(4.10)

This is the post form of the first Born term found by 
Jackson and Schiff5 [their equations (12) and (8')]. The 
second term in (4.7) is the Brinkman-Kramers6 (BK) term 
given explicitly by5

Up(B)uA*u (C) , (4.11)

where m^ is given by (2.26). (Note that Jackson and Schiff 
set -E - e.) The convention

f(K) =* (2u)‘3/2/dw e_lk'wf(w) (4.12)

and

f(w) = (2ir)'3/2 Jdw e lk*w f (k) (4.13)

will be used for all Fourier transform pairs. The hydrogenic 
Is momentum wave function is

uls(P )
2/2 p 5/2 
TT ^0

1
(p 02 + P2)2 • (4.14)
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For ease of notation define

a = pQ = Zb/aEQ and S = Pq - Za/a® , (4.15)

where ag is the initial- or final-state Bohr radius given 
by 1/m of (2.26). With the normalization in (4.11) the 
ls-ls BK term, (4.10), becomes

,BK
Is, Is

4S3/V /2
it2(B2 + B2) (a2 + C2)2 \ 2

(4.16)

The first term in (4.7), for p=u=ls, is given by 
Equation (11.3) of Jackson and Schiff5, but with the 
expression for A generalized to allow B  ̂a and with the 
alternate normalization of (4.11),

l“ ls = 4/1,2 *odx2 r1
A3 (A-q2)1/2 A2(A-q2)3/2

3/4
A(A-q2)5/2 ) , (4.17)

where

A = B2 + x(a2 - B2 + C2) + (l-x)B2 

and

(4.18)

= x£ + (l-x)3 . (4.19)
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The orthogonalization term, the second term of
is

T*? = -Jd$drd$'dr'*A*(K'r')(— ---
fl ° r'

xAa ($'r ',$r)u^(r)exp(iit̂ *5) .

Now change variables to

5 = Yr3 - r = r3 + Crlf

for both primed and unprimed variables, where

m. m
y  58 m, + in X =

b e
C and y are given by (4.9), and

m, + m ' d e

i = eX+n •

Then the final state wave function, (3.51), becomes

*A<S?) = (21t)-3/2eik’r3 uA (ri) .

Integration over the momentum variables in the 
sponding bound-state kernel, (3.70), gives

,$r) = 6(r j  - ? 1)Zu*(V»uA*(rl ) ,

(4.5),

(4.20)

(4.21)

(4.22)

(4.23) 

simply

(4.24) 

corre-

(4.25)

so that (4.20) becomes
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(2ir)~3£ Jdr xdr 3dr
T

, -i£-r3ic

(4.26)

where 2, given in (4.8), equals qx of Equation (4.8a) of 
Ojha et al.7 (Appendix A) , and i, given in (4.23), equals 
m  of their Equation (4.8b). Then the identification 
between (4.26) and Equation (4.7) of Ojha et al. is exact. 
Therefore the Fock-Tani transformation of the initial-state 
reduced-mass Fock Hamiltonian, (3.41), is entirely equivalent 
to the Fock-Tani transformation of the full 3-body Hamiltonian 
(given by Ojha et al.). It can be shown that the Fock-Tani 
transformation of the symmetrical reduced-mass Fock 
Hamiltonian, (3.1), will have identical form except that 
the quantity m  would differ slightly (to order l/m^) from 
i. For this case i in (4.26) is replaced by n. As 
mentioned in Chapter III, this difference becomes noticeable 
at projectile energies of order 5 keV.

In calculating the cross sections for p++H -► H + p+ ,
Ojha et al. note that the denominator of the first term in 
each of T^® and T ^  can be approximated by r3. Since n is 
small these two terms cancel. This cancellation fulfills,



at first order, Wick5,s expectation that the internuclear 
potential should make a negligible contribution to the 
exact T-matrix.
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For the reaction e+ + H -► Ps + p+ , n can not be
neglected because masme. But because of the similarity of 
the form of the two terms in (4.26), the analytical reduction 
of the first term follows exactly the proceedure Ojha et al.7 
used for the second (see Appendix A). In fact, for the 
positronium case the two terms are identical in magnitude. 
They are of the same sign for 1 odd, so that they add, and 
they differ in sign for even H, so that they cancel. The 
generalization of their result [their Equation (5.10)] is

where £ is given in (4.9) and all other quantities are 
given in Ojha et al. (or Appendix A). In their results 
they included only terms through n=2. It would be desirable

(4.27)

where

(c)

A
p c(p+q ) (A2-B2)3/2

2
(4.28)
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to check the accuracy of this by including higher-order 
terms. For the positronium casef because the centers of 
mass and charge are identical, the even Jt terms in (4.27) 
cancel so the 3p terms might be important.

The radial momentum wave functions R, in (4.28) are 
well known®. A general formula for the Fourier 
transform of the product of wave functions

is also be useful. For u=ls (easily generalizable to higher 
s-states), a finite series solution is found by expanding uT 
in Laguerre polynomials before integrating. The resulting 
expression is formally given9 in terms of Legendre 
polynomials. A more useful form my be had by using 
recursion relations10 repeatedly. The final expression is

I, (i?) = fdw e u,.iw)u (w)UT * U T (4.29)

(4.30)

where

li s n l (M = (-l)ln[n(n+t)!(n-1-1)!]1/2 n S 1 (-l)S(2fc+s+2) 
L (n-H-l)!s!

X

2r
(4.31)

u = (n+l)/2 t b = nk/2Po (4.32)
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t = -
(s+2)/2 for 
(s+3)/2 for s odd (4.33)

sr
Hsr (2U+r)-l) ! !

(4.34)

C = C , - sC ~ , .sr s-l,r s-2 f r-1 '

Csl ** 1 f and C12 1 *

Then

(4.35)

IIs, 3s (p)
864/3w[16(p/P0)2 + 27(p/P0)*]

[16 + ^ p/Pq )2]*
(4.36)

Ils,3p<p>
-i/5i 576(p/PQ)[16 + 27(p/PQ)2] 

[16 + 9(p/PQ) 2) ̂
(4.37)

and

Ils,3d<p>
-13824/30* (p/P )2

0
5 [ 16 +9(p/P0)2r

(4.38)
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First-order Results

The general form of the first-order Fock-Tani T-matrix 
for the reactions a+ + (b+c“) ■* (a+c“) + b+ , [(4.16), 
(4.17), and (4.27) substituted into (4.6)] was used for a 
calculation of the differential and total cross sections.
The integrations were none numerically using 16 point 
Gaussian quadrature. The upper limit of the p-integration 
and the number of sub-regions were varied until a 
consistent result was found. This program was run for 
(abc) = {(ppe), (epe), (upu), (udii), and (lidu)}. The first 
two reactions in this set are used to check the results of 
previous Fock-Tani calculations.7'11

p+ + H(Is) H(ls) + p+ Results

To check the approximation made in Ojha et al.7 in 
which the internuclear potential was neglected for the 
reaction p+ + H(ls) H(ls) + p+ , the present program was 
run with and without such contributions. The latter 
reproduces the result of Ojha et al. to order l/mprot . This 
small difference is presumed to arise from their approxima- 
ting the Bohr radius by 1. The difference between the 
differential cross sections for exclusion or inclusion of 
the internuclear potential was of order 10 percent. At an

incident (C.M.) energy of 25 keV, the differential cross 
section of the former was found to be 12 percent larger
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than the latter at zero mrad and 18 percent smaller at 
3 mrad. Since the experimental differential cross sections 
of Martin et al.12 are for capture into all states, one 
should multiply the cross section for capture into n=l by
1.2 (to account for-the 1/n3 excited population) which 
moves the present (corrected) result back into good 
agreement with the data for angles .2 to 1. mrad at 25 keV, 
.2 to .8 mrad at 60 keV, and 0. to 1. mrad at 125 keV. 

Furthermore, the inclusion of the p-p term removes the 
slight oscillations found in Ojha et al. in these regions.

The present total cross section including p-p terms is 
18 percent larger than when these terms are neglected. In 
contrast, the first-order Jackson and Schiff5 total cross 
section, including the internuclear potential, is 1000 
percent larger than the Brinkman-Krammers6 result which 
excludes this potential. Thus the orthogonalization correc­
tions inherent in the Fock-Tani representation, in addition 
to giving a first-order total cross section which agrees 
with experiment for a wide range of energies (greater than 
10 keV), produces agreement at first order between 
experiment and Wick’s expectation5 that the internuclear 
potential should play a negligible role in exact calcula­
tions of this process. It is interesting to note that 
Bates13 predicted in 1958 that accounting for orthogonal- 
ization would give such a resolution.

A check on the inclusion of the 3s, 3p, and 3d
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orthogonalization gives a difference of order 1 percent.
At 25 keV the differential cross section including these 
terms was 1 percent smaller at zero mrad and 3 percent 
larger at 3 mrad. The total cross section including these 
terms was 0.3 percent smaller.

Finally, Girardeau1* has raised the question of 
whether the standard neglect of proton exchange is a valid 
approximation. One can argue that the de Broglie wavelength 
for these energies and masses is so small that exchange 
would occur only in a direct p-p hit, giving a contribution 
only at 180 degrees (CM),15 called a "knock-on" process.
This is illustrated in Fig. 1 for a semi-classical analogue 
of electron (charge cloud) transfer between a pair of charged 
spheres, seen in the lab frame. For impact parameters 
greater than the bulk of the electron cloud the projectile 
is hardly deflected by the nearly neutral atom. At such 
distances the protons are clearly distinguishable. As the 
impact parameter gets smaller, the projectile is deflected 
further until the p-p direct hit limit, in which case the 
projectile (plus electron cloud) is scattered at 180 degrees. 
It is in the latter case that exchange becomes important 
because the proton wave functions may have finite overlap 
at closest approach. One can see from the experimental 
differential sections of Martin et al.12 that the cross 
section is sharply peaked around zero degrees so it is 
plausible that the knock-on process is negligible.
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A

B

FIGURE 1. Electron (charge cloud) transfer between a pair 
of charged distinguishable spheres in the Lab 
frame.
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However the statement, "exchange effects in electron 
transfer occur only when the projectile is scattered at 180 
degrees," contains a contradiction. Girardeau1* questions 
how one could know that it is the projectile (plus electron 
cloud) that is scattered back at 180 degrees, and not the 
target proton (plus electron cloud) or a mixture, if the 
two protons are indistinguishable. Exchange may have a 
small cross section, but so does electron transfer.

Support for this concern and a prediction comes from 
considering what an experimentalist observes in the zero 
degree direction. If she sees a hydrogen atom traveling 
with the same momentum as the incoming proton, the cross 
section should contain interference between contributions 
from electron transfer to a proton with large impact 
parameter (distinguishable as proton 1), elastic scattering 
of the target (plus electron) in the forward direction, and 
a term identical to that for elastic scattering but with 
the target and projectile exchanged, a rather novel method 
of electron transfer. This is illustrated in Fig. 2.

If Fig. 2 accurately reflects the quantum process 
then one would expect a discontinuity in the slope of the 
experimental data very near the forward direction due to 
exchange contributions to elastic scattering, in addition 
to a smoother change due to direct elastic scattering 
contibutions . The reason for an abrupt transition is that 
there should be no exchange for "moderately small" angles
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FIGURE 2. Charge transfer including exchange in the lab 
frame. The three boxed processes produce a 
fast hydrogen atom moving in the forward 
direction.
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because small angle scattering corresponds to large impact 
parameters. As the angle gets smaller the associated 
impact parameter gets larger so exchange is even less 
important. As long as the impact parameter is nonzero one 
would expect that the protons could recoil to avoid overlap 
of their wave functions (presumed to be well bounded) 
through the Coulomb interaction. But once the impact 
parameter is "precisely zero" exchange effects should 
"turn on" due to proton wave function overlap at a turning 
point and through the possibility of tunneling. Of course 
the terms "moderately small" and "precisely zero" are not 
well defined in quantum mechanics. One should look for such 
slope changes in the data at small angles to better define 
these intuitive quantities. It is possible that the large 
impact parameter scattering contribution could be large 
enough to mask the direct elastic scattering, and the 
latter could be large enough to mask the exchange elastic 
scattering contribution. However, interference effects 
(in the square of the T-matrix) might appear in the cross 
section even if the magnitude of the latter is very small.

On the other hand, a theory which neglects direct and 
exchange elastic scattering but is perfect in every other 
respect would match the data at (experimentally defined) 
moderately small angles but not at very small angles. The 
theory would have no change in slope near 0=0, sudden or 
otherwise.
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Figure 4 of Ojha et al.7 (Appendix A) shows the 
experimental differential cross section of Martin et al.12 
and what appear to be the best current theories for this 
reaction at small angles, the Fock-Tani result and the 
two-state atomic expansion (TSAE) of Lin, first published 
in Martin et al. (Also Fig. 5 of Ojha et al. shows 
excellent agreement with the experimental total cross 
section of McClure16 for energies greater than about 10 keV 
and the TSAE of McCarroll17 match at even lower energies.) 
Additionally, Fig. 3, below, is a reproduction of the 
figures in Martin et al., include the continuum distorted 
wave (CDW) and coupled-state (MS) theories. What is most 
striking about these graphs is the universality of the 
divergence between these theories and experiment for very 
small angles at 25 keV and 60 keV. The theoretical curves 
for all but the CDW are within the error bars at 125 keV so 
that no conclusion can be drawn for that energy. Figure 4 
is a linear-linear plot of the result of Ojha et al., the 
TSAE ,and the present Fock-Tani result (including the 
internuclear potential and the 3s, 3p and 3d orthogonaliza- 
tion terms) for forward angles at 25 and 60 keV.

The theoretical results are nearly linear in this 
region (although the result of Ojha et al. shows small 
oscillations which are removed with the additions of the 
present Fock-Tani calculation). The experimental points
are
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FIG. I. Differential eras MCtioat for electron capture in 
collision* between 25-keV incident protons and hydrogen 
•toms. Closed circle* are the experimental results with error 
ben of one standard deviation. The solid line is the result 
of the MS calculation; the dot-dash-dot line is the result of 
the CDW calculation; the dotted line is the result of the 
TSAE calculation: and the dashed' line is the result of a 
Jackson-Schiff calculation.

6L-(mrod)

FIO. 2. Differential cross sections for electron capture In 
collisions between 60-keY incident protons snd hydros > 
atoms. For the legend see Fig.' I.

ft ..(inrod)

FIG. 3. Differential cross sections for electron capture in 
collisions between 123-keV incident protons snd hydrogen 

atoms. For the legend sec Fig. I.

1 2FIGURE 3 Figures from Martin et al
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FIGURE 4. Forward scattering at 25 and 60 keV for resonant charge transfer.
The experimental points are from Martin et al.12 The theoretical 
points are open circles for the TSAE given in Martin et al.f boxes 
for the Fock-Tani result of Ojha et al.,7 and triangles for the 
present Fock-Tani result which includs the internuclear potential.
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upwardly curving and perhaps showing signs of a sharper 
slope discontinuity, depending on one's bias. The divergence 
of experimental and theoretical curves in forward scattering 
is marked enough to warrant a more critical examination of 
the theories even if this divergence is not due to exchange.

e+ + H(Is) -► Ps(ls) + p+ Results

Consider the reaction e+ + H(ls) -► Ps(ls) + p+ .
The differential cross sections at energies of 10.2, 20,
50, and 100 eV are given in Figures 5, 6, 7, and 8, 
respectively. Figure 9 shows the forward scattering cross 
section over this range of eneries. A comparison is made 
between the present first-order Fock-Tani result (FT), that 
of Ficocelli Varracchio and Girardeau (EFV),11 the first 
Born approximation (FBA), and the distorted wave approxima­
tion (DWA) of Mandal et al.18

The present result and that of Ficocelli Varracchio 
and Girardeau do not agree. The results given in Ojha et al.7 
for the reaction p+ + H(ls) -► H(ls) + p+ were calculated 
by three independent methods. In addition to the method 
outlined in Ojha et al., the quantity X, of (4.22), can be 
set to zero for energies less than 5 keV. This simplified
(4.26) so that Dr. Ojha was able to integrate analytically 
for t from Is to 3d. In the third method, I wrote a program 
based on (4.30) and the X=0 approximation, which gave 
numerical results matching the other two. Because the



FIGURE 5. Differential cross section for positronium formation at 10.2 eV.
The short-dashed curve is the FBA, the long-dashed curve is the 
DWA of Mandal et al.,ia the dot-dashed curve is the Fock-Tani 
result of Ficocelli Varracchio and Girardeau11 (EFV), and the 
solid curve is the present Fock-Tani result.
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FIGURE 6. Differential cross section for positronium formation at 20 eV The curves are labeled as in Fiq. 5.3 US



FIGURE 7. Differential cross section for positronium formation at 50 eV. The 
The curves are labeled as in Fig. 5. votn



FIGURE 8.

•emWeg)

Differential cross section for positronium formation at 100 eV.
The curves are labeled as in Fig. 5.
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FIGURE 9. Forward scattering for positronium formation. The short-dashed
curve is the FBA, the crosses are the DWA of Mandal et al.,18
the dot-dashed curve is the Fock-Tani result of Ficocelli
Varracchio and Girardeau11 (EFV), and the solid curve is the
present Fock-Tani result. <o
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present program is capable of reproducing the
p+ + H(Is) -* H(Is) + p+ reaction, it is also likely to
give the correct result for e+ + H(ls) -* Ps(ls) + p+ .

Equations (24) and (27)in Ficocelli Varrachio and 
Girardeau11 contain errors. In the former the 
coefficient of B2 should be 8 rather than 2, and in the 
latter the overall coefficient should be 2 rather than 8.
But mimicking these by altering the present program does 
not reproduce their result. In any case, Professor 
Ficocelli Varracchio has assured me that the program he 
used has the correct values and that the discrepancy is 
probably due to a lack of convergence of their integrals 
and sums. (The program they used required much more 
computer time than the present one because it could be used 
for arbitrary initial and final atomic states.) Support 
for this interpretation comes from an examination of 
Figures 6 and 7. In the 100 to 180 degree region their 
results show oscillations characteristic of convergence 
problems.

Examining the total cross section, Fig. 10, it may be 
seen that the present Fock-Tani calculation gives a larger 
cross section than the first Born approximation, whereas 
the result of Ficocelli Varracchio and Girardeau is less 
than the FBA. In examining the differential cross sections 
it appears that the present result should fall between their 
result and the FBA. But a logarithmic graph can be deceiving
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Figure 10. Total cross section for positronium formation. The curves are labeled in Fig. 5.
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because the fluctuations are compressed. A calculation of 
the partial cross sections for the angles where FT > FBA,
FT < FBA, and the transition region show the expected 
behavior. The sums of the results from these three regions 
add up in such a way that the total cross section for the 
FT result is greater than for the FBA except at 8.704 eV 
(where the ordering is FT < FBA < EFV).

Comparing the FT differential cross sections with the 
DWA and FBA results shows the former to be intermediate 
between the latter two. The first-order Fock-Tani T-matrix 
contains more physics than the non-orthogonal first Born 
approximation. In subtracting terms from the FBA T-matrix 
to make the incident plane waves orthogonal to the bound 
states, the Fock-Tani result accounts for some of the 
distortion that these incident (momentum) states should 
contain. Therefore it is not surprising that the Fock-Tani 
result is intermediate between the first Born and distorted 
wave approximations.

The total Fock-Tani cross section is not between the 
FBA and the DWA. There is a larger deficit for the DWA 
differential cross section relative to the FT result at 
large angles than for the FT relative to the FBA. And the 
surplus for the DWA relative to the FT result at small 
angles is roughly comparable to the surplus for the FT 
relative to the FBA result. Thus, the integration over 
scattering angles gives a total cross section for the DWA
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which is less than the FBA even though the FT result is 
greater than the FBA.

As a final note, the addition of the 3p orthogonaliza- 
tion term results in changes of order .1 percent. The 3s 
orthogonality corrections to each of the two potential 
terms are of the same order as the 2p corrections, but 
since the former cancel each other they don't contribute.

(ji+ji“ ) from Muonic Hydrogen, Deuterium, and Tritium

A parallel to the formation of positronium, a bound 
state of an electron and its anti-particle, is the formation 
of the bound state (u+ji”). This has been given the name 
"mumuonium" because the more consistant name, "muonium" 
was used in the naming of the (u+e”) bound state.19 The 
muon is believed to be identical to the electron in all 
respects except that it is much more massive,
(m^ = 206.76859(29)me 20), so that no hadronic interactions 
cloud the tests of electromagnetic interactions involving 
muons and electrons. Measurements of the Zeeman effect in 
the ground state of muonium have provided the most precise 
determination of the magnetic moment of the positive muon, 
a key test of quantum electrodynamics (QED).21 But because 
the Bohr radii for mumuonium (.00967265ao), muonic hydrogen 
[(u”p+), .00538094], muonic deuterium [(u~d+), .00510877ao1, 
and muonic tritium [(u”d+), .00501824ao]22 are so much 
smaller than that for muonium (.99518605), one would expect
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QED effects to be much larger. Indeed, the magnification 
of the differences between energy levels in these muonic 
isotopes might allow greater sensitivity in measuring 
atomic hyperfine structure. Because the muonic hydrogen 
Bohr radius is only 100 times the proton radius, Hughes and 
Wu23 have noted that a state of the art2* calculation of 
the ground state splitting, together with a precise measure­
ment, would be sensitive to models of proton structure. But 
a consideration of the correspondence between the Bohr 
radii of mumuonium and muonic hydrogen leads to an even 
more intriguing parallel. Would such a calculation and 
measurement process for mumuonium show that the muon is not 
a structureless Dirac particle? The calculation would be 
more difficult because one would have to consider the 
question of structure for both muons.

Muonic hydrogen isotopes are also of importance in 
catalyzed fusion, again because of the small Bohr radius.
One of the most interesting processes from the Fock-Tani 
standpoint is the initial formation of (du), subsequent 
formation of (dud)+ , followed rapidly by nuclear fusion.
The muon is then free (f=*87%) to catalyze another fusion.25 
Charge transfer cross sections involving the (ped)+ 
intermediate state have been studied in Fock-Tani 
representation by Hsu.26 His techniques may be useful in
the catalysis reaction.
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The generalized program developed for the present 
calculation could be used for a full set of reactions 
involving positrons, electrons, muons, proton, deuterons, 
and tritons at a later date. For the present consider only
the reactions

u+ + (u"p +) ■+■ ( u V > - P+ . (4.39)

U+ + (u"d+ ) - ( v V > + d+ , (4.40)

and

u+ + (u"t+ ) - ( u V > + t+ . (4.41)

Figures 11 and 12 show the differential cross sections 
for these processes at C.M. energies of 2.2024 keV and 
25 keV, respectively, in first-order Born (FBA) and Fock-Tani 
(FT) approximations. The former is near the energy of the 
maximum in the total cross section for the proton case 
(2 keVLAB) . A comparison to the FBA and FT graphs 
in Fig. 5, the differential cross section at an energy near 
the positronium formation cross section maximum, 10.2eV, 
shows many similarities. Likewise, a comparison of the 
muonium differential cross section at about ten times the 
formation maximum, 25 keV, and the corresponding positronium 
differential cross section at about ten times the forma­
tion maximum, 100 eV (Fig. 8), shows similarities in overall 
shape. Note that the Fock-Tani and FBA differential cross
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FIGURE 11. Differential cross section for mumuonium formation at 2.2024 keV.

The solid, dashed and dot-dashed curves are for muonic hydrogen, 
muonic deuterium, and muonic tritium, respectively.

104



«cntdeg.)
FIGURE 12, Differential cross section for mumuonium formation at 25 keV.

The solid, dashed and dot-dashed curves are for muonic hydrogen, 
muonic deuterium, and muonic tritium, respectively.
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sections for mumuonium are indistinguishable at these 
scales at 25 keV. This correspondence is not surJ 
prising considering the mass-scaling property demonstrated 
for the FBA total cross sections by Ma et al.27 and by 
Ohsaki et al.2a using a classical-trajectory Monte Carlo 
(CTMC) method.

As a final note on the differential cross section for 
these reactions, running the program at threshold (to error 
of order 0.00001 keV) produces an essentially constant 
value for all angles in both the FT and FBA theories. This 
is physically reasonable since at threshold the final 
momentum is zero and one has difficulty in even defining an 
angle between incident and final momenta. What is 
surprising result is that the FT result, 3.1xl0-8 ,
exceeds the FBA result, about 2.xl0~11 , by three orders
of magnitude. A check on the positronium formation 
reaction produced FT and FBA threshold (.00680 eV) values of 
2.xl0”2 and 5.xl0~4 , respectively. The cross section 
for muon capture from muonic hydrogen by a positron at 
threshold (2.5172 keV) gave FT and FBA values of approxi­
mately 3.6xl0"8 and 3.7xl0-8 , respectively. So the 
relative values appear to be mass-dependent. A broad 
survey of charge transfer reactions of this type could give 
a resolution of this dependence. Until this is done one 
should be cautious in accepting these threshold values.

Table 1 shows a comparison of the present first-order
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Fock-Tani and FBA total cross section to the first-order 
distorted-wave approximation (DWBA) of Ma et al.,27 and to 
the CTMC of Ohsaki et al.28 The present FBA agrees with 
the result of Ma et al. except at 1.13 keV. This is probably 
because the energy they list is rounded to three places 
from the energy they calculated with, the cross section 
being very sensitive near threshold.

The FT and DWBA give remarkably good agreement for 
energies 1.7 through 7. keV , the range spanning the 
maximum in the cross section . This is much better 
agreement than for the positronium case, perhaps due to a 
somewhat different choice of distorting potentials.

Table 2 compares the muonic hydrogen, deuterium, and 
tritium cases. The total cross section is sensitive to 
variation among the heavy isotope initial states only 
near the threshold energies, which are

1.12189 keVLAB (1.23544 keVCM) for muonic hydrogen,

1.25729 keVLAB (1.32434 keVCM) for muonic deuterium, and

1.30465 keVLAB (1.35195 keVCM) for muonic tritium.

(Ma et al. use 1.13 for the hydrogen case.)
Therefore, since the differences in the momenta of the 

bound muon will be small, the ratio of projectile momenta 
to the probability of capture will be nearly the same 
except near threshold. A graph of the results of these 
tables is given in Fig. 13.
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TABLE 1. Total Cross Sections for Reaction (4.39).

Lab Energy of FBA FT DWBA 2 7 CTMC*
Projectile irao2

1.12190 1.090-10 1.608-7
1.13000 9.928-7 1.285-5 1.47-10
1.20000 2.445-5 5.234-5 4.80-5
1.70000 1.617-4 1.772-3 1.79-4
2.00000 1.768-4 1.869-4 1.89-4
2.40000 1.670-4 1.738-4 1.75-4 4.-5
3.60000 1.046-4 1.085-4 1.09-4 3.8-5
5.00000 5.667-5 5.890-5
6.00000 3.745-5 3.893-5
7.00000 2.538-5 2.638-5 2.79-5 1.8-5

10.00000 9.057-6 9.402-6
20.00000 7.506-7 7.878-7 9.76-7 4.8-7
100.00000 3.467-10+ 3.471-10 6.02-10

*Estimated from graph28.
*The value given by Ma et: al.27 is 3.48-10 .
The notation 1.234-5 means 1.234x10-5
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TABLE 4.2 Total Cross Sections for Reactions
(4.39), (4.40), and (4.41).

Lab Energy of 
Projectile

hydrogen
IFT

deuterium
FBA — I FT

irao

tritium
FBA FT

1.70000 1.772-3 1.075-4 1.173-4 2.456-5 7.133-5
2.00000 1.869-4 1.367-4 1.468-4 1.232-4 1.317-4
2.40000 1.738-4 1.420-4 1.513-4 1.323-4 1.421-4
3.00000 1.240-4 1.317-4 1.192-4 1.276-4
3.60000 1.085-4 1.005-4 1.066-4 9.834-5 1.051-4
5.00000 5.890-5 5.819-5 6.159-5 5.840-5 6.222-5
6.00000 3.893-5 3.970-5 4.193-5 4.033-5 4.285-5
7.00000 2.638-5 2.760-5 2.909-5 2.831-5 3.000-5

20.00000 7.878-7 9.459-7 9.975-7 1.026-6 1.084-6
100.00000 3.467-10+ 3.471-10 6.02-10
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FIGURE 13. Total cross section for mumuonium formation. The solid, dashed 
and dot-dashed curves are for muonic hydrogen, muonic deuterium, 
and muonic tritium, respectively. The FBA and Fock-Tani results 
are given in each case. Note that the DWBA of Ma et al.27 for 
muonic hydrogen is indistinguishable from the Fock-Tani result at 
this scale except near threshold. The CTMC result, of Ohsaki et 
al.,2# for muonic hydrogen is also shown.
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CHAPTER V

POLARIZED WAVE FUNCTIONS FOR A HYDROGEN ATOM 
COUPLED TO A KINETIC EXTERNAL CHARGE

Introduction

The wave functions used in the first-order calculations 
ignore the distortion effects present in a system 
consisting of an atom and a charge. A comparison of the 
results of Ojha et al.1 (see Appendix A) to the 
experimental data shows a lack of fit in the low energy 
region, where polarization feedback effects have more time 
to develop, and at larger angles, corresponding to smaller 
impact parameters, where all interactions should be 
greatest.

There has been much research done on the polarization 
problem. The polarized-orbital method was introduced by 
Bethe,2 and revived by Temkin3 and Callaway.*' It is 
continually being modified and extended by various 
authors.5 The essential approach is to calculate the 
polarized wave function of an atom in the presence of a 
fixed charge,6'7 and from this the polarization potential 
in which the projectile moves. The wave function of the 
projectile is then found by numerical5 or analytic8 
techniques. Seaton and Steenman-Clark,9 using a
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close-coupling scheme, and Drachman,10 by means of Feshbach 
projectors, have been able to include non-adiabatic effects 
in the polarization potential.

A self-consistant field theoretic approach11 shows 
great promise and has been applied within the Fock-Tani 
representation by Ficocelli Varracchio.12 His preliminary 
calculations of the s-wave phase shifts for elastic 
positronium scattering from hydrogen13 show qualitative 
agreement with the benchmark variational calculations of 
Bhatia et al.1* Further agreement might result from, among 
other refinements, inclusion of distortion in the propagator 
for the projectile.

In this chapter, a wave function will be found which 
contains distortion effects in both the atom and a moving 
projectile. It should be useful for refinement of both the 
polarized-orbital and field theoretic methods, as well as 
for refinement of the first-order Fock-Tani results of 
Chapters III and IV.

The Kinetic Equation

The problem involves a solution to the continuum 
Schrodinger equation for a system comprised of a moving 
charge and an atom in its ground state when the charge is 
at infinity. One cannot use bound state perturbation 
theory for this system since there is no energy shift in 
the system as a whole. But one can turn to scattering
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theory to solve for the Lippmann-Schwinger in-state,15

lx-> - l*i> + «oVlxi> ' (5-1)

where

(E - HQ + ie) , (5.2)

E = Ei = Ef , (5.3)

and where the asymptotic state is defined by

(Ei~ Hq) I <|>i> = 0 (5.4)

in the limit e -► 0+. The out-state is similarly defined, 
but with the opposite sign for e.

Upon iterating (5.1), one produces the Born series

lxt> = H>i> + ®oV| x i > + G0VG0V|<t’i > + • • • ( 5 . 5 )

= l<l>i> + I x l 1^  + I x -2 ) > + . . . . (5.6)

Equating these two forms, term by term, produces the 
set of differential equations to be solved, (5.4) with
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(Ej - HQ + ie»IX£w>> = Vlx^'” > , for w>l . (5 .8 )

Note that if one adds a term proportional to l$i> to the 
left-hand sides of each equation in (5.9) one still has a 
solution [because of (5.4)]. These proportionality 
constants are chosen so that

< * i l x i.W>> = 0 * (5 .9 )

To solve (5.7) a position dependent Dalgarno and 
Lewis6 operator, F, is introduced, defined such that 
{[F,Hq] + ieF}|*.> = V|<fr.> . (5.10)

Then
{FE. - HqF + ieF] = V|<t>.> , (5.11)

(5.7) and (5.9), give

l x - 1)> -  F U i >  -  < * i lF|<|)i >l<|)i > . (5 .12 )

The Dalgarno and Lewis approach avoids the infinite 
sums and integrals one gets with an eigenfunction expansion 
of (5.7). In addition, solving the differential equation
(5.10) is generally easier than solving (5.7) because F 
commutes with all potentials in Hq on the left-hand side of
(5.10) . Furthermore, one can operate with Hq and factor out

(Ei - Ho + = vl*.> (5.7)
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the common l$i> from both sides giving

{X(Vi + 2<5d .*$d) + (V* + 25 )}F(S,r) = {XM[S]+L[r]}F =k kj k r r j r
= -2PqV/Za , (5.13)

where X = m/M , P^= Z^m (m=l/ag), and where the G-operators 
are defined by
3 . = (1/*.)$ $. . (5.14)P3 3 PI
In particular, for the present case (2.20), (2.21), and
(2.23) give

<»!♦•> =■ (2n)~3/2ei***̂ (ir)~1/2e-P0r (5.15)

so that

5Rfk = (iK-R)S and 5r>100= (-?„>; . (5.16)

Chapter II contains a generic initial- or final-state 
Hamiltonian, (2.25) together with (2.26), for which we define 
V as the second two terms. It is convenient to scale the R 
coordinate vectors in this equation as

ft ■* $
R1 = c(l-v) and r2 = cv ' (5.17)

where for initial states
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c = +1 , and

and for final states

m.
v = m. m. (5.18)

c = -1 , and
m3

v = 1 1 1 3+ 1 ^2 * (5.19)

Now one can expand the generic V in spherical harmonics,

v ( S , ? >  = l  l
4tt

„ „ , , ft, 
ZAZP(_1) S<_ l 0+1$,=0 m=-fc 21+1 (l-u)s*

Zp t^ * A A

-7inJT»m(R)Yta.(r)Ut^
(5.20)

where s< (s>) is the lesser (greater) of R1 and r and 
t (t^ is the lesser (greater) of R2 and r. Notice that 
for R > ur > (l-u)r, the monopole terms of V exactly cancel 
if - 1 , since

ZAZp (-l)°r° Z«r Zp (ZA - 1)
(1-v)|R/[c(1-v)]I 1 vIR/(cv)I 1 (5.21)

so that the largest contribution from the inhomogeneous 
source in (5.13) arises from the dipole (it * 1) term in V. 
In fact one would expect, physically, that an external 
charge would induce a dipole moment in a spherically 
symmetric charge cloud.
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The Large R Solution for the Multipole Terms

Equation (5.13) is solved by superposing the solutions 
for each source term of. Consider first the solution due 
to the multipole terms of V for the region Rj > r . The 
equation to be solved is

U(V* + 23Rj-$R) + (V* + 23 .•$r)}F>(fc,r) = {XM[$]+L[r]}F =

00
~2PoT1z £ 4tt fl, $,U r

A 1=1 m=-H 21+1 i+1 Y*m(R) Ylm(r) (5.22)

where
n = (ZA , -1} , u = (-1, +1} , and R = {Ri ,R2) (5.23)
for the first and second terms of V, respectively.

If the angular parts of F>(S,r) are expanded in 
spherical harmonics with indices Am and LM, one finds that 
only the H=L and m=M terms contribute, and that the 
radial part is independent of m, so that

f> <a,?> =
00

2ponz ^
4ir

A 11=1 m=-H 2H+1
M4Cv(R>r)Y;m (R)Y)lm(?)

(5.24)

where t is shorthand for the dependence on {nukPo) and 
v=tH. Substituting (5.24) and (5.15) into (5.23), 
operating on the spherical harmonics with V2, equating 
left- and right-hand sides, what remains is
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{XMv[R] + Lv[r]}Cv(R>r) = -  ̂ , (5.25)

where

4(4+1)M [R] = -5—  + 2(i + ift*R)----
V 3R2 R 3R R2

(5.26)

and

L [r] = -5—  + 2(-i - Pn)—
v 3r2 r 0 3r

4(4+1) (5.27)

The method of solution is to expand £ in the 
arbitrary parameter X [given by the mass ratio m/M of
(2.26)]f equate equal powers of X, and solve the resulting 
additional perturbation series order by order. Let

5 = e ( 0)+ Xc (1)+ X2c ( 2)+ . . . .  

Then one has the set of equations

Lv [rk^0)(R>r) = ----—

(5.28)

(5.29)
4+1

and

Lvtr]c^w)(R>r) = - M[Rk^w 1) (R>r) , for w>0 . (5.30)

Bound-state double perturbation theory,16 contains 
energy shift integrals to be calculated at each order for 
each perturbation expansion. Such coupled expansions must 
be solved simultaneously, to the same order. In contrast, 
the nested perturbation approach of the present method,
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expansions (5.2) and (5.28), contains no such energy terms 
so that an infinite-order solution of this expansion is 
possible. Indeed, an infinite order solution is realized 
for the present case of kinetically polarized s-state wave 
functions.

Equations (5.29) and (5.30) can be solved by defining 

(R>r) = g(vw)(r)f(vw,(R) . (5.31)

Then (5.30) separates into the set

r]g^0) (r) “ - r* , (5.32)

0 if f<w 11 (R) = 0V

L [r]g<w) (r) = -V V for w>0 , (5.33)

(w-1 )
- g (r) otherwise

r £+! ' and (5.34)

f̂ w) (R) « M[R]f^w'1)(R) , for w>0 . (5.35)

The r-Dependent Solution

Because the solution to (5.32) generates a source for 
the w=l equation (5.33) that is a polynomial, and the



solution to the latter, in turn, generates a polynomial 
source for the w=2 equation (5.33), one should solve an 
equation for a generic monomial source,
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Lv[r]hvW>(r) = ■ rS,+W ' (5.36)

and then superpose to obtain the solutions to (5.32) and
(5.33).

The indicial equation associated with (5.36) has roots 
r = #, and -fc-1. Each differs from w + & +2 by an integer, 
admitting a particular solution containing an In2 term, a 
logarithm multiplied by a series and a pure series17. One 
must eliminate the logarithmic terms on the physical 
grounds that the wave function should be non-singular at 
r=0. It will be shown in (5.41) that the coefficients of 
the remaining series are greater than the corresponding 
coefficients of the expansion of exp(+2PQR)r so the 
exponential fall-off of the hydrogenic wave function, which 
multiplies the polarization correction, is not sufficient 
to guarantee that the resulting function is finite for 
large r . We must therefore truncate the series at some 
point. Because (5.36) gives a two term recursion 
relation, this truncation causes all coefficients of terms 
with an exponent j>w+l to be zero.

Let
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(5.37)

r^+ĉ {q(q+2Jl+l) r 2PQ(il+q)r 1) =

(5.38)
where we have used the identity, 
q(q+2Jl+l) = (Jl+q) + 2(£+q) ~ A(A+1) .
Equating powers of r on the left- and right-hand sides, one 
has

h<"><r> = i 3g r*+<*
q=0 H

Then
LvCr]h<«>(r) = a*

q*0

= -r£+w

W n
V  0 , for q > w+1 , (5.39)

w
aw+l

1 (5.40)2P0(l+w+l) ' and

w
aq =

w (q+1)(q+2H+2) 
aq+l 2P_U+w) ' for q < w+1 . (5.41)

To solve for the zeroth- and first-order g's, one needs

1
2PQU+1) t

2&+1 ___

2P.il = 2P

(5.42)

(5.43)
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2Pq (4+2) '
1

(5.44)

•5-

and

1 2(211+3)
l2 2P0U+1)

211+3_______
2Pq Z(1+1)(1+2) ' (5.45)

1 i 21+2 21+3
a0 a al 2PQl = 2Pq 3(%+2) #

Then the solution to (5.32) is immediate:

1 , r4 + rl+1 
2Pg ̂ P-H Jt + 1

(5.46)

g^0)(r) = h^0,(r) = agr8, + a°rll+1 = Dgr1 + D®rS,+1

) • (5.47)

Substituting (5.47) and (5.34) into (5.31), substituting 
the resulting expression into (5.24), and setting n = -1 
and u = +1 (t for the second term of (5.20)) gives

Z_ oo & H+l
F2(M >  - ^  + fa-) - ^ ^ ( c o s e )  , (5.48)

which is the adiabatic result of Dalgarno and Stewart.18 
Note that in the limit mi -► « (so that Ri -► «) ,
F^(Ri,r) -* 0 . It is shown in (5.72) that f̂ w)(R) = 0 
for w>0 if the momentum vector, it, is zero. Then (from
(5.33)) g^w)(r) = 0 for w > 0. So the (present)



125

non-adiabatic exterior solution has the proper adiabatic 
(and infinite nucleus mass) limit.

Now the first-order equation (5.33),

L [r]g(1)(r) = v 3v - g^0)(r) = D°ra+ D°r#,+1 , (5.49)

has a solution, given as a superposition of solutions to 
(5.36),

g^1)(r) = D°h^0)(r) + D°h^1) (r) =

• n0.0,-11 * n M - * * 1 " D0a0r D0alr

(5.50)

.1 *■ ^0 1 l+l n0_,l_4+2
aor + Dlalr + °la2r

, 1 l - 1 l+l
00r + C01r

, 1 4 - 1 a,+l _ 14+2
10r + cllr + C12r

T-,1 S- 1 l+l „1 1+2
Dor + Dlr + D2r

(5.51)

(5.52)

(5.53)

This pattern also continues for w > 1 , so that the 
general solution to (5.33), for non-zero f's, is



126

C (D
where

W+1
X D»

t*0
w il+t (5.54)

(5.55)

Dt - I cut ' for w > 0 ,u=t-1
(5.56)

C_* t = 0 , (5.57)
and

Cu^ = dJJJ ^a^ , for u > -1 . (5.58)/
The a's are given by (5.40) and (5.41). The P q and l 
labeling for the a's, C's, and D's has been suppressed for 
simplicity.

The solution for the ns wave function, n>l, follows 
this pattern but with (5.39), (5.40), (5.41), and (5.55) 
altered due to the changes in the sources and in (5.14). 

Using these definitions,

_ 1 = .0.0 = — —
C00 0a0 ' (5.59)
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r  1 -  J , 1 -  -----------± £ Z * -------------L'10 " aiao " 4P0^A(A+l)(A+2) '

r 1 - a°=° - ----------S)! 0 1 4P031(1+1) '

r  1 -  . 0 . 1  _ ---------- ---------------------l'll - alal ” 4PQ3 (1+1) 2 (1+2) •

and

c  ̂= ^12
0 1 1

ala2 = 4Pq2u + n u + 2 )  • (5.63)

These give

DS =
1 1 2A+3 312+61+2 (5.64)4p q h  U  + u+im+2)-* - 4P0‘,l2U+l)U+2)

D\ =
1 1 28,+ 3 31z+61+2 , (5.65)4Pq 3(1+1) ll + (1+1)(1+2) J = 4Pq 31(1+1)2(1+2)

and

D2 = c  ̂^12 ' (5.66)

which is given by (5.63).
Substituting these coefficients into (5.54) gives the 

r-dependent part of lowest-order kinetic contribution to
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128

gv >(r) - 4Pq z(4+1) (t+2) { PQ!l
3 H 2+6A+2 r

"  [
M l

V Jl+1
1+2

] + r }

(5.67)

Note that the term in square brackets is proportional to 
g^0) (r) , but this pattern does not hold for w>l. This result 
multiplied by the ground-state wave function is proportional 
to the function given in Seaton and Steenman-Clark9 (their 
Equation 4.7) from a similar iterative solution for only the 
r-dependent part.

The R-dependent Solution

Solutions to (5.35) generate operands for the next- 
order solution which are sums of inverse powers. Again one 
starts by defining a generic solution:

i \)W 1 (R) = MtR]r r ^  = (5 .6 8 )

U+w)(2ift»R) w(w+2fc+l) - 2U+w) 
r A+w+1 RJl+w+2

, w , w
_ w+1 + w+2
= RJl+w+l r A+w +2 * (5.71)

Note that the second term is zero for w=l, so that the
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R-dependent part of the lowest-order kinetic contribution 
to the polarized orbitals is

f(D/p\ _ _ U+l)(2ig«R) 
fJl " ^1+5 (5.72)

For K = 0 , (5.35) gives f̂ w) (R) = 0 for w>0 . Then from
(5.33), g^w) (r) = 0 for w>0 , which is the conventional 
adiabatic result19 in the limit m^ -► ® .

In applying (5.35) for successive w's, one can see that 
the general-order solution is

where

Iv=w+1

1
r-IT7 ' (5.73)

Bww+1
_w-l , w 
Bv bw+l (5.74)

Bq = Bq-2 bq 2 + Bq-1 bq 1 ' for , (5.75)

b2w " B2w-1 b2w"2 ' for W>1 ' <5.76)
and

B° = 1 . (5.77)

The b's are given in (5.70). The k and 9, labeling of 
the B's and b's has been suppressesd for simplicily.

Substitution of (5.73) and (5.54) into (5.31), (5.28)



and (5.24) gives the complete series solution to the 
large-R part of the kinetic polarized orbital problem. A 
computer can easily handle the calculation of coefficients.

One must still consider whether the series converges. 
In the region r<ao£R (ao=l/Po) succeding terms go as 
[Xk(ag)2/R]w (or as k[X(ao)2/R^]w for small k), in leading 
order. For a hydrogen bound state and a positron external 
charge, X = m/M « 1-e2 (e=l/mprot) and ao = 1-e. For a 
positronium bound state and a proton external charge 
X = 1/4 and ag = 2 . For charge transfer the final
momentum is of the same order of magnitude as the initial 
momentum so the solution for both cases must be restricted 
to the region R > aQzk . The range of incident kinetic 
energies in the lab frame (= the CM energy) for charge 
transfer are 6.8 eV to about 50 eV, corresponding to k = .7 
and 2., respectively, in atomic units. So the series 
converges within the same region in which the particle at R 
can (semi-classically) be said to be outside of the atomic 
cloud, self-consistant with the region in which the 
solution was developed from (5.22).

For a proton incident on a hydrogen atom, X « 2e. So 
the series converges for R>aQ2k/918. For resonant charge 
transfer, the first-order cross section is appreciable for 
lab kinetic energies < 100 Kev, or for k< 2. In such a 
case the series converges rapidly, requiring at most the 
w=l term. In fact, the series converges at energies to

130
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774 MeV, far beyond the range of validity of a non- 
relativistic theory. Indeed, one would expect that the 
corrections to the momentum eigenstate, of one proton 
relative to the other, would hardly be affected by atomic 
polarization over a wide range of high energies.

What is surprising in the present result is that the 
polarization corrections to the R and r parts of the wave 
function increase rather than decrease with k . However, 
Seaton and Steenman-Clark9 and Drachman10 calculated the 
non-adiabatic correction to the asymptotic effective dipole 
polarization potential (in the close-coupling and Feshbach 
projector methods, respectively), and obtained a result 
which is also proportional to k2 .

The Kinetic Polarization Potential

The quantal virial theorem18 will be used to 
calculate the lowest-order non-adiabatic correction to the 
polarization potential for the present formulation. In 
deriving the set of perturbation equations (5.4), (5.7), 
and (5.8), an energy shift was not defined because in a 
scattering process the energy of the system as a whole does 
not shift. However it is correct to say that there is a 
change in the energy of the atom as long as one sees that 
this energy shift is compensated for elsewhere. The change 
in energy of the atom will be calculated as a function of 
the distance to the external charge.
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The standard first-order energy shift for the atom is 
found by taking the expectation value of the potential 
between zeroth-order wave functions and integrating only 
over the atomic coordinates (the momentum wave functions 
cancel),

E(1) (R) = <*iIVl*i>r

=5 <u | VI u > • (5.78)
nJlm nJlm

This is just the static potential for elastic scattering. 
For n=l, this is given by

,(i)(8) .  vs (8) = ^  P0Wl s ^ l ) - £  , (5.79)

where R]_, R2 , and v are given by (5.17) through (5.19), and

P0Wil(P) = 0 - exp(-2P0p)(P0 + i) . (5.80)

If one takes the limit m^ •* «®, then o ♦ 1 and

,(D
( 8 )

ZAZP (5.81)

which is Robinson's result20 for the static potential. In 
addition to this limit, Dalgarno and Lewis6 also neglected 
the exponential terms in their result. For = 1 ,the 1/R 
terms cancel, leaving only the exponential terms, as in 
Joachian's version21 for Zp = -1 .

One can check the importance of the the inertial
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potentials, W, of Chapter II by calculating this energy 
shift starting with the symmetrical reduced Hamiltonian, 
(2.22), but neglecting W. One recovers (5.20) because U3  

of (2.22) equals m of (2.25), and since the kinetic energy 
of the external charge does not enter in. This approxima­
tion differs from the exact result in that the exponential 
in Ri is neglected. So for such a problem one can conclude 
that the momentum dependent potentials can be neglected for 
external charge radii of order R > l/2m^ .

It is interesting that for the case of positronium, 
(e+e“), and mumuonium, (u+u“), atoms, Z^=l so that the 
monopole terms of (5.20) cancel. Furthermore u=l/2 gives 
Rl= R2 , so that the exponential terms also cancel, giving a 
zero first-order energy shift for positronium and mumuonium. 
Dalgarno and Stewart1 8 noted that the n^-order wave 
function gives the (2n+l)st-order energy shift. The 
expectation values of the positions of electron and atomic 
nucleus are two diffuse spheres superposed with a common 
center. For the positronium case the spheres are identical, 
whereas for hydrogen they are of different sizes. A semi- 
classical snap-shot would show, on the average, positions 
for the two particles which are not charge symmetric 
relative to the average center-of-mass for the hydrogen 
system, the origin of the two spheres. But positronium has 
the added symmetry of a balanced charge distribution, on 
the average, relative to the center-of-mass. Consider a
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classical analogue consisting of two oppositely charged 
particles fixed to the ends of a rigid rotor of constant 
angular velocity, pivoting about the center-of-mass. The 
inverse-square force between these charges and an external 
charge would yield a net attraction for the case of unequal 
(rotor) masses, in a time average, and no net attraction 
for the equal mass case.

Equation (5.78) is a positional average of the 
attraction of the "external" charge to the system decribed 
by the zeroth-order wave function, so that in cases where 
the centers of mass and charge are identical, one would 
expect no first-order energy shift. Furthermore, since the 
first-order wave functions contain polarization, which is 
eight times larger for positronium than for hydrogen, one 
would expect second- and third-order energy shifts to be 
larger for positronium. This is confirmed in (5.85).

The second-order energy shift is given by the 
expectation value of the potential between zeroth- and 
first-order wave functions. Again we want this as a 
function of R so integration will be only over the r 
coordinates (the momentum wave functions cancel). Then 
the polarization energy is
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E(2 ,(R) = <«£ Ivlx.1’ >

= <un4mIV(F ' a)lunim> (5.82)

where
a = «j> IFI 4> > . (5.83)

i i

In the limit mi -► ®, and neglecting any terms in exp(-R) 
arising from the part of the r-integrals where r>R,

F(S ,r)
00
l4=1

+ 4+1I___]4+1 J

X f342+64+2r r*
H + 2 y l Pn4 LPn4

.4+1
1+1 ] + r4+2} i ^ f ) Pi(cos0)

R
(5.84)

and

V(R,r)
L=1

PL(cos0) (5.85)

Then the lowest-order kinetic contribution to a of (5.83) 
will be of order l/R* (4=2) and is, therefore, neglected in 
comparison to the lowest-order kinetic contribution from F 
(4=1) . Then the second-order (polarization) energy (in 
the large R approximation) is
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E(2 )(R) ZP 2 a0* 9___129X iS*R}
Z * 4R* 12Pn 2 R 5A 0

(5.86)

As noted earlier, the second-order energy shift is 
eight times larger for positronium (where ao=2 ) than for 
hydrogen. The first term (when multiplied by 2 to change 
to rydbergs) is given in Dalgarno and Stewart. 1 9 These 
authors previously1 0 showed that the quantal virial theorem 
is satisfied by the zeroth- and first-order wave functions 
so that the potential energy is given by

W(R) = 2E + R ||. (5.87)

Then the polarization potential in which the projectile 
moves is given by the second-order term in this expression 
divided by the charge of the projectile:

V<2>(r) = ZPa0* ( 9 _ 129X jg-R)
ZA‘* 2R* 4Pq 2 R 5

(5.88)

The first term is the well-known adiabatic polarization 
potential, where Zp= -1 in Seaton and Steenman-Clark9 and 
in Drachman. 1 0 Like these authors' results, the present 
non-adiabatic correction is an increasing function of k and 
leads to a repulsive force, which is an indication that the 
k-dependence of (5.73), though counter-intuitive , is 
qualitatively correct. However, the present non-adiabatic
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correction enters in at a slightly lower order in 1/R and 
is dependent on k rather than k 2 .

The Small R Solution for the Multipole Terms

One can formally develop the R<r multipole solution 
using the same expansion, (5.28), as for the R>r solution 
by interchanging R and r in the source terms of (5.22) 
through (5.35). However, (5.35), in which there are no 
boundary-condition choices to be made (no constants of 
integration), inevitably gives terms which are singular at 
the origin of R. The function

f(1 ,<(R) = 2iit*R + ----—
v R

(5.89)

is singular at R-0 unless 11=1. Furthermore, for H=l,

f i=>l  ( R) = “4i i<#R/R2 ( 5 . 9 0 )

is singular. Because succeeding w's are even more singular 
this approach doesn’t bear fruit unless the dipole approx­
imation is valid and X is small enough to neglect terms 
with w>l .

An alternate possibility would be to interchange the 
roles of L and M [(5.26) and (5.27)] so that one can choose 
boundary conditions for the f's. This is done by expanding
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C< = C<0)<+ 1/X ?(1)<+ 1/X2 c(2)<+ . . . (5.91)

and defining

?̂ w) (R<r) = g(”)<:(r)f(wv)<: (R) . (5.92)

The solution is then given by the replacements

g‘w)<(r) = f(w) JR) and f(w)< iR) = g(£’<r) (5.93)
*0 -iK*R -it»R ^0

where the l dependence is not shown.
However, this solution also has its problems. The

expansion coefficient 1/X is greater than one. And one
would expect the adiabatic limit (k->0 ) to be the ground
state of the H* molecule. In fact the adiabatic limit
diverges term by term as l/k^w !

It should be noted that the expansion in X, (5.28), is
not the only way to solve the large R equation, (5.25).
One can expand £ in a series of increasing powers of 1/R,
with coefficients that are functions of r. The first two
terms in this series are identical to the first two of
(5.28) because the second term of (5.71) is zero. However,
higher-order terms involve mixing of the g(w),s so that
discerning a general series would be much more difficult
than the decoupled (product) solution, (5.31).

Likewise, for the small-R case, the alternate expansion
of £ in powers of R with coefficients that are functions
of r gives the same result and, hence, the same problems.
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The small-R part of the multipole problem appears to 
be unsolvable by obvious means. So one must be satisfied, 
at present, to approximate the polarization part of the 
wave function with the R>r solution restricted to the 
region essentially outside of the densest part of the 
atomic electron cloud; R>5ao • A number of authors2 2 use an 
adiabatic wavefunction which is cut off in this way. So 
the final, approximate solution is

FT( S , r )  = F * ( I $ , r ) e ( $ - r )  , ( 5 . 9 4 )

where 0 is the Heaviside step function.

Higher-order Terms

The solution to (5.7) in the large R (external charge 
coordinate) limit, effectively useful for R>5aor is now 
complete. The solution was explicitly labeled initial, 
but is the same for final states as well, with the alternate 
definition of v in (5.19). Because there are no energy 
shift terms to calculate the present machinery can easily 
be applied to the solution of the second-order equation,
(5.8) with w=2 . Define a position-dependent Dalgarno and 
Lewis6 operator, F(2) , such that



140

{[ F( 2 , fH0 ] + ieF} I <fr£> = Vl x-1’ > • ( 5 . 9 5 )

One can again factor out the exponential parts of the wave 
function on both sides and solve for the rest. The seed 
equations, (5.32) and (5.34), will have more complicated 
sources. But using the superposition principle, together 
with the generic equations, (5.37), (5.38), and (5.68), the 
problem is reduced to a matter of efficient bookkeeping.
And given this solution to (5.8) for w=2, one can solve for 
w=3 and so on. Thus continuum perturbation theory is 
necessary for a solution to this problem. But since it 
generates no energy shift terms (found in bound state 
perturbation theory), this form of perturbation theory 
actually facilitates a solution to arbitrary order.
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CHAPTER VI

HIGHER-ORDER EFFECTS IN FOCK-TANI REPRESENTATION

Introduction

The first-order Fock-Tani results1 for the reaction 
p+ + H *► H + p+ match the experimental data2 ' 3 well for 
differential angles less than 3 mrad and for energies 
greater than 10 keV. The improvement over the first Born 
approximation is due to the inclusion of higher-order 
effects within the first order Fock-Tani T-matrix. Because 
the orthogonalization corrections of the Fock-Tani theory 
remove the double counting of the plane-wave states 
superimposed over the bound state, which occurs in conven­
tional representations, the Fock-Tani T-matrix may be 
considered as a type of distorted wave T-matrix. It would 
be desirable to account for additional sources of distortion.

In this chapter the framework for a distorted-wave 
T-matrix is developed, and the solution to the equation for 
the distorted states, which includes some additional effects 
to infinite order while neglecting others, is outlined. 
Finally, a method for including these neglected terms to 
second- and third-order is considered.



144

The Distorted-Wave T-matrix

Girardeau's development4' of a distorted-wave 
T-matrix, which accounts for some initial- and final-state 
effects to infinite order and the remaining terms to arbi­
trary order, is presented. However, the result is extended 
to the case where there may be different distortion poten­
tials for initial- and final-states. One starts with the 
general definition of the T-matrix from Chapter IV:

Tfi= (<|>fIVlD?) , (6.1)

where the final asymptotic state, (<frfl, is given by (3.73), 
the Lippmann-Schwinger in-state, IipT), is given by

I lpt) - | + .) + GqV I ipt) , (6.2)

Aand V is given by (3.57). In this equation the initial 
asymptotic state, 14>i), is given by (3.71) and

Gg = (E - H0+ ie) , (6.3)
A

where the limit e-*0+ is implied and Hq given by (3.56).
If the full potential is split into initial-state distortion 
terms and a remainder,

V = (6.4)

then one can define a distorted initial state by



145

I x l d ) = i 4-i> + % i xr d ) . (6.5)

One may also split the potential into final-state 
distortion terms and a remainder,

v = vb + °b ' (6.6)

where b may or may not equal d. Then one defines the final 
distorted state as

<Xfb l * (<t>fl + <Xfb IVbGp . (6.7)

Substituting (6,7) and (6.2) into (6.1) and rearranging 
terms gives the conventional two-potential T-matrix,5

Tfi = <x;d iGb l*p + ( X ^ I V l K )  .-d
( 6 . 8 )

Since ionization and recombination terms are allowed in 
the distorting potential, the second term is not zero. 
Equating l<J>i) in (6.2) and (6.5), using the operator rela­
tion (AB) 1 = (B 1)(A~1 ) one can show that

U>t) = (E - Hn - V + ie) 1 (E - Hn - + ie)|Xtd )

^+d^ -i, +d= (1 - G Ud) |x )

/'+dy' ~+d~ ~+d~ +d= (1 + G U . + G U.G U. + . . ,)IX. ) , (6.9)
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where the distorted-wave Green's operator is given by 

G+d = (E - HQ - Vd + ie)~1 . (6.10)

Then the distorted wave T-matrixf which now includes
distortion interactions to infinite order in the initial,
intermediate, and final states and in the distorted-wave 

/v+dpropogator G , is given by

T f i  -  < x ; b lGb i x l d > + ( X f h l V ^ )  + < X f b lS bG+dUd l x t d )

(X*b IUKG+dU,G+d6 xtd ) (6.11)

The choice of what to include in V& and is 
physically motivated. It is found that some terms that are 
initially included in Vfc and must later be neglected. 
These should be shifted to and U<j, respectively.

Determining the Distorted States

First the Fock-Tani potential is rewritten in a short­
hand form, where the left and right hand subscripts indicate 
the creation and annihilation operators found in that term 
of V [e represents a continuum electron, e an electron 
bound to the origin, a a free a-particle, and a an (a+e“) 
bound state]:
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V - V + v + ( v  + V ) + ( V + V ) + V e e a a a ea ae a a ea ae a ae ea

+ ( V + V ) + V ae ea ae ea ae ea ( 6 . 12)

If one iterates (6.4), the only non-zero terms are

lxld) = ♦ i > + + G5vdGSvd'*i) + • • •

= 1 ) +
A . A

G0(aeVea v )1$.) ae ea

Aj. A A A  A  A  A i A  A+ G ( V + V + V + V +  V )Gn ( V + V )l<|>.)ae ea ae ea ae ea ae ea e e 0 ae ea ae ea

+ . . . (6.13)
A A A /Aif the charge transfer terms, ( V + V  ̂+ V +  ̂V ) , ̂ ' a ae a ae ae a ae a

are excluded. Note that if one had started with the Fock- 
Tani Hamiltonian, (3.18), derived from the non-specialized

A  AFock Hamiltonian, (3.1), V, would have had a term.a a a
The contribution from this process is included in each of 
the present V's as the monopole part in the expansion of 
the first term of (3.68).

To find the distorted initial state one must solve the
equation
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(6.14)

subject to outgoing boundary conditions (e-*-0 + ). The 
solution follows the non-pertubative approach of Tripathy 
and Rao6, but will differ in substance. The primary 
differences are that continuum states are included in the 
present expansions and the internuclear potential is not 
neglected. The former slightly complicates the formulas. 
The latter fundamentally alters the result because this 
potential cancels the monopole term that is their largest 
source of distortion.

First a complete set of {bound, continuum} states, is 
defined by

stands for either Ey , given by (3.54), or g2/2m , given by 
(3.42) and (3.43). The total energy of the system is

(6.15)

using a generic label G for either y or g, and
likewise H for either t) or S . The energy of the state, Eq ,

E = E + kz/2M , 
Is

(6.16)

for an Is initial bound state, where £ is the initial 
momentum vector and M is the 3-body reduced mass, (3.43).
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The normalization condition is

(5g U h ) = «GH = or 6(g-fi) . (6.17)

If one expands x in this complete set,

lxld) = l?H ) , (6.18)H

substitutes into (6.14), and multiplies from the left by
y\

U G la($) , one gets the equation

[E - EG- Ta($)]xGd ($lt) = J/d5l(CG la(5)Vda+(51) U H )XHd <S1S) .
(6.19)

Using the definition of the distortion potential,
(6.13) and (3.57), this splits into two sets of coupled 
equations:

[k2 - 2M(E1s - E ) + V2]x*d ($£) =

= 2Mjj/dSl(SY lHaelS1n)'xJjd<$lK)

+ 2M(2ir)~2/3J‘diidi$1dr(i$YlHael$1r) ’'e1̂ 'rx+d(Ii$it)
( 6. 20)

and
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[k2 - 2M(S1s - h2/2m) + V2]x+d(f®£) =

= 2M(2ir)'3/2z/dSldre'î *r(Rr|HaelS1n) "xJ^RjlO

+ 2M(2ir) 3/dgd5ld r d r ^  r(5r lHaelS1rl)' 'e*'® ri

The source terms on the right hand side simplify 
neglects the non-local orthogonality corrections,

[k2 - 2M(E1s - E ) + V23XYd( ^ )  =

= fiuY11(5)x;d (Si?) + JdKu*(M)x+d(S5K)

and

[k2 - 2M(E1s - h2/2m) + V23x+d<^)i) =

= $uY(?&>X*d(&> + Jd|u(Sg5)x+d(g5i?) ,

where

U ($) = 2M/druY*(r)(Vab(5r) + Vag(Sr) )u^(r) , 

Uy (S5) = 2M(2ir)~3/2J’dre-1^*r(Vab(Sr) + Vae($r))uY(

‘x+d(ĝ it) . 
( 6 . 21) 

if one 
giving

( 6. 22)

(6.23)

(6.24)

r) .
(6.25)



151

U(gffi$) = 2M(2n)'3J‘dr(vab(5r) + Vag(5r))e l(h g)*r , (6.26)

V b ($r> + vae(5?) = -----r ^ -  ’ab ae iS+Xrl |S-vrl
(6.27)

m. m
v = m, + in d e

, and X = m, + in d e
(6.28)

If one expands (6.27) in spherical harmonics one notes 
that the monopole terms cancel for R>r and Zb=l . The 
dipole potential terms is then dominant in this region, as 
one would expect. But Tripathy and Rao6 neglected the 
internuclear potential, Vafc, in their Hamiltonian [their 
equation (21)] so that this cancellation did not occur.
They were left with a monopole term as dominant.

Given the cancellation of the bare internuclear poten­
tial by the corresponding term in the orthogonalization 
potential noted by Ojha et al.,1 for the reaction 
p+ + H -► H + p+ , an approximation confirmed to give only 10 
percent error in Chapter IV, one might wonder if such 
cancellation might occur between the bare terms included in 
(6.22) and (6.23) and the presently neglected orthogonality 
corrections. In fact, in this approximation, such a 
cancellation occurs only between in U^(KK) , (6.25),
and the corresponding orthogonality correction for the
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£-bound states. However, the monopole term of Vae in
(6.25), for R>r, is also canceled by the monopole term in 
the orthogonality correction, so one is still left with the 
dipole potential dominant.

Satapathy, Tripathy, and Rao, in a later paper7, 
improved their calculations for p+ + H -► H + p+ by intro­
ducing a screening parameter to account for the neutrality 
of the atom. The present potential, in which the dipole 
term is dominant, rests on firmer physical ground and con­
tains no arbitrary parameter. It is shown that the dipole 
case also yields a solution.

The coupled equations (6.22) and (6.23), could be 
solved numerically. However, "infinity" of the radial 
integrals must typically be taken to be several hundred 
Bohr radii. This increases computer time and accumulates 
roundoff errors.® To avoid this, an analytic solution 
is found in the region R>Rmax' where the latter is an 
intermediate value chosen by trial. Tripathy and Rao6 were 
able to find an analytic solution in this region for the 
monopole potential; a Coulomb wave. However in subsequent 
calculations they also appear to have used this function 
for small values of R . The use of an asymptotic solution 
for a monopole potential might be justified in the R<r 
region, since the dominant term in the latter region is of 
monopole form, although involving the electron radius, r, 
rather than the projectile radius, R . But using the
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asymptotic solution for a dipole potential as the solution 
for small R for the present system would not be a good 
approximation since monopole terms dominate for R<r.

Since the dipole potential generated by an atom arises 
from virtual transitions between the ground state and bound 
and contiuum states with angular momentum one, it is 
consistent to restrict the U's in (6.22) and (6.23) to such 
transitions. Any e“R terms arising in $,=1 part of (6.24),
(6.25), and (6.26) are also neglected. Then the coupled 
equations become

[k2 + v2]xif(S£)

np ls,np2 U

(6.30)

and

[k2 - 2M(#ls - h2/2m) + V2]x+^(^^)

+d
* Ui ( hR) x., (Rk)L a . Is (6.31)

a,=i
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The outgoing boundary condition implied in (6.14) 
gives an asymtotic form for the solution of (6.29),

+dXis(Rk) “R55-> A(e +
ikR

(6.32)

for which

V2Xis<^) -g"-> -k2Xif(Slt) + 0(1/R3) . (6.33)

Following the discussion in Tripathy and Rao, for 
potentials U - 1/RP+1 , one considers the relations

V2[U($)Xis(®t)] = X?2U + 2$U*$X + UV2X =

* UV2x + 0(1/RP+2)

= -k2U(S)xig(S£) , (6.34)

where the last relation comes from (6.33). If

[k2 - 2M(Sls - V ]U1S,nPxls(ffi?> (6'35

is added to both sides of (6.34) and if Ux on the 
right-hand side of the resulting equation is replaced with 
the left-hand side of (6.30), one obtains



155

[k2 - 2M(E. - E ) + V2]U. nr,(S)Xt^(SK) =is np ls,np ''is

[k2 - 2M(E. - E ) - k2 ]U,Is np Is, np ''■is

[2M(£_ - tf.,_)][k2 - 2M(E^ - E_) + V2]x*^($£)np Is Is np np
(6.36)

or

+d -+-► Uls,np^*^ +d ,
Xnn(Rk) « Xic(Rk)np 2M(E - E.) 1Snp is

(6.37)

By a similar process, one can show that

+dX (hRk)
U, (hR)Is $,=1

2M(hz/2m - ^ls)
+d .Xis(R*t) (6.38)

Inserting (6.37) and (6.38) into (6.29) one obtains

(k2 + V2 Ma +d ->-►+ p x i s ( ^ ) = o , (6.39)

where

Un <R) R ls.nD
2 U, (hR) Is JL=i

2

, l + R*Jdh
)2M2 1E - En np I np Is (hz/2m + E.Is

is the conventional dipole polarizability6 (if

(6.40) 

the e“R
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terms in the U*s are neglected) plus a term with the same 
interpretation arising from virtual transitions to the con- 
tinuum. A minus sign was factored out from these terms 
(where E<0) to indicate the attractive nature of the poten­
tial in (6.39). If the e”R terms in the U's are neglected 
then a is independent of R and the integral may be 
calculated prior to other numerical integrals. In this 
case the computation time is not significantly increased.

The solution to (6.39) for all R has been given by 
Holzwarth9, but the asymptotic expansion found by Hunter 
and Kuriyan8 is more useful for the present purpose 
because it consists of simple triginometric functions 
multiplied by a 1/R series, so the need to determine 
characteristic exponants is avoided, and it is non-iterative. 
If one expands x

+d
X i s (R k )

00 Jl
l l

1=0 m=-2,
X(Rk) /\ * /\

Y Am(R)Y 0m(k)$,mv (6.41)

the solution to (6.39) and (6.41) is, for z=kR,

X(z) = y(p (z)cosz - Q(z)sinz) + B(P(z)sinz + Q(z)cosz)
(6.42)

where y and 8 are arbitrary constants to be determined by 
equating the numerical solution of (6.22) and (6.23), for 
small R, to (6.42) at some intermediate value of R, Rmax,



chosen so that variations in Rmax give variations in the 
result that are less than the tolerable error. The 
functions P and Q are series in 1/z ,

P(z) = f  (-1)JT .(z) , Q(z) = 1>3T2 . , (6.43)
j *0 J j =0 J

where Tq is an arbitrary normalization constant which may 
be set equal to one, and where

2zTx = 8,U+1)T0 ,

4zT2 = [fc(Jl+l) - 2]T^ , and

2 jzT. = U U + l )  - j(j-l)]T. , + Mak2T. ,/z2 . (6.44)
J J *** J ” ^

Ma is the numerator in (6.39). The fi, indices on P, Q, and 
the T's have been suppressed.

Hunter and Kuriyan8 found that for terms with j>30, the 
contribution of subsequent terms was less than the toler­
able error. Their criterion was sufficient to guarantee an 
accurate solution for moderate to large R even if (6.43) 
are asymptotic series.

The asymptotic limit is

X(Rk) ----— > ycosRk + BsinRk . (6.45)
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If one substitutes the asymptotic solution to (6.41), which
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contains a factor of 1/Rr and the 1/R2 potentials into the 
right-hand sides of (6,30) and (6.31) then, by a dimensional

argument, and x+<*(S85) also go as 1/R asymptotic­
ally. However, even if one uses the full formula for X(z),
(6.30) and (6.31) are just wave equations for a series of 
(acosRk+ SsinRk)l/R3+j sources, so their solution is 
straightforward. An approximate solution for the initial 
distorted state is now complete. The solution for the 
final distorted state follows the same format. From these 
the first-order distorted-wave T-matrix in (6.11) can then 
be evaluated.

The Second- and Third-order Distorted T-matrices

Madison10 has developed a method for calculating 
an exact second-order T-matrix element, and the extension 
to third-order is obvious. One could calculate a second- 
order undistorted T-matrix element, but this is essentially 
equivalent to the first order term of (6.8), with ip 
replaced by <|). To include higher-order effects one should 
begin with the second- and third-order terms of (6.11),

Tfi = (Xfb lSbG+dUd lx-d) (6.46)

and



159

(6.47)

The intermediate states in these expressions involve 
multidimensional integrals. The standard approximation,12 
replacing the energy variable in the denominator of such 
integrals by an "average" energy, is not acceptable for a 
process allowing transitions to the continuum. How does 
one define the average of energies ranging to infinity? 
Instead the problem is transformed to the solution of 
differential equations, a general method pioneered by 
Dalgarno and Lewis.11 If one defines

the second- and third-order T-matrix elements are reduced 
to integrals over a single set of variables:

(6.48)

and

(6.49)

(6.50)

and

(6.51)

There are no intermediate loops to integrate over.
Equation (6.50) has 4 or 6 fewer dimensions to be integrated
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over or summed (depending whether the intermediate state is 
bound or continuum, respectively) than (6.46). The 
reduction in going from (6.47) to (6.51) is 6 or 12 fewer 
integral dimensions (or sums). The tradeoff is the need to 
solve the differential equations

(E - Hq - Vd)lc^d) = Sd IXid) (6.52)

and

(E - Hq - Vd)k^M ) - Ub IXfb) , (6.53)

which generally requires less computer time than does 
multidimensional integration. Madison has demonstrated 
that the an exact calculation of (6.50) is a tractable 
problem, whereas an exact calculation of (6.46) would be 
extremely difficult. It is possible that the techniques of 
the previous section could yield an approximate solution 
for the third-order T-matrix.
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CHAPTER VII 

CONCLUSION

The primary goal of this work was to more closely 
examine 3-body scattering so that an extension of the 
Fock-Tani transformation to larger systems would be 
firmly grounded. It has been shown that the difficulty of 
carrying out this transformation can be considerably 
reduced by working in reduced-mass coordinate systems. The 
choice of whether to use the symmetrical center-of-mass 
system, with one particle fixed at the origin, or to use 
either the initial- or final-state inertial center-of-mass 
system is shown to depend on the application.

A transformation using the symmetrical system is 
greatly simplified for "knock out" reactions in which there 
are two types of particles that can bind to the origin. It 
has the drawback of giving a first-order T-matrix with an 
error of l/mproton in the initial state momentum wave 
function. However, an examination of the physics of the 
reaction easily leads to an ad hoc correction. The Fock- 
Tani transformation using the inertial reduced-mass system 
is much more difficult than that using the symmetrical 
reduced-mass system for this reaction.

It was also found that setting up any problem in the
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symmetric n-»(n-l)-body system initially , for n<6, may 
facilitate eventual calculations done in the inertial 
systems because this may be the easiest coordinate trans­
formation path to the latter. In the process, relations 
between initial- and final-state inertial systems are 
generated. Finding such relations by other methods may be 
much more difficult.

The first-order results were examined in detail and 
computer programs giving differential and total cross 
sections for reactions of the type

a+ + (b+c~) * (a+c“) + b+ , (7.1)

for arbitrary masses, were generated . It was found that 
the inertial 3-^2-body systems gave the same result, 
in first-order, as the full 3-body Fock-Tani transformation. 
This transformation can be done with half the work of the 
3-body transforation.

Results for (abc) = (ppe) were compared to Fock-Tani 
results of Ojha et al.1 Their neglect of the inter- 
nuclear potential was found to give an error of order 10 
percent, but their neglect of 3s, 3p, and 3d orthogonality 
corrections was found to give an error of only one percent. 
The more general, present result removes small oscillations 
found in their differential cross sections at small angles.

Present results for (abc) * (epe) and the previous 
Fock-Tani result of Ficocelli Varracchio and Girardeau2
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were found to disagree, probably due to lack of convergence 
in the previous result. Fock-Tani cross sections for 
(abc) * (upy) were also calculated and compared to first 
Born, distorted-wave3, and classical-trajectory 
Monte-Carlo* calculations. It was found that the Fock-Tani 
and distorted-wave results are in excellent agreement for a 
wide range of energies. Finally, Fock-Tani results for 
(abc) = {(lipy), (ydu), and (pty)} were compared with each 
other and found to be somewhat different near threshold and 
nearly the same for larger energies.

Because the Fock-Tani results for resonant charge 
transfer in proton-hydrogen collisions agreed with the 
experiment for energies greater than 10 keV and for 
differential angles less than 1 mrad at 25, 60, and 125 keV, 
but did poorly outside these regions, it was thought that 
including higher-order effects in the calculations might 
give a better overall result.

For this reason a solution was found to the equation 
for the first-order wave function for a system containing a 
hydrogenic atom coupled to a kinetic external charge. The 
solution is easily extended to higher orders. The lowest- 
order kinetic correction to the much-used adiabatic wave 
function was found to depend on k/R3, where k is the 
momentum and R the coordinate of the external (R>5ao) 
charge. In a subsequent calculation of the polarization 
potential, using this wave function and the virial theorem,
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the lowest-order kinetic contribution was found to be of a 
similar form to the result of Seaton and Steenman-Clark5 
and Drachman,6 but was shown to enter in at a lower order 
in (large) R, depending on k/R5 rather than k2/R6.

Techniques for evaluating the distorted-wave Fock-Tani 
T-matrix were also developed. The equation for the 
distorted states was shown to give an approximate analytical 
solution for large R, to be coupled to a numerical 
solution in the small-R region. The solution of the 
second- and third-order distorted-wave T-matrices was 
outlined.

It is my intention to apply the polarized wave 
function and distorted-wave techniques to the reactions 
calculated at first-order in this dissertation. In 
addition, the general-mass computer programs of Appendix B 
could provide differential and total cross section theoret­
ical results for reactions (7.1) not presently available in 
the literature.

Also the techniques and understanding gained 
throughout the work on this dissertaion will be used in 
calculating the differential and total cross sections for 
charge transfer in the 4-body scattering problem

es + H" -► Ps(nJl) + H( Is) (7.2)

during the coming year under the auspices of a National 
Research Council-NASA Research Associateship, for which I
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am very grateful.
The significance of this dissertation from my perspec­

tive lies not so much in the specific answers generated for 
the present problems, even though they should be very 
useful to researchers in this field, but, rather, in the 
refinement of a style of perceiving, thinking, and 
imagining which will be of benefit to my future research.
I have learned that science, like any other art, requires 
two things: a willingness to clearly see and acknowledge 
the world as it presents itself; and the technical skills 
necessary to share such understanding with others.



167

Notes

1P. C. Ojhar M. D. Girardeau, J. D. Gilbert, and J. C. 
Straton, Phys. rev. A 33, 112 (1986).

2E. Ficocelli Varracchio and M. D. Girardeau, J. Phys. B 
16, 1097 (1983).

3Q. C. Ma, X. X. Cheng, Z. H. Liu, and Y. Y. Liu, Phys.
Rev. A 32, 2645 (1985).

*A. Ohsaki, T. Watanabe, K. Nakanishi, and K. Iguchi, Phys. 
Rev. A 32, 2640 (1985).

5M. J. Seaton and L. Steenman-Clark, J. Phys. B 10,
2639 (1977).

6R. J. Drachman, J. Phys. B 12, L699 (1977).



168

APPENDIX A

THE 3-BODY RESULTS OF OJHA ET AL.
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A unitary (Fock-Tani) transformation of the second-quantised Hamiltonian breaks the interaction 

into its component parts, «4-, elastic scattering, inelastic scattering, rearrangement interaction, etc.

The interaction for a particular process is “weaker” than the overall interaction; this is reflected in 

certain orthogonality corrections which appear in a perturbation expansion of the T-matris element.

As a result, the intemuclear potential makes a negligible contribution of order m ,/m f  to the first- 

order amplitude for charge transfer. We find very good agreement with experimental and the best 

available theoretical results for the total cross section for the reaction p+H(lil—H(UI+p for en­

ergies greater than 10 keV and for the differential cross section at 23,60, and 123 kcV in an angular

range of — 1 mrad about the forward direction.

L INTRODUCTION

Atomic physics provides the ideal setting for testing 
new approaches to the quantum-mechanical scattering 
problem mainly because the interaction potential is known 
but also because of the variety and richness of phenomena 
open to investigation. This paper is part of a broader pro­
gram to investigate the suitability of one such approach 
based on unitary (Fock-Tani) transformation of the 
second-quantized Hamiltonian. The motivation for this 
transformation is discussed and its basic features illustrat­
ed for the simple case of potential scattering in Sec. II; the 
mathematical details relevant to present application-are 
given in Sec. Ill and the complete result is enumerated in 
Appendix A. Here we merely note the final result that 
the interaction is broken into its component parts, eg., 
elastic scattering, inelastic scattering, rearrangement in­
teraction, etc. This gives one considerably more latitude 
in introducing physically motivated approximations, for 
example, in a Bom series expansion of the scattering am­
plitude The effective interaction for a particular process 
is, in a sense, ‘‘weaker’* than the overall interaction which 
is the sum of all interactions. It is found that to each or­
der in the perturbation, certain orthogonality corrections 
to the usual (Fock) scattering amplitude appear. In this 
paper we restrict ourselves to a first-order (Bora-type) ap­
proximation. in which case the orthogonality correction 
becomes negligible at high energies. We therefore expect 
the Fock-Tani formalism to extend the range of validity 
of the first-order approximation to lower energies.
This formalism has been applied previously to the cal­

culation of the scattering amplitude for positronium for­
mation 1 and for positron-hydrogen clastic scattering2 in 
collisions of positrons noth hydrogen atoms. The numeri­
cal results of the second of these papers dearly demon­
strate the superiority of the Fock-Tani representation over 
dose-coupling representations in some cases where chan- 
nd coupling plays an important role. In this paper we 
consider the closdy related problem of resonant charge 
transfer,

33

p+H(D)— H i W + p , (1.1)
with the understanding that at collision energies under 
consideration (relative velocities of order 1 a.u.) proton- 
proton exchange plays no role. This problem, in spite of a 
long history of quantum-mechanical analysis going back 
to the early days of quantum mechanics/'4 is still under 
vigorous investigation as indicated by a recent review arti­
cle2 and numerous other publications. An early difficulty 
was caused by the Coulomb repulsion of the nuclei. This 
was neglected by Oppenheimer and Brinkman and Kra­
mers4 on physical grounds but the resulting cross sections 
were too large by a factor of 3 or 4. Its inclusion in a 
mathematically consistent first-order theory4,7 brought 
the total cross section in line with experiment but clashed 
with the physical argument that the internudear potential 
cannot significantly affect the cross section for charge 
transfer. In Sec. IV we show that in the Fock-Tani for­
malism, as a consequence of the orthogonality correction, 
the Coulomb interaction of the nuclei contributes a negli­
gible term of order mt /m f  to the first-order reaction am­
plitude, a result pleasingly consistent with an observation 
about the exact scattering amplitude originally made by 
Wick (see footnote in Ref. 6).
The first-order orthogonality correction is reduced to a 

numerically tractable form in Sec. V, and computed dif­
ferential and total cross sections are compared with exper­
iment and the best available theoretical results (two-state 
atomic expansion introduced by Bates1) in Sec. VI. In 
Sec. VII we summarize our results and outline possible fu­
ture extension of this work.

IL FOCK-TANI TRANSFORMATION 

FOR POTENTIAL SCATTERING

The basic idea behind Fock-Tani transformation and its 
consequence for scattering are best explained for scatter­
ing of a single particle from a fixed potential Vit) which 
is sufficiently strong to support a number of bound states 
| |/i>, /r-1,2,3,...) with energies 1,2,3,... j.

112 © 1916 The American Physical Society
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33 FOCK-TANI TRANSFORMATION AND A FIRST-ORDER ... 113
This formulation was first considered by Tani* but. the 
following summary is closer in its mathematical detail to 
the generalization due to Girardeau.10
We begin with the second-quantized form of the Ham­

iltonian (Fock Hamiltonian)
Hr -  /  d r S t(r)fr(r)+ K(r)]2(r), an

where T it)  is the kinetic-energy operator and 2 f(r) and 
a ir)  are “elementary" creation and annihilation operators 
defined in the Fock space 7. These satisfy canonical 
commutation relations

[2(r),2(r')]-[2,( r U ,(«/)I-0 (22*)

and
[2(r),2V)]-8<r— r*). (22b)

If the wave functions {tf„lr), n  *  1,2,... | 
states are known, one may introduce 
creation and annihilation operators

| of the bound 
“bound-state**

f  dr+p(r)8*ir) (2.3a)
and

i p -  f  drd£(r)2(r). (2.3b)
Note that the commutation relations of these operators 
with 2(r) and 2 *(r) are not always simple. In particular,

(2.4a)
and

[«,(D.^#1]«-<(r) (2.4b)
are noncanonical. This complicates the mathematical 
analysis whenever one has to make explicit the existence 
of bound states of the system.
It is therefore desirable to introduce operators which 

can be associated with the bound states and which satisfy 
canonical commutation relations instead of (2.4). With 
this in mind, we introduce an “idealist* te” space J t in 
which creation and annihilation operttors |b V  
H -  1,2.... | are defined. These are further assumed to 
satisfy the following commutation relations:

(2.5a)
and

(2.5b)
We next construct the direct-product space

In this space all annihilatam and creation 
operators previously introduced are defined. However, 
the “ideal-state” ̂operator* bp, &*, etc., i alike the “real- 
state" operators ip , etc., commute with the elementa­
ry operators 2(r) and 2 (rh

*[2 t(r),b|(]»[a t(rl,6 *J*0 . (2.61

The sutnpacc #  # C  Jt defined by the vendition

iff ! * > € * >  , (2.7)n
is quite obviously isomorphic to the Fock space 7. Any 
calculations in 7  may as wdl be done in We will, 
however, make a unitary transformation which will give 
the physical meaning of the real states |0> to the ideal 
states S*|0). This transformation will carry the sub­
space j f / G T  to the Fock-Tani subspace JF'ftCJT in 
which all calculation with the transformed Hamiltonian 
should be done. This transformation, schematically indi­
cated in Fig. 1, is defined via the unitary operator

0-exp |y 2 <#&-£$,) | • (2.8)
The transform 0 ~lO 0 of any operator is evaluated us­
ing the Campbell-Hausdorff formula. It is easily verified 
that the transformed Hamiltonian (Fock-Tani Hamiltoni­
an) is given by

-  2  + I  d r 8 fU)Ir«r)+ K(r)Jff(r)a
drdr'2t(r)^(r)^;(«/)2(r'). (2.9)

a
and that

U ' % 0 - - i p  (2.10a)
and

0 ’ % 0 - b p  . (2.10b)
From (2.10) it is clear that the role of bp and ip is inter­
changed. In fact, a weaker condition [which holds in the 
general case of scattering from targets with internal struc­
ture even when (2.10) does not]

1a , a real state tbp 10) is transformed into an ideal state

© ® 0
III

FIG. 1. Schematic connection between various llil'neii spuces 

defined in the text. Fock-Tani transformation is efiVvtvd by the 

operator 0  which carries *  t  into ^n .
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6^|0), is sufficient proof that the transformation gives 
physical meaning to the ideal states.
The subsidiary condition (2.7) transforms to
Z ? & l * > - °  \ X ) € J r „ .  (2.11)r

Equation (2.9) may be viewed as a formal expression of 
the following operator identity:

f t s Z +<1 1 ~ P) • (2.12)<•
where the projection operator =  | /a > </a | and

In Eq. (2.12) [as well as (2.9)] the Hamiltonian is divid­
ed into a bound-state part (first term) and a scattering 
part (remaining terms) with the understanding that in 
considering (1 —  P ) H i l— P) one ignores the states |/r) 
which formally are its eigenfunctions of zero energy. The 
subsidiary condition (2.11) appears because the Fock space 
y  was initially expanded to accommodate ideal-state 
operators 6M, b \ , etc., and merely serves to restrict us to 
the appropriate subspace of the enlarged space J f . There 
is no analogous condition when considering (2.12).
In the case of realistic scattering or reaction problems 

where the bound states are composites (atoms, molecules, 
etc.), the one-particle Fock-Tani representation outlined 
above can be straightforwardly generalized11 and leads 
naturally to a separation of the Hamiltonian into portions 
representing physically distinct processes (elastic scatter­
ing, inelastic scattering, various rearrangement processes). 
Such a second-quantization representation also has other 
advantages over separation based on projection operators, 
in that powerful field-theoretic techniques previously 
found useful in electron scattering from atoms'2 now be­
come applicable to reactive scattering. A  review of the 
fidd-theoretic formulation of three-particle reactive scat­
tering in terms of the Fock-Tani representation has been 
given recently by Ficocelli Varracchio.11
Normally, imposition of the subsidiary condition (2.11) 

would make the solution of any practical problem difficu­
lt and we would have merely traded the difficulty inherent 
in the noncanonical̂  commutation relations of the real- 
state operators etc. [see Eq. (2.4)], for something
equally difficult. However, an enormous simplification 
which makes the rigmarole of the Fock-Tani transforma­
tion worthwhile occurs if we consider scattering from a 
time-dependent point of view. At f —• —  so we construct a 
wave packet infinitely far away from the scattering center.
It is orthogonal to all bound states by virtue of their finite 
spatial range, and the subsidiary condition (2.U)Js satis­
fied in the limit /—» —  «. Now, since i r i r com­
mutes with the Hamiltonian J t'r t (ibis is easily seen for 
the corresponding operators Z * ^ &  “ d ^  before the 
transformation), Eq. (2.11) is satisfied at all times and 
may be ignored altogether. This essential simplification is 
then justified for the time-independent view of scattering 
in the usual manner.
The Hamiltonian in (2.9) can be divided as usual into 

an unperturbed part H q (one possibility is 
^ • ~ Z *  ̂ p b / , +  f  d r a f(r)T(ri3(r)] and a perturba­

tion V and the full scattering function IT**’) may be ex­
panded in powers of Pi Since a truncated expansion 
| l *  defined in terms of the creation operator 3 f(r) 
only, it is orthogonal to all bound states (£^|0), 

1,2,... j. This is quite unlike the perturbation expan­
sion in the Fock space where an approximate scattering 
function is not orthogonal to the bound states and this 
lack of orthogonality introduces an error in the scattering 
amplitude which is tolerably small at sufficiently high en­
ergies only. Forcing appropriate orthogonality on the ap­
proximate scattering states leads to orthogonality
corrections to the Fock-space scattering amplitude—  
mathematically these arise from the last term in (2.9)—  
which serve to extend the range of validity of the pertur­
bation approximation to lower energies. In fact, our ap­
proach can be regarded as a generalization of Weinberg’s 
“quasiparticle method**14 to which it is closely related 
both in concept and in the form of orthogonalization 
corrections. Weinberg showed, within the context of one- 
particle scattering from a potential supporting bound 
states, that such orthogonalization greatly improves the 
convergence of the Born expansion. We expect a similar 
benefit in the case of the composite-particle generalization 
employed here.
An important proviso must be added to the remarks of 

previous paragraphs. W e  are justified in ignoring the sub­
sidiary condition (2.11) only as long as we calculate the 
exact scattering state | T h e  approximate state 
|T^|) does not lie entirely in the Fock-Tani subspace 
jt>r but contains an admixture of states outside JtTp. 
Thus, truncation of the perturbation expansion for IT**’) 
in the Fock-Tani space introduces an error in the scatter­
ing amplitude analogous to the error in the truncated 
Fock-space amplitude It is not possible to make any de­
finite general statement about the relative magnitudes of 
these errors. However, such numerical evidence as is al­
ready available2 indicates that this representation can 
yield rather accurate results for rearrangement processes 
even in first order. We take this as adequate justification 
for use of this approach herein. Additional a posteriori 
evidence is supplied by the'accuracy of our calculated 
cross sections.

ID. FOCK-TANI TRANSFORMATION 

FOR REARRANGEMENT COLLISIONS:

1 +  (23)-*(12) + 3
A similar transformation was previously considered by 

Girardeau13 for scattering of positrons from hydrogen 
atoms. In that case the transformation was somewhat 
simplified because the nuclear coordinate was frozen by 
virtue of the (supposedly) infinite mass of the nucleus. In 
the more general case of charge transfer, one may still el­
iminate a coordinate from consideration; the ccnter-of- 
mass coordinate is the most convenient choice. We there­
fore introduce elementary annihilation and creation opera­
tors |a ,( r f ), 3 (r«), i “  1,2,3) for the particles 1,2, and i. 
These are assumed to be distinguishable so that we may 
require a f(r( ), 3 jitj), etc. to satisfy boson commutation 
relations.
Assuming pairwise interaction, the Fock Hamiltonian 

is
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2  /  d t f i / i t i  )Sf[tf)
Iml

Iml

X  Kti-fi*r<»r<-n̂ i-«-i(ri + • (3.1)

where the subscript 4 is to be regarded as 1.
The interactions Vl2 and Kjj are assumed sufficiently 

strong to support a number of bound states. In analogy 
with Eq. (2.3) we introduce the following bound-state 
creation operators:
<*;/-«r)-,/l /

XexpO'ka-Ratfit(ri)£j(rj),

««((/)-(12)or(23). (3.2)
In our notation, the superscript a = U j) labels the pair of 
panicles, rm and R. are the relative and center-of-mass 
coordinates of the pair, and fim is a collective label for the 
internal state flm and the center-of-mass momentum k*. 
Annihilation operators are defined by Hennitian conjuga­
tion of (3.2). The commutation relations of these opera­
tors are obtained from the commutation relations for the 
elementary operators a t lr/), Sj( tjL etc.
We next introduce Mideal-staie" operators and ($£)* 

for a — (12) and (23) and define the following unitary 
operators in analogy with Eq. (2.8):

=exp (3-3)

The Fock-Tani transformation is now made by successive 
application of the transformations generated by & (l2> and 
t/<2JI, but unlike (2.9) there are now two possibilities. Al­
ternative transformations.

# r o -(0«")-'(&‘,l,r ,A p 0 ,,» & ,aw (3.4a)
and

, (3.4b)
are not identical because [0m \ & <u>]ytO. In this paper 
we work with (3.4a) because for the reaction under con­
sideration, 1 +(23)-*(12)+3, the corresponding first- 
order amplitude is easily interpreted; it is a sum of the 
first-order Fock amplitude and an orthogonality correc­
tion, much as in the case of potential scattering. The 
zeroth-order wave functions for all possible initial and fi­
nal states are now orthogonal, thus satisfying the same 
orthogonality relation as the exact scattering states. The 
first- and higher-order wave functions are, however, not 
exactly orthogonal due to the possibility of rearrangement, 
but exact orthogonality is restored at infinite order. We 
leave the investigation of the implication of this for future 
work when we shall extend our analysis to higher pertur­
bative corrections. We note here only that the orthogonal­
ity obtaining in first order in our approach is a distinct 
improvement over approaches in which such orthogonali­

ty is violated.
The transformed Hamiltonian is rather lengthy to write 

and we have relegated the complete expression to Appen­
dix A. Parts of the Hamiltonian relevant to this paper are 
the zeroth-order Hamiltonian

£ o -  2  < . ( $ ; / * ; . +  2  f  d r f f a W r M t r , )

(3.3a)
and the rearrangement interaction
^nur* 2  f  j(rj)</i|,rj| V 1/*^,)

X * ,(r,)£ J“ ,+ H .e . , (3.5b)

where the interaction </i|2rj| V |p2jT|) i* given in (A3) 
and Hx. denotes Hennitian conjugation. The first-order 
approximation to the T  matrix is then given by the matrix 
element of between appropriate eigenstates of H 0.

IV. FIRST-ORDER T-MATRIX ELEMENT 
FOR REARRANGEMENT

We will use three alternative sets of coordinates, shown 
in Fig. 2: (i) T|, r2, and rj, which are coordinates of the 
particles 1, 2, and 3, respectively, in a fixed coordinate 
system; (ii) R  (center-of-mass coordinate), rte| [vector 
from particle 3 to the center of mass of (1,2)], and r(2 [rel­
ative coordinate of (1,2)]; and (iii) R,raji [vector from the 
center of mass of (2,3) to particle 1] and ru [relative coor­
dinate of (2̂3)].
The initial and final-state wave functions 
| ) -(2r)”,/J f  dr'lexp(/k|-r'|)

XtfftrixSjJJVlO) (4.1a)
and

|*/>«(2 w)~i n f  rfriexp(/k,Ti)

X*j(riK$!|5,)tl°> (4-lw

FIG. 2. Alternative coordinates for the three-particle system. 
The vector from the origin (not shown in the figure) to a speci­
fied point is indicated in parentheses beside the point in ques­
tion. Thus, ri is the vector from the origin to particle 1, etc.



173

OJHA. GIRARDEAU, GILBERT, AND STRATON 33

are eigenfunctions of Ho and represent plane waves of S 
impinging on bound states of a . W e  recall that the label 
ftmx includes the internal state p  of the pair ai and its 
center-of-mass momentum k̂ .
The first-order T-matrix element is given quite simplyby

X < v„rJ | K | MlJr I>«,M ' (4.2)

and splits into a sum of two terms arising from the
factor in the defini­

tion of </ii2rj| V | f i j j f i > [see Eq. (A3)]. It will emerge 
later that the first term gives the Jackson-Schiff-Bates 
Dalgamo (JSBD) approximation to the T matrix and the 
second term represents orthogonality corrections charac­
teristic of the present formalism. Thus

TV' -i-7-y*, . (4.3)

In substituting (A3) into (4.2) we note that
< ‘( r „ r , ) - ( 2 » ) - ,/Jexp(ikv-R ij)< ,2’(ru ) <*-«•>

116
and

^ S ‘(rj,rJ)-(2»)-,/Jexp(/k>(-RjJ)^J,,(ru ). (4.4b)

In this equation and k, are the center-of-mass momen­
ta of the pairs a2*(23) and a|— (12), respectively. As a 
first step in factoring the overall center-of-mass momen­
tum, we replace the momenta k| and kp by k, [relative 
momentum of particle 1 and pair (23)] and the overall 
center-of-mass momentum K|,

Kjvki-t-kp (4.3a)
and

k,«[(m2+m))kt--/n|k^]/(mi+m2+ m j ) , (4.3b)
where m t denotes the mass of the ith particle. Similarly, 
the pair (kj.kJ is replaced by (k/,K/) with obvious physi­
cal significance.
The Tint term T ' u, which is written as an integral 

over rtl r2, and r2, can be simplified by switching to 
(R,rja,,r|2) coordinates. Integration over the center-of- 
mass coordinate R  gives a factor 6(K,— K/) which 
expresses conservation of center-of-mass momentum.
The final result

r rsaD I(2w)-,8( K,— K ,) /  drJ.1dr,2exp( -ik/Tj.,)

fta,+ m,
« i + m 2*u « P fk/*

+ |*1a,+
m,

«i
m, +m2 r,J 
m2(m i +m2+mj)

m 2+in] 2-1 (iH|+m2K m 2+ m 2)*ll

(4.6)
is just the matrix element considered by Jackson and Schiff* and Bates and Dalgarno.7 In Eq. (4.6) we have written coor­
dinates rij, ru, and r^j explicitly in terms of integratioo variables r2a| and r22 by referring to Fig. 2.
From Eq. (4.2), the second term is given as an integral over the coordinates r(, r» rj, t \ , and rj. The first

step in its simplification is to replace (r„r2) by the relative and center-of-mass coordinates (ru,R|2) for the pair (12) and 
(*i.*a) by (r*|2,Ru). The bound-state kernel.

A'u'(r'lfri;r„r2)-6(R,I2- R 12) J , AnVuK A,2W > ]*.k
is then ««*" to contain a 6 function and integration over R|2 is immediate. We  then revert to (rlitj) before introducing 
new coordinates (R'.r'j.̂ r',,) instead of (ri.ri.*J> in analogy with (R.rĵ .r.j) in Fig. 2. Integratioo over R' then yields a 
6 function in initial and final center-of-mass momenta K< and K/. The final farm of the orthogonality correction is

7 ^ , u = - (2 r )- ,6(R<- K , ) 2  / drl2drij«dr'12exp(-iql.ri.| )[< ,2'(r'12)l*

*3.,-_ 2_:'"r‘*j■* ffii+si]

X ^ ,2'(r;2)[̂ Ll2’(r,2)]«exp( - / «  k,-r,2) ^ ■»!r̂ +^Ti^7r" 14.7)
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with

and

(mi+mjMmj+ifi})

(4.8a)

(4.8b)

In this expression A. ranges over all bound states of the 
pair (12) and all coordinates have been written in terms of 
integration variables with reference to Fig. 2.
The orthogonality correction can be interpreted in two 

alternative ways. It arises from a potential, say K-~-. 
which must be subtracted from the overall potential to 
give the rearrangement part of the interaction, F,^.
V__ consists of a sum of terms, each associated with a
bound state of (12). The term, Le., when the inter­
mediate state is the same as the final bound state of the 
composite (12), is just the static interaction in the final 
channel. Remaining terms, arising from other intermedi­
ate states, give nonlocal contributions to F___ Alterna­
tively, can be regarded as correcting for the lack
of orthogonality between the initial state and all possible 
final states, the A,*V term corresponding to the particular 
final stale in question.
In the special case of charge transfer, particles 1 and 3 

are nuclei and particle 2 is an electron. Then ntj « m (, 
ffl] and m  | -~m}. We note that it is a good approxima­
tion to neglect all terms of order mt /m ^ unless they are 
multiplied by a nuclear momentum k which may be large.

T?*p_ also consists of two terms. The second term

23 lrJ«,+nti+mj*12 I —Fu(r2j)|

represents internuclear interaction and it is very nearly 
canceled by the first term in (4.7). To see this, note that 
to a very good approximation we can replace

Fu *"2
m l T «*2

At Kud'i.,) (4.9)

in Eq. (4.7) and also make a corresponding approximation 
in (4.6). Integration over rfa in the first term of (4.7) then 
gives 6^ and only, the A.— V term makes a nonzero contri­
bution in the sum over k. Substituting (4.8a) and (4.8b) 
for qi and m. respectively, in the resulting expression, a 
simple rearrangement of terms and comparison with the 
first term in (4.6) shows that the two cancel. In making 
the approximation (4.9), we incur a small error of order h 
m 2/(m | + m 2)— m #/m, so that the cancellation is not ex­
act but nearly so. In light of the observation made by 
Wick (quoted in a footnote in Ref. 6) that the intern uclear 
potential makes a negligible contribution of order m , / m f  
to the exact reaction amplitude, our result for the corre­
sponding fm t-order amplitude is very satisfying. In sub­
sequent analysis, we therefore completely disregard nu­
clear repulsion.
The role of intern uclear potential in charge transfer has 

received much attention and it has been long known that 
one must correct for the lack of orthogonality between the 
initial and final states.1 In a particularly relevant paper, 
Basse) and Gerguoy14 achieved this limited objective by 
subtracting the static interaction in the final channel from 
the total interaction in the post form of the transition ma­
trix element. In light of our comments following Eq. 
(4.8), this is a special case of our result which we have ob­
tained starting from a much more general objective of 
considering scattering in the presence of bound states.

V. EVALUATION OF THE T MATRIX
alone constitutes the Oppcuhetmer-Brinkman-Kramers 
(OBK) approximation.1'4 The first term

F„ »"2
m  | -ffflj*12 - F u (r„ )

i

It follows from the discussion of Sec. IV that to a very 
good approximation the T-matrix element is given by

where

T ^ a «(2a-rJ /  </rJ.dr12exp( -/qi-rj^H^W)*

x [r‘N+^ r r» jtf jr- . + ^ 7 r» l“r“)
i

(52*)

xtO*',2)(iO*n>)*«*P<-* - Mu)*;”'(V+ — 1 m
mi
|+«2*u (3.2b)

Equations (3.2a) and (5.2b) for 7 ^ 1 and are obtained from Eqs. (4.6) and (4.7) for and 7 ^ ^ ^ ,
respectively, by dropping the intern uclear potential. W e  have also suppressed the 6 function denoting conservation of 
overall center-of-mass momentum.
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is easily evaluated by reverting to independent 

variables rjj and rjj. We quote the final result from Ap­
pendix I of Jackson and Schifl* after transcribing it into 
our It is fust necessary to define another
momentum-transfer vector

q a - k , - mi-t-ui]V (3.3)

analogous to qt defined by Eq. (4.8a). Then

(3.4)
where is the binding energy of the pair (12) in the inter­
nal state? and «y-q,) and <h*(qj) are momentum-space 
wave functions.
In order to evaluate the orthogonality correction, we 

first rewrite the coordinate-space wave functions 
Wl ‘<r,j)l* and #J*<ri^ +  (*|/«i +»»j)ru) as Fourier

-t-OBK _ **»i+«»i j .
FIG. 3. Spatial arrangement of vectors h, k/, and q} for the 

evaluation of the integral in Eq. (3.6).

transforms of corresponding momentum-space wave func­
tions *;<p) and *^(p|) and also rewrite the Coulomb in­
teraction as a Fourier transform,

. . mir̂ +^ 7 r“
1
2w21 4  P2“7 « P  

P i
-«Pj- *i.,+ «i*t+*j II (5 .5 )

This introduces three new integration variables p, p(, and pj, but integration over r]>| and rtt immediately gives a dd- 
u  function each, 6(q, +  pj-pi) and 8(p-(mi//»i,+mj)p,+■  k,). This allows us to integrate over p, and p,. After 
some simple algebraic rearrangement to show that ■ k/—  ( m t/ m i +mj)qi“ qa» the orthogonality correction is rewrit­
ten as

f«niho1 vir-#*u Z,Z3 W | + w 2 
m i ■yeipl —/(p + q j ) ’f l jl

nii-fwi
mx <p+ m k,) (5.6)

In the following discussion we assume without loss of generality that the vector lies along the x axis and k, and k/ 
lie in the x-x plane (Fig. 3). For specific final state v and intermediate state A, the integral

/^(p+qa)- /  dr',jexp{— i(p+qj),r,uJl#»,(fia)l*#i'(f|j) (5.7)

which appears in (5.6) can be evaluated analytically. (Particular results for the lx final state and lx, 2x, and Ip  inter­
mediate stales are given in Appendix B.) Moreover, for a spherically symmetric final state (L&, 0), it factors into a
spherical harmonic and a part depending on | p+qj | only:
/■«g(p+q2)̂-o"fsa( I P+qr I \meYikmk(̂ p*̂  •

We can then sum over m*. on the right-hand side of (5.6)— the sum over X is really a triple sum over nk, /*., and m K—  
and use the addition theorem for spherical harmonics to obtain

2 2/g-f i |  p-<p+q»)
4» ^(plP+qil

(5.9)

Note that with the that qj lies along the x axis, the argument of the Legendre polynomial depends on p and
Q. but does not depend on the azimuthal angle 4p-
The only 4 , dependence of the integrand in (5.6) comes from the initial-state wave function t^Oiti+mj/mi) 

X(p+ m  kj)). For a spherically symmetric state (/^=0) it is contained in the p-k, term in the argument; moreover, for 
the 1 x initial state, integration over 4, can be done analytically (see Appendix B).
These manipulations reduce the orthogonality correction to its final form which is used for numerical calculation:
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(̂mrod)
FIG. 4. Centcr-of-maas differential crou section for resonant charge transfer, p +  H(ls)-»H(ls)+p, at (a) 23, (b) 60, and (c) 123 

keV. The experimental points are from Martin *t al. (Ref. 17), the dotted curve is from the two-stale atomic expansion calculation 
quoted by Martin el al., and the solid curve is the Fock-Tani result with orthogonality corrections due to Is, 2s, and Ip intermediate 
states. Note that the experimental cross section is for capture into all bound states and it is expected to be 20% greater than the cross 
section for capture into the ground stale. The secondary peak in <a) and (b) has been scaled up by the indicated factor.
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( ^ ^ 7  j 2Mi+uf4> *», I p+<b !><,-.

^ i T i ^ b i F F (S.10)

VI. DIFFERENTIAL A N D  TOTAL 
CROSS SECTIONS

The integral appearing in Eq. (5.10) is evaluated easily 
and rapidly by two-dimensional numerical integration. 
When the electron mass is neglected in relation to the nu­
clear mass, this integral can be evaluated analytically for 
«fii value of Hi and /*, the intermediate-state quantum 
numbers. We have done this for all states up to nj»3 as 
a check on the result of numerical integration.
In the numerical results that we quote, only the Is, 2s, 

and 2p intermediate states have been retained in the sum 
in Eq. (5.10). This a very good approximation at all ener­
gies for which we present differential cross section (25, 60, 
ad 125 keV) in Fig. 4 but is somewhat suspect at the lower 
end of the energy scale (£ < 10 keV) of Fig. 5 where we

FIG. 5. Total cross section for resonant charge transfer, 
p +H( 1j)— H( ls)+p, as a function of laboratory collision ener­
gy. The experimental points are from McClure (Ref. 19), the 
dotted curve is from the two-state atomic expansion calculation 
of McCarroll (Ref. 20), and the solid curve is the Fock-Tani re­
sult with orthogonality corrections due to lx, 2x, and lp inter­
mediate states. The experimental cross section in this case is 
also for capture into all bound stales. The dashed curve gives 
the Fock-Tani cross section for 4 + H( lxl—  D< lx)+p.

present the total cross section. However, the error is es­
timated to be no more than 20%, and at these low ener­
gies, a first-order approximation is inadequate anyway.
We compare our calculated differential cross section 

with the experimental results (Martin et a/.17) in Fig. 4 
and also with the two-state atomic expansion (TSAE) re­
sults quoted by Martin et al. The TSAE approximation 
was picked out of a number of theoretical results because 
it seems to give the best fit to differential and total cron 
sections over a large range of angles and energies. It is 
satisfying to see that our calculation agrees very well with 
the TSAE and experimental results over angular range of 
1 mrad about the forward direction and over a compar­
able range at 60 and 125 keV also. The discrepancy at 
larger angles is no doubt due to the neglect of higher- 
order corrections and we expect much of it to disappear 
upon the inclusion of second-order correction. In fact, 
even the minima in the first-order differential cross sec­
tion at the energies we have considered are spurious."
We also compare the Fock-Tani total cross section with 

the experimental results of McClure19 and the TSAE cal­
culation of McCarroll30 in Fig. S. Once again we find 
that our calculation agrees very well with both these re­
sults for £>10 keV; in fact, for £ >  60 keV, our results 
are identical with those of McCarroll. The discrepancy at 
low energies is to be expected of a first-order approxima­
tion. In the same figure, we also show the Fock-Tani to­
tal cross section for d +H( lx)—»D< ls)+p.
We close our discussion of the numerical results by re­

marking that the two-state atomic expansion was intro­
duced by Bates* with the express purpose of correcting for 
the lack of orthogonality of the initial- and final-state 
wave functions. This, along with other orthogonality 
corrections, is contained in the Fock-Tani approximation, 
too. Close agreement between the results of these approx­
imations is, then, just as it should be.

VII. S U M M A R Y  A N D  CONCLUSION
In this paper we have developed a unitary transforma­

tion of the second-quantized Hamiltonian of a three- 
particle system which breaks the overall interaction into 
its component pans corresponding to permissible physical 
processes and have applied it to the problem of resonant 
charge transfer, p+H(l*)-»H(li)+/>. in this scheme, 
zeroth-ordcr wave functions for initial and final states are 
mutually orthogonal, thus satisfying the same orthogonal­
ity relation as the exact scattering states. As a conse­
quence of this, an orthogonality correction to the usual 
first-order reaction amplitude appears and the internu- 
clear potential makes s negligible contribution of order
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mt /m p to the 7*-matrix dement. This result is consistent 
with the physical result that the intern uclear potential 
cannot significantly affect the passage of a light, charged 
particle from one nucleus to another. We have computed 
differential and total cross sections over a range of angles 
and energies and compared our results with experiment 
and with the best available theoretical results based on a 
two-state atomic expansion. Except at angles larger than 
1 mrad and energies leu than 10 keV, we find very good 
agreement. The discrepancy is attributed to the omission 
of second- and higher-order perturbative effects. The 
agreement with TSAE results is a reflection of the fact 
that this method also corrects for the lack of orthogonali­
ty of the zeroth-order initial and final rules in Fock rep- 
resenution. The agreement with experiment underlines 
the importance of proper orthogonality of approximate 
scattering sutes, a fact recognized long back by Bates.'
An obvious extension of the present work is to include 

... ____________________ I

second-order corrections and thus attempt to remove the 
remaining discrepancy between our results and the experi­
ment Such an extension is currently being investigated. 
We  are also contemplating application of Fock-Tani for­
malism to ocher problems of atomic scattering, particular­
ly ionization of the hydrogen atom by electron impact.
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APPENDIX A: FOCK-TANI TRANSFORMATION 

FOR THE THREE-PARTICLE SYSTEM
We have evaluated the Fock-Tani Hamiltonian (3.4a) by 

a diagrammatic technique.21 The interaction is now bro­
ken up into various parts corresponding to the possible 
physical processes for this system:

■*. 1

•J
<7»il

+ x  f  d rgd r } d r j d r ^ S ; / S tairt )<MmrM\ V I rir}r;>*,(r;tf,(r} tf,(r;)+H.c. 
«■*«

/dr̂ r1(h;»2Vff̂r,)<Mtiri|F|M2JrI>ff,(rl)Jg;'+H.c.

ni * tatf&ra* taKwii . (Al)
In our notation a m iij ) labels the pair U,j) and 8  labels the remaining particle. The sum over a ranges from a|*(12) 

to a]>(23) and correspondingly fl|*3 and t t j *  1. Indices / and J, when summed, range from I to 3 but are otherwise 
defined by associated a. All interactions are written formally as brackets, < J | >, and the symbol Hx. denotes Hermitian 
conjugation.
The Tint two terms in (All constitute the unperturbed Hamiltonian fto for our calculation. The eigenstates of f t 0 in­

clude plane waves arising from the second term, impinging on bound sutes, arising from the first term. Explicit expres­
sions for the interactions appearing in (Al) and their physical significance are as follows.
(a) Two-particle scattering. The interaction for two-particle scattering is given by

{r,tj | K |r ; r )> * K <,(r<,ry)6(r<-i5 )8 (ry- i ' i ) - ( l - f i WlJ) X < .A ^ < r #,r/ ;« } .iJ). <A2)

The second term in (A2) expresses the subtraction of the bound-state part of the interaction from the total interaction to 
give the remaining “scattering” interaction. (In this equation r,,ry;rj,r̂ )— r<,ry rj ,r}) ] •.) Note that it is 
zero for the pair (I3) which is assumed not to form a bound sute.
(b) Nonreactive scattering o f 8  from  the bound states o f a . Due to the UX|**a2) asymmetry of the transformation in 

(3.4«), this interaction is not symmetric for the two arrangement channels:
<Mi!*i I y  I v» ri > *  /  dr,rffx[*J,,2,(r,.r,)J* l K „(rl,rJ)+  F2j( r j.r J)J#*1Jlr , ,r I )6 ( r ,- f ', )  (A3a)

and
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I V ! vjjr'i > *  /  Kl2( r ,.r ,)+  J 'ijC r,,r,)]^JJ,(r2lr,)6Crl —r*)

“  2  /  d r ^ r j d r ^ t l ^ y u(rl,rJ)+4u
x  A4 u ( r«,rjJr i , r2 ) ^ ‘(r i . fj)

+ /  rfrjrfr^r'jrfr,V rn^,(rj,r,)l*A,,a,(r,tri;rr,rj)

x[KIJ(rr.r,)+ Vn(r2".rj) J A*12 ’(rf.r,";r',,ri)*)£'(ri, r3). (A3b)
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(c) Formation and breakup o f bound states. In this case also the interaction is different for pa in  (12) and (23):

| V \r’,rjri>- f  drldr2[^,a'(r„rI)l*[I'„(r,,r,)+ ̂ (rj.r,)]
X (6( r, - r’, )6( r2 -  r j) -  A‘12’(r,, r2; r*,, r2) J6( r, -  r',)

+  /  d  r ̂  r  ]"</ r  j [ 2 ’(r , r  j") ] • [ K | j  (r r  j ) +  K2J(r2V ,) ]

x{An2’(rr,r2;r'„r2)-«(r',-rr)6(r2-r2)lA‘M,(r2,rj;r2,ri) (A4a)
and

<M»fi I V I r2r',r', >« /  dr2dr,{tfrJJ,J'(r2,rJ)l*(Kl2(r„r2) +  K,j(r„rj)l
X l«r2 -r2 )«ri-r',)-Al23l(r2,rj;r2,ri )J6(r,-r',)

-  2  /  */2j(r2»f,) )+  ^u (ri.r'j)+ V2j(r'2,r j )+ e*, * *1 r,,r2;r',,r'2)

+  f  dr2</rrdrJ' ( ^ ,(r|,ri)l*A,,2,(r|,r2;rr,r2''){K,j(r,',ri)+ * 'u (^ ri)]A M2,(rf,r2" ;ri,r i) .

(A4b)

(d) Rearrangement interaction. The interaction for breakup of (23) and formation of (12) is given by 
<Purj! y \ P n r i> =  /  Jrjdr',dri[^I2'(r',,ri)]•[F,j(r',.r',)+ KM <ri,rj)]

X jW r,-r ',)6 (r2- r i ) - A ' ,2’(r i,r i;r„ r2)]tfr;“ '(r2, r , ) . (A3)

The interaction for the reverse process is obtained by complex conjugation.
(e) Three-particle scattering. The interaction for three-particle scattering is given by

< rir2r j | V | r i r j r j ) «  -  2  A 'l^ .r ^ r J .f J ){Yla(rt,ra)+ VjjTj,ra)+ViJt‘i,r'a)+ ^ t y . ^ l ^ - r j )
m

+ 2  /  </r,Vr7A*(r„r>;r(-,r;)(» '„ (rr,r.)+ V r;,rt )JA«(rr.r;:r;.r;)6(r,-r;)
m

+  2  /  rfr2drj’[K ,j(r ),rj'’)+ K 2j(rJ tr j )+ K | j(r i ,r j )+ K 2j(ri,rJ’)+ « ll/2,l **u
X (6 (rj— rj’)Aj,l2,(r l,r2;rilr2)A",(r2',rj";ri,rJ)+8(rj— rj’)A- , (r2,rj;r2,rj)Aj/2,(r l,r2;ri,r i)l

-  /  drj’drJ" d rf  A "'(r„r2;r r r “ )( K „ ( r r ,r j )+ >'«< rr .r j) lA - '(rr ,r r ;r '„ r2'’)A- , (r2-,r ,;r i.r i)

— f  d r2'dr|"’d r 2"AB,(r2,rj;r2“,ri)A a,(r i,r2; r r , r 2,') l ^ i j ( r r , r i ) +  K2J(r2',ri)jA  l( r1”’,r2'";r'1,r i)

- 2 / dr2'dr;drrA-,(r2,r,;r2-,r;)*u
Xf K„(rl,rj’)+ l'2J(r2,rj’)+ K„(ri.r3')+ ̂ ( r f , ^ ) * ^ ’]
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x A),'*'(r,.r*;r \ , t j )A-,(rj".rj'jrJ.r,)

+ / rfrjrfrjrfri'rfrJ”rfr"A ^ r:<rj;*'j,rj')A",(ri,rf;rJ,',rj“')

x[ »'„(rr.r,-)+ ^ J(rr,r;)JA*,(rf-.rJ“ri,r',). (A6)
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r
APPENDIX B: ASSORTED ANALYTICAL 

INTEGRALS IN THE EVALUATION OF THE 

ORTHOGONALITY CORRECTION

For specific final end intermediate states, the integral-in 
15.7) is evaluated by a spherical harmonic expansion of the 
plane wave. The result for the Is final state and the Is, 
2s, and 2p intermediate states is as follows:

32 V w
i* +  Ip + q i l2)*

Yqq( flp+'j ) ,
(Bla)

312t/2i|p+q,|2
W++|p+qjlJ)5iW<W

(Bib)

iB p r  ip+ m k,>
2V?
v

I R |nt| +mj
-2

+ p J+2 mp-k, +  « * V

(B2)
The only 4f  dependence of the integrand comes from the 
P‘k< term which is expanded in terms of trigonometric 
functions of angles 0P, and 0*( with reference to Fig. 
3. Noting that the integrand is of the form 
iA -fBooed,)"1, where

A “  Im t’+ m j I + F 2 + 2 w Pfc»ooad,cosd»<+  * !k/

and and
(B3a)

û.Wp+qt** .236v/8y(p+qI| 
' <9-4-'41 t

(Blc)
In Eq. (3.6) the integral of the initial-sute wave func­

tion over the coordinate d,. for the Is initial state is), 
is explicitly written as

B »2 •» pk tu a d f tin 6 ki , 

the integral is evaluated analytically12 to give
4/-4>/\ mt+mt A
(d,- B J),/* ’

(B3b)

(B4)

The angle 6^ in Eq. (B3) is related to the scattering angle 
By once again with reference to Fig. 3.
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The total cross section main program is on page 193.
THIS PROGRAM CALCULATES THE DIFFERENTIAL CROSS SECTION FOR CHARGE 
TRANSFER IN BORN APPROXIMATION BASED ON THE FOCK-TANI HAMILTONIAN 
FOR THE GENERAL CASE P+(TE)->(PE)+T, WHERE P, E, AND T ARE BARE 
CHARGES OF MASS PMASS, EMASS, AND TMASS AND " ( . . )" IS AN ATOM.
ORTHOGONALIZATION TERMS THROUGH 3D ARE INCLUDED
ALL FOURIER TRANSFORMS CONTAIN A GENERAL BOHR RADIUS
THE J.D. JACKSON AND H. SCHIFF (PHYS. REV. 89,359 (1953) TERM
15 CALCULATED BY THEIR EQ. II.3, BUT WITH C**2 IN THE RELATION 
FOR DEL REPLACED BY 1/AOI**2 - 1/AOF**2 +C**2 TO PROPERLY 
ACCOUNT FOR THE BOHR RADII IN II. 1. THE RESULT IS IDENTICAL TO 
THAT GIVEN INH.S.W. MASSEY AND C.B.O. MOHR, PROC. PHYS. SOC. A67, 695(1954) 
ONLY WITH THE POSITION VECTOR OF THE INCIDENT PARTICLE 
IN THE INITIAL MOMENTUM EIGENSTATE RELATIVE TO THE ATOMIC 
C.M RATHER THAN THE NUCLEUS.
16 POINT GAUSSIAN INTEGRATION IS USED THROUGHOUT
UNLESS OTHERWISE SPECIFIED, ATOMIC UNITS ARE USED

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/CONSTS/PI,SQRT2 
COMMON/10/IREAD,IWRITE
COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE 
COMMON/RANGE/ PLOW,PHIGH.DP 
COMMON/SCAT/RKIAU,RTHETA,RATKFI 
DATA IREAD,IWRITE/5,21/
DATA PI,S0RT2/3.141592654,1.414213562/
WRITE(IWRITE,100)
READ THE ELECTRON MASS AND THE MASSES OF THE TARGET AND PROJECTILE 
NUCLEI.

WRITE(IREAD,101)
READ(IREAD,110) EMASS,TMASS,PMASS 
WRITE(IWRITE,120) EMASS,TMASS,PMASS
READ THE INCIDENT ENERGY IN KEV, CONVERT TO ATOMIC UNITS AND 
CALCULATE THE KINETIC ENERGY OF RELATIVE MOTION AND 
CORRESPONDING INITIAL MOMENTUM

WRITE (IREAD,102)
READ(IREAD,110) EIKEV EIAU“EIKEV*1000.0/27.21183
RMASS“PMASS*(TMASS+EMASS)/(PMASS+TMASS+EMASS)

RMUI“RMASSRMUF“TMASS *(PMASS+EMASS)/ (PMASS+TMASS+EMASS)
REAU“(RMASS/PMASS)*EIAU
RKIAU=(2 .0*RMASS*REAU)* *0.50

EMU“EMASS*TMASS/(EMASS+TMASS)
PMU=PMASS*TMASS/(PMASS+TMASS)
PEMU“EMASS*PMASS/(PMASS+EMASS)

THE CONTRIBUTIONS FROM THE TWO TERMS IN THE POTENTIAL CAN BE 
CALCULATED USING THE SAME FUNCTION, BUT WITH A SLIGHTLY 
DIFFERENT ARGUMENT:

C 1 =-E MAS S / PM AS SFOR THE T-P COULOMB POTETIAL TERM
C2“ 1.

C FOR THE E-T TERM.
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THE BOHR RADII ARE 
A0E=1./EMU 
A0PE=1./PEMUIN GENERAL WE HAVE FROM CONSERVATION OF ENERGY
RKFAU=DSORT(RMUF *(RKIAU*RKIAU/RMUI-EMU+PEMU))
R ATKFI =RKF AU / RKIAU

WRITE(IWRITE,130) EIKEV,EIAU,REAU,RKIAU,RKFAU
READ AND WRITE THE RANGE OF ANGLES AND INCREMENTS (IN MILLIRAOS OF 
ARC) OVER WHICH THE DIFFERENTIAL CROSS SECTION IS REQUIRED

WRITE(IREAD,103)READ (IREAD,110) THETAL,THETAH,DTHETA 
WRITE (IWRITE.140) THETAL,THETAH,DTHETA
READ THE RANGE OF THE INTEGRATION VARIABLE P (MOMENTUM) OVER WHICH 
THE NUMERICAL INTEGRATION MUST BE PERFORMED

WRITE(IREAD,104)
READ(IREAD,110) PLOW,PHIGH,DP 
WRITE (IWRITE,155) PLOW,PHIGH,DP

BEGIN COMPUTATION
ACONS=(RKFAU/RKIAU)*RMUF*RMUI*((2.0*PI)**4) 
THETA=THETAL

10 CONTINUEDEGETA=THETA*.180/PI 
WRITE (IWRITE,150) THETA,DEGETA
CONVERT THETA TO RADIANS
RTHETA=THETA/1OOO.00
CALCULATE THE CORRESPONDING ANGLE IN LAB FRAME 

RHO=(PMASS+EMASS)/(TMASS +EMASS)/RATKFI

TE RM=DCOS ( RTHE TA)TERM=(TERM+RHO)/((1.0+(2.0*RHO*TERM)+ (RHO*RHO))**0.50) 
RPHI=DBLE(ACOS(SNGL(TERM)))
PHI=(RPHI*1000.00)

DPHI=RPHI*180./PI 
WRITE(IWRITE,190) PHI.DPHI
Q2 = MAGNITUDE OF EFFECTIVE MOMENTUM TRANSFER
AMUP=RATKFI*PMASS/(EMASS+PMASS)
B=2.0*AMUP*DCOS(RTHETA)

C=AMUP*AMUP 
0=1.-B+C

Q2=RKIAU *DSQRT(Q )
WRITE(IWRITE,170) Q2
CALL TMAT1B(Q2,TRM1BA,TRM1BB)

TERM1B=TRM1BA-TRM1BB
THE MINUS DUE TO THE COULOMB POTETIAL P-E

N= 1 L=0CALL 0RTH(N,L,C1,T101)
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CALL ORTH(N ,L ,C 2 ,T 102)
TE RM1S=T101-T102 

C
N=2

CALL 0RTH(N,L,C1,T201)
CALL 0RTH(N,L ,C 2 ,T202)
TE RM2S =T 201-T202 

L=1
CALL ORTH(N ,L ,C 1,T211)
CALL ORTH(N,L ,C 2 ,T212)
TERM2P=T211-T212 

C
N=3
L=0

CALL ORTH(N ,L ,C 1,T301)
CALL ORTH(N,L,C 2 ,T302)
TE RM3S=T 301-T302 

L=1
CALL 0RTH(N,L,C1,T311)
CALL ORTH(N,L,C 2 ,T312)
TERM3P-T311-T312 

L=2
CALL 0RTH(N,L,C1,T321)
CALL ORTH(N ,L ,C 2 ,T322)
TE RM3D*T321-T322 

C WRITE(IWRITE,180) TRM1BA,TRM1BB,TERM1B 
WRITE(IWRITE,181) T101,T102,TERM1S 
WRITE(IWRITE,182) T201,T202,TERM2S 
WRITE(IWRITE,183) T211,T212,TERM2P WRITE(IWRITE,184) T301,T302,TERM3S 
WRITE(IWRITE,185) T311,T312,TERM3P 
WRITE(IWRITE,186) T321,T322,TERM3D

DIFFERENTIAL CROSS SECTION IN VARIOUS APPROXIMATIONS

DCS 1B=ACONS*(TERM1B*TERM1B)
TMAT=TERM1B+TE RM1S

DCS 1=ACONS *(TMAT * TMAT)TMAT=TMAT+TERM2S+TERM2P 
DCS2=AC0NS*(TMAT*TMAT)TMAT=TMAT+TERM3S+TERM3P+TERM3D 

DCS3 =ACONS * TMAT * TMAT
CONVERT FROM AQ**2 TO CM**2
AOS-2.8002829 *10.**(-17.)
DCA1B=AOS *DCS1B 
DCA1=AOS *DCS1 
DCA2=A0S *DCS2 
DCA3=A0S*DCS3

WRITE(IWRITE,200)
WRITE (IWRITE,160) DCS 1B ,DCA1B,DCS 1,DCA1,DCS2,DCA2,DCS3,DCA3 
CONVERT TO THE LAB FRAME 
TERM=DCOS(RTHETA)FACTOR=(1.0+(2 .0*RHO*TERM)+(RHO*RHO))**1.50 
FACTOR=FACTOR/DABS(1.0+(RHO * TE R M ))
DCS 1B=FACTOR*DCS1B 

DCS 1=FACTOR*DCS1 DCS2=FACTOR* DCS 2 
DCS3=FACTOR*DCS3
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C
C

c
c
c
ccc

c

CONVERT FROM AO**2 TO CM**2
DCA1B-AOS *DCS1B 
DCA1-AOS*DCS1 DCA2-A0S*DCS2 
DCA3-AOS*DCS3

WRITE(IWRITE,210)WRITE (IWRITE,160) DCS 1B ,DCA1B,DCS 1,DCA1,DCS2,DCA2,DCS3,DCA3
WRITE(5,90) THETA 

THE TA-THETA+DTHE TA 
IF (THETA.LE.THETAH) GO TO 10
STOP
FORMAT STATEMENTS

90 FORMAT(1X,E12.5)
100 F0RMAT(/2X,'FOCK-TANI DIFFERENTIAL CROSS SECTION'//) / A M W v101 FORMAT(1X,'INPUT IN F10.5'/' EMASS— > TARGMASS> PROJMA5S>(AU) )
102 FORMAT(1X,' KINETIC ENERGY (INCIDENT IN KEV)') ,103 FORMAT(IX,' THETAMIN> THETAMAX> INCREMENT (ANGLES IN MRAD) )
104 FORMAT(1X,' LOWERLIM> UPPERLIM> STEPSIZE> (OF P-INTEGRAL)')
110 FORMAT(8F1O .5)
120 F0RMAT(/2X,'ELECTRON MASS = '.E12.5,' A.U.'

1 /2X,'TARGET MASS = '.E12.5,' A.U.'
2 /2X,'PROJECTILE MASS = ',E12.5,' A.U.7/),E 12.5 , ' KEV '

= ',E 12.5,' A.U.'
= ',E 12.5,' A.U.'
= ',E12.5 , 7 A.U.7 = ',E 12.5,' A.U.'/) 
MRADS7 
MRADS 7 
MRADS 7/ ),E12.5 , ' DEGREES'/)
DP =

130 F0RMAT(/2X,'INCIDENT KINETIC ENERGY1 /2X,'
2 /2X,'KINETIC ENERGY OF RELATIVE MOTION
3 /2X,'INITIAL MOMENTUM
4 /2X,'FINAL MOMENTUM

140 F0RMAT(/2X,'MINIMUM VALUE OF THETA * ',E12.5,
1 /2X,'MAXIMUM VALUE OF THETA * ',E12.5,
2 /2X,'INCREMENT = ',E12.5,

150 F0RMAT(/2X,'THETA (CM) * ',E12.5,' MRADS 
155 F0RMAT(/2X,'PLOW = '.E12.5,' PHIGH * ',E12.5,160 F0RMAT(//2X,'FIRST BORN APPROX.

1,5X,E12.5
2 /2X,' + (N-1)
1,5X,E12.5
4 /2X,7 + (N-2)
1,5X,E12.5
3 /2X,' +
1,5X,E12.5/)

170 FQRMAT(/2X,'EFFECTIVE TRANSFERRED MOMENTUM - ',E12.5,' A
180 FC'RMAT(//2X,'TERM1B = (',E12.5,' - '.E12.5,') »',E12.5)
181 FORMAT(/2X,'TERM1S = (',E12.5,' - \E12.5 ') =',E12.5)
182 FORMAT(, 2X,'TERM2S * ('.E12.5,' -
183 F0RMAT(2X,'TERM2P = (',E12.5,' -
184 F0RNAT(/2X,'TERM3S = ('.E12.5,' -
185 FQRMAT(2X,'TERM3P = ('.E12.5,' -
186 F0RMAT(2X,'TERM3D - ('.E12.5,' - 
190 FORMAT(/2X,'PHI (LAB) =',E12.5,'

(N=*3) =

, E 12.5 )
= ' ,E12.5

, E 12.5 
,E12.5 
, E12.5 
U. 7 )

200 FORMAT(//2 X ,'CM DIFFERENTIAL CROSS SECTION
1 7 (A0**2/SRAD) (CM**2/SRAD)')

210 F0RMAT(//2X,'LAB DIFFERENTIAL CROSS SECTION ', 
1 7 (A0**2/SRAD) (CM**2/SRAD)')

END

' , E 1 2 . 5 , 7 ) = 7 , E 12 . 5 )
,E12 5 , 7) -',E12.5)
',E 12.5, ' ) -',E 12.5)
,E 12.5 , 7 ) = ' ,E 12.5 )
,E 1 2 . 5 , 7 ) = 7,E 12. 5)

MRADS 7,E 12.5, ' DEGREES')

SUBROUTINE TMAT1B(Q2,SUMA,SUMB)C
C THIS SUBROUTINE CALCULATES THE FIRST BORN APPROXIMATION
C USING THE FORMULA II.3 IN J.D. JACKSON AND H. SCHIFF, PHS.
C REV. 89,359 (1953) SLIGHTLY MODIFIED TO ACCOUNT FOR DIFFERENT
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BOHR RADII. IN THE EXPRESSION FOR DEL, C**2 IS REPLACED BY 
A0F**2 - AOI**2 + C**2 . ALSO WE USE THE OVERALL COEFFICIENT 
FROM THE POSITRONIUM CASE QUOTED IN
VARRACHIO AND M.D. GIRARDEAU, J .PHYS.B 16:(1983)1097 
(WHICH ERRONEOUSLY HAS 2 RATHER THAN 8 AS THE COEFFICIENT OF 
THE LAST TERM) BECAUSE OF THE NORMALIZATION CONVENTION OF 
THE MOMENTUM EIGENSTATES.THE INTEGRAL IS DONE USING A 16 
POINT GAUSSIAN QUADRATURE FORMULA

NOTE THAT MASSEY & MOHR APPROXIMATED THE INITIAL 
C.M. COORDINATE IN THE MOMENTUM EIGENSTATE BY 
THE PROJ. MASS . WE HAVE USED THE GENERAL C.M.
THE RESULTS OF THIS PROGRAM MATCH M&M MODIFIED IN 
THIS WAY.

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/CONS TS/PI,SQRT2COMMON/SCAT/AK,RTHETA,RATKFI 

COMMON/10/IREAD,IWRITE 
COMMON/GAUSS/ABSC(8),WEIGHT(8)

COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE 
COMMON/BORN/AS,U S ,AK1S ,AK2S,AK1DK2

CALCULATE CONSTANTS FOR BOTH TERMS
ZT *PMASS/(EMASS+PMASS)
GA*TMASS/(EMASS+TMASS)RATSQ-RATKFI * RATKFI 
RATCOS=RATKFI*DCOS(RTHETA)AK1=AK*DSQRT(1.-2.*ZT*RATCOS+ZT*ZT*RATSQ)
AK2=AK *DSQRT(GA*GA-2.*GA*RATCOS+RATSQ)NOTE THAT MASSEY & MOHR HAVE SET GA=1 IN INITIAL 

MOMENTUM EIGENSTATE (OR TMASS— > INFINITY)
AK1DK2=AK * AK *(GA-(1.+GA*ZT)*RATCOS+ZT*RATSQ)
AS = 1./AOE/AOEUS=1./AOPE/AOPE
ACONS = (1./AOE/AOPE)**2.5NOTE THESE THREE ASSUME Z=1 IN NUMERATOR 
AK1S=AK1*AK1 
AK2S=AK2*AK2
SK1MK2=AK1S-2.*AK1DK2+AK2S

PERFORM FIRST TERM INTEGRATION
XLQW*=0.0 
XHIGH-1.0
A 1=(XHIGH-XLOW)/2.O 
A2=(XHIGH+XLOW)/2.O 
SUMA=0.0
DO 45 1=1,8 X1*A2-(A1*A8SC(I))
X2*A2+(A1*ABSC(I))CALL B1INT(X1,TERM1)
CALL B 11NT(X 2 ,TE RM2)
SUMA=SUMA+(WEIGHT(I)*(TERM1+TERM2))

45 CONTINUE
SUMA=A1*SUMA*AC0NS*4./PI/PI

NOW CALCULATE THE SECOND TERM 
D1=AS+AK2S 
D2-US+AK1S
SUMB=4.*A0E/D1/D2/D2 
SUMB*SUMB*ACONS/PI/PI

NOTE THE MINUS SIGN IS IN MAIN PROGRAM
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c
RETURN

V C
cccc

cccccc

c

c
c
c
cccccccccccccccc

END
SUBROUTINE B1INT(X,TERM)
THIS SUBROUTINE CALCULATES THE INTEGRAND OF THE FIRST TERM OF THE 
FIRST BORN APPROXIMATION
IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE COMMON/SCAT/AK,RTHETA,RATKFI

COMMON/BORN/AS, US , AK 1S ,AK2S,A K 1DK2THE LATTER ARE CALCULATED IN SUBROUTINE TMAT1B
EMASS = ELECTRON MASS PMASS = PROJECTILE MASS
AK = MOMENTUM RTHETA = SCATTERING ANGLE IN RADIANS

DEL=AS+(US-AS+AKlS)*X+(1.-X)*AK2S *
DS=DEL*DEL
DC=DS*DEL
xs=x*x
OS=XS*AKlS + ( 1 . -2. *X+XS ) *AK2S+2 . * (X-XS ) *AK 1DK2
B=DEL-OS
BOH=DSORT(B)
BTH=BOH*B
BFH=BTH*B
TERM=2./DC/BOH+1./DS/BTH+.75/DEL/BFH 

TERM=X*(1.0-X)* TE RM
RETURN
END
SUBROUTINE ORTH(N,L ,C ,TERM)
THIS SUBROUTINE CALCULATES THE ORTHOGONALIZATION CORRECTION 
FOR THE INTERMEDIATE STATE (N,L), BY NUMERICAL INTEGRATION.
A TWO DIMENSIONAL INTEGRAL IS EVALUATED USING 16 POINT GAUSSIAN QUADRATURE.
INPUT N - PRINCIPAL QUANTUM # OF THE INTERMEDIATE STATE 

L = ANGULAR MOMENTUM OF THE INTERMEDIATE STATE 
C » -EMASS/PMASS FOR THE T-P COULOMB TERM C * 1 FOR THE E-T TERM.

OUTPUT TERM = ORTHOGONALIZATION INTEGRAL
THE PROGRAM CAN CURRENTLY HANDLE 1S TO 3D INTERMEDIATE STATES

u

c IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/CONSTS/PI,SQRT2 
COMMON/GAUSS/ABSC(8 ) ,WEIGHT(8) 
COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE 
COMMON/RANGE/PLOW,PHIGH,DPc
DATA ABSC/O.095012509837637,0.281603550779258,0.458016777657227,
1 0.617876244402643,0.755404408355003,0.865631202387831,
2 0.944575023073232,0.989400934991649/
DATA WEIGHT/O.189450610455068,0.182603415044923,0.169156519395002, 

1 0.149595988816576,0.124628971255533,0.095158511682492,
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2 0.062253523938647,O .027152459411754/
FIRST CALCULATE THE OVERALL MULTIPLICATIVE CONSTANT 
AMUP-PMASS/(PMASS+EMASS)ACONS — (2.*L+1.)*(A0PE**1.5)*(AMUP/PI)**3./(AOE)**2.5

THE ABOVE GIVEN BY A GENERALIZED VERSION OF OJHA ET. AL.'S 
EQ. 5.10 EXCEPT THAT 1/S0RT2 HAS BEEN MULTIPLIED INTO EACH 
COEFFICIENT BELOW. THE ABOVE EQ. IS GIVEN BY MULTIPLYING THE 
FOLLOWING FACTORS: A0PE**1.5 FROM RNLSTAR(P) (NOTE OJHA HAS 
DEFINED THIS AS JUST RNL(P)). A0E**1.5 FROM FOURIER TRANSFORM OF INITIAL W.F.. (AMUP/AOE)**4 FROM PHI INTEGRATION. (1/AMUP)**3 
FACTORED OUT OF DELTA(P1-...) . AMUP**2 FROM OPERATING WITH 
DELTA(P2-AMUP(P+02)) ON 1/P2**2 OF OJHA EQ. 5.5 .

TERM-0.0
AN INDEX II IS DEFINED SUCH THAT II = 1,2,3,4....  CORRESPONDS TO
1S,2S,2P,3S....  INTERMEDIATE STATES
II=((N* (N-1))/2)+L+1 IF (II.LE.O.OR.II.GE.7) RETURN 
GO TO (10,20,30,40,50,60) II

10 CONTINUE1S INTERMEDIATE STATE
ACONS -ACONS *4.*32.
1/SR0T2*(4*SQRT2/SQRTPI)*(32*SRQTPI)

A A A

OVERALL R1SSTAR I1S,IS COEFFICIENTS
GO TO 70

20 CONTINUE2S INTERMEDIATE STATE
ACONS-ACONS*32.*512.
1/SQRT2*(32./SORTPI)*(512.*S0RT2 *SQRTPI)
GO TO 70

30 CONTINUE
2P INTERMEDIATE STATE
ACONS-ACONS*128.* 256.

1/S0RT2*(I *128/S0RT(3PI))*((-1)*SQRT2*SQRT(3PI)*256) 
GO TO 70

40 CONTINUE
3S INTERMEDIATE STATE

ACONS-ACONS*180.*864.
1/SQRT2*(18O*S0RT2/S0RT(3PI))*(864*S0RT(3PI))
GO TO 70

50 CONTINUE
3P INTERMEDIATE STATE

ACONS-ACONS *864.*576.
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1/SQRT2*(I*864/SQRT(3PI))*((-1)*SQRT2*SQRT(3PI)*576)
GO TO 70

60 CONTINUE
3D INTERMEDIATE STATE

ACONS-ACONS*5184.*2764.8
1/SQRT2*(I**2*5184*SQRT2/SQRT(30PI))*((-I)**2*13824*SQRT(30PI)/5)

GO TO 70
ALL CONVERGE HERE (UNLESS INOPERATIVE)70 CONTINUE

. NOW THE NUMERICAL INTEGRATION
TERM-0.0 
PA-PLOW 

80 CONTINUE 
PB-PA+DP
A1=(PB-PA)/2.0 
A2=(PB+PA)/2.0
SUM-0.0 
DO 90 1=1,8 
P1=A2-(A1*ABSC(I))P2=A2+(A1*ABSC(I))
CALL PINT(N,L,C,P1,TERM1)
CALL PINT(N ,L ,C ,P 2 ,TERM2)
SUM=SUM+(WEIGHT(I)*(TERM1+TERM2))90 CONTINUE 
SUM-A1*SUM 
TERM-TERM+SUM
PA-PB
IF (PA.LE.PHIGH) GO TO 80
TERM-ACONS *TERM
RETURN END
SUBROUTINE PINT(N,L,C,P,TERM)
THIS SUBROUTINE CALCULATES THE INTEGRAND IN THE ORTHOGONALIZATION 
TERM FOR GIVEN VALUES OF THE INTEGRATION VARIABLE P (MOMENTUM). 
NUMERICAL INTEGRATION OVER THETA COORDINATE IS REQUIRED. SIXTEEN POINT 
GAUSSIAN QUADRATURE IS USED.
IMPLICIT DOUBLE PRECISION (A-H.O-Z)

COMMON/CONSTS/PI,SQRT2 
COMMON/GAUSS/ABSC(8 ) ,WEIGHT(8)

COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE
FIRST CALCULATE THE PART WHICH DOES NOT REQUIRE INTEGRATION OVER 
THETA, CONSISTING OF THE MOMENTUM FUNCTIONS IN RNLSTAR OF 

OJHA ET. AL. EQ 5.10 (RNL IN HIS NOTATION)
ACONS-P*P 

C THE VOLUME ELEMENT
AP=AOPE*P

C AOPE IS FINAL STATE BOHR RADIUS
APS=AP*AP
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TER M O . O
II=((N*(N-1))/2)+L+1
SEE COMMENT IN SUBROUTINE ORTH FOR AN EXPLANATION OF INDEX II. THE 
PROGRAM CAN CURRENTLY HANDLE 1S TO 3D INTERMEDIATE STATES ONLY.
IF (II.LE.O.OR.II.GE.7) RETURN 
GO TO (10,20,30,40,50,60) II

10 CONTINUE
1S INTERMEDIATE STATE

DR1S-1.+APS
ACONS“ACONS/DR1S/DR1S
GO TO 70

20 CONTINUE
2S INTERMEDIATE STATE

DR2S“ 1.+4.*APS
ACONS *ACONS *(4.*APS-1.)/DR2S/DR2S/DR2S 
GO TO 70

30 CONTINUE
2P INTERMEDIATE STATE

DR2P=1.+4.*APS
ACONS“ACONS *AP/DR2P/DR2P/DR2P 
GO TO 70

40 CONTINUE
3S INTERMEDIATE STATE

DR3S“ 1.+9.*APS
ACONS“ACONS *(81.*APS*APS-30.*APS+1.)/DR3S/DR3S/DR3S/DR3S 
GO TO 70

50 CONTINUE
3P INTERMEDIATE STATE

DR3“1.+9.*APS
ACONS“ACONS*AP*(9.*APS-1.)/DR3/DR3/DR3/DR3 GO TO 70

60 CONTINUE
3D INTERMEDIATE STATE

DR3=1.+9.*APSAC0NS“AC0NS*APS/DR3/DR3/DR3/DR3 
GO TO 70
ALL CONVERGE HERE (UNLESS INOPERATIVE)

70 CONTINUE
INTEGRATION VARIABLE X=COS(THETAP) GOES FROM -1.0 TO 1.0
XLOW=-1.O 
XHIGH“ 1.0
A1“ (XHIGH-XLOW)/2.0 
A2“ (XHIGH+XLOW)/2.O
SUM=0.0 
DO 80 1=1,8 
X1“A2-(A1*ABSC(I))
X2«A2+(A1*ABSC(I))
CALL XINT(N,L,C ,P ,X 1 ,TERM1)
CALL XINT(N ,L ,C ,P ,X 2 ,TERM2)
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SUM«SUM+(WEIGHT(I)*(TERM1+TERM2))
80 CONTINUE SUM=A1*SUM 

C TERM=ACONS*SUM
C RETURN

END
C

SUBROUTINE XINT(N,L ,C ,P ,X,TERM!
THIS SUBROUTINE CALCULATES THE INTEGRAND IN AN INTEGRAL OVER THETA 
(WE ACTUALLY USE A TRANSFORMED VARIABLE X=COS(THETAP)) WHICH ARISES 
IN THE NUMERICAL EVALUATION OF THE ORTHOGONALIZATION INTEGRAL. 
INTEGRATION OVER PHI COORDINATE IS PERFORMED ANALYTICALLY.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/CONSTS/PI,S0RT2 
COMMON/GAUSS/ABSC(8),WEIGHT(8)COMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE 
COMMON/SCAT/RKI,THETA,RATKFI
WE FIRST DETERMINE THE LENGTH OF THE VECTOR 02
AMUP=RATKFI*PMASS/(PMASS+EMASS)
AC0NS=1.0-(2 .0*AMUP*DC0S(THETA))+(AMUP*AMUP)
02»RKI*DSQRT(ACONS)
THEN THE FIRST PART OF THE INTEGRAND

EACH TERM CONSISTS OF THE PRODUCT OF 1 / | P+02 I **2=1 /A1 
WITH THE MOMENTUM FUNCTION IN I1S,NLM(P+02) AND THE 
LEGENDRE POLYNOMIAL PL(A/|a |) WHERE A=C*P*(P+Q2) OF 
OJHA ET. AL EO 5.10 , BUT GENERALIZED TO ALLOW BOTH TERMS 
OF THE POTENTIAL TO BE CALCULATED. THESE TERMS DIFFER ONLY 
BY THE COEFFICIENT OF THE RELATIVE COORDINATE, C, IN THE 
POTENTIALS 1/|r +CR|. THE A/|A| WILL ONLY BE NEGATIVE IF 
C / l d  IS NEGATIVE SO < C / l d ) * * L  IS FACTORED OUT BELOW. THE 
ONLY PLACE IT APPEARS IS FOR L=1 IN WHICH A FACTOR OF |c|
FROM I1S.2P MULTIPLIES IT LEAVING JUST C . FINALLY, THE 
FOLLOWING HAVE THE DIVISION P*(P+Q2)/|p | ALREADY DONE.

PP=P*P 
00=02*02
A1*PP+(2 .0*P*Q2*X) +00 
ACONS-O.

AACCA1=A0PE*A0PE*C*C*A1 
TERM=0.0
II=((N*(N-1))/2)+L+1
SEE COMMENT IN SUBROUTINE ORTH FOR AN EXPLANATION OF INDEX II. THIS 
PROGRAM CAN CURRENTLY HANDLE INTERMEDIATE STATES 1S TO 3D ONLY.
IF (II.LE.O.OR.II.GE.7) RETURN 
GO TO (10,20,30,40,50,60) II

10 CONTINUE
1S INTERMEDIATE STATE

DI1=4.+AACCA1 
ACONS=1./A1/DI1/DI1 
GO TO 70

20 CONTINUE
2S INTERMEDIATE STATE
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DI2=9.+4.*AACCA1 
AC0NS=AACCA1/A1/DI2/DI2/DI2 
GO TO 70 

C 30 CONTINUE
2P INTERMEDIATE STATE

DI2-9.+4.*AACCA1
AC0NS=(P+Q2*X)*A0PE*C/A1/DI2/DI2/DI2

1/A1*((P+P02X)*(SIGN(C))/S0RT(A1))*A0PE*ABS(C)*S0RT(A1)/(*•)
GO TO 70

40 CONTINUE
3S INTERMEDIATE STATE

013=16.+9.*AACCA1
AC0NS=(16.*AACCA1+27.*AACCA1*AACCA1)/A1/DI3/DI3/DI3/DI3 
GO TO 70

50 CONTINUE
3P INTERMEDIATE STATE

D 13=16.+9.*AACCA1
AC0NS=(P+Q2*X)*A0PE*C/A1/DI3/DI3/DI3/DI3 
GO TO 70

60 CONTINUE3D INTERMEDIATE STATE
DI3=16.+9.*AACCA1 PQ2X=P+Q2*X
AC0NS=.5*(3.*PQ2X*PQ2X/A1-1.)*AACCA1/A1/DI3/DI3/DI3/DI3 
GO TO 70
ALL CONVERGE HERE (UNLESS INOPERATIVE)

70 CONTINUE

WE REQUIRE THE CONSTANT ANU AND SINE AND COSINE OF THE ANGLE 
THETAK
ANU=EMASS*(PMASS+EMASS+TMASS)/((PMASS+EMASS)*(TMASS+EMASS)) 
AMUP*PMASS/(PMASS+EMASS)AMRK=AMU P * RATKFI
Q2=DSQRT(1.0-(2 .0*AMRK*DC0S(THETA)) + (AMRK *AMRK))

A1=Q2/RATKFI
SINK=AMUP*DSIN(THETA)/A1 COSK=DSQRT(1.-SINK*SINK)
THEN THE REST OF THE INTEGRANO
A2=(AMUP*AMUP/AOE/AOE)+PP+(2 .0*ANU*RKI*P*X*COSK)+((ANU*RKI)**2) 
B2=2.0*ANU*RKI*P*SINK*DSQRT(1.0-(X*X))
FACT0R=A2/(((A2+B2)*(A2-B2))* * 1.50)

C TERM=AC0NS *FACTOR 
C RETURN

END
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THIS PROGRAM CALCULATES THE TOTAL CROSS SECTION FOR CHARGE 
TRANSFER IN BORN APPROXIMATION BASED ON THE FOCK-TANI HAMILTONIAN FOR THE GENERAL CASE P+(TE)->(PE)+T, WHERE P, E, AND T ARE BARE 
CHARGES OF MASS PMASS, EMASS, AND TMASS AND IS AN ATOM.

SEE NOTES AT BEGINNING OF DIFFERENTIAL VERSION ABOVE
USES SUBROUTINES ABOVE

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/CONSTS/PI,S0RT2 
COMMON/10/IREAD,IWRITECOMMON/MASSES/EMASS,TMASS,PMASS,AOE,AOPE 
COMMON/GAUSS/ABSC(8),WEIGHT(8)
COMMON/RANGE/ PLOW,PHIGH,DP 
COMMON/SCAT/RKIAU,RTHETA,RATKFI 
DATA IREAD,IWRITE/5,21/
DATA PI,SQRT2/3.141592654,1.414213562/

A0S=2.8002829*10.**(-17. )
WRITE(IWRITE,100)
READ THE ELECTRON MASS AND THE MASSES OF THE TARGET AND PROJECTILE 
NUCLEI.

WRITE(IREAD,101)
READ(IREAD,110) EMASS,TMASS,PMASS 
WRITE(IWRITE,120) EMASS,TMASS,PMASS

READ IN THE INITIAL LAB KINETIC ENERGY, CONVERT TO ATOMIC UNITS 
AND CALCULATE THE INITIAL MOMENTUM AND C.M. KINETIC ENERGY

WRITE (IREAD,102)
READ(IREAD,110) REKEV 
REAU=REKEV*1000.0/27.21183
RMASS “PMASS *(TMASS +EMASS)/(PMASS+TMASS+EMASS)

RMUI“RMASSRMUF“TMASS*(PMASS+EMASS)/(PMASS+TMASS+EMASS)
EIAU = (PMASS/RMASS)* REAU EIKEV=REKEV*EIAU/REAU 
RKIAU“ (2.O*RMASS*REAU)* *0.50

EMU=EMASS*TMASS/(EMASS+TMASS)
PMU“PMASS *TMASS/(PMASS+TMASS)
PEMU=EMASS*PMASS/(PMASS+EMASS)

FROM THE CENTER OF MASS DECOMPOSITION 
C1“-EMASS/PMASS

FOR THE T-P COULOMB POTETIAL TERM
C2= 1 .

FOR THE E-T TERM.
THE BOHR RADII ARE 

A0E=1./EMU 
A0PE“ 1./PEMUIN GENERAL WE HAVE FROM CONSERVATION OF ENERGY
RKFAU=DSQRT(RMUF*(RKIAU*RKIAU/RMUI-EMU+PEMU))
RATKFI*RKFAU/RKIAU

WRITE(IWRITE,130) REKEV,REAU,EIKEV,EIAU,RKIAU,RKFAU
READ AND WRITE THE RANGE OF ANGLES (IN MILLIRADS OF ARC) OVER WHICH 
THE DIFFERENTIAL CROSS SECTION IS TO BE INTEGRATED

WRITE(IREAD,103)
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READ (IREAD,110) THETAL,THETAM,THETAH 
WRITE(IWRITE,140) THETAL,THETAM,THETAH
READ THE RANGE OF THE INTEGRATION VARIABLE P (MOMENTUM) OVER WHICH 
THE NUMERICAL INTEGRATION MUST BE PERFORMED

WRITE(IREAD,104)
READ(IREAD,110) PLOW,PHIGH,DP WRITE (IWRITE,155) PLOW,PHIGH,DP
T1 ANO T2 ARE USED IN GAUSSIAN QUADRATURE
T 1 = (THETAM-THE TAL)/2.0 
T2=(THETAM+THETAL)/2.O
BEGIN COMPUTATION
ACONS = (RKFAU/RKIAU)* RMUF* RMUI*((2.0*PI)**4)
SIXTEEN POINT GAUSSIAN QUADRATURE IS USED FOR INTEGRATING THE DIFFE­
RENTIAL CROSS SECTION

FLAGO.
SCS1B-0.
SCS1=0.
SCS2*0.
SCS3=0.
1=0
ADD CONTRIBUTIONS FROM THE FIRST SEGMENT UNLESS NULL
IF(T1.EQ.O.) GO TO 15 
CONTINUE

FIRST SET ALL TOTAL CROSS SECTIONS TO ZERO
CS1B-0.0 
C S 1=0.0 
CS2=0.0 
CS3=0.0
DO 12 ISIGN=1,2 ASIGN = (-1)**ISIGN 
DO 10 IGAUSS=1,8THETA®(ASIGN*T1*ABSC(IGAUSS))+T2 
WRITE (IWRITE,150) THETA
CONVERT THETA TO RADIANS
RTHETA-THETA/1000- 00

Q2 = MAGNITUDE OF EFFECTIVE MOMENTUM TRANSFER
AMUP=RATKFI*PMASS/(EMASS+PMASS)
B=2.0*AMUP*DCOS(RTHETA)

C=AMU P * AMU P 
Q=1.-B+CQ2=RKIAU*DSQRT(Q)

WRITE(IWRITE,170) Q2
CALL TMAT1B(Q2,TRM1BA,TRM1BB)

TERM1B=TRM1BA-TRM1BB
THE MINUS DUE TO THE COULOMB POTETIAL P-E

N=1L=»0
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CALL 0RTH(N,L,C1,T101)
CALL ORTH(N,L ,C 2 ,T102)
TERM1S=T101-T102

C N=2
CALL 0RTH(N,L,C1,T201)CALL ORTH(N,L ,C 2 ,T202)
TERM2S=T201-T202 L = 1
CALL 0RTH(N,L,C1,T211)
CALL ORTH(N,L C2.T212)
TERM2P=T211-T212 

C N=3
L-0

CALL 0RTH(N,L,C1,T301)CALL ORTH(N,L ,C 2 ,T302)
TE RM3S *T301-T302 L= 1
CALL 0RTH(N,L,C1,T311)CALL ORTH(N,L ,C 2 ,T312)
TERM3P=T311-T312 L=2
CALL 0RTH(N,L,C1,T321)CALL ORTH(N,L ,C 2 ,T322)
TERM3D=T321-T322 

C WRITE(IWRITE,180) TRM1BA,TRM1BB,TERM1B 
WRITE(IWRITE,181) T101,T102,TERM1S 
WRITE(IWRITE,182) T201,T202,TERM2S 
WRITE(IWRITE,183) T211,T212,TERM2P 
WRITE(IWRITE,184) T301,T302,TERM3S 
WRITE(IWRITE,185) T311,T312,TERM3P 
WRITE(IWRITE,186) T321,T322,TERM3D

DIFFERENTIAL CROSS SECTION IN VARIOUS APPROXIMATIONS

DCS 1B=ACONS *(TE RM1B * TE RM1B ) 
TMAT=TERM1B+TERM1S

DCS 1 *ACONS *(TMAT* TMAT)
TMAT=TMAT+TERM2S+TERM2P 

DCS2=ACONS *(TMAT*TMAT)
TMAT=TMAT+TERM3S+TERM3P+TERM3D DCS3=AC0NS *TMAT*TMAT

CONVERT FROM AO**2 TO CM**2

DCA1B=AOS *DCS1B DCA1=AOS *DCS1 
DCA2=AOS*DCS2 
DCA3*AOS *DCS3

WRITE(IWRITE,200)WRITE (IWRITE,160) DCS 1B ,DCA1B,DCS 1,DCA1,DCS2,DCA2,DCS3,DCA3
ADD THE CONTRIBUTION TO THE TOTAL CROSS SECTION
AWT *DSIN(RTHETA)*WEIGHT(IGAUSS)
C S 1B=CS1B+(AWT*DCS1B )
CS1*CS1 + (AWT *DCS1)CS2*CS2+(AWT *DCS2)
CS3*CS3+(AWT*DCS3)
1=1+1
WRITE(5,9) I
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FORMAT(' +',15, ' OUT OF 32')
10 CONTINUE 

2 CONTINUE
WE MUST CONVERT THE INTERVAL TO RADIANS BEFORE MULTIPLYING BY THE 
OVERALL MULTIPLICATIVE CONSTANT. AN ADDITIONAL FACTOR OF 2.0*PI 
COMES FROM INTEGRATION OVER THE AZIMUTHAL ANGLE.

FOR THE CROSS-SECTION GIVEN IN UNITS OF PI*A.U.**2 
WE MUST ALSO DIVIDE BY PI GIVING A NET FACTOR OF 2.

T1*T1/1000.0
SCS1B®2.0*T1*CS1B+SCS1B 
SCS1=2.0*T1*CS1+SCS1 
SCS2=2.0*T1*CS2+SCS2 
SCS3=2.0*T1*CS3+SCS3

NOW FOR THE SECOND SEGMENT UNLESS NULL
IF(FLAG.EQ.1.) GO TO 20 

5 T1*(THETAH-THETAM)/2.
T2=(THETAH+THETAM)/2.
FLAG*1.
IF(T1.NE.0.) GO TO 5 

0 CONTINUE
CONVERT TO CM**2
SCA1B=SCS1B*PI*AOS 
SCA1=SCS1*PI*AOS 
SCA2=SCS2*PI*AOS 
SCA3=SCS3*PI*AOS

WRITE(IWRITE,220)
WRITE(IWRITE,160) SCS1B,SCA1B,SCS1,SCA1,SCS2,SCA2,SCS3,SCA3 
STOP
FORMAT STATEMENTS

90 FORMAT(1X,E100 FORMAT(/2X,
101 FORMAT(1X
102 FORMAT(1X
103 FORMAT(1X
104 FORMAT(1X 
110 FORMAT(8F10 120 FORMAT(/2X,1 /2X,2 /2X, 
130 FORMAT(/2X,

1 /2X,
2 /2X,1 /2X,
3 /2X,
4 /2X, 

140 FORMAT(/2X,
1 / 2 X ,
2 /2X, 

150 FORMAT(/2X, 
155 FORMAT(/2X, 
160 FORMAT(//2X

1 ,5X,E12.5 2 /2X
1.5X.E12.5 4 /2X

12.5)
'FOCK-TANI DIFFERENTIAL CROSS SECTION'//)
,'INPUT IN F 10.5'/' EMASS— > TARGMASS> PROJMASS>(AU) 
.' KINETIC ENERGY (INCIDENT LAB IN KEV)')
,' THETAMIN> THETAMID> THETAMAX> (ANGLES IN MRAD)')
,' LOWERLIM> UPPERLIM> STEPSIZE> (OF P-INTEGRAL)')
-5)
'ELECTRON MASS = '.E12.5,
'TARGET MASS = '.E12.5,
'PROJECTILE MASS = ',E12.5,
'INCIDENT LAB KINETIC ENERGY
C.M. INCIDENT KINETIC ENERGY
INITIAL MOMENTUM 
FINAL MOMENTUM
MINIMUM VALUE OF THETA = ',E12.5, 
MAXIMUM VALUE OF THETA = ',E12.5,
INCREMENT = '.E12.5,
THETA (CM) = ',E12.5,' MRADS'/) 
PLOW = ',E12.5,' PHIGH = '.E12.5, 
'FIRST BORN APPROX.

A . U . '
A . U . '
A .U .'/)= ' , E 12.5 , 

= ' , E 12.5 , 
= ' , E 12.5 , = ' ,E 12.5, = ',E12.5, 
= '.E12.5, 
MRADS' 
MRADS' 
MRADS'/)

KEV '
A. U . ' 
KEV ' 
A.U. ' 
A.U. ' 
A.U.'/)

+ (N=1)
+ (N=2)

DP = ' .E12.5)= ' , E 12.5
= ',E12.5
= ',E12.5



1,5X,E12.5 
3 /2X,'
1,5X,E12.5/)

170 F0RMAT(/2X,'EFFECTIVE TRANSFERRED MOMENTUM =
180 F0RMAT(//2X,'TERM
181 FORMAT(/2X,'TERM1!
182 FORMAT(/2X 'TERM2!
183 F0RMAT(2X,'TERM2P184 F0RMAT(/2X,'TERM3!
185 F0RMAT(2X,'TERM3P186 F0RMAT(2X,'TERM3D 
190 F0RMAT(/2X,'PHI (I 
200 F0RMAT(//2X,'CM DIFFERENTIAL CROSS SECTION ',

1' (AO* *2/SRAD) (CM**2/SRAD)')
210 F0RMAT(//2X,'LAB DIFFERENTIAL CROSS SECTION ', 

1' (A0**2/SRAD) (CM**2/SRAD)')
220 F0RMAT(//2X,'TOTAL CROSS SECTION ',

1' (PI*A0**2) (CM**2)')
END

+ (N=3) =
',E12.5,' A,

( ' E12.5,, ' - ',E12.5 ,') = ' , E 12.5
( ,E12.5 , '1 - ' , E 12.5 ,') = , E 12.5 )
( ' , E 12.5, '’ - ' , E 12.5 ,' ) = ' E12.5)/,E12.5,' - ',E 12.5, ') -' , E 12.5 )
( ' , E 12.5 , '’ - ',E 12.5, ' ) = ' , E 12.5 )/, E 12.5 , ' - ',E 12.5,' ) = ,E 2.5)/, E 12.5 , ' - ',E 12.5, ') =' E12.5)
■' ,E 12.5 ,, MRADS')
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