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DISSERTATION ABSTRACT

Thomas Kendrick Baldwin

Doctor of Philosophy

Department of Physics

December 2015

Title: Trion-based Optical Processes in Semiconductor Quantum Wells

In a semiconductor, negative charge is carried by conduction-band electrons and positive

charge is carried by valence-band holes. While charge transport properties can be understood by

considering the motion of these carriers individually, the optical properties are largely determined by

their mutual interaction. The hydrogen-like bound state of an electron with a hole, or exciton, is the

fundamental optical excitation in direct-gap materials such as gallium arsenide (GaAs) and cadmium

telluride (CdTe).

In this dissertation, we consider charged excitons, or trions. A bound state of an exciton with

a resident electron or hole, trions are a relatively pure manifestation of the three-body problem which

can be studied experimentally. This is a subject of practical as well as academic interest: Since the

trion is the elementary optical excitation of a resident free carrier, the related optical processes can

open pathways for manipulating carrier spin and carrier transport.

We present three experimental investigations of trion-based optical processes in semiconductor

quantum wells. In the first, we demonstrate electromagnetically induced transparency via the electron

spin coherence made possible by the trion transition. We explore the practical limits of this technique

in high magnetic fields. In the second, we present a direct measurement of trion and exciton oscillator

strength at high magnetic fields. These data reveal insights about the structure of the trion’s three-

body wavefunction relative to that of its next excited state, the triplet trion. In the last, we investigate

the mechanism underlying exciton-correlated tunneling, an optically-controllable transport process in

mixed-type quantum wells. Extensive experimental studies indicate that it is due to a local, indirect

interaction between an exciton and a hole, forming one more example of a trion-mediated optical

process.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

Semiconductors form the basis for applications in a broad range of technology, including

sensing, lighting, energy generation, communication, and computation. Advances in the scientific

understanding of semiconductors have in large part brought about the information age, and in the

coming decades promise to bring about much more. Spintronics, quantum information processing,

and highly efficient solar energy generation are among the future innovations driving continuing

research in semiconductors.

Semiconductors also form a compelling platform for the study of physics. Questions involving

many-body interactions between particles are frequently far too complex to be treated with existing

theoretical or computational tools. This motivates experimental study, and quasiparticle excitations in

semiconductors form a suitable model system for examining these intricate interactions.

In solid state physics, much can be understood by introducing the concept of quasiparticles:

elementary excitations of the crystal ground state which behave like particles in a vacuum.

Conduction-band electrons and valence-band holes are two examples which act as charge carriers

in semiconductors. Coulomb attraction between these quasiparticles leads to formation of a a bound

state called an exciton. Like the hydrogen atom does for electrons and protons, this two-body system

forms the building block for interaction physics in semiconductors.

An advantage of using semiconductor charge carriers to study many-body interactions, as

opposed to simply using real particles in free-space, is that the latter case would demand access to

prohibitively high energy scales. Chemla and Shah [9] illustrate this with a stark comparison:

For example, the exciton Rydberg in the model semiconductor gallium arsenide (GaAs)

is only 4.2 meV, about 3,000 times smaller than the hydrogen Rydberg (13.6 eV).

Consequently, in GaAs the exciton ionization field, about 1V µm−1, can be easily

achieved. Similarly, the magnetic field for which the cyclotron radius is equal to the

Bohr radius (about 3.5 T in GaAs) is easily delivered by commercial magnets, whereas

for hydrogen it is about 104 T, and is only found at the surface of neutron stars.

In short, semiconductor quasiparticle interactions make it possible to study the limits of

interaction physics in tabletop experiments. In addition to expanding our understanding of complex
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systems in general, such studies contribute to our knowledge of semiconductor systems in particular,

which has relevance to a multitude of current and future technologies.

1.1. Trions

This dissertation concerns itself with the next building block beyond the exciton: the charged

exciton, or trion. This complex is formed by the binding of an additional conduction-band electron

or valence-band hole to the exciton, forming a three-body bound state. This structure lends itself to

unique optical properties which will be examined in the chapters to follow.

Structurally, the trion is a manifestation of the three-fermion problem, which famously defies

a closed-form solution. In contrast to the analogous atomic problems, the three-body nature of the

problem is more fully evident in trions due to their having a mass ratio that is much closer to 1. This is

summarized by Israel Bar-Joseph [10]:

The hydrogen ions are characterized by a very small mass ratio me/mp ≈ 5 × 10−4, and

as a result, H+
2 and H− are very different objects. H+

2 is a strongly bound object, in which

the electron orbits around the two protons. […] In H− the two electrons orbit around the

proton, and the repulsion between them is only marginally overwhelmed by the attraction

to the nucleus. The resulting binding energy is 3.6 times smaller. Trions, on the other

hand, are characterized by a large mass ratio, me/mh ≈ 0.15 in GaAs. Hence, one cannot

neglect the motion of any of the particles and the three body nature of the structure is

fully expressed.

Although the existence of trions was postulated by Lampert in 1958 [11], they were not observed

in optical spectra until 1993, in CdTe [12]. This is in part because the binding energy of the third

carrier is vanishingly small in a bulk crystal, and is not observable without the aid of dimensional

confinement [13]. The eventual observation of trions in semiconductors relied on the development of

growth techniques for high-quality quantum well heterostructures.

An excellent review on the optical signature of the trion is given in Ref. [10]. It appears as a

resonance on the low-energy shoulder of the exciton peak when resident carriers are present in the

system, offset by an amount equal to the binding energy of the additional electron or hole. When

the resident carrier density is low, this peak is frequently small in absorption, since direct creation of
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the three-body state is unlikely. In photoluminescence it is much more obvious, since photoexcited

exciton states can subsequently bind to a free carrier, forming a trion before they decay.

1.1.1. Optical access to spin coherence

In the case where they are excited directly, trions can be thought of as an optical excited state

of resident carriers, in the same way that excitons form an optical excited state for the crystal vacuum

state. This opens avenues for optical manipulation of electron spins, a system that holds promise

as the basis for future semiconductor devices [14]. In contrast to neutral exciton-based approaches,

processes involving the trion resonance give direct control of a long-lived resident carrier spin.

Trion transitions form the basis for recent realizations of ultrafast control [15, 16] and

electromagnetically induced transparency (EIT) [17] in quantum wells, utilizing electron spins.

Coherent population trapping (an EIT-related process) of a single quantum dot emitter has been

demonstrated via the trion transition [18]. Spin coherence times of electrons and holes is up to 10 ns

and 500 ps, respectively, as determined by Kerr rotation techniques by way of the trion transition [19].

Chapter III of this work presents further examinations of the trion’s relevance for EIT purposes.

1.1.2. Trions in highmagnetic fields

Investigations of trions frequently leverage magnetic fields, since this can help reveal more

about mixing processes within the valence band [20] and about the orbital structure of the trion itself

[21].

In high magnetic fields, a spin-triplet form of the trion becomes bound, having an

antisymmetric spatial wavefunction. This secondary trion state was observed in GaAs starting in 1995

[22, 23] and a detailed theoretical description given in 1997 [24]. Theoretical calculations of the triplet

trion binding energy are complex; involving three interacting bodies in which the magnetic field and

confining well width both play an important role. Obtaining accurate answers from theoretical models

requires judicious selections with regard to the number of subbands to include, their non-parabolicity,

and the effects of valence band mixing [25–28].

While theoretical models agreed that the triplet would cross the singlet to become the ground

state of the system at particularly high magnetic fields, the precise point of crossing (whether at

20 T, 30 T, or even higher) was not clear. Experiments failed to confirm this crossing, or did so

3



inconclusively [29]. It was eventually found that multiple orbital states of the triplet exist, one of

which becomes the ground state and one of which is optically bright [30]. Furthermore, the spectral

lines do not actually cross, due to differences in energies due to Zeeman splitting, leading to a “hidden

transition”. The subject of trion triplets has continued to attract attention from theorists [31–35] and

experimentalists [36–38].

1.1.3. Mediating bilayer interaction

Many recent efforts surrounding excitons have surrounded bilayer systems, in which electrons

and holes reside in spatially separated wells. Excitons in these systems, called indirect excitons,

have greatly extended lifetimes and can be more effectively cooled [39, 40]. Research in this area is

motivated by the possibility of exciton Bose-Einstein condensation, although careful consideration is

necessary to distinguish a condensate from simple biexciton formation in experiments [41].

Indirect exciton formation requires a relatively thin barrier between the two wells. In one

recent experiment, the host structure featured a 4 nm barrier positioned between two 8 nm wells [42].

When the barrier is larger, the cross-barrier exciton interaction is weaker, but it can still have dramatic

effects on the rate of carrier tunneling between layers [43]. In quantum Hall regime bilayers, in which

two 18 nm quantum wells are separated by a 10 nm barrier, a giant increase in the tunneling rate occurs

when every electron is positioned opposite a hole across the barrier [44, 45]. In these electron bilayer

systems, “holes” refer to unoccupied Landau states in the conduction band, not valence-band holes.

Formation of indirect trions in bilayers has not been observed. However, the cross-barrier

interaction of an exciton with an isolated carrier, the same interaction that leads to trion formation,

has been shown to have a profound influence on carrier tunneling. Exciton-correlated tunneling, a

transport process in mixed-type quantum wells, occurs when the tunneling of holes through a barrier

is enchanced by a population of excitons [46]. We have shown that this originates in a local interaction

between excitons and holes, the same interaction which gives rise to trions [3]. The novelty of this

manifestation of the exciton-hole interaction is that it occurs indirectly through a barrier. As a

practical matter, it may open a pathway for optical control of an electron transport process.
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1.2. DissertationOverview

This dissertation will present three distinct optical processes mediated by trions in

semiconductor quantum wells. A review of the physics relevant to this topic is presented next, in

Chapter II. Following this, Chapter III describes how the trion enables optical access to the robust

electron spin coherence, evidenced by an experiment demonstrating electromagnetically induced

transparency. In Chapter IV the structure of the trion is examined in high magnetic fields, including

direct measurement of the density of states for its triplet state using optical absorption. Chapter V

reports a detailed study of a novel tunneling phenomenon in a bilayer system, mediated by a three-

body interaction that is suggestive of scattering through a trion-like state spanning two wells. The

unique and subtle interactions underlying this process open a new avenue for optical control of

semiconductor transport processes. Taken together, these three studies present a comprehensive

picture of the importance of trions in semiconductor optics, summarized in Chapter VI.

Two appendices supplement the main thread of work. Appendix A contains a theoretical

review that highlights the relevance of optical absorption spectroscopy in determining the state of

the underlying quantum system, relevant for several chapters in the main text. Appendix B outlines a

simple technique for reducing nonradiative decoherence by mixing states with a stable optical field.

This is not specifically related to any experiment concerning trions, but is reflective of a contribution

to Ref. [1], in which this technique is implemented in diamond nitrogen-vacancy centers.

Chapters II and V contain material previously published with co-authors Stephen A. McGill

and Hailin Wang [3]. Portions of Chapter III were previously published in proceedings of the

Quantum Electronics and Laser Science Conference (CLEO: QELS) with co-authors Shannon O’Leary

and Hailin Wang [6].
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CHAPTER II

THEORETICAL BACKGROUND

The research presented in this dissertation concerns the study of trions, a bound state of three

charge carriers in semiconductors. This chapter presents a review of the underlying physics related to

excitons and trions, and the semiconductor heterostructures which facilitate their study using optical

techniques. Portions of this chapter were previously published with co-authors Stephen A. McGill and

Hailin Wang [3].

2.1. Physics of Semiconductors

Semiconductors are composed of a crystalline lattice of covalently bonded atoms. Electron

states within the lattice are characterized by semicontinuous bands of allowed energies, formed from

hybridization of atomic orbitals to form molecular orbitals that extend over the entire crystal [47,

chapters 1 and 7]. Conceptually, the broadening of discrete atomic energy levels into bands is an

extension of the bonding-antibonding splitting in diatomic molecules: Overlap between outer-lying

atomic orbitals leads to an exchange interaction, causing the stationary electron wavefunctions to take

on the symmetry of the crystal, rather than being centered at individual lattice sites. The magnitude

of the associated energetic splitting is set by the degree of wavefunction overlap, and its multiplicity

by the number of sites involved. When this is of order 1023, it is considered a quasicontinuous band,

with the lower-energy half having bonding character and higher-energy part having antibonding

character.

Semiconducting properties emerge when the level broadening exceeds the level spacing of the

constituent atoms. Depending on symmetry, certain bonding states in the p-orbital derived band may

cross the antibonding states from the adjacent s-orbital derived band below it, while others experience

anticrossing behavior [48]. This leads to further mixing of the electron states and opens ranges in

energy where no electron states exist, or band gaps. For crystals in column IV of the periodic table,

or compound materials composed of III-V and II-VI elements, these gaps can perfectly divide the

electron occupation in the valence shell, so that the highest occupied electron state sits right below a

large gap.
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Within each band, states are labeled by the continuous variable k⃗, the crystal momentum.

The corresponding wavefunctions permeate the entire crystal and may be thought of a set of giant

molecular orbitals. Treatment of these states is in many ways analogous to the treatment of free

electrons having real momentum p⃗, but this relationship is purely formal: In fact, k⃗ labels a set of

phase modulations, eik⃗·r⃗, applied to a wavefunction that is invariant under translation by any of the

lattice vectors. These phase modulations, called the Bloch wavefunctions, are sufficient to construct

the full set of crystalline electron states, since the full wavefunctions all share a modulation having

periodicity of the crystal.

The total wavefunctions have two periodicities, then: the periodicity of the crystal (which

is fixed) and an additional periodicity having wavenumber k⃗ (which is the Bloch part). Note that k⃗

becomes a redundant label above some bound where it aliases with the crystal lattice. The geometry-

dependent range of distinct k⃗ values is called the Brillouin Zone. The center (⃗k = 0) point of the zone

is labeled Γ, with points of maximal k⃗ along important crystal directions labeled by X , L, etc.

Frequently, dispersion around Γ (the
∣∣∣⃗k∣∣∣ = 0 state) is to first approximation parabolic,

H =
ℏ2k⃗2

2meff
, (2.1)

with the effective mass parameter meff quantifying its curvature. Like k⃗, this is a purely formal

designation, and need not equal the electron rest mass. Indeed, it has more to do with the breadth

of the band: Broad bands, spanning a large range of energies, contain a steeper dispersion curve,

corresponding to a lighter mass. A narrow band has a smaller range of energies labeled by the same

range of k⃗, so it has a shallower (heavier) dispersion curve.

Two important caveats exist: First, although it is for the semiconductors in this dissertation,

the energetic minimum need not occur at k⃗ = 0: It can also occur at the edge of the Brillouin

zone. In real space, this is equivalent to saying that the lowest-energy molecular orbital may have

its antinodes at various places within the unit cell: at one of the (possibly multiple) atomic sites, or at

certain interstitial sites. Second, the effective mass can be anisotropic, a consideration we return to in

section 2.2.

The Bloch wavefunctions can be used to construct spatially localized electron wavepackets in

the same manner as states for free particles: by constructing a superposition from states having some
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range of crystal momenta ∆k, limited by the wave uncertainty relation

∆x∆k ≈ 1, (2.2)

where ∆x is the range over which the wavepacket is localized. The set of spatially-localized

wavepackets constructed in this way also forms a (non-stationary) basis for the electron states.

2.1.1. Conduction properties

We could represent a moving charge by such a wavepacket centered at nonzero k. To represent

a net movement of charge, this must involve both full and empty k states. But if every state in a band

is full (or if every one is empty), there is no way to represent charge transport without incorporating

states from another band that is empty (or full). When separated by a band gap, this is energetically

expensive. For this reason, intrinsic semiconductors are not conducting.

In contrast, if a few states are occupied in the lowest empty band (conduction band), then

they can readily conduct charge by displacing empty states around them. Alternatively, unoccupied

states in the highest occupied band (valence band) can conduct charge by being displaced by occupied

ones. From this point of view, we can consider the vast number of actual electrons participating in the

bonding as a crystal vacuum and think only about conduction-band electrons carrying net negative charge,

and valence-band holes carrying net positive charge.

The introduction of extra electrons or holes to the lattice is referred to as “doping.” Doping

can originate from the inclusion of impurities or via thermal or optical excitations. The ability of

small adjustments in the carrier balance to dramatically alter the conduction properties is the key to

semiconductors’ usefulness as transistors.

Henceforth in this dissertation, the term “electron” will refer to the crystal excitation, not the

fundamental particle, unless specifically designated by the term “free electron”.

2.1.2. Optical properties

We have described a renormalization of the complicated business of crystal lattice excitations

into two quasiparticles, electrons and holes, which carry charge and have (effective) mass. In addition,

electrons and holes carry angular momentum, derived from both the intrinsic spin of the electron

and from the orbital angular momentum of the underlying atomic orbitals. This results in certain
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s-like bands where electrons carry spin ±1
2 , and p-like bands where holes carry both ± 1

2 and ±3
2 .

The materials used in this dissertation, GaAs and CdTe, have an s-like conduction band and a p-like

valence band. In the valence band, the holes carrying ±3
2 spin are heavy, and the holes carrying ±1

2

spin are light. Therefore, one commonly refers separately to the heavy-hole (HH) or light-hole (LH)

valence bands.

FIGURE 2.1. Dispersion diagram for a direct-gap semiconductor with HH and LH valence bands.
A photon can promote a valence-band electron to the conduction band, leaving a valence-band hole.
Note that the energy scale shown is for electrons, so that holes in the valence band have an inverted
energy scale.

Electrons and holes may be created in pairs when a valence-band electron absorbs a photon

with an energy exceeding that of the band gap. Spatial overlap of the starting VB state and ending CB

state is required. In practice this requires that the generated electron and hole have the same k⃗, that

is, optical transitions couple states vertically on the dispersion diagram (Fig. 2.1). Angular momentum

conservation determines the optical selection rules between bands, since circularly-polarized photons

carry spin ±1.

Optical properties are most pronounced in direct-gap semiconductors, such as GaAs, in which

the bottom of the conduction band has the same k as the top of the valence band. Here, the highest

density of electron and hole states can be linked by an optical dipole transition. While this is the case

in direct-gap materials such as GaAs and CdTe, it is not so for indirect-gap materials such as Si. In

these materials, transitions between the band edges require a phonon as well as a photon.
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2.2. Effective-Mass Anisotropy

As mentioned in section 2.1, the effective mass can be anisotropic. For example, for a simple

cubic lattice of atoms having px orbitals, nearest neighbors along x will have lobes of opposite sign

adjacent to one another, causing their wavefunction-overlap integral to be relatively small. Orbitals

of nearest neighbors along y will have adjacent lobes with the same sign, leading to larger overlap

(and larger energetic splitting). As a result, the band formed from these orbitals will be broader for

electrons with crystal momentum along y, necessitating a larger curvature of ky and hence a lighter

effective mass [49, chapter 8]. The same band would appear heavy in the x direction, since the

wavefunction overlaps are smaller: so a phase modulation along kx wouldn’t have as much of an effect.

Of course, if those same atoms also have py orbitals, they will form a degenerate band that

is light along x and heavy along y. In k-space, equal-energy manifolds of each of these bands can be

pictured as three oblate, concentric surfaces with their short axes aligned along each of the coordinate

axes. Spin-orbit couplings cause lift degeneracies at the crossing points, leading to an outer surface

corresponding to a “heavy” band and an inner surface that is “light”.

In semiconductors with the zincblende structure, the conduction band is s-like while the

valence band has this more complex p-type structure. Anisotropy in the valence band is determined

from k · p perturbation theory, which results in the Luttinger-Kohn Hamiltonian given by

H =



P +Q 0 −S R
√
2S
2

√
2R

0 P +Q −R∗ −S∗ −
√
2R∗

√
2S∗

2

−S∗ −R P −Q 0
√
2Q

√
6S
2

R∗ −S 0 P −Q −
√
6S∗

2

√
2Q

√
2S∗

2 −
√
2R

√
2Q −

√
6S
2 ∆SO + P 0

√
2R∗

√
2S
2

√
6S∗

2

√
2Q 0 ∆SO + P


(2.3)
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where

P =

(
ℏ2

2m0

)
γ1
(
k2x + k2y + k2z

)
(2.4)

Q =

(
ℏ2

2m0

)
γ2
(
k2x + k2y − 2k2z

)
(2.5)

R =

(
ℏ2

2m0

)√
3
[
−γ2

(
k2x − k2y

)
+ 2iγ3kxky

]
(2.6)

S =

(
ℏ2

2m0

)
2
√
3γ3kzk− (2.7)

and where k− = kx − iky , which m0 the electron rest mass in vacuum. This gives the energy of a

hole with arbitrary k⃗ in each of the three bands. Each set of two rows (columns) represents a pair of

two spin states in each of the bands. The Luttinger parameters γ1, γ2, and γ3 are dimensionless material

parameters which give the shape of the bands. One of the three orbitals has been shifted by spin-orbit

coupling, parametrized by ∆SO. Numerical values for these parameters are given in Table 2.1.

TABLE 2.1. Lattice and material parameters for GaAs, reproduced from Ref. [50].

Quantity GaAs value

Band gap , Eg (eV) 1.426

Dielectric constant, ϵ/ϵ0 13.2

Electron effective mass, me/m0 .067

Heavy-hole effective mass†, mhh/m0 .62

γ1 6.98

γ2 2.06

γ3 2.93

† Spherically averaged.

It’s instructive to examine this Hamiltonian to further understand mass anisotropy. First of

all, at k⃗ = 0, the matrix is diagonal, with the first two bands (four states) energetically degenerate

(having E = 0) and the third “split-off” band having E = ∆SO. Since every other term in the

Hamiltonian besides ∆SO goes as
∣∣∣⃗k∣∣∣2, the first-order corrections to these energies for nonzero k⃗
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can be read directly off the diagonal. We are especially interested in the two E = 0 bands:

P ±Q =
ℏ2

2m0

[
(γ1 ± γ2)

(
k2x + k2y

)
+ (γ1 ∓ 2γ2) k

2
z

]
. (2.8)

Along kz (kx = ky = 0), the P +Q band varies parabolically with a “heavy” effective mass

m
(z)
hh =

m0

γ1 − 2γ2
(2.9)

relative to the P −Q band, which is “light”:

m
(z)
lh =

m0

γ1 + 2γ2
. (2.10)

Since all off-diagonal terms are zero except for one coupling between the P − Q band and the split-

off band, these are designated the heavy-hole and light-hole valence bands. However, this is only with

respect to z: In the x− y plane, with kz = 0, the heavy holes are light:

m
(x,y)
hh =

m0

γ1 + γ2
(2.11)

and the light holes are heavy:

m
(x,y)
lh =

m0

γ1 − γ2
. (2.12)

Numerical values for GaAs are given in Table 2.2. Of course, there are many more off-diagonal terms

when kx or ky is nonzero, and a full diagonalization (which changes the spin basis) recovers the

curvatures that were evident along z. Like spin, effective mass is only definitely “heavy” or “light”

along a certain direction, chosen here to be the spin quantization direction z. This mass reversal

property will play an important role when considering systems that break spherical symmetry.

TABLE 2.2. Transverse and longitudinal effective mass parameters for GaAs, computed from the
Luttinger parameters in Table 2.1, illustrate the magnitude of mass anisotropy.

GaAs m(z)/m0 m(x,y)/m0

HH 0.35 0.11

LH 0.09 0.20
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2.3. Excitons and Trions

FIGURE 2.2. Conceptual view of an exciton. An electron and hole, orbiting around their mutual
center of mass, form a Wannier exciton. The spatial extent of their wavefunction spans many lattice
sites.

Since they carry opposite charge, electrons and holes feel a mutually attractive Coulomb force

which can result in a bound state, called a Wannier exciton (Fig. 2.2). Another exciton formulation, the

Frenkel exciton, is relevant when the length scales are too small to justify the use of an effective mass,

but that is not relevant for this work.

In the effective-mass approximation, a Hamiltonian for an electron-hole pair is

H =
p2e
2me

+
p2h
2mh

− e2

4πϵ

1

|re − rh|
(2.13)

Where the last term gives their mutual Coulomb potential, with e the fundamental charge and ϵ the

permittivity of the medium. By defining a reduced mass µ = memh/(me +mh) and changing to center-

of-mass coordinates R = µ (re/mh − rh/me) and r = re − rh, the Hamiltonian becomes

H =
P 2

2 (me +mh)
+
p2

2µ
− e2

4πϵ

1

|r|
(2.14)

where P and p are the conjugate momenta to R and r, respectively. The first term gives free motion

of the two quasiparticles’ center of mass, and the second two terms are the same as the Hamiltonian

13



for hydrogen with the replacement me → µ. In three dimensions, this leads to the same spectrum of

bound states

E3D
n = − µ

2ℏ2

(
e2

4πϵ

)2
1

n2
(2.15)

where n = 1, 2, 3... is the principal quantum number. This energy is relative to that of the unbound

electron-hole pair, which is the band gap energy Eg required to create the pair in the first place. The

most strongly bound 1s exciton, with n = 1, has the spherically symmetric wavefunction

ψ (r, θ, ϕ) =
1√
πa3

e−r/a (2.16)

having Bohr radius

a =

(
4πϵ

e2

)
ℏ2

µ
. (2.17)

As in the case of hydrogen, excited states are counted by two more quantum numbers, l (which ranges

from 0 to n − 1) and m (which ranges from −l to l.) In this work we will primarily be concerned with

the 1s exciton only.

In GaAs, where ϵ = 13.2ϵ0, and using a spherically averaged value of the heavy-hole effective

mass, this yields a binding energy E1 of −4.7 meV and a Bohr radius of 115 Å [50]. The fact that

the exciton is so large relative to the lattice spacing confirms that we are in the Wannier regime, and

justifies the use of the effective-mass approximation in obtaining this result.

While structurally similar to hydrogen, the exciton is orders of magnitude more weakly bound

and larger (relative to the Rydberg and Bohr radius for hydrogen, which are −13.6 eV and 0.53 Å,

respectively). This is a due to both the large permittivity of GaAs and to a larger mass ratio, me/mh.

2.3.1. Optical excitation of excitons

Being antiparticles, the electron and hole have a finite lifetime, typically on the order of

picoseconds, before they recombine, possibly emitting a photon. In this respect, the exciton is more

directly analogous to positronium than it is hydrogen, with the crystal lattice serving as a vacuum state

that can be ionized at the energy scale of an infrared laser rather than that of gamma rays.

By considering in detail the structure of the crystal vacuum, one can arrive at an expression for

the optical absorption of an exciton. The electron-hole pair susceptibility, when accounting for the
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exciton interaction, is given by Haug and Koch [51] as

χ(ω) = −2 |dcv|2
∑
n

|ψn (r = 0)|2
[

1

ℏ(ω + iδ)− Eg − En
− 1

ℏ(ω + iδ) + Eg + En

]
. (2.18)

The absorption coefficient follows as the imaginary part. The term in brackets gives the Lorentzian

shape of the line having width δ, with prefactors giving amplitudes (oscillator strengths). The dcv

term is the dipole matrix element for transitions between the conduction (c) and valence (v) bands,

independent of any exciton effects. The term involving ψn(r), the exciton wavefunction of principal

quantum number n, evaluated at r = 0, is what limits optically accessible exciton states to the ones

with s-like wavefunctions. In three-dimensional hydrogen,

|ψn(r = 0)|2 =
1

πa30n
3

(2.19)

which scales with the inverse of the cube of the Bohr radius. Hence, the strength of optical absorption

can be considered a measure of the exciton’s physical size.

Another respect in which the exciton is more akin to positronium than hydrogen is its having

a mass ratio much closer to 1: meff
e /meff

h ≈ 0.11 in GaAs, whereas me/mp ≈ 5 × 10−4 [10]. In

positronium, the mass ratio is exactly 1.

This is exceptionally important when considering the charged exciton, or trion, since it stymies

approximation of any one participant particle as a fixed central potential. For this reason, the trion an

even purer manifestation of the three-body problem than the frequently-studied H− atom, since the

motion of all three bodies is important.

2.3.2. Effects of dimensional confinement

When restricted to move in a two-dimensional plane, hydrogenic complexes are more strongly

bound. This is demonstrated by a theoretical treatment of the 2D hydrogen atom [52], which has the

modified spectrum

E2D
n = − µ

2ℏ2

(
e2

4πϵ

)2
1(

n− 1
2

)2 (2.20)
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which for the n = 1 ground state is four times greater, E2D
1 = 4E

3D
1 . Likewise, excitons are much more

strongly bound when the dimensionality of space is reduced. This is also true of trions [13, 31, 34], for

reasons that are less straightforward to understand.

2.4. QuantumWellHeterostructures

Quantum wells implement dimensional confinement for carriers by sandwiching a thin (~10 nm)

layer of semiconductor material between barriers composed of a similar material having a larger band

gap. Smooth, lattice-matched interfaces are achieved in the case of AlxGa1−xAs by sharply varying the

Al content during the growth process in molecular beam epitaxy. Depending on the band alignment

between the two, this results in finite square well confinement for one or both species of carrier along

the growth direction z. A Type-I quantum well confines both conduction band electrons and valence

band holes. This is shown schematically in Fig. 2.3.

LH
HH

L

CB

VB

FIGURE 2.3. Band-edge profile of a Type-I quantum well in real space. For each band, only one
subband is shown. Finite square well confinement results for electrons and holes. Recall that for the
valence band, the energy axis for holes is inverted.

This leads to quantization of the kz component of the crystal momentum into the discrete

particle-in-a-box spectrum. The kx and ky are not quantized, and retain their parabolic dispersion

in those transverse dimensions. Hence, the quantization of kz serves to break the 3D continuum of

Bloch states into discrete subbands of 2D continuums, each having an energetic offset from the band

edge by an amount equal to the well confinement energy along z.

In AlxGa1−xAs, the band gap varies from 1.4 eV (at x = 0) to 3.0 eV (for pure AlAs), with

the mismatch distributed 2 : 1 between the conduction and valence bands. Bound states can be

found by solving the Schrödinger equation in the z direction for the spatially-dependent potential
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given by the band edge, taking care to account for effective-mass mismatches. Common numerical

approaches include the shooting method (in the effective-mass approximation) and transfer matrix

method utilizing the full Luttinger-Kohn Hamiltonian (which includes effects of non-parabolic valence

bands) These are considered in detail in Ref. [50].

This quantization lifts the degeneracy between the heavy-hole and light-hole bands at the zone

center (where k⃗ = 0). For wells 10 to 20 nm wide, which is typical, confinement energies in the valence

band are typically of order 5 meV for the lowest heavy hole state, and 10 meV for the lowest light hole

state. The heavy hole, now the ground state for holes, now lies the at the top of the valence band. This

is expected since m(eff)
h appears in the denominator of the kinetic energy expression (2.1), and kz is

quantized to approximately the same value for both HH and LH bands.

2.4.1. Quantumwell excitons

In the limit where only the lowest subband is populated, the carriers are effectively constrained

to move in two dimensions, and we expect to observe the properties of the two-dimensional

confinement described in 2.3.2.

Recall from 2.2 that the in-plane masses are reversed in GaAs. In a quantum well, the quantum-

confined heavy holes will be lighter than the light holes with regard to their lateral motion in the well,

and mass related to this in-plane motion is the relevant quantity for determining the wavefunctions of

excitons.

Using the expression for the exciton binding energy (2.20) with the values for the in-plane

masses of Table 2.2, we estimate the HH and LH 2D excitons to have Rydbergs of −13 and −16 meV,

respectively. Combined with the 5 and 10 meV subband offsets computed previously, we expect to

observe HH and LH exciton resonances separated by 2 meV in GaAs QWs.

This is shown in the optical absorption spectra of Fig. 2.6, with the heavy hole exciton

appearing lower in energy. Each transition is spin-degenerate, with cross-circularly polarized selection

rules shown in Figs. 2.4 and 2.5. These are confirmed experimentally by applying a red-detuned pump

pulse and measuring ac stark shifts in the absorption spectrum.

In addition to confinement, successful optical observation of the trion calls for a reservoir

of excess electrons or holes. For this, the quantum well will need to be doped with a gas of excess

carriers.
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−1/2 +1/2

−1/2 +1/2

−3/2 +3/2
HH

LH

σ+ σ−

FIGURE 2.4. Optical selection rules for interband transitions. Circularly-polarized photons promote
electrons to conduction-band states from the heavy- and light-hole bands.

↓⇓ −2
↓⇑ +1

↑⇓ −1
↑⇑ +2

HH

σ− σ+

↓⇓ −1
↓⇑ +0

↑⇓ +0
↑⇑ +1

LH

σ− σ+

FIGURE 2.5. Optical selection rules for interband transitions, electron-hole picture. Same transitions
as in Fig. 2.4, in the view where a fully populated valence band forms a vacuum state (dotted line)
from which heavy- and light-hole excitons are generated. Note that hole spin is opposite that of the
electron state from which it is generated.
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FIGURE 2.6. AC stark shifts of exciton absorption resonances. Linear absorption spectra (dotted
lines) reveal both heavy- and light-hole exciton species. Spin degeneracy is lifted in the presence of
a red-detuned, circularly polarized pumping beam (red profile), with the shifted line appearing in
absorption of either cross-polarized (dashed line) or co-polarized (solid lines) light. The direction of
shift confirms the optical selection rules laid out in Figure 2.4. Sample: 10 periods undoped GaAs
multiple quantum well at 10.5 K. Four plots show four values of the pump power.
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2.5. Two-dimensional Carrier Gases

When quantum wells contain a reservoir of excess electrons or holes, this is referred to as

a two-dimensional electron (or hole) gas (2DEG/2DHG). While this arrangement makes possible

the formation of trions, presence of such a charged gas also screens the interaction between an

exciton’s constituent electron and hole. Since the exciton is large (of order 100 Å), a 2DEG creates an

interstitial mean field of negative charge that results in a reduced oscillator strength for their optical

absorption profile.

Generation of such a carrier gas is achieved by doping the quantum well. One advantage of

QWs is that they can be doped without introducing impurity scattering to carriers in the well. By

implanting donor ions in the barrier material, donated electrons or holes are free to settle into the

QW while the ionic scattering sites remain spatially separated in the well. This process is referred to

as modulation doping.

The drawback of this technique is that it depends on crystal growth parameters, so injected

carrier gases are difficult to adjust in the context of an experiment. For experiments in this

dissertation where a dynamically adjustable 2DEG is desired, optical doping is employed, utilizing a

novel multiple-well structure called the mixed-type quantum well.

CB

VB

CB

VB

X-valley
HeNe

FIGURE 2.7. Two approaches to quantum-well doping. Left: Modulation doping, in which electrons
from donor ions implanted in the barrier thermalize into the well. The dopants form a 2DEG that
is free from scattering from the donor sites. Right: Optical doping using a mixed-type quantum well
(MTQW). Photoexcited electrons in the narrow well thermalize and transfer via the AlAs X-valley
into the wide well. The resulting 2DEG in the wide well persists until the holes tunnel through the
barrier.
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2.5.1. Mixed-type quantumwells

The mixed-type quantum well (MTQW) is a multiple-QW heterostructure designed to exhibit

low power optical nonlinearities based on 2DEGs [53, 54]. In place of doping with impurities, MTQW

are doped by an optical excitation in a secondary QW. This “optical doping” requires relatively little

optical power, which makes it of interest for application in optical switching devices.

In a GaAs MTQW, a narrow GaAs well is separated by a thin AlAs barrier from a wide GaAs

well (see the right side of Fig. 2.7). Since AlAs is an indirect-gap material having a conduction band

minimum at the X point of the Brillouin zone, the barrier acts like a well for conduction-band

electrons having k⃗ near X , resulting in a bound state called the X-valley.

The narrow well (NW) is a type-II QW, in which quantum confinement raises the bottom

of the conduction band to a higher energy than the X-valley in the AlAs barrier. After an optical

excitation of electron-hole pairs in the NW having k⃗ = 0, electrons can thermalize and transfer via the

X-valley to the conduction band of the wide well (WW). The holes have no such intermediary state, so

they remain trapped in the NW [53, 54].

Carrier densities ranging from 107/cm2 to 1010/cm2 can be generated and controlled via the

optical excitation. The excess electrons and holes separated by the thin barrier form an electron-hole

bilayer, with the lifetime of the carriers determined by the tunneling of the holes from the narrow to

the wide well [55, 56]. Within this lifetime, a 2DEG persists in the WW, the excitonic properties of

which have been extensively investigated [46, 57–64].

The specific sample used in our studies in Chapters IV and V consists of three periods of

narrow (2.5 nm) and wide (16 nm) GaAs wells separated by an 11.2 nm AlAs barrier. Two NWs have

been placed symmetrically on both sides of the WWs in order to minimize space-charge fields due to

buildup of spatially separated carriers. The valence-band structure of each well, computed by Phelps

[46] from the 6-level Luttinger-Kohn Hamiltonian, is shown in Fig. 2.8. The overlap between NW and

WW dispersion curves is important in determining the tunneling rate, since holes leaving the NW

must tunnel into an available WW state. In our sample, this is the fifth HH subband. The crossing

points between the first subband in the NW and fifth HH subband in the WW in the diagram are

states at which a energy- and momentum-conserving tunneling event can occur.

21



0.04 0.02 0.00 0.02 0.04

Wave vector (
−1

)

0

20

40

60

80

100

120

H
o
le

 E
n

e
rg

y 
(m

e
V

)

100110

FIGURE 2.8. Calculated subband dispersion in MTQW sample, for narrow (dashed lines) and wide
(solid lines) wells. Red lines indicate LH bands, others HH. Tunneling occurs where the ground NW
state and the fifth excited WW HH state overlap. The gray band indicates the energetic difference
made by monolayer fluctuations in the NW.

2.6. Magnetic Field Properties

An external magnetic field affects carriers in two important ways. The first is by lifting spin

degeneracy via the Zeeman effect, which is modeled by including the Hamiltonian term

HB =
gµB

ℏ
S⃗ · B⃗ (2.21)

which contributes a linear ±gµBB to the energy, with a slope set by the g-factor of the carrier.

The second influence is via the Lorentz interaction on moving electrons and holes. Classically,

a moving charge feels a sideways force F⃗ = qv⃗ × B⃗, causing it to move in a circular orbit in the plane

perpendicular to B⃗. Quantum mechanically, the harmonic motion of these orbits is quantized into

discrete, equally spaced levels called Landau levels.

This is incorporated into the quantum Hamiltonian by making the replacement

k⃗ → ℏ
i
∇⃗+ eA⃗ (2.22)

rather than the typical replacement k⃗ → ℏ
i ∇⃗. Here, A⃗ is a vector potential which generates the field

by B⃗ = ∇⃗ × A⃗. This affords a certain freedom in the choice of gauge: For a B⃗ aligned along the z axis,
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we typically proceed in either the Landau gauge

A⃗ = Bxŷ (2.23)

or the symmetric gauge A⃗ = Bx
2 ŷ − By

2 x̂. Both yield the same energy spectrum, but with different

forms for the resulting set of wavefunctions. A lucid treatment of several approaches is given in [65,

ch22] and [66]. Here we sketch the derivation in the Landau gauge, using cartesian coordinates.

Ignoring spin for the moment, we start by making the replacement (2.22) using the explicit form

(2.23), resulting in the Hamiltonian

H = − ℏ2

2m

[
∂2

∂x2
+

(
∂

∂y
+ i

eB

ℏ
x

)2

+
∂2

∂z2

]
. (2.24)

Recognizing that this form preserves translational invariance in the y and z directions, we proceed to

solve the eigenvalue problem using the ansatz

ψ(x, y, z) = u(x)eikyyeikzz (2.25)

where u(x) is the (currently undetermined) function in the x direction. This results in

− ℏ2

2m

d2u(x)

dx2
+

1

2
mω2

c (x− x0)
2
u(x) =

(
E − ℏ2k2z

2m

)
u(x) =: E⊥u(x) (2.26)

where we have designated the cyclotron frequency ωc = eB/m. Apart from the motion in z, where

the free-particle behavior is retained, we recognize the rest as the harmonic-oscillator Hamiltonian.

In-plane motion is characterized by harmonic motion in x, centered at x0, where

x0 = − ℏ
eB

ky =: −l20ky (2.27)

and where we’ve defined the magnetic length

l0 =
√
ℏ/eB. (2.28)
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This is the only way in which the quantum number ky enters the Hamiltonian: by determining the

spatial coordinate x0 at which the oscillator is centered in the x direction. Since this does not affect

the oscillator’s energy, ky now only labels degeneracy. In contrast, the continuous quantum number kx

is replaced by the principal quantum number n in the oscillator spectrum

E⊥ =

(
n+

1

2

)
ℏωc (2.29)

which labels an infinite series of equally-spaced levels. The x part of the wavefunction is given by

un(x) =
1√

l0
√
π2nn!

Hn

(
x− x0
l0

)
e−(x−x0)

2/2l20 (2.30)

where Hn is the Hermite polynomial. We can visualize these wavefunctions as being localized (by

the exponential decay term) in a stripe around x0, with equal probability for detection anywhere

along y. In that direction, the wavefunction varies only with a phase modulation set by the fixed (x0-

dependent) value of ky .

If the sample has finite size given by the lengths Lx and Ly , ky is quantized in (very small) units

of 2π/Ly . Hence we could relabel these states with an integer label m given by

ky = m

(
2π

Ly

)
. (2.31)

Recalling (2.27), the possible x0 values can be expressed

x0 = −l20(m)
2π

Ly
. (2.32)

Now x0 must itself lie within the sample (be less than Lx), so m is constrained to range from zero to

−mmax, with

Lx = l20(mmax)
2π

Ly
(2.33)

and hence mmax is the total number of states available for each n

mmax =
LxLy

2πl20
. (2.34)
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This quantifies the degeneracy of each of the harmonic-oscillator levels. Incidentally, this is the same

number of levels that would exist within a segment of the k quasicontinuum of energetic width ℏωc

in the absence of a magnetic field. So the Landau levels can be thought of as a grouping of a closely-

spaced, non-degenerate 2D continuum into a coarsely-spaced degenerate ladder, with the size of the

groups increasing with the magnetic field. As these harmonic energy gaps become larger, they begin to

behave as subbands, having conductor- or insulator-like properties depending on the subband fullness

(quantified by the level “filling factor” ν).

The explicit form of the wavefunctions derived in this section – of stripes with some width

in x, extending infinitely in the y direction – bear no resemblance to the electron orbits we expect

classically. We have a freedom in choosing the basis wavefunctions we use to represent the degenerate

states in each Landau level, which comes from the freedom in the gauge choice when starting this

problem. By solving the problem in the symmetric gauge, as in [65, ch22], we can obtain wavefunctions

that better reflect the axial symmetry of the problem.

B B

FIGURE 2.9. Cartoon picture of Landau levels. Each level of the harmonic motion has degeneracy
associated with the size of the sample relative to the magnetic length l0, given by Asample/2πl

2
0

In a cartoon picture (Fig. 2.9), it is common to visualize the area of the sample divided into

chunks of real space with area 2πl2o , each of which can either be occupied or unoccupied by an
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electron at each harmonic level. The linear scale of the segmentation scales linearly with the field

strength. This intuitive picture is used, for example, in [45].

The specific form of the wavefunctions is not as important as the general result that a magnetic

field B⃗, applied along z, replaces the k-space basis in the perpendicular plane with two new quantum

numbers: n, the occupation nuber for the harmonic motion, and m, which labels the position of the

oscillator center in real space. Because they transform the k-space picture into a real-space picture,

localizing electrons on the length scale of l0, magnetic fields are a useful probe of locality in the

physics of interacting particles.

2.7. Magnetoexcitons

The effect of the magnetic field on exciton formation can be treated from two angles: either

by treating the magnetic field as a perturbation to the exciton states, or by treating the Coulomb

interaction as a perturbation to the Landau levels. Both regimes are accessible experimentally, and the

behavior of the transition is a subject of ongoing theoretical research.

2.7.1. Field as perturbation (lowmagnetic field)

A theoretical treatment of the exciton under a magnetic perturbation is given in Ref. [67].

Here, the expectation value of the Hamiltonian is expanded in the field strength B, so that

E(B) = E0 + γ1B + γ2B
2... (2.35)

with the coefficients γ quantifying the shifts of the exciton. The authors find explicit forms for these

coefficients and utilize a variational approach to minimize each coefficient in the expansion. Particular

attention is paid to γ2, the diamagnetic shift, since linear dependence on the field is already wrapped

up in the exciton g factor.

Symmetries of a quantum well are such that the second-order contribution to γ2 can be made

to vanish in the variational parameters, resulting in the expression

γ2 =
e2

8µc2
⟨
r2
⟩
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where µ is the in-plane reduced mass of the exciton, and
⟨
r2
⟩

is the expectation value of the square of

the electron-hole separation coordinate. In this way, the diamagnetic coefficient γ2 serves as a measure

of the electron-hole Bohr radius.

2.7.2. Interaction as perturbation (highmagnetic field)

It is relatively easy to achieve magnetic field strengths where the quantization scale l0 (2.28)

becomes comparable to the exciton size. In this regime, the magnetic field can no longer be treated

perturbatively, so we must consider the full Hamiltonian for the electron and hole in a magnetic field:

1

2me

(
−iℏ∇⃗e + eA⃗(r⃗e)

)2
+

1

2mh

(
−iℏ∇⃗h − eA⃗(r⃗h)

)2
− e2

4πϵ |r⃗e − r⃗h|
. (2.36)

In the high-field limit, the approach is to proceed as if deriving the Landau levels, treating the

interaction term as a perturbation. Gor’kov and Dzyaloshinskii [68] showed that, in the symmetric

gauge A⃗ = B⃗ × r⃗/2, the center-of-mass motion can be separated by introducing an operator

P̂ =
(
−iℏ∇⃗e + eA⃗(r⃗e)

)
+
(
−iℏ∇⃗h − eA⃗(r⃗h)

)
− e

µ0

[
B⃗ × (r⃗e + r⃗h)

]
(2.37)

which commutes with the Hamiltonian. The corresponding conserved quantity is the total

momentum of the exciton. In two dimensions, Lerner [69] showed that this results in an exciton

wavefunction

ψ(r⃗e, r⃗h) = exp

[
iR⃗ ·

(
P⃗ +

e

µ0
B⃗ × r⃗

)]
exp

(
1

2
iγr⃗ · P⃗

)
ϕ(r⃗ − r⃗0) (2.38)

where R⃗ is the center-of-mass coordinate, r⃗ = r⃗e − r⃗h is the relative coordinate of electron and hole,

and

r⃗0 =

 B⃗∣∣∣B⃗∣∣∣ × P⃗

 l20. (2.39)

The parameter

γ =
mh −me

mh +me
, (2.40)
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not to be confused with the expansion coefficient in the previous section, quantifies the mass

asymmetry, and the relative-motion wavefunction ϕ satisfies the Schrödinger equation in the form

(
−∇⃗2

r

2µ
+
ie

2µ
γ
[
B⃗ × r⃗

]
∇⃗r −

e2

8µ
B2r2 − e2

ϵ |r⃗ + r⃗0|

)
ϕ(r⃗) = Eϕ(r⃗) (2.41)

where µ = memh/(me + mh) is the reduced mass. Without the Coulomb term, solutions to this

involve Laguerre polynomials. One proceeds by solving in orders of that term.

B

v

FL

FC

FIGURE 2.10. Conceptual view of a magnetoexciton: an electron and hole, traveling in tandem
such that their mutual Coulomb interaction cancels the Lorentz force. The spatial extent of their
wavefunction scales with the magnetic length.

Intuitively, this is motivated by the semiclassical picture shown pictorally in Fig. 2.10. In a

strong magnetic field, the ground exciton state does not resemble a stationary hydrogenic system but

instead a pair of carriers in motion, traveling side by side, with their Coulomb attraction serving to

cancel out the Lorentz force applied by the magnetic field [70]. In this configuration they are called

magnetoexcitons. This stands in contrast to what happens to single carriers: Whereas charge carriers

transition from a free-particle continuum to localized Landau orbits, neutral excitons’ wavefunctions

are instead compelled to stop orbiting one another and move in straight lines instead [71].

The theoretical treatment results in the following magnetoexciton properties, summarized by

Lozovik [70]: Their binding energy

EB =

√
π

2

e2

ϵl0
(2.42)

28



scales with
√
B. In terms of their shared momentum P⃗ , they have a dispersion curve given by

EX(P⃗ ) = −EBe
−βI0β (2.43)

where

β =

(
Pl0
2ℏ

)2

(2.44)

and I0 is the modified bessel function. For small P this is parabolic dispersion with effective mass

Meff =

√
8

π

ϵℏ2

e2l0
(2.45)

scaling as
√
B. At large P the binding energy tends asymptotically to zero, relative to the Landau-

level energy of the constituent carriers. Strictly speaking, there are no unbound states of the

magnetoexciton, but in practical terms the large P states are essentially broadly separated electron

and hole Landau states. As P tends to infinity so, too, does the mean electron-hole separation.

The magnitude of the electron-hole dipole is proportional to
∣∣∣P⃗ ∣∣∣, and near zero the spatial

extent of the wavefunction is characterized by the magnetic length l0. This has the effect that an

increased magnetic field effectively shrinks the exciton.

Of particular note for magnetoexciton is that the effective-mass dependence expressions has

dropped completely out of the expressions for energy and dispersion, with the length scale being

set entirely by the magnetic length l0. This is a dramatically different picture than the case of the

hydrogenic exciton, where the reduced mass was an important parameter.

The interplay between these two limits is a challenging theoretical problem, particularly with

regard to the question of whether the heavy or light hole exciton is more strongly bound. For details,

see Refs. [72–74].
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CHAPTER III

SPIN COHERENCE IN A CDTE QW

Several of the most compelling future technologies mentioned in the introduction to

this dissertation focus on the application of electron or hole spin. Spintronics, a re-imagining of

electronics in which information is encoded by carrier spins rather than charge, promises to usher

in a new class of devices. Spins also form an attractive candidate for encoding a bit of quantum

information (qubit), since their comparatively long coherence times relative to other quantum systems

in solids.

Spins in solids owe their relative robustness to decoherence in part to the fact that they form a

non-radiative coherence. Since optical selection rules prohibit radiative relaxation, the system is not

subject to optical mechanisms of decoherence.

This property also prevents direct optical manipulation of the spin, but the trion state forms

a bridge through which this is possible using 2-photon transitions. Electromagnetically induced

transparency (EIT), a coherent optical phenomenon which occurs in 3-level quantum systems,

can demonstrate the quality of the spin coherence as a starting point for more advanced optical

manipulations of the system. It also provides a potentially useful mechanism for implementing optical

switching in quantum networks on its own [75].

In this chapter we explore this technique and its limits for a CdTe quantum well. As we will

see, manybody interactions and external magnetic fields play an important role in semiconductor EIT.

Portions of this chapter were previously published in proceedings of the Quantum Electronics and

Laser Science Conference (CLEO: QELS) with co-authors Shannon O’Leary and Hailin Wang [6].

3.1. Electromagnetically Induced Transparency

Electromagnetically induced transparency (EIT) occurs in three-level quantum systems where

two of the states are not dipole-coupled except through an intermediary third state. When a pumping

electromagnetic field prepares a coherent superposition of these two states, transition amplitudes to

the third state can destructively interfere with one another, rendering the medium transparent [76].

This is most effective in a so-called Λ-type quantum system, shown schematically in Fig. 3.1.

Here, two lower-lying states |a⟩ and |b⟩ couple to a shared excited state |e⟩ via two transitions Ωa

30



and Ωb (where Ω denotes a rotating-frame Rabi frequency). In the following section, we derive a

theoretical framework for this system and show that it exhibits EIT.

|e〉

|a〉

|b〉

Ωa

Ωb

FIGURE 3.1. Schematic for a 3-level Λ system. Two dipole transitions are coupled by fields having
Rabi frequencies Ω. Ideal EIT conditions exist when the population (black dot) lies initially in the
state coupled by the probe (thin line) and not the more intense pump (thick line).

3.1.1. A three-levelΛ-system

We are interested in three-level Λ systems, where two states |a⟩ and |b⟩ are dipole-coupled

through a shared excited state |e⟩, but not to one another. Taking |e⟩ to be at E = 0, the free evolution

Hamiltonian is given by

H0 = −ℏω0a|a⟩⟨a| − ℏω0b|b⟩⟨b|. (3.1)

We can write the interaction terms separately for each of the two states, V = Va + Vb. In the rotating-

wave approximation,

Va = −d⃗ae · ε̂
E0a

2
(σa exp(+iωat) + σ†

a(exp(−iωat))). (3.2)

Or, adopting a Rabi frequency −d⃗ae · ε̂E0a/ℏ,

Va =
ℏΩa

2
(σa exp(+iωat) + σ†

a(exp(−iωat))) (3.3)
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and likewise for Vb. There are two fields, E0a and E0b, each coupling to only one transition, and we’ve

chosen the phases so that each one is real. The total Hamiltonian is

H = H0 + Va + Vb. (3.4)

We transform into a rotating frame with respect to the ground states, using the unitary

transformation operator

U = exp(−iωat|a⟩⟨a| − iωbt|b⟩⟨b|). (3.5)

Recalling that Hamiltonians transform according to (A.16), we obtain the transformed Hamiltonian

H̃ = ℏ∆a|a⟩⟨a|+ ℏ∆b|b⟩⟨b|+
ℏΩa

2
(σa + σ†

a) +
ℏΩb

2
(σb + σ†

b) (3.6)

where we have defined ∆a := (ωa − ω0a) and ∆b := (ωb − ω0b). The first two terms represent free

evolution in the ground states, and the second two represent coupling to the EM field.

3.1.2. An alternate basis

Consider using superpositions of the two ground states as an alternate basis. For example, we

could rotate the |a⟩ and |b⟩ amplitudes through some real angle θ.

|+⟩ = cos θ|a⟩+ sin θ|b⟩ (3.7)

|−⟩ = − sin θ|a⟩+ cos θ|b⟩. (3.8)

This is a reversible transformation, with inverse:

|a⟩ = cos θ|+⟩ − sin θ|−⟩ (3.9)

|b⟩ = sin θ|+⟩+ cos θ|−⟩. (3.10)
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By substituting this into the free-evolution part of our Hamiltonian, we get

H̃0 =ℏ (∆a cos
2 θ +∆b sin

2 θ)︸ ︷︷ ︸
=:∆+

|+⟩⟨+|+ ℏ (∆a sin
2 θ +∆b cos

2 θ)︸ ︷︷ ︸
=:∆−

|−⟩⟨−| (3.11)

+ ℏ (sin θ cos θ(∆b −∆a)︸ ︷︷ ︸
=:Ωg

(|+⟩⟨−|+ |−⟩⟨+|),

where the extra term represents Rabi flopping at a rate Ωg (since this new basis is not made of

eigenstates). The twiddles still represent the rotating frame – we’re denoting this second change of

basis by explicitly writing out the new kets.

As for the interaction terms, recalling σa := |a⟩⟨e| etc., and defining σ± := |±⟩⟨e|, we can write

Ṽ =
ℏ
2
(Ωa cos θ +Ωb sin θ)︸ ︷︷ ︸

=:Ω+

(σ+ + σ†
+) +

ℏ
2
(−Ωa sin θ +Ωb cos θ)︸ ︷︷ ︸

=:Ω−

(σ− + σ†
−) (3.12)

Notice that Ω− = 0 when Ωb cos θ = Ωa sin θ, that is, when

tan θ =
Ωb

Ωa
. (3.13)

When we choose the appropriate angle for θ, the |−⟩ state has no direct coupling to the electric field.

That is, both the Ωa and Ωb fields work only on population in |+⟩, and |−⟩ is affected solely through

the Rabi rotation in H0.

When this condition is met, we can further simplify the Rabi frequency corresponding to the

effective field

Ω+ =
√
Ω2

a +Ω2
b (3.14)

and the free flopping frequency

Ωg =
ΩaΩa

Ω2
a +Ω2

b

(∆b −∆a). (3.15)

The interaction term is

V =
ℏ
2

√
Ω2

a +Ω2
b(σ+ + σ†

+). (3.16)
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3.1.3. Raman resonance

Even though the |−⟩ state is formally decoupled from the electric field, it is still affected

indirectly due to the Rabi flopping Ωg in equation 3.11. This can be eliminated by matching the

detunings of the two fields:

∆a = ∆b =: ∆. (3.17)

This condition is known as Raman resonance. Here, the flopping frequency Ωg = 0, and |−⟩ is

entirely decoupled from effects of the optical field. It becomes a dark state. Under these conditions,

the Hamiltonian takes on the simplified form

H = ℏ∆(|+⟩⟨+|+ |−⟩⟨−|) + ℏ
2
Ω+(σ+ + σ†

+). (3.18)

As in the case of the two-level system (Appendix A), optical absorption results from having

a substantial population available in the ground state of a dipole transition. However, if the

population were to occupy this special superposition state, it would become invisible to the coupling

laser fields even though that superposition is composed of two ground states. This is the basis of

electromagnetically induced transparency.

3.1.4. 3-level optical Bloch equations

Returning to the Hamiltonian for the general case (3.6), we can obtain the equations of motion

from the Heisenberg equation, adding phenomenological decay rates Γa,b for spontaneous emission

through either of the dipole transitions, and γg for pure dephasing within the ground states. The

master equation takes the form

˙̃ρ =
−i
ℏ
[H̃, ρ̃] + ΓaD[σa]ρ̃+ ΓbD[σb]ρ̃+ γgD[σg]ρ̃ (3.19)

where ρ̃ is the density matrix in the rotating frame, σa = |a⟩⟨e| and σb = |b⟩⟨e| are the dipole lowering

operators. σg = |b⟩⟨b| − |a⟩⟨a|, and and D is the Lindblad superoperator (A.28). Note that, for

simplicity, we are not including any extra dephasing terms for the radiative coherences.
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By taking matrix elements of this master equation we arrive at three-level optical Bloch

equations:

˙̃ρaa =
iΩa

2
(ρ̃∗ea − ρ̃ea) +Γaρ̃ee (3.20)

˙̃ρbb =
iΩb

2
(ρ̃∗eb − ρ̃eb) +Γbρ̃ee (3.21)

˙̃ρea =
i

2
(2∆aρ̃ea − Ωaρ̃aa +Ωaρ̃ee − Ωbρ̃ba) −ρ̃eaγ (3.22)

˙̃ρeb =
i

2
(2∆bρ̃eb − Ωaρ̃

∗
ba − Ωbρ̃bb +Ωbρ̃ee) −ρ̃ebγ (3.23)

˙̃ρba = i

(
∆aρ̃ba −∆bρ̃ba +

Ωaρ̃
∗
eb

2
− Ωbρ̃ea

2

)
−ρ̃baγg (3.24)

where γ = Γa

2 + Γb

2 +
γg

4 . The excited-state population is given by ρ̃ee = 1− (ρ̃aa + ρ̃bb), and the other

coherence terms by complex conjugation.

3.1.5. Steady state

To obtain the absorption profile of either dipole transition, we need to solve for the steady

state of the corresponding coherence term (ρ̃ea or ρ̃eb). Rather than solve the system of five coupled

equations, we will treat this perturbatively in the dark-state limit.

Informed by the basis change in the preceding section, we see that the ground state |a⟩ is the

dark state |−⟩ in the limit where Ωa << Ωb. Physically, this corresponds to a very weak “probe” beam

coupling the σa transition and a stronger “pump” beam coupling the σb transition. Accordingly, Ωa will

serve as the small parameter in our perturbative expansion around an initial state where all population

is in state |a⟩. To zeroth order in Ωa, ρ(0)aa = 1 and all other matrix elements are are zero.

We are interested in the radiative coherence underlying the probe transition. To first order, this

is

˙̃ρ(1)ea = − iΩa

2
(ρ̃aa − ρ̃ee)−

iΩb

2
ρ̃ba + ρ̃ea (i∆a − γ) (3.25)

= − iΩa

2
− iΩb

2
ρ̃ba + ρ̃ea (i∆a − γ) +O

(
Ω2

a

)
. (3.26)
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This is still coupled to the equation for the nonradiative coherence, which is

˙̃ρ
(1)
ba =

iΩa

2
ρ̃be −

iΩb

2
ρ̃ea − ρ̃ba (−i∆a + i∆b + γg) (3.27)

= − iΩb

2
ρ̃ea − ρ̃ba (−i∆a + i∆b + γg) +O

(
Ω2

a

)
. (3.28)

It is straightforward to solve this system of two coupled equations in steady state. Setting ˙̃ρ
(1)
ba = 0,

ρ̃ba =
iΩbρ̃ea

2i∆a − 2i∆b − 2γg
(3.29)

We can plug this into the equation of motion for the radiative coherence

0 = − iΩa

2
+ ρ̃ea

(
i∆a +

Ω2
b

4i∆a − 4i∆b − 4γg
− γ

)
(3.30)

which yields an expression for the steady-state coherence term

ρ̃ea =
2Ωa (−∆a +∆b − iγg)

−4∆2
a + 4∆a∆b − 4i∆aγ − 4i∆aγg + 4i∆bγ +Ω2

b + 4γγg
(3.31)

The refractive index (A.61) and absorption coefficient (A.60) follow from this as n ∝ Re [ρ̃ea/Ωa] and

α ∝ Im [−ρ̃ea/Ωa]. In Fig. 3.2 we plot the latter, which is proportional to the absorption coefficient

seen by the probing beam as a function of ∆a.

3.1.6. Observing EIT in absorption spectroscopy

For small values of the pump coupling Ωb, the absorption spectrum shows the same Lorentzian

lineshape as for a 2-level system, except for a sharp dip where ∆a = ∆b, the Raman resonance

condition. This is electromagnetically induced transparency, resulting from the entire population

residing in the dark state |a⟩ while Ωb pumps the “empty” transition σb.

The width of the absorption dip is reflective of the quality of the nonradiative coherence in

the ground states. On the right side of Fig. 3.2 this is shown for several values of the ground-state

dephasing rate γg : the absorption dip is sharper and deeper as the dephasing approaches zero.

In the presence of nonzero ground-state dephasing, EIT is less sensitive to the Raman

resonance condition, but the degree of transparency is reduced. This can be compensated somewhat
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FIGURE 3.2. Simulated absorption spectrum with electromagnetically induced transparency.
Imaginary part of the scaled steady-state coherence term, ρ̃ea/Ωa, computed to first order in the
probe power Ωa, as a function of the probe detuning ∆a. Decay rates are fixed at Γa = Γb = 1, setting
the scale of the simulation, and ∆b = 0. In the left graph, the pump power Ωb is varied between traces,
and in the right graph, the ground-state dephasing rate γg is varied between traces.
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by increasing the pump power, at the expense of power broadening. This is evident on the left side of

Fig 3.2, where for γg = 0.01 and Ωb = 0.1 the absorption is reduced by only 20%. By increasing the

power to Ωb = 1, the transparency is nearly perfect but the dip width is no longer reflective of the

nonradiative coherence.

3.1.7. Applications of EIT

EIT is of particular interest among nonlinear optical phenomena because of its coherent

nature: it is a quantum interference phenomenon that renders the medium transparent. Any optical

nonlinearity in which a pumping beam controls the absorption of another can lead to applications in

all-optical switching. Since EIT is controlled by a quantum system, it may be considered a precursor to

spintronic and quantum information applications. As a practical matter, EIT can be used to measure

the quality of the nonradiative coherence using an optical experiment.

3.2. Implementing EIT in Semiconductors

Previous research has explored the multiple avenues for realizing EIT in semiconductors [77].

The most compelling approach utilizes the spin states of the carrier as the ground states |a⟩ and |b⟩,

since they are relatively robust against decoherence. The excited state is provided by the heavy-hole

trion.

A special property is responsible for the trion’s role as the shared excited state. Like the

electron, the trion has two spin configurations ± 3
2 , each individually coupled to an electron having

spin ± 1
2 respectively by absorbing a circularly-polarized photon (carrying angular momentum ±1)

traveling along the spin axis. In this configuration, shown in Fig. 3.3, the system looks more like two

independent 2-level systems than the 3-level Λ system necessary for EIT.

In quantum dots and wells, confinement induces hole spins to quantize along the growth axis of

the heterostructure, an effect which can outcompete the influence of an external magnetic field [78].

By applying an in-plane magnetic field (Voigt geometry), electrons quantize along the transverse axis

x, while holes remain “pinned” in the growth direction z. For light incident along z, this introduces

linearly-polarized cross-couplings between the up- and down-spin halves of the system. As shown in

Fig. 3.4, this results in the formation of two optical Λ systems with cross-polarized selection rules.
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FIGURE 3.4. Spin selection rules for trions in a Voigt magnetic field.
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3.3. Experimental Study: EIT in a CdTeQW

In this section we demonstrate EIT that utilizes the spin coherence of resident carriers in

an n-doped CdTe QW. Pursuing this in wells, as opposed to dots, is of special interest since some

applications of EIT require an optically dense ensemble, rather than a single emitter. For these

applications, a QW-confined spin ensemble presents greater optical density, and less inhomogeneous

broadening, than an ensemble of QDs.

A high quality n-doped CdTe QW is used in our study. The sample consists of 10 periods of

10 nm CdTe wells and 45 nm Cd0.84Zn0.16Te barriers, grown on a Cd0.88Zn0.12Te substrate that is

transparent near the band edge. The modulation doping density is estimated to be 3× 1010/cm2. Both

neutral and charged excitons (trions) have been observed in this sample previously [12]. Fig. 3.5 plots

the absorption spectrum of the sample obtained at T = 10K, showing clearly resolved heavy-hole

(HH) exciton and trion (charged exciton) resonances, in the absence of a magnetic field. This picture

is qualitatively unchanged for small magnetic fields and small changes in temperature, apart from some

energetic shift. The electron g-factor, determined from separate spin precession measurements, is

|ge| = 1.6.
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FIGURE 3.5. Linear absorption spectrum of a modulation-doped CdTe QW obtained at 10 K.

A similar study was conducted by O’Leary in a GaAs mixed-type quantum well [17]. Relative

to that prior work, much larger Zeeman splittings are possible in CdTe due to its higher g-factor.

In addition to greater spectral separation of the relevant resonances, this can thermally depopulate

the upper spin state and result in greater spin polarization. Recall from section 3.1 that a maximally

polarized starting state is ideal for generating EIT.
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3.3.1. Results: Continuous-wave EIT at low field

Continuous-wave EIT experiments were carried out on the trion transition with a small in-

plane magnetic field of B = 0.6T and with the pump and probe beams having orthogonal linear

polarizations. Figure 3.6 shows the differential transmission (DT) spectrum obtained at T = 10K,

with the pump centered at 772 nm. Two spectrally-sharp coherent Raman resonances are observed,

corresponding to the two Λ-type three-level systems shown in the insets. The separation between the

two resonances, ±13GHz, is consistent with |ge| = 1.6 in CdTe. Neither has a magnitude exceeding

0.2% of the trion absorption.
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FIGURE 3.6. Coherent Raman resonances in CdTe QW, continuous-wave experiment. DT response
obtained by pumping near the trion absorption resonance at 10 K in the presence of a 0.6 T in-plane
magnetic field.

This small value of the electron splitting is insufficient to thermally depopulate one of the

electron spin states. In this limit, increasing the pump intensity beyond the χ(3) regime leads to

excessive optical excitations of excitons and trions, leading to collision-induced decoherence of

the dipole transiton rather than stronger transparency. This may be avoided by applying still higher

magnetic fields.

3.3.2. Results: Pulsed EIT at increased field

In a second experiment, a 5 T magnetic field was applied using a superconducting magnet,

while EIT was induced using a pulsed picosecond laser. In a pulsed configuration, high field intensities

can be achieved for short times, without heating the sample as much as in a CW EIT experiment.
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The drawback is that the widths of EIT dips is limited by the bandwidth of the pulse, and not by the

spin coherence time. However, at 5 T, Zeeman splittings of the spin are big enough to be spectrally

resolved. This, combined with a lower operating temperature, should manifest an improved EIT

signal.
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FIGURE 3.7. Coherent Raman resonances in CdTe QW, pulsed experiment. Differential transmission
of CdTe QW, as a percentage of the trion absorption, when pumped by a 2 mW pulse centered at
771 nm. The sample is held at 5.3 K, with a 530 ps pump-probe delay and a 5 T magnetic field applied
in the Voigt direction. Pump spectrum shown schematically in gray (arbitrary units, not to scale).

A differential transmission spectrum is shown in Fig. 3.7. The central peak corresponds to

spectral hole burning by the pump, an incoherent effect. As in the CW experiment, EIT manifests as

two spikes in transmission when over- or under-tuned by the ∼ 0.5 meV Zeeman splitting. These EIT

signals, while larger than the CW case, are still less than 1% of the total absorption. Other researchers
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[79] achieved EIT signals of several percent by using slightly different conditions. Even so, absorption

reductions of less than 10% can hardly be considered “transparency”.

3.4. In Search of Spectrally-Resolved EIT

The results in the preceding section display clearly the spectrally-sharp Raman resonances that

form the basis for EIT in semiconductors. However, the degree of transparency is limited to less than

10% due to a variety of factors.

Most importantly, the transition being pumped on is not empty. Even when ∆E ≤ kBT ,

as in the pulsed-EIT experiment, it is still less than the linewidth of the trion transition. Hence, when

the upper spin state becomes depopulated, the pumping field is still resonantly exciting trions of the

opposite spin orientation. Spectral resolution of the spin states would be necessary to avoid this.

Secondly, strong optical excitations induce detrimental manybody effects. As shown in

Fig. 3.5, trion and exciton resonances overlap strongly, and this is the case at both zero field and at 5 T.

Therefore, strong pumps on the trion also generate excitons, which scatter with the electron gas and

lead to reduced dipole coherence in both of the relevant transitions [17].

In principle, there is reason to believe that both quandries may be addressed by using still

higher magnetic fields. Increasing the electron Zeeman splitting to the point where it exceeds the

trion linewidth would enable spectral resolution of the individual spin states. In addition, trions

are known to be more strongly bound at high fields, leading to lessened overlap with the exciton

resonance and potentially fewer manybody excitations.

For these reasons, high magnetic fields hold the promise of creating an ideal EIT platform in

semiconductors. However, the precise behavior of excitons and trions in high Voigt fields is under-

studied with respect to longitudinal magnetic fields (Faraday geometry), for reasons detailed in the

next chapter. In the next section we conduct our own study excitons and trions in high Voigt fields as

a precursor to their application as an EIT platform.

3.4.1. Spectroscopic survey: HighMagnetic Field

Absorption spectra of the CdTe QW were measured using attenuated pulses from a broadband

Ti:Sapphire laser. An Optical Parametric Amplifier (OPA) was used to tune the pulses to the

appropriate wavelength. In-plane magnetic fields (Voigt geometry) were applied using the 25 T Split
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Florida-Helix resistive magnet at the National High Magnetic Field Laboratory in Tallahassee, Florida.

The sample was cooled to 6 K using the cryogenic insert.
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FIGURE 3.8. Absorption spectra of CdTe QW in increasing Voigt fields. Sample held at 6 K. A
horizontally-polarized probe was used (perpendicular to the magnetic field axis); vertically-polarized
spectra were qualitatively the same. Lines have been vertically offset for clarity.

Fig. 3.8 shows the CdTe absorption spectrum as a function of the applied field. The oscillator

strength of the trion is observed to reduce as the field is increased. A splitting in the exciton

resonance leads to a greater overlap with the trion. This behavior is independent of polarization of

the probing field. The spectral center of each resonance, determined by fitting to the sum of several

Lorentzian distributions, is shown in Fig. 3.9.

3.5. Trionic Instability inHigh Voigt Fields

The dramatic reduction of the trion oscillator strength with increasing magnetic field precludes

its use as an ideal EIT platform. These results indicate that the trion complex becomes unstable

at high magnetic fields, before splittings of the desired magnitude are achieved. This was not an

anticipated result.
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FIGURE 3.9. Spectral position of CdTe absorption resonances vs. magnetic field. Values obtained by
fitting Lorentzian functions to the absorption spectra in the previous figure. All are subject to a shift
to higher energies, with increasing exciton-trion overlap.

45



Even if this were not the case, however, the strongly overlapping exciton would likely mask

optical access to the trion via manybody effects. The exciton is seen to exhibit a strong Zeeman

splitting, as had been previously observed in an undoped sample [80]. The trion, in contrast,

disappears before any splitting may be clearly seen. This effect overwhelms any increase in the trion’s

binding energy, meaning that CdTe QWs in are likely not a viable candidate for high-magnitude EIT,

even at intermediate field strengths (e.g. 15 T).

3.6. Conclusions: No Ideal EITPlatform

In this chapter, we pursued an ideal platform for high-transparency EIT in a CdTe QW. While

this system exhibits the basic structure for EIT at low magnetic fields, the low degree of transparency

achieved limits its relevance for applications requiring a high optical density. Although marginal

improvements can be made at magnetic fields of 5 T, these do not scale to high magnetic fields. We

observed two effects that preclude an ideal EIT platform at high Voigt fields, including a breakdown

in the trion complex.
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CHAPTER IV

EXCITONS AND TRIONS IN HIGH MAGNETIC FIELDS

In the previous chapter, we ventured into the realm of high magnetic fields. Here we saw the

creation probability for trions vanish, overwhelming the Zeeman splitting that was desired as part of

the experimental design. This highlights an important consideration: the optical “excited state” of

the electron spin system is not a reconfiguration of the electron within a fixed orbital structure – as

would be the case for atoms – but instead the creation of a distinct quasiparticle that is bound to it.

The circumstances of that pair’s creation event are impacted not only by its binding to the existing

electron, but also by the density of screening carriers and the presence of an applied magnetic field.

The orbital structure of the trion has been extensively studied in both theoretical [28, 32, 81]

and experimental contexts [10, 29, 30, 38]. As a true manifestation of the three-body problem, a

closed-form expression of its wavefunction is generally not possible. Experimental approaches to

the problem have largely focused on photoluminescence (PL) measurements, which are an effective

probe of trion state occupation, but yield only partial information about its structure. In particular,

the density of states can be obtained from PL only by making rate-equation models.

In this chapter, we examine how the structure of exciton and trion complexes is modified by

an external field. Our focus is an experimental study in which we measure direct absorption of the

quasiparticle spectrum in fields up to 25 T.

4.1. ElectronicMotion in AppliedMagnetic Fields

As we saw in Section 2.6, an external magnetic field breaks an important symmetry with regard

to the spatial part of carrier wavefunctions. In the absence of magnetic fields, these are the Bloch

wavefunctions, which describe a continuum of free-particle-like eigenstates labeled by (and with the

energy solely determined by) the crystal momentum k⃗. This picture completely changes in a magnetic

field, where motion perpendicular to the field vector B⃗ becomes quantized into Landau levels. With

B⃗ along the z axis, transverse motion is described not by momentum-space vectors kx and ky but by

n, labeling the Landau level that is occupied, and m, which labels degeneracy related to a real-space

coordinate. In this way, the field localizes the motion of carriers.
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In a bulk semiconductor, the new expression for the energy is

En,m(kz) = ℏωc

(
n+

1

2

)
+

ℏ2k2z
2me

where kz remains a continuous variable. In a quantum well, this can be quantized by the spatial

confinement, provided the growth axis is parallel to the magnetic field (Faraday geometry). Magnetic

field effects are most pronounced in this arrangement, since the carrier states are now quantized in all

three dimensions.

Exciton wavefunctions are also transformed by the field, which we surveyed in Section 2.7.

When the magnetic length scale, l0 =
√
ℏ/eB, becomes smaller than the Bohr radius, excitons

gradually lose their hydrogenic resemblance in favor of a new structure, the magnetoexciton, in which

the Coulomb attraction is counterbalanced by opposite Lorenz forces. The crossing-over between

these two regimes is a challenging theoretical problem [72, 82].

The trion state, too, takes on a richer structure in the presence of magnetic fields. As we will

see, the presence of Landau degeneracy is instrumental in binding the triplet state of the trion, which

has been shown to eventually become the trion’s ground state [30]. We do not examine the singlet-

triplet crossing in this chapter, but focus instead on detailed measurements surrounding its emergence.

Spin plays a crucial role in identifying this new trion state.

4.2. Fine Structure of Excitons and Trions

While the magnetic field has the effect of introducing degeneracy in the spatial wavefunctions

of carriers, it also lifts the degeneracy associated with their intrinsic spin. As seen in the preceding

chapter, intrinsic spin is an important consideration for determining the optical selection rules of

exciton and trion transitions.

In the previous chapter’s experiment we saw the exciton split with an in-plane g-factor of |g| =

1.6, which primarily came from the electron, since the hole is pinned in the growth direction. In the

Faraday geometry, hole pinning is not a factor, so the Zeeman splitting of excitons and trions follows

from the g-factors of the individual carriers in a more straightforward way.

This section follows the convention of Ref. [38], where for g > 0 the spin-up (spin-down) state

is higher (lower) in energy, for both electrons and holes. We assume ge < gh < 0. Exciton energies are
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given by

EX(B) =
(
geS +

gh
3
J
)
µBB

where the electron spin S = ±1
2 and the heavy-hole spin J = ± 3

2 . Note that in this the g-factor

applies to the sign of the spin only.
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FIGURE 4.1. Optical selection rules for excitons and singlet trions. Fine structure shown for heavy-
hole excitons (left side) and singlet trions (right side) with ge < gh < 0. Electron spin states are
denoted with ↑ and ↓ and hole states by ⇑ and ⇓. The spin singlet state (↑↓ − ↓↑) /

√
2 is abbreviated

(↑↓)−.

The four possible states are shown on the left side of Fig. 4.1. Since circularly-polarized light

can only carry spin of ±1, only two of them are optically accessible. Because the electron and hole

have differing g-factors, the ordering of exciton states does not necessarily follow the total spin of the
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complex, and in this case they do not. By limiting ourselves to the two optically-accessible exciton

states we can define an exciton g-factor

gX = gh − ge.

Trion states are shown on the right side of Fig. 4.1. These lie lower than the exciton states by an

amount equal to the binding energy of the “extra” electron. For reasons explained in the next section,

the two electrons form a singlet state, and the two trion states are separated only by the hole Zeeman

splitting, which is typically small. However, the optical transitions are still separated by an amount

equal to the exciton splitting due to the field dependence of the electrons, which form the ground

state of the transition.

4.3. Triplet State of the Trion

Because the electrons in the trion are two indistinguishable fermions, they are described by

a wavefunction that is antisymmetric when interchanging their coordinates. This asymmetry can be

carried either by the spatial part of the wavefunction, or by the part labeling intrinsic spin. As a result,

two classes of trions exist: singlet trions and triplet trions, where the name refers to the intrinsic spin

configuration of the two electrons.

As in other two-electron atoms like helium, exchange symmetry is the most important

consideration in determining how strongly each class of trion is bound. A variational proof shows

that in the absence of a magnetic field, the ground state of a two-fermion system necessarily has

a symmetric spatial wavefunction, and therefore forms a spin singlet [83]. The electrons need not

interact for this to be true, except via exchange. In keeping with this, singlet trions form the ground

state (and indeed the only bound trion state) at zero field.

The constraints imposed by exchange are loosened dramatically when degeneracy exists

in the spatial part of the wavefunction, to the point where interaction terms become important.

In that scenario, electrons can occupy separate orbitals at no cost in energy, and by doing so in

an antisymmetrical way they maximize their mean separation in space. This in turn minimizes

Coulombic repulsion and screening of the central positive charge. As a result, it is energetically

advantageous for the spatial wavefunction to carry the asymmetry, with the spin part forming a triplet.
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This principle, known as the first of Hund’s rules, explains why triplets typically lie lower than

singlets in the structure of atoms like carbon. In that case, triplets lie lower due to the threefold

degeneracy of the p orbital, but it is applicable whenever the spatial part of the wavefunction has

some degeneracy. In our case, this comes from Landau quantization.

Because the trion carries charge, its spatial wavefunction becomes quantized into Landau levels

by an applied magnetic field, inducing a degeneracy that scales linearly with the field strength. For this

reason, triplet trions become bound in a magnetic field, and can even cross the singlet to become the

ground state in the high-field limit [10].

4.3.1. Fine structure
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FIGURE 4.2. Optical selection rules for triplet trions. Notation and parameters are as in Fig. 4.1,
with the spin state (↑↓ + ↓↑) /

√
2 is abbreviated (↑↓)+. EB is not to scale with the zeeman splittings

shown.
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The six possible spin configurations of the triplet trion are shown in Fig. 4.2. Only four are

optically accessible, and because the extra-electron binding energy EB is so small for the triplet states,

most are not even bound. The lowest-lying optically-accessible state has spin − 1
2 , and is coupled by a

field that is co-polarized with the lower-energy exciton and trion transitions (shown in Fig. 4.1).

It’s important to note that multiple orbital configurations exist for the triplet trion, with

potentially stronger binding energy EB . These states are labeled by the orbital magnetic quantum

number m, and for nonzero values of m, all six states can be optically forbidden. Even so, these so-

called “dark triplets” are regularly observed in photoluminescence studies due to phonon-assisted

decay processes.

4.4. Experimental Study

We have conducted an experimental study of excitons and trions in high magnetic fields. In

contrast to prior work in this area, which typically make use of modulation-doped samples, we utilize

a GaAs Mixed-Type Quantum well (MTQW), the structure of which was described in Section 2.5.1.

This gives us optical control of the carrier density in the well, which is useful for distinguishing

resonances of excitons (which dominate for low electron densities) and trions (which appear only

when excess electrons are present). Optical doping was provided by a continuous wave HeNe laser at

632 nm, with intensity controlled by an acousto-optic modulator.

The choice of GaAs has other structure-independent considerations: Most notably, a g-factor

of |ge| = 0.27, which is much smaller than in CdTe [17]. In addition to a smaller spin splitting, the

light-hole and heavy-hole excitons lie much closer together, and there is an increased role of valence

band mixing, which we will also examine.

This work is also distinct from many prior studies in that we measure this spectrum in optical

absorption, not photoluminescence. This provides a direct measurement of the density of states for

each complex, independent of its population. Peak sizes in the measurement unambiguously represent

the oscillator strength of the transition, making other features (such as the Zeeman splitting) more

clear. To this end, an 800 nm pulsed Ti:Sapphire laser (Coherent Vitesse) provided a probing field,

whose FWHM of approximately 10 nm is broad enough to serve as a white light source for our

purposes. High-resolution spectra were obtained by a liquid nitrogen-cooled CCD camera mounted to
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a 750 mm spectrometer (Princeton Instruments Acton SP2750), with a grating having 1200 grooves per

mm.

The sample was held at 10 K inside a helium flow cryostat. Magnetic fields were applied using

the 25 T Split Florida-Helix resistive magnet at the National High Magnetic Field Laboratory in

Tallahassee, Florida. This split-bore magnet is designed to apply fields in the Voigt geometry. To apply

a field in the Faraday direction, a specialty sample holder mounted the sample flat between a bottom

prism implementing a 90-degree turn and a top retro-reflecting prism. The bottom prism made use

of a silvered hypotenuse to maintain circular polarization, while the top prism reflected light directly

back toward the sample. Ultimately the probing field passes through the sample twice before being

measured, with the polarization reversal by the prism countering the effective change in direction of

the magnetic field.

4.4.1. Spectroscopic survey

The evolution of the absorption spectrum with magnetic field is shown in Fig. 4.3. For each

field strength, traces are shown in the presence and absence of optical doping, which distinguishes

peaks associated with excitons from those associated with trions. The intensity of the doping laser,

4.8 mW/cm2, is estimated to inject on the order of 1010 electrons/cm2.

Without doping, we observe two peaks identifiable as heavy- and light-hole excitons. In the

presence of doping, exciton lines weaken (due to screening by the electron gas), and heavy-hole trion

peaks appear to the low-energy side of the corresponding excitons. At exceptionally high fields, a

second peak emerges from the low-energy shoulder of the exciton, for σ− polarized light only. This is

what we expect to see for the trion’s triplet state becoming bound.

Fig. 4.4 plots how the exciton peaks’ positions evolve in a magnetic field, illustrating that

they both become stronger and shift to higher energies (diamagnetic shift). This view of the data is

obtained from spectra of the undoped well by fitting them to the sum of several Lorentzian functions.

Both species of exciton are subject to a Zeeman splitting that is opposite for light-hole excitons as it is

for heavy-hole excitons, confirming the spin structure of the transitions shown in Fig. 2.4.

The evolution of lines in the optically-doped well is shown in Fig. 4.5, where the diamagnetic

shift of the heavy-hole exciton has been subtracted for clarity. The Zeeman splitting of the trions

matches that of the heavy-hole excitons, offset by an amount equal to the binding energy of the
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FIGURE 4.3. Magnetic field dependence of MTQW absorption spectrum with (red lines) and
without (black lines) optical doping, in the Faraday geometry. Lines have been offset vertically for
clarity. Shown separately for left- and right-hand circularly polarized light. Sample was held at 10K,
with the electron-injection laser intensity tuned to 4.8 mW/cm2.
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FIGURE 4.4. Spectral position of MTQW exciton absorption resonances vs. magnetic field. These
are extracted from absorption spectra obtained without optical doping, in which no trion lines are
observed. Heavy-hole excitons are denoted by circles, and light-hole excitons by triangles, with the
size of the marker illustrating the relative strength of the absorption line. Marker color indicates two
values of cross-circularly polarized light used in the experiment.
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FIGURE 4.5. Energy of exciton and trion absorption peaks relative to the overall diamagnetic shift
of the exciton. Obtained with optical doping, with the electron-injection laser intensity tuned to
4.8 mW/cm2. Marker sizes, colors and shapes are as in the previous figure, with the addition of singlet
trions (squares) and triplet trions (diamonds).
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additional electron. The triplet trion, which appears for one polarization only, is co-polarized with

the lower energy singlet trion, as expected from the energy levels detailed in Figs. 4.1 and 4.2.

Two important physical parameters may be isolated from these data: the g-factors and binding

energies. These are visualized in Figs. 4.6 and 4.7.
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FIGURE 4.6. Zeeman gap of LH excitons, versus that of HH excitons and trions. Exciton Zeeman
gaps obtained from spectra of the undoped well; singlet trion Zeeman gap obtained from spectra
where the doping field is active.

Fig. 4.6 plots the magnitude of the splittings for the three bodies which appear in pairs. This

behavior is matched for the heavy-hole exciton and its charged state, the singlet trion. Both bodies

display a g-factor of approximately 2 at fields above 5 T, but exhibit a much smaller one at lower fields.

In contrast, the light-hole exciton splits readily at low fields before the splitting becomes saturated

at a value of 3.2 meV. This opposite behavior is be reflective of an underlying band-mixing process

between the two, resulting in a field-dependent g-factor for the hole. This behavior is consistent with

observations in a prior study [38].

Fig. 4.7 plots the energy of the trion peaks, alone, with both the diamagnetic and Zeeman terms

subtracted. This is the binding energy for the second electron in either body. It is clear that both
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FIGURE 4.7. Observed binding energy of second electron in singlet and triplet trions. Obtained from
the spectral position of the trions relative to the exciton with which they are co-polarized.
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singlets and triplets become more tightly bound in a magnetic field, at a seemingly comparable rate.

At the maximum field accessible in this experiment, the observed triplet line is only half as strongly

bound as the singlet trion. However, its oscillator strength is approximately three times that of the

co-polarized singlet.

4.5. Discussion

The carrier localization induced by the magnetic field leads to stronger, more local interactions,

leading to much stronger absorption by excitons and trions alike. Increased oscillator strengths are

reflective of tighter binding and reduced itinerant electron screening overall.

Out of the various peaks identified in the preceding data, all appear in polarization pairs except

for the trion triplet. This is not surprising in the context of the selection rules shown in Fig. 4.2, where

the lowest-energy triplet trion state (in which both electrons align with the field) is only optically

accessible through one polarization. We expect the next spin configuration to be quite weakly bound,

and have not observed it.

4.5.1. Oscillator strength

In the presence of doping, the strongest absorption lines are consistently those which couple

states containing field-aligned electrons. In the case of the singlet trion, the σ+ variant has twice the

oscillator strength of its counter-polarized counterpart. This is expected since spin-up resident carriers

form the ground state of this transition, and these are more plentiful when the Zeeman splitting is on

the order of kBT . A simple estimation of the thermal spin polarization is shown in Fig. 4.8.

The ratio of oscillator strengths of the neutral exciton is also 2, favoring the σ+ transition, for a

different reason. Here, the photoexcited electron is aligned counter to the field. While in an undoped

semiconductor we expect both spin states to be equally dense, in our case the spin-up electron state

has higher occupation, rendering this state less available when generating excitons. This Pauli blocking

effect is not evident in the absence of the doping laser: in that case, the ratio between oscillator

strengths of the exciton is very close to 1.

Both excitons and singlet trions have weaker oscillator strength than the triplet trion, which

is surprising because the triplet trion is a less tightly bound state. Like the singlet trion, it has the

(highly-available) spin-up state of the resident carrier as its ground state, and excites a spin-up electron
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FIGURE 4.8. Estimation of thermal spin polarization of electrons at 10 K. Shown as a function
of magnetic field, for two values of the electron g-factor. In the GaAs sample of this experiment,
ge ≈ 0.27; the CdTe value ge ≈ 1.6 is shown for a basis of comparison. Computed from Boltzmann
statistics with n↑/ (n↑ + n↓) = 1/ (1 + exp (−∆E/(kBT ))).

(as does the Pauli-blocked neutral exciton transition in σ−). Evidently, the orbital state associated with

the trion triplet is denser than that of the singlet or neutral exciton in the presence of Landau levels,

evidenced by our direct measurement of the oscillator strengths.

4.5.2. Absence of the dark triplet

A transition to a regime in which a triplet forms the ground state of the trion is not observed in

these data, which is not surprising for a number of reasons. The observed trion triplet line, which does

not cross the singlet line, is almost certainly the ‘bright’ triplet, whose orbital angular momentum

state allows it to appear in absorption spectroscopy. The ‘dark’ triplet, which has the same spin

configuration but a different orbital angular momentum, is almost always more strongly bound.

Whether or not a more strongly bound triplet state exists in this sample cannot be said definitively

without a set of photoluminescence data, which was not obtained in our experiment.

Previous observations of a triplet becoming the trion ground state involved either much

higher field strengths [29] or materials having higher g-factors [30]. In that work, the triplet-ground

state crossing was “hidden” in the sense that the relevant spectral lines did not actually cross due to

complications from a field-dependent g-factor, an effect which is also present in our data.
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4.5.3. Field-dependent g-factor and holemixing

While at small fields the exciton and trion lines barely split, in keeping with the small value of

the g-factor that is expected for GaAs, they exhibit a g-factor of approximately 2 at high fields. Since

the inflection point coincides with the field strength at which the heavy- and light-hole excitons cross,

it is plausible that valence-band mixing is leading to this behavior. Light hole excitons are known to

exhibit giant Zeeman splitting [84]. However, this is unlikely to be hiding a transition to a trion-triplet

ground state, as in Ref. [30], since the sign of the g-factor does not change.

Fig. 4.7 reveals one other property of interest with regard to the binding energy of the singlet

trions. The trion energy depends weakly on the Landau level filling factor, reaching local maxima and

minima [29]. An oscillation in the singlet trion binding energy is clear in the data, and may be a means

of verifying the injected carrier density.

4.6. Conclusion

We have presented a direct measurement of the density of states for excitons and trions in

a high magnetic field. We have identified the emergence of the triplet line, and determined that

it displays unexpectedly high oscillator strength. Zeeman splitting of the other species has been

unambiguously measured, revealing a nonlinear splitting that is indicative of a hole-mixing process.
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CHAPTER V

EXCITON-CORRELATED TUNNELING

In the preceding chapter, mixed-type quantum wells (MTQW) were utilized to study excitonic

physics under a range of doping conditions. In particular, this enabled optical injection of a two-

dimensional electron gas (2DEG) to the well of interest. Since the presence of a 2DEG is necessary

for trion formation, but screens the exciton interaction, this is a straightforward way to distinguish

between excitonic species in absorption spectra, especially at high magnetic fields where many

resonances are present.

However, MTQW play host to a multitude of other interaction phenomena arising from its

dual-well structure. In particular, carrier tunneling between the narrow well (NW) and wide well

(WW) has been shown to be linked to the WW exciton population [46]. In this chapter we examine

this exciton-correlated tunneling effect, and explore its behavior at high magnetic fields.

This chapter contains material previously published with co-authors Stephen A. McGill and

Hailin Wang [3].

5.1. Reverse Bleaching inOptically Doped Samples

In contrast to atomic spectra, excitonic resonances are subject to bleaching: a reduction in the

oscillator strength of the resonance as it is driven harder. This is due to collisional decoherence of the

dipole transition as the pumping laser introduces large populations of excitons to the sample.

This is not to be confused with screening, a process by which a 2DEG weakens the exciton

binding by creating a mean field of negative charges. Screening manifests itself as a broadening and

weakening of the exciton line. In certain MTQW samples, pumping on this weakened line results in a

nearly perfect recovery of its oscillator strength, rather than further broadening. This is counter to the

intuition that this should result in bleaching, as it would for the undoped line. While bleaching does

eventually occur, at low pump intensities it is overwhelmed by a competing process that reverses the

screening effects.

An example of this is shown in Fig. 5.1. Two resonances correspond to the heavy-hole (HH) and

light-hole (LH) excitons. Optical doping is effected by a HeNe laser having intensity 0.15 mW/cm2,

estimated to inject less than 109 electrons/cm2. This dilute 2DEG screens the excitonic interaction,
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leading to weaker and broader exciton absorption lines. No shift in the absorption lines is observed

that would imply a buildup of charges outside the well structure.

This effect is reversed, however, by applying a 2 mW/cm2 CW pump beam to the LH exciton

resonance, estimated to inject on the order of 109 excitons/cm2. LH excitons injected by this pump

quickly decay to HH excitons. In this case, the absorption is only partially recovered, but stronger

excitonic pumps have been shown to almost prefectly recover the HH resonance, even for much

denser 2DEGs [46].
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FIGURE 5.1. Reverse bleaching of exciton absorption spectra in optically-doped GaAs MTQW. At
12 K, HH and LH exciton absorption resonances are visible in the presence (dashed line) and absence
(dotted line) of a HeNe laser having intensity 0.15 mW/cm2. A strengthened HH exciton line (solid
line) is seen by applying a cw pump beam to the LH resonance, having power 2 mW/cm2.

The origins of this screening-reversal process lie in a peculiar correlated-tunneling process first

reported by Carey Phelps [46, 85]. The optically-injected 2DEG in a MTQW has a finite lifetime,

set by the rate at which holes tunnel through the interwell barrier. Presence of excitons accelerates

the hole tunneling, thereby reducing the 2DEG lifetime. In the case of the experiment shown above,

a shortened lifetime results in a lower steady-state 2DEG density, and therefore reduced screening.

This exciton-correlated tunneling effect is a surprising result, since tunneling is generally viewed as a
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single-particle transport process [86–88]. To understand exciton-correlated tunneling it is necessary to

consider the WW and NW together, which form a bilayer system.

5.2. Correlated Tunneling in Bilayers

A bilayer is any system in which electrons and holes are separated by a thin barrier. These

systems are of interest as a platform for studying the collective behavior of excitons since the physical

separation of carriers leads to longer exciton lifetimes [39, 42]. Cross-layer Coulomb potentials can be

manipulated to create artificial lattices [89], while interlayer correlations between carriers can lead to

other subtle behaviors, as shown by recent studies on the Kondo effect [90] and biexciton formation

[41].

Studies of other bilayer systems have revealed that the tunneling of the electrons or holes across

the barrier can depend on the interlayer Coulomb correlation between the carriers. As beautifully

demonstrated in an earlier experimental study on bilayers formed in modulation-doped GaAs quantum

wells in the quantum Hall regime, a giant increase in the tunneling rate occurs when every electron is

positioned opposite a hole across the barrier [44]. This giant increase in the tunneling rate was also

taken as evidence for the Bose-Einstein condensation of the electron-hole pairs in the bilayer system

[45].

Observation of correlated-tunneling processes in MTQW is surprising because the barrier

thickness is much greater than it is in other bilayer systems. In the remainder of this chapter, we

present detailed experimental studies on the dependence of the hole tunneling rates on temperature,

carrier density, exciton density, and external magnetic fields. These studies form a systematic survey

of the interwell tunneling behaviors in MTQW, helping to elucidate more information about the

microscopic origins of exciton-correlated tunneling.

5.3. OpticalMeasurement of Interwell Tunneling

Hole tunneling rates in MTQW can be measured entirely with optical techniques. As described

in section 2.5.1, MTQW samples are optically doped with a 2DEG by applying pump laser that excites

carriers in the narrow well (NW). A measure of this lifetime can be obtained by switching off the NW

pump, and then performing time-resolved absorption spectroscopy at the exciton line. Because the
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exciton absorption is screened proportionally to the 2DEG density, the strength of transmission will

decay exponentially as the 2DEG decays.

CW IR Diode

Exciton Injection

Electron Injection

Weak Probe
PMT

MTQW

Pulsed RF Scope
Sync

Signal

Variable Attenuator

AOMCW HeNe

CW IR Ti:S

FIGURE 5.2. Experimental configuration for tunneling measurements. A continuous-wave infrared
(CW IR) diode laser serves as a probe to monitor sample transmission at the HH exciton resonance,
while a HeNe laser, gated by an acousto-optic modulator (AOM), periodically injects electrons to the
WW from the NW. For studies involving exciton injection, a third beam (a CW Ti:Sapphire laser)
was added at the LH exciton resonance. PMT: photomultiplier tube.

In Fig. 5.2 a schematic view of the experimental apparatus for such a measurement is shown.

HeNe laser pulses are generated by gating a continuous-wave (CW) HeNe laser with an acousto-

optic modulator. We probe the rate of hole tunneling using a weak CW probe beam tuned to the

HH exciton resonance. The time-resolved transmission of this beam is measured by a fast detector

(photomultiplier tube) and fast oscilloscope. The third beam, labeled “exciton injection” in the

diagram, is relevant for the studies described in the next section, and is not active for the results

described presently. Unless otherwise specified, all experiments were performed with the sample

held at 10 K in a helium flow cryostat. Magnetic field dependence was studied using the 25 T Split

Florida-Helix resistive magnet at the National High Magnetic Field Laboratory in Tallahassee, Florida.

5.4. Hole Tunneling Characteristics

Results of a typical tunneling measurement are shown in Fig. 5.3. This plots the time-resolved

recovery of the same HH exciton absorption resonance shown being screened in Fig. 5.1. This

recovery reflects the decay of excess electron population in the WW, which results from interlayer

tunneling of the holes followed by radiative recombination. The decay of the electron population

is double exponential in nature, characterized by a fast component with a decay time of several

milliseconds and a slow component with a decay time of tens of milliseconds. Since the electron-hole

or exciton recombination time (on the order of nanoseconds) is orders of magnitude faster than the
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FIGURE 5.3. Results of a typical optical tunneling measurement. (a) Absorption spectrum shows
wide-well heavy-hole (HH) and light-hole (LH) exciton resonances (solid lines) at 10 K. A continuous-
wave HeNe laser of intensity 0.1 mW/cm2 injects an electron gas, which bleaches the exciton
resonances (dashed lines). (b) Time-resolved optical transmission at the HH exciton line in response
to 1 ms pulsed HeNe excitation of 5 mW/cm2. Decay is well-described by a double-exponential
function (dashed line).

hole tunneling time, the decay of the electron population measures directly the interlayer tunneling

rate of the holes.

Recall from Section 2.5.1 that the hole tunneling process must satisfy energy and momentum

conservation. Unless assisted by a phonon, it only occurs where valence subbands of the two wells

cross in Fig. 2.8. Well width fluctuations in a QW lead to an inhomogeneous broadening of the QW

energy levels. A width fluctuation of one monolayer induces a much greater energy variation in the

NW than that in the WW [91]. We estimate that NW bands are inhomogenously broadened by up

to 10 meV, as illustrated by the gray band in Fig. 2.8. Holes in the NW are expected to be thermally

distributed in the HH1 band within this spectral range, overlapping to varying degrees with the HH5

band of the WW. Note that these holes are spatially localized by the fluctuations in the confinement

potential [91].

The double-exponential character of the tunneling curve in Fig. 5.3b can be attributed to

this inhomogeneous distribution of the holes in the NW. Specifically, we associate the slow decay

component with the holes at the bottom of the thermal distribution. Absorption of phonons with

a relatively large energy to compensate the energy between the relevant HH5 and HH1 bands are

needed in order for the tunneling process to take place. Conversely, the fast component is associated

with holes that are near the higher energy region of the inhomogeneous distribution, which nearly

overlaps with the HH5 band in the WW. This interpretation is supported by our earlier experimental
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study, which shows that at relatively low temperatures (T < 30 K), the fast tunneling rate depends

more sensitively on the temperature than does the slow tunneling rate [46].

In the following experiments, two decay rates are extracted from these tunneling curves by way

of a least-squares fitting.

5.4.1. Electron density
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FIGURE 5.4. Extracted hole tunneling rates as a function of electron density, as controlled by the
peak intensity of a 1 ms HeNe laser pulse.

Figure 5.4 shows the dependence of the fast and slow hole tunneling rates on the excess

electron density in the WW, controlled here by the intensity of the HeNe laser. A HeNe pulse, with

a duration of 1 ms and with a peak intensity of 4 mW/cm2, is estimated to inject on the order of a

few times 109 electrons/cm2 to the WW [46, 59]. As shown in Fig. 5.4, the tunneling rates are largely

insensitive to the electron density when the HeNe laser intensity exceeds 3 mW/cm2. This indicates

that, within this range, buildup of space-charge fields associated with the injected electron population

does not affect the measurement. For the rest of the tunneling experiments presented in this chapter,

the experiments were performed at sufficiently high electron densities such that the tunneling rates

are nearly independent of the electron density.
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The flat dependence of the hole tunneling rate on the HeNe laser intensity shown in Fig. 5.4

indicates that shifts in the subband alignment due to electric fields associated with the electron-hole

separation are small. The falloff at low intensity can be understood in a similar way to the temperature

dependence, since the lower-energy states in the HH1 are expected to fill prior to the higher-energy

states associated with the fast tunneling rate. At these low densities the tunneling curve would be

better described by a single exponential at the slow rate.

5.4.2. Magnetic field
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FIGURE 5.5. Dependence of the hole tunneling rates on magnetic field. A 1 ms HeNe laser pulse with
a peak intensity of 4 mW/cm2 was used.

Fig. 5.5 shows the dependence of the hole tunneling rate on the magnitude of a magnetic field

applied perpendicular to the QW (Faraday geometry). The tunneling rates decrease monotonically

with the increasing magnetic field.

In the presence of a magnetic field perpendicular to the QW plane, both the electron and hole

energy levels in the QW are quantized into discrete Landau levels. However, even at the highest

magnetic field used, the quantization energy (∼ 2 meV at 20 T for electrons, estimated from

E = ℏeB/me) is still small compared with the large inhomogeneous broadening of the NW hole
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bands. As shown in Fig. 5.5, the magnetic field leads to a gradual decrease in the tunneling rate with

increasing magnetic field, a result consistent with prior studies on interwell tunneling [43]. Although

the magnetic field leads to no qualitative changes in the overall behavior of the hole tunneling, it does

lead to major changes in how the exciton injection in the WW affects the hole tunneling rate, as will

be discussed in detail later.

5.5. Exciton-Correlated Tunneling

Having established the double-exponential structure of tunneling, and completed a thorough

study of how the two rates vary with respect to temperature and WW electron density, we now turn

our attention to its dependence on the exciton density. The correlation between WW excitons

and the interwell hole tunneling rate is known to give rise to the surprising reverse-bleaching

behavior described at the beginning to this chapter, but the particular interactions underlying this

unexpected correlation are not well understood. In this section, we present evidence that exciton-

correlated tunneling is a result of a local interaction between excitons and holes via Coulomb forces

extending across the barrier. Specifically, we posit that a NW hole is much more likely to tunnel when

positioned directly opposite a WW exciton, in analogy to the quantum Hall results mentioned earlier

[44, 45].

For these experiments, a third “exciton injection” beam is added to the apparatus shown in

Fig. 5.2. To avoid optical interference with the probing beam, this is tuned to the light hole (LH)

exciton resonance rather than the HH exciton. The LH excitons injected by this beam relax to HH

excitons on a timescale of a few ps.

5.5.1. Exciton density and temperature

The inset of Figure 5.6 shows an example of time-resolved transmission at the HH resonance

with and without the pump beam at 10 K. As shown in the figure, the exciton injection enhances the

tunneling of the holes. The pump intensity used in the experiment is 0.2 W/cm2, corresponding to an

estimated exciton density on the order of 108/cm2.

At these low densities, heating induced by the injected excitons should be negligible. However,

to confirm that the enhanced tunneling arising from exciton injection is not due to heating, we

measured the dependence of the hole tunneling rate on the pump intensity obtained at temperatures
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FIGURE 5.6. Fast component of hole tunneling rate vs. pump intensity and temperature. Shown on a
logarithmic scale, as a function of pump intensity, for several temperature conditions. At high exciton
densities, the hole tunneling rate is accelerated. This effect is more pronounced at lower temperatures.
Inset: Time-resolved transmission at the heavy-hole exciton resonance of the WW in the presence of
a HeNe laser pulse 1 ms in duration and 5 mW/cm2 in peak intensity. Hole tunneling is accelerated
in the presence of a CW pump beam with an intensity of 0.2 W/cm2 at the LH exciton (green line)
relative to without exciton pumping (blue line). Vertical scale is logarithmic.
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ranging from 5 to 15 K. These results are shown in Figure 5.6. At lower temperatures, the tunneling

rate is slower and more sensitive to the enhancement induced by the exciton correlation. At 5 K, the

rate can be made twelve times faster by applying a pump 100 mW/cm2 in intensity, whereas at 15 K

the rate may only be made twice as fast. Note that the enhancement in the tunneling rate levels off

when the pump beam reaches a modest intensity of 0.1 W/cm2.

These results support the interpretation that heating is not the mechanism by which excitons

accelerate tunneling, since most of the increase in the tunneling is observed at the lowest exciton

densities. Furthermore, the enhancement levels off at relatively high exciton densities, and the

maximally-accelerated tunneling rate is a function of the temperature. Note that the results of

Fig. 5.6 show that while the hole tunneling rate is faster with increasing temperature, the degree

of enhancement by the exciton correlations (indicated by the vertical range spanned by the traces)

is reduced with increasing temperature, a finding consistent with the temperature dependence of

analogous correlation effects described in the quantum Hall experiments [45].

5.5.2. Magnetic field

To get a better understanding of the exciton-correlation induced hole tunneling, we have also

carried out experimental studies in the presence of a high magnetic field (5 to 20 T) perpendicular

to the QW plane (see Fig. 5.7). Under these magnetic fields, the hole tunneling rate becomes nearly

independent of the injection of excitons in the WW. The strong magnetic field effectively quenches

the enhanced hole tunneling induced by the exciton injection in the WW.

This quenching provides additional physical insights into the interlayer Coulomb correlation,

especially on the important role of exciton mobility. If the correlation is indeed due to a local exciton-

hole interaction rather than some nonlocal process (e.g., an overall bending of the dispersion relations

leading to changes in the subband overlaps) then it will be limited by the ability of both particles to

diffuse and find one another.

Excitons in quantum wells have a large spatial extent, which has the effect of averaging out

imperfections in the quantum well that are smaller than its wavefunction. As a result, zero-field

excitons can see a smooth quantum well even when it contains imperfections on the length scale of

a few tens of angstroms. Recall from section 2.7 that at high magnetic field the spatial extent of the

magnetoexciton is set by the magnetic length l0 =
√

ℏ/eB. Relative to the zero-field 2D exciton,

71



0 10 20 30
10-4

10-3

10-2

T
ra

n
sm

is
si

o
n

 (
a
.u

.)

5T

0 10 20 30

10T

0 10 20 30

20T

w/ Pump on LH

w/o Pump

Time (ms)

FIGURE 5.7. Quench of exciton-correlated tunneling. Time-resolved transmission at the heavy-hole
exciton resonance of the WW at 10 K, in response to a 1 ms HeNe pulse with a peak intensity of
4 mW/cm2. Experiment performed at 10 K in the presence (green lines) and absence (blue lines) of
an 100 mW/cm2 exciton injection beam tuned to the LH exciton resonance, in various perpendicular
magnetic fields. The tunneling rate enhancement evident in Fig.5.6a is not observed at these magnetic
fields.

this decreases the effective area over which well-width fluctuations are averaged, and the exciton is

more liable to be stuck in a potential minimum. This can result in greatly reduced exciton mobility,

as shown by an earlier experimental study on the diffusion coefficient of excitons in the presence of a

magnetic field [92].

At the relatively high magnetic field used in Fig. 5.7, the excitons are effectively localized such

that within the short ns lifetime, they cannot migrate to regions that are opposite to or near holes in

the NW. In this regard, the magnetic freeze-out of the excitons effectively quenches the interlayer

Coulomb correlation between the holes in the NW and the excitons in the WW.

5.6. Discussion

The evidence presented in the preceding section points toward a local exciton-hole correlation

as the origin of exciton-correlated tunneling. Since the holes are spatially localized by the fluctuations

in the width of the NW, they induce a weak coulomb potential on the other side of the barrier which

is felt by the WW excitons. The depth of this potential, while not sufficient to bind the exciton, is

enough to increase its probability density opposite the position of the localized hole. When opposite

the hole, the exciton modifies the tunnelling parameters in a way that enhances the rate at which it

occurs. This interaction is shown schematically by the dark correlation arrow in Fig. 5.8.
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FIGURE 5.8. Schematic view of interlayer Coulomb correlation of WW excitons with NW holes.
These correlations can lead to accelerated hole tunneling.

Were this interaction strong enough to result in a bound state, it would be called a positively

charged indirect exciton – that is, a trion having one of its constituents localized in a separate well.

This is in analogy to the “indirect excitons” present in symmetric coupled quantum well bilayers with a

thin barrier [39, 40]. This would be the trion species that is opposite the ones observed in Chapter IV

(having two holes as opposed to two electrons), but its binding energy would likely be comparable.

It’s important to emphasize that we have not observed, or even looked for, positively charged

trions in this sample. Furthermore, a bound indirect trion can be ruled out simply on account of the

large 11.2nm barrier. However, the Coulomb correlations leading to the correlated tunneling process

can be considered to be a scattering state of the indirect trion. In that respect, exciton-correlated hole

tunneling is another example of a trion-mediated optical process in semiconductors.

With the evidence of interlayer exciton-hole correlation, a question naturally arises why there is

no evidence of interlayer correlations between electrons and holes in the MTQW. This “missing”

correlation is shown by the weak correlation arrow in Fig. 5.8. Using the method in Ref. [93], we

estimate the binding energy for indirect excitons in our sample to be ∼ 1 meV or smaller, and we

have not observed them in experiments.

Still, intuition would dictate that the attraction felt by the exciton would be even less than

that felt by a negative point charge, since it carries no net charge. This is somewhat misleading, since

excitons regularly have Bohr radii on the order of 100 Å, the same length scale as the barrier thickness,

so they present a large dipole [50]. Furthermore, the interface roughness inherent in a QW leads

to relatively small exciton mobility or ambipolar diffusion coefficient [94–96]. In essence, excitons

are much heavier than the electrons and thus are much less mobile amid the interface potential
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fluctuations. Hence, exciton-hole correlations are more evident than electron-hole correlations by

virtue of their longer interaction time.

5.7. Summary

We have presented a study of a surprising exciton-hole Coulomb correlation which manifests

in dramatic optical nonlinearity. Superficially, the reversal of bleaching resulting from this process

in steady state has potential application as a “reset latch” on the low-power optical nonlinearity for

which the MTQW was designed. However, a full understanding of exciton-correlated hole tunneling

reveals a much deeper potential: this interaction provides a mechanism for using optical excitations to

manipulate tunneling processes, thus enabling optical control of carrier transport.

The basis of this correlated tunneling in a local interaction between excitons and holes serves as

another example of the trion interaction providing a platform for a nonlinear optical process. While

in this case the three constituent quasiparticles are not strictly bound, the scattering state of their

interaction plays a crucial role in accelerating the hole tunneling.

MTQW were designed to exhibit low-power optical nonlinearities, the full richness of which

were not fully anticipated. In this dissertation they have served as an instructive new platform for

studying manybody physics. The processes described in this chapter have been discovered, not

engineered, but nevertheless lead to dramatic effects. Understanding the manybody processes at work

in semiconductor structures is key to unlocking their full potential.

74



CHAPTER VI

CONCLUSION

In this dissertation, we have presented experimental studies on the physics of excitons and

trions in semiconductor quantum wells. These bodies have profound influence on the optical behavior

of semiconductors, and also provide a platform for studying the physics of interactions across a broad

range of conditions. The experiments conducted as part of this work both reveal details about trion

structure, and demonstrate their utility in optical and transport applications.

In Chapter III, we demonstrated the ability of the trion to act as an optical excited state for

electron spins, the coherence properties of which are highly desirable. While electromagnetically

induced transparency has been demonstrated in this system previously, this study focused on

optimizing the degree of transparency achieved in an optically dense spin ensemble, which is

important for many applications. This was pursued by exploring high magnetic field regimes in a

CdTe sample with which large Zeeman splittings could be achieved. Under the condition of a high

Voigt field, we have revealed that the trion state becomes unbound.

This finding stands in contrast to the stronger trion binding typically observed in high Faraday

fields, the configuration which is typically studied in the literature. In Chapter IV we explored

this subject by conducting a measurement of direct absorption by trions in a GaAs mixed-type

quantum well. The results are reflective of well-known excitonic properties at high magnetic fields:

the formation of magnetoexcitons, the diamagnetic shift, and the binding of a triplet trion state.

In contrast to many previous studies based on photoluminescence, our measurement reveals the

oscillator strengths of these states directly. This makes other effects clear: The reduction of the

exciton wavefunction by the field, as reflected in its stronger absorption profile, as well as a weak

Pauli blocking effect. Of particular interest in our results is the strong absorption by the triplet trion

state, which suggests a large electron-hole overlap in the spatial wavefunction. This datum is of value

since the actual three-body wavefunction is notoriously difficult to calculate.

Finally, we have extensively characterized the exciton-correlated tunneling effect in mixed-type

quantum wells. The data presented in Chapter V represent the most comprehensive assessment to

date of this phenomenon under varying conditions of temperature, electron density, exciton density,

and magnetic field. From these we conclude that the exciton-correlated tunneling is a result of a local,
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cross-barrier interaction between exciton and hole. In that sense, this interaction can be considered

the scattering state of an indirect trion, and one more example of a trion-mediated optical process: in

this case, one which gives optical control of an electron transport process.

Taken together, these three studies form a broad survey of several trion-based optical processes

in quantum wells, and contribute new knowledge in our understanding of each.

6.1. FutureWork

In terms of furthering our understanding of the processes at work in these systems, the

conclusions heretofore stated represent only incremental advances. In striving for answers, the process

of science inevitably stumbles on ever more challenging questions, whether or not the original line

of inquiry is ever satisfied. In this respect, the experiments in this dissertation have left no lack of

considerations unexamined. We close by naming a few of the most obvious ones.

The unbinding of the trion reported in Chapter III merits a more detailed examination. While

the physics of trions in magnetic fields has been extensively examined in the Faraday geometry,

we know of few studies which apply a high magnetic field in the Voigt direction, and none which

would have indicated that the trion would break down. Whether this happens due to disruption of

the trion’s orbital structure, or perhaps due to the effects of valence band mixing, remains an open

question. Experimental study would require a full set of experimental data from the same sample, in

both Faraday and Voigt geometries.

The experimental work of Chapter IV would be enhanced by a rigorous theoretical or

numerical examination of the three-body wavefunctions under those conditions. The arguments

put forth in interpreting those data are based upon an understanding of the relatively simple two-

body wavefunction, considering the trionic effects only by analogy. The relevance of these data to

confirming existing three-body models of trions merits a fuller theoretical collaboration.

It is understood that the significance of the exciton-correlated tunneling effect (Chapter V) is

a sample-dependent property. That is, minute variations in the valence-subband alignment between

the two wells can have profound effects. This can be surveyed experimentally by applying an electric

potential across the sample, so that the subband alignments are tuned through one another. This was

not prioritized in this study due to the challenges inherent in fabricating the necessary electrodes, but
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would be a worthwhile investigation. In addition, some experiments not presented here indicate that

crystal strain plays a significant role as well, but this has not been investigated in any controlled way.

It is hoped that the findings of this dissertation lead to further investigation and deeper

understanding, whether along the directions named here or not.
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APPENDIX A

SPECTROSCOPY OF QUANTUM SYSTEMS

A.0.1. The electromagnetic field

We treat light as classical electromagnetic waves, where the electric-field oscillation at a certain

point in space is given by

E⃗(t) = ε̂E0 cos(ωt− ϕ) (A.1)

where ε̂ is the polarization unit vector and ω is the angular frequency of the wave. E0 is the amplitude

of the electric field oscillation, which we’ll treat as a constant for now. We decompose this real wave

into counter-rotating complex waves:

E⃗(t) = ε̂E0

2
exp(−iωt)

⟲
+
ε̂E∗

0

2
exp(+iωt)

⟳
(A.2)

so that the first term rotates with frequency +ω in the complex plane, and the second rotates with

frequency −ω. We’ve absorbed the phase offset ϕ into the electric field amplitude E0, which is now a

complex number.

Note that each of these terms contains complete information about the field. The expression

for the real electric field can be obtained by adding either one to its complex conjugate.

A.0.2. The quantum system

Consider a basic two-level quantum system – for example, an atom with only two levels. An

electron bound to this atom may occupy two states: a ground state |g⟩ at E = 0 and an excited state

|e⟩ at E = ℏω0. The free-evolution Hamiltonian is given by

H0 = ℏω0|e⟩⟨e|. (A.3)

This atom presents a coulombic dipole which couples to the EM field, leading to an interaction

potential

V = −d⃗ · E⃗ . (A.4)
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Using symmetry arguments [97, p. 5.1.1], this dipole vector d⃗ = −er⃗e may be written in terms of the

atomic raising and lowering operators:

d⃗ = ⟨g|d⃗|e⟩(σ + σ†) (A.5)

where σ = |g⟩⟨e| is the lowering operator, and σ† is its hermitian conjugate, the raising operator.

These two components of the dipole operator rotate in opposite directions, just like the

components of the EM field above. To see this, we evolve them according to the Heisenberg equation

Ȧ =
−i
ℏ
[A,H]. (A.6)

Using H = H0, we see that

σ̇ = −iω0σ σ̇† = +iω0σ
† (A.7)

which implies that the raising and lowering operators counter-rotate at ω0:

σ ∼ exp(−iω0t)
⟲

σ† ∼ exp(+iω0t)
⟳

. (A.8)

This is counterintuitive to think about since the definition of σ contains no explicit time dependence,

as was the case for the fields, so it’s not immediately clear in what sense σ is rotating at ω0. The

rotation frequency ω0 is not so much a property of σ as it is a tendency – it arises out of its evolution

under H0. Since σ is an operator, what’s really rotating is its expectation value ( and the specifics will

depend on the state, the Hamiltonian, etc.). Informed by the understanding that the general behavior

of σ and σ† is to counter-rotate, we can justify splitting the dipole operator as we did the field:

d⃗ = d⃗ge(σ⟲
+ σ†

⟳
). (A.9)
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A.0.3. A dipole interaction in the rotating-wave approximation

Suppose the atom is subject to a near-resonant field, ω ≈ ω0. Writing out the interaction term,

V = −d⃗ · E⃗ (A.10)

= − d⃗ge · ε̂
2

(σ
⟲
+ σ†

⟳
)× (E0 exp(−iωt)

⟲
+ E∗

0 exp(+iωt)
⟳

). (A.11)

We can multiply this out into four terms. The first and last of these will rotate at ±(ω + ω0), far

beyond the optical range. In the rotating wave approximation (RWA), we ignore these terms, focusing

our attention on terms which describe the slow dynamics.

V = − d⃗ge · ε̂
2

(σE0 exp(+iωt) + σ†E∗
0 exp(−iωt)) (A.12)

To make things cleaner, we wrap up the polarization, dipole strength, and field amplitude in the “Rabi

frequency”

Ω := −d⃗ge · ε̂
E0

ℏ
(A.13)

so that the interaction term reads

V =
ℏ
2
(σΩexp(+iωt) + σ†Ω∗ exp(−iωt)). (A.14)

A.0.4. The rotating frame

To make things convenient, we boost this Hamiltonian into a rotating frame. This is basically a

change of basis defined by the unitary operator

U = exp(iωt|e⟩⟨e|). (A.15)

Which maps basis states |α⟩ to new states |α̃⟩ = U |e⟩, and time-invariant matrices M to M̃ = UMU†.

It can be shown (cite this) that Hamiltonians must transform according to

H̃ = UHU† + iℏ(U̇)U†. (A.16)
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Piece by piece, we find

iℏ(U̇)U† = −ℏω|e⟩⟨e| (A.17)

UH0U
† = H0 (A.18)

UV U† =
ℏ
2
(Ωσ +Ω∗σ†). (A.19)

So the full, transformed Hamiltonian is

H̃ = −ℏ∆|e⟩⟨e|+ ℏ
2
(Ωσ +Ω∗σ†) (A.20)

where we have defined the field detuning ∆ := (ω−ω0). The first term represents free evolution in the

ground state, and the second represents coupling to the EM field. This is useful because it removes all

explicit time dependence.

A.0.5. Equations ofmotion, decoherence

We can get the equations of motion for a pure state |ψ̃⟩ via the Schrödinger equation or, more

generally, using the Heisenberg equation for a density operator ρ̃

˙̃ρ =
−i
ℏ
[H̃, ρ̃]. (A.21)

The elements of ρ̃ represent populations (ρ̃ee, ρ̃gg) in the two states, and coherences (ρ̃eg, ρ̃ge) between

them. The twiddles remind us that we’re working in the rotating frame.

Taking matrix elements of the Heisenberg equation (lots of algebra), we find the optical Bloch

equations

˙̃ρee =
i

2
(Ωρ̃eg − Ω∗ρ̃ge) −Γρ̃ee (A.22)

˙̃ρgg = − i

2
(Ωρ̃eg − Ω∗ρ̃ge) +Γρ̃ee (A.23)

˙̃ρeg = i∆ρ̃eg − i
Ω∗

2
(ρ̃gg − ρ̃ee) −γρ̃eg (A.24)

˙̃ρge = −i∆ρ̃ge + i
Ω

2
(ρ̃gg − ρ̃ee) −γρ̃ge. (A.25)
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Actually, the Hamiltonian evolution only yields the terms on the left. We insert the terms on the right

“by hand” to represent effects of spontaneous emission and decoherence. This kind of evolution is

non-unitary – it would turn pure states into mixed states, so it can’t be described by a self-adjoint

Hamiltonian.

The Γ terms remove population from the excited state and place it back in the ground state at

rate Γ (the spontaneous emission rate). The other two terms represent decay in the coherence. The

dephasing rate γ is bounded from below by Γ/2, So we can introduce γc to represent “pure” dephasing,

such that

γ =
Γ

2
+ γc. (A.26)

A.0.6. Aside: The Lindblad operator

In the operator representation, inserting these terms is equivalent to modifying the Heisenberg

equation to read

˙̃ρ =
−i
ℏ
[H̃, ρ̃] + ΓD[σ]ρ̃+ γcD[σz]ρ̃ (A.27)

such that two extra terms handle the non-unitary decay in ρ̃. The first handles spontaneous emission,

and the second handles any extra dephasing (beyond that caused by spontaneous emission). Here,

σz = |e⟩⟨e| − |g⟩⟨g| and D is the Lindblad superoperator

D[c]ρ̃ = cρ̃c† − 1

2
(c†cρ̃+ ρ̃c†c). (A.28)

This operator is “super” in the sense that it transcends the noncommutative rules of operator algebra

by acting on both sides of its target ρ̃.

A.0.7. Steady state

Now that we’ve included damping rates on the atomic oscillator, we can find the steady-state

behavior of the system. This amounts to solving the optical Bloch equations (A.22)–(A.25) for the

equilibrium condition ˙̃ρ = 0.

By setting ˙̃ρeg = 0, we find

ρ̃eg =
Ω∗ ( 1

2 − ρ̃ee
)

∆+ iγ
(A.29)
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where we have used ρ̃gg = 1− ρ̃ee. Likewise, the complex conjugate of this equation,

ρ̃ge =
Ω
(
1
2 − ρ̃ee

)
∆− iγ

, (A.30)

follows from setting ˙̃ρge = 0. The quantity

Ωρ̃eg − Ω∗ρ̃ge = −
2iγ|Ω|2

(
1
2 − ρ̃ee

)
∆2 + γ2

(A.31)

will be useful in computing the steady-state excited population ρ̃ee:

˙̃ρee = 0 =
i

2
(Ωρ̃eg − Ω∗ρ̃ge)− Γρ̃ee (A.32)

= − i

2

(
2iγ|Ω|2

(
1
2 − ρ̃ee

)
∆2 + γ2

)
− Γρ̃ee (A.33)

=⇒ ρ̃ee =
1
2γ|Ω|

2

γ|Ω|2 + Γ(∆2 + γ2)
. (A.34)

This can, in turn, be plugged back into the expression for the steady-state coherence (A.29):

ρ̃eg =
Ω∗/2

∆ + iγ

(
1− γ|Ω|2

γ|Ω|2 + Γ(∆2 + γ2)

)
(A.35)

=
Ω∗/2

∆ + iγ

(
Γ(∆2 + γ2)

γ|Ω|2 + Γ(∆2 + γ2)

)
. (A.36)

The other two matrix elements, of course, follow from ρ̃gg = 1− ρ̃ee and ρ̃ge = ρ̃∗eg .

Diagonal elements of the density matrix correspond to the fractional occupation of each level.

In Fig. A.1 the excited state population, ρ̃ee, is plotted as a function of the scaled detuning ∆/Γ.

This is maximal when driven on resonance (∆ = 0), and the sharpness of this resonance is set by

γc. By increasing Ω, the excited state population is seen to saturate at a value of 1/2, at which point

the resonance exhibits power broadening behavior. This indicates that a population inversion is not

achievable by pumping a single dipole transition.

Off-diagonal elements represent the coherences between the two levels: the extent to which the

system behaves as a pure (as opposed to mixed) state. This term is less intuitive to think about, but it

contains important information with regard to the optical behavior of the medium.
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FIGURE A.1. Simulated excited-state population of a two-level medium in steady state. Steady-state
population term, ρ̃ee, as a function of the scaled detuning ∆/Γ. In the left column, various values of
the Rabi frequency Ω are shown. On the right, various values of the dephasing rate ωc are shown.
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A.0.8. Optical properties of the two-level medium

In experiments, we don’t always observe populations and coherences directly. We learn about

these quantities by measuring properties of the transmitted laser. To complete our analysis, we need to

understand how the matrix elements of ρ̃ are linked to the optical properties of the medium.

In solids and gases, the medium for electromagnetic waves is the electric displacement

D = ϵ0E + P, (A.37)

where ϵ0 is the vacuum permittivity [98, Appendix A]. The second term, the polarization P , accounts

for the presence of dipoles in the medium, which can also carry waves.

The polarization is the dipole moment per unit volume:

P = N⟨d⃗⟩ (A.38)

where N is the number density of atoms, and the ⟨ ⟩ represents an expectation value. In quantum

mechanics, expectation values are obtained from the density operator by

⟨A⟩ = Tr[Aρ] (A.39)

where Tr[ ] represents the trace operation (summing the diagonal elements of a matrix). Note that

the twiddle is gone from the density operator – we’re back to working in the lab frame, where our

measurements are made. Recalling that d⃗ = d⃗ge(σ + σ†),

⟨d⃗⟩ = Tr[d⃗ρ] (A.40)

= ⟨g|d⃗ge(σ + σ†)ρ|g⟩+ ⟨e|d⃗ge(σ + σ†)ρ|e⟩ (A.41)

= d⃗ge⟨e|ρ|g⟩+ d⃗ge⟨g|ρ|e⟩. (A.42)

In the last step, (σ + σ†) acted left on the bras. In the first term, the ⟨g| bra picked out the lowering

operator σ , while the ⟨e| bra picked out the raising operator σ† in the second term.

Note that the only dipoles in our medium of two-level systems are those induced by the

interaction potential. P exists only as a response to E . When this is the case, and that response is
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parallel to the field polarization and linear in the electric field amplitude, it’s common to express the

polarization in terms of the linear susceptibility χ:

P = ϵ0χE . (A.43)

Our expression for E was given in (A.2), so this relation tells us

N
(
d⃗ge⟨e|ρ|g⟩+ d⃗ge⟨g|ρ|e⟩

)
= ϵ0χ

(
ε̂E0

2
exp(−iωt) + ε̂E∗

0

2
exp(+iωt)

)
. (A.44)

Note that both bracketed quantities are real – so χ, as defined in (A.43), is real too.

It’d be nice to write the matrix elements ⟨α|ρ|β⟩ in terms of the rotating-frame matrix elements

we computed for the steady state in the last section. We do that by inserting the identity U†U :

⟨α|ρ|β⟩ = ⟨α|U† UρU†︸ ︷︷ ︸
ρ̃

U |β⟩ (A.45)

where U is the transformation matrix (A.15). We find

⟨e|ρ|g⟩ = ρ̃eg exp(−iωt) ⟨g|ρ|e⟩ = ρ̃ge exp(+iωt) (A.46)

and write (A.44) as

N

(
d⃗geρ̃eg exp(−iωt)

⟲
+ d⃗geρ̃ge exp(+iωt)

⟳

)
= ϵ0χ

 ε̂E0

2
exp(−iωt)

⟲
+
ε̂E∗

0

2
exp(+iωt)

⟳

 . (A.47)

Rather than solving this, we can equate the coefficients of the counter-rotating terms:

Nd⃗geρ̃eg = ϵ0χ
ε̂E0

2
. (A.48)

It’s worth stopping to reexamine our assumptions here. We’re equating two complex quantities, ρ̃eg

and E0, by a real proportionality factor χ. We’re free to make E0 real, by choosing the origin of t such

that ϕ = 0 in (A.1) (and many treatments do this). However, it’s clear from inspecting (A.36) that

ρ̃eg can still be complex under those conditions, in which case (A.48) cannot hold unless we let χ be

complex.
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This means that our linearity assumption (A.43) is, essentially, bad – but only in one respect.

That definition was for the case where the material polarization is parallel to the field, linear in the

field, and in phase with the field – given that it states a direct proportionality between P and E .

Our material of two-level systems responds to the field like a set of driven oscillators – so their

oscillation may lag behind that of the electric field. To allow for this possibility, we let χ be defined by

P+ = ϵ0χE+. (A.49)

where (+) denotes the positive-rotating part – for example, E+ would denote the first term in (A.2),

while E− would denote the second. We can split up P in a similar manner.

Here χ can be complex, and when it is, it denotes a material whose oscillatory response is

shifted somewhat in phase.

As noted in A.0.1, it’s sufficient to work with just the (+) terms, since they contain complete

information about the field. They don’t describe the physically-observable field until they’re added

to their complex conjugate, but in the meantime they’re mathematically much easier to deal with.

Describing phase-laggy materials would have been trigonometrically nasty using the expressions for

the real field, but with complex exponentials it’s as easy as letting χ carry a phase.

We can write the now-complex susceptibility χ is given in terms of the steady-state coherence

as

χ =
2N

ϵ0
(d⃗ge · ε̂)

ρ̃eg
E0

(A.50)

=
−2N

ℏϵ0
|d⃗ge · ε̂|2

ρ̃eg
Ω

(A.51)

where in the second step we used the definition of the Rabi frequency (A.13).

A.0.9. Complex refractive index

In view of (A.43), (A.37) becomes

D = ϵ0 (1 + χ)︸ ︷︷ ︸
=:n2

E (A.52)
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where n is the refractive index – the ratio by which waves are slowed in the medium relative to the

vacuum.

For example, a plane wave propogating along z

E⃗(t) = ε̂E0

2
exp(ikz − iωt) + c.c. (A.53)

has k = ω/c modified to kn = nω/c when it enters the medium:

E⃗(t) = ε̂E0

2
exp(inkz − iωt) + c.c. (A.54)

If n is complex, as we’ve shown it must be for our system the imaginary part leads to an exponentially

decaying amplitude along the propogation direction at rate Im[n]k:

E⃗(t) = ε̂E0

2
exp(−Im[n]kz) exp(iRe[n]kz − iωt) + c.c. (A.55)

Hence, the intensity will decay at rate

α = 2Im[n]ω/c (A.56)

where α is the coefficient in Beer’s Law

I(z) = I0 exp(−αz) (A.57)

since k = ω/c, and the intensity is the square of the amplitude.

The susceptibility χ is related to the refractive index n by

n =
√
1 + χ

χ≪1
≈ 1 +

χ

2
. (A.58)

So, at least for small χ, the absorption coefficient is given by

α = Im[χ]ω/c. (A.59)
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For the two-level system, we can use (A.51) to find

α =
−2Nω

ℏϵ0c
|d⃗ge · ε̂|2Im

[
ρ̃eg
Ω

]
(A.60)

while the real refractive index is given by

n =
−N
ℏϵ0

|d⃗ge · ε̂|2Re
[
ρ̃eg
Ω

]
. (A.61)

These expressions characterize the absorption and refraction behavior of the two-level dipole

transition.

A.0.10. Lineshape of dipole transitions

Hence, we can get two measurable optical properties – the refractive index and the absorption

coefficient – from the real and imaginary parts of the scaled coherence ρ̃eg/Ω, respectively. The

prefactors in eqs. (A.60) and (A.61) set the units and overall scale of these measurable quantities, but

their dependence on physical parameters (∆, Ω, γ, Γ) is all wrapped up in the coherence term ρ̃eg/Ω.

This is not strictly true in the case of α, which has the laser frequency ω = ω0 + ∆, but for small

detunings it is good enough.

Recall the steady-state form of the coherence for a two-level atom (A.36). Choosing Ω to be

real, we can write
ρ̃eg
Ω

=
Γ
2 (∆− iγ)

γ|Ω|2 + Γ(∆2 + γ2)
(A.62)

from which follow equations describing the refractive index

n ∝ Re

[
ρ̃eg
Ω

]
=

∆/2
γ
Γ |Ω|2 +∆2 + γ2

(A.63)

and absorption coefficient

α ∝ Im

[
− ρ̃eg

Ω

]
=

γ/2
γ
Γ |Ω|2 +∆2 + γ2

(A.64)

of the two-level medium. Recall that γ = γc + Γ/2. When γc = 0 and in the limit of a weak driving

field (Ω → 0), (A.64) yields a Lorentzian profile in ∆, having full-width at half maximum Γ.
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FIGURE A.2. Simulated refractive index and absorption coefficient of a two-level medium. Real and
imaginary parts of the scaled steady-state coherence term, ρ̃eg/Ω, as a function of the scaled detuning
∆/Γ. In the left column, various values of the Rabi frequency Ω are shown. On the right, various
values of the dephasing rate ωc are shown.
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In Fig. A.2 both terms are plotted as a function of the scaled detuning ∆/Γ. These are

illustrative of the refractive index (top row) and absorption coefficient (bottom row) of the two-

level medium near resonance. By increasing the amplitude, Ω, of the incident light, we see that less

of it is absorbed or refracted (saturation behavior). Adding an extra dephasing rate γc results in less

pronounced attenuation of the absorption spectrum, but much more noticeable broadening.

A.0.11. Summary

In this section we reviewed the foundations of semiclassical quantum optics, to establish the

link between measurements of optical absorption and off-diagonal entries in the density matrix of

the underlying quantum system. In particular, we showed that a two-level system has an absorption

lineshape with a Lorentzian profile, and displays straightforward saturation and broadening behaviors.
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APPENDIX B

CIRCUMVENTING DECOHERENCE USING DRESSED STATES

In ensembles of quantum systems, or any time-averaged observation of a single quantum

system, inhomogeneity of the environment can contribute to broadening of the transitions of interest.

In the case of NV centers, a fluctuating charge environment leads to spectral diffusion of the Ex and

Ey lines, and randomly configured C13 nuclear spins lead to a varying Zeeman splitting in the ground-

state triplet. In either case, the observed lineshape is a convolution of a Lorentzian (having a width

corresponding to the coherence between the two states) with the distribution of transition energies

resulting from the inhomogeneity.

Many techniques, such as spectral hole burning, exist for extracting the homogeneous linewidth

from the inhomogeneously broadened line, and thereby measuring the coherence. However, if we’re

interested in utilizing this coherence for some application (such as a quantum bit or nanoscale sensor),

we need to perform some state engineering and actually reduce the effect of the inhomogeneous

broadening.

In essence, this amounts to choosing the basis states for our application so that their energies

do not shift in response to the perturbations of the environment – or at the very least, that they shift

together. In this way, the transitions between them are less sensitive to the background, and the

observed lineshape approaches that of the homogeneous transition.

B.0.1. In a two level system

A two-level optical system provides a simple, if imperfect, example. A rotating-frame

Hamiltonian for this system is given by

H(ge) =

 0 Ω
2

Ω
2 ∆

 (B.1)

where Ω is the Rabi frequency and ∆ is the detuning of an optical field coupling the two states.

For simplicity, ℏ = 1. In this representation, a state is described by a 2-element vector containing

amplitudes for the ground (g) and excited (e) states, respectively.
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This Hamiltonian is diagonalized by applying the rotation

R(θ) =

cos θ − sin θ

sin θ cos θ

 (B.2)

to the bare-state basis representation of H , which results in

R(θ)H(ge)R(−θ) = 1

2

(∆ sin 2θ − Ωcos 2θ − Ω) tan θ Ωcos 2θ −∆sin 2θ

Ωcos 2θ −∆sin 2θ ∆cos 2θ +∆+Ωsin 2θ

 . (B.3)

By inspecting the off-diagonal elements, we see that the transformed Hamiltonian is diagonal when

Ωcos 2θ = ∆sin 2θ (B.4)

In the resonant (∆ = 0) case, this is satisfied for θ = π/4; otherwise θ can be chosen to satisfy
Ω
∆ = tan 2θ (Stückelberg relation). In either case, the diagonalized Hamiltonian can be written

H(lu) =

∆
2 − 1

2

√
∆2 +Ω2 0

0 ∆
2 + 1

2

√
∆2 +Ω2

 . (B.5)

The lower (l) and upper (u) energy eigenstates now form the basis in place of the bare ground/excited

states. This is the dressed-state basis – the eigenbasis of the system when being modified, or dressed, by

the optical field Ω. Under this condition, the energy of the transition depends on the strength of the

driving field:

∆E(∆,Ω) =
√

∆2 +Ω2. (B.6)

In physical systems where the excited-state energy is subject to spectral diffusion, such as the

Ey or Ex level in an NV center, ∆ becomes a fluctuating parameter. We can represent this using

∆ = ∆0 + δ (B.7)

where ∆0 is the average detuning and δ is a zero-mean random variable. For the undressed states,

where the transition energy ∆E(∆, 0) = ∆, the variations of δ map directly onto variations in the
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transition energy ∆E with scaling factor 1. In other words, the energetic width of the inhomogeneous

distribution is exactly the width of the distribution of the random variable δ.

For the dressed states, this scaling factor is reduced, leading to a narrower inhomogeneous

distribution. Linearizing our expression for the transition energy about ∆ = ∆0,

∆E(∆0,Ω, δ) =
√
∆2

0 +Ω2 +
∆0√

∆2
0 +Ω2

δ +O(δ2). (B.8)

Here, the scaling factor in the linear term

∆0√
∆2

0 +Ω2
(B.9)

is less than unity for Ω > 0. As a result, the energetic width of the inhomogeneously broadened line is

reduced by this factor up to the point that it is limited by the homogeneous linewidth.

B.0.2. Three-level state dressing

In a three-level system, such as the ground-state triplet of the NV center, an even better

suppression of the broadening is possible. If the two excited states are each coupled to a shared

ground state by two independent optical fields having equal Rabi frequencies and detunings, the bare-

state Hamiltonian takes the form

H(g+−) =


0 Ω

2
Ω
2

Ω
2 ∆ 0

Ω
2 0 ∆

 . (B.10)

In this system, the asymmetric linear combination of the two excited states famously forms a “dark

state” which is decoupled from the field. The transformation from the bare-state basis to the

bright/dark basis is given by the unitary transformation matrix

U =


1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

 . (B.11)

Incidentally, this is the rotation matrix R(θ) applied between the two excited states with θ = −π/2,

mixing them into symmetric and antisymmetric linear combinations. The transformed Hamiltonian
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reads

H(gbd) = UH(g+−)U† =


0 Ω√

2
0

Ω√
2

∆ 0

0 0 ∆

 . (B.12)

Here the ground, bright, and dark states are represented by the first, second and third columns. In

this block-diagonal form, the upper block forms a two-level system that has no couplings into the dark

state at all.

Within this two-level subsystem, we can proceed identically to the case of a two-level

subsystem discussed in the previous section, making the replacement Ω →
√
2Ω. The dressing field

mixes the ground and bright states to form upper/lower eigenstates separated by

∆E(∆,Ω) =
√
∆2 + 2Ω2. (B.13)

For symmetric fluctuations in the twin detunings ∆, all the same principles apply: by dressing the

states with a field of sufficient Rabi frequency Ω, the inhomogeneous distribution’s mapping onto the

energy scale can be compressed by the factor

∆0√
∆2

0 + 2Ω2
(B.14)

Except for the helpful factor of 2, this is no more effective in the 3-level system as it was in the 2-level

system.

B.0.3. Antisymmetric fluctuations in three-level systems

Symmetric fluctuations are not necessarily the most relevant fluctuations, however. In cases

where the two legs of the three-level system have opposite spin, a fluctuating magnetic field will

induce antisymmetric shifts. This is the case in the ground-state triplet of the NV center, where stray

fields from lattice C13 nuclei contribute to fluctuations in the Zeeman splitting. Fortunately, dressed

states are even more robust against these kinds of shifts.
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We can represent these shifts with the perturbing Hamiltonian

H(g+−)
p =


0 0 0

0 δ 0

0 0 −δ

 (B.15)

in the original, bare-state basis, where δ is a zero-mean random variable shifting the excited states

apart. In the bright-dark basis, there is no shift at all:

H(gbd) = UH(g+−)
p U† =


0 0 0

0 0 −δ

0 −δ 0

 . (B.16)

Instead, δ manifests as a coupling between the bright and dark states. In the dressed state basis, the

perturbing Hamiltonian takes the form

H(lud)
p = δ


0 0 sin θ

0 0 − cos θ

sin θ − cos θ 0

 . (B.17)

where θ is defined by the modified Stückelberg relation

√
2
Ω

∆
= tan 2θ (B.18)

and the remixed ground/bright states have been relabeled lower/upper. Since there are no diagonal

elements in the perturbing Hamiltonian, so the first-order corrections to the dressed-state energies

E
(1)
n = ⟨n|Hp |n⟩ vanish. Corrections enter first at second order, where

E(2)
n =

∑
m ̸=n

|⟨m|Hp |n⟩|2

En − Em
. (B.19)
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