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DISSERTATION ABSTRACT

Robert W. Muth

Doctor of Philosophy

Department of Mathematics

June 2016

Title: Representations of Khovanov-Lauda-Rouquier Algebras of Affine Lie Type

We study representations of Khovanov-Lauda-Rouquier (KLR) algebras of affine

Lie type. Associated to every convex preorder on the set of positive roots is a

system of cuspidal modules for the KLR algebra. For a balanced order, we study

imaginary semicuspidal modules by means of ‘imaginary Schur-Weyl duality’. We

then generalize this theory from balanced to arbitrary convex preorders for affine

ADE types. Under the assumption that the characteristic of the ground field is greater

than some explicit bound, we prove that KLR algebras are properly stratified. We

introduce affine zigzag algebras and prove that these are Morita equivalent to arbitrary

imaginary strata if the characteristic of the ground field is greater than the bound

mentioned above. Finally, working in finite or affine affine type A, we show that skew

Specht modules may be defined over the KLR algebra, and real cuspidal modules

associated to a balanced convex preorder are skew Specht modules for certain explicit

hook shapes.

This dissertation contains previously published (unpublished) co-authored

material.
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CHAPTER I

INTRODUCTION

This chapter contains coauthored material, both published and unpublished. In

fact, this dissertation is a compilation of four previously existing articles, three of

which are joint work with Alexander Kleshchev. Chapter III has appeared as [29],

which is accepted for publication. Chapter IV has appeared as [30, 28], and chapter

V has appeared as [40], all of which have been submitted for publication. This

introduction and Chapter II contain portions of the introductions and preliminary

sections of [29, 30, 28, 40]. Chapter VI contains calculations performed in [29, 28].

Interested readers are encouraged to read and refer to the original sources rather than

this dissertation.

Let g be a Kac-Moody Lie algebra, with associated symmetrizable Cartan

matrix C. Let k be an arbitrary field of characteristic p. There is a certain Z-

graded associative k-algebra Rα called a Khovanov-Lauda-Rouquier (or KLR) algebra

associated to every α in the positive root lattice. These algebras were introduced

independently by Khovanov and Lauda [20] and Rouquier [42] in 2008.

The main result about KLR algebras, and the motive for their introduction, is

that they categorify the upper half of the quantum group Uq(g)+. This means that

one may recover the quantum group structure from categories of representations of

the KLR algebra by decategorifying—taking the Grothendieck group. Writing Af for

the Z[q, q−1]-subalgebra in Uq(g)+ generated by divided powers, we have

⊕
α

[Proj(Rα)] ∼= Af,
⊕
α

[Rep(Rα)] ∼= Af∗,
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where Proj(Rα) (resp. Rep(Rα)) is the full subcategory of projective (resp. finite

dimensional) modules in the category Rα-mod of finitely generated graded Rα-

modules. The multiplication and co-multiplication structures in the Grothendieck

group come, respectively, from certain induction and restriction functors:

Indα+β
α,β : (Rα ⊗Rβ)-mod→ Rα+β-mod, Resα+β

α,β : Rα+β-mod→ (Rα ⊗Rβ)-mod.

It will be convenient to write M ◦N for Indα+β
α,β M �N .

The existence of interesting morphisms between objects in Rα-mod, invisible at

the level of the quantum group, yield a rich structure and make the representation

theory of KLR algebras a compelling and fruitful area for research.

In this dissertation we study the representation theory of KLR algebras of

untwisted affine Lie type. Though there are different ways to study this subject,

the focus in this paper is to investigate the presence of a stratified structure on Rα-

mod, and the so-called cuspidal modules and standard modules associated with this

structure.

In [32] Kleshchev and Ram gave a classification via Lyndon words of simple

representations of KLR algebras of finite type, as irreducible heads of certain standard

modules. McNamara [38] generalized the Lyndon word approach to arbitrary convex

orders on the positive root system in finite type. For KLR algebras of affine Lie type

two different approaches to the theory of standard modules were proposed by Tingley

and Webster [44] and Kleshchev [24]. This dissertation builds on the approach of [24],

which we describe in the next section.
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1.1. Cuspidal systems

Let the Cartan matrix C be of arbitrary untwisted affine type. In particular,

the simple roots αi are labeled by i ∈ I = {0, 1, . . . , l}, where 0 is the affine vertex

of the corresponding Dynkin diagram. We have an (affine) root system Φ and the

corresponding finite root subsystem Φ′ = Φ∩Z - span(α1, . . . , αl). Denote by Φ′+ and

Φ+ the sets of positive roots in Φ′ and Φ, respectively. Then Φ+ = Φim
+ t Φre

+, where

Φim
+ = {nδ | n ∈ Z>0} for the null-root δ, and

Φre
+ = {β + nδ | β ∈ Φ′+, n ∈ Z≥0} t {−β + nδ | β ∈ Φ′+, n ∈ Z>0}.

As in [1], a convex preorder on Φ+ is a preorder � such that the following three

conditions hold for all β, γ ∈ Φ+:

β � γ or γ � β; (1.1)

if β � γ and β + γ ∈ Φ+, then β � β + γ � γ; (1.2)

β � γ and γ � β if and only if β and γ are proportional. (1.3)

Convex preorders are known to exist. Let us fix an arbitrary convex preorder � on

Φ+. From (1.3) we have that β � γ and γ � β happens for β 6= γ if and only if both

β and γ are imaginary. We write β ≺ γ if β � γ but γ 6� β. The following set is

totally ordered with respect to �:

Ψ := Φre
+ ∪ {δ}. (1.4)
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It is easy to see that the set of real roots splits into two disjoint infinite sets

Φre
� := {β ∈ Φre

+ | β � δ} and Φre
≺ := {β ∈ Φre

+ | β ≺ δ}.

If µ is a partition of n we write µ ` n and n = |µ|. By an l-multipartition of n,

we mean a tuple µ = (µ(1), . . . , µ(l)) of partitions such that |µ(1)| + · · · + |µ(l)| = n.

The set of all l-multipartitions of n is denoted by Pn, and P := tn≥0Pn. A root

partition of α is a pair (M,µ), where M is a tuple (mρ)ρ∈Ψ of non-negative integers

such that
∑

ρ∈Ψmρρ = α, and µ is an l-multipartition of mδ. It is clear that all but

finitely many integers mρ are zero, so we can always choose a finite subset

ρ1 > · · · > ρs > δ > ρ−t > · · · > ρ−1

of Ψ such that mρ = 0 for ρ outside of this subset. Then, denoting mu := mρu , we

can write any root partition of α in the form

(M,µ) = (ρm1
1 , . . . , ρmss , µ, ρ

m−t
−t , . . . , ρ

m−1

−1 ), (1.5)

where all mu ∈ Z≥0, µ ∈P, and

s∑
u=1

muρu + |µ|δ +
t∑

u=1

m−uρ−u = α.

We write Π(α) for the set of root partitions of α. The set Π(α) has a natural partial

order ‘≤’, see §III.

Let ρ ∈ Φ+. For M ∈ Rρ-mod, we say that M is semicuspidal if Resρβ,γM 6= 0

implies that β is a sum of positive roots less than or equal to ρ, and γ is a sum
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of positive roots greater than or equal to ρ. We say that M is cuspidal if these

inequalities are strict. If ρ is imaginary and M is semicuspidal, we say that M is

imaginary.

A cuspidal system (for a fixed convex preorder) is the following data:

(Cus1) A cuspidal irreducible Rρ-module Lρ assigned to every ρ ∈ Φre
+.

(Cus2) An irreducible imaginary Rnδ-module L(µ) assigned to every µ ∈ Pn. It is

required that L(λ) 6' L(µ) unless λ = µ.

It is proved in [24] that (for a fixed convex preorder) cuspidal modules exist and

are determined uniquely up to an isomorphism.

Given a root partition π = (ρm1
1 , . . . , ρmss , µ, ρ

m−t
−t , . . . , ρ

m−1

−1 ) ∈ Π(α) as above,

the corresponding standard module is:

∆̄(π) := qsh(π)L◦m1
ρ1
◦ · · · ◦ L◦msρs ◦ L(µ) ◦ L◦m−tρ−t ◦ · · · ◦ L

m−1
ρ−1

, (1.6)

where qsh(π) means that grading is shifted by a certain integer sh(π).

Theorem. (Cuspidal Systems) [24, Main Theorem] For any convex preorder there

exists a cuspidal system

{Lρ | ρ ∈ Φre
+} ∪ {L(µ) | µ ∈P}.

Moreover:

(i) For every root partition π, the standard module ∆̄(π) has irreducible head;

denote this irreducible module L(π).

(ii) {L(π) | π ∈ Π(α)} is a complete and irredundant system of irreducible Rα-

modules up to isomorphism and degree shift.
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(iii) For every root partition π, we have L(π)~ ∼= L(π).

(iv) For all root partitions π, σ ∈ Π(α), we have that [∆̄(π) : L(π)]q = 1, and

[∆̄(π) : L(σ)]q 6= 0 implies σ ≤ π.

(v) The induced module L◦nρ is irreducible for all ρ ∈ Φre
+ and n ∈ Z>0.

1.2. Imaginary Schur-Weyl duality

The above theorem gives a ‘rough classification’ of irreducible Rα-modules. The

main problem is that we did not give a canonical definition of individual irreducible

imaginary modules L(µ). We just know that the amount of such modules for Rnδ is

equal to the number of l-multipartitions of n, and so we have labeled them by such

multipartitions in an arbitrary way.

In this work we address this issue. Our approach relies on the so-called imaginary

Schur-Weyl duality. This theory in particular allows us to construct an equivalence

between an appropriate category of imaginary representations of KLR algebras and

the category of representations of the classical Schur algebra.

Let us make an additional assumption that the convex preorder is balanced, which

means that

Φre
� = {β + nδ | β ∈ Φ′+, n ∈ Z≥0}. (1.7)

This is equivalent to

αi � nδ � α0 (i ∈ I ′, n ∈ Z>0). (1.8)

Of course, we then also have Φre
≺ = {−β + nδ | β ∈ Φ′+, n ∈ Z>0}. Balanced convex

preorders always exist, see for example [2].
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1.21. Imaginary Schur-Weyl duality

The first steps towards imaginary Schur-Weyl duality have already been made in

[24]. First of all there are the minuscule representations—the irreducible imaginary

representations which correspond to l-multipartitions of 1. There are exactly l such

multipartitions, namely µ(1), . . . , µ(l), where

µ(i) := (∅, . . . , ∅, (1), ∅, . . . , ∅)

with the partition (1) in the ith position. For each i = 1, . . . , l, we have defined an

irreducible Rδ-module Lδ,i, see [24, Section 5], and set

L(µ(i)) := Lδ,i (1 ≤ i ≤ l).

The imaginary tensor space of color i is the Rnδ-module

Mn,i := L◦nδ,i (1 ≤ i ≤ l).

In [24, Lemma 5.7] it is proved that any composition factor of a mixed tensor space

Mn1,1 ◦ · · · ◦Mnl,l

is imaginary. We call composition factors of Mn,i irreducible imaginary modules of

color i. The following theorem reduces the study of irreducible imaginary modules to

irreducible imaginary modules of a fixed color:

Theorem. (Reduction to One Color) [24, Theorem 5.10] Suppose that for each

n ∈ Z≥0 and i ∈ I ′, we have an irredundant family {Li(λ) | λ ` n} of irreducible

7



imaginary Rnδ-modules of color i. For a multipartition λ = (λ(1), . . . , λ(l)) ∈ Pn,

define

L(λ) := L1(λ(1)) ◦ · · · ◦ Ll(λ(l)).

Then {L(λ) | λ ∈Pn} is a complete and irredundant system of irreducible imaginary

Rnδ-modules. In particular, the given modules {Li(λ) | λ ` n} give all the irreducible

imaginary modules of color i up to isomorphism.

In view of this theorem, we need to construct irreducible imaginary Rnδ-modules

Li(λ) of color i. We will now fix i and drop the index i from our notation. We must

describe the composition factors of the imaginary tensor space Mn = Mn,i and show

that they are naturally labeled by the partitions λ of n.

The Rnδ-module structure on the imaginary tensor space Mn yields an algebra

homomorphism Rnδ → EndF (Mn). Define the imaginary Schur algebra Sn as the

image of Rnδ under this homomorphism. In other words,

Sn = Rnδ/AnnRnδ(Mn).

Modules over Rnδ which factor through to Sn will be called imaginary modules (of

color i). Thus the category of imaginary Rnδ-modules is the same as the category of

Sn-modules.

It is clear that Mn and its composition factors are imaginary modules.

Conversely, any irreducible Sn-module appears as a composition factor of Mn. So

our new notion of an imaginary module fits with the old notion of an irreducible

imaginary module in the sense of cuspidal systems.

The first major result of this dissertation is:

Theorem 1. (Imaginary Schur-Weyl Duality)

8



(i) Mn is a projective Sn-module.

(ii) The endomorphism algebra EndRnδ(Mn) = EndSn(Mn) of the imaginary tensor

space Mn is isomorphic to the group algebra FSn of the symmetric group Sn

(concentrated in degree zero). Thus Mn can be considered as a right FSn-

module.

(iii) EndFSn(Mn) = Sn.

Parts (i) and (ii) of Theorem 3 are Theorem 3.44, and part (iii) is

Theorem 3.101(ii).

In view of Theorem 1, we have an exact functor

γn : Sn-mod→ FSn-mod, V 7→ HomSn(Mn, V ). (1.9)

Unfortunately, γn is not an equivalence of categories, unless the characteristic of the

ground field is zero or greater than n, since in general the Sn-module Mn is not

a projective generator. In order to resolve this problem, we need to upgrade from

imaginary Schur-Weyl duality to imaginary Howe duality.

1.22. Imaginary Howe duality

Let xn :=
∑

g∈Sn g. In view of Theorem 1, Mn is a right FSn-module. Define

the imaginary divided and exterior powers respectively as follows:

Zn := {m ∈Mn | mg − sgn(g)m = 0 for all g ∈ Sn},

Λn := Mnxn.

9



For h ∈ Z>0, denote by X(h, n) the set of all compositions of n with h parts:

X(h, n) := {(n1, . . . , nh) ∈ Zh≥0 | n1 + · · ·+ nh = n}.

The corresponding set of partitions is

X+(h, n) := {(n1, . . . , nh) ∈ X(h, n) | n1 ≥ · · · ≥ nh}.

For a composition ν = (n1, . . . , nh) ∈ X(h, n), we define the functors of imaginary

induction and imaginary restriction as

Inν := Indn1δ,...,nhδ : Rn1δ,...,nhδ-mod→ Rnδ-mod

and

∗Inν := Resn1δ,...,nhδ : Rnδ-mod→ Rn1δ,...,nhδ-mod .

These functors ‘respect’ the categories of imaginary representations. For example,

given imaginary Rnbδ-modules Vb for b = 1, . . . , h, the module Inν (V1� · · ·�Vh) is also

imaginary. Define

Zν := Inν (Zn1 � · · ·� Znh),

Λν := Inν (Λn1 � · · ·� Λnh).

Now, let Sh,n be the classical Schur algebra, whose representations are the same

as the degree n polynomial representations of the general linear group GLh(F ), see

[12]. In particular, it is a finite dimensional quasi-hereditary algebra with irreducible,

10



standard, costandard, and indecomposable tilting modules

Lh(λ), ∆h(λ), ∇h(λ), Th(λ) (λ ∈ X+(h, n)).

Theorem 2. (Imaginary Howe Duality)

(i) For each ν ∈ X(h, n) the Sn-module Zν is projective. Moreover, for any h ≥ n,

we have that Z :=
⊕

ν∈X(h,n) Z
ν is a projective generator for Sn.

(ii) The endomorphism algebra EndSn(Z) is isomorphic to the classical Schur

algebra Sh,n. Thus Z can be considered as a right Sh,n-module.

(iii) EndSh,n(Z) = Sn.

Part (i) of Theorem 4 is Theorem 3.74(iii), part (ii) is Theorem 3.66, while part

(iii) follows from (i) and (ii) and general Morita theory.

1.23. Morita equivalence

Theorem 2 allows us to plug in Morita theory to define mutually inverse

equivalences of categories

αh,n : Sn-mod→ Sh,n-mod, V 7→ HomSn(Z, V ) (1.10)

βh,n : Sh,n-mod→ Sn-mod, W 7→ Z ⊗Sh,n W. (1.11)

Denoting by fh,n the usual Schur functor, as for example in [12, §6], by definitions we

then have a commutative triangle (up to isomorphism of functors):

Sh,n-mod

Sn-modFSn-mod

fh,n αh,n βh,n

γn

11



Let λ ∈ X+(n, n) and h ≥ n. We can also consider λ as an element of X+(h, n).

Define the graded Sn-modules (hence, by inflation, also graded Rnδ-modules):

L(λ) := βh,n(Lh(λ)), (1.12)

∆(λ) := βh,n(∆h(λ)), (1.13)

∇(λ) := βh,n(∇h(λ)), (1.14)

T (λ) := βh,n(Th(λ)). (1.15)

Theorem 3. (Imaginary Schur Algebra) The imaginary Schur algebra Sn is a

finite dimensional quasi-hereditary algebra with irreducible, standard, costandard, and

indecomposable tilting modules

L(λ), ∆(λ), ∇(λ), T (λ) (λ ∈ X+(h, n)).

We also study an imaginary analogue of Ringel duality, certain Gelfand-Graev

fragments of the graded character of imaginary representations, and an imaginary

analogue of the Jacobi-Trudi formula.

1.3. Stratifying KLR algebras of affine ADE types

Restricting attention to KLR algebras Rα of untwisted affine ADE types, we

are able to generalize much of the theory of the previous section from balanced to

arbitrary convex preorders. In particular, we obtain an analogue of the imaginary

Howe duality theory in complete generality. To do this, we take advantage of two

added ingredients: the recent work of McNamara [39], which gives the desired result

in characteristic zero, and reduction modulo p.

12



1.31. Stratifying KLR algebras

Under the assumption p = 0, it is proved in [39] that Rα is properly stratified.

Informally, this means that the category Rα-mod of finitely generated graded Rα-

modules is stratified by the categories Bξ-mod for much simpler algebras Bξ. Our

goal then is to apply reduction modulo p arguments to generalize this result to the

case where p is greater than some explicit bound, related to the bound appearing in

James’ Conjecture.

We define the semicuspidal algebra Cnα so that the category of finitely generated

semicuspidal Rnα-modules is equivalent to Cnα-mod. Projective indecomposable

modules in Cnα-mod are used to define standard modules for Rθ. We show that

our definitions, which use parabolic induction of semicuspidal representations, agree

with a general categorical definition of standard modules. We then verify the flatness

condition in the definition of properly stratified algebras. To verify the standard

filtration condition we need a certain Ext result, following McNamara’s argument in

[39]. With this theorem in hand, a standard argument gives:

Theorem 4. Let α =
∑

i∈I niαi ∈ Q+ and assume that p > min{ni | i ∈ I}. For any

convex preorder on Φ+, the algebra Rα is properly stratified.

1.32. Affine zigzag algebras and imaginary strata

Description of the algebras Bξ in the previous section are easily reduced to the

semicuspidal cases, which split into real and imaginary subcases. In the real case we

have Bnα
∼= k[z1, . . . , zn]Sn , the algebra of symmetric polynomials in n variables, but

the imaginary case Bnδ is not so easy to understand.

Working with a balanced convex order, we prove that Bδ
∼= k[z]⊗ A, where A is

the zigzag algebra of [14] corresponding to the underlying finite Dynkin diagram Γ′
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obtained by deleting the affine node from Γ, and k[z] is the polynomial algebra. In

order to describe the higher imaginary strata, we introduce the rank n affine zigzag

algebra Aaff
n , which is defined for any connected graph without loops. We show that

Bnδ is (graded) Morita equivalent to the affine zigzag algebra Aaff
n corresponding to

Γ′ if p > min{ni | i ∈ I} (or p = 0).

Denoting

∆nδ :=
⊕
λ∈Pn

∆(λ) and Bnδ := EndRnδ(∆nδ)
op,

we have that Bnδ is the basic algebra Morita equivalent to Cnδ. It turns out that

the parabolically induced module ∆◦nδ , which can be considered as a Cnδ-module, is

always projective in the category Cnδ-mod. However, it is a projective generator in

Cnδ-mod if and only if p > n or p = 0. So under these assumptions, the endomorphism

algebra of ∆◦nδ is Morita equivalent to Cnδ and Bnδ. Otherwise, it is Morita equivalent

to their idempotent truncations. The following result is proved under no restrictions

on p. In fact, it holds over an arbitrary commutative unital ground ring k.

Theorem 5. Assume that the convex preorder on Φ+ is balanced. Then we have an

isomorphism of graded algebras

EndRnδ(∆
◦n
δ )op ∼= Aaff

n ,

where Aaff
n is the affine zigzag algebra of type Γ′. In particular, Bδ

∼= k[z]⊗ A.
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1.4. Skew Specht modules and real cuspidal modules

Restricting attention to affine type A, we examine a connection between classical

representation theory of symmetric groups and the cuspidal system theory of KLR

algebras.

1.41. Skew Specht modules

Let O be a commutative ring with identity, and let Sd be the symmetric group

on d letters. To every partition λ of d, or equivalently, every Young diagram with

d nodes, there is an associated OSd-module SλO called a Specht module, which has

O-basis in correspondence with standard λ-tableaux. Over the complex numbers,

the group algebra of Sd is semisimple, and it is well known that {SλZ | λ ` d} is a

complete set of irreducible representations. For k ≤ d, we consider Sk a subgroup

of Sd with respect to the first k letters, and denote the copy of Sk embedded in Sd

with respect to the last k letters as S′k. For λ ` d and µ ` k,

S
λ/µ
Z := HomSk(S

µ
Z,ResSkS

λ
Z) (1.16)

is a ZS′d−k-module. In fact, S
λ/µ
Z 6= 0 if and only if the Young diagram for µ is

contained in that of λ, so going forward we assume that is the case. The set of

nodes λ/µ in the complement is called a skew diagram, and S
λ/µ
Z is called a skew

Specht module. As a Z-vector space, S
λ/µ
Z has basis in correspondence with standard

λ/µ-tableaux, and there is an analogue of Young’s orthogonal form for skew Specht

modules. When O = F is a field of positive characteristic, semisimplicity fails, but

skew Specht modules still arise as subquotients of restrictions of Specht modules to

Young subgroups.
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More generally, to an l-multipartition λ, one may associate a Specht module Sλ

over a cyclotomic Hecke algebra of level l, of which the group algebra of Sd is a special

(level one) case. Brundan and Kleshchev [6] showed that over an arbitrary field such

algebras are isomorphic to a certain cyclotomic quotient RΛ
d of the Khovanov-Lauda-

Rouquier (KLR) algebra Rd =
⊕

ht(α)=dRα. In [27], Kleshchev, Mathas and Ram

gave a presentation for Sλ over Rα, in terms of a ‘highest weight’ generator vλ and

relations which include a homogeneous version of the classical Garnir relations for

Specht modules.

In this work we define graded skew Specht modules over Rα by extending, in

the most obvious way, the presentation of [27] to skew diagrams λ/µ. We prove that

this yields a graded Rα-module Sλ/µ with homogeneous basis in correspondence with

standard λ/µ-tableaux. We show that for λ of content β + α, the Rβ ⊗ Rα-module

Resβ,αS
λ has an explicit graded filtration with subquotients of the form Sµ � Sλ/µ.

1.42. Real cuspidal modules

Our motivation for constructing graded skew Specht modules arose from the

study of real cuspidal modules over KLR algebras of affine type A. We prove the

following theorem for every balanced convex preorder �.

Theorem 6. For a real root α ∈ Φ+, the irreducible cuspidal module Lα is isomorphic

to a skew Specht module Sλ/µ, where λ/µ is an explicit skew hook diagram (dependent

on �).

This gives a presentation for cuspidal modules, along with a description of the

graded character which can be read off from the skew hook diagram. This result can

be seen as an affine analogue of a result by Kleshchev and Ram [32, §8.4], which
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showed that in finite type A, the cuspidal modules are Specht modules associated to

certain hook partitions.

1.5. Overview

In Chapter II we present preliminary definitions and results which will be required

throughout the dissertation. Preliminaries which are specific to a given chapter will

appear in that section. In Chapter III we prove imaginary Schur-Weyl duality. In

Chapter IV we generalize the results of III to arbitrary convex orders in affine ADE

types, present proof of the stratification result, and describe the imaginary strata.

In Chapter V we define skew Specht modules in type A, and use these to describe

real cuspidal modules. Technical calculations and results needed to prove results in

Chapters III and IV are relegated to Chapter VI.
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CHAPTER II

PRELIMINARIES

This chapter contains sections of the the articles [29, 30, 28, 40]. The papers [29,

30, 28] were co-authored with Alexander Kleshchev. We developed the results in the

co-authored material jointly over many meetings, and, by the nature of collaborative

mathematical work, it is difficult to attribute exact portions of the co-authored material

to either Kleshchev or myself individually.

2.1. Ground rings

Throughout the paper, F is a field of arbitrary characteristic p ≥ 0. We also

often work over a ring O, which is assumed to be either Z or F . Denote the ring

of Laurent polynomials in the indeterminate q by A := Z[q, q−1]. We use quantum

integers

[n]q := (qn − q−n)/(q − q−1) ∈ A (n ∈ Z),

and the quantum factorials [n]!q := [1]q[2]q . . . [n]q.

2.2. Symmetric groups and Schur algebras

In this section we review the standard facts and combinatorics related to

symmetric groups and Schur algebras.

2.21. Partitions and compositions

We denote by X(h, n) the set of all compositions of n with h parts (some of

which could be zero), X+(h, n) the set of al partitions of n with at most h parts, and
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X+(n) = X+(n, n) the set of partitions of n. Sometimes we write λ ` n to indicate

that λ ∈ X+(n) and λ � n to indicate that λ ∈ X(n, n). The standard dominance

order on X(h, n) is denoted by “≤”.

We will use the special elements ε1, . . . , εh ∈ X(h, 1), where

εm = (0, . . . , 0, 1, 0, . . . , 0)

with 1 in the mth position. For a composition µ � n we denote by µ+ ` n the unique

partition obtained from µ by a permutation of its parts. For λ ` n, we have its

transpose partition λtr ` n.

If p > 0, then λ ∈ X+(h, n) is p-restricted if λr−λr+1 < p for all r = 1, 2, . . . , h−1.

A p-adic expansion of λ is some (non-unique) way of writing λ = λ(0) + pλ(1) +

p2λ(2) + . . . such that each λ(i) ∈ X+(h, n(i)) is p-restricted. This can be applied to

a partition λ ` n considered as an element of X+(n, n), in which case the nth part

λn ≤ 1, and so the p-adic expansion is unique.

2.22. Coset representatives

Let λ = (λ1, . . . , λa) � n, and let Sλ be the corresponding standard parabolic

subgroup of Sn, i.e. Sλ is the row stabilizer in Sn of the row leading tableau Tλ

obtained by allocating the numbers 1, . . . , n into the boxes of λ from left to right in

each row starting from the first row and going down. The column leading tableau Tλ

obtained by allocating the numbers 1, . . . , n into the boxes of λ from top to bottom

in each column starting from the first column and going to the right. Denote

xλ =
∑
w∈Sλ

w, yλ =
∑
w∈Sλ

sgn(w)w (λ � n),
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where sgn(w) is the sign of the permutation w ∈ Sn. Sometimes we also use the

notation sgnSn and sgnSλ to denote the sign representations of the corresponding

groups.

Let x ∈ Sn. If xSλx
−1 is a standard parabolic subgroup, say Sµ for some

composition µ, we write µ =: xλ and say that x permutes the parts of λ, i.e. in that

case we have

xSλx
−1 = Sxλ.

We recall some standard facts on minimal length coset representatives in

symmetric groups, see e.g. [8, Section 1]. For λ � n, denote by Dλn (resp. λDn)

the set of the minimal length left (resp. right) coset representatives of Sλ in Sn.

Note that the permutation module

Perλ := indOSnOSλ trivSλ ' OSnxλ

has an O-basis {g ⊗ 1 | g ∈ Dλn}, and similarly for the signed permutation module

SPerλ := indOSnOSλ sgnSλ ' OSnyλ ' Perλ⊗sgnSn .

More generally, if ν � n and λ is a refinement of ν, denote Dλν := Dλn ∩Sν and

λDν := λDn ∩Sν . Then Dλν (resp. λDν) is set of the minimal length left (resp. right)

coset representatives of Sλ in Sν . Moreover,

Dλn = {xy | x ∈ Dνn, y ∈ Dλν} and λDn = {yx | x ∈ νDn, y ∈ λDν}. (2.1)

For two compositions λ, µ � n set λDµn := Dµn ∩ λDn. Then λDµn is the set of

the minimal length (Sλ,Sµ)-double coset representatives in Sn. If x ∈ λDµn, then
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Sλ ∩ xSµx
−1 is a standard parabolic in Sn. This standard parabolic corresponds

to certain composition of n, which we denote λ ∩ xµ. Similarly, x−1Sλx ∩Sµ is the

standard parabolic corresponding to a composotion x−1λ ∩ µ. Thus:

Sλ ∩ xSµx
−1 = Sλ∩xµ, x−1Sλx ∩Sµ = Sx−1λ∩µ (x ∈ λDµn). (2.2)

Moreover, x permutes the parts of x−1λ ∩ µ, and x(x−1λ ∩ µ) = λ ∩ xµ, so

xSx−1λ∩µx
−1 = Sλ∩xµ.

For λ ` n define uλ to be the unique element of λ
trDλ such that Sλtr∩uλSλu

−1
λ =

{1}; in other words, uλ is defined from uλT
λ = Tλ.

Lemma 2.3. [8, Lemma 4.1] If λ ` n, then yλtrOSnxλ is an O-free O-module of rank

one, generated by the element yλtruλxλ.

2.23. Schur algebras

The necessary information on Schur algebras is conveniently gathered in [5,

Section 1]. We recall only some most often needed facts for reader’s convenience.

The Schur algebra Sh,n = Sh,n,O is defined to the endomorphism algebra

Sh,n := EndOSn

( ⊕
ν∈X(h,n)

Perν
)
,

writing endomorphisms commuting with the left action of OSn on the right.

Let λ, µ ∈ X(h, n) and u ∈ Sn. The right multiplication in OSn by

guµ,λ :=
∑

w∈SµuSλ ∩ µD

w (2.4)
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induces a well-defined homomorphism of left OSn-modules

ϕuµ,λ : Perµ → Perλ .

Extending ϕuµ,λ to all of
⊕

ν∈X(h,n) Perν by letting it act as zero on Perν for ν 6= µ, we

obtain a well-defined element

ϕuµ,λ ∈ Sh,n. (2.5)

Lemma 2.6. Sh,n is O-free with basis {ϕuµ,λ | µ, λ ∈ X(h, n), u ∈ µDλ}.

Lemma 2.7. For h ≥ n, the O-linear map κ : FSn → Sh,n, defined on a basis element

w ∈ Sn by κ(w) := ϕw(1n),(1n), is a (unital) ring embedding.

One can also define the Schur algebra using the signed permutation modules. So

consider instead the algebra

EndOSn

( ⊕
ν∈X(h,n)

SPerν
)
.

For λ, µ ∈ X(h, n) and u ∈ Sn set

suµ,λ :=
∑

w∈SµuSλ ∩ µD

sgn(w)w. (2.8)

Lemma 2.9. The algebras Sh,n and EndOSn

(⊕
ν∈X(h,n) SPerν

)
are isomorphic, the

natural basis element ϕuµ,λ of Sh,n corresponding under the isomorphism to the

endomorphism which is zero on SPerν for ν 6= µ and sends SPerµ into SPerλ via

the homomorphism induced by right multiplication in OSn by suµ,λ.
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2.24. Representation theory of Schur algebras

We recall some facts about the representation theory of Sh,n, assuming now that

O = F . All the results gathered here are explained in detail and properly referenced

in [5, Section 1]. First of all, it is known that the elements

e(µ) := ϕ1
µ,µ ∈ Sh,n (µ ∈ X(h, n)) (2.10)

are idempotents. We have a weight space decomposition for W ∈ Sh,n-mod:

W =
⊕

µ∈X(h,n)

e(µ)W.

The subspaces e(µ)W are the weight spaces of W .

The irreducible Sh,n-modules are parametrized by the elements of X+(h, n). We

write Lh(λ) for the irreducible Sh,n-module corresponding to λ ∈ X+(h, n). In

particular, Lh(λ) has highest weight λ, i.e. e(λ)Lh(λ) 6= 0 and e(µ)Lh(λ) = 0 for

all µ ∈ X(h, n) with µ 6≤ λ. It is known that Sh,n is a quasi-hereditary algebra with

weight poset (X+(h, n),≤). In particular, we have associated to λ ∈ X+(h, n) the

standard and costandard modules ∆h(λ) and ∇h(λ) such that ∆h(λ) (resp. ∇h(λ))

has simple head (resp. socle) isomorphic to Lh(λ), and all other composition factors

are of the form Lh(µ) with µ < λ.

For λ ∈ X+(h, n) and ν ∈ X(h, n), denote by kλ,ν the dimension of the ν-weight

space of Lh(λ):

kλ,ν := dim e(ν)Lh(λ). (2.11)
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In particular, if charF = 0, then Lh(λ) = ∆h(λ) and so it is well-known that kλ,ν =

Kλ,ν , where

Kλ,ν := ]{semistandard λ-tableaux of type ν}, (2.12)

also known as the (λ, ν)-Kostka number. To give the necessary definitions, we consider

λ as a partition, and so we can speak of the corresponding Young diagram. A λ-tableau

is an allocation of numbers from the set {1, . . . , h} (possibly with repetitions) into

the boxes of the Young diagram λ. A λ-tableau is of type ν if each 1 ≤ k ≤ n appears

in it exactly νk times. A λ-tableau is column strict if its entries increase down the

columns. A λ-tableau is row weak if its entries weakly increase from left to right along

the rows. A λ-tableau is semistandard if it is row weak and column strict.

The algebra Sh,n possesses an anti-automorphism τ defined on the standard basis

elements by τ(ϕuµ,λ) = ϕu
−1

λ,µ . Using this, we define the contravariant dual M τ of an

Sh,n-module M to be the dual vector space M∗ with action defined by (s · f)(m) =

f(τ(s)m) for all s ∈ Sh,n,m ∈ M, f ∈ M∗. We have Lh(λ)τ ' Lh(λ) and ∆h(λ)τ '

∇h(λ) for all λ ∈ X+(h, n).

Given a left Sh,n-module M , we write M̃ for the right Sh,n-module equal to M

as a vector space with right action defined by ms = τ(s)m for m ∈M, s ∈ Sh,n. This

gives us modules L̃h(λ), ∆̃h(λ) and ∇̃h(λ) for each λ ∈ X+(h, n).

Lemma 2.13. Sh,n has a filtration as an (Sh,n, Sh,n)-bimodule with factors isomorphic

to ∆h(λ) ⊗ ∆̃h(λ), each appearing once for each λ ∈ X+(h, n) and ordered in any

way refining the dominance order on partitions so that factors corresponding to more

dominant λ appear lower in the filtration.

We have an algebra map Sh,n+l → Sh,n ⊗ Sh,l, which enables us to view the

tensor product M ⊗M ′ of an Sh,n-module M and an Sh,l-module M ′ as an Sh,n+l-

module. Let Vh = Lh((1)) be the natural module. The nth tensor power V ⊗nh can
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be regarded as an Sh,n-module. We also have the symmetric, divided and exterior

powers: Sn(Vh) = ∇h((n)), Zn(Vh) = ∆h((n)), Λn(Vh) = Lh((1
n)). More generally,

given ν = (n1, . . . , na) ∈ X(h, n), define

Sν(Vh) := Sn1(Vh)⊗ · · · ⊗ Sna(Vh), (2.14)

Zν(Vh) := Zn1(Vh)⊗ · · · ⊗ Zna(Vh), (2.15)

Λν(Vh) := Λn1(Vh)⊗ · · · ⊗ Λna(Vh). (2.16)

all of which can be regarded as Sh,n-modules.

Lemma 2.17. For ν ∈ X(h, n) we have:

(i) the left ideal Sh,ne(ν) of Sh,n is isomorphic to Zν(Vh) as an Sh,n-module;

(ii) providing h ≥ n, the left ideal Sh,nκ(yν) of Sh,n is isomorphic to Λν(Vh) as an

Sh,n-module, where κ : FSn(V )→ Sh,n is the embedding of Lemma 2.7.

A finite dimensional Sh,n-module M has a standard (resp. costandard) filtration

if M has a filtration 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mr = M such that each factor Mi/Mi−1

is isomorphic to a direct sum of copies of ∆h(λ) (resp. ∇h(λ)) for some fixed λ ∈

X+(h, n) (depending on i).

Lemma 2.18. If M,M ′ are modules with standard (resp. costandard) filtrations then

so is M ⊗M ′.

In particular, Lemma 2.18 implies that for any ν ∈ X(h, n), the modules Sν(Vh),

and Λν(Vh) have costandard filtrations, while Zν(Vh) and Λν(Vh) have standard

filtrations.
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Lemma 2.19. Let h ≥ n and λ ∈ X+(h, n), we have that the homomorphism space

HomSh,n(Zλ(Vh),Λ
λtr(Vh)) is one-dimensional, and the image of any non-zero such

homomorphism is isomorphic to ∆h(λ).

If p > 0, then for and h, n, r ∈ Z≥0, there is a Frobenius homomorphism

Fr : Sh,npr → Sh,n,

twisting with which one gets the Frobenius twist functor

Sh,n-mod→ Sh,npr -mod, M 7→M [r].

For example L(λ)[r] ' L(prλ). The Steinberg tensor product theorem is:

Lemma 2.20. Suppose that λ ∈ X+(h, n) has p-adic expansion λ = λ(0) + pλ(1) +

p2λ(2) + . . . . Then, Lh(λ) ' Lh(λ(0))⊗ Lh(λ(1))[1] ⊗ Lh(λ(2))[2] ⊗ . . . .

2.25. Induction and restriction for Schur algebras

For a composition χ = (h1, . . . , ha) � h there is a natural Levi Schur subalgebra

Sχ,n '
⊕

n1+···+na=n

Sh1,n1 ⊗ · · · ⊗ Sha,na ⊆ Sh,n, (2.21)

and the usual restriction, and induction functors:

res
Sh,n
Sχ,n

: Sh,n-mod→ Sχ,n-mod, ind
Sh,n
Sχ,n

: Sχ,n-mod→ Sh,n-mod .
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Moreover, fix l ≤ h and embed X(l, k) into X(h, k) in the natural way. Let e be

the idempotent

e = eh,l :=
∑

µ∈X(l,k)

e(µ) ∈ Sh,n. (2.22)

Lemma 2.23. We have Sl,n ' eSh,ne.

Then, we have the Schur functor

trun
Sh,n
Sl,n

: Sh,n-mod→ Sl,n-mod, M 7→ eM (2.24)

and its left adjoint

infl
Sh,n
Sl,n

: Sl,n-mod→ Sh,n-mod, N 7→ Sh,ne⊗eSh,ne N. (2.25)

Lemma 2.26. If n ≤ l ≤ h, then the functors trun
Sh,n
Sl,n

and infl
Sh,n
Sl,n

are mutually

quasi-inverse equivalences of categories.

Lemma 2.27. Let l < h and µ = (µ1, . . . , µh) ∈ X+(h, n).

(i) If µl+1 6= 0 then trun
Sh,n
Sl,n

Lh(µ) = trun
Sh,n
Sl,n

∆h(µ) = trun
Sh,n
Sl,n
∇h(µ) = 0.

(ii) If µl+1 = 0, we may regard µ as an element of X+(l, n), and then we have

trun
Sh,n
Sl,n

Lh(µ) ' Ll(µ), trun
Sh,n
Sl,n

∆h(µ) ' ∆l(µ), and trun
Sh,n
Sl,n
∇h(µ) ' ∇l(µ).

Lemma 2.28. If χ = (h1, . . . , ha) � h and ν = (n1, . . . , na) � n, with hr ≥ nr for all

r = 1, . . . , a, then

ind
Sh,n
Sχ,n

(?� · · ·� ?) and (infl
Sh,n1
Sh1,n1

?)⊗ · · · ⊗ (infl
Sh,na
Sha,na

?)

are isomorphic functors from Sh1,n1-mod× · · · × Sha,na-mod to Sh,n-mod.
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2.26. Schur functors

Here we review the material of [5, Section 3.1] for future references. Let S

be a finite dimensional F -algebra, P ∈ S -mod be a projective module, and H =

EndS (P ), writing endomorphisms commuting with the left S -action on the right.

Define the functors:

α := HomS (P, ?) : S -mod→ H-mod,

β := P⊗H? : H-mod→ S -mod .

The α is exact, and β is left adjoint to α.

Given an S -module V , letOP (V ) denote the largest submodule V ′ of V such that

HomS (P, V ′) = 0. Let OP (V ) denote the submodule of V generated by the images of

all S -homomorphisms from P to V . Any S -module homomorphism V → W sends

OP (V ) into OP (W ) and OP (V ) into OP (W ), so we can view OP and OP as functors

S -mod → S -mod. Finally, any homomorphism V → W induces a well-defined S -

module homomorphism V/OP (V ) → W/OP (W ). We thus obtain an exact functor

AP : S -mod → S -mod defined on objects by V 7→ V/OP (V ). The following two

lemmas can be found for example in [5, 3.1a, 3.1c]:

Lemma 2.29. The functors α ◦ β and α ◦AP ◦ β are both isomorphic to the identity.

Lemma 2.30. If V,W ∈ S -mod satisfy OP (V ) = V and OP (W ) = 0, then

HomS (V,W ) ' HomH(α(V ), α(W )).

The main result on the functors α, β, proved for example in [5, 3.1d], is:

Theorem 2.31. The functors α and AP ◦ β induce mutually inverse equivalences of

categories between H-mod and the full subcategory of S -mod consisting of all V ∈

S -mod such that OP (V ) = 0 and OP (V ) = V .
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An easy consequence is the following relation between the irreducible modules,

see [5, 3.1e]:

Lemma 2.32. Let {Em | m ∈ M} be a complete set of non-isomorphic irreducible

S -modules appearing in the head of P . For all m ∈ M , set Dm := α(Em). Then,

{Dm | m ∈ M} is a complete irredundant set of irreducible H-modules, and AP ◦

β(Dm) ' Em.

Finally, we will make use of the following more explicit description of the effect

of the composite functor AP ◦ β on left ideals of H, see [5, 3.1f]:

Lemma 2.33. Suppose that every composition factor of the socle of P also appears in

its head. Then for any left ideal J of H, we have AP ◦ β(J) ' PJ .

2.3. Lie theoretic notation

Throughout the paper

C = (cij)i,j∈I

is a Cartan matrix of untwisted affine type, see [17, §4, Table Aff 1]. We have

I = {0, 1, . . . , l},

where 0 is the affine vertex. Following [17, §1.1], let (h,Π,Π∨) be a realization of the

Cartan matrix C, so we have simple roots {αi | i ∈ I}, simple coroots {α∨i | i ∈ I},

and a bilinear form (·, ·) on h∗ such that

cij =
2(αi, αj)

(αi, αi)

for all i, j ∈ I. We normalize (·, ·) so that (αi, αi) = 2 if αi is a short simple root.
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The fundamental dominant weights {Λi | i ∈ I} have the property 〈Λi, α
∨
j 〉 = δi,j,

where 〈·, ·〉 is the natural pairing between h∗ and h. We have the integral weight lattice

P = ⊕i∈IZ · Λi and the set of dominant weights P+ =
∑

i∈I Z≥0 · Λi. For i ∈ I we

define

qi := q(αi,αi)/2, [n]i := [n]qi , [n]!i := [n]!qi . (2.34)

Denote Q+ :=
⊕

i∈I Z≥0 · αi. For α ∈ Q+, we write ht(α) for the sum of its

coefficients when expanded in terms of the αi’s.

Let g′ = g(C′) be the finite dimensional simple Lie algebra whose Cartan matrix

C′ corresponds to the subset of vertices I ′ := I \ {0}. The affine Lie algebra g = g(C)

is then obtained from g′ by a procedure described in [17, Section 7]. We denote by

W (resp. W ′) the corresponding affine Weyl group (resp. finite Weyl group). It is

a Coxeter group with standard generators {ri | i ∈ I} (resp. {ri | i ∈ I ′}), see [17,

Proposition 3.13].

Let Φ′ and Φ be the root systems of g′ and g respectively. Denote by Φ′+ and

Φ+ the set of positive roots in Φ′ and Φ, respectively, cf. [17, §1.3]. Let

δ = a0α0 + a1α1 + · · ·+ alαl. (2.35)

By [17, Table Aff 1], we always have

a0 = 1. (2.36)

We have

δ − α0 = θ, (2.37)
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where θ is the highest root in the finite root system Φ′. Finally, Φ+ = Φim
+ t Φre

+,

where

Φim
+ = {nδ | n ∈ Z>0}

and

Φre
+ = {β + nδ | β ∈ Φ′+, n ∈ Z≥0} t {−β + nδ | β ∈ Φ′+, n ∈ Z>0}.

2.4. KLR algebras

Define the polynomials in the variables u, v

{Qij(u, v) ∈ F [u, v] | i, j ∈ I}

as follows. For the case where the Cartan matrix C 6= A
(1)
1 , choose signs εij for all

i, j ∈ I with cij < 0 so that εijεji = −1. Then set:

Qij(u, v) :=


0 if i = j;

1 if cij = 0;

εij(u
−cij − v−cji) if cij < 0.

(2.38)

For type A
(1)
1 we define

Qij(u, v) :=

 0 if i = j;

(u− v)(v − u) if i 6= j.
(2.39)

Fix α ∈ Q+ of height d. Let

Iα = {i = (i1, . . . , id) ∈ Id | αi1 + · · ·+ αid = α}. (2.40)
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The KLR-algebra Rα = Rα(O) is an associative graded unital O-algebra, given by

the generators

{1i | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (2.41)

and the following relations for all i, j ∈ Iα and all admissible r, t:

1i1j = δi,j1i,
∑
i∈Iα1i = 1; (2.42)

yr1i = 1iyr; yryt = ytyr; (2.43)

ψr1i = 1sriψr; (2.44)

(ytψr − ψrysr(t))1i = δir,ir+1(δt,r+1 − δt,r)1i; (2.45)

ψ2
r1i = Qir,ir+1(yr, yr+1)1i (2.46)

ψrψt = ψtψr (|r − t| > 1); (2.47)

(ψr+1ψrψr+1 − ψrψr+1ψr)1i

=δir,ir+2

Qir,ir+1(yr+2, yr+1)−Qir,ir+1(yr, yr+1)

yr+2 − yr
1i.

(2.48)

The grading on Rα is defined by setting:

deg(1i) = 0, deg(yr1i) = (αir , αir), deg(ψr1i) = −(αir , αir+1).

It is pointed out in [21] and [42, §3.2.4] that up to isomorphism Rα depends only

on the Cartan matrix and α.
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Fix in addition a dominant weight Λ ∈ P+. The corresponding cyclotomic KLR

algebra RΛ
α is the quotient of Rα by the following ideal:

JΛ
α := (y

〈Λ,α∨i1 〉
1 1i | i = (i1, . . . , id) ∈ Iα). (2.49)

For each element w ∈ Sd fix a reduced expression w = sr1 . . . srm and set

ψw := ψr1 . . . ψrm .

In general, ψw depends on the choice of the reduced expression of w.

Theorem 2.50. [20, Theorem 2.5], [42, Theorem 3.7] The elements

{ψwym1
1 . . . ymdd 1i | w ∈ Sd, m1, . . . ,md ∈ Z≥0, i ∈ Iα}

form an O-basis of Rα.

There exists a homogeneous algebra anti-involution

τ : Rα −→ Rα, 1i 7→ 1i, yr 7→ yr, ψs 7→ ψs (2.51)

for all i ∈ Iα, 1 ≤ r ≤ d, and 1 ≤ s < d. If M =
⊕

d∈ZMd is a finite dimensional

graded Rα-module, then the graded dual M~ is the graded Rα-module such that

(M~)n := HomO(M−n,O), for all n ∈ Z, and the Rα-action is given by (xf)(m) =

f(τ(x)m), for all f ∈M~,m ∈M,x ∈ Rα.

We remark that there is also a diagrammatic presentation of KLR algebras given

in [20]. This presentation is particularly convenient for large calculations, and we will

make use of it in Chapters V and VI.
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2.41. Basic representation theory of Rα

Let H be any (Z-)graded F -algebra. By a module V over H, we always mean

a graded left H-module. We denote by H-Mod the abelian category of all graded

left H-modules, with morphisms being degree-preserving module homomorphisms,

which we denote by Hom. Let H-mod denote the abelian subcategory of all finite

dimensional graded H-modules, and [H-mod] be the corresponding Grothendieck

group. Then [H-mod] is an A -module via qm[M ] := [qmM ], where qmM denotes the

module obtained by shifting the grading up by m, i.e. (qmM)n := Mn−m. We denote

by homH(M,N) the space of morphism in H-Mod, i.e. degree zero homogeneous

H-module homomorphisms. Similarly we have extmH(M,N).

For n ∈ Z, let HomH(M,N)n := homH(qnM,N) denote the space of all

homomorphisms that are homogeneous of degree n. Set

HomH(M,N) :=
⊕
n∈Z

HomH(M,N)n.

For graded H-modules M and N we write M ∼= N to mean that M and N are

isomorphic as graded modules and M ' N to mean that they are isomorphic as

H-modules after we forget the gradings.

For a finite dimensional graded vector space V = ⊕n∈ZVn, its graded dimension

is dimq V :=
∑

n∈Z(dimVn)qn ∈ A . Given M,L ∈ H-mod with L irreducible, we

write [M : L]q for the corresponding graded composition multiplicity, i.e. [M : L]q :=∑
n∈Z anq

n, where an is the multiplicity of qnL in a graded composition series of M .

Going back to the algebras Rα = Rα(F ), every irreducible graded Rα-module

is finite dimensional [20, Proposition 2.12], and there are finitely many irreducible

modules in Rα-mod up to isomorphism and grading shift [20, §2.5]. A prime field is a
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splitting field for Rα, see [20, Corollary 3.19], so working with irreducible Rα-modules

we do not need to assume that F is algebraically closed. Finally, for every irreducible

module L, there is a unique choice of the grading shift so that we have L~
∼−→ L [20,

Section 3.2]. When speaking of irreducible Rα-modules we often assume by fiat that

the shift has been chosen in this way.

For i ∈ Iα and M ∈ Rα-mod, the i-word space of M is Mi := 1iM. We have

M =
⊕

i∈IαMi. We say that i is a word of M if Mi 6= 0. A non-zero vector v ∈ Mi

is called a vector of word i. Note from the relations that ψrMi ⊆Msri.

Let M be a finite dimensional graded Rα-module. Define the q-character of M

as follows:

chqM :=
∑
i∈Iα

(dimqMi)i ∈ A Iα.

The q-character map chq : Rα-mod → A Iα factors through to give an injective A -

linear map from the Grothendieck group chq : [Rα-mod] → A Iα, see [20, Theorem

3.17].

2.42. Induction, coinduction, and duality for KLR algebras

Given α, β ∈ Q+, we set Rα,β := Rα⊗Rβ. Let M�N be the outer tensor product

of the Rα-module M and the Rβ-module N . There is an injective homogeneous (non-

unital) algebra homomorphism Rα,β ↪→Rα+β mapping 1i ⊗ 1j to 1ij , where ij is the

concatenation of the two sequences. The image of the identity element of Rα,β under

this map is

1α,β :=
∑

i∈Iα, j∈Iβ

1ij .
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Let Indα+β
α,β and Resα+β

α,β be the corresponding induction and restriction functors:

Indα+β
α,β := Rα+β1α,β⊗Rα,β? : Rα,β-mod→ Rα+β-mod,

Resα+β
α,β := 1α,βRα+β⊗Rα+β? : Rα+β-mod→ Rα,β-mod .

We often omit upper indices and write simply Indα,β and Resα,β.

Note that Resα,β is just left multiplication by the idempotent 1α,β, so it is

exact and sends finite dimensional modules to finite dimensional modules. By

[20, Proposition 2.16], 1α,βRα+β is a free left Rα,β-module of finite rank, so Resα,β

also sends finitely generated projectives to finitely generated projectives. Similarly,

Rα+β1α,β is a free right Rα,β-module of finite rank, so Indα,β is exact and sends finite

dimensional modules to finite dimensional modules. The functor Indα,β is left adjoint

to Resα,β, and it sends finitely generated projectives to finitely generated projectives.

These functors have obvious generalizations to n ≥ 2 factors:

Indγ1,...,γn : Rγ1,...,γn-mod→ Rγ1+···+γn-mod,

Resγ1,...,γn : Rγ1+···+γn-mod→ Rγ1,...,γn-mod .

If Ma ∈ Rγa-Mod, for a = 1, . . . , n, we define

M1 ◦ · · · ◦Mn := Indγ1,...,γnM1 � · · ·�Mn. (2.52)

In view of [20, Lemma 2.20], we have

chq (M1 ◦ · · · ◦Mn) = chq (M1) ◦ · · · ◦ chq (Mn). (2.53)
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Finally, the functors of induction and restriction have parabolic analogues. For

example, given a family (αab )1≤a≤n, 1≤b≤m of elements of Q+, set
∑n

a=1 α
a
b =: βb for all

1 ≤ b ≤ m. Then we have obvious functors

Indβ1;...;βm
(α1

1,...,α
n
1 );...;(α1

m,...,α
n
m)

and Resβ1;...;βm
(α1

1,...,α
n
1 );...;(α1

m,...,α
n
m)
.

While the induction functor Indγ1,...,γn is left adjoint to the functor Resγ1,...,γn ,

the right adjoint is given by the coinduction:

Coindγ1,...,γn = Coindγ1+···+γn
γ1,...,γn

:= HomRγ1,...,γn
(1γ1,...,γnRγ1+···+γn , ?)

Induction and coinduction are related as follows:

For γ := (γ1, . . . , γn) ∈ Qn
+, we denote

d(γ) :=
∑

1≤m<k≤n

(γm, γk).

Lemma 2.54. [35, Theorem 2.2] Let γ := (γ1, . . . , γn) ∈ Qn
+, and Vm be a finite-

dimensional Rγm-module for m = 1, . . . , n. Then

Indγ1,...,γnV1 � · · ·� Vn ∼= qd(γ) Coindγn,...,γ1Vn � · · ·� V1.

Lemma 2.55. Let γ := (γ1, . . . , γn) ∈ Qn
+, and Vm be a finite dimensional Rγm-module

for m = 1, . . . , n. Then

(V1 ◦ · · · ◦ Vn)~ ∼= qd(γ)(V ~n ◦ · · · ◦ V ~1 ).
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Proof. Follows from Lemma 2.54 by uniqueness of adjoint functors as in [23, Theorem

3.7.5]

Lemma 2.56. Let V ∈ Rθ-mod, i ∈ Iθ, and v ∈ 1iV be a non-zero homogeneous

vector with Rθv = V . Assume that there is only one irreducible Rθ-module L up to

' with 1iL 6= 0 and [V : L]q 6= 0. Then headV ' L.

Proof. If W is the radical of V then V/W ∼= ⊕rmr(q)Lr for simple modules Lr, with

Lr 6∼= Ls for r 6= s, and multiplicities mr(q) ∈ Z[q, q−1]. By assumptions, there exists

r such that L ∼= Lr, ms(q) = 0 for s 6= r, and v + W ∈ mr(q)Lr. Finally, v + W

generates mr(q)Lr, so mr(q) is of the form qd.

2.43. Crystal operators and extremal words

The theory of crystal operators has been developed in [20], [35] and [18] following

ideas of Grojnowski [13], see also [23]. We review necessary facts for the reader’s

convenience.

Let α ∈ Q+ and i ∈ I. It is known that Rnαi is a nil-Hecke algebra with unique

(up to a degree shift) irreducible module

L(in) = q
n(n−1)/2
i L(i)◦n.

Moreover, dimq L(in) = [n]!i We have functors

ei : Rα-mod→ Rα−αi-mod, M 7→ Res
Rα−αi,αi
Rα−αi

◦ Resα−αi,αiM,

fi : Rα-mod→ Rα+αi-mod, M 7→ Indα,αiM � L(i).
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If L ∈ Rα-mod is irreducible, we define

f̃iL := head(fiL), ẽiL := soc (eiL).

A fundamental fact is that f̃iL is again irreducible and ẽiL is irreducible or zero. We

refer to ẽi and f̃i as the crystal operators. These are operators on B ∪ {0}, where B

is the set of isomorphism classes of the irreducible Rα-modules for all α ∈ Q+. Define

wt : B → P, [L] 7→ −α if L ∈ Rα-mod.

Theorem 2.57. [35] B with the operators ẽi, f̃i and the function wt is the crystal graph

of the negative part Uq(n−) of the quantized enveloping algebra of g.

For M ∈ Rα-mod, define

εi(M) = max{k ≥ 0 | eki (M) 6= 0}.

Then εi(M) = max{εi(j) | j is a word of M}, where for j = (j1, . . . , jd) ∈ I,

εi(j) := max{k ≥ 0 | jd−k+1 = · · · = jd = i} (2.58)

is the length of the longest i-tail of j. Define also

ε∗i (M) := max{k ≥ 0 | j1 = · · · = jk = i for a word j = (j1, . . . , jd) of M}

to be the length of the longest i-head of the words of M .

Proposition 2.59. [35, 20] Let L be an irreducible Rα-module, i ∈ I, and ε = εi(L).

(i) eiL is either zero or it has a simple socle; denote this socle ẽiL interpreted as 0

if eiL = 0;
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(ii) fiL has simple head denoted f̃iL;

(iii) ẽif̃iL ' L and if ẽiL 6= 0 then f̃iẽiL ' L;

(iv) ε = max{k ≥ 0 | ẽki (L) 6= 0};

(v) Resα−εαi,εαiL ' ẽεiL� L(in).

Recall from (2.49) the cyclotomic ideal JΛ
α . We have an obvious functor of

inflation inflΛ : RΛ
α-mod→ Rα-mod and its left adjoint

prΛ : Rα-mod→ RΛ
α-mod, M 7→M/JΛ

αM.

Lemma 2.60. [35, Proposition 2.4] Let L be an irreducible Rα-module. Then prΛL 6= 0

if and only if ε∗i (L) ≤ 〈Λ, α∨i 〉 for all i ∈ I.

Let M ∈ Rα-mod and i = ia11 . . . iabb , with a1, . . . , ab ∈ Z>0, be a word of M .

Then i is extremal for M if

ab = εib(M), ab−1 = εib−1
(ẽabibM) , . . . , a1 = εi1(ẽ

a2
i2
. . . ẽabibM).

It follows that ik 6= ik+1 for all k = 1, . . . , b− 1.

Lemma 2.61. [24, Lemma 2.10] Let L be an irreducible Rα-module, and i =

ia11 . . . iabb ∈ Iα be an extremal word for L with ik 6= ik+1. Set N :=
∑b

m=1 am(am −

1)(αim , αim)/4. Then

dimq Li =
b∏

k=1

[ak]
!
ik

and dim 1iLN = dim 1iL−N = 1.
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2.44. Mackey Theorem

We state a slight generalization of Mackey Theorem of Khovanov and Lauda

[20, Proposition 2.18]. First some notation. Given κ = (κ1, . . . , κN) ∈ QN
+ , and a

permutation x ∈ SN , we denote

xκ := (κx−1(1), . . . , κx−1(N)).

Correspondingly, define the integer

s(x, κ) := −
∑

1≤m<k≤N, x(m)>x(k)

(κm, κk).

Writing Rκ for Rκ1,...,κN , there is an obvious natural algebra isomorphism

ϕx : Rxκ → Rκ

permuting the components. Composing with this isomorphism, we get a functor

Rκ-mod→ Rxκ-mod, M 7→ ϕxM.

Making an additional shift, we get a functor

Rκ-mod→ Rxκ-mod, M 7→ xM := qs(x,κ)(ϕ
x

M).

For the purposes of the following theorem, let us fix

γ = (γ1, . . . , γn) ∈ Qn
+ and β = (β1, . . . , βm) ∈ Qm

+
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with

γ1 + · · ·+ γn = β1 + · · ·+ βm =: α.

Denote dab := ht(αab ) and d := ht(α).

Let D(β, γ) be the set of all tuples α = (αab )1≤a≤n, 1≤b≤m of elements of Q+ such

that
∑m

b=1 α
a
b = γa for all 1 ≤ a ≤ n and

∑n
a=1 α

a
b = βb for all 1 ≤ b ≤ m.

For each α ∈ D(β, γ), we define permutations x(α) ∈ Smn and x(α) ∈ Sd. The

permutation x(α) maps

(α1
1, . . . , α

1
m, α

2
1, . . . , α

2
m . . . , α

n
1 , . . . , α

n
m)

to

(α1
1, . . . , α

n
1 , α

1
2, . . . , α

n
2 , . . . , α

1
m, . . . , α

n
m).

On the other hand, w(α) is the corresponding permutation of the blocks of sizes dab .

Example 2.62. Assume that n = 2, m = 3, and all dab = 2. Then x(α) ∈ S6 is the

permutation which maps 1 7→ 1, 2 7→ 3, 3 7→ 5, 4 7→ 2, 5 7→ 4, 6 7→ 6. In diagrammatic

form:

x(α) =

α1
1 α1

2 α1
3 α2

1 α2
2 α2

3

.

On the other hand, w(α) ∈ S12 is the corresponding block permutation:

w(α) =

1 2 3 4 5 6 7 8 9 10 11 12

.
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Let M ∈ Rγ-mod. We can now consider the Rα1
1,...,α

n
1 ;...;α1

m,...,α
n
m

-module

x(α)
(
Resγ1;...;γn

α1
1,...,α

1
m;...;αn1 ,...,α

n
m
M
)
.

Finally, let ≤ be a total order refining the Bruhat order on Sd, and for α ∈ D(β, γ),

consider the submodules

F≤α(M) :=
∑

w∈D(β,γ), w≤w(α)

Rβψw ⊗ 1αM ⊆ ResαβIndαγM,

F<α(M) :=
∑

w∈D(β,γ), w<w(α)

Rβψw ⊗ 1αM ⊆ ResαβIndαγM.

Theorem 2.63. Let

γ = (γ1, . . . , γn) ∈ Qn
+ and β = (β1, . . . , βm) ∈ Qm

+

with

γ1 + · · ·+ γn = β1 + · · ·+ βm =: α,

and M ∈ Rγ-mod. With the notation as above, the filtration (F≤α(M))α∈D(β,γ) is a

filtration of Resβ IndγM as an Rβ-module. Moreover, the subquotients of the filtration

are:

F≤α(M)/F<α(M) ∼= Ind
β

x(α)·α
(
x(α)
(
Res

γ
αM

))
.

= Indβ1;...;βm
α1
1,...,α

n
1 ;...;α1

m,...,α
n
m

x(α)
(
Resγ1;...;γn

α1
1,...,α

1
m;...;αn1 ,...,α

n
m
M
)
.

Proof. Form = n = 2 this follows from [20, Proposition 2.18]. The general case can be

proved by the same argument or deduced from the case m = n = 2 by induction.
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2.5. Convex preorders and root partitions

We now describe the theory of cuspidal systems from [24]. Recall the notion of a

convex preorder on Φ+ from (1.1)–(1.3). General theory of cuspidal systems is valid

for an arbitrary convex preorder, but for the theory of imaginary representations we

will need an additional assumption that the preorder is balanced, see (1.7), (1.8).

Recall that I ′ = {1, . . . , l}. We will consider the set P of l-multipartitions

λ = (λ(1), . . . , λ(l)),

where each λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . ) is a usual partition. We denote

|λ| :=
∑
i∈I′
|λ(i)|.

For n ∈ Z≥0, the set of all λ ∈P such that |λ| = n is denoted Pn.

Recall the totally ordered set Ψ defined in (1.4). Denote by Se the set of all

finitary tuples M = (mρ)ρ∈Ψ ∈ ZΨ
≥0 of non-negative integers. The left lexicographic

order on Se is denoted ≤l and the right lexicographic order on Se is denoted ≤r. We

will use the following bilexicographic partial order on Se:

M ≤ N if and only if M ≤l N and M ≥r N.

Let

π = (M,µ) = (ρm1
1 , . . . , ρmss , µ, ρ

m−t
−t , . . . , ρ

m−1

−1 )

be a root partition as in (4.13), so that M ∈ Se and µ ∈Pmδ . For ρ ∈ Ψ, we define

Mρ := mρρ, and consider a tuple |M | = (Mρ)ρ∈Ψ ∈ QΨ
+. Ignoring trivial terms, we
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can also write

|M | = (m1ρ1, . . . ,msρs,mδδ,m−tρ−t, . . . ,m−1ρ−1).

Then we have a parabolic subalgebra

R|M | = Rm1ρ1,...,msρs,mδδ,m−tρ−t,...,m−1ρ−1 ⊆ Rα.

We will use the following partial order on the set Π(α) of root partitions of α:

(M,µ) ≤ (N, ν) if and only if M ≤ N and if M = N then µ = ν. (2.64)

2.6. Cuspidal systems and standard modules

Let � be an arbitrary convex preorder on Φ+. Recall the definition of a cuspidal

system

{Lρ | ρ ∈ Φre
+} ∪ {L(µ) | µ ∈P}

from §1.1.

For every α ∈ Q+ and π = (M,µ) ∈ Π(α) as in (4.13), we define an integer

sh(π) = sh(M,µ) :=
∑
ρ∈Φre

+

(ρ, ρ)mρ(mρ − 1)/4, (2.65)

the irreducible R|M |-module

Lπ = LM,µ := qsh(π) L◦m1
ρ1
� · · ·� L◦msρs � L(µ)� L◦m−tρ−t � L

m−1
ρ−1

, (2.66)
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and the standard module

∆̄(π) = ∆̄(M,µ) := qsh(π) L◦m1
ρ1
◦ · · · ◦ L◦msρs ◦ L(µ) ◦ L◦m−tρ−t ◦ L

m−1
ρ−1

. (2.67)

Note that ∆̄(M,µ) = Ind|M |LM,µ.

Theorem 2.68. [24] Given a convex preorder there exists a corresponding cuspidal

system {Lρ | ρ ∈ Φre
+} ∪ {L(λ) | λ ∈P}. Moreover:

(i) For every root partition π, the standard module ∆̄(π) has irreducible head;

denote this irreducible module L(π).

(ii) {L(π) | π ∈ Π(α)} is a complete and irredundant system of irreducible Rα-

modules up to isomorphism and degree shift.

(iii) For every root partition π, we have L(π)~ ∼= L(π).

(iv) For all π, σ ∈ Π(α), we have that [∆̄(π) : L(π)]q = 1, and [∆̄(π) : L(σ)]q 6= 0

implies π ≤ σ.

(v) For all (M,µ), (N, ν) ∈ Π(α), we have that Res|M |L(M,µ) ∼= LM,µ and

Res|N |L(M,µ) 6= 0 implies N ≤M .

(vi) The induced module L◦nρ is irreducible for all ρ ∈ Φre
+ and n ∈ Z>0.
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CHAPTER III

IMAGINARY SCHUR-WEYL DUALITY

The work in this chapter has appeared in the article [29], which has been accepted

for publication in the Memoirs of the American Mathematical Society. It is co-

authored with Alexander Kleshchev. We developed the results in the co-authored

material jointly over many meetings, and, by the nature of collaborative mathematical

work, it is difficult to attribute exact portions of the co-authored material to either

Kleshchev or myself individually.

3.1. Imaginary tensor space

In this chapter we assume that the fixed convex preorder we are working with

is balanced, so that αi � nδ � α0 for all i ∈ I ′ and n ∈ Z>0. It turns out that the

theory of imaginary representations is independent of the choice of a balanced convex

preorder. Denote

e := ht(δ).

Recall the irreducible imaginary representations of Rnδ defined by the property

(Cus2) in §1.1. The irreducible imaginary representations of Rδ are called

minuscule imaginary representations. The minuscule imaginary representations can

be canonically labeled by the elements of P1 as explained below.

Lemma 3.1. [24, Lemma 5.1] Let L be an irreducible Rδ-module. The following are

equivalent:

(i) L is minuscule imaginary;

(ii) L factors through to the cyclotomic quotient RΛ0
δ ;
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(iii) we have i1 = 0 for any word i = (i1, . . . , ie) of L.

We always consider RΛ0
α -modules as Rα-modules via inflΛ0 .

Proposition 3.2. [24, Lemma 5.2, Corollary 5.3] Let i ∈ I ′.

(i) The cuspidal module Lδ−αi factors through RΛ0
δ−αi and it is the only irreducible

RΛ0
δ−αi-module.

(ii) The minuscule imaginary modules are exactly

{Lδ,i := f̃iLδ−αi | i ∈ I ′}.

(iii) ejLδ,i = 0 for all j ∈ I \ {i}. Thus, for each i ∈ I ′, the minuscule imaginary

module Lδ,i can be characterized uniquely up to isomorphism as the irreducible

RΛ0
δ -module such that ie = i for all words i = (i1, . . . , ie) of Lδ,i.

For each i ∈ I ′, we refer to the minuscule module Lδ,i described in Proposition 3.2

as the minuscule module of color i. Let

µ(i) := (∅, . . . , ∅, (1), ∅, . . . , ∅) ∈P1 (i ∈ I ′) (3.3)

be the l-multipartition of 1 with (1) in the ith component. We associate to it the

minuscule module Lδ,i:

L(µ(i)) := Lδ,i (i ∈ I ′). (3.4)

Lemma 3.5. [24, Lemma 5.4] Let i ∈ I ′. Then εi(Lδ,i) = 1.

The minuscule modules are defined over Z, see [24, Remark 5.5]. To be more

precise, for each i ∈ I ′, there exists an Rδ(Z)-module Lδ,i,Z which is free finite rank
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over Z and such that Lδ,i,Z ⊗ F is the minuscule imaginary module Lδ,i,F over Rδ(F )

for any ground field F . In particular,

EndRδ(Lδ,i,O) ∼= O. (3.6)

The imaginary tensor space of color i is the Rnδ-module

Mn,i := L◦nδ,i . (3.7)

In this definition we allow n to be zero, in which case M0,i is the trivial module over

the trivial algebra R0. A composition factor of Mn,i is called an irreducible imaginary

module of color i. Color is well-defined in the following sense: if n > 0 and L is an

irreducible imaginary Rnδ-module of color i, then L cannot be irreducible imaginary

of color j ∈ I ′. Indeed, every word appearing in the character of Mn,i, and hence in

the character of L, ends on i.

Lemma 3.8. [24, Lemma 5.7] Any composition factor of Mn1,1◦· · ·◦Mnl,l is imaginary.

The following theorem provides a ‘reduction to one color’:

Theorem 3.9. [24, Theorem 5.10] Suppose that for each n ∈ Z≥0 and i ∈ I ′, we have

an irredundant family {Li(λ) | λ ` n} of irreducible imaginary Rnδ-modules of color

i. For a multipartition λ = (λ(1), . . . , λ(l)) ∈Pn, define

L(λ) := L1(λ(1)) ◦ · · · ◦ Ll(λ(l)).

Then {L(λ) | λ ∈Pn} is a complete and irredundant system of irreducible imaginary

Rnδ-modules. In particular, the given modules {Li(λ) | λ ` n} give all the irreducible

imaginary modules of color i up to isomorphism.

49



Corollary 3.10. Suppose that for each n ∈ Z≥0 and for each i = 1, . . . , l, we have an

irredundant family {Li(λ) | λ ` n} of irreducible imaginary Rnδ-modules of color i.

Then each irreducible imaginary Rnδ-module of color i is isomorphic to one of the

modules Li(λ) for some λ ` n.

Proof. Let L be an irreducible imaginary Rnδ-module of color i. By Theorem 3.9, we

must have L ' L1(µ(1)) ◦ · · · ◦ Ll(µ(l)) for some multipartition (µ(1), . . . , µ(l)) ∈ Pn.

It remains to note that µ(j) = ∅ for all j 6= i, for otherwise j would arise as a last

letter of some word arising in the character of L, giving a contradiction.

If the Cartan matrix C is symmetric, then the minuscule representations can

be described very explicitly as certain special homogeneous representations, see [24,

Sections 5.4,5.5].

Lemma 3.11. [24, Lemma 5.16] Let i ∈ I ′. Then we can write Λ0 − δ + αi = w(i)Λ0

for a unique w(i) ∈ W which is Λ0-minuscule.

By the theory of homogeneous representations [24, Sections 5.4,5.5], the

minuscule element w(i) constructed in Lemma 3.11 is of the form wC(i) for some

strongly homogeneous component C(i) of Gδ−αi .

Lemma 3.12. [24, Lemma 5.17] Let i ∈ I ′, d := e−1 = ht(δ−αi) and j = (j1, . . . , jd) ∈

C(i). Then the cuspidal module Lδ−αi is the homogeneous module L(C(i)), and we

have:

(i) j1 = 0;

(ii) jd is connected to i in the Dynkin diagram, i.e. ajd,i = −1

(iii) if jb = i for some b, then there are at least three indices b1, b2, b3 such that

b < b1 < b2 < b3 ≤ d such that ai,b1 = ai,b2 = ai,b3 = −1.
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Now we can describe the minuscule modules as homogeneous modules:

Proposition 3.13. [24, Proposition 5.19] Let i ∈ I ′. The set of concatenations

Ci := {ji | j ∈ C(i)}

is a homogeneous component of Gδ, and the corresponding homogeneous Rδ-module

L(Ci) is isomorphic to the minuscule imaginary module Lδ,i.

Example 3.14. Let C = A
(1)
l and i ∈ I ′. Then Lδ,i is the homogeneous irreducible

Rδ-module with character

chq Lδ,i = 0
(
(1, 2, . . . , i− 1) ◦ (l, l − 1, . . . , i+ 1)

)
i.

For example, Lδ,1 and Lδ,l are 1-dimensional with characters

chq Lδ,1 = (0, l, l − 1, . . . , 1), chq Lδ,l = (01 . . . l),

while for l ≥ 3, the module Lδ,l−1 is (l − 2)-dimensional with character

chq Lδ,l−1 =
l−3∑
r=0

(0, 1, . . . , r, l, r + 1, . . . , l − 1).

Example 3.15. Let C = D
(1)
l and i ∈ I ′. By Proposition 3.13, we have that Lδ,i is the

homogeneous module L(Ci), where Ci is the connected component in Gδ containing

the following word:

 (0, 2, 3, . . . , l − 2, l, l − 1, l − 2, . . . , i+ 1, 1, 2, . . . , i) if i ≤ l − 1,

(0, 2, 3, . . . , l − 2, l − 1, 1, 2, . . . , l − 2, l) if i = l.
(3.16)
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If the Cartan matrix C is non-symmetric, the explicit construction of the

minuscule representations Lδ,i is more technical. It is explained in Chapter VI.

3.11. Imaginary tensor space and its parabolic analogue

Fix i ∈ I ′, and recall from (3.7) the imaginary tensor space Mn,i = L◦nδ,i of color i.

We are going to study irreducible imaginary Rnδ-modules of color i, i.e. composition

factors of Mn,i. Since i is going to be fixed throughout, we usually simplify our

notation and write Mn for Mn,i, Lδ for Lδ,i, etc. Recall that we denote by e the

height of null-root δ.

Throughout we fix an extremal word

i := (i1, . . . , ie) (3.17)

of Lδ so that the top degree component (1iLδ)N of the word space 1iLδ is 1-

dimensional, see Lemma 2.61. To be more precise, for a symmetric Cartan matrix

C, the module Lδ is homogeneous by Proposition 3.13, i.e. all its word spaces are 1-

dimensional, and we can take i to be an arbitrary word of Lδ. For non-symmetric C, we

make a specific choice of i as in (6.8), (6.10), (6.12), (6.14) in types B
(1)
l , C

(1)
l , F

(1)
4 , G

(1)
2

respectively.

Pick a non-zero vector v ∈ (1iLδ)N . Recall that Lδ is defined over Z, so we may

assume that (1iLδ)N = O · v. Denote

vn := v ⊗ · · · ⊗ v ∈ L�nδ . (3.18)

We identify L�nδ with the submodule 1⊗ L�nδ ⊆ Mn = Indδ,...,δL
�n
δ , so vn can will be

considered as an element of Mn. Note that vn generates Mn as an Rnδ-module, and
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that

vn ∈ (1inMn)nN .

By degrees,

yrvn = 0 (1 ≤ r ≤ n).

More generally, let ν = (n1, . . . , na) � n. Consider the parabolic subalgebra

Rν,δ := Rn1δ,...,naδ ⊆ Rnδ, (3.19)

and consider the Rν,δ-module

Mν := Mn1 � · · ·�Mna ,

with generator

vν := vn1 ⊗ · · · ⊗ vna .

By transitivity of induction this module embeds naturally into Mn as an Rν,δ-

submodule.

Lemma 3.20. M~
ν
∼= Mν . In particular, every composition factor of the socle of Mν

appears in its head.

Proof. This is [24, Lemma 5.6].

We denote by eν the composition

eν := (en1, . . . , ena) � en.

The following lemma immediately follows from the Basis Theorem 2.50:
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Lemma 3.21. Let ν � n. Then

Mν =
⊕

w∈D(en)
eν

ψw ⊗ L�nδ

as O-modules. In particular,

Mn =
⊕

w∈D(en)
en

ψw ⊗ L�nδ

as O-modules.

Define

Vn := Resδ,...,δMn. (3.22)

More generally, for a composition ν = (n1, . . . , na) � n, set

Vν := Resn1δ;...;naδ
δ,...,δ Mν

∼= Vn1 � · · ·� Vna .

Clearly vν ∈ Vν .

To describe Vn and Vν , we introduce the block permutation group Bn as the

subgroup of Sen generated by the block permutations w1, . . . , wn−1, where wr is the

product of transpositions

wr :=
re∏

b=re−e+1

(b, b+ e) (1 ≤ r < n). (3.23)

The group Bn is isomoprphic to the symmetric group Sn via

ι : Sn
∼−→ Bn, sr 7→ wr (1 ≤ r < n).
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Note that each element ι(w) ∈ Bn belongs to D(en)
en . For example, if n = 2 then, in

terms of Khovanov-Lauda diagrams [20] we have

ψw11i2 =

i1 i2 ie i1 i2 ie

.

Define

σr := ψwr (1 ≤ r < n),

and

σw := σr1 . . . σrm (w ∈ Sn),

where we have picked a reduced decomposition w = sr1 . . . srm .

Let us write δn for (δ, . . . , δ) with n terms. By definition, Vn = ResδnMn is an

Rδn-module.

Proposition 3.24. We have:

(i) As an Rδn-module, Vn has a filtration with n! composition factors ∼= L�nδ .

(ii) As an O-module, Vn =
⊕

w∈Sn V (w), where V (w) := σw ⊗ L�nδ .

(iii) 1inMn = ⊕w∈Sn(σw ⊗ (1iLδ)
�n)

(iv) (1inMn)nN is the top degree component of the weight space 1inMn, and

(1inMn)nN = ⊕w∈SnO · (σw ⊗ vn).

Proof. (i) follows by an application of the Mackey Theorem 2.63, using the property

(Cus2) of Lδ and the fact that (δ, δ) = 0 to deduce that all grading shifts are trivial.
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(ii) is proved by a word argument. Indeed, given words i(1), . . . , i(n) of Lδ, we

have i
(1)
1 = · · · = i

(n)
1 = 0 by Lemma 3.1(iii). So, the only shuffles of i(1), . . . , i(n) which

lie in Vn are permutations of these words. So the result follows from Lemma 3.21.

(iii) follows from (ii), and (iv) follows from (iii).

Corollary 3.25. AllRnδ-endomorphisms ofMn are of degree zero, and dim EndRnδ(Mn) ≤

n!.

Proof. This follows from the adjointness of the functors Ind and Res and

Proposition 3.24(i).

3.2. Imaginary Schur-Weyl duality

In this section, we prove the key fact that EndRnδ(Mn) is isomorphic to the

group algebra of the symmetric group Sn. We distinguish between the cases where

the Cartan matrix C is symmetric and non-symmetric. The symmetric case can be

handled nicely using the work [19]. For the non-symmetric case we have to appeal to

the computations made in Chapter VI.

Assume in this paragraph that C is symmetric. We review the Kang-Kashiwara-

Kim intertwiners [19] adapted to our needs. Definition 1.4.5 of [19] yields a non-zero

R2δ-homomorphism

τ : M2 → q(δ,δ)−2(δ,δ)n+2sM2,

where (·, ·)n and s are as in [19, §1.3,(1.4.8)]. (This homomorphism would be denoted

rLδ,Lδ in [19].) Since (δ, δ) = 0, and all endomorphisms of M2 are of degree zero

by Corollary 3.25, it follows that s = (δ, δ)n and we actually have τ : M2 → M2.

Now, it follows from [19, Proposition 1.4.4(iii)], the adjointness of Ind and Res, and
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Proposition 3.24(ii) that

τ(v1 ⊗ v2) = σ1 · (v2 ⊗ v1) + c(v1, v2) v1 ⊗ v2 (v1, v2 ∈ Lδ) (3.26)

for some c(v1, v2) ∈ O. In particular

τ(v2) = (σ1 + c)v2 (3.27)

for some constant c ∈ O.

Even if C is not symmetric, there is an endomorphism τ of M2 with the property

(3.27), see Chapter VI. So from now on we use it in all cases.

Inserting the endomorphism τ into the rth and r + 1st positions in Mn = L◦nδ ,

yields endomorphisms

τr : Mn →Mn, vn 7→ (σr + c)vn (1 ≤ r < n). (3.28)

We note that the elements τr go back to [27], where a special case of Theorem 3.29

below is checked, see [27, Theorem 4.13].

We always consider the group algebra OSn as a graded algebra concentrated in

degree zero.

Theorem 3.29. The endomorphisms τr satisfy the usual Coxeter relations of the

standard generators of the symmetric group Sn, i.e. τ 2
r = 1, τrτs = τsτr for |r−s| > 1,

and τrτr+1τr = τr+1τrτr+1. This defines a (degree zero) homomorphism

FSn → EndRnδ(Mn)op
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which is an isomorphism.

Proof. If C is symmetric, we use the elements ϕw from [19, Lemma 1.3.1(iii)]. Then

τr’s satisfy braid relations, as noted in [19, p.16]. For the quadratic relations, by

definition, τ 2
r maps vn to ((z′ − z)−2sϕ2

wrvn)|z=z′=0, where the action is taking place

in (Lδ)z ◦ (Lδ)z′ and we consider vn as a vector of (Lδ)z ◦ (Lδ)z′ in the obvious way.

Since ysvn = 0 in Lδ we have ysvn = zvn in (Lδ)z for all s. So the product in the right

hand side of [19, Lemma 1.3.1(iv)] is easily seen to act with the scalar (z′ − z)2(δ,δ)n

on the vector vn ∈ (Lδ)z ◦ (Lδ)z′ . Since we already know that s = (δ, δ)n, it follows

that τ 2
r vn = vn. Since vn generates Mn as an Rnδ-module, we deduce that τ 2

r = 1.

If C is not symmetric, then we check in Proposition 6.16 that the τr still satisfy

the quadratic and braid relations.

For an arbitrary C let w ∈ Sn with reduced decomposition w = sr1 . . . srm . Then

in view of (3.28), for τw := τr1 . . . τrm (the product in EndRnδ(Mn)op), we have

τw(vn) = (σr1 + c) . . . (σrm + c)vn. (3.30)

It follows that

τw(vn) = σw(vn) +
∑
u<w

cuσuvn (cu ∈ O), (3.31)

where < is the Bruhat order. In view of Proposition 3.24(ii), the elements {τw | w ∈

Sn} are linearly independent, and the result follows from Corollary 3.25.

In view of the theorem, we can now consider Mn as an (Rnδ,OSn)-bimodule,

with the right action mw = τw(m) for m ∈ Mn and w ∈ Sn, where the linear

transform action τw is defined by (3.30).

Corollary 3.32. We have:
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(i) As Rδn-modules, Vn ∼=
⊕

w∈Sn L
�n
δ w ∼= (L�nδ )⊕n!.

(ii) As O-modules,

1inMn = ⊕w∈Sn(1iLδ)
�nw and (1inMn)nN = ⊕w∈SnO · vnw.

Proof. Since L�nδ is irreducible as an Rδn-module, the result now follows from

Theorem 3.29 and Proposition 3.24.

Let u0 ∈ S2e be the minimal length element such that

u0i
2 = i{2} := (i1, i1, i2, i2, . . . , ie, ie).

Example 3.33. If C is symmetric, we know that Lδ is homogeneous, and so im 6= im+1

for all 1 ≤ m < e. So in that case, we have that

u0 : n 7→

 2n− 1 if 1 ≤ n ≤ e,

2(n− e) if e < n ≤ 2e.
(3.34)

In terms of Khovanov-Lauda diagrams,

ψu01i =

i1 i2 ie i1 i2 ie

.

Note that in all cases, we can write

σ1 = ψu′ψu0 (3.35)

for some u′ ∈ S2e.
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Lemma 3.36. The constant c appearing in (3.27) is equal to ±1. Moreover, ψu0σ1v2 =

−2cψu0v2.

Proof. By Theorem 3.29, we have τ 2
1 = 1. It follows that (σ1 + c)2v2 = v2 or σ2

1v2 =

(−2cσ1 + 1− c2)v2.

On the other hand, note that ψu0v2 6= 0 spans the top degree component of

the word space (M2)i{2} . It follows that ψu0σ1v2 = dψu0v2 for some constant d.

Multiplying on the left with ψu′ as in (3.35), this yields σ2
1v2 = dσ1v2. Comparing

with the previous paragraph, we conclude that 1− c2 = 0 and d = −2c.

Lemma 3.37. Let w ∈ Sn, and v1, . . . , vn ∈ Lδ. Then

(v1 ⊗ · · · ⊗ vn)w ≡ σw(vw1 ⊗ · · · ⊗ vwn) (mod
∑
u<w

σu ⊗ L�nδ )

and

σw(v1 ⊗ · · · ⊗ vn) ≡ (vw
−11 ⊗ · · · ⊗ vw−1n)w (mod

∑
u<w

L�nδ u) .

Proof. The second statement follows from the first. Further, note that the first

statement in the special case where v1 = · · · = vn = v1 is contained in (3.31).

For the general case, write v1 = x1v1, . . . , v
n = xnv1 for some x1, . . . , xn ∈ Rδ. Then,

using (3.31) and considering x1 ⊗ · · · ⊗ xn ∈ Rδn as an element of Rnδ ⊇ Rδn , we get

(v1 ⊗ · · · ⊗ vn)w = (x1v1 ⊗ · · · ⊗ xnv1)w

= (x1 ⊗ · · · ⊗ xn)((v1 ⊗ · · · ⊗ v1)w)

= (x1 ⊗ · · · ⊗ xn)(σw(v1 ⊗ · · · ⊗ v1) +
∑
u<w

cuσu(v1 ⊗ · · · ⊗ v1)).
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Using the fact that all our vectors belong to Vn, Proposition 3.24(ii), and the relations

in Rnδ, we have for any u ≤ w that

(x1 ⊗ · · · ⊗ xn)σu(v1 ⊗ · · · ⊗ v1) ≡ σu(xu1v1 ⊗ · · · ⊗ xunv1) (mod
∑
x<u

σx ⊗ L�nδ )

≡ σu(v
u1 ⊗ · · · ⊗ vun) (mod

∑
x<u

σx ⊗ L�nδ ) ,

which proves the lemma.

Remark 3.38. If C is symmetric, then an induction on the Bruhat order and (3.26)

allow us to strengthen Lemma 3.37 as follows: for any v1, . . . , vn ∈ Lδ, we have

(v1 ⊗ · · · ⊗ vn)w = σw(vw1 ⊗ · · · ⊗ vwn) +
∑
u<w

cuσu(v
u1 ⊗ · · · ⊗ vun) (3.39)

for some scalars cu ∈ O (depending on v1, . . . , vn).

If c = −1, it will be convenient to change the sign, so let us redefine τr so that

τr(vn) := (cσr + 1)vn (1 ≤ r < n). (3.40)

Remark 3.41. The constant c in general depends on the choice of the signs εi,j

in the definition of the KLR algebra. For symmetric C, it can be proved that c =∏
1≤r<s≤e εir,is . We are not going to need this result.

3.3. Imaginary Schur algebras

A key role in this paper is played by the imaginary Schur algebra

Sn = Sn,O := Rnδ/AnnRnδ(Mn),
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and its parabolic analogue for ν = (n1, . . . , na) � n:

Sν = Sν,O := Rν,δ/AnnRν,δ(Mν) ∼= Sn1 ⊗ · · · ⊗Sna . (3.42)

Modules over Rnδ which factor through Sn will be called imaginary modules.

Thus the category of imaginary Rnδ-modules is the same as the category of Sn-

modules.

We make use of the following useful criterion:

Lemma 3.43. (‘Schubert’s Criterion’) Let A be a (graded) algebra and 0→ Z →

P → M → 0 be a short exact sequence of (graded) A-modules with P (graded)

projective. If every (degree zero) A-module homomorphism from P to M annihilates

Z, then M is a (graded) projective A/AnnA(M)-module.

Proof. The proof given in [5, Lemma 3.2a] goes through for the graded setting.

Now we can prove our first key result.

Theorem 3.44. Mν is a projective Sν-module, and

EndSν (Mν) ∼= OSν . (3.45)

Proof. The second statement comes from Theorem 3.29. It suffices to prove the first

statement for the special case ν = (n). We will apply Schubert’s Criterion to see that

Mn is projective as a Sn-module. Let P := qnNRnδ1in Then we have a (homogeneous)

surjection π : P�Mn, 1in 7→ vn.

To verify the assumptions in Lemma 3.43, it suffices to show that every

(homogeneous) homomorphism ϕ : P → M can be written as ϕ = f ◦ π for

f ∈ endRn,δ(Mn). Since P is generated by 1in , it suffices to prove that ϕ(1in) =
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f(π(1in)) = f(vn). By Proposition 3.24(iv) and Corollary 3.32(ii), the vector

ϕ(1in) ∈ (1inMn)nN can be written as a linear combination

ϕ(1in) ∈ (1inMn)nN =
∑
w∈Sn

cwvnw =
∑
w∈Sn

cwτw(vn) (cw ∈ O).

So we can take f =
∑

w∈Sn cwτw. Now apply Schubert’s Criterion to see that Mn is

projective.

3.31. Characteristic zero theory

In this section, we assume that O = F . If the characteristic of F is zero or

greater than n, the imaginary Schur algebra is semisimple and Morita equivalent to

FSn:

Theorem 3.46. Assume that charF = 0 or charF > n. Then Sn is semisimple, Mn

is a projective generator for Sn, and Sn is Morita equivalent to FSn.

Proof. Under the assumptions on the characteristic, the endomorphism algebra of

the Sn-module Mn, which we know is isomorphic to FSn, is semisimple. In view of

Lemma 2.33, we conclude that Mn is semisimple as an Sn-module. By definition, the

imaginary Schur algebra Sn is semisimple, and the theorem now follows from Morita

theory.

The theorem defines a Morita equivalence

γn : Sn-mod→ FSn-mod .

One can easily show that for N ∈ Sn-mod and M ∈ Sm-mod, there is a functorial

isomorhism γn+m(N ◦M) ∼= ind
Sn+m
Sn×Sm γn(N)� γm(M). We will not do it now, since
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more general result will be obtained (for an arbitrary ground) field in Section 3.61

using Schur algebras.

3.4. Imaginary induction and restriction

Throughout the section ν = (n1, . . . , na) � n. Recall the parabolic subalgebra

Rν,δ ⊆ Rnδ from (3.19).

Consider the functors of imaginary induction and imaginary restriction:

Inν := Indnδn1δ,...,naδ
: Rν,δ-mod→ Rnδ-mod,

∗Inν := Resnδn1δ,...,naδ
: Rnδ-mod→ Rν,δ-mod .

Let Iν,δ ⊆ Inδ be the set of the concatenations j = j(1) . . . j(a) such that j(b) ∈ Inbδ

for all b = 1, . . . , a. Set

1ν,δ :=
∑
j∈Iν,δ

1j .

Then 1ν,δ is the identity in Rν,δ and ∗InνM = 1ν,δM . The functor Inν is left adjoint to

the functor ∗Inν . The following result (partially) describes the right adjoint:

Lemma 3.47. For a composition ν = (n1, . . . , na) � n consider the opposite

composition νop := (na, . . . , n1) � n. Let V be an Rnδ-module, and Vb be an Rνbδ-

module for b = 1, . . . , a. Then there is a functorial isomorphism

HomRν,δ(
∗Inν V, V1 � · · ·� Va) ∼= HomRnδ(V, I

n
νopVa � · · ·� V1).

Proof. This follows from Lemma 2.54.

In view of Theorem 3.29, Mν is an (Rν,δ,OSν)-bimodule, so we can regard

InνMν as an (Rnδ,OSν)-bimodule. Similarly, Mn is an (Rnδ,OSn)-bimodule, so we
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can regard ∗InνMn as an (Rν,δ,OSn)-bimodule. Recall that we identify L�nδ with a

natural Rδn-submodule of Mn.

Lemma 3.48. We have:

(i) InνMν
∼= Mn as (Rnδ,OSν)-bimodules.

(ii) ∗InνMn
∼= Mν ⊗OSν OSn as (Rν,δ,OSn)-bimodules.

(iii) We have the following decompositions of O-modules:

∗InνMn =
⊕

x∈D(en)
eν , y∈νDn

ψxσyL
�n
δ =

⊕
x∈D(en)

eν , y∈νDn

ψxL
�n
δ y

Proof. (i) By transitivity of induction, InνMν
∼= Mn as Rnδ-modules. By definition,

the isomorphism is compatible with the right OSν-module structures.

(iii) Recall the decomposition Mn =
⊕

w∈D(en)
en

ψwL
�n
δ from Lemma 3.21. Note,

using word argument, that ψwL
�n
δ ⊆ ∗InνMn = 1ν,nMn for w ∈ D(en)

en if and only if

w can be written (uniquely) as w = xι(y), where x ∈ D(en)
eν , y ∈ νDn, and `(w) =

`(x) + `(ι(y)), and otherwise ψwL
�n
δ ∩1ν,nMn = 0. This gives the first decomposition.

To deduce the second decomposition from the first, observe by a word argument,

that each ψxL
�n
δ y ⊆ ∗InνMn. Next, note using Lemma 3.21 that each ψxσyL

�n
δ
∼= L�nδ

as vector spaces. As ψxL
�n
δ → ψxL

�n
δ y is an invertble linear transformation, we also

have that ψxL
�n
δ y ∼= L�nδ as vector spaces. Now, by dimensions, it suffices to prove

that the sum
∑

x∈D(en)
eν ,y∈νDn

ψxL
�n
δ y is direct. Well, if

∑
x∈D(en)

eν ,y∈νDn

ψxvx,yy = 0 (3.49)
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with vx,y ∈ L�nδ , let x, y be chosen so that xy ∈ Sen is Bruhat maximal with vx,y 6= 0.

Rewriting the left hand side of (3.49) using Lemma 3.37, gives ψxσyvx,y + (∗) = 0,

where

(∗) ∈
∑

x′∈D(en)
eν , y′∈νDn, x′y′ 6≥xy

ψx′σy′L
�n
δ .

We get a contradiction.

(ii) follows from (iii).

In view of Lemma 3.48(ii), the Rν,δ-action on ∗InνMn factors through the quotient

Sν , so ∗InνMn is a Sν-module in a natural way. In Corollary 3.75 we will prove a

stronger result that the functor Inν sends Sν-modules to Sn-modules and the functor

∗Inν sends Sn-modules to Sν-modules.

Corollary 3.50. The following pairs of functors are isomorphic:

(i) Inν ◦ (Mν⊗OSν ?) and (Mn⊗OSn ?) ◦ indSn
Sν

: OSν-mod→ Rn,δ-mod.

(ii) ∗Inν ◦ (Mn⊗OSn ?) and (Mν⊗OSν ?) ◦ resSnSν
: OSn-mod→ Rν,δ-mod.

Proof. (i) Take N ∈ OSν-mod. Using Lemma 3.48(i), we have natural isomorphisms

Mn ⊗OSn indSn
Sν
N = Mn ⊗OSn OSn ⊗OSν N ∼= Mn ⊗OSν N

∼= (InνMν)⊗OSν N ∼= Inν (Mν ⊗OSν N),

as required.

(ii) Using Lemma 3.48(ii), for an OSn-module N , we have natural isomorphisms

∗Inν (Mn ⊗OSn N) ∼= (∗InνMn)⊗OSn N ∼= (Mν ⊗OSν OSn)⊗OSn N

∼= Mν ⊗OSν resSnSν
N,
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as required.

We need a version of the Mackey Theorem for imaginary induction and

restriction. Recall the notation from Section 2.22. In particular, given two

compositions λ, µ � n and x ∈ λDµn we have compositions λ ∩ xµ and x−1λ ∩ µ.

Moreover, the corresponding parabolic algebras Rλ∩xµ,δ and Rx−1λ∩µ,δ are naturally

isomorphic via an isomorphism

Πx : Rλ∩xµ,δ
∼−→ Rx−1λ∩µ,δ, (3.51)

which permutes the components. Composing with this isomorphism we get a functor

Rx−1λ∩µ,δ-mod→ Rλ∩xµ,δ-mod, M 7→ xM.

Note that we do not need any grading shifts. With this notation, we have:

Theorem 3.52. (Imaginary Mackey Theorem) Let λ, µ � n, and M be an Sµ-

module. Then there is a filtration of ∗Inλ I
n
µM with subfactors

Iλλ∩xµ
x(∗Iµx−1λ∩µM) (x ∈ λDµn).

Proof. This follows from the usual Mackey Theorem 2.63 using the fact that all

composition factors of M are imaginary in the sense of (Cusp2).

3.5. Imaginary Howe duality

The imaginary Schur-Weyl duality described previously is not quite sufficient to

describe the composition factors of Mn at least when the characteristic of the ground

field is positive. The problem is that even though Mn is a projective module over the
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imaginary Schur algebra, it is not in general a projective generator. We construct

the desired projective generator as a direct sum Z =
⊕

ν∈X(h,n) Z
ν of ‘imaginary

divided powers’ modules, and the endomorphism algebra of Z turns out to be the

classical Schur algebra Sh,n. This leads to an equivalence of module categories for

the imaginary and the classical Schur algebras. First, we need to develop a theory of

“Gelfand-Grave modules”.

Throughout the section, ν = (n1, . . . , na) � n ∈ Z>0.

3.51. Gelfand-Graev modules

Denote by w0 the longest element of Sn, and for i ∈ I, consider the element

γn,i := ψw0

n∏
m=1

ym−1
m ∈ Rnαi ,

and the Rnαi-module

Γn,i := q
−n(n−1)/2
i Rnαiγn,i.

The following is well-known:

Proposition 3.53. The algebra Rnαi is isomorphic to the affine nil-Hecke algebra and

has unique (up to isomorphism and degree shift) irreducible module, denoted L(in)

with formal character [n]!i(i
n). Moreover:

(i) γn,i is a primitive idempotent in Rnαi . In particular, Γn,i is a projective

indecomposable Rnαi-module. In fact, Γn,i is the projective cover of L(in).

(ii) Γn,i is isomorphic to the polynomial representation of the affine nil-Hecke algebra

Rnαi (with degree shifted down by (αi, αi)n(n− 1)/4); in particulr, Γn,i has an
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O-basis

{yb11 . . . ybnn γn,i | b1, . . . , bn ∈ Z≥0},

and the formal character q
−n(n−1)/2
i (1− q2

i )
−n(in).

(iii) Let (m1, . . . ,ms) � n. Then

Resm1αi,...,msαiΓn,i
∼= q

−n(n−1)/2+
∑s
i=1mi(mi−1)/2

i Γm1,i � · · ·� Γms,i.

Proof. For (i) and (ii), see for example [20, section 2.2] or [26, Theorem 4.12]. Part

(iii) follows easily from (i) and (ii) by characters.

Now, recall the word i = (i1, . . . , ie) from (3.17). We rewrite:

i = jm1
1 . . . jmrr (3.54)

with jk 6= jk+1 for all k = 1, 2, . . . , r − 1. Define the Gelfand-Graev idempotent:

γn,δ := γnm1,j1 ⊗ γnm2,j2 ⊗ · · · ⊗ γnmr,jr ∈ Rnm1αj1 ,nm2αj2 ,...,nmrαjr
⊆ Rnδ.

By Proposition 3.53(i),

Γn :=
r∏

k=1

q
−nmk(nmk−1)/2
jk

Rnδγn,δ ∼= Γnm1,j1 ◦ Γnm2,j2 ◦ · · · ◦ Γnmr,jr

is a projective Rnδ-module which we refer to as the Gelfand-Graev module. By

Proposition 3.53(ii),

chq Γn =
r∏

k=1

q
−nmk(nmk−1)/2
jk

(1− q2
jk

)−nmk jnm1
1 ◦ jnm2

2 ◦ . . . ◦ jnmrr .
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More generally, we consider the (parabolic) Gelfand-Graev idempotent

γν,δ := γn1,δ ⊗ · · · ⊗ γna,δ ∈ Rν,δ ⊆ Rnδ, (3.55)

and the projective Rν,δ-module

Γν :=
a∏
b=1

r∏
k=1

q
−nbmk(nbmk−1)/2
jk

Rν,δγν,δ ∼= Γn1 � · · ·� Γna

with character

chq Γν =
a∏
b=1

r∏
k=1

q
−nbmk(nbmk−1)/2
jk

(1− q2
jk

)−nbmk

× (jn1m1
1 ◦ · · · ◦ jn1mr

r ) . . . (jnam1
1 ◦ · · · ◦ jnamrr ).

Lemma 3.56. We have

Resnm1αj1 ,...,nmrαjr
Mn ' L(jnm1

1 )� · · ·� L(jnmrr ).

Proof. The lemma is obtained by an application of the Mackey Theorem or a character

computation.

Proposition 3.57. We have:

(i) ∗Inν Γn ∼= Γν ⊕ X, where X is a projective module over Rν,δ such that

HomRν,δ(X,Mν) = 0.

(ii) HomRnδ(Γn,Mn) ∼= O.
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(iii) We have an isomorphism of right modules over OSn = EndRnδ(Mn):

HomRnδ(Γn,Mn) ∼= sgnSn .

Proof. (ii) By Frobenius Reciprocity, HomRnδ(Γn,Mn) is isomorphic to

HomRnm1αj1
,...,nmrαjr

(Γnm1,j1 � · · ·� Γnmr,jr ,Resnm1αj1 ,...,nmrαjr
Mn).

By Proposition 3.53, Γnm1,j1 � · · ·� Γnmr,jr is the projective cover of L := L(jnm1
1 )�

· · ·� L(jnmrr ). The result now follows from (3.6) and Lemma 3.56.

(i) By the Mackey Theorem and Proposition 3.53(iii), the module

∗Inν Γn = Resn1δ,...,naδ Indnm1αj1 ,...,nmrαjr
Γnm1,j1 � · · ·� Γnmr,jr

has filtration with factors of the form

(Γm1,1,j1 ◦ Γm1,2,j2 ◦ · · · ◦ Γm1,r,jr)� · · ·� (Γma,1,j1 ◦ Γma,2,j2 ◦ · · · ◦ Γma,r,jr),

where
∑r

s=1mt,sαjs = ntδ for all t = 1, . . . , a,
∑a

t=1 mt,s = nms for all s = 1, . . . , r,

and we ignore grading shifts. All of this modules are projective, so we actually have

a direct sum. One of the terms is Γν—it corresponds to taking mt,s = ntms for all

1 ≤ t ≤ a, 1 ≤ s ≤ r.

Now, note, using Lemma 3.47 that

HomRν,δ(
∗Inν Γn,Mν) = HomRν,δ(

∗Inν Γn,Mn1 � · · ·�Mna)

∼= Homnδ(Γn, I
n
νop(Mna � · · ·�Mn1))

∼= Homnδ(Γn,Mn).
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By part (ii), the latter Hom-space is isomorphic to O. On the other hand, again

by (ii), we have that Homν,δ(Γν ,Mν) ∼= O. We conclude that Γν appears in ∗Inν Γn

with graded multiplicity 1, and other projective summands do not have non-trivial

homomorphisms to Mν , as required.

(iii) Note that Γn is generated by a vector of the word j := (jnm1
1 , . . . , jnmrr ).

Under any homomorphism from Γn to Mn, this generating vector is mapped to a

vector in the word space 1jMn. So, it suffices to show that an arbitrary w ∈ Sn acts

on the whole word space 1jMn with the scalar sgn(w). Let u be the shortest element

of Sne such that u ·in = j. Then any other vector in 1jMn can be written in the form

{ψxψuvn} for some x. So it suffices to prove that ψuvnsr = −ψuvn for an arbitrary

simple generator sr of Sn with 1 ≤ r < n.

Recall the definition of u0 ∈ S2e from Lemma 3.36. For 1 ≤ r < n, let

ϕr : S2e ' S1(r−1)e ×S2e ×S1(n−r−1)e ↪→Sne

be the natural embedding and u0(r) := ϕr(u0).

There exists u′ ∈ Sd such that ψu = ψu′ψu0(r). So by Lemma 3.36, we have

ψuσr(vn) = ψu′ψu0(r)σrvn = −2cψu′ψu0(r)vn = −2cψuvn.

Therefore, using (3.40), we get

ψuvnsr = ψuτr(vn) = ψu(cσr + 1)(vn)

= cψuσr(vn) + ψuvn = −2ψuvn + ψuvn = −ψuvn,

completing the proof.
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Remark 3.58. In type A
(1)
l , we can strengthen Proposition 3.57(i) to claim that

∗Inν Γn ∼= Γν . Indeed, in this case each simple root appears in δ with multiplicity one,

from which one can easily deduce that chq
∗Inν Γn = chq Γν .

3.52. Imaginary symmetric, divided, and exterior powers

Let

xn :=
∑
g∈Sn

g and yn :=
∑
g∈Sn

sgn(g)g.

Define imaginary symmetric, divided, and exterior powers as the following Rnδ-

modules:

Sn := Mn/ span{mg − sgn(g)m | g ∈ Sn, m ∈Mn},

Zn := {m ∈Mn | mg − sgn(g)m = 0 for all g ∈ Sn},

Λn := Mnxn.

These Rnδ-modules factor through the quotient Sn to induce well-defined Sn-

modules. It is perhaps unfortunate that our symmetric powers correspond to the

sign representation and our exterior powers correspond to the trivial representation;

curiously this is the same phenomenon as for finite GLn, cf. [5, section 3.3].

Note that Λn = Mnxn 6= 0 and Mnyn 6= 0 for example by Theorem 3.29. Finally,

by definition, Mnyn is a submodule of Zn. Recall the word i from (3.17).

Lemma 3.59. We have 1inΛn = (1iLδ)
�nxn and 1inMnyn = (1iLδ)

�nyn. Moreover, if

O = F (i.e. O is a field) then Λn and Mnyn are irreducible Rnδ-modules.

Proof. We prove the lemma for Λn, the argument for Mnyn being similar.
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By Corollary 3.32, the word space 1inMn is isomorphic to free right module

over OSn with basis (1iLδ)
�n, and under this isomorphism the generator vn ∈ Mn

corresponds to 1 ∈ OSn. Therefore 1inΛn = 1inMnxn = (1iLδ)
�nxn.

We know that Mn is a projective Sn-module and every composition factor of its

socle appears in its head, see Theorem 3.44 and Lemma 3.20. Also, left ideal FSnxn

is an irreducible FSn-module. Using these remarks, the irreducibility of Λn = Mnxn

follows from Lemmas 2.33 and 2.32.

Lemma 3.60. We have Sn ∼= Mn ⊗OSn sgnSn . Moreover, if O = F then:

(i) Sn has simple head isomorphic to Mnyn, and no other composition factors of

Sn are isomorphic to quotients of Mn.

(ii) Zn ∼= (Sn)~.

(iii) Zn has simple socle isomorphic to Mnyn, and no other composition factors of

Zn are isomorphic to submodules of Mn.

Proof. Write M := Mn for short. By definition, M ⊗OSn sgnSn is the quotient of

M ⊗O sgnSn by span{mg ⊗ 1 − sgn(g)m ⊗ 1 | g ∈ Sn, m ∈ M}. If we identify

M⊗O sgnSn and M as O-modules in the natural way, this immediately gives the first

statement.

(i) Let α, β and AP be the functors defined in Section 2.26, taking the projective

module P to be the Sn-module M of Theorem 3.44. Then, the previous paragraph

shows that Sn ∼= β(sgnSn). As every composition factor of the socle of M appears in

its head by Lemma 3.20, we conclude using Lemmas 2.33 and 3.59 that

AP ◦ β(sgnSn) ∼= AP (Sn) ∼= Myn
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is an irreducible Sn-module. We deduce that Myn appears in the head of Sn and no

other composition factors of Sn appear in the head of M . Since Sn is a quotient of

M , this means that Sn has simple head.

(ii) In view of Lemma 3.20, we choose some isomorphism ϕ : M → M~ of Rnδ-

modules. This choice induces an isomorphism κ : EndRnδ(M) → EndRnδ(M
~) with

fκ(θ) = ϕ((ϕ−1f)θ) for all f ∈ M~ and θ ∈ EndRnδ(M), writing endomorphisms on

the right. On the other hand, there is a natural anti-isomorphism ] : EndRnδ(M) →

EndRnδ(M
~) defined by letting θ] be the dual map to θ ∈ EndRnδ(M). Now if we set

σ := κ−1 ◦ ], we have defined an anti-automorphism of FSn = EndRnδ(M). Define

a non-degenerate bilinear form on M by (v, w) := ϕ(v)(w) for v, w ∈ M . For any

h ∈ FSn we have

(vσ(h), w) = (ϕ−1(ϕ(v)h]), w) = (ϕ(v)h])(w) = ϕ(v)(wh) = (v, wh).

By definition, Sn = M/ span{vh− sgn(h)v | h ∈ FSn, v ∈M}. So

S~n
∼= {w ∈M | (w, vh− sgn(h)v) = 0 for all v ∈M,h ∈ FSn}

= {w ∈M | (wσ(h)− sgn(h)w, v) = 0 for all v ∈M,h ∈ FSn}

= {w ∈M | wh = sgn(σ(h))w for all h ∈ FSn}.

To complete the proof, it remains to show that sgn(σ(h)) = sgn(h) for all h ∈

FSn. We can consider sgn ◦ σ as a linear representation of FSop
n , so we either have

sgn ◦ σ = sgn as required, or sgn ◦ σ = id. In the latter case, S~n contains Λn as an

irreducible submodule, see Lemma 3.59, whence Sn contains Mxn in its head. But

this is not so by (i), unless Mxn ∼= Myn, in which case, applying Lemma 2.32, the

sign representation of FSn is isomorphic to its trivial representation and we are done.

75



(iii) This follows from (ii) by dualizing, using (i).

3.53. Parabolic analogues

For ν = (n1, . . . , na) � n, let

xν :=
∑
g∈Sν

g and yν :=
∑
g∈Sν

sgn(g)g.

We have the parabolic analogues of symmetric, divided and exterior powers, namely

the Sν-modules

Sν := Mν/ span{mg − sgn(g)m | g ∈ Sν , m ∈Mν},

Zν := {m ∈Mν | mg − sgn(g)m = 0 for all g ∈ Sν},

Λν := Mνxν .

In view of (3.42), if ν = (n1, . . . , na) then Sν ∼= Sn1� · · ·�Sna , and similarly for Z,Λ.

In view of this observation, the basic properties of Sν , Zν and Λν follow directly from

Lemmas 3.59 and 3.60.

Lemma 3.61. For any ν � n, we have ∗Inν Sn
∼= Sν and ∗Inν Zn

∼= Zν .

Proof. We prove the first statement, the second one then follows from Lemma 3.60(ii)

since the restriction functor ∗Inν commutes with duality. By Lemma 3.60, we have

Sn ∼= Mn⊗FSn sgnSn and Sν ∼= Mν ⊗FSν sgnν . Now, using Corollary 3.50(ii), we get

∗Inν Sn
∼= ∗Inν (Mn ⊗FSn sgnSn) ∼= Mν ⊗FSν (resSnSν

sgnSn) ∼= Mν ⊗FSν sgnSν ,

which is isomorphic to Sν , as required.
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Define Rnδ-modules

Sν := Mn/ span{mg − sgn(g)m | g ∈ Sν , m ∈Mn},

Zν := {m ∈Mn | mg = sgn(g)m for all g ∈ Sν},

Λν := Mnxν .

If we identify Mn = InνMν as (Rnδ,OSν)-bimodules as in Lemma 3.48(i), it is easy

to check that the quotient Sν of Mn is identified with the quotient Inν Sν of InνMν .

Similarly we get the analogous results for Z and Λ. Thus:

Sν ∼= Inν Sν , Zν ∼= Inν Zν , Λν ∼= Inν Λν . (3.62)

Note that Zν contains Mnyν as a submodule.

Lemma 3.63. We have Sν ∼= Mn ⊗OSn (indSn
Sν

sgnSν ). Moreover, if O = F then:

(i) (Sν)~ ∼= Zνop , where νop = (na, . . . , n1) is the opposite composition;

(ii) No composition factors of Zν/Mnyν are isomorphic to submodules of Mn.

Proof. By Lemma 3.60, we have Sν ∼= Mν ⊗FSν sgnSν . Therefore, using

Corollary 3.50(i) and (3.62) , we get that

Mn ⊗OSn (indSn
Sν

sgnSν )
∼= Inν Sν

∼= Sν .
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(i) Using (3.62), Lemma 2.55, and Lemma 3.60(ii), we have

(Sν)~ ∼= Inν (Sn1 � · · ·� Sna)~

∼= Inνop(S~na � · · ·� S
~
n1

)

∼= Inνop(Zna � · · ·� Zn1)
∼= Zνop .

(ii) Let α, β and AP be the functors defined in Section 2.26, taking the projective

module P to be the Sn-moduleMν of Theorem 3.44. Now, indSn
Sν

sgnSν is the left ideal

FSnyν of FSn. So, by Lemmas 3.20 and 2.33, we get AP ◦ β(indSn
Sν

sgnSν )
∼= Mnyν .

Using the first statement of the lemma and the definition of the functor AP ◦ β,

we see that Sν ∼= β(indSn
Sν

sgnSν ) is an extension of Mnyν and a module having no

composition factors in common with the head (or equivalently by Lemma 3.20 the

socle) of Mn. Now (ii) follows on dualizing using (i) and Lemma 2.55.

3.54. Schur algebras as endomorphism algebras

Recalling the theory of Schur algebras from Section 2.23, fix an integer h ≥ n

and let Sh,n = Sh,n,O denote classical the Schur algebra, always considered as a graded

algebra in a trivial way, i.e. concentrated in degree zero.

Recall the elements ϕuµ,λ from (2.5) and guµ,λ from (2.4). Our first connection

between Rnδ and the Schur algebra arises as follows:

Theorem 3.64. Let O = F . Then there is an algebra isomorphism

Sh,n
∼−→ EndSn

(⊕
ν∈X(h,n) Λν

)
,
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under which the natural basis element ϕuµ,λ of Sh,n maps to the endomorphism which

is zero on the summands Λν for ν 6= µ and sends Λµ into Λλ via the homomorphism

induced by right multiplication in Mn by guµ,λ.

Proof. Let AP ◦ β denote the equivalence of categories from Theorem 2.31, for the

projective Sn-module P = Mn, see Theorem 3.44. By Lemmas 3.20 and 2.33, we

have ⊕
ν∈X(h,n) Λν ∼= AP ◦ β

(⊕
ν∈X(h,n) Perν

)
.

So the endomorphism algebras of
⊕

ν∈X(h,n) Λν and
⊕

ν∈X(h,n) Perν are isomorphic.

The latter is Sh,n by definition. It remains to check that the image of ϕuµ,λ under

the functor AP ◦ β is precisely the endomorphism described. This follows using

Lemma 2.33 one more time.

Note in the theorem above and in the similar results below that the algebra Sh,n

acts with degree zero homogeneous endomorphisms, so in particular we have

EndSn

(⊕
ν∈X(h,n) Λν

)
= endSn

(⊕
ν∈X(h,n) Λν

)
.

Recalling that Sh,n can also be described as the endomorphism algebra

EndFSn(
⊕

ν∈X(h,n)

SPerν),

and the elements (2.8), the same argument as in the proof of Theorem 3.64 shows:

Proposition 3.65. Let O = F . Then there is an algebra isomorphism

Sh,n
∼−→ EndSn

(⊕
ν∈X(h,n) Mnyν

)
,
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under which the natural basis element ϕuµ,λ of Sh,n maps to the endomorphism which

is zero on the summands Mnyν for ν 6= µ and sends Mnyµ into Mnyλ via the

homomorphism induced by right multiplication in Mn by suµ,λ.

Our final endomorphism algebra result is as follows:

Theorem 3.66. Let O = F . Then there is an algebra isomorphism

Sh,n
∼−→ EndSn

(⊕
ν∈X(h,n) Z

ν
)
,

under which the natural basis element ϕuµ,λ of Sh,n maps to the endomorphism which

is zero on the summands Zν for ν 6= µ and sends Zµ into Zλ via the homomorphism

induced by right multiplication in Mn by suµ,λ.

Proof. First, we check that the endomorphisms in the statement of the theorem are

well-defined. For this we need to see that, as submodules of Mn, Zµsuµ,λ ⊆ Zλ. To

prove this, it suffices by definition of Zλ to prove that Zµsuµ,λ(sr−1) = 0 for all simple

transpositions sr ∈ Sλ. Right multiplication by suµ,λ(sr − 1) yields an Rnδ-module

homomorphism from Zµ to Mn. Considering two cases: where µ = (1n) and µ 6= (1n),

we see that the element suµ,λ(sr − 1) always annihilates the submodule Mnyµ of Zµ.

So in fact, suµ,λ(sr − 1) must annihilate all of Zµ by Lemma 3.63(ii).

Let S be the subalgebra of EndRnδ

(⊕
ν∈X(h,n) Z

ν
)

consisting of all

endomorphisms which preserve the subspace
⊕

ν∈X(h,n) Mnyν ⊆
⊕

ν∈X(h,n) Z
ν .

Restriction gives an algebra homomorphism

S → EndRnδ

(⊕
ν∈X(h,n) Mnyν

)
,
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which is injective by Lemma 3.63(ii) and surjective by the previous paragraph

and Proposition 3.65. This shows in particular that the endomorphisms of

the module
⊕

ν∈X(h,n) Z
ν defined in the statement of the theorem are linearly

independent and span S. It remains to check using dimensions that S equals all

of EndRnδ

(⊕
ν∈X(h,n) Z

ν
)

. On expanding the direct sums, this will follow if we can

show that

dim HomRnδ(Z
µ, Zλ) = dim HomFSn(SPerλ, SPerµ)

for all λ, µ ∈ X(h, k). We calculate using Lemmas 3.63 and 2.29:

HomRnδ(Z
µ, Zλ) ∼= HomRnδ(S

λop , Sµ
op

)

∼= HomRnδ(β(SPerλ
op

), β(SPerµ
op

))

∼= HomFSn(SPerλ
op

, α ◦ β(SPerµ
op

))

∼= HomFSn(SPerλ
op

, SPerµ
op

)

∼= HomFSn(SPerλ, SPerµ),

as desired.

3.55. Projective generator for imaginary Schur algebra

Recalling the idempotents γn,δ and γν,δ from Section 3.51, we introduce the

following temporary notation:

Yn := RnδγnMn, Yν := Rν,δγνMν . (3.67)
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Later it will turn out that Yn = Zn and Yν = Zν . It easy to see that

Yν ∼= Yn1 � · · ·� Yna .

Recall for the next lemma that by definition, Zν is a submodule of Mν .

Lemma 3.68. If O = F , then:

(i) Yν is the image of any non-zero element of the one dimensional space

HomRν,δ(Γν , Zν). Moreover, the latter Hom-space is concentrated in degree

zero.

(ii) ∗Inν Yn
∼= Yν .

Proof. (i) By Proposition 3.57, we have HomRν,δ(Γν ,Mν) ∼= F , and the image of any

non-zero map in this homomorphism space is contained in Zν .

(ii) By (i), Yn is a non-zero submodule of Mn, so HomRnδ(Yn,Mn) 6= 0. Now,

using Lemmas 3.48(i) and 3.47, we get

0 6= HomRnδ(Yn,Mn) ∼= HomRnδ(Yn, I
n
νopMνop) ∼= HomRν,δ(

∗Inν Yn,Mν).

In particular, ∗Inν Yn 6= 0.

Now let θ : Γn → Zn be a non-zero homomorphism. By (i), we have im θ = Yn.

By Proposition 3.57, we have ∗Inν Γn ∼= Γν ⊕X for X with HomRν,δ(X,Mν) = 0, and

by Lemma 3.61, we have ∗Inν Zn
∼= Zν . So, applying the exact functor ∗Inν to θ and

restricting to Γν , we obtain a homomorphism θ̄ : Γν → Zν with image ∗Inν Yn, which

is non-zero by the previous paragraph. By (i), the image of θ̄ is Yν .

By Proposition 3.57, we have that Yν = im pν for a map pν : Γν → Mν which

spans the one-dimensional space HomRν,δ(Γν ,Mν). By functoriality, this map induces
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a map

pν : Inν Γν → Inν Yν .

Lemma 3.69. Any map f : Inν Γν → Mn factors through pν , i.e. there exists a unique

map f̄ : Inν Yν →Mn such that f = f̄ ◦ pν . In particular, for any submodule N ⊆M ,

we have dimq HomRnδ(I
n
ν Γν , N) = dimq HomRnδ(I

n
ν Yν , N).

Proof. By adjointness of Inν and ∗Inν , the map f is functorially induced by a map

fν : Γν → ∗InνMn. By Lemma 3.48(ii), we have ∗InνMn
∼= Mν ⊗OSν OSn. By

Proposition 3.57(ii), the map fν factors through pν , i.e. there exists f̄ν : Yν → ∗InνMn

such that fν = f̄ν ◦ pν . Now take f̄ to be functorially induced by f̄ν .

Lemma 3.70. Let O = F . For any λ, µ � n, all of the spaces

HomRnδ(I
n
λYλ, I

n
µYµ), (3.71)

HomRnδ(I
n
λΓλ, I

n
µYµ), (3.72)

HomRnδ(I
n
λΓλ, I

n
µZµ) (3.73)

have (graded) dimension equal to |λDµn|.

Proof. We consider only (3.72), since by Lemma 3.69, the result for (3.71) follows

from that for (3.72), and the proof for (3.73) is similar to that for (3.72), using that

∗InλZn
∼= Zλ according to Lemma 3.61.

By adjointness of Inλ and ∗Inλ , we have

HomRnδ(I
n
λΓλ, I

n
µYµ) ∼= HomRλ,δ(Γλ,

∗Inλ I
n
µYµ).
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Since Γλ is projective, the Imaginary Mackey Theorem 3.52 show that

dimq HomRλ,δ(Γλ,
∗Inλ I

n
µYµ) =

∑
x∈λDµn

dimqHx,

where

Hx = HomRλ,δ(Γλ, I
λ
λ∩xµ

x(∗Iµx−1λ∩µYµ))

By Lemma 3.68, we have ∗Iµx−1λ∩µYµ
∼= Yx−1λ∩µ, so

Hx
∼= HomRλ,δ(Γλ, I

λ
λ∩xµYλ∩xµ).

Note that the composition λ ∩ xµ is a refinement of λ. Denote by ν the composition

obtained by from λ ∩ xµ by taking the parts of this refinement within each part λm

of λ in the opposite order. By Lemmas 3.47 and 3.68 and Proposition 3.57(i)(ii), we

now have

Hx
∼= HomRν,δ(

∗Iλν Γλ, Yν) ∼= HomRν,δ(Γν , Yν)
∼= F.

This completes the proof.

Recall that X+(n) can be identified with the set of the partitions of n. The

following theorem is the main result of the chapter:

Theorem 3.74. If O = F then:

(i) The submodules Zn and Yn of Mn coincide. So Zn can be characterized as the

image of any non-zero homomorphism from Γn to Mn.

(ii) The number of non-isomorphic composition factors of the Rnδ-module Mn is

equal to |X+(n)|.
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(iii) Zν is a projective Sn-module, for all ν � n. Moreover, for any h ≥ n, we have

that
⊕

ν∈X(h,n) Z
ν is a projective generator for Sn.

Proof. Fix some h ≥ n and set

Z :=
⊕

ν∈X(h,n) I
n
ν Zν =

⊕
ν∈X(h,n) Z

ν ,

Y :=
⊕

ν∈X(h,n) I
n
ν Yν ,

Γ :=
⊕

ν∈X(h,n) I
n
ν Γν .

As Yν is a non-zero submodule of Zν , it contains the simple socle Mνyν of Zν as a

submodule, see Lemma 3.60(iii). Applying Inν to the inclusions Mνyν ⊆ Yν ⊆ Zν , we

see that Mnyν ⊆ Inν Yν ⊆ Inν Zν as naturally embedded submodules of Mn. So

⊕
ν∈X(h,n)Mnyν ⊆ Y ⊆ Z.

Also observe that Y is a quotient of Γ, since each Yν is a quotient of Γν . By

Lemmas 3.70 and 2.6, we have

dim HomRnδ(Y, Y ) = dim HomRnδ(Γ, Y ) = dim HomRnδ(Γ, Z)

=
∑

λ,µ∈X(h,n)

|λDµn| = dimSh,n.

Since Γ is projective it contains the projective cover P of Y as a summand. Now

the equality dim HomRnδ(Y, Y ) = dim HomRnδ(Γ, Y ) implies that

dim HomRnδ(Y, Y ) = dim HomRnδ(P, Y ).
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This verifies the condition in Lemma 3.43, so Y is a projective Rnδ/AnnRnδ(Y )-

module.

As HomRnδ(Γ, Y ) and HomRnδ(Γ, Z) have the same dimension, every Rnδ-

homomorphism from Γ to Z has image lying in Y . So since Y is a quotient of

Γ, we can describe Y alternatively as the subspace of Z spanned by the images of all

Rnδ-homomorphisms from Γ to Z. This description implies that Y is stable under

all Rnδ-endomorphisms of Z. So, restriction gives a well-defined map EndRnδ(Z) →

EndRnδ(Y ). It is injective since we know from Theorem 3.66 and Proposition 3.65 that

the homomorphism EndRnδ(Z) → EndRnδ

(⊕
ν∈X(h,n) Mnyν

)
induced by restriction

is injective. Since EndRnδ(Z) ∼= Sh,n and EndRnδ(Y ) has the same dimension as Sh,n,

we deduce that EndRnδ(Y ) ∼= Sh,n.

For h ≥ n, the number of irreducible representations of Sh,n is equal to |X+(n)|.

Combining what we have already proved with Fitting’s lemma [34, 1.4], we deduce

that Y has the same amount of non-isomorphic irreducible modules appearing in its

head. It follows in particular that M has at least |X+(n)| non-isomorphic composition

factors. Since n and i are arbitrary, we can now apply Corollary 3.10 to conclude

that M has exactly |X+(n)| non-isomorphic composition factors, and we have proved

(ii).

Since Y is a direct sum of submodules of Mn, the assumption on the number of

composition factors now implies that every irreducible constituent of Mn appears in

the head of Y . Hence every irreducible constituent of Mn appears in the head of the

projective Rnδ-module Γ. Now we know that every homomorphism from Γ to Z has

image lying in Y , while every composition factor of Z/Y appears in the head of the

projective module Γ. This shows Z = Y , and we have proved (i).
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Further, observe that Mn
∼= Z(1n) is a summand of Y = Z, hence AnnRnδ(Y ) =

AnnRnδ(M). In other words, Rnδ/AnnRnδ(Y ) = Sn. We have already shown that Y

is a projective Rnδ/AnnRnδ(Y )-module, which means that Z and all its summands

are projective Sn-modules. Taking h large enough, this shows in particular that

Inν Zν = Zν is projective for each ν � n.

Finally, to show that every irreducible Sn-module appears in the head of Z,

note that Mn is a faithful Sn-module, and so every irreducible Sn-module appears

as some composition factor of Mn, and we have seen that a copy of every composition

factor of Mn does appear in the head of Y = Z.

Corollary 3.75. The functor Inν sends Sν-modules to Sn-modules and the functor ∗Inν

sends Sn-modules to Sν-modules.

Proof. We prove the first statement, the second statement is proved similarly. Since

Inν is exact, it suffices to check the first statement on projective Sν-modules. In turn,

since according to the parabolic analogue of Theorem 3.74, every indecomposable

projective Sν-module is a submodule of Mν , we just need to check that InνMν is a

Sn-module. But this is clear since InνMν
∼= Mn by Lemma 3.48.

In this chapter we begin to exploit the Morita context provided by Theorem 3.74.

Throughout the chapter, except in §3.8, we assume that O = F .
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3.6. Morita equivalence

Let h ≥ n, and Z =
⊕

ν∈X(h,n) Z
ν . We always regard Z as a (Sn, Sh,n)-bimodule,

with Sh,n acting as in Theorem 3.66. Define the functors

αh,n : Sn-mod→ Sh,n-mod, V 7→ HomSn(Z, V )

βh,n : Sh,n-mod→ Sn-mod, W 7→ Z ⊗Sh,n W.

Proposition 3.76. The functors αh,n and βh,n are mutually inverse equivalences of

categories between Sn-mod and Sh,n-mod.

Proof. This follows from the fact that Z is a projective generator for Sn proved in

Theorem 3.74(iii).

Recall from Chapter II that Sh,n is a quasi-hereditary algebra with weight poset

X+(h, n) partially ordered by the dominance order ≤. We can identify X+(h, n) with

the set X+(n) of partitions of n, since h ≥ n. Also, for λ ∈ X+(n), the algebra Sh,n

has the irreducible module Lh(λ), the standard module ∆h(λ) and the costandard

module ∇h(λ). For all λ ∈ X+(n), define the (graded) Sn-modules:

L(λ) := βh,n(Lh(λ)), (3.77)

∆(λ) := βh,n(∆h(λ)), (3.78)

∇(λ) := βh,n(∇h(λ)). (3.79)

Since βh,n is a Morita equivalence, the imaginary Schur algebra Sn is a quasi-

hereditary algebra with weight poset X+(n) partially ordered by ≤. Moreover,

{L(λ)}, {∆(λ)} and {∇(λ)} for all λ ∈ X+(n) give the irreducible, standard and

costandard Sn-modules. The following facts follow from Morita equivalence.

88



Lemma 3.80. Let λ, µ ∈ X+(n). Then:

(i) ∆(λ) has simple head isomorphic to L(λ), and all other composition factors are

of the form L(ν) for ν < λ.

(ii) [∆(λ) : L(µ)] = [∆h(λ) : Lh(µ)].

We next explain why the definitions (3.77)-(3.79) are independent of the choice

of h ≥ n. Take h ≥ l ≥ n and, using Lemma 2.23, identify Sl,n with the subalgebra

eSh,ne of Sh,n, where e is the idempotent of (2.22). Recall an equivalence of categories

from Lemma 2.26:

infl
Sh,n
Sl,n

: Sl,n-mod→ Sh,n-mod : M 7→ Sh,ne⊗eSh,neM.

Lemma 3.81. The functors βh,n ◦ infl
Sh,n
Sl,n

and βl,n from Sl,n-mod to Sn-mod are

isomorphic.

Proof. The module
⊕

λ∈X(l,n) Z
λ is precisely the (Sn, Sl,n)-subbimodule Ze of Z. So

βl,n is isomorphic to Ze⊗eSh,ne?. Now we have the functorial isomorphisms

Z ⊗Sh,n (Sh,ne⊗eSh,neM) ∼= (Z ⊗Sh,n Sh,ne)⊗eSh,neM ∼= Ze⊗eSh,neM

for any M ∈ Sl,n-mod.

By Lemmas 2.26 and 2.27, we have that Lh(λ) ∼= infl
Sh,n
Sl,n

Ll(λ). Hence

Lemma 3.81 yields βl,n(Ll(λ)) ∼= βh,n(Lh(λ)) as Sn-modules. So, the definition (3.77)

is independent of the choice of h ≥ n, and a similar argument gives independence of

h for (3.78) and (3.79).
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In conclusion of this section, we make a small detour to mixed imaginary tensor

spaces of §1.2. For n = (n1, . . . , nl) ∈ Zl≥0, the corresponding mixed tensor space is

defined as

Mn := Mn1,1 ◦ · · · ◦Mnl,l,

where Mni,i is a colored space of color i for each i ∈ I ′, which can be considered as a

module over the (color i) imaginary Schur algebra Sni,i := Rniδ/AnnRniδ(Mni,i). Let

n = n1 + · · ·+ nl, and define the mixed imaginary Schur algebra

Sn := Rnδ/AnnRnδ(Mn).

Moreover, for hi ≥ ni and ν ∈ X(ni, hi) we have defined modules Zν
i (previously

denoted for brevity Zν since we had i ∈ I ′ fixed), and

Z(i, ni) =
⊕

ν∈X(ni,ni)

Zν
i (i ∈ I ′).

We have functors αhi,ni,i := HomSni,i
(Z(ni, i), ?) and βhi,ni,i = Z(i, ni)⊗Shi,ni?. Set

Zn = Z(1, n1) ◦ · · · ◦ Z(l, nl).

The following result strengthens Theorem 2 from the Introduction.

Proposition 3.82. We have

(i) Zn is a projective generator for Sn.

(ii) EndSn(Zn) ∼= EndSn1,1
(Z(n1, 1)) ⊗ · · · ⊗ EndSnl,l

(Z(nl, l)) ∼= Sh,n := Sh1,n1 ⊗

· · · ⊗ Shl,nl .
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(iii) The functors αh,n := HomSn(Zn, ?) : Sn-mod → Sh,n-mod and βh,n =

Zn⊗Sh,n? : Sh,n-mod → Sn-mod, are mutually inverse equivalences of

categories between Sn-mod and Sh,n-mod.

(iv) There is a functorial isomorphism

βh,n(W1 ⊗ · · · ⊗Wl) ∼= βh1,n1,1(W1) ◦ · · · ◦ βhl,nl,l(Wl)

for W1 ∈ Sh1,n1-mod, . . . ,Wl ∈ Shl,nl-mod.

Proof. Part (i) follows from Theorem 3.74(iii). Part (ii) follows from Theorem 3.66

and Mackey Theorem. Part (iii) follows from part (i). Part (iv) follows from the

definitions and transitivity of induction.

3.61. Induction and Morita equivalence

In this section we prove a key result that our Morita equivalence ‘intertwines’

imaginary induction and tensor products for usual Schur algebras. We fix an integer

h ≥ n, and a composition ν = (n1, . . . , na) � n. Recall the Morita equivalence

βh,n : Sh,n-mod→ Sn-mod.

Theorem 3.83. We have an isomorphism of functors from Sh,n1-mod× · · ·×Sh,na-mod

to Sn-mod:

Inν (βh,n1?� · · ·� βh,na?) ∼= βh,n(?⊗ · · ·⊗?).

Proof. Choose χ = (h1, ..., ha) � h with hk ≥ nk for k = 1, . . . , a, and denote Sχ,ν :=

Sh1,n1 ⊗ · · · ⊗ Sha,na . Write X(χ, ν) for the set of all compositions γ = (g1, . . . , gh) ∈
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X(h, n) such that

γ1 := (g1, . . . , gh1), γ2 := (gh1+1, . . . , gh1+h2), . . . , γa := (gh1+···+ha−1+1, . . . , gh)

satisfy γk ∈ X(hk, nk) for each k = 1, . . . , a.

Consider the set of triples:

Ω = {(γ, δ, u) | γ, δ ∈ X(χ, ν), u ∈ γDδν}.

For a triple (γ, δ, u) ∈ Ω, we have γk, δk ∈ X(hk, nk) for each k = 1, . . . , a, and

u = (u1, . . . , ua) ∈ Sν = Sn1 × · · · × Sna with each uk ∈ γkDδknk . So we have the

element

ϕ̄uγ,δ := ϕu1γ1,δ1 ⊗ · · · ⊗ ϕ
ua
γa,δa
∈ Sχ,ν .

Then {ϕ̄uγ,δ | (γ, δ, u) ∈ Ω} is a basis for Sχ,ν .

Recall the (Sn, Sh,n)-bimodule Z =
⊕

λ∈X(h,n) I
n
λZλ =

⊕
λ∈X(h,n) Z

λ, and define

also the (Sν , Sχ,ν)-bimodule

Zχ,ν :=
⊕

λ∈X(χ,ν) I
ν
λZλ
∼=
(⊕

λ1∈X(h1,n1) Z
λ1

)
� · · ·�

(⊕
λa∈X(ha,na) Z

λa
)
.

Then Inν Z
χ,ν is an (Sn, Sχ,ν)-bimodule in a natural way. Moreover, by transitivity

of induction, we have Inν Z
χ,ν ∼=

⊕
λ∈X(χ,ν) Z

λ, so Inν Z
χ,ν can be identified with the

summand Zeν of the (Sn, Sh,n)-bimodule Z, where eν is the idempotent

eν :=
∑

λ∈X(χ,ν)

e(λ) ∈ Sh,n.

92



Identifying eνSh,neν with EndSn(Zeν), we obtain an algebra embedding of

Sχ,ν into eνSh,neν . By definition of the actions of Sχ,ν and eνSh,neν on Zeν and

Lemma 3.48(i), this embedding maps the basis element ϕ̄uγ,δ ∈ Sχ,ν to ϕuγ,δ ∈ eνSh,neν ,

for all (γ, δ, u) ∈ Ω. In other words:

Claim 1. Identifying Sχ,ν with a subalgebra eνSh,neν via the map ϕ̄uγ,δ 7→ ϕuγ,δ, the

(Sn, Sχ,ν)-bimodule Inν Z
χ,ν is isomorphic to Zeν, regarding the latter as a (Sn, Sχ,ν)-

bimodule by restricting the natural action of eνSh,neν to Sχ,ν.

Now let Sχ,n be the Levi subalgebra of Sh,n as in (2.21). Then eν is the central

idempotent of Sχ,n such that eνSχ,neν ∼= Sχ,ν . So in fact, the embedding of Sχ,ν into

eνSχ,neν from Claim 1 identifies Sχ,ν with the summand eνSχ,neν of Sχ,n. Making this

identification, define the functor

I = Sh,neν⊗eνSχ,neν? : Sχ,ν-mod→ Sh,n-mod .

Using associativity of tensor product, the functor I can be thought of as the composite

of the natural inflation functor Sχ,neν⊗eνSχ,neν? : Sχ,ν-mod → Sχ,n-mod followed by

ordinary induction ind
Sh,n
Sχ,n

: Sχ,n-mod→ Sh,n-mod as defined in Section 2.25. In view

of this, the following fact follows immediately from Lemma 2.28:

Claim 2. The following functors from Sh1,n1-mod× · · ·×Sha,na-mod to Sh,n-mod are

isomorphic:

I(?� · · ·� ?) and infl
Sh,n1
Sh1,n1

?⊗ · · · ⊗ infl
Sh,na
Sha,na

?.
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Now note that from Claim 1 and associativity of tensor product we have the

natural isomorphisms

Inν (Zχ,ν ⊗Sχ,ν N) ∼= (Inν Z
χ,ν)⊗Sχ,ν N ∼= Zeν ⊗Sχ,ν N

∼= Zeν ⊗eνSχ,neν N ∼= Z ⊗Sh,n Sh,neν ⊗eνSχ,neν N,

which is βh,n(I(N)). Thus we have proved:

Claim 3. The functors Inν ◦ (Zχ,ν⊗Sχ,ν?) and βh,n ◦ I from Sχ,ν-mod to Sn-mod are

isomorphic.

We have the isomorphism of functors from Sh1,n1-mod× · · · × Sha,na-mod to

Sν-mod:

βh1,n1?� · · ·� βha,na? ∼= Zχ,ν ⊗Sχ,ν (?� · · ·� ?).

So, in view of Claims 2 and 3, we have

Claim 4. There is an isomorphism of functors

Inν (βh1,n1?� · · ·� βha,na?) ∼= βh,n(infl
Sh,n1
Sh1,n1

? ⊗ · · · ⊗ infl
Sh,na
Sha,na

?)

from Sh1,n1-mod× · · · × Sha,na-mod to Sn-mod.

Finally, by Lemma 2.26, the functors

infl
Sh,nk
Shk,nk

: Shk,nk-mod→ Sh,nk-mod (1 ≤ k ≤ a)

are equivalences of categories. By Lemma 3.81, the functors βh,nk ◦ infl
Sh,nk
Shk,nk

and βh,nk

are isomorphic. The theorem follows on combining these statements and Claim 4.
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As a first application, we get the commutativity of induction product on the

category of imaginary representations:

Corollary 3.84. Let M ∈ Sm-mod and N ∈ Sn-mod. Then M ◦N ∼= N ◦M .

Proof. For sufficiently large h we have M = βh,m(V ), N = βh,n(W ), M ◦ N =

Im+n
(m,n)(M �N), and N ◦M = Im+n

(n,m)(N �M). Now the result follows from V ⊗W ∼=

W ⊗ V and the theorem.

As a second application we establish a version of Steinberg Tensor Product

Theorem. Let p = charF > 0 and λ ` n. Considered λ as an element of X+(n, n).

Recall from Section 2.21, that there exists a unique p-adic expansion

λ = λ(0) + pλ(1) + p2λ(2) . . .

such that the partitions λ(0) ` m0, λ(1) ` m1, λ(2) ` m2, . . . are all p-restricted.

With this notation we have:

Theorem 3.85. (Imaginary Steinberg Tensor Product Theorem) Let nr :=

prmr for r = 0, 1, 2, . . . , and consider the composition

ν = (n0, n1, n2, . . . ) � n.

Then

L(λ) = Inν
(
L(λ(0))� L(pλ(1))� L(p2λ(2))� . . .

)
.

Proof. This comes from Theorem 3.83 and Lemma 2.20.

As a third application, we prove that imaginary induction and restriction respect

standard and costandard filtrations. A filtration 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mb = M of
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an Sn-module M is called standard (resp. costandard) if for each k = 1, . . . , b, the

quotient Mk/Mk−1 is isomorphic to ∆(λ) (resp. ∇(λ)) for some λ ` n (depending

on k). Similarly, a filtration 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mb = M of an Sν-module M

is called standard (resp. costandard) if for each k = 1, . . . , b, the quotient Mk/Mk−1

is isomorphic to ∆(λ1) � · · · � ∆(λa) (resp. ∇(λ1) � · · · � ∇(λa)) for some λ1 `

n1, . . . λa ` na (depending on k).

Theorem 3.86. We have

(i) The functor Inν sends Sν-modules with standard (resp. costandard) filtrations

to Sn-modules with standard (resp. costandard) filtrations.

(ii) The functor ∗Inν sends Sn-modules with standard (resp. costandard) filtrations

to Sν-modules with standard (resp. costandard) filtrations.

Proof. (i) It suffices to check that Inν (∆(λ1)� · · ·�∆(λa)) has a standard filtration,

for arbitrary λ1 ` n1, . . . , λa ` na. By Theorem 3.83,

Inν (∆(λ1)� · · ·�∆(λa)) ∼= βh,n(∆h(λ1)⊗ · · · ⊗∆h(λa)).

So the result follows since ∆h(λ1)⊗ · · · ⊗∆h(λa) has a standard filtration as an Sh,n-

module by Lemma 2.18. This proves (i) in the case of standard filtrations; the result

for costandard filtrations is proved similarly.

(ii) We prove (ii) in the case of costandard filtrations; the analogous result for

standard filtrations follows by dualizing. Take N ∈ Sn-mod with a costandard

filtration. Using the cohomological criterion for costandard filtrations [10, A2.2(iii)],

we need to show that Ext1
Sν

(M, ∗InνN) = 0 for all M ∈ Sν-mod with a standard

filtration. For such M , by (i) and the cohomological criterion for costandard

filtrations, we have Ext1
Sν

(InνM,N) = 0. So the result follows from the following:
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Claim. For M ∈ Sν-mod and N ∈ Sn-mod, we have Ext1
Sν

(M, ∗InνN) ∼=

Ext1
Sν

(InνM,N).

To prove the claim, the adjoint functor property gives us an isomorphism of

functors HomSν (M, ?)◦ ∗Inν ∼= HomSn(InνM, ?). Since ∗Inν is exact and sends injectives

to injectives (being adjoint to the exact functor Inν ), an application of [16, I.4.1(3)]

completes the proof of the claim.

Corollary 3.87. Let ν = (n1, . . . , na) � n, λ ` n, and λ1 ` n1, . . . , λa ` na. Then both

of

(i) the multiplicity of ∆(λ) in a standard filtration of Inν (∆(λ1)� · · ·�∆(λa)),

(ii) the multiplicity of ∆(λ1)� · · ·�∆(λa) in a standard filtration of ∗Inν ∆(λ)

are given by the Littlewood-Richardson rule.

Proof. The modules in (i) and (ii) have standard filtrations by Theorem 3.86. Now (i)

follows from Theorem 3.83 and the classical fact about tensor product multiplicities

over the Schur algebra, and (ii) follows from (i) and adjointness, together with the

usual properties of standard and costandard filtrations.

3.7. Alternative definitions of standard modules

Our goal now is to give two alternative definitions of the standard module ∆(λ)

without reference to the Schur algebra and Morita equivalence. Recall from (2.15)

and (2.16) the modules Zν(Vh) and Λν(Vh) for the classical Schur algebra Sh,n.

Lemma 3.88. For ν � n, we have Zν ∼= βh,n(Zν(Vh)) and Λν ∼= βh,n(Λν(Vh)).

Proof. By Lemma 2.17(i), we have Zν(Vh) ∼= Sh,ne(ν). So, by Lemma 2.33, we get

βh,n(Sh,ne(ν)) ∼= Ze(ν), which is precisely the summand Zν of Z by the definition of

the action from Theorem 3.66.
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For the second statement, using the embedding κ from Lemma 2.7 and

Lemma 2.17(ii), we have Λν(Vh) ∼= Sh,nκ(yν). So, by Lemma 2.33, we get

βh,n(Λν(Vh)) ∼= Zκ(yν). By definition of κ, together with Theorem 3.66, we have

Zκ(yν) = Mnsgn(yν) = Mnxν = Λν , as required.

In view of Lemma 3.20, the antiautomorphism τ of Rnδ factors through to give

a (homogeneous) antiautomorphism

τ : Sn → Sn,

which leads to the notion of contravariant duality ~ on Sn-mod. We have a (not

necessarily degree zero) isomorphism L(λ)~ ∼= L(λ) for each λ ∈ X+(n), since this is

true even as Rnδ-modules. We now prove a stronger result:

Lemma 3.89. For all λ ∈ X+(n) we have L(λ)~ ∼= L(λ) and ∆(λ)~ ∼= ∇(λ).

Proof. By Lemma 3.88, Mn = Z(1n) ∼= βh,n(V ⊗nh ). So the only (graded) composition

factors of Mn are of the form L(λ) for λ ∈ X+(n) and each such L(λ) occurs with

some non-zero graded multiplicity mλ ∈ Z>0. The formal characters of the modules

L(λ) are linearly independent. Hence, since chqMn =
∑

λ∈X+(n)mλchq L(λ) is bar-

invariant, by Lemma 3.20, we conclude that each chq L(λ) is bar-invariant, which

immediately implies that L(λ)~ ∼= L(λ). It follows from a general theory of quasi-

hereditary algebras that ∆(λ)~ is the costandard module ∇(λ) up to a degree shift,

and now the first statement of the lemma implies the second one.

Now we obtain the desired characterizations of ∆(λ). Recall the element uλ ∈ Sn

from Lemma 2.3.

Theorem 3.90. Let λ ` n. Then:
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(i) HomSn(Zλ,Λλtr) ∼= F , and the image of any non-zero homomorphism in

HomSn(Zλ,Λλtr) is isomorphic to ∆(λ);

(ii) ∆(λ) is isomorphic to the submodule Zλuλtrxλtr of Mn.

Proof. (i) follows from Lemma 3.88, the definition (3.78), and Lemma 2.19, since βh,n

is an equivalence of categories.

(ii) Note that Zλ contains Mnyλ as a submodule. Moreover, as Mn is a faithful

FSn-module and yλuλtrxλtr 6= 0 by Lemma 2.3, we conclude that Mnyλuλtrxλtr 6= 0.

Hence Zλuλtrxλtr 6= 0. Finally, observe that Zλuλtrxλtr is both a homomorphic image

of Zλ and a submodule of Λλtr . So the result follows from (i).

We will write M̃ for the right Sn-module obtained fromM ∈ Sn-mod by twisting

the left action into a right action using the antiautomorphism τ of Sn. In this way,

we obtain right Sn-modules L̃(λ), ∆̃(λ), and ∇̃(λ).

Theorem 3.91. We have

(i) Sn has a filtration as a (Sn,Sn)-bimodule with factors isomorphic to ∆(λ)⊗

∆̃(λ), each appearing once for each λ ` n and ordered in any way refining the

dominance order on partitions so that factors corresponding to most dominant

λ appear at the bottom of the filtration.

(ii) Z has a filtration as a (Sn, Sh,n)-bimodule with factors ∆(λ)⊗∆̃h(λ) appearing

once for each λ ` n and ordered in any way refining the dominance order so

that factors corresponding to most dominant λ appear at the bottom of the

filtration.

Proof. (i) This follows from the general theory of quasi-hereditary algebras, as is

explained for example after [5, (1.2e)].
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(ii) The functor Z⊗Sh,n? can be viewed as an exact functor from the category of

(Sh,n, Sh,n)-bimodules to the category of (Sn, Sh,n)-bimodules. We have:

Z ⊗Sh,n (∆h(λ)⊗ ∆̃h(λ)) ∼= (Z ⊗Sh,n ∆h(λ))⊗ ∆̃h(λ) ∼= ∆(λ)⊗ ∆̃h(λ).

So applying Z⊗Sh,n? to the filtration of Lemma 2.13 gives the result.

3.8. Base change

Recall that O denotes the ground ring which is always assumed to be either Z

or F . The algebras Sn,h, Sn, and the modules Mn, Z
λ, etc. are all defined over Z,

although in many results proved in the previous sections we have assumed that O is a

field. We now work over O = Z, and study the base change from Z to F . Throughout

this section, it will also be convenient to denote by K a field of characteristic zero and

use notation like Sn,Z, Sn,F , Sn,K , etc. to specify the ring over which the objects

are considered.

Lemma 3.92. We have:

(i) Mn,Z is a Z-free module of finite rank with Mn,Z ⊗Z F ∼= Mn,F ;

(ii) Zn,Z is a Z-free module of finite rank with Zn,Z⊗Z F ∼= Zn,F . Moreover, Zn,Z =

Yn,Z := Rnδ(Z)γnMn,Z.

Proof. (i) comes from the Lemma 3.21.

(ii) By (i), Mn,Z is a lattice in Mn,K , and by definition, we have Zn,Z = Zn,K ∩

Mn,Z. So Zn,Z is a lattice in Zn,K , and also a direct summand of the Z-module Mn,Z.

Hence the natural map

i : Zn,Z ⊗Z F →Mn,Z ⊗Z F = Mn,F
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is injective. Since the action of Sn on Mn is compatible with base change, we have

im i ⊆ Zn,F .

Recall the submodule Yn = RnδγnMn from (3.67). Note that the natural

(not necessarily injective) map from Yn,Z ⊗Z F to Mn,F has image Yn,F . Now by

Propsosition 3.57(iii), Yn,Z ⊆ Zn,Z, so Yn,F ⊆ im i. By Theorem 3.74(i), Yn,F = Zn,F ,

so by the previous paragraph, the map i : Zn,Z ⊗Z F → Zn,F is an isomorphism.

Finally, the embedding Yn,Z → Zn,Z has to be an isomorphism, since otherwise

for some field F the induced map Yn,Z⊗Z F → Zn,Z⊗Z F is not surjective, and so the

composition

Yn,Z ⊗Z F → Zn,Z ⊗Z F → Zn,F = Yn,F

is not surjective, giving a contradiction.

Since induction commutes with base change, we deduce:

Corollary 3.93. Let ν � n. Then Zν
Z is a Z-free module of finite rank with Zν

Z⊗Z F ∼=

Zν
F .

Now we can define standard modules over Z. For λ ` n, set

∆Z(λ) = Zλ
Zuλtrxλtr .

Compare this to Theorem 3.90(ii), in which we worked over a field.

Theorem 3.94. ∆Z(λ) is Z-free of finite rank with ∆Z(λ) ⊗Z F ∼= ∆F (λ). Moreover,

the formal characters of ∆Z(λ) and ∆F (λ) are the same.

Proof. By definition Zλ
Z is a submodule of Mn,Z, and ∆Z(λ) is a submodule of the

torsion free Z-module Mn,Z, so ∆Z(λ) is torsion free. There is a natural map ∆Z(λ)⊗Z

K → Mn,K , which is injective since K is flat over Z. It is easy to check that the
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image of this map is precisely ∆K(λ), proving that ∆Z(λ) is a Z-lattice in ∆K(λ). In

particular, ∆Z(λ) has rank equal to dim ∆K(λ). By Theorem 3.91(ii) with h = n, we

have ∑
ν∈X(n,n)

dimZν
K =

∑
λ`n

(dim ∆K(λ))(dim ∆n,K(λ)),

where ∆n,K(λ) denotes the standard module for the Schur algebra Sn,n,K . In view

of Corollary 3.93, dimZν
K = dimZν

F , and it is well-known that the dimensions of

standard modules for the Schur algebra do not depend on the ground field. So

∑
ν∈X(n,n)

dimZν
F =

∑
λ`n

(dim ∆K(λ))(dim ∆n,F (λ)).

There is a natural map i : ∆Z(λ) ⊗Z F → Mn,F with image ∆F (λ) induced by

the embedding ∆Z(λ) → Mn,Z. So dim ∆K(λ) ≥ dim ∆F (λ) . On the other hand,

applying Theorem 3.91(ii) over F , we have that

∑
ν∈X(n,n)

dimZν
F =

∑
λ`n

(dim ∆F (λ))(dim ∆n,F (λ)).

Comparing with our previous expression, we conclude that dim ∆F (λ) = dim ∆K(λ)

for all λ ` n. Hence i is injective. The result about the characters is now clear.

We now show that the imaginary Schur algebra and its Morita equivalence with

a classical Schur algebra are defined over Z.

Theorem 3.95. We have:

(i) Sn,Z is Z-free of finite rank with Sn,Z ⊗Z F ∼= Sn,F ;

(ii) Zν
Z is a projective Sn,Z-module for each ν � n;

(iii) EndSn,Z

(⊕
ν∈X(n,h) Z

ν
Z
) ∼= Sh,n,Z;
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(iv)
⊕

ν∈X(n,h) Z
ν
Z is a projective generator for Sn,Z, so Sn,Z is Morita equivalent to

Sh,n,Z for h ≥ n.

Proof. (i) By definition, Sn,Z is the Z-submodule of EndZ(Mn,Z) spanned by the

images of the Z-basis elements of Rnδ,Z which are of the form ψwy
b1
1 . . . ybdd 1i. Since

the degree of each yr is 2, all but finitely many such elements act as zero, so Sn,Z is

finitely generated over Z, whence Sn,Z is a lattice in Sn,K .

The natural inclusion Sn,Z↪→EndZ(Mn,Z) yields a map

Sn,Z ⊗Z F → EndZ(Mn,Z)⊗ F ∼= EndF (Mn(F ))

whose image is Sn,F . This map is injective since dim Sn,K = dim Sn,F by

Theorems 3.91(i) and 3.94.

(ii) By Corollary 3.93, we have Zν
Z⊗ZF ∼= Zν

F , which is a projective Sn,F -module

by Theorem 3.74. Therefore, in view of the Universal Coefficients Theorem, Zν
Z is a

projective Sn,Z-module.

(iii) Denote

EO := EndSn,O

( ⊕
ν∈X(n,h)

Zν
O
)
.

By Theorem 3.66, we have EF ∼= Sh,n,F . Moreover, EZ is anO-lattice in EK , and there

is a natural embedding EZ ⊗Z F → EF , cf. [34, Lemma 14.5]. The last embedding

is an isomorphism by dimension. So we can identify EZ ⊗K with EK and EZ ⊗Z F

with EF .

Now, the basis element ϕuµ,λ of EK ∼= Sh,n,K acts as zero on all summands except

Zµ
K , on which it is induced by the right multiplication by suµ,λ. By definition, Zν

Z =

Zν
K ∩Mn,Z. Also, suµ,λ ∈ ZSn, therefore suµ,λ stabilizes Mn,Z. Hence Zµ

Zsµ,λ ⊆ Zλ
Z , so

each ϕuµ,λ ∈ EK restricts to give a well-defined element of EZ. We have constructed a
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isomorphic copy SZ of Sh,n,Z in EZ, namely, the Z-span of the standard basis elements

ϕuµ,λ ∈ Sh,n,K .

It remains to show that SZ = EZ. We have a short exact sequence of Z-modules:

0→ SZ → EZ → QZ → 0,

and we need to prove that QZ = 0, for which it suffices to prove that QZ ⊗Z F = 0.

Tensoring with F , we have an exact sequence

SZ ⊗Z F
i→ EF → QZ ⊗Z F → 0.

The map i sends 1 ⊗ ϕuµ,λ to the corresponding endomorphism ϕuµ,λ defined as in

Theorem 3.66. Hence, i is injective, so i is an isomorphism by dimensions, and

QZ ⊗Z F = 0, as required.

(iv) By (ii),
⊕

ν∈X(n,h) Z
ν
Z is a projective Sn,Z-module. For h ≥ n, it is

a projective generator, because this is so on tensoring with F , using (i) and

Theorem 3.74.

3.9. Ringel duality and double centralizer properties

Let S be a quasi-hereditary algebra with weight poset (Λ+,≤) and standard

modules ∆(λ). Recall that a (finite dimensional) S-module is called tilting if it

has both a standard and a costandard filtrations. By [41], for each λ ∈ Λ+, there

exists a unique indecomposable tilting module T (λ) such that [T (λ) : ∆(λ)] = 1 and

[T (λ) : ∆(µ)] = 0 unless µ ≤ λ. Furthermore, every tilting module is isomorphic

to a direct sum of indecomposable tilting modules T (λ). A full tilting module is a

tilting module that contains every T (λ), λ ∈ Λ+, as a summand. Given a full tilting
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module T , the Ringel dual of S relative to T is the algebra S∗ := EndS(T )op. Writing

endomorphisms on the right, T is naturally a right EndS(T )-module, hence a left

S∗-module. Ringel [41] showed that S∗ is also a quasi-hereditary algebra with weight

poset Λ+, but ordered with the opposite order. We will need the following known

result (for references see [5, Section 4.5]).

Lemma 3.96. Regarded as a left S∗-module, T is a full tilting module for S∗.

Moreover, the Ringel dual EndS∗(T )op of S∗ relative to T is isomorphic to S.

Applying Ringel’s theorem first to the Schur algebra Sh,n, we obtain the

indecomposable tilting modules {Th(λ) | λ ∈ X+(h, n)} of Sh,n. For h ≥ n, define

T (λ) := βh,n(Th(λ)) (λ ` n). (3.97)

Since βh,n is Morita equivalence, {T (λ) | λ ` n} are the indecomposable tilting

modules for Sn.

Lemma 3.98. The indecomposable tilting modules for Sn are precisely the

indecomposable summands of Λν for all ν � n. Furthermore, for λ ` n, the module

T (λ) occurs exactly once as a summand of Λλtr , and if T (µ) is a summand of Λλtr for

some µ ` λ, then µ ≤ λ.

Proof. By [10, Section 3.3(1)], Th(λ) occurs exactly once as a summand of Λλtr(Vh),

and if Th(µ) is a summand of Λλtr(Vh) then µ ≤ λ. Now the result follows on applying

the functor βh,n and using Lemma 3.88.

Corollary 3.99. For λ ` n, the module T (λ) is the unique indecomposable summand

of Λλtr containing a submodule isomorphic to ∆(λ).
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Proof. By Theorem 3.90(i), Λλtr has a unique submodule isomorphic to ∆(λ). By

Lemma 3.98, Λλtr has a unique summand isomorphic to T (λ) and for any other

summand M of Λλtr , we have HomSn(∆(λ),M) = 0.

Theorem 3.100. (Imaginary Ringel Duality) Let h ≥ n. The Sn-module T :=⊕
ν∈X(h,n) Λν is a full tilting module. Moreover, the Ringel dual S ∗

n of Sn relative to

T is precisely the algebra Sop
h,n where Sh,n acts on T as in Theorem 3.64.

Proof. By Lemma 3.98, T is a full tilting module. The second statement is a

restatement of Theorem 3.64.

So far we have only had ‘halves’ of imaginary Schur-Weyl and Howe dualities,

namely: EndSn(Mn) ∼= FSn and EndSn

(⊕
ν∈X(h,n) Λν

)
∼= Sh,n. Now we can finally

establish the ‘second halves’.

Theorem 3.101. (Double Centralizer Properties) Let h ≥ n. Then:

(i) EndSn

(⊕
ν∈X(h,n) Λν

)
∼= Sh,n and EndSh,n

(⊕
ν∈X(h,n) Λν

)
∼= Sn, where the

right Sh,n-action is as in Theorem 3.64;

(ii) EndSn(Mn) ∼= FSn and EndFSn(Mn) ∼= Sn where the right FSn-action is as

in Theorem 3.44.

Proof. (i) Combine Theorem 3.100 with Lemma 3.96.

(ii) By Theorem 3.44, we know already that FSn
∼= EndSn(Mn). Let e :=

e((1n)) ∈ Sh,n, see (2.10). We know that Th(λ) is a summand of Λλtr(Vh), for any

λ ∈ X+(h, n). So, by Lemma 2.17(ii), Th(λ) is both a submodule and a quotient of

the Sh,n-module Sh,ne. Moreover, Sh,ne ∼= V ⊗nn , so Sh,ne is self-dual. From this one

deduces a (well-known) fact that every composition factor of both the socle and the

head of Th(λ) belongs to the head of the projective Sh,n-module Sh,ne.
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Now let T :=
⊕

ν∈X(h,n) Λν , and set T̃ to be the left Sh,n-module obtained from

the right module T by twisting with τ . Then T̃ is a full tilting module for Sh,n by

Lemma 3.96 and Theorem 3.100. So, by the previous paragraph, every composition

factor of the socle and the head of T̃ belongs to the head of Sh,ne. By Lemma 2.30,

we deduce that EndSh,n(T̃ ) ∼= EndeSh,ne(eT̃ ). Switching to right actions, and using

(i), we have now shown that Sn
∼= EndeSh,ne(Te). So, to prove (ii), it suffices to show

that EndFSn(Mn) ∼= EndeSh,ne(Te).

As a left Sn-module, Mn
∼= Te. Recall the map κ from Lemma 2.7 and the action

of Sh,n on T from Theorem 3.64. One now easily checks that the (Sn, eSh,ne)-bimodule

Te is isomorphic to the (Sn, FSn)-bimodule Mn, if we identify FSn with eSh,ne, so

that w 7→ κ(sgn(w)w) for each w ∈ Sn. In view of this, we have EndFSn(Mn) ∼=

EndeSh,ne(Te).

We conclude this section with imaginary analogues of well-known results of

Donkin and Mathiew-Papadopoulo. For λ ` n we denote by P (λ) the projective

cover of L(λ) in the category Sn-mod. Similarly, for µ ∈ X+(h, n), let Ph(µ) denote

the projective cover of Lh(µ) in the category Sh,n-mod. Using Morita equivalence, we

get:

P (λ) = βh,n(Ph(λ)) (λ ` n). (3.102)

Recall the generalized Kostka numbers kλ,µ from (2.11).

Theorem 3.103. For ν ∈ X(h, n) we have:

(i) Zν ∼=
⊕

λ`n P (λ)⊕kλ,ν ;

(ii) Λν ∼=
⊕

λ`n T (λtr)⊕kλ,ν .

Proof. (i) By [9, Lemma 3.4(i)], we have Zν(Vh) ∼=
⊕

λ`n Ph(λ)⊕kλ,ν . Now apply the

equivalence of categories βh,n, using (3.102) and Lemmas 3.88.
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(ii) By [37, Corollary 2.3], we have Λν(Vh) ∼=
⊕

λ`n Th(λ
tr)⊕kλ,ν . Now apply the

equivalence of categories βh,n, using (3.97) and Lemmas 3.88.

Throughout the chapter we assume that O = F unless otherwise stated, and

h ≥ n.

3.10. Characters of imaginary modules

Let h ≥ n, λ ∈ X+(h, n), and µ ∈ X(h, n). Recall the notion of a column strict

λ-tableau from Section 2.24. Denote

colλ,µ := ]{column strict λ-tableaux of type µ}. (3.104)

Recalling the Sh,n-module Λλtr(Vh) defined in (2.16), the following equality for its

weight multiplicities is clear:

dim e(µ)Λλtr(Vh) = colλ,µ.

The following combinatorial result is easy to check using the definition of colλ,µ:

Lemma 3.105. Let λ ∈ X+(h, n), µ ∈ X(h, n). If the last column of the partition λ

has height l, and λ̄ ∈ X+(h, n − l) is the partition obtained from λ by deleting this

last column, then

colλ,µ =
∑

1≤s1<···<sl≤h,
µ−εs1−···−εsl∈X(h,n)

colλ̄,µ−εs1−···−εsl .

Recall the classical Kostka numbers from (2.12).

Lemma 3.106. Let λ, µ ` n. Then colλ,µ =
∑

ν`nKνtr,µKν,λtr .

108



Proof. We have the well-known fact that over C the module Λλtr(Vh) decomposes as

Λλtr(Vh) =
⊕

ν`n ∆h(ν
tr)⊕Kν,λtr . Passing to the dimensions of the µ-weight spaces in

the last equality yields the lemma.

3.101. Gelfand-Graev words and shuffles

Recall from (3.17) that we have fixed an extremal word i = i1 . . . ie of Lδ. Recall

that i1 = 0 and ie = i. As in (3.54), we also write i in the form

i = jm1
1 . . . jmrr (with jk 6= jk+1 for all 1 ≤ k < r).

Note that always m1 = 1. We define the Gelfand-Graev words (of type i):

g(n) = g
(n)
i := in1 i

n
2 . . . i

n
e = jm1n

1 . . . jmrnr ∈ Inδ

for any n ∈ Z>0 and, more generally, for any composition µ ∈ X(h, n), set:

gµ := g(µ1) . . . g(µh) ∈ Inδ (3.107)

Lemma 3.108. Let n = l1 + · · · + la for some l1, . . . , la ∈ Z>0. Suppose that for each

1 ≤ c ≤ a, we are given a word j(c) of the imaginary tensor space Mlc . Assume

that a Gelfand-Graev word gµ of type i appears as a summand in the shuffle product

j(1) ◦ · · · ◦ j(a). Then j(1), . . . , j(a) are all Gefand-Graev words of type i.

Proof. Clearly we may assume that a = 2. Then we may write j(1) = k(1)l(1) and

j(2) = k(2)l(2), so that g(µ1) appears in the shuffle product k(1) ◦ k(2). Recall that

g(µ1) = jm1µ1
1 . . . jmrµ1r . It follows that k(1) = ja11 . . . jarr , k(2) = jb11 . . . jbrr with ak+bk =

mkµ1 for all k = 1, . . . , r. Note that a2 + b2 = m2µ1 = m2(a1 + b1). We claim that
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a2 = a1m2 and b2 = b1m2. Indeed, otherwise either a2 > a1m2 or b2 > b1m2. But

the first inequality contradicts the fact that j(1) = k(1)l(1) is a word of Ml1 , and the

second inequality contradicts the fact that j(2) = k(2)l(2) is a word of Ml2 . Continuing

this way, we see that ak = mka1 and bk = mkb1 for all k = 1, . . . , r. In other words,

k(1) = g(a1) and k(2) = g(b1). Now the Gelfand-Graev word g(µ2) . . . g(µh) appears in

the shuffle product l(1) ◦ l(2). Moreover, l(1) and l(2) are words of Ml1−a1 and Ml2−b1 ,

respectively. So we can apply induction on the length of µ.

For n ∈ Z≥0, we denote

c(n) :=
r∏

k=1

[mkn]!jk ∈ A ,

Note by Lemma 2.61 that dimq 1iLδ = c(1), since we have chosen i to be an extremal

word in Lδ. For µ ∈ X(h, n), denote

c(µ) := c(µ1) . . . c(µh) =
h∏

m=1

r∏
k=1

[mkµm]!jk ∈ A . (3.109)

In the simply laced types all mk = 1, and so c(µ) = ([µ1]!q . . . [µh]
!
q)
e.

Recall the numbers colλ,µ defined in (3.104).

Proposition 3.110. Let λ ∈ X+(h, n) and µ ∈ X(h, n). Set λtr = (l1, . . . , la). Then gµ

appears in the quantum shuffle product

il1 ◦ · · · ◦ ila (3.111)

with the coefficient c(µ)colλ,µ/c(1)n.
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Proof. We apply induction on a. If a = 1, then (3.111) is just the concatenation

il1 = g(1n), and the result is clear since c((1n)) = c(1)n and col(1n),(1n) = 1. For the

inductive step, let a > 1 and denote by λ̄ ∈ X+(h, n− la) the partition obtained from

λ by deleting its last column. By the inductive assumption, for any ν ∈ X(h, n− la)

we have that gν appears in the quantum shuffle product

S := il1 ◦ · · · ◦ ila−1

with coefficient c(ν)colλ̄,ν/c(1)n−la . Now (3.111) is S ◦ ila . By Lemma 3.108, if the

word j appearing in S has the property that some Gelfand-Graev word gµ appears

in the shuffle product j ◦ (i(b))la , then the word j must itself be Gelfand-Graev, i.e.

j = gν for some ν ∈ X(h, n − la). Moreover, note that gµ appears in gν ◦ ila if and

only if µ is of the form µ = ν + εs1 + · · · + εsla for some 1 ≤ s1 < · · · < sla ≤ h, in

which case gµ appears in gν ◦ ila with the coefficient c(µ)/c(ν)c(1)la . Now the result

follows in view of Lemma 3.105.

Recall Gelfand-Graev modules Γn ∼= Γnm1,j1 ◦ · · · ◦ Γnmr,jr from Section 3.51.

Lemma 3.112. Let M ∈ Rnδ-mod and µ ∈ X(n, h). Then

dimqMgµ = c(µ) dimq HomRnδ(Γµ1 ◦ · · · ◦ Γµh ,M).

Proof. Let

σ = (µ1m1αj1 , . . . , µ1mrαjr , . . . , µhm1αj1 , . . . , µhmrαjr).
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Consider the irreducible module

L := L(jµ1m1

1 )� · · ·� L(jµ1mrr )� · · ·� L(jµhm1

1 )� · · ·� L(jµhmrr )

over the parabolic Rσ. Note that dimqMgµ = c(µ)[ResσM : L]q. Since Γm,i is the

projective cover of L(im) by Proposition 3.53(i), [ResσM : L]q equals

dimq HomRσ(Γµ1m1,j1 � · · ·� Γµ1mr,jr � · · ·� Γµhm1,j1 � · · ·� Γµhmr,jr ,ResσM),

and the result follows by the adjunction of Ind and Res.

3.102. Gelfand-Graev fragment of the formal character of ∆(λ)

Recall Gelfand-Graev words gµ = gµi from Section 3.101, scalars c(n), c(µ) ∈ A

from (3.109), and Rnδ-modules L(λ),∆(λ), T (λ) from (3.77), (3.78), (3.97).

Lemma 3.113. We have L((1n)) = ∆((1n)) = T ((1n)) = Λn, the Gelfand Graev word

g(1n) = in appears in chq ∆((1n)) with multiplicity c((1n)) = c(1)n, and gµ with

µ ∈ X(n, n) \ {(1n)} does not appear in chq ∆((1n)).

Proof. It well-known for the usual Schur algebras that Tn((1n)) = ∆n((1n)) = Ln(1n).

By applying the Morita equivalence βn,n and Lemma 3.98, we now obtain L((1n)) =

∆((1n)) = T ((1n)) = Λ(n) = Λn, and the first two statements follow from Lemma 3.59.

For the last statement, let µ ∈ X(n, n) \ {(1n)}. We have to prove that

∆((1n))gµ = 0. In view of Theorem 3.94, we may assume that F has characteristic

zero. By Lemma 3.112, we need to prove that HomRnδ(Γµ1 ◦ · · · ◦ Γµn ,Λn) = 0. We

have by adjunction of Ind and Res and Lemma 3.48(ii):

HomRnδ(Γµ1 ◦ · · · ◦ Γµn ,Mn) ∼= HomRµ,δ(Γµ1 � · · ·� Γµn ,Mµ ⊗FSµ FSn).
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By Proposition 3.57(iii), the latter space is isomorphic as a right FSn-module to

sgnSµ ⊗FSµ FSn. This module is annihilated by the (right) multiplication by

xn. Therefore the right multiplication by xn annihilates the image of any non-zero

homomorphism from Γµ1 ◦· · ·◦Γµn to Mn. On the other hand, the right multiplication

by xn acts as an automorphism of Λn = Mnxn since F has characteristic zero. This

implies that HomRnδ(Γµ1 ◦ · · · ◦ Γµn ,Λn) = 0.

Recall that for a composition µ � n we denote by µ+ ` n the unique partition

obtained from µ by a permutation of its parts.

Corollary 3.114. Let λ ` n and µ � n. Then gµ appears in chq Λλtr with the coefficient

c(µ)colλ,µ. In particular, gµ appears in chq Λλtr with the same coefficient as gµ
+

.

Proof. Let λtr = (l1, . . . , la). Then in view of Lemma 3.113, we have

Λλtr = Λl1 ◦ · · · ◦ Λla = ∆(1l1) ◦ · · · ◦∆(1la).

So if gµ appears in chq Λλtr , then gµ appears in the shuffle product j(1) ◦ · · · ◦ j(a),

where j(c) is a word of ∆(1lc) for all c = 1, . . . , a. By Lemma 3.108, each j(c) is a

Gelfand-Graev word (of type i). By Lemma 3.113, we have j(c) = g(1lc ) = ilc for

c = 1, . . . , a. Now the result follows from Proposition 3.110. The second statement

comes by noticing that colλ,µ = colλ,µ+ and c(µ) = c(µ+).

Recall the Kostka numbers Kλ,µ from (2.12). The matrix K := (Kλ,µ)λ,µ`n is

unitriangular, in particular it is invertible. Let

N = (Nλ,µ)λ,µ`n := K−1

be the inverse matrix.
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Lemma 3.115. Let λ ` n. We have:

(i) chq Λλtr =
∑
µ`n

Kµtr,λtr chq ∆(µ) = chq ∆(λ) +
∑
µ<λ

Kµtr,λtr chq ∆(µ);

(ii) chq ∆(λ) =
∑
µ`n

Nµtr,λtr chq Λµtr = chq Λλtr +
∑
µ<λ

Nµtr,λtr chq Λµtr .

Proof. By Lemma 3.113 and Theorem 3.94, the characters of Λµ and ∆(µ) are

independent of the ground field for all µ ` n. So we may assume that F = C,

in which case ∆(µ) = ∇(µ) = T (µ) = L(µ) for all µ ` n. Now (i) follows from

Theorem 3.103(ii), and (ii) follows from (i).

We can now determine the multiplicity of any Gelfand-Graev word in the

standard module ∆(λ). We refer to this partial character information as the Gelfand-

Graev fragment of the character.

Theorem 3.116. Let λ ` n and µ ` n, and ν � n. Then:

(i) dimq ∆(λ)gν = dimq ∆(λ)gν+ ;

(ii) dimq ∆(λ)gµ = c(µ)Kλ,µ.

Proof. (i) By Lemma 3.115(ii), we have

dimq ∆(λ)gν =
∑
µ`n

Nµtr,λtr dimq (Λµtr)gν .

So it suffices to prove that dimq (Λµtr)gν = dimq (Λµtr)gν+ for all µ ` n. But this is

contained in Corollary 3.114.
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(ii) Using Lemma 3.115(ii), Corollary 3.114 and Lemma 3.106, we get:

dimq ∆(λ)gµ =
∑
ν`n

Nνtr,λtr dimq (Λνtr)gµ

=
∑
ν`n

Nνtr,λtr c(µ)colν,µ

=
∑
ν,κ`n

Nνtr,λtr c(µ)Kκtr,µKκ,νtr

=
∑
κ`n

c(µ)Kκtr,µδκ,λtr = c(µ)Kλ,µ,

where we have used that N = K−1.

We can extend the above result to the Gelfand-Graev fragments of characters of

other imaginary modules:

Corollary 3.117. Let λ ` n and ν � n, and suppose that h ≥ n, W ∈ Sh,n-mod, and

M = βh,n(W ) ∈ Sn-mod. Then

dimqMgν = c(ν) dim e(ν)W.

In particular, dimq L(λ)gν = c(ν)kλ,ν .

Proof. Note that {chq ∆h(µ) | µ ` n} is a linear basis in the character ring of modules

in Sh,n-mod. So we can write chW =
∑

µ`n nµ ch ∆h(µ) for some nµ ∈ Z. Applying

the Morita-equivalence βh,n, we then also have

chqM =
∑
µ`n

nµchq ∆(µ).
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So, applying Theorem 3.116,

dimqMgν =
∑
µ`n

nµdimq ∆(µ)gν =
∑
µ`n

nµc(ν) dim e(ν)∆h(µ)

= c(ν) dim e(ν)W,

as required.

3.103. Imaginary Jacobi-Trudy formula

The formal characters of standard modules ∆(λ) in terms of the characters of

the modules ∆(1m) can in principle be found from Lemma 3.115, since the modules

Λν are just ∆(1n1) ◦ · · · ◦∆(1na) if ν = (n1, . . . , na). A standard way of dealing with

the inverse matrix N = K−1 is through Jacobi-Trudy formulas.

Let λ = (l1, . . . , la) ` n. Note by Corollary 3.84 that

chq ∆(1k) ◦ chq ∆(1l) = chq ∆(1l) ◦ chq ∆(1k) (k, l ∈ Z>0).

So we can use the quantum shuffle product to make sense of the following determinant

as an element of A Inδ:

D(λ) := det
(
chq ∆(1lr−r+s)

)
1≤r,s≤a ∈ A Inδ.

116



where chq ∆(10) is interpreted as (a multiplicative) identity, and chq ∆(1m) is

interpreted as (a multiplicative) 0 if m < 0. For example, if λ = (3, 1, 1), we get

D((3, 1, 1)) = det


chq ∆(13) chq ∆(14) chq ∆(15)

1 chq ∆(1) chq ∆(12)

0 1 chq ∆(1)


=chq ∆(13) ◦ chq ∆(1) ◦ chq ∆(1) + chq ∆(15)

− chq ∆(14) ◦ chq ∆(1)− chq ∆(13) ◦ chq ∆(12).

Remark 3.118. The characters of the modules ∆(1m) are well-understood in many

situations. Let i be the color of the tensor space we are working with, and i =

(i1, . . . , ie) so that ie = i. Then im is a word of ∆(1m) = L(1m), see Lemma 3.113.

Oftentimes the word im is homogeneous, and so ∆(1m) is the homogeneous irreducible

module associated to the connected component of im in the word graph. For example

in Lie type C = A
(1)
l this is always the case.

Theorem 3.119. (Imaginary Jacobi-Trudy Formula) Let λ ` n. Then chq ∆(λ) =

D(λtr).

Proof. Let λtr = (l1, . . . , la) and take h ≥ n. It follows from the classical Jacobi-Trudy

formula that in the Grothendieck group of Sh,n-mod we have

[∆h(λ)] = det([Λ(lr−r+s)(Vh)])1≤r,s≤a
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with determinant defined using multiplication given by tensor product. Applying the

equivalence of categories βh,n, Theorem 3.83, and Lemmas 3.88, 3.113 we get

[∆(λ)] = det([Λlr−r+s])1≤r,s≤a = det([∆(1lr−r+s)])1≤r,s≤a

with determinant defined using multiplication given by induction product ‘◦’. Passing

to the formal characters, we obtain the required formula.
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CHAPTER IV

STRATIFYING KLR ALGEBRAS OF SYMMETRIC AFFINE LIE TYPE

The work in this chapter has appeared in the articles [30, 28], which have been

submitted for publication. It is co-authored with Alexander Kleshchev. We developed

the results in the co-authored material jointly over many meetings, and, by the nature

of collaborative mathematical work, it is difficult to attribute exact portions of the

co-authored material to either Kleshchev or myself individually.

4.1. Stratification

Throughout this chapter, unless otherwise stated, k is an arbitrary field of

characteristic p ≥ 0. In this section, we mainly follow [33]. All notions we consider,

such as algebras, modules, ideals, etc., are assumed to be (Z-)graded.

4.11. Graded algebras

We recall some basics of graded representation theory, and introduce Laurentian

algebras in this section. If H is a Noetherian (graded) k-algebra, we denote by

H-mod the category of finitely generated graded left H-modules. The morphisms in

this category are all homogeneous degree zero H-homomorphisms, which we denote

homH(−,−). For V ∈ H-mod, let qdV denote its grading shift by d, so if Vm is the

degree m component of V , then (qdV )m = Vm−d. For a polynomial a =
∑

d adq
d ∈

Z[q, q−1] with non-negative coefficients, we set aV :=
⊕

d(q
dV )⊕ad .
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For U, V ∈ H-mod, we set

HomH(U, V ) :=
⊕
d∈Z

HomH(U, V )d,

where HomH(U, V )d := homH(qdU, V ). We define extmH(U, V ) and ExtmH(U, V )

similarly. Since U is finitely generated, HomH(U, V ) can be identified with the set

of all H-module homomorphisms ignoring the gradings. A similar result holds for

ExtmH(U, V ), since U has a resolution by finitely generated projective modules. Given

V,W ∈ H-mod, we write V ' W to indicate that V ∼= qnW for some n ∈ Z.

A vector space V is called Laurentian if its graded components Vm are finite

dimensional and Vm = 0 for m� 0. Then the graded dimension dimq V is a Laurent

series. An algebra is called Laurentian if it is so as a vector space. In this case all

irreducible H-modules are finite dimensional, there are only finitely many irreducible

H-modules up to isomorphism and degree shift, and every finitely generated H-

module has a projective cover, see [25, Lemma 2.2].

Let H be a Laurentian algebra. We fix a complete irredundant set {L(π) | π ∈ Π}

of irreducible H-modules up to isomorphism and degree shift. By above, the set Π is

finite. For each π ∈ Π, we also fix a projective cover P (π) of L(π). Let

M(π) := radP (π) (π ∈ Π), (4.1)

so that P (π)/M(π) ∼= L(π).

From now on we assume in addition that H is Schurian, i.e. End(L(π)) ∼= k for

all π. For any V ∈ H-mod and π ∈ Π, the composition multiplicity of L(π) in V is

defined as [V : L(π)]q := dimq Hom(P (π), V ) ∈ Z((q)).
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4.12. Standard objects and stratification

We continue with the notation of the previous subsection. Let Σ be a subset

of Π. An object X of the category C := H-mod belongs to Σ if [X : L(σ)]q 6= 0

implies σ ∈ Σ. Let C(Σ) be the full subcategory of C consisting of all objects which

belong to Σ. The natural inclusion ιΣ : C(Σ) → C has left adjoint QΣ : C → C(Σ)

with QΣ(V ) = V/OΣ(V ), where OΣ(V ) is the unique minimal submodule among

submodules U ⊆ V such that V/U belongs to Σ. Let also OΣ(V ) be the unique

maximal subobject of V which belongs to Σ.

Applying OΣ to the left regular module H yields a (two-sided) ideal OΣ(H)EH.

By [33, Lemma 3.12], for V ∈ H-mod, we have OΣ(H)V = OΣ(V ). Set H(Σ) :=

H/OΣ(H). Then we can regard QΣ(V ) as an H(Σ)-module and identify C(Σ) and

H(Σ)-mod. In this way, QΣ becomes a functor QΣ : H-mod→ H(Σ)-mod .

We now suppose that there is a fixed surjection

% : Π→ Ξ (4.2)

for some set Ξ endowed with a partial order ≤. We then have a partial preorder ≤

on Π with π ≤ σ if and only if %(π) ≤ %(σ). For π ∈ Π and ξ ∈ Ξ we set

Π<π := {σ ∈ Π | σ < π}, Π≤π := {σ ∈ Π | σ ≤ π},

Π<ξ := {σ ∈ Π | %(σ) < ξ}, Π≤ξ := {σ ∈ Π | %(σ) ≤ ξ},

and write O≤π := OΠ≤π , O<ξ := OΠ<ξ , Q<π := QΠ<π , H≤ξ := H(Π≤ξ), etc.

121



Recalling (4.1), we define for all π ∈ Π:

K(π) := O≤π(P (π)) = O≤π(M(π)), K̄(π) := O<π(M(π)),

and

∆(π) := Q≤π(P (π)) = P (π)/K(π), ∆̄(π) := P (π)/K̄(π). (4.3)

Note that K̄(π) ⊇ K(π), so ∆̄(π) is naturally a quotient of ∆(π). Moreover,

head ∆(π) ∼= head ∆̄(π) ∼= L(π). We call the modules ∆(π) standard and the modules

∆̄(π) proper standard. By [33, Lemma 3.10], ∆(π) is the projective cover of L(π) in

the category C≤π. For V ∈ C, a finite ∆-filtration (or a standard filtration) is a

filtration V = V0 ⊇ V1 ⊇ · · · ⊇ VN = 0 such that each for 0 ≤ n < N we have

Vn/Vn+1 ' ∆(π) for some π ∈ Π.

Let ξ ∈ Ξ. Then C<ξ is a Serre subcategory of C≤ξ, and the quotient category

Cξ := C≤ξ/C<ξ, (4.4)

is called the ξ-stratum. Up to isomorphism and degree shift, {L(π) | %(π) = ξ}

is a complete family of simple objects in Cξ, and Pξ(π) := ∆(π)/O<ξ(∆(π)) is the

projective cover of L(π) in Cξ. Finally, setting

∆(ξ) :=
⊕

π∈%−1(ξ)

∆(π) and Bξ := EndH(∆(ξ))op, (4.5)

by [33, Corollary 4.9], the stratum category Cξ is graded equivalent to Bξ-mod.
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We have a natural exact projection functor Rξ : C≤ξ → Cξ. If we identify Cξ

and Bξ-mod, the functor Rξ becomes

Rξ = HomH≤ξ(∆(ξ),−) : H≤ξ-mod→ Bξ-mod .

Its left adjoint

Eξ = ∆ξ ⊗Bξ − : Bξ-mod→ H≤ξ-mod (4.6)

is called a weak standardization functor. By [33, Lemma 4.11], if %(π) = ξ then

∆(π) ∼= Eξ(Pξ(π)) and ∆̄(π) ∼= Eξ(L(π)). A weak standardization functor is called a

standardization functor if it is exact. This is equivalent to the requirement that ∆(ξ)

is flat as a Bξ-module.

Definition 4.7. The algebra H as above is called properly stratified (with respect

to the fixed preorder ≤) if the following properties hold:

(Filt) For every π ∈ Π, the object K(π) has a finite ∆-filtration with quotients of the

form qd∆(σ) for σ > π.

(Flat) For every ξ ∈ Ξ, the right Bξ-module ∆(ξ) is finitely generated and flat.

4.13. Convex preorders

Recall the notion of convex preorders on the positive roots Φ+. We denote by

Ψ := Φre
+ t {δ} the set of indivisible positive roots. In this section we prove some

needed results on convex preorders.

Lemma 4.8. [39, Lemma 3.7] There is w ∈ W ′ such that p(Φ�δ) = wΦ′+.
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Let p(Φ�δ) = wΦ′+ according to the lemma. For i ∈ I ′, we denote

γi := wαi and γ±i := ±̂γi.

Then γ±i ∈ Φre
+, γ+

i + γ−i = δ, and γ+
i � δ � γ−i . Note that ∆�δ := {γ1, . . . , γl} is a

base in Φ′.

Lemma 4.9. [39, Example 3.5] Let ∆ be any base in Φ′ and α ∈ ∆. There exists a

convex preorder � on Φ+ with the following three properties:

(i) ∆�δ = ∆;

(ii) α̂ � α̂ + δ � α̂ + 2δ � · · · � δ · · · � −̂α + 2δ � −̂α + δ � −̂α;

(iii) Every root in Φre
+, which is not of the form ±̂α+ nδ, is either greater than α̂ or

less than −̂α.

In this subsection we write ≡ for ≡ (mod Zδ) .

Lemma 4.10. Let i ∈ I ′ and γ±i = η± + θ± for some η±, θ± ∈ Q+. Suppose that

η± is a sum of positive roots � γ±i , and θ± is a sum of positive roots � γ±i . Then

η− + η+ 6= γ−i unless η+ = θ− = 0.

Proof. By assumption, θ+ is a sum of positive roots� γ+
i . Since γ+

i � δ, these positive

roots are in Φ�δ. So we can write θ+ ≡
∑l

m=1 cmγm with coefficients cm ∈ Z≥0.

Furthermore, η− is a sum of positive roots less than γ−i . As γ−i ≺ δ, these positive

roots are in Φ≺δ. So we can write η− ≡ −
∑l

m=1 dmγm with coefficients dm ∈ Z≥0.

Assume that η− + η+ = γ−i , in which case θ− = η+. As {δ, γ1, . . . , γl} are linearly

independent, we deduce that all dm and cm with m 6= i are zero and di + ci = 2.

If di = 1 then θ− = η+ ≡ 0, which implies θ− = η+ = 0 by height considerations.

If di = 0, we have η− ≡ 0 so η− = 0 by heights, which implies θ− = η+ = γ−i and
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θ+ = γ+
i − γ−i ≡ 2γi. Since ht(θ+) < ht(γ+

i ), we deduce that θ+ is a sum of positive

roots which are strictly greater than γ+
i . As (θ+, γ

+
i ) = 4, any presentation of θ+ as

a sum of positive roots which are strictly greater than γ+
i must have at least four

summands. Each of these summands is a non-negative linear combination of γm’s.

This contradicts θ+ ≡ 2γi. The case di = 2 is similar to the case di = 0.

Lemma 4.11. Let n ∈ Z>0 and δ = θ−r + θ+
r for r = 1, . . . , n, with each θ−r being

a sum of positive roots � δ and each θ+
r being a sum of positive roots � δ. If∑n

r=1 θ
±
r = nγ±i , then θ±r = γ±i for all r = 1, . . . n.

Proof. For 1 ≤ r ≤ n we have θ±r ≡ ±
∑l

j=1 c
±
r,jγ

+
j for some c±r,i ∈ Z≥0. So

±nγi ≡ ±
∑n

r=1

∑l
j=1 c

±
r,jγ

+
j . Now linear independence of the γ±j modulo Zδ and

considerations of height imply c±r,j = δi,j for all r.

4.14. Kostant partitions and root partitions

In this subsection we recall the definition of Kostant partitions and root

partitions, modifying our notation slightly to emphasize the connection to

stratification. Let θ ∈ Q+. A Kostant partition of θ is a tuple ξ = (xβ)β∈Ψ of non-

negative integers such that
∑

β∈Ψ xββ = θ. If {β1 � · · · � βr} = {β ∈ Ψ | xβ 6= 0},

then, denoting xu := xβu , we also write ξ in the form ξ = (βx11 , . . . , β
xr
r ). We denote by

Ξ(θ) the set of all Kostant partitions of θ. Denoting the left (resp. right) lexicographic

order on Ξ(θ) by ≤l (resp. ≤r), we will always use the bilexicographic partial order ≤

on Ξ(θ), i.e. ξ ≤ ζ if and only if ξ ≤l ζ and ξ ≥r ζ.

Let α ∈ Ψ. By convexity, the Kostant partition (α) is the unique minimal

element in Ξ(α). A minimal pair for α is a minimal element in Ξ(α) \ {(α)}. A

minimal pair for α exists, provided α is not a simple root, which we always assume

when speaking of minimal pairs for α. Using the property (Con2) from [24, §3.1], it
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is easy to see that a minimal pair is always a Kostant partition of the form (β, γ) for

β, γ ∈ Ψ with β > γ. A minimal pair (β, γ) is called real if both β and γ are real.

Lemma 4.12. Let α ∈ Φre
+. If α has no real minimal pair, then α = γ±i + nδ for some

i ∈ I ′ and n ∈ Z>0, in which case (γ+
i + (n− 1)δ, δ) is a minimal pair for γ+

i +nδ and

(δ, γ−i + (n− 1)δ) is a minimal pair for γ−i + nδ.

Proof. The first half is [39, Lemma 12.4]. For the second half, if (γ+
i + (n− 1)δ, δ) is

not a minimal pair for γ+
i +nδ, then we would be able to write γ+

i +nδ = β+ γ with

β, γ ∈ Φ�δ. But modulo δ both β and γ are positive sums of γj’s, which leads to a

contradiction. The argument for γ−i + nδ is similar.

If µ is a usual partition of n, we write µ ` n and n = |µ|. An l-multipartition of

n is a tuple µ = (µ(1), . . . , µ(l)) of partitions such that |µ| := |µ(1)| + · · · + |µ(l)| = n.

The set of the all l-multipartitions of n is denoted by Pn, and P := tn≥0Pn.

A root partition of θ is a pair (ξ, µ), where ξ = (xβ)β∈Ψ ∈ Ξ(θ) and µ ∈ Pxδ .

We write Π(θ) for the set of root partitions of θ. There is a natural surjection

ρ : Π(θ) → Ξ(θ), (ξ, µ) 7→ ξ. The bilexicographic partial order ≤ on Ξ(θ) induces a

partial preorder ≤ on Π(θ), i.e. π ≤ σ if and only if ρ(π) ≤ ρ(σ).

Let (ξ, µ) ∈ Π(θ) with ξ = (xβ)β∈Ψ. As all but finitely many integers xβ are zero,

there is a finite subset β1 � · · · � βs � δ � β−t � · · · � β−1 of Ψ such that xβ = 0

for β ∈ Ψ outside of this subset. Then, denoting xu := xβu , we can write any root

partition of θ in the form

(ξ, µ) = (βx11 , . . . , β
xs
s , µ, β

x−t
−t , . . . , β

x−1

−1 ), (4.13)

where all xu ∈ Z≥0, µ ∈P, and |µ|δ +
∑
xuβu = θ.
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4.15. Reduction modulo p

The KLR algebra Rθ is defined over an arbitrary commutative unital ring k, and

if we need to to emphasize which k we are working with, we will use the notation Rθ,k.

Likewise in the notation for modules. Let p be a fixed prime number, and F := Z/pZ

be the prime field of characteristic p. We will use the p-modular system (F,O, K)

with F = Fp, O = Zp and K = Qp.

Let k = K or F , and Vk be an Rθ,k-module. An Rθ,O-module VO is called

an O-form of Vk if every graded component of VO is free of finite rank as an O-

module and, identifying Rθ,O⊗O k with Rθ,k, we have VO⊗O k ∼= Vk as Rθ,k-modules.

Every VK ∈ Rθ,K-mod has an O-form: pick Rθ,K-generators v1, . . . , vr and define

VO := Rθ,O · v1 + · · · + Rθ,O · v1. We always can and will pick the generators which

are homogeneous weight vectors. Let VK ∈ Rθ,K-mod and VO be an O-form of VK .

The Rθ,F -module VO ⊗O F is called a reduction modulo p of VK . Reduction modulo

p in general depends on the choice of VO. However, as explained in [22, Lemma 4.3],

we have a generalization of the standard result for finite groups:

Lemma 4.14. If VK ∈ Rθ,K-mod and LF is an irreducible Rθ,F -module, then the

multiplicity [VO ⊗O F : LF ]q is independent of the choice of an O-form VO of VK .

Reduction modulo p commutes with induction and restriction [22, Lemma 4.5]:

Lemma 4.15. Let θ = (θ1, . . . , θm) ∈ Qm
+ , θ = θ1 + · · · + θm, VO ∈ Rθ;O-mod, and

WO ∈ Rθ,O-mod. Then for any O-algebra k, there are natural isomorphisms of Rθ,k-

modules

(IndθVO)⊗O k ∼= Indθ(VO ⊗O k)

and of Rθ;k-modules

(ResθWO)⊗O k ∼= Resθ(WO ⊗O k).
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In particular, reduction modulo p preserves formal characters. This fact together

with linear independence of formal characters of irreducible modules has the following

consequence:

Lemma 4.16. Let V1, . . . , Vr be Rθ,K-modules such that chq V1, . . . , chq Vr are linearly

independent. Let L1, . . . , Ls be a complete set of composition factors of reductions

modulo p of the modules V1, . . . , Vr. Then s ≥ r.

4.2. Semicuspidal modules

The main goal of this section is to generalize some results of Chapter III and [39].

In Chapter III we assumed that the convex order was balanced, while [39] assumes

that p = 0. We want to avoid both of these assumptions.

In this section we often work with a composition ν = (n1, . . . , na) of n,

the corresponding parabolic subalgebra Rν,δ := Rn1δ,...,naδ, and the corresponding

induction and restriction functors Inν := Indn1δ,...,naδ and ∗Inν := Resn1δ,...,naδ.

4.21. Semicuspidal modules

We fix a convex preorder � on Φ+, an indivisible positive root α, and n ∈ Z>0.

Following [39] (see also [32, 38, 24, 44]) an Rnα-module V is called semicuspidal if

θ, η ∈ Q+, θ + η = nα, and Resθ,ηV 6= 0 imply that θ is a sum of positive roots � α

and η is a sum of positive roots � α.

Weights i ∈ Inα, which appear in some semicuspidal Rnα-modules, are called

semicuspidal weights. We denote by Inαnsc the set of non-semicuspidal weights. Let

1nsc :=
∑
i∈Inαnsc

1i.
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Following [39], define the semicuspidal algebra

Cnα = Cnα,k := Rnα/Rnα1nscRnα. (4.17)

Then the category of finitely generated semicuspidal Rnα-modules is equivalent to the

category Cnα-mod.

Theorem 4.18. Let α ∈ Φre
+ and n ∈ Z>0. There is a unique up to isomorphism

irreducible ~-self-dual semicuspidal Rα-module. We denote it L(α). Moreover,

L(αn) := qn(n−1)/2L(α)◦n is the unique up to isomorphism irreducible ~-self-dual

semicuspidal Rnα-module.

Proof. Follows from the main results of [24], see also [44].

Lemma 4.19. Let α ∈ Φre
+ and n ∈ Z>0. Then L(αn)F is a reduction modulo p of

L(αn)K .

Proof. See [24, Proposition 4.9] and [22, Lemma 4.6].

In the rest of this section we work with the imaginary case trying to understand

the irreducible semicuspidal Rnδ-modules.

4.22. Minuscule imaginary modules

The proof of the following lemma in [39, Lemma 12.3] seems to need the

assumption p = 0, but the same result will later follow in general from Lemmas 4.19

and 4.21(iii).

Lemma 4.20. [39, Lemma 12.3] Assume that p = 0. Let α ∈ Ψ, L ∈ Rα-mod be

a semicuspidal module, and (β, γ) be a minimal pair for α. Then all composition
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factors of Resγ,βL are of the form Lγ � Lβ, where Lγ is an irreducible semicuspidal

Rγ-module and Lβ is an irreducible semicuspidal Rβ-module.

By [24], there are exactly |P1| = l isomorphism classes of self-dual irreducible

semicuspidal Rδ-modules. These modules can be labeled canonically by the elements

of I ′, see [24] for balanced convex orders, and [39, 44] in general. We now describe

the approach of [39]. One needs to be careful to make sure that the assumption p = 0

made in [39] can be avoided. Recall the base ∆�δ = {γ1, . . . , γl} in Φ′+ from §4.13

and the roots γ±i . In characteristic zero, parts (i) and (ii) of the following result are

contained in [39], and this will be used in the proof.

Lemma 4.21. Let i ∈ I ′. Then the module L(γ−i ) ◦ L(γ+
i ) has a simple ~-self-dual

head. Moreover, denoting this simple module by Lδ,i, we have the following:

(i) The Rδ-module Lδ,i is cuspdial, and {Lδ,i | i ∈ I ′} is a complete and irredundant

system of irreducible ~-self-dual semicuspidal Rδ-modules.

(ii) Resγ−i ,γ
+
i
Lδ,i ∼= L(γ−i )� L(γ+

i ), and Resγ−j ,γ
+
j
Lδ,i = 0 if i 6= j.

(iii) Reduction modulo p of Lδ,i,K is Lδ,i,F .

Proof. By Mackey’s Theorem and Lemma 4.10, we have Resγ−i ,γ
+
i

(L(γ−i ) ◦ L(γ+
i )) ∼=

L(γ−i )�L(γ+
i ). If L is a simple constituent of the head, then L(γ−i )�L(γ+

i ) appears

in the socle of Resγ−i ,γ
+
i
L. Since Res is an exact functor and the multiplicity of the

irreducible ~-self-dual module L(γ−i ) � L(γ+
i ) in Resγ−i ,γ

+
i

(L(γ−i ) ◦ L(γ+
i )) is 1, the

head is simple and self-dual. The first part of (ii) also follows.

Now, we explain that in characteristic zero, (i) and (ii) are contained in [39].

Indeed, (i) is [39, Theorem 17.3]. To see the second part of (ii), in view of [39,

Theorem 13.1] and Lemma 4.9, we may assume that (γ+
j , γ

−
j ) is a minimal pair for δ,

in which case by Lemma 4.20, all composition factors of Resγ−j ,γ
+
j
Lδ,i are of the form
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L(γ−j ) � L(γ+
j ), in particular, L(γ−j ) � L(γ+

j ) appears in the socle of Resγ−j ,γ
+
j
Lδ,i,

whence Lδ,i is a quotient of L(γ−j ) ◦ L(γ+
j ), i.e. Lδ,i ∼= Lδ,j, giving a contradiction.

Pick R-forms L(γ±i )R of L(γ±i )K . By Lemmas 4.15 and 4.19, we have that

L(γ−i )R ◦ L(γ+
i )R is an R-form of L(γ−i )k ◦ L(γ+

i )k for k = K or F . We have

a surjection ϕ : L(γ−i )K ◦ L(γ+
i )K → Lδ,i,K . Let Lδ,i,R := ϕ(L(γ−i )R ◦ L(γ+

i )R).

Note that Lδ,i,R is an R-form of Lδ,i,K . On the other hand, we have a surjection

L(γ−i )F ◦ L(γ+
i )F → Lδ,i,R ⊗R F . This implies that Li,δ,F is a quotient of Lδ,i,R ⊗R F .

As Lδ,i,K is semicuspidal by [39], it now follows that so is Lδ,i,F .

Let j 6= i. By the characteristic zero result, we have Resγ−j ,γ
+
j
Lδ,i,K = 0. It now

follows that Resγ−j ,γ
+
j
Lδ,i,F = 0, too, which completes the proof of (ii). By (ii), we

conclude that Lδ,i,F 6∼= Lδ,j,F . By counting, we complete the proof of (i).

To prove (iii), note by characters that all composition factors of Lδ,i,R ⊗R F are

semicuspidal. Now we can conclude that Lδ,i,R ⊗R F ∼= Lδ,i,F using (ii).

Following the terminology of [24], we call the modules Lδ,i minuscule modules.

4.23. Imaginary Schur-Weyl duality

In this section we recall some results from the Chapter III, and generalize these

results to the case of an arbitrary convex order in this symmetric Lie type situation.

Fix i ∈ I ′. Recall the minuscule module Lδ,i from §4.22. Consider the Rnδ-

module Mn,i := L◦nδ,i and the algebra Sn,i := Rnδ/AnnRnδ(Mn,i). Since i is fixed, we

often suppress it from our notation and write Lδ = Lδ,i, Mn = Mn,i, Sn = Sn,i, etc.

We have the following result, the proof of which given in Chapter III does not

use the fact that the convex order is balanced. We record it again here for reader

convenience.

Theorem 4.22. Let i ∈ I ′ and n ∈ Z>0. Then:
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(i) EndRnδ(Mn)op ∼= endRnδ(Mn)op ∼= kSn.

(ii) Mn is a projective Sn-module, and M~
n
∼= Mn.

(iii) Assume that p > n or p = 0. Then Sn is semisimple, Mn is a projective

generator over Sn, and Sn is Morita equivalent to kSn.

By Theorem 4.22, if p = 0, the number of composition factors of Mn is equal

to the number of partitions of n. Now using reduction modulo p argument involving

Lemmas 4.21(iii) and 4.16, we deduce that the same is true in general:

Lemma 4.23. The number of composition factors of Mn, up to isomorphism and

degree shift, is equal to the number of partitions of n.

Recall the roots γ+
i and γ−i from §4.13. As i is fixed we will denote γ± := γ±i .

Lemma 4.24. We have Resnγ−,nγ+Mn
∼= L(γn−)� L(γn+).

Proof. Follows using Mackey’s Theorem and Lemmas 4.11, 4.21(ii).

For α ∈ Φre
+, we denote by P (αn) the projective cover of the irreducible

semicuspidal module L(αn). We will use a special projective module, which we we

refer to as a Gelfand-Graev module. Note that its definition is different from the one

in Chapter III even for balanced orders:

Γn = Γn,i := P (γn−) ◦ P (γn+).

Lemma 4.25. We have dimq HomRnδ(Γn,Mn) = 1.

Proof. We have HomRnδ(Γn,Mn) ∼= HomRnγ−,nγ+
(P (γn−) � P (γn+),Resnγ−,nγ+Mn). So

the result follows from Lemma 4.24.
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Denote by 1Sn the trivial (right) kSn-module. Note that HomRnδ(Γn,Mn)

is naturally a right kSn-module, since Sn acts on Mn on the right in view of

Theorem 4.22(i). Since this module is 1-dimensional by Lemma 4.25, it is either

the trivial or the sign module. If it happens to be the sign module, we redefine the

right action of Sn on Mn by tensoring it with the sign representation. So we may

assume without loss of generality that

HomRnδ(Γn,Mn) ∼= 1Sn . (4.26)

For a composition ν = (n1, . . . , nh) ∈ Λ(h, n), we define the Rν,δ-modules

Mν := Mn1 � · · ·�Mnh , Γν := Γn1 � · · ·� Γnh , and Γν := Inν Γν .

We have the parabolic analogue Sν of Sn defined as

Sν := Rν,δ/AnnRν,δ(Mν) ∼= Sn1 ⊗ · · · ⊗Snh .

The functors ∗Inν and Inν induce the functors between Sn-mod and Sν-mod.

Lemma 4.27. We have ∗Inν Γn ∼= Γν ⊕ X, where X is a projective Rν,δ-module with

HomRν,δ(X,Mν) = 0.

Proof. Mackey’s Theorem yields a filtration of

∗Inν Γn = Resn1δ,...,nhδIndnγ−,nγ+P (γni )� P (γn+)

with projective subquotients, one of which is Γν (ignoring grading shifts for now). So

we get a decomposition ∗Inν Γn ∼= qdΓν⊕X where X is a projective module. It remains
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to notice that dimq HomRν,δ(
∗Inν Γn,Mν) = 1, which is done using adjointness of Res

and Coind.

4.24. Divided powers

We recall some results of Chapter III and extend to the arbitrary convex order

case. Set xn :=
∑

x∈Sn x. Set

Xn := Mnxn and Zn := {v ∈Mn | vx = v for all x ∈ Sn}.

Fixing a non-zero Rnδ-homomorphism fn : Γn → Mn, we also set Yn := im fn ⊆ Mn,

cf. Lemma 4.25. Eventually we will prove that Yn = Zn. For now, it is only clear

from (4.26) that Yn ⊆ Zn. From Chapter III, we have

Lemma 4.28.

(i) Xn is an irreducible Rnδ-module.

(ii) soc Zn = Xn, and no composition factor of Zn/Xn is isomorphic to a submodule

of Mn.

From now on fix h ≥ n. For L = X,Z, Y and a composition ν = (n1, . . . , nh) ∈

Λ(h, n), we set Lν := Ln1 � · · · � Lnh , Lν := Inν Lν , and L :=
⊕

ν∈Λ(h,n) L
ν . For the

proof of the following results see §3.5.

Lemma 4.29. For L = X,Z, Y , we have ∗Inν Ln
∼= Lν .

Theorem 4.30. For L = X or Z, there is an algebra isomorphism EndRnδ(L)op ∼=

S(h, n), where S(h, n) is the classical Schur algebra.
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Lemma 4.31. Let λ, µ ∈ Λ(h, n). Then

dimq HomRnδ(Y
λ, Y µ) = dimq HomRnδ(Γ

λ, Y µ)

= dimq HomRnδ(Γ
λ, Zµ) = |Sλ\Sn/Sµ|.

We give a slightly simpler proof of the following result compared to Theorem

3.74:

Theorem 4.32. We have:

(i) Z =
⊕

ν∈Λ(h,n) Z
ν is a projective generator for Sn.

(ii) Zn = Yn.

Proof. (i) As Yν is a non-zero submodule of Zν , it contains the simple socle Xν of Zν ,

see Lemma 4.28. Applying Inν to the embeddings Xν ⊆ Yν ⊆ Zν , we get embeddings

Xν ⊆ Y ν ⊆ Zν . By Lemma 4.31,

dimq HomRnδ(Y, Y ) = dimq HomRnδ(Γ, Y ) = dimq HomRnδ(Γ, Z)

=
∑

λ,µ∈Λ(h,n)

|Sλ\Sn/Sµ| = dimS(h, n),

the last equality for the dimension of the classical Schur algebra being well-known.

In particular, this implies that Y is projective as an Rnδ/AnnRnδ(Y )-module by

the Schubert’s criterion, see e.g. [5, Lemma 4.3.1]. But Mn = Y (1n) is a summand of

Y , so AnnRnδ(Y ) = AnnRnδ(Mn), and Y is a projective Sn-module. By the classical

theory [12], the number of isomorphism classes of irreducible S(h, n)-modules equals

to the number of partitions of n. By Fittings’ Lemma, the number of isomorphism

classes of indecomposable summands of Y equals the number of isomorphism classes
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of irreducible modules over EndRnδ(Y ) = S(h, n). We now deduce from Lemma 4.23

that Y is a projective generator for Sn.

(ii) By (i), every irreducible Sn-modules appears in the head of the projective

Rnδ-module Γ. As dimq HomRnδ(Γ, Y ) = dimq HomRnδ(Γ, Z), every homomorphism

from Γ to Z has image lying in Y , and it follows that Y = Z.

4.25. Imaginary semicuspidal irreducible and Weyl modules

Recall that we have fixed h ≥ n. By Theorem 4.32, we may regard Z as a

(Sn, S(h, n))-bimodule. Then by Morita theory, we have an equivalences of categories

βn : S(h, n)-mod→ Sn-mod, W 7→ Z ⊗S(h,n) W.

By the classical theory [12], the Schur algebra S(h, n) is quasihereditary with

irreducible module Lcl(λ) and standard modules Wcl(λ) labeled by the partitions

λ ` n. Recall that we are working with a fixed i ∈ I ′. Define the Sn-modules:

L(λ) = Li(λ) := βn(Lcl(λ))

W (λ) = Wi(λ) := βn(Wcl(λ))

so that {Li(λ) | λ ` n} is a complete and irredundant family of irreducible modules

over Sn = Sn,i up to isomorphism and degree shift. By inflating, these are irreducible

semicupsidal Rnδ-modules. It is easy to see that Li(λ)~ ∼= Li(λ).

Now we complete a classification of the irreducible semicuspidal Rnδ-modules.

To every multipartition µ = (µ(1), . . . , µ(l)) ∈Pn, we associate the Rnδ-module

L(µ) := L1(µ(1)) ◦ · · · ◦ Ll(µ(l)).
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Theorem 4.33. Let n ∈ Z>0. Then

(i) {L(µ) | µ ∈ Pn} is a complete and irredundant set of ~-selfdual irreducible

semicuspidal Rnδ-modules up to isomorphism.

(ii) For λ, µ ∈Pn with |λ(i)| = |µ(i)| =: ni for all i = 1, . . . , l, we have

[Resn1δ,...,nlδL(µ) : L1(λ(1))� · · ·� Ll(λ(l))]q = δλ,µ.

Proof. The proof is the same as that of [24, Theorem 5.10, Lemma 5.11].

Theorems 1 and 2 from the Introduction, except for the reduction modulo p

statement in Theorem 2, follow easily from the results obtained in this section together

with Schubert’s criterion [5, Lemma 4.3.1]. The part of Theorem 2 concerning

reduction modulo p comes from Corollary 4.60 below.

4.3. Stratifying KLR algebras

Throughout the section α ∈ Ψ, θ ∈ Q+ and π ∈ Π(θ).

4.31. Semicuspidal standard modules

For real α, we denote by ∆(αn) the projective cover of L(αn) in the category

Cnα-mod. We also denote by ∆(µ) the projective cover of L(µ) in the category

Cnδ-mod. Sometimes, we will also use a special notation ∆δ,i for the projective cover

of Lδ,i in Cδ-mod, in other words ∆δ,i = ∆(µ(i)), where µ(i) is the multipartition of

1 with the only non-empty component µ(i)(i) = (1).

Lemma 4.34. Let α ∈ Ψ and V ∈ Cnα-mod. Denote ∆ := ∆(αn) if α is real, and

∆ := ∆(µ) for any µ ∈Pn if α = δ. Then Ext1
Rnα(∆, V ) = 0.
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Proof. Any extension of ∆ by V belongs to Cnα-mod. Since ∆ is a projective object

in Cnα-mod, the extension has to split.

Lemma 4.35. Let α ∈ Φre
+, and n = n1 + · · ·+ na for n1, . . . , na ∈ Z≥0. Then:

(i) ∆(α)◦n ∼= qn(n−1)/2[n]! ∆(αn).

(ii) Resn1α,...,naα∆(αn) ∼= ∆(αn1)� · · ·�∆(αna).

Proof. (i) All composition factors of ∆(α)◦n are of the form L(αn), so it is an Cnα-

module. We claim that this Cnα-module is projective. It suffices to prove that

Ext1
Cnα(∆(α)◦n, L(αn)) = 0, which follows from Ext1

Rnα(∆(α)◦n, L(αn)). But

Ext1
Rnα(∆(α)◦n, L(αn)) ∼= Ext1

Rα,...,α(∆(α)�n,Resα,...,αL(αn)).

Now,

Resα,...,αL(αn) ∼= [n]!L(α)�n, (4.36)

cf. [7, Lemma 2.11], so the claim follows from the Künneth formula and Lemma 4.34.

It follows from the previous paragraph that ∆(α)◦n ∼= m(q) ∆(αn) for some

m(q) ∈ Z[q, q1]. To prove that m(q) = [n]! it suffices to observe using (4.36) that

dimq HomRnα(∆(α)◦n, L(αn)) = [n]!.

(ii) follows from (i) and the computation of Resn1α,...,naα(∆(α)◦n), which is

performed using Mackey’s Theorem and convexity.

4.32. Standard modules

To a Kostant partition ξ = (βx11 , . . . , β
xr
r ) ∈ Ξ(θ) we associate a parabolic

subalgebra

Rξ = Rx1β1 ⊗ · · · ⊗Rxrβr ⊆ Rθ
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and the corresponding functors

Resξ : Rθ-mod→ Rξ-mod and Indξ, Coindξ : Rξ-mod→ Rθ-mod . (4.37)

For every π = (ξ, µ) ∈ Π(θ) as in (4.13), we define the proper standard module

∆̄(π) = L(βx11 ) ◦ · · · ◦ L(βxss ) ◦ L(µ) ◦ L(β
x−t
−t ) ◦ · · · ◦ L(β

x−1

−1 ) = IndξLπ, (4.38)

and the standard module

∆(π) = ∆(βx11 ) ◦ · · · ◦∆(βxss ) ◦∆(µ) ◦∆(β
x−t
−t ) ◦ · · · ◦∆(β

x−1

−1 ) = Indξ∆π, (4.39)

where we have used the notation

Lπ := L(βx11 )� · · ·� L(βxss )� L(µ)� L(β
x−t
−t )� · · ·� L(β

x−1

−1 ),

∆π := ∆(βx11 )� · · ·�∆(βxss )�∆(µ)�∆(β
x−t
−t )� · · ·�∆(β

x−1

−1 )

for modules over the parabolic subalgebra Rξ. In Lemma 4.44 we will show that these

definitions agree with general definitions from §4.12. Define also

∇̄(π) := CoindξLπ ∼= ∆̄(π)~ (π ∈ Π(θ)), (4.40)

the isomorphism coming from Lemma 2.54.

Theorem 4.41. [24] Let θ ∈ Q+. We have:

(i) For every π ∈ Π(θ), the module ∆̄(π) has simple head; denote it L(π).
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(ii) {L(π) | π ∈ Π(θ)} is a complete and irredundant system of irreducible Rθ-

modules up to isomorphism and degree shift.

(iii) For every π ∈ Π(θ), we have L(π)~ ∼= L(π).

(iv) Then in the Grothendieck group [Rθ-mod], we have [∆̄(π)] = [L(π)] +∑
σ<π dπ,σ[L(σ)] for some dπ,σ ∈ Z[q, q−1] (which depend on p).

(v) For all π, σ ∈ Π(θ), we have that Resρ(π)L(π) ∼= Lπ and Resρ(σ)L(π) 6= 0 implies

σ ≤ π.

Corollary 4.42. Let θ ∈ Q+ and π, σ ∈ Π(θ).

(i) Resρ(σ)∆̄(π) 6= 0 implies σ ≤ π, and Resρ(π)∆̄(π) ∼= Lπ.

(ii) Resρ(σ)∇̄(π) 6= 0 implies σ ≤ π and Resρ(π)∇̄(π) ∼= Lπ.

(iii) Resρ(σ)∆(π) 6= 0 implies σ ≤ π, and Resρ(π)∆(π) ∼= ∆π.

Proof. If Resρ(σ)∆̄(π) 6= 0, then Resρ(σ)L(π′) 6= 0 for some composition factor L(π′)

of ∆̄(π). So, using Theorem 4.41(v), we get σ ≤ π′ ≤ π. The rest of (i) follows

from the exactness of Res and Theorem 4.41(iv),(v). The proofs of (ii) and (iii) are

similar.

Proposition 4.43. Let θ ∈ Q+, π, σ ∈ Π(θ), and m ∈ Z≥0. Then

ExtmRθ(∆(π), ∇̄(σ)) = 0

unless ρ(π) = ρ(σ). Moreover, if ρ(π) = ρ(σ), then Ext1
Rθ

(∆(π), ∇̄(σ)) = 0 and

dimq HomRθ(∆(π), ∇̄(σ)) = δσ,π. In particular, head ∆(π) ∼= L(π).
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Proof. The proof follows that of [39, Proposition 24.3]. By adjointness of Coind and

Res, we have

ExtmRθ(∆(π), ∇̄(σ)) ∼= ExtmRρ(σ)(Resρ(σ)∆(π), Lσ)

By Corollary 4.42(iii), Resρ(σ)∆(π) 6= 0 implies σ ≤ π. On the other hand, by

adjointness of Ind and Res, we have

ExtmRθ(∆(π), ∇̄(σ)) ∼= ExtmRρ(π)(∆π,Resρ(π)∇̄(σ)).

By Corollary 4.42(ii), Resρ(π)∇̄(σ) 6= 0 implies π ≤ σ. So we are reduced to ρ(π) =

ρ(σ), in which case, using Corollary 4.42(iii), we have

ExtmRθ(∆(π), ∇̄(σ)) ∼= ExtmRρ(σ)(Resρ(σ)∆(π), Lσ) ∼= ExtmRρ(σ)(∆π, Lσ).

Now, the result follows from Künneth formula and Lemma 4.34.

Lemma 4.44. Let θ ∈ Q+ and π ∈ Π(θ).

(i) ∆(π) is the largest quotient of P (π) all of whose composition factors L(σ) satisfy

σ ≤ π.

(ii) ∆̄(π) is the largest quotient of P (π) which has L(π) with multiplicity 1 and

such that all its other composition factors L(σ) satisfy σ < π.

(iii) Let I(π) denote the injective hull of L(π) in the category of all graded Rθ-

modules. Then ∇̄(π) is the largest submodule of I(π) which has L(π) with

multiplicity 1 and all its other composition factors L(σ) satisfy σ < π.

Proof. (i) Since head ∆(π) ∼= L(π), we have a short exact sequence 0→ X → P (π)→

∆(π)→ 0, and it suffices to prove that HomRθ(X,L(σ)) = 0 if σ ≤ π. Using the long
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exact sequence which arises by applying HomRθ(−, L(σ)) to the short exact sequence,

we have to prove Ext1
Rθ

(∆(π), L(σ)) = 0 for σ ≤ π. But

Ext1
Rθ

(∆(π), L(σ)) ∼= Ext1
Rρ(π)

(∆π,Resρ(π)L(σ)).

In view of Theorem 4.41(v), we may assume that ρ(π) = ρ(σ), in which case

Resρ(π)L(σ) ∼= Lσ. Now, the result follows from Künneth formula and Lemma 4.34.

(ii) In view of Theorem 4.41(i), we have a short exact sequence 0→ X → P (π)→

∆̄(π)→ 0, and it suffices to prove that HomRθ(X,L(σ)) = 0 if σ < π. Using the long

exact sequence which arises by applying HomRθ(−, L(σ)) to the short exact sequence,

we have to prove Ext1
Rθ

(∆̄(π), L(σ)) = 0 for σ < π. But Ext1
Rθ

(∆̄(π), L(σ)) ∼=

Ext1
Rρ(π)

(Lπ,Resρ(π)L(σ)). An application of Theorem 4.41(v) completes the proof.

(iii) In this proof only, we will work in the larger category of all graded Rθ-

modules. By (4.40), soc ∇̄(π) ∼= L(π), so there is a short exact sequence 0→ ∇̄(π)→

I(π) → X → 0, and it suffices to prove that X does not have a submodule, all of

whose irreducible subfactors are ' L(σ) with σ < π. So it suffices to prove that X

does not have a finitely generated submodule Y , all of whose composition factors are

' L(σ) with σ < π. Otherwise apply HomRθ(Y,−) to the short exact sequence to get

an exact sequence

HomRθ(Y, I(π))→ HomRθ(Y,X)→ Ext1
Rθ

(Y, ∇̄(π))→ 0.

Note that the middle term of this sequence is non-zero, while the first term is zero

since the socle of I(π) is L(π). Finally, the third term is zero. Indeed,

Ext1
Rθ

(Y, ∇̄(π)) = Ext1
Rθ

(Y,Coindρ(π)Lπ) ∼= Ext1
Rρ(π)

(Resρ(π)Y, Lπ) = 0,
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since Resρ(π)Y = 0 in view of Theorem 4.41(v). This a contradiction.

4.33. Standardization functor

We now want to check the condition (Flat) from Definition 4.7, which guarantees

existence of standardization functor.

Proposition 4.45. Let π, σ ∈ Π(θ) satisfy ρ(π) = ρ(σ) =: ξ. Then the natural map

HomRξ(∆π,∆σ)→ HomRθ(∆(π),∆(σ)) is an isomorphism.

Proof. By adjointness, we have HomRθ(∆(π),∆(σ)) ∼= HomRξ(∆π,Resξ∆(σ)). By

Corollary 4.42(iii), Resξ∆(σ) ∼= ∆σ, and the result follows.

Corollary 4.46. Let ξ ∈ Ξ(θ), ∆(ξ) =
⊕

π∈ρ−1(ξ) ∆(π), and ∆ξ :=
⊕

π∈ρ−1(ξ) ∆π. Then

the natural map EndRξ(∆ξ)→ EndRθ(∆(ξ)) is an isomorphism of algebras.

Theorem 4.47. Let θ ∈ Q+, ξ ∈ Ξ(θ), ∆(ξ) =
⊕

π∈ρ−1(ξ) ∆(π), and Bξ :=

EndRθ(∆(ξ))op. Then, as a right Bξ-module, ∆(ξ) is finitely generated projective,

in particular, finitely generated flat.

Proof. We write ξ in the form ξ = (βx11 , . . . , β
xr
r ) for β1 � · · · � βr. Note that

EndRξ(∆ξ)
op ∼= Bβ

x1
1
⊗· · ·⊗Bβxrr . So by Corollary 4.46, we have Bξ

∼= Bβ
x1
1
⊗· · ·⊗Bβxrr .

Moreover, each ∆(βxmm ) is a projective generator in the category Cxmβm-mod. So, by

Morita theory, ∆(βxmm ) is finitely generated projective as a right module over its

endomorphism algebra Bβxmm . It follows that ∆ξ is finitely generated projective as a

right module over its endomorphism algebra Bξ. Finally since Rθ is free of finite rank

over Rξ, it follows that ∆(ξ) = Indξ∆ξ is finitely generated projective over Bξ.

We have established the property (Flat) from Definition 4.7. The property

(Filt) is more difficult to check. We are missing the equality Ext2
Rθ

(∆(π), ∇̄(σ)) = 0
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if ρ(π) = ρ(σ), which is needed for standard arguments as in [7, Theorem 3.13]

yielding a ∆-filtration on P (π). So we will have to proceed in a round about way

using reduction modulo p and the results of McNamara [39] who has established the

result in characteristic zero. For now, note using Proposition 4.43 and the Künneth

formula, that it suffices to prove the following for all n ∈ Z>0:

Ext2
Rnα(∆(αn), L(αn)) = Ext2

Rnδ
(∆(λ), L(µ)) = 0 (α ∈ Φre

+, λ, µ ∈Pn).

4.34. Boundedness

Let θ =
∑

i∈I aiαi and n = ht(θ). Recalling that I = {0, 1, . . . , l}, pick a

permutation (i0, . . . , il) of (0, . . . , l) with ai0 > 0, and define i := i
ai0
0 · · · i

ail
l ∈ Iθ.

Then the stabilizer of i in Sn is the standard parabolic subgroup Si := Sai0×· · ·×Sail .

Let Si be a set of left coset representatives for Sn/Si. Then by [20, Theorem 2.9] or

[42, Proposition 3.9], the element

z = zi :=
∑
w∈Si

(yw(1) + · · ·+ yw(ai1 ))1w·i (4.48)

is central of degree 2 in Rθ. Let R′θ be the subalgebra of Rθ generated by

{1i | i ∈ Iθ} ∪ {ψr | 1 ≤ r < n} ∪ {yr − yr+1 | 1 ≤ r < n}.

The restrictions from Rθ to R′θ of modules L(π), Lδ,i,∆(π), etc. are denotes

L′(π), L′δ,i,∆
′(π), etc.

Lemma 4.49. [4, Lemma 3.1] We have
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(i) {(y1 − y2)m1 · · · (yn−1 − yn)mn−1τw1i | mr ∈ Z≥0, w ∈ Sn, i ∈ Iθ} is a basis for

R′θ.

(ii) If ai0 · 1k 6= 0 in k, then there is an algebra isomorphism Rθ
∼= R′θ ⊗ k[z].

For θ ∈ Φ+ \ {n · δ | p|n}, and in particular for θ ∈ Ψ, there always exists an

index i0 with ai0 · 1k 6= 0. We always make this choice. Then:

Corollary 4.50. For α ∈ Ψ, we have Rα
∼= R′α ⊗ k[z].

Let α ∈ Ψ, and L be an irreducible Rα-module. Then z acts as zero on L, so the

restriction L′ is an irreducible R′α-module by the corollary. For α ∈ Φ+, we consider

the module over Rα = R′α ⊗ k[z]:

∆̃(α) := L′(α)⊗ k[z]. (4.51)

Eventually we will prove that ∆̃(α) ∼= ∆(α).

Lemmas 4.21(iii) and 4.19 show that the statement of Lemma 4.20 holds without

the assumption p = 0. This statement and Lemma 4.21(ii) is all that is needed for

the argument of [39, Theorem 15.5] to go through, so we get:

Lemma 4.52. [39, Theorem 15.5] Let α ∈ Ψ. Then dimension of the graded

components dim(Cα)d are bounded as a function of d.

Note that ∆̃(α) ∈ Cα-mod and F [z] acts on ∆̃(α) freely, so the restriction of

the natural surjection ϕ : Rα → Cα to F [z] is injective, and its image gives us a

central subalgebra F [z] ⊆ Cα. Every projective Cα-module is free over the subalgebra

F [z], and by Lemma 4.52, it has to be free of finite rank. Moreover, we can write

Cα = C ′α ⊗ F [z] for the finite dimensional algebra C ′α := ϕ(R′α). The same argument

works for Cδ. Thus:
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Corollary 4.53. Let α ∈ Ψ. Every standard Rα-module is free of finite rank upon

restriction to the subalgebra F [z]. Moreover, we can represent Cα as a tensor product

of algebra Cα ∼= C ′α ⊗ F [z] with finite dimensional C ′α.

It is now clear that ∆(α) ∼= P ′(α) ⊗ F [z] and ∆δ,i
∼= P ′δ,i ⊗ F [z], where P ′(α)

is the projective cover of L′(α) in C ′α-mod and P ′δ,i is the projective cover of L′δ,i in

C ′δ-mod. The following result in characteristic zero is obtained in [39]:

Lemma 4.54. Let α ∈ Ψ and i ∈ I ′.

(i) If α ∈ Φ+ and (β, γ) is a real minimal pair for α, then there exists a short exact

sequence

0→ q∆(β) ◦∆(γ)→ ∆(γ) ◦∆(β)→ ∆(α)→ 0.

(ii) If n > 1 and α = γ±i + nδ, then, setting β± := γ±i + (n− 1)δ, there exist short

exact sequences of the form

0→ ∆(β+) ◦∆δ,i → ∆δ,i ◦∆(β+)→(q + q−1)∆(γ+
i + nδ)→ 0,

0→ ∆δ,i ◦∆(β−)→ ∆(β−) ◦∆δ,i →(q + q−1)∆(γ−i − nδ)→ 0.

(iii) If α = δ, then there exists a short exact sequence

0→ q2 ∆(γ+
i ) ◦∆(γ−i )→ ∆(γ−i ) ◦∆(γ+

i )→ ∆δ,i → 0.

Proof. (i) Lemma 4.52 and the central subalgebra F [z] ⊆ Cα are the main ingredients

in the proof of [39, Lemma 16.1], which now goes through to give the short exact

sequence

0→ q∆(β) ◦∆(γ)→ ∆(γ) ◦∆(β)→ Q→ 0,
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where Q is a projective Cα-module. To prove that Q ∼= ∆(α) it suffices to prove that

dimq HomRα(Q,L(α)) = 1. Applying HomRα(−, L(α)) to the short exact sequence

and observing that HomRα(∆(β)◦∆(γ), L(α)) = 0 by semicuspidality of L(α), we see

that it suffices to prove that dimq HomRα(∆(γ)◦∆(β), L(α)) = 1. By adjointness, this

dimension equals the multiplicity [Resγ,β : L(γ) � L(β)]q. In view of Lemma 4.19,

this multiplicity if independent of the characteristic of the ground field. Since the

result is true in characteristic zero by [39], we deduce that it also holds in positive

characteristic.

(ii) is proved analogously to (i).

(iii) In view of [39, Theorem 13.1] and Lemma 4.9, we may assume that (γ+
j , γ

−
j )

is a minimal pair for δ. As in (i), we have a short exact sequence

0→ q2 ∆(γ+
i ) ◦∆(γ−i )→ ∆(γ−i ) ◦∆(γ+

i )→ Q→ 0,

where Q is a projective Cδ-module. To prove that Q ∼= ∆δ,i it suffices to prove that

dimq HomRδ(Q,Lδ,j) = δi,j, which follows by applying HomRα(−, Lδ,j) to the short

exact sequence and observing that HomRδ(∆(γ+
i )◦∆(γ−i ), Lδ,j) = 0 by semicuspidality

of Lδ,j, while dimq HomRδ(∆(γ−i ) ◦∆(γ+
i ), Lδ,j) = δi,j by Lemma 4.21(ii).

4.35. Stratification

Recall from the end of §4.33 that to prove that Rα is properly stratified we need

some Ext-result. In this subsection we prove the missing result under an explicit

restriction on p. Again, we follow [39] closely.

Lemma 4.55. Let ∆δ :=
⊕

i∈I′ ∆δ,i. Then ∆◦nδ is a projective Cnδ-module. Moreover,

if p > n or p = 0, then ∆◦nδ is a projective generator in Cnδ-mod.
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Proof. To prove that ∆◦nδ is projective in Cnδ-mod, it suffices to show that

Ext1
Cnδ

(∆◦nδ , L) = 0 for any irreducible Cnδ-module L, which would follow from

Ext1
Rnδ

(∆◦nδ , L) = 0. But the latter Ext-group is isomorphic to Ext1
Rδ,...,δ

(∆δ � · · · �

∆δ,Resδ,...,δL), which is indeed trivial by Künneth formula, since all composition

factors of Resδ,...,δL are of the form L1 � · · ·� Ln with each Lr semicuspidal.

To show that ∆◦nδ is a projective generator, it now suffices to show that

dimq HomRnδ(∆
◦n
δ , L(µ)) 6= 0 for any µ ∈ Pn, which from Theorems 4.22(iii) and

4.33.

Theorem 4.56. Let α ∈ Ψ and n ∈ Z>0.

(i) Let α = δ. If p > n or p = 0, then for all λ, µ ∈ Pn, we have

ExtmRnδ(∆(λ), L(µ)) = 0 for all m > 0.

(ii) If α is real, then ExtmRnα(∆(αn), L(αn)) = 0 for all m > 0.

Proof. (i) By Lemma 4.55, ∆◦nδ is a projective generator in Cnδ-mod, so it suffices to

prove that ExtmRnδ(∆
◦n
δ , L(µ)) = 0 for all µ ∈Pn. The last Ext group is isomorphic to

ExtmRδ,...,δ(∆
�n
δ ,Resδ,...,δL(µ)). All composition factors of Resδ,...,δL(µ) are of the form

L1�· · ·�Ln with each Lr ∈ Cδ-mod, so by the Künneth formula, we may assume that

n = 1, i.e. we need to prove ExtmRδ(∆δ,i, Lδ,j) = 0 for all i, j ∈ I ′ and m > 0. But this

follows by applying HomRδ(−, Lδ,j) to the short exact sequence in Lemma 4.54(iii),

using Lemma 4.21(ii) and induction on the height.

(ii) In view of Theorem 4.18(i) and Lemma 4.35(i), we may assume that n = 1. To

prove ExtmRα(∆(α), L(α)) = 0, we apply HomRα(−, L(α)) to the short exact sequence

in Lemma 4.54(i),(ii), and use (i) and induction on height.

Taking into account the results of §§4.32,4.33, we now have:
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Corollary 4.57. Let θ =
∑

i∈I niαi ∈ Q+ and assume that p > min{ni | i ∈ I}.

For any convex preorder on Φ+, the algebra Rα is properly stratified with standard

modules {∆(π) | π ∈ Π(θ)} and proper standard modules {∆̄(π) | π ∈ Π(θ)}.

4.4. Reduction modulo p of irreducible and standard modules

4.41. Reduction modulo p of irreducible modules

We already know from Lemma 4.19 that reduction modulo p of a real

semicuspidal module L(αn)K is L(αn)F . We now look at reductions modulo p of

some imaginary semicuspidal modules. For λ, µ ` n, we denote by dpcl(λ, µ) :=

[Wcl(λ) : Lcl(λ)] the decomposition numbers for the classical Schur algebra S(n, n)

in characteristic p. It is known that dpcl(λ, λ) = 1 and dpcl(λ, µ) = 0 unless µ E λ

in the dominance order. For λ, µ ∈ Pn, we define dp(λ, µ) :=
∏

i∈I′ d
p
cl(λ

(i), µ(i)) if

|λ(i)| = |µ(i)| for all i ∈ I ′, and set dp(λ, µ) := 0 otherwise. Again, dp(λ, λ) = 1 and

dp(λ, µ) = 0 unless µE λ, which means by definition that µ(i) E λ(i) for all i ∈ I ′.

Lemma 4.58. Let i ∈ I ′ and λ, µ ` n. Then Wi(λ)F is reduction modulo of Wi(λ)K =

Li(λ)K . In particular, [Li(λ)O ⊗ F : Li(µ)F ]q = dpcl(λ, µ).

Proof. The first statement is proved exactly as Theorem 3.94. The second statement

now follows by the Morita equivalence βn from §4.25.

Lemma 4.59. Let λ, µ ∈ Pn. Then L(λ)O ⊗O F is semicuspidal, and [L(λ)O ⊗O F :

L(µ)F ]q = dp(λ, µ).

Proof. Induction and reduction modulo p commute by Lemma 4.15, so the result

follows from Lemma 4.58 and Theorem 4.33(i).

Corollary 4.60. For µ ∈Pn and p > n, reduction modulo p of L(µ)K is L(µ)F .
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Let θ ∈ Q+ and π ∈ Π(θ). Let 1F ∈ Rθ,F be a primitive idempotent such that

Rθ,F1F ∼= P (π)F . By an argument in [22, §4.1], there is an idempotent 1O ∈ Rθ,O

with 1F = 1O ⊗ 1. Let P (π)O := Rθ,O1O. Extending scalars to K we get a projective

Rθ,O-module P (π)O⊗OK. So we can decompose it as a direct sum of some projective

indecomposable modules P (σ)K .

Lemma 4.61. Let λ ∈ Pn and π = (ξ, λ) ∈ Π(θ). Then in the Grothendieck group

[Rθ,F -mod], we have

[L(π)O ⊗O F ] = [L(π)F ] +
∑
µCλ

dp(λ, µ)[L((ξ, µ))F ] +
∑
σ<π

aπ,σ[L(σ)F ]

for some bar-invariant Laurent polynomials aπ,σ ∈ Z[q, q−1]. Moreover,

P (π)O ⊗O K ∼= P (π)K ⊕
⊕
µBλ

dp(µ, λ)P ((ξ, µ))K ⊕
⊕
σ>π

aσ,πP (σ)K .

Proof. Similar to the proof of [22, Lemma 4.8], but using Lemma 4.59.

Corollary 4.62. All composition factors L(σ)F of a reduction modulo p of ∆(π)K

satisfy σ ≤ π.

4.42. Reduction modulo p of standard modules

The proof of following result uses an idea from [43].

Lemma 4.63. Let π ∈ Π(θ). Then ∆(π)F contains a submodule M such that

∆(π)F/M is a reduction modulo p of ∆(π)K .

Proof. By Lemma 4.61, we can decompose P (π)O ⊗O K ∼= P (π)K ⊕ Q for some

Rθ,K-module Q. Since ∆(π)K is a quotient of P (π)K , there is an Rθ,K-submodule

VK ⊆ P (π)O⊗OK with P (π)O⊗OK/VK ∼= ∆(π)K . Let VO = VK ∩P (π)O, where we
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consider P (π)O as an O-submodule of P (π)O⊗OK in a natural way. Note that VO is

a pure Rθ,O-invariant sublattice in P (π)O and P (π)O/VO is an O-form of ∆(π)K . So

(P (π)O/VO)⊗O F , which is a reduction modulo p of ∆(π)K , is a quotient of P (π)F .

By Corollary 4.62, all composition factors L(σ)F of (P (π)O/VO)⊗O F satisfy σ ≤ π,

so by definition of ∆(π)F as the largest quotient of P (π)F with such composition

factors, (P (π)O/VO)⊗O F is a quotient of ∆(π)F .

Let α ∈ Φre
+ and n ∈ Z>0. We have a semicuspidal standard module ∆(αn)K .

Pick a generator v ∈ ∆(αn)K which is a homogeneous weight vector. Consider the

Rnα,O-invariant lattice ∆(αn)O := Rnα,O · v, and the reduction ∆(αn)O ⊗O F .

By Lemma 4.21, Resγ−i ,γ
+
i
Lδ,i ∼= L(γ−i ) � L(γ+

i ) and Resγ−i ,γ
+
i
Lδ,j = 0 for j 6= i.

So, picking a weight j± of L(γ±i ), we have a weight ji := j−j+ of Lδ,i such that

1jiLδ,j = 0 for all j 6= i. Pick a homogeneous generator v ∈ ∆δ,i,K of weight ji.

Consider the invariant lattice ∆δ,i,O := Rδ,O · v and the reduction ∆δ,i,O ⊗O F .

Lemma 4.64. We have

(i) ∆(αn)O⊗O F is a semicuspidal Rnα,F -module with simple head L(αn)F , and so

it is a quotient of ∆(αn)F .

(ii) ∆δ,i,O ⊗O F is a semicuspidal Rδ,F -module with simple head Lδ,i,F , and so it is

a quotient of ∆δ,i,F .

Proof. By Lemma 4.19, L(αn)O ⊗O F ∼= L(αn)F is irreducible, so all composition

factors of ∆(αn)O ⊗O F are isomorphic to L(αn)F , i.e. this module is semicuspidal.

By Lemma 4.21(iii), we see similarly that ∆δ,i,O ⊗O F is also semicuspidal. In both

situations, v⊗1 ∈ ∆O⊗OF is a cyclic generator of ∆O⊗OF , and it remains to apply

Lemma 2.56.

Now we can prove a stronger result:
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Theorem 4.65. Let α ∈ Φre
+ and i ∈ I ′. Then ∆(α)F ∼= ∆(α)O ⊗O F and ∆δ,i,F

∼=

∆δ,i,O ⊗O F .

Proof. Apply induction on ht(α). The base being clear, and the inductive step is

obtained from Lemmas 4.64 and 4.54 by character considerations.

Corollary 4.66. If α ∈ Φre
+, then ∆(α) ∼= ∆̃(α) and EndRα(∆(α)) ∼= F [z].

Proof. Since L′(α) is irreducible, we deduce by adjointness that ∆̃(α) has simple head,

whence it is a quotient of ∆(α). Now compare the characters using [39, Theorem 18.3]

in characteristic zero and Theorem 4.65.

Corollary 4.67. If α ∈ Φre
+ and n ∈ Z>0, then ∆(αn)F ∼= ∆(αn)O ⊗O F and

EndRα(∆(αn)) ∼= F [z1, . . . , zn]Sn .

Proof. The first statement follows from Lemmas 4.64(i), 4.35 and Theorem 4.65 by

induction on n. The second statement then follows using the fact that it is true in

characteristic zero [39].

We can now prove that certain cuspidal algebras Cα are ‘defined over integers’.

Corollary 4.68. Let α ∈ Φ+ and n ∈ Z>0. Then Cnα,O and Cδ,O are free over O, with

Cnα,k ∼= Cnα,O ⊗O k and Cδ,k ∼= Cδ,O ⊗O k for and k = F or K.

Proof. We explain the argument for Cδ, the argument for Cnα being similar. The

isomorphisms Cδ,k ∼= Cδ,O ⊗O k are clear, and it suffices to prove that dimq Cδ,K =

dimq Cδ,F . But dimq Cδ,k =
∑

i∈I′(dimq Lδ,i)(dimq ∆δ,i), which, as we have now proved,

is the same for k = K and F .

We conjecture that a similar statement is true in general. The part which remains

open is:
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Conjecture 4.69. Let n ∈ Z>0 and k = F or K. Then Cnδ,O is free over O and

Cnδ,k ∼= Cnδ,O ⊗O k.

The only difficult thing here is to show that Cnδ,O has no p-torsion. The following

result implies that Cnδ,O at least has no p-torsion if p > n.

Lemma 4.70. Let n ∈ Z>0, µ ∈ Pn, and p > n. Then ∆(µ)F is a reduction modulo

p of ∆(µ)K .

Proof. Working over k = F or K, by Lemma 4.55, ∆◦nδ is a projective generator

in Cnδ-mod. So, we can decompose ∆◦nδ =
⊕

µ∈Pn
m(µ)∆(µ)k with non-zero

multiplicities m(µ), which a priori might depend on k. Moreover,

m(µ) = dimq HomRnδ(∆
◦n
δ , L(µ)) = dimq HomRδ,...,δ(∆

�n
δ ,Resδ,...,δL(µ))

= dimq HomRδ,...,δ((
⊕
i∈I′

∆δ,i)
�n,Resδ,...,δL(µ))

=
∑

i1,...,in∈I′
dimq HomRδ,...,δ(∆δ,i1 � · · ·�∆δ,in ,Resδ,...,δL(µ))

=
∑

i1,...,in∈I′
[Resδ,...,δL(µ)) : Lδ,i1 � · · ·� Lδ,in ]q.

The last expression is independent of k by Corollary 4.60. It now follows from

Lemma 4.63 by a character argument that chq ∆(µ)F = chq ∆(µ)K and that ∆(µ)F

is a reduction modulo p of ∆(µ)K .

4.5. Zigzag algebras

In this section we introduce the affine zigzag algebra Aaff
n , which is intended to

describe the higher imaginary strata. Let Γ = (Γ0,Γ1) be a connected graph without

loops or multiple edges. Eventually, we will need only the case where Γ is of finite

ADE type, but for now do not need to assume that in this section. We also do not
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need to assume that k is a field. If i, j ∈ Γ0, we use the notation i j to indicate

that {i, j} ∈ Γ1. In this case we say that i and j are neighbors.

4.51. Huerfano-Khovanov zigzag algebras

The zigzag algebra A := A(Γ) of type Γ is defined in [14] as follows:

Definition 4.71. First assume that |Γ0| > 1. Let Γ be the quiver obtained by

doubling all edges between connected vertices and then orienting the edges so that if

i and j are neighboring vertices in Γ, then there is an arrow ai,j from j to i and an

arrow aj,i from i to j. For example, A` is the quiver in Figure 4.1. below.

1 2 3 · · · ` − 1 `

a2,1 a3,2 a4,3 a`−2,`−1 a`,`−1

a1,2 a2,3 a3,4 a`−2,`−1 a`−1,`

FIGURE 4.1. The quiver A`.

Then A(Γ) is the path algebra of Γ, generated by length-0 paths ei for i ∈ Γ0,

and length-1 paths ai,j, modulo the following relations:

(i) All paths of length three or greater are zero.

(ii) All paths of length two that are not cycles are zero.

(iii) All length-two cycles based at the same vertex are equivalent.

If |Γ0| = 1, i.e. Γ = A1, we merely decree that A(Γ) := k[c]/(c2), where c is an

indeterminate in degree 2.

For type Γ 6= A1, for every vertex i, let j be any neighbor of i, and write c(i) for

the cycle ai,jaj,i. The relations in A(Γ) imply that c(i) is independent of choice of j.
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Define c :=
∑

i∈Γ0
c(i). Then A(Γ) has basis

{ai,j | i ∈ Γ0, j a neighbor of i} ∪ {cmei | i ∈ Γ0, m ∈ {0, 1}}.

Note that A(Γ) is graded by path length. The graded dimension is

dimq A(Γ) = |Γ0|(1 + q2) + 2|Γ1|q. (4.72)

4.52. Affine zigzag algebras

We define the rank n affine zigzag algebra Aaff
n (Γ) as follows:

Definition 4.73. If |Γ0| > 1, let Aaff
n (Γ) be the graded k-algebra generated by the

elements

{ei | i ∈ Γn0} ∪ {st | 1≤ t≤ n−1}

∪ {ai,jt | 1≤ t≤ n, i, j ∈ Γ0 with i j} ∪ {zt | 1≤ t≤ n}

in degrees 0, 0, 1, 2 respectively, subject only to the relations

∑
i∈Γn0

ei = 1, eiej = δi,jei, (4.74)

stei = estist, ztei = eizt, ai,jt ei = δit,jei1,...,it−1,i,it+1,...,ina
i,j
t , (4.75)

s2
t = 1, stsu = sust if |t− u| > 1, stst+1st = st+1stst+1, (4.76)

sta
i,j
u = ai,jst(u)st, ai,jt aj,it = ai,mt am,it , ai

′′,j′′

t ai
′,j′

t ai,jt = 0, (4.77)

(1− δt,uδi,j′δi′,j)ai,jt ai
′,j′

u = (1− δt,u)ai
′,j′

u ai,jt , (4.78)

ztzu = zuzt, zta
i,j
u = ai,ju zt, (4.79)
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plus one final relation, which we give after introducing a convenient bit of notation.

For 1 ≤ t ≤ n and i ∈ Γ0, let j be any neighbor of i, and set c
(i)
t := ai,jt aj,it . This is

well-defined by (4.77). Then set ct :=
∑

i∈Γ0
c

(i)
t . The final relation is

(stzu− zst(u)st)ei =



(δu,t−δu,t+1)(ct + ct+1)ei it = it+1;

(δu,t−δu,t+1)a
it+1,it
t a

it,it+1

t+1 ei it it+1;

0 otherwise.

(4.80)

If |Γ0| = 1, let Aaff
n (Γ) be the graded k-algebra generated by the elements

{st | 1≤ t≤ n−1} ∪ {ct | 1≤ t≤ n} ∪ {zt | 1≤ t≤ n}

in degrees 0, 2, 2 respectively, subject only to the relations

s2
t = 1, stsu = sust if |t− u| > 1, stst+1st = st+1stst+1, (4.81)

ztzu = zuzt, ctcu = (1− δt,u)cuct, ztcu = cuzt, stcu = cst(u)st, (4.82)

(stzu − zst(u)st) = (δu,t − δu,t+1)(ct + ct+1). (4.83)

4.53. Basis Theorem

For 1 ≤ t ≤ n, we will write ai,it := 1. If i, j ∈ Γn0 such that it = jt or it jt for

all t, we write i j, and define

ai,j := ai1,j11 · · · ain,jnn .
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The elements s1, . . . , sn−1 satisfy the Coxeter relations of the symmetric group, so

for a reduced decomposition w = sr1 · · · srm ∈ Sn, we have well-defined elements

sw := sr1 · · · srm ∈ Aaff
n (Γ). For t ∈ Zn≥0 we will write zt = zt11 · · · ztnn and for u ∈ {0, 1}n

we will write cu = cu11 · · · cunn . Finally, it will be useful to write e1···1 := 1 ∈ Aaff
n (Γ)

when |Γ0| = 1, so that we may consider this case as part of the larger family of affine

zigzag algebras.

Theorem 4.84. The following set is a k-basis for Aaff
n (Γ):

{ztcuai,wjswej}, (4.85)

ranging over w ∈ Sn, i wj ∈ Γn0 , t ∈ Zn≥0, and u ∈ {0, 1}n such that um ≤

δim,(wj)m .

Proof. From the defining relations, one may easily see by induction that Aaff
n (Γ)

is spanned by the elements in (4.85). We show that these elements are linearly

independent by constructing a faithful representation for Aaff
n (Γ). Define

V :=
⊕
w∈Sn

i wj∈Γn0

k[z1, . . . , zn, x1, . . . , xn]〈sh(i, wj)〉/
(
x
δim,(wj)m+1
m

)
1≤m≤n,

where sh(i, wj) := n− δi1,(wj)1 − · · · − δin,(wj)n , and z’s and x’s are indeterminates of

degree 2. If a polynomial f belongs to the component corresponding to w ∈ Sn and

i wj ∈ Γn0 , we will label it with subscripts, a la fi,w,j . Elements of Sn act on z’s

and x’s by place permutation.

For b1, b2 ∈ Z≥0, define gr,b1,b2 ∈ k[zr, zr+1] to be zero if b1 = b2, and

gr,b1,b2 :=
b1 − b2

|b1 − b2|
(zrzr+1)min(b1,b2)

|b1−b2|−1∑
κ=0

zκr z
|b1−b2|−κ−1
r+1


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otherwise. For 1 ≤ r < n, w ∈ Sn, and i, j ∈ Γn0 , we also define

hr,i,w,j =



xr + xr+1 ir = ir+1;

(δir,(wj)r+δir+1,(wj)rxr)(δir+1,(wj)r+1+δir,(wj)r+1xr+1) ir ir+1;

0 otherwise.

Finally, if mt = zt11 · · · ztnn x
tn+1

1 · · ·xt2nn is a monomial in some summand of V for

t ∈ Z2n
≥0, then for 1 ≤ r < n define mt,r := mt/ztrr z

tr+1

r+1 . With this notation out of the

way, we describe a well-defined action of generators of Aaff
n (Γ) on V :

ek ·mt
i,w,j = δk,im

t
i,w,j ,

zr ·mt
i,w,j = (zrm

t)i,w,j ,

ai,jr ·mt
i,w,j = δj,ir [(δj,(wj)r + δi,(wj)rxr)m

t]i1···ir−1iir+1···in,w,j ,

sr ·mt
i,w,j = [sr(m

t)]sri,srw,j + [hr,i,w,jgr,tr,tr+1sr(m
t,r)]sri,w,j .

If |Γ0| = 1, we additionally define the action

cr ·mt
w = (xrm

t)w.

Excluding (4.80) and (4.76) for now, one may directly check that this action

obeys the defining relations of Aaff
n (Γ). Then the relation (4.80) may be checked with

the aid of the following easily verified fact:

gr,tr+1,tr+1 − zr+1gr,tr,tr+1 = ztrr z
tr+1
r+1 = zrgr,tr,tr+1 − gr,tr,tr+1+1.
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This leaves the Coxeter relations. The relation srsu = susr, for |r − u| > 1,

may be directly checked. Note that s2
rzb = zbs

2
r already holds as operators on V , by

the relations already proven. Now we prove that s2
r = 1 on V by induction on the

z-degree dz(t) := t1 + · · · + tn of mt
i,w,j . The base case dz(t) = 0 is easy to check.

Then, for dz(t) > 0, we may write mt
i,w,j = (zbm̂

t)i,w,j for some 1 ≤ b ≤ n. Then by

the induction assumption,

s2
r ·mt

i,w,j = s2
r · (zbm̂t)i,w,j = s2

rzb · m̂t
i,w,j = zbs

2
r · m̂t

i,w,j = zb · m̂t
i,w,j = mt

i,w,j .

The braid relation follows in a similar fashion, after noting that

(srsr+1sr − sr+1srsr+1)zb = zsrsr+1srb(srsr+1sr − sr+1srsr+1)

as operators on V by the relations already proven. Thus V is an Aaff
n (Γ)-module.

The elements in (4.85) act as linearly independent operators:

ztcuai,wjswej · 1k,id,k = δj,k(zt11 · · · ztnn x
u1
1 · · ·xunn )i,w,j ,

which proves the theorem.

Corollary 4.86. We have

dimq A
aff
n (Γ) = n!

(
(1 + q2)|Γ0|+ 2q|Γ1|

1− q2

)n
.

The affine zigzag algebra Aaff
n (Γ) possesses an anti-involution τ which sends ai,jr 7→

aj,ir , and is the identity on the other generators. By applying τ to Theorem 4.84 it
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follows that Aaff
n has bases similar to (4.85) with generators written in the opposite

order. Thus we have

Corollary 4.87. Aaff
n (Γ) is free as both a left and right k[z1, . . . , zn]-module.

4.54. Center of the affine zigzag algebra

It will be convenient to define some additional elements of Aaff
n (Γ). Write c :=∑n

t=1 cn. For 1 ≤ r < t ≤ n, set xt,r := −ct − cr if |Γ0| = 1, and if |Γ0| > 1, set for

any i ∈ Γn0 :

xt,rei :=



−(citt + cirr )ei it = ir;

−air,itt ait,irr ei it ir;

0 otherwise,

and then set xt,r =
∑
i∈Γn0

xt,rei.

The following lemma follows by inductively applying relations (4.80) or (4.83).

Lemma 4.88. We have srz
t
rz
t
r+1 = ztrz

t
r+1sr for all t ∈ Z≥0, and

srz
tr
r z

tr+1

r+1−ztr+1
r ztrr+1sr =

tr+1−tr
|tr+1−tr|

xr+1,r(zrzr+1)min(tr,tr+1)

|tr+1−tr|−1∑
κ=0

zκr z
|tr+1−tr|−κ−1
r+1 ,

for all tr 6= tr+1 ∈ Z≥0.

Let C be the commutative subalgebra of Aaff
n (Γ) generated by all z’s, c’s and e’s.

For x ∈ C and 1 ≤ t ≤ n, let xt be the unique element of the subalgebra generated by

all z’s, c’s and e’s excluding ct, such that x− xt ∈ ctC.

Lemma 4.89. The center Z(Aaff
n ) of the affine zigzag algebra consists of all elements

x ∈ C such that
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(i) x is invariant under the diagonal action of Sn on

k[z1, . . . , zn]⊗ k[c1, . . . , cn]⊗
(⊕
i∈Γn0

kei

)
.

(ii) For all 1 ≤ t ≤ n and every bijection b : Γ0 → Γ0, xt is invariant under the

action ei 7→ ei1,...,it−1,b(it),it+1,...,in on
⊕

i∈Γn0
kei.

Proof. First we show that Z(Aaff
n ) ⊆ C. Write X for the basis (4.85). For ω ∈ Sn,

write X ⊇ Xω = {ztcuai,ωjsωei}, over all admissible t,u, i, j. One may easily show by

induction on the Bruhat order that if xω ∈ kXω, then (xωzr− zω(r)xω) ∈ k(
⋃
ω′≺ωXω′)

for all 1 ≤ r ≤ n and ω ∈ Sn.

Let 0 6= x ∈ Z(Aaff
n ). Then x may be uniquely written as

∑
ω∈Sn xω, where each

xω ∈ kXω. Assume that σ ∈ Sn is such that xσ 6= 0 and xω = 0 for all ω ∈ Sn with

`(ω) > `(σ). Then for every 1 ≤ r ≤ n we have

0 = (zrx− xzr) =
∑

`(ω)=`(σ)

(zrxω − xωzr) +
∑

`(ω)<`(σ)

(zrxω − xωzr)

=
∑

`(ω)=`(σ)

(zr − zω(r))xω + y,

where y ∈ k(
⋃
`(ω)<`(σ) Xω), after applying the claim in the first paragraph. Since each

(zr − zω(r))xω ∈ kXω, the basis theorem implies in particular that (zr − zσ(r))xσ = 0,

so by Corollary 4.87 we have σ(r) = r for every r. Thus σ = id, and x ∈ kXid.

Moreover, since centrality implies that eixej = 0 for i 6= j, no a’s may appear in x;

we have that x is a k-linear combination of basis elements of the form ztcuei. Hence

x ∈ C.
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Now we show that x ∈ C commutes with every ai,jr if and only if x satisfies (ii).

Use the basis theorem to write x =
∑
t,u,i λt,u,iz

tcuei for some λt,u,i ∈ k. Then

xai,jr − ai,jr x =
∑
t,u,i

ur=0,ir=j

(λt,u,i − λt,u,i1···ir−1iir+1···in)ztcuai,jr ei.

Thus x commutes with every ai,jr if and only if λt,u,i = λt,u,j whenever ur = 0 and

it = jt for all t 6= r. Since xr =
∑
t,u,i,ur=0 λt,u,iz

tcuei, the claim follows.

Finally, we show that x ∈ C commutes with every sr if and only if x satisfies (i).

The ‘if’ direction follows easily from the defining relations and Lemma 4.88, so we

will prove the ‘only if’ direction. For x ∈ Aaff
n (Γ), we say x involves ztcuai,wjswej if the

basis expansion of x includes this term with a nonzero coefficient. Then for a tuple

t ∈ Zn≥0, define d(t) = t1 + · · ·+ tn, and set

d(x) := max{d(t) | x involves ztcuai,wjswej for some u, i, w, j}.

Now assume x ∈ C is central. We may use the basis theorem to write x = x′ + x′′,

where x′ =
∑
t,u,i,d(t)=d(x) λt,u,iz

tcuei, and d(x′′) < d(x). For all 1 ≤ r ≤ n it follows

from relations and Lemma 4.88 that d(srx
′′sr − x′′) < d(x), and

srx
′sr − x′ =

∑
t,u,i

d(t)=d(x)

(λsrt,sru,sri − λt,u,i)ztcuei + y

where d(y) < d(x). Thus, by the basis theorem and centrality of x, it follows that

λsrt,sru,sri = λt,u,i for all d(t) = d(x). But then, by Lemma 4.88, we have that y = 0,

and therefore x′ commutes with every sr and satisfies (i). Thus x′′ = x− x′ commutes

with every sr, so by induction, x′′ also satisfies (i), completing the proof.
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Corollary 4.90. The algebra Aaff
n (Γ) is indecomposable.

Proof. By Lemma 4.89, the only primitive central idempotent is 1, so the result

follows.

4.55. Cyclotomic zigzag algebras

By the basis theorem, the subalgebra of Aaff
n (Γ) generated by all ei’s and ai,jt ’s is

naturally isomorphic to A(Γ)⊗n (if |Γ0| = 1, interpret this as the subalgebra generated

by ct’s). Moreover, the subalgebra of Aaff
n (Γ) generated by all st’s is isomorphic to

kSn. Together they generate the subalgebra isomorphic to the semidirect tensor

product

An(Γ) := A(Γ)⊗n ⊗ kSn,

with the action of Sn on the tensors in A(Γ)⊗n by place permutation. We refer to

this algebra as the finite zigzag algebra of rank n. It makes an appearance in [45].

Define the Murphy elements in An(Γ) as follows:

lr :=
r−1∑
t=1

xt,r ⊗ (t, r) (r = 1, . . . , n)

where (t, r) ∈ Sn is the transposition of t and r.

Lemma 4.91. For each i ∈ Γn0 , let κi ∈ k. Let f : Aaff
n (Γ)→ An(Γ) be the map which

sends

zr 7→ lr +
∑
i∈Γn0

κsr−1···s2s1icei,
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and is the identity on all other generators. Then f is a surjective homomorphism of

graded k-algebras. The kernel of this homomorphism is the 2-sided ideal generated

by z1 −
∑
i∈Γn0

κicei.

Proof. That f is a surjective homomorphism is easily checked. It is also easy to see

from the defining relations that Aaff
n is in fact generated by z′ := z1 −

∑
i∈Γn0

κicei,

together with all the ei’s, st’s and ai,jt ’s (or ct’s in the case |Γ0| = 1). Then

Aaff
n /A

aff
n z′Aaff

n is generated by the images of these generators (excluding z′), and since

z′ ∈ ker f , the homomorphism f factors through to a surjection f : Aaff
n /A

aff
n z′Aaff

n →

An. There also exists a surjection g in the other direction which sends the generators

of An to their images in Aaff
n /A

aff
n z′Aaff

n . Then f and g are mutual inverses, and the

second statement follows.

Let m ∈ Z>0, and let κ : Γn0 → km be any function. We define the cyclotomic

zigzag algebra Aκn(Γ) to be the quotient of Aaff
n (Γ) by the 2-sided ideal generated by

the element

∑
i∈Γn0

m∏
j=1

(z1 − κ(i)jc)ei.

Since c is central and nilpotent it follows that z1 is nilpotent in Aκn(Γ), and thus—

inductively applying the relation (4.80)—every zi is nilpotent. Thus Aκn(Γ) is finitely

generated as a k-module by Theorem 4.84. By Lemma 4.91 we have Aκn(Γ) ∼= An

when m = 1.
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4.56. Diagrammatics for the affine zigzag algebra

For reader convenience, we provide a diagrammatic description of the algebra

Aaff
n (Γ). We depict the (idempotented) generators as the following diagrams:

ei =

i1 i2 · · · im

zrei =

i1 · · · ir · · · im

crei =

i1 · · · ir · · · im

srei =

i1 · · · ir ir+1· · · im

i1 · · ·ir+1 ir · · · im

aj,irr ei =

i1 · · · ir · · · im

i1 · · · j · · · im

for ir j

The red color is just intended to highlight that the label for the rth strand has

changed. Then Aaff
n (Γ) is spanned by planar diagrams that look locally like these

generators, equivalent up to the usual isotopies (see [20]). Multiplication of diagrams

is given by stacking vertically, and products are zero unless labels for strands match.

Then the defining local relations can be drawn as follows:

i

j

=

i

j

i

i

=

i

i

i

j

=

i

j

=

i

i

= 0

i

k

j = 0 (i, j, k distinct)

i

i

j =

i

i

(∀j)

i j

=

i j i j k

=

i j k

(∀i, j, k)
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i j

j k

=

i j

j k

i j

k i

=

i j

k i

(∀i, j, k)

i j

=

i j i j

=

i j

(∀i, j)

ji

−
ji

=

ji

−
ji

=



ii

+

ii

if i = j;

ji

j i

if i j;

0 otherwise.

4.6. The minuscule imaginary stratum category

For the remainder of this chapter we assume � is a balanced order. We also

assume that the graph Γ is the Dynkin diagram corresponding to the finite type

Cartan matrix C′, and write A for A(Γ), Aaff
n for Aaff

n (Γ), etc.

4.61. Special words

For each i ∈ I ′, we choose a special word bi ∈ Iδ:
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Type A
(1)
` : bi := 012 · · · (i− 1)`(`− 1)(`− 2) · · · (i+ 1)i

Type D
(1)
` : bi :=



0234 · · · `(`− 2)(`− 3) · · · (i+ 1)123 · · · i if 1 ≤ i ≤ `− 2;

0234 · · · (`− 2)`123 · · · (`− 1) if i = `− 1;

0234 · · · (`− 1)123 · · · (`− 2)` if i = `

Type E
(1)
6 : bi :=



024354265431 if i = 1;

024354136542 if i = 2;

024354126543 if i = 3;

024354123654 if i = 4;

024354123465 if i = 5;

024354123456 if i = 6

Type E
(1)
7 : bi :=



013425463542765431 if i = 1;

013425463541376542 if i = 2;

013425463541276543 if i = 3;

013425463541237654 if i = 4;

013425463541234765 if i = 5;

013425463541234576 if i = 6;

013425463541234567 if i = 7
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Type E
(1)
8 : bi :=



087654231435642576435428765431 if i = 1;

087654231435642576435413876542 if i = 2;

087654231435642576435412876543 if i = 3;

087654231435642576435412387654 if i = 4;

087654231435642576435412348765 if i = 5;

087654231435642576435412345876 if i = 6;

087654231435642576435412345687 if i = 7;

087654231435642576435412345678 if i = 8.

Let d = ht(δ). Following [31], for 1 ≤ r < d and i ∈ Iδ, we say sr ∈ Sd

is i-admissible if (αir , αir+1) = 0. More generally, sr1 · · · srt is a reduced expression

for w ∈ Sd and each srk is (srk+1
· · · srti)-admissible, then we say w is i-admissible.

This property is independent of reduced expression for w. In addition, admissibility

is preserved by products in the sense that if w is i-admissible and w′ is (wi)-

admissible, then w′w is i-admissible. The connected component of i is Con(i) :=

{wi | i-admissible w ∈ Sd}. Clearly Con(i) = Con(j) if and only if i ∈ Con(j). We

will write Gi := Con(bi) and Gδ :=
⋃
i∈I′ G

i.

Definition 4.92. Let i ∈ Iδ. For t ∈ {1, . . . , d}, define the t-neighbor sequence of i

to be nbrt(i) := (n1, . . . , nt) ∈ {0, N, S}t, where

nr =



S, if ir = it;

N, if (αir , αit) < 0;

0, otherwise.
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Then nbrt(i), the reduced t-neighbor sequence of i, is achieved by deleting all 0’s from

nbrt(i).

Example 4.93. Take C = A
(1)
7 . Then i = 01726354 ∈ G4, nbr6(i) = 000N0S, and

nbr6(i) = NS.

The following is clear:

Lemma 4.94. If sr is i-admissible, then nbrsr(t)(sri) = nbrt(i).

Lemma 4.95. Let i, j ∈ I ′ such that (αi, αj) = −1.

(i) If i ∈ Gδ, then i satisfies the homogeneity condition: if ir = is for some r < s,

then there exist t, u with r < t < u < s such that (αir , αit) = (αir , αiu) = −1.

(ii) For all i ∈ Gi, we have i1 = 0, id = i, i1 is a neighbor of i2, and id−1 is a

neighbor of id.

(iii) If C 6= A
(1)
1 and i ∈ Gδ, then

nbrt(i) =


(NSN)aNS, if 1 < t < d;

(NSN)aNNS, if t = d,

(4.96)

for some a ≥ 0.

(iv) If i ∈ Gδ and r < d− 1, then sri ∈ Gδ if and only if sr is i-admissible.

(v) There exists some wi,j ∈ Sd such that wi,jb
j = bi, and wi,j = w1sd−1w2, where

w2 is bj-admissible and w1 is sd−1w2b
j-admissible.

(vi) For any i, i′ ∈ Gi, there exists a unique wi′,i ∈ Sd such that wi′,ii = i′ and wi′,i

is i-admissible.
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(vii) For any i ∈ Gi and j ∈ Gj, there exists a unique wi,j ∈ Sd such that wi,jj = i,

and wi,j = w1sd−1w2, where w2 is i-admissible and w1 is sd−1w2i-admissible.

Proof. (i) It is straightforward to check that bi satisfies the homogeneity condition.

Thus by [31, Lemma 3.3], every i ∈ Gi satisfies this condition.

(ii) If 1 < r < d, then (bi)r has a neighbor somewhere to the left and right

in bi, so no bi-admissible element w may send r to 1 or d, so i1 = (bi)1 = 0, and

id = (bi)d = i for every i ∈ Gj. Moreover it cannot be that id−1 = id by (i), and if it

were the case that (αid , αid−1
) = 0, then we would have sd−1i ∈ Gi, but (sd−1i)d 6= i,

a contradiction. Thus id−1 and id are neighbors, and a similar argument proves the

same for i1 and i2.

(iii) We have by part (ii) that s1 and sd−1 are never admissible transpositions

for i ∈ Gδ. Therefore, by Lemma 4.94, it is enough to check that that statement (iii)

holds for the special words bi, which may be readily done.

(iv) The statement holds for r = 1 by part (ii), since s1 is never i-admissible,

and i1 = 0 for every i ∈ Gδ. Let 1 < r < d − 1. If sr is not i-admissible, then

(αir , αir+1) = −1 by (i). By part (iii), nbrr+1(i) = (NSN)aNS for some a ≥ 0. Then

nbrr(sri) = (NSN)aS. But then again by part (iii), sri /∈ Gδ.

(v) In type A
(1)
` , for 1 ≤ i < ` we may take wi,i+1 = sd−1 · · · si+1, and in type

D
(1)
` , take wi,i+1 = sd−1 · · · sd−i if 1 ≤ i ≤ ` − 3, w`−2,`−1 = sd−1 · · · sd−`−1, and

w`−2,` = sd−1 · · · sd−`−2. In both types, if j > i, we may simply take wj,i to be

the inverse of wi,j defined above. This leaves the exceptional types E
(1)
` , where the

existence of such elements can be easily verified.

(vi) The existence of wi′,i is guaranteed by the definition of Gi = Con(i), and we

note that i-admissible elements are in bijection with Gi since i-admissible elements

cannot transpose similar letters. This proves uniqueness.
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(vii) We may take wi,j = wi,biwi,jwbj ,j to show existence. Uniqueness follows as

in part (vi) from consideration of the fact that no similar letters are transposed in

this product.

4.62. Minuscule semicuspidal modules

Recall from §4.21 that, when k is a field, the irreducible semicuspidal Rδ-modules

may be canonically labeled Lδ,i, for i ∈ I ′.

Lemma 4.97. [24, Lemma 5.1, Corollary 5.3] Let k be a field. For each i ∈ I ′, Lδ,i

can be characterized up to isomorphism and grading shift as the unique irreducible

Rδ-module such that i1 = 0 and id = i for all words i of Lδ,i.

Lemma 4.98. For each i ∈ I ′, chq Lδ,i =
∑
i∈Gi i.

Proof. By Lemmas 4.95(i) and [31, Theorem 3.4], there exists a homogeneous

irreducible Rδ-module with character
∑
i∈Gi i. By Lemmas 4.95(ii) and 4.97, this

module must be Lδ,i.

Therefore Gδ is a complete set of semicuspidal words in Iδ, and we have Cδ =

Rδ/Rδ1nscRδ, where 1nsc =
∑
i∈Iδ\Gδ 1i.

Lemma 4.99. Assume C 6= A
(1)
1 . For all i ∈ Gδ, sd−1i ∈ Gid−1 .

Proof. By Lemma 4.95(ii), id−1, id are neighbors, and by Lemma 4.95(iii) i satisfies

(4.96), so it follows that sd−1i also satisfies (4.96). Moreover sd−1i also satisfies the

homogeneity condition in Lemma 4.95(i); if it did not there would be some t such

that nbrt(sd−1i) contains a subword SS or SNS, which is not the case. For every

1 < r < d − 1, ir has a neighbor to the left and right in i, so the same is true in

sd−1i, and consideration of nbrd(i) shows that (sd−1i)d−1 also has neighbors to the left

and right in sd−1i. Thus j1 = 0 and jd = (sd−1i)d = id−1 for every j ∈ Con(sd−1i).
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Then there is an irreducible homogeneous module with character
∑
j∈Con(sd−1i)

j,

which by Lemma 4.97 is isomorphic to Lδ,id−1
. But by Lemma 4.98, we must have

Con(sd−1i) = Gid−1 .

4.63. A spanning set for Cδ

For each w ∈ Sd, choose a distinguished reduced expression w = sr1 · · · srt , and

define ψw = ψr1 · · ·ψrt ∈ Rδ. In general, this element will depend on the choice of

reduced expression, but as we will see, this is not the case in Cδ. We will write ψi,j

(resp. ψi,j) for the element ψwi,j (resp. ψwi,j) defined in Lemma 4.95.

Lemma 4.100.

(i) The algebra Cδ is non-negatively graded.

(ii) The elements ψw are independent of reduced expression for w in Cδ.

(iii) In Cδ, ψryt = ysr(t)ψr, for all r, t.

Proof. All of these follow from Lemma 4.95(i). We have 1i = 0 in Cδ if ir = ir+1 for

some 1 ≤ r < d. So there are no generators ψr1j in negative degrees, hence (i). Part

(iii) also follows from that observation. Finally, semicuspidal words have no subwords

of the form iji, so braid relations hold on the nose, hence (ii).

Lemma 4.101. The following facts hold in Cδ:

(i) y1 = · · · = yd−1.

(ii) (y1 − yd)2 = 0.

Proof. For this proof, it will be convenient to use the diagrammatic presentation for

Rδ, see [20]. For now, we assume that C 6= A
(1)
1 . We prove (i) first. Let i = 0i2i3 · · · id ∈
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Gδ. Let 1 < r < d. The following diagram is zero in Cδ since all semicuspidal words

start with 0, and ir 6= 0:

0 i2 i3 · · · ir−1 ir ir+1· · · id

.

We will simplify this diagram using relations. Note that we may ignore strands to

the right of ir and strands whose colors do not neighbor ir. Omitting such strands,

and recalling from Lemma 4.95(iii) that nbrk(i) = (NSN)aNS for some a ≥ 0, we

have, using the relations in Rδ:

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

∓

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

= ±

N S N N S N · · · N S N N S

±

N S N N S N · · · N S N N S

.

The first term in the last line involves an (S, S)-crossing and hence is zero in Cδ.

We may continue on in this fashion, moving the S strand past NSN -triples, until we

arrive at

±

N S N N S N · · · N S N N S

.
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The (N,S) crossing opens, giving ±(ys − yr)1i, for some s < r. Recalling that the

initial diagram was zero, we have ys1i = yr1i. Applying induction on r, for every

semicuspidal word i, it follows that y1 = · · · = yd−1 in Cδ.

Now we prove (ii). Let i = 0i2i3 · · · id ∈ Gδ. Again, this diagram is zero in Cδ:

0 i2 i3 · · · id−1 id

As in the proof of (i), we omit non-neighbors of id, and use the fact that nbrd(i) =

(NSN)aNNS from Lemma 4.95(iii) to write

0 i2 i3 · · · id−1 id

=

N S N N S N · · · N S N N N S

.

We then move the S-strand past (NSN)-strands as in the first part, to arrive at

N S N N S N · · · N S N N N S

.

Applying the quadratic relation twice yields ±(yt−yd)(ys−yd)1i, for some t < s < d.

But then yt = ys = y1 by (i), so we have (y1 − yd)21i for all semicuspidal words i,

which implies the result.

Finally, assume C = A
(1)
1 . Then d = 2, Gδ = {01}, and so claim (i) is trivial.

Since 110 = 0 in Cδ, we get 0 = ψ1110ψ1 = ψ2
1101 = ±(y1 − y2)2101 = ±(y1 − y2)2,

proving claim (ii).

Lemma 4.102. Let u ∈ Sd. We have ψu1i = 0 in Cδ unless:
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(i) i ∈ Gδ, ui ∈ Gid , and u = wui,i, in which case deg(ψu1i) = 0, or;

(ii) i ∈ Gδ, ui ∈ Gj for some j ∈ I ′ such that (αj, αid) = −1, and u = wui,i, in

which case deg(ψu1i) = 1.

Proof. Note that in type A
(1)
1 , we have Gδ = {01}, so ψ1101 = 0, and in this case the

lemma is trivial. Thus we restrict our attention to the other cases.

Assume that ψu1i = euiψu1i 6= 0. Then it must be that i, ui ∈ Gδ. We may

write u = w′w′′, where w′′ ∈ Sd−1 and w′ is a minimal length left coset representative

of Sd−1 in Sd. By Lemma 4.100(ii), ψu = ψw′ψw′′ . By Lemma 4.95(iv), w′′ must be

i-admissible. If w′ = id, then wid = id, deg(ψw1i) = 0 and we are in case (i) by the

uniqueness of Lemma 4.95(vi).

Assume w′ 6= id. Then for some r, w′ = srsr+1 · · · sd−1 is a reduced expression

for w′. By Lemma 4.100(ii), ψu = ψrψr+1 · · ·ψd−1ψw′′ in Cδ. By Lemma 4.95(iv),

srsr+1 · · · sd−2 is sd−1w
′′i-admissible. Further, (αid−1

, αid) = −1 by Lemma 4.95(ii),

so deg(ψu1i) = 1, and we are in case (ii) by the uniqueness of Lemma 4.95(vii).

Given a word i ∈ Gδ, define

Wi = {wj,i ∈ Sd | j ∈ Gj for some j such that (αj, αid) 6= 0}.

Note that by Lemma 4.95(vi) and (vii), Wi is in bijection with
⋃
j∈I′,(αj ,αid )6=0G

j.

Lemma 4.103. If deg(ψw1i) ≥ 1, then (y1 − yd)ψw1i = 0 in Cδ.

Proof. By Lemma 4.102, we only need consider the case where i ∈ Gδ and w ∈ Wi.

Since deg(ψw1i) ≥ 1, it must be that wi ∈ Gj, where (αj, αid) = −1, so (wi)d = j 6= id

and (wi)1 = i1 = 0. Thus w(1) = 1 and w(d) < d, so by Lemma 4.100(iii), we have
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that

(y1 − yd)ψw1i = ψw(y1 − yw(d))1i,

but y1 − yw(d) = 0 in Cδ by Lemma 4.101(i).

Proposition 4.104. The following is a spanning set for Cδ:

X := {yb1(y1 − yd)mψw1i | i ∈ Gδ, w ∈ Wi,m+ deg(ψw1i) ≤ 1, b ∈ Z≥0}.

Proof. By the basis theorem [20, Theorem 2.5] or [42, Theorem 3.7], we have that

{yb11 · · · y
bd−1

d−1 (y1 − yd)bdψw1i | i ∈ Iδ, w ∈ Sd, bi ∈ Z≥0}

spans Rδ. We get the spanning set X by throwing out elements of this set which are

known to be zero or redundant in Cδ via Lemmas 4.101, 4.102 and 4.103.

4.64. A basis for Cδ

To prove linear independence of X, we construct a graded Rδ-module which

descends to a faithful Cδ-module. Let

V :=

( ⊕
i,j∈Gδ
id=jd

k[z, x]/(x2)

)
⊕

( ⊕
i,j∈Gδ

(αid ,αjd )=−1

k[z, x]〈1〉/(x)

)
,

where z, x are indeterminates in degree 2. We will label polynomials f(z, x) belonging

to the i, j-th summand of V with subscripts, a la fi,j . The seemingly extraneous

indeterminate x in the second group of summands is included for convenience in

describing the action on V .
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Lemma 4.105. The vector space V is a graded Rδ-module, with the action of

generators defined in types C 6= A
(1)
1 as follows:

1k · fi,j = δk,ifi,j

yr · fi,j =


(zf)i,j 1 ≤ r ≤ d− 1;

(zf − xf)i,j r = d

ψr · fi,j =



fsri,j sr is i-admissible;

fsd−1i,j r = d− 1 and id = jd;

εid,jd(xf)sd−1i,j r = d− 1 and id−1 = jd;

0 otherwise.

If C = A
(1)
1 , the action of 1k, yr are as above, but ψ1v = 0 for all v ∈ V .

Proof. Note that this action is well-defined by Lemma 4.99. It is a straightforward

check using the facts on semicuspidal words in Lemma 4.95 that this action obeys

the defining relations of Rδ.

The Rδ-module V descends to a Cδ-module since 1nscV = 0. Moreover, the

elements of our putative basis X act on V as linearly independent operators:

yb1(y1 − yd)mψw1i · 1j,j =


δi,j(z

b)wi,i deg(ψw1i) = 1 (and thus m = 0);

δi,j(z
bxm)wi,i deg(ψw1i) = 0.

This proves

Theorem 4.106. The set X of Proposition 4.104 is a basis for Cδ.
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For each α ∈ Q+ and dominant weight Λ associated to C, there is an important

quotient RΛ
α of Rα called the cyclotomic KLR algebra (see e.g. [20, 6]). Of relevance to

the discussion at hand is the level-one case RΛ0
δ ; it is by definition the quotient of Rδ by

the two-sided ideal generated by the elements {yδi1,01 1i | i ∈ Iδ}. By [24, Lemma 5.1],

when k is a field, {Lδ,i | i ∈ I ′} is a full set of irreducible modules for RΛ0
δ , so 1i = 0

in RΛ0
δ unless i ∈ Gδ. Thus there is a natural surjection Cδ � RΛ0

δ
∼= Cδ/Cδy1Cδ.

We may also construct a map RΛ0
δ → Cδ by defining

1i 7→ 1i, ψr 7→ ψr, yr 7→ yr − y1.

This is a well-defined homomorphism of algebras which splits the natural surjection

Cδ � RΛ0
δ . Thus Theorem 4.106 has the following

Corollary 4.107. Cδ ∼= k[y1] ⊗ RΛ0
δ as graded k-algebras, and RΛ0

δ , considered as a

subalgebra of Cδ, has basis

{(y1 − yd)mψw1i | i ∈ Gδ, w ∈ Wi,m+ deg(ψw1i) ≤ 1}.

4.65. Description of Bδ

The orthogonal idempotents {1i | i ∈ Gδ} in Cδ are primitive, since (1iCδ1i)0 is

1-dimensional. Setting 1j := 1bj and 1∆ =
∑

j∈I′ 1j, we have that Cδ1j ∼= ∆δ,j and

∆δ =
⊕

j∈I′ ∆δ,j
∼= Cδ1∆.

The following theorem establishes a Morita equivialence between the cyclotomic

KLR algebra RΛ0
δ and the zigzag algebra A.

Theorem 4.108. 1∆R
Λ0
δ 1∆

∼= A as graded k-algebras.
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Proof. By Corollary 4.107, 1∆R
Λ0
δ 1∆, has basis

{(y1 − yd)m1j | j ∈ I ′,m ∈ {0, 1}} ∪ {ψi,j1j | i, j ∈ I ′, (αi, αj) = −1}.

Color the vertices of C′ with +’s and −’s in an alternating fashion. We define a linear

map f : 1∆R
Λ0
δ 1∆ → A on the above basis.

f [(y1 − yd)m1i] =


cmei if color(i) = +

−cmei if color(i) = −

f [ψj,i1i] =


εija

j,i if color(i) = +

aj,i if color(i) = −

It is straightforward to check that f is an algebra homomorphism using the lemmas

in §4.63, noting in particular that ψi,jψj,i1i = εij(y1 − yd)1i in Cδ for neighboring i

and j. As f is a bijection of bases, it is an isomorphism.

Since 1∆Cδ1∆
∼= k[y1]⊗ 1∆R

Λ0
δ 1∆ by Corollary 4.107, we have the following

Corollary 4.109. EndCδ(∆δ) ∼= 1∆Cδ1∆
∼= k[z] ⊗ A as graded algebras, where z is an

indeterminate in degree 2.

There is an algebra isomorphism Aop → A given by ai,j 7→ aj,i, so we have

Corollary 4.110. Bδ = EndCδ(∆δ)
op ∼= k[z]⊗ A.

4.7. On the higher imaginary stratum categories

Now we will build on the previous section to explicitly describe the algebra

EndCnδ(∆
◦n
δ ) for all n. We will show that EndCnδ(∆

◦n
δ ) is isomorphic to the rank n

affine zigzag algebra Aaff
n , defined in §4.52 for Γ being the finite type Dynkin diagram
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of type C′, giving a Morita equivalence between Bnδ and Aaff
n when k is a field of

characteristic p = 0 or p > n.

4.71. Endomorphisms of ∆◦nδ

The following lemma follows from consideration of Theorem 4.106:

Lemma 4.111. For i, j ∈ I ′, HomCδ(∆δ,i,∆δ,j) ∼= 1iCδ1j, and 1iCδ1j has basis

{yb1(y1 − yd)m1j | b ∈ Z≥0,m ∈ {0, 1}} if i = j,

and

{yb1ψi,j1j | b ∈ Z≥0} if (αi, αj) = −1,

and is zero otherwise.

Lemma 4.112. For n ∈ Z≥0 we have

dimq EndCnδ(∆
◦n
δ ) =

n!(`+ 2(`− 1)q + `q2)n

(1− q2)n
.

Proof. By the Mackey Theorem, Resmδδ,...,δIndnδδ,...,δ(∆
�n
δ ) has n! subquotients isomorphic

to ∆�nδ . But ∆�nδ is projective as a Cδ ⊗ · · · ⊗ Cδ-module, so these subquotients are

in fact summands. Thus Frobenius Reciprocity gives

EndCnδ(∆
◦n
δ ) ∼= HomCδ···Cδ

(
∆�nδ , (∆�nδ )⊕n!

)
∼= ((EndCδ(∆δ))

⊗n)⊕n!

∼= (k[z]⊗ A)⊗n)⊕n!
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as vector spaces. The result follows by consideration of (4.72) above.

To avoid confusion, let vi be the generating vector of word bi in ∆δ,i, so that vi

corresponds to 1i via the equality ∆δ,i = Cδ1i. Let vδ =
∑

i∈I′ vi ∈ ∆δ. Per the last

section, we have the homomorphisms

ei : ∆δ → ∆δ,i

vδ 7→ vi

z : ∆δ → ∆δ

vδ 7→ y1vδ

c : ∆δ → ∆δ

vδ 7→ (y1 − yd)vδ

ai,j : ∆δ,j → ∆δ,i

vj 7→ ψj,ivi

which generate EndCδ(∆δ) and satisfy the relations in the zigzag algebra. For 1 ≤

r ≤ n, let zr, cr, a
i,j
r ∈ EndCnδ(∆

◦n
δ ) be defined by inserting the relevant map into the

rth slot of ∆�nδ and inducing. Writing ∆i := ∆δ,i1 ◦ · · · ◦∆δ,in for i ∈ (I ′)n, we have

that ∆◦nδ =
⊕

i∈(I′)n ∆i. Let ei be the projection ∆◦nδ → ∆i ⊆ ∆◦nδ induced from

ei1 ⊗ · · · ⊗ ein .

Now we describe a last family of endomorphisms of ∆◦nδ . Let i, j ∈ I ′. As

explained in Chapter III, we have a nonzero degree-zero homomorphism ri,j : Lδ,i ◦

Lδ,j → Lδ,j ◦ Lδ,i. We will describe this map explicitly later in this section. We have

L◦2δ =
⊕

i,j∈I′ Lδ,i ◦ Lδ,j, so we may consider r :=
∑

i,j∈I′ r
i,j as an endomorphism of

L◦2δ . More generally, for 1 ≤ t < n, we have an endomorphism rt of L◦nδ given by

inserting r into the (t, t + 1)-th slots and inducing. It can be seen that r1 . . . , rn−1

satisfy Coxeter relations of the symmetric group Sn, and, together with projections

to summands, generate a space T of dimension `nn! in EndCnδ(L
◦n
δ ) = EndCnδ(L

◦n
δ )0.

Now, for 1 ≤ t < n, we lift rt to some homogeneous r̂t ∈ EndCnδ(∆
◦n
δ )0.

Lemma 4.113.

(i) The homogeneous lift of an endomorphism of L◦nδ to ∆◦nδ is unique.

(ii) The elements r̂1, . . . , r̂n−1 satisfy the Coxeter relations of Sn.
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Proof. The space T ⊆ EndCnδ(L
◦n
δ )0 has a basis which lifts to give `nn! linearly

independent elements in EndCnδ(∆
◦n
δ )0, so by Lemma 4.112, this is a basis for

EndCnδ(∆
◦n
δ )0. It follows that homogeneous lifts must be unique. Part (ii) follows

from (i) and the fact that r1, . . . , rn−1 satisfy Coxeter relations.

Define ξ1 ∈ {±1} in all types as follows:

ξ1 =



1 C = A
(1)
1 ;

ε10 · · · ε`,`−1ε0,` C = A
(1)
`>1;

(−1)` C = D
(1)
` ;

−1 C = E
(1)
` .

Then for all other i ∈ I ′, define ξi such that ξiξj = −1 if (αi, αj) = −1.

Let σ, σ′ ∈ R2δ be the following products of ψ’s, displayed diagrammatically:

σ :=

1 2 · · · d d+1 d+2 · · · 2d

, σ′ :=

1 2 · · · d d+1 d+2 · · · 2d

.

The labels in this case only indicate strand position and are not meant to color the

strands.

In order to understand the multiplicative structure of EndCnδ(∆
◦n
δ ), we will need

to describe the maps r̂t more explicitly and examine commutation relations between

these maps and the others detailed above. The following two lemmas are steps

in this direction. Their proofs are straightforward but rather lengthy exercises in

manipulating KLR diagrams. For this reason we defer the proofs until Chapter VI.
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Lemma 4.114. Let i, j ∈ I ′, and recall that vi⊗ vj is a generator for ∆δ,i ◦∆δ,j. Then

we have

σ′vi ⊗ vj =



ξi[yd ⊗ 1 + 1⊗ (yd − 2y1)]vi ⊗ vi i = j;

ξiεij(ψj,i ⊗ ψi,j)vi ⊗ vj (αi, αj) = −1;

0 otherwise.

Lemma 4.115. Let i, j,m ∈ I ′ with (αi, αj) = −1. Then we have

(ψj,i ⊗ 1)σvm ⊗ vi = [σ(1⊗ ψj,i) + δj,mξj(1⊗ ψj,i)− δi,mξi(ψj,i ⊗ 1)]vm ⊗ vi.

Following [19], let x be an indeterminate in degree 2, and let ι : Rδ → k[x]⊗Rδ

be the algebra homomorphism defined by ι(1i) = 1i, ι(ψr) = ψr, and ι(yr) = yr + x.

Let Lδ,i,x := k[x] ⊗ Lδ,i be the k[x] ⊗ Rδ-module with action twisted by ι. There

is a homomorphism ri,jx,x′ : Lδ,i,x ◦ Lδ,j,x′ → Lδ,j,x′ ◦ Lδ,i,x defined in terms of certain

intertwining elements of Rδ. Then ri,j is equal to

ri,j := [(x− x′)−sri,jx,x′ ]x=x′=0,

where s is maximal such that ri,jx,x′(Lδ,i,x ◦ Lδ,j,x′) ⊆ (x− x′)sLδ,j,x′ ◦ Lδ,i,x.

For i ∈ I ′, let xi ∈ Lδ,i (resp. xj ∈ Lδ,j) be the image of vi in the quotient

∆δ,i � Lδ,i. It can be seen as that

ri,jx,x′(xi ⊗ xj) = (x− x′)κσxj ⊗ xi + (x− x′)κ−1σ′xj ⊗ xi,
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where κ =
∑d

a=1

∑d
b=1 δbia,bjb

. All y′s and ψ’s of positive degree act as zero on Lδ,i

and Lδ,j, so, pushing the results of Lemma 4.114 through to Lδ,j,x′ ◦ Lδi,x shows that

σ′xj ⊗ xi = δi,jξi(x− x′)xj ⊗ xi. Thus ri,j(xi ⊗ xj) = (σ + ξiδi,j)xj ⊗ xi.

It may be seen via Theorem 4.106 and word considerations that (1bibj∆δ,j ◦∆δ,i)0

has basis {vi⊗ vi, σvi⊗ vi} if i = j, and {σvj⊗ vi} if i 6= j. Thus the lifting condition

implies that r̂1(vi⊗vj) = (σ+δi,jξi)vj⊗vi. More generally, for 1 ≤ t < n and i ∈ (I ′)n

we have that r̂t(vi1 ⊗ · · · ⊗ vin) is equal to

(1⊗· · ·⊗ (σ + δit,it+1ξit)⊗ · · ·⊗ 1)vi1 ⊗· · ·⊗ vit−1 ⊗ vit+1 ⊗ vit ⊗ vit+2 ⊗· · ·⊗ vin ,

where σ + δit,it+1ξit occupies the (t, t+ 1)-th slots.

Lemma 4.116. For 1 ≤ t < n, 1 ≤ u ≤ n, and i ∈ (I ′)n,

(r̂ta
i,j
u − a

i,j
st(u)r̂t)ei = 0, (r̂tcu − cst(u)r̂t)ei = 0,

(r̂tzu − zst(u)r̂t)ei =



(δu,t − δu,t+1)ξit(ct + ct+1)ei it = it+1;

(δu,t − δu,t+1)ξitεit+1,ita
it+1,it
t a

it,it+1

t+1 ei (αit , αit+1) = −1;

0 otherwise.

Proof. It is enough to check this in the case n = 2.

r̂1a
i,j
1 (vj ⊗ vm) = (ψj,i ⊗ 1)(σ + δi,mξi)vm ⊗ vi,

ai,j2 r̂1(vj ⊗ vm) = (σ + δj,mξj)(1⊗ ψj,i)vm ⊗ vi.
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The first claim then follows for u = 1 by Lemma 4.115, and since r̂2
1 = 1, the claim

also holds for u = 2, completing the proof of the first statement.

The second statement follows from the first when C 6= A
(1)
1 since ct may be

expressed in terms of aij’s. When C = A
(1)
1 , we have

r̂1c1(v1 ⊗ v1) = [(y1 − y2)⊗ 1](σ + 1)v1 ⊗ v1

c2r̂1(v1 ⊗ v1) = (σ + 1)[1⊗ (y1 − y2)]v1 ⊗ v1.

The equality of these expressions is easily verified.

For the final statement, let i = ji for j, i ∈ I ′. Then for u = 1, we have

r̂1z1eji(vj ⊗ vi) = (y1 ⊗ 1)(σ + δi,jξi)vi ⊗ vj

= σ(1⊗ y1)vi ⊗ vj − σ′vi ⊗ vj + δi,jξi(y1 ⊗ 1)vi ⊗ vj,

after applying a KLR braid relation. Since

z2r̂1eji(vj ⊗ vi) = (σ + δi,jξi)(1⊗ y1)vi ⊗ vj,

the result follows from the definitions of the maps and Lemma 4.114. The case u = 2

follows from the first two statements.

For w = st1 · · · stm ∈ Sn, define r̂w = r̂t1 · · · r̂tm ∈ EndCnδ(∆
◦n
δ )0. By Lemma

4.113(ii) this definition is independent of reduced expression for w. For convenience

we will set ai,it = 1.
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Lemma 4.117. The algebra EndCnδ(∆
◦n
δ ) is generated by the elements ei, r̂t, zu, and

ai,ju (and cu in type A
(1)
1 ). Moreover, EndCnδ(∆

◦n
δ ) has basis

{zt11 · · · ztnn c
u1
1 · · · cunn a

i1,(wj)1
1 · · · ain,(wj)nn r̂wej}, (4.118)

ranging over w ∈ Sn, tm ∈ Z≥0, um ∈ {0, 1}, um ≤ δim,(wj)m , and i, j ∈ (I ′)n such

that (αim , α(wj)m) 6= 0.

Proof. For w ∈ Sn, define the block permutation bl(w) ∈ Snd by

bl(w)(a) = w(da/de)d+ (a− 1 mod d)− d+ 1.

Then we have

zt11 · · · ztnn c
u1
1 · · · cunn a

i1,(wj)1
1 · · · ain,(wj)nn r̂wej(vj1 ⊗ · · · ⊗ vjn) =

ψbl(w−1)(y
t1
1 (y1 − yd)u1ψ(wj)1,i1 ⊗ · · · ⊗ yn(y1 − yd)unψ(wj)n,in)vi1 ⊗ · · · ⊗ vin ,

plus terms of the form ψw′x1⊗· · ·⊗xn, where xr ∈ ∆ir , and w′ ∈ Snd is a minimal left

coset representative for Snd/Sd × · · · ×Sd such that w′ is lower than bl(w−1) in the

Bruhat order. Thus, using Lemma 4.111 and induction on the Bruhat order, it can be

shown that the elements (4.118) form a linearly independent set of endomorphisms.

Now, comparing graded dimension with Lemma 4.112 proves the result.

4.72. Proof of the Main Theorem

Theorem 4.119. EndRnδ(∆
◦n
δ ) ∼= EndCnδ(∆

◦n
δ ) ∼= Aaff

n (C′) as graded k-algebras.
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Proof. We construct a map f : Aaff
n → EndCnδ(∆

◦n
δ ) on generators:

ei 7→ ei, st 7→ r̂t, zt 7→ zt, ai,jt 7→


εija

i,j
t ξj = 1;

ai,jt ξj = −1,

with ct 7→ ct in type A
(1)
1 . By Theorem 4.108, Lemma 4.113, and Lemma 4.116,

images of the generators obey the defining relations of Aaff
n , and hence f defines an

algebra homomorphism. Moreover, f is a bijection (up to sign) of the basis elements

of Lemma 4.118 and Lemma 4.84, so f is an isomorphism.

Corollary 4.120. If k is a field of characteristic p = 0 or p > n, then Bnδ is Morita

equivalent to Aaff
n (C′).

Proof. In this situation the module ∆◦nδ is a projective generator for Bnδ, so Bnδ is

Morita equivalent to EndCnδ(∆
◦n
δ )op ∼= (Aaff

n )op. But the map Aaff
n → (Aaff

n )op which

sends ai,jt 7→ aj,it , and is the identity on other generators, is easily seen to be an algebra

isomorphism, so the result follows.
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CHAPTER V

SKEW SPECHT MODULES AND REAL CUSPIDAL MODULES IN TYPE A

The work in this chapter has appeared in the article [40], which has been submitted

for publication.

In this chapter we develop the theory of skew Specht modules in finite and affine

type A, and investigate their connection to the cuspidal systems developed in the

previous chapters. First we briefly recall the Lie theoretic notation associated with

these types.

5.1. Preliminaries

5.11. Lie theoretic notation

We use notation similar to [27], [24]. Let e ∈ {0, 2, 3, 4, . . .} and I = Z/eZ. Let

Γ be the quiver with vertex set I and a directed edge i → j if j = i − 1 (mod e) .

Thus Γ is a quiver of type A∞ if e = 0 or A
(1)
e−1 if e > 0. The corresponding Cartan

matrix C = (ai,j)i,j∈I is defined by

ai,j :=



2 if i = j;

0 if j 6= i, i± 1;

−1 if i→ j or i← j;

−2 if i� j.

Let (h,Π,Π∨) be a realization of (ai,j)i,j∈I , with root system Φ, positive roots Φ+,

simple roots {αi | i ∈ I}, fundamental dominant weights {Λi | i ∈ I}, and normalized
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invariant form (·, ·) such that (αi, αj) = aij and (Λi, αj) = δi,j. Let P+ be the set

of dominant integral weights, and let Q+ :=
⊕

i∈I Z≥0αi be the positive root lattice.

For α =
∑

i∈I miαi ∈ Q+, define the height of α to be ht(α) =
∑

i∈I mi. When e > 0,

we label the null-root δ =
∑

i∈I αi. Finally fix a level l ∈ Z>0 and a multicharge

κ = (k1, . . . , kl) ∈ I l.

5.12. Words

Sequences of elements of I will be called words, and the set of all words is denoted

〈I〉. If i = i1 · · · id ∈ 〈I〉, then |i| := αi1 + · · ·+ αid ∈ Q+. For α ∈ Q+, denote

〈I〉α := {i ∈ 〈I〉 | |i| = α}.

If α is of height d, then Sd with simple transpositions s1, . . . , sd−1 has a left action

on 〈I〉α via place permutations.

5.13. Young diagrams

An l-multipartition λ of d is an l-tuple of partitions (λ(1), . . . , λ(l)) such that∑l
i=1 |λ(i)| = d. For 1 ≤ i ≤ l, let n(λ, i) be the number of nonzero parts of λ(i).

When l = 1, we will usually write λ = λ = λ(1). The Young diagram of the partition

λ is

{(a, b,m) ∈ Z>0 × Z>0 × {1, . . . , l} | 1 ≤ b ≤ λ(m)
a }.
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We call the elements of this set nodes of λ. We will usually identify the multipartition

with its Young diagram. To each node A = (a, b,m) we associate its residue

resA = resκA = km + (b− a) (mod e) .

An i-node is a node of residue i. The residue content of λ is cont(λ) :=
∑

A∈λ αresA ∈

Q+. Denote

Pκ
α := {λ ∈Pκ | cont(λ) = α}, (α ∈ Q+).

and set Pκ
d :=

⋃
ht(α)=d Pκ

α. For λ,µ ∈Pκ
d , we say λ dominates µ, and write λ D µ,

if

m−1∑
a=1

|λ(a)|+
c∑
b=1

λ
(m)
b ≥

m−1∑
a=1

|µ(a)|+
c∑
b=1

µ
(m)
b

for all 1 ≤ m ≤ l and c ≥ 1.

A node A ∈ λ is removable if λ\{A} is a Young diagram, and a node B /∈ λ is

addable if λ ∪ {B} is a Young diagram. Define λA := λ\{A} and λB := λ ∪ {B}.

Let λ′ = (λ(l)′ , . . . , λ(1)′) signify the conjugate partition to λ, where λ(i)′ is

obtained by swapping the rows and columns of λ(i).

5.14. Tableaux

Let λ ∈Pκ
d . A λ-tableau T is an injective map T : {1, . . . , d} → λ, i.e. a labeling

of the nodes of λ with the integers 1, . . . , d. We also label the inverse of this bijection

with T; if T(r) = (a, b,m) we will also write T(a, b,m) = r. We set resT(r) = res T(r).
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The residue sequence of T is the word

i(T) = ik(T) = resT(1) · · · resT(d) ∈ 〈I〉.

A λ-tableau is row-strict if T(a, b,m) < T(a, c,m) when b < c, and column-strict

if T(a, b,m) < T(c, b,m) when a < c. We say T is standard if it is row- and column-

strict. Let Tab(λ) (resp. St(λ)) be the set of all (resp. standard) λ-tableaux.

Let λ ∈Pκ, i ∈ I, A be a removable i-node, and B be an addable i-node of λ.

We set

dA(λ) := #{addable i-nodes strictly below A} −#{removable i-nodes strictly below A}

dB(λ) := #{addable i-nodes strictly above B} −#{removable i-nodes strictly above B}.

In [3, Section 3.5], the degree of T is defined inductively as follows. If d = 0,

then T = ∅ and deg T := 0. For d > 0, let A be the node occupied by d in T. Let

T<d ∈ St(λA) be the tableau obtained by removing this node, and set

deg T := dA(λ) + deg T<d.

Similarly, define the dual notion of codegree of T by codeg ∅ = 0 and

codeg T := dA(λ) + codeg T<d.

The group Sd acts on the set of λ-tableaux on the left by acting on entries;

considering T as a function λ → {1, . . . , d}, we have w · T = w ◦ T. Let Tλ be the

λ-tableau in which the numbers 1, 2, . . . , d appear in order from left to right along the

191



successive rows, starting from the top. Let Tλ := (Tλ)′, where we define the conjugate

tableau in the obvious way.

For each λ-tableau T, define permutations wT and wT ∈ Sd such that

wTTλ = T = wTTλ.

5.15. Bruhat order

Let ` be the length function on Sd with respect to the Coxeter generators

s1, . . . , sd−1. Let E be the Bruhat order on Sd, so that 1 E w for all w ∈ Sd.

Define a partial order E on St(λ) as follows:

S E T ⇐⇒ wS E wT.

5.16. Skew diagrams and tableaux

Let λ,µ ∈ Pκ, with µ ⊆ λ as Young diagrams. Then we call λ/µ := λ\µ a

skew diagram. A (level one) skew diagram is called a skew hook if it is connected and

does not have two nodes on the same diagonal. We may consider a Young diagram

as a skew diagram with empty inner tableau. With µ fixed, let S κ
µ,d be the of skew

diagrams λ/µ such that |λ/µ| = d. Let S κ
µ =

⋃
S κ
µ,d. Residue and content for

skew diagrams are defined as before; for example cont(λ/µ) :=
∑

A∈λ/µ αresA ∈ Q+.

Denote

S κ
µ,α = {λ/µ ∈ S κ

µ | cont(λ/µ) = α}.

For λ/µ,ν/µ ∈ S κ
µ , we say that λ/µ dominates ν/µ, or λ/µ D ν/µ, if λ D ν.
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For λ/µ ∈ S κ
µ,d, a λ/µ-tableau is a bijection t : {1, . . . , d} → λ/µ. Let

Tab(λ/µ) be the set of λ/µ-tableaux. We define the residue sequence of i(t) in the

same manner as for Young tableaux, and tλ/µ we define to be the λ/µ-tableau in

which the numbers 1, . . . , d appear in order from left to right, starting from the top.

We will write iλ/µ := i(tλ/µ). For every λ/µ-tableau t, define a λ-tableau Y(t) by

setting Y(t)(a, b,m) = Tµ(a, b,m) for (a, b,m) ∈ µ and Y(t)(a, b,m) = t(a, b,m)+ |µ|

for (a, b,m) ∈ λ/µ. For example, if l = 1, λ = (4, 4, 1), and µ = (2, 1, 1), then

tλ/µ = 1 2
3 4 5

, and Y(tλ/µ) =
1 2 5 6
3 7 8 9
4

.

Let St(λ/µ) be the set of standard (i.e. row- and column-strict) λ/µ-tableaux.

For t ∈ St(λ/µ), we define

deg t := deg Y(t)− deg Tµ.

The symmetric group Sd acts on Tab(λ/µ) in the obvious fashion. For t ∈

Tab(λ/µ), define wt by wttλ/µ = t. Define a partial order on Tab(λ/µ) as follows:

s E t if and only if ws E wt.

Lemma 5.1.1. Let s, t ∈ Tab(λ/µ). Then s E t if and only if Y(s) E Y(t).

Proof. Let ŵt be the image of wt under the ‘right side’ embedding Sd ↪→ S|µ|×Sd ↪→

S|λ|. Then wY(t) = ŵtwY(tλ/µ), with `(wY(t)) = `(ŵt) + `(wY(tλ/µ)), and similarly for

wY(s). Since ws E wt if and only if ŵs E ŵt, the result follows.
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Remark 5.1.2. In order to translate between the orders in the various papers cited,

we provide the following dictionary. Our partial order on partitions and tableaux

agrees with that of [3]. In [27] the order on tableaux (which we’ll call EU) amounts

to S EU T ⇐⇒ wS′ E wT′ . As is shown in [27, Lemma 2.18(ii)], when S, T ∈ St(µ),

we have S EU T ⇐⇒ S D T. In [36], the reverse Bruhat order (1 ≥ w) is used

on elements of Sd, and the order on tableaux (which we’ll call EM) is defined (on

row-strict tableaux) by the shape condition in Lemma 5.1.5. Thus Lemma 5.1.5 will

give S EM T ⇐⇒ S D T when S, T are row-strict.

For nodes A,B in λ/µ, we say that A is earlier than B if tλ/µ(A) < tλ/µ(B);

i.e. A is above or directly to the left of B, or in an earlier component.

Let T be a λ-tableau and suppose that r = T(a1, b1,m1) and s = T(a2, b2,m2).

We write r ↗T s if m1 = m2, a1 > a2 and b1 < b2; informally, if r and s are in

the same component of λ and s is strictly to the northeast of r. We write r ⇒Ts if

r ↗T s or m1 > m2. Other rotations of the symbols↗T and ⇒T have similarly obvious

meanings.

The following lemmas are proved in [3] and [36] in the context of Young diagrams,

but the proofs carry over to skew shapes without significant alteration. The first

lemma is obvious.

Lemma 5.1.3. Let t ∈ St(λ/µ). Then srt ∈ St(λ/µ) if and only if r ⇒Tr + 1, or

r + 1 ⇒Tr.

Lemma 5.1.4. Let s, t ∈ Tab(λ/µ). Then s E t if and only if s = (a1b1) · · · (arbr)t

for some transpositions (a1b1), . . . , (arbr) such that for each 1 ≤ n ≤ r we have an < bn

and bn is in an earlier node in (an+1bn+1) · · · (arbr)t than an.

Proof. This follows from applying Lemma 5.1.1 and [3, Lemma 3.4] to Y(s) and

Y(t).
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Given λ/µ ∈ S κ
µ and a row-strict t ∈ Tab(λ/µ), for all 1 ≤ a ≤ d define t≤a to

be the tableau obtained by erasing all nodes occupied by entries greater than a.

Lemma 5.1.5. Let s, t be row-strict λ/µ-tableaux. Then s E t if and only if

sh(Y(s)≤a) D sh(Y(t)≤a) for each a = |µ|+ 1, . . . , |µ|+ d.

Proof. This follows from Lemma 5.1.1 and [36, Theorem 3.8].

Lemma 5.1.6. Let λ/µ ∈ S κ
µ and s, t ∈ St(λ/µ), and r ∈ {1, . . . , d − 1} such that

r ↓t r + 1 or r →t r + 1. Then s / srt implies s E t.

Proof. By [3, Lemma 3.7], Y(s) / Y(srt) = sr+|µ|Y(t) if and only if Y(s) E Y(t), and

the result follows by Lemma 5.1.1.

5.2. Manipulating elements of KLR algebras

Let α ∈ Q+ and ht(α) = d. For every w ∈ Sd, fix a preferred reduced expression

w = sr1 · · · srm , and define ψw = ψr1 · · ·ψrm ∈ Rα. In general ψw depends on the

choice of reduced expression. When w is fully commutative however, i.e., when one

can go from any reduced expression for w to any other using only the braid relations

of the form srst = stsr for |r− t| > 1, the element ψw is independent of the choice of

reduced expression.

For λ/µ ∈ S κ
µ,α and t ∈ Tab(λ/µ), define

ψt := ψwt .
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Lemma 5.2.1. Let t ∈ St(λ/µ). If wt = sr1 · · · srm is a reduced decomposition in Sd,

then

deg t− deg tλ/µ = deg(ψr1 · · ·ψrm1iλ/µ).

Proof. Write c = |µ|. Let st1 · · · stn be a reduced decomposition for wY(tλ/µ). Then

ŵt = sr1+c · · · srm+c is reduced and wY(t) = ŵtwY(tλ/µ) = sr1+c · · · srm+cst1 · · · stn is

reduced. Then by [3, Corollary 3.13] we have

deg Y(t)− deg Tλ = deg(ψr1+c · · ·ψrm+cψt1 · · ·ψtn1iλ)

= deg(ψr1+c · · ·ψrm+c1iY(tλ/µ)) + deg(ψt1 · · ·ψtn1iλ)

= deg(ψr1 · · ·ψrm1iλ/µ) + deg(ψt1 · · ·ψtn1iλ)

and

deg Y(tλ/µ)− deg Tλ = deg(ψt1 · · ·ψtn1iλ),

which implies the result.

Proposition 5.2.1. Let f(y) = f(y1, . . . , yd) ∈ O[y1, . . . yd] be a polynomial in the

generators yr of Rα. Let 1 ≤ r1, . . . , rm ≤ d− 1. Then

(i) f(y)ψr1 · · ·ψrm1i is an O-linear combination of elements of the form

ψε1r1 · · ·ψ
εm
rmg(y)1i, where g(y) ∈ O[y1, . . . , yd], each εi ∈ {0, 1}, and sε1r1 · · · s

εm
rm

is a reduced expression.
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(ii) If w = sr1 · · · srm is reduced, and st1 · · · stm is another reduced expression for w,

then

ψr1 · · ·ψrm1i = ψt1 · · ·ψtm1i +
∑
u/w

duψugu(y)1i,

where each du ∈ O, gu(y) ∈ O[y1, . . . , yd], and each u in the sum is such that

`(u) ≤ m− 3. Alternatively,

ψr1 · · ·ψrm1i = ψt1 · · ·ψtm1i + (∗),

where (∗) is an O-linear combination of elements of the form ψε1r1 · · ·ψ
εm
rmg(y),

where g(y) ∈ O[y1, . . . , yd], εi ∈ {0, 1}, εi = 0 for at least three distinct i’s, and

sε1r1 · · · s
εm
rm is a reduced expression.

Proof. This is proved in [3, Lemma 2.4] and [3, Proposition 2.5], for the case of

cyclotomic KLR algebras, but the cyclotomic relation is not used in the proof.

Theorem 5.2.2. [20, Theorem 2.5], [42, Theorem 3.7] Let α ∈ Q+. Then

{ψwym1
1 · · · y

md
d 1i | w ∈ Sd,m1, . . . ,md ∈ Z≥0, i ∈ 〈I〉α}

is an O-basis for Rα.

5.3. Skew Specht modules

In this section we define the graded skew Specht module Sλ/µ. In fact, the

construction is exactly the same as the one given for graded (row) Specht modules

(associated to Young diagrams) in [27], only applied in the more general context of

skew diagrams. For the reader’s convenience, and since the particulars will be put to
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use often in Section 5.4, we provide the construction of skew Specht modules here.

The ‘spanning’ result [27, Prop. 5.14] and the proof given in that paper also generalize

without much difficulty to the skew case.

5.31. Garnir skew tableaux

Let A = (a, b,m) be a node of λ/µ ∈ S κ. We say A is a Garnir node if

(a+ 1, b,m) is also a node of λ/µ. The A-Garnir belt BA is the set of nodes

BA = {(a, c,m) ∈ λ/µ | c ≥ b} ∪ {(a+ 1, c,m) ∈ λ/µ | c ≤ b}.

The A-Garnir tableau is the λ/µ-tableau gA that is equal to tλ/µ outside the Garnir

belt, and with numbers tλ/µ(a, b,m) through tλ/µ(a+1, b,m) inserted into the Garnir

belt, in order from bottom left to top right.

Lemma 5.3.1. Suppose that λ/µ ∈ S κ
µ , A is a Garnir node of λ/µ, and t ∈

Tab(λ/µ). If t E gA, then t agrees with tλ/µ outside the A-Garnir belt.

Proof. Since wgA fixes the entries outside the Garnir belt, wt ≤ wgA must do the

same.

5.32. Bricks

Take λ/µ ∈ S κ
µ and Garnir node A = (a, b,m) ∈ λ/µ. A brick is a set of nodes

{(c, d,m′), (c, d+ 1,m′), . . . , (c, d+ e− 1,m′)} ⊆ BA
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such that res(c, d,m′) = res(A). Let kA be the total number of bricks in BA, and let

fA be the number of bricks in row a of BA. Label the bricks BA
1 , . . . , B

A
kA in order

from left to right, beginning at the bottom left.

For 1 ≤ r ≤ kA, let wAr ∈ Sd be the element that swaps BA
r and BA

r+1. Define

the group of brick permutations

SA := 〈wA1 , . . . , wAkA−1〉 ∼= SkA .

This is the trivial group if kA = 0, e.g. if e = 0.

Let GarA be the set of row-strict λ/µ-tableaux which are are obtained by the

action of SA on gA. All tableaux in GarA save gA are standard. By Lemma 5.1.5, gA

is the unique maximal element of GarA, and there exists a unique minimal element

tA, which has the bricks BA
1 , . . . , B

A
fA in order from left to right in row a, and the

remaining bricks in order from left to right in row a + 1. By definition, if t ∈ GarA,

then i(t) = i(gA). Define iA as this common residue sequence.

Let DA be the set of minimal length left coset representatives of SfA ×SkA−fA

in SA. We have

GarA = {wtA | w ∈ DA}.

Lemma 5.3.2. Suppose that λ/µ ∈ S κ
µ and A ∈ λ/µ is a Garnir node. Then

GarA\{gA} = {t ∈ St(λ/µ) | t E gA and i(t) = iA}.

Moreover, deg t = deg srg
A − air,ir+1 for all t ∈ GarA\{gA}, where r = gA(A)− 1.

Proof. The first statement is clear from the preceding discussion and Lemma 5.3.1.
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For the second statement, we instead prove that codeg(srg
A) − codeg(t) =

−air,ir+1 , which is equivalent by [3, Lemma 3.12]. By the definition of codegree,

and the fact that Y(t) and Y(srg
A) agree outside of the bricks of the Garnir belt,

it is enough to consider the case where λ/µ is a two-row Young diagram, with

λ = λ/µ = ((kAe−1, (kA−fA)e)), and A = (1, (kA−fA)e, 1). Each brick contributes

0 to codeg(t), and every brick contributes 0 to codeg(srg
A), except for BA

kA−fA (the

rightmost brick in the bottom row), which contributes 2 if e = 2 and 1 if e > 2. Thus

codeg(t) = 0 and codeg(srg
A) = −air,ir+1 , and the result follows.

5.33. The skew Specht module

Fix a Garnir node A ∈ λ/µ. Define

σAr := ψwAr 1iA and τAr := (σAr + 1)1iA .

Write u ∈ SA as a reduced product wAr1 · · ·w
A
ra of simple generators in SA. If u ∈ DA,

then u is fully commutative, and thus we have well-defined elements

{τAu := τAr1 · · · τ
A
ra | u ∈ DA}.

For any s ∈ GarA, we may can write ws = uswtA so that `(ws) = `(us) + `(wtA)

and us ∈ DA, and the elements ψus , ψ
tA and ψs = ψusψ

tA are all independent of the

choice of reduced decomposition.

200



Definition 5.3.3. Let λ/µ ∈ S κ
µ,α, and A ∈ λ/µ be a Garnir node. The Garnir

element is

gA :=
∑
u∈DA

τAu ψ
tA ∈ Rα. (5.1)

By Lemma 5.3.2, all summands on the right side of (5.1) are of the same degree.

Definition 5.3.4. Let α ∈ Q+, d = ht(α), and λ/µ ∈ S κ
µ,α. Define the graded skew

row permutation module Mλ/µ = Mλ/µ(O) to be the graded Rα-module generated

by the vector mλ/µ in degree deg tλ/µ and subject only to the following relations:

(i) 1jm
λ/µ = δj,iλ/µm

λ/µ for all j ∈ 〈I〉α;

(ii) yrm
λ/µ = 0 for all r = 1, . . . , d;

(iii) ψrm
λ/µ = 0 for all r = 1, . . . , d− 1 such that r →tλ/µ r + 1.

Definition 5.3.5. Let α ∈ Q+, d = ht(α), and λ/µ ∈ S κ
µ,α. We define the graded

skew Specht module Sλ/µ = Sλ/µ(O) to be the graded Rα-module generated by the

vector zλ/µ in degree deg tλ/µ and subject only to the following relations:

(i) 1jz
λ/µ = δj,iλ/µz

λ/µ for all j ∈ 〈I〉α;

(ii) yrz
λ/µ = 0 for all r = 1, . . . , d;

(iii) ψrz
λ/µ = 0 for all r = 1, . . . , d− 1 such that r →tλ/µ r + 1;

(iv) gAzλ/µ = 0 for all Garnir nodes A ∈ λ/µ.

In other words, Sλ/µ = (Rα/J
λ/µ
α )〈deg(tλ/µ)〉, where J

λ/µ
α is the homogeneous

left ideal of Rα generated by the elements

(i*) 1j − δj,iλ/µ for all j ∈ 〈I〉α;
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(ii*) yr for all r = 1, . . . , d;

(iii*) ψr for all r = 1, . . . , d− 1 such that r →tλ/µ r + 1;

(iv*) gA for all Garnir nodes A ∈ λ/µ.

The elements (i*)-(iii*) generate a left ideal Kλ/µ such that Rα/K
λ/µ ∼= Mλ/µ. So

we have a natural surjection Mλ/µ � Sλ/µ with kernel Jλ/µ generated by the Garnir

relations gAmλ/µ = 0. This surjection maps mλ/µ to zλ/µ and Jλ/µ = J
λ/µ
α mλ/µ.

For t ∈ Tab(λ/µ), we write

mt := ψtmλ/µ ∈Mλ/µ and vt := ψtzλ/µ ∈ Sλ/µ.

5.34. A basis for Mλ/µand a spanning set for Sλ/µ

Theorem 5.3.6. The elements of the set

{mt | t ∈ Tab(λ/µ) is row-strict}

form an O-basis for Mλ/µ.

Proof. This is [27, Theorem 5.6] in the Young diagram case. But since Mλ/µ is a

permutation module in the sense of [27, §3.6], the proof in the skew case also follows

immediately from [27, Theorem 3.23].

Proposition 5.3.1. The elements of the set

{vt | t ∈ St(λ/µ)} (5.2)

span Sλ/µ over O. Moreover, we have deg(vt) = deg(t) for all t ∈ St(λ/µ).
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Proof. Using Lemma 5.2.1,

deg(vt) = deg(ψt1iλ/µz
λ/µ) = deg(ψt1iλ/µ) + deg(zλ/µ) = deg(t)− deg(tλ/µ) + deg(zλ/µ),

which proves the second statement, as deg(zλ/µ) = deg(tλ/µ) by definition.

The proof of the first statement follows exactly as it does in the Young diagram

case provided in [27, Proposition 5.14]—there are clear skew analogues of the results in

[27, §5.5–5.6]—the only caveat is that our preferred partial order on standard tableaux

is opposite that of [27], so one must swap the direction of ‘/’ signs when necessary,

and make use of the analogous skew dominance results in Lemmas 5.1.1–5.1.6.

5.4. Restrictions of Specht modules

In this section we show that for λ ∈ Pκ
α+β, the Rα,β-module Resα,βS

λ has a

filtration with subquotients isomorphic to Sµ�Sλ/µ, with µ ∈Pκ
α and λ/µ ∈ S κ

µ,β.

As a consequence, we get that (5.2) is an O-basis for Sλ/µ. For the case of Young

diagrams, this was shown in [27, Corollary 6.24]:

Theorem 5.4.1. Let λ ∈Pκ
α. Then Sλ has O-basis {vT | T ∈ St(λ)}.

5.41. Submodules of Resα,βS
λ

Let α, β ∈ Q+ and ht(α) = a, ht(β) = b. Let λ ∈Pκ
α+β, µ ∈Pκ

α. By Theorem

5.4.1, Sλα,β := Resα,β(Sλ) has O-basis {vT | T ∈ B}, where

B = {T ∈ St(λ) | cont(sh(T≤a)) = α},

203



since 1α,βv
T = vT if and only if i(T) = i1 · · · ia+b has αi1 + · · · + αia = α, and is zero

otherwise. Define

Bµ = {T ∈ B | sh(T≤a) D µ} and Cµ = O{vT ∈ Sλ | T ∈ Bµ}.

Lemma 5.4.2. If U, T ∈ B, U E T, and T ∈ Bµ, then U ∈ Bµ.

Proof. If U E T, then by Lemma 5.1.5, sh(U≤a) D sh(T≤a) D µ.

Lemma 5.4.3. Cµ is an Rα,β-submodule of Sλα,β.

Proof. We show that Cµ is invariant under the action of generators of Rα,β. For

idempotents 1ij this is clear. Let T ∈ Bµ.

(i) For 1 ≤ j ≤ a + b, yjv
T is an O-linear combination of vU ∈ B for U / T, by [3,

Lemma 4.8]. By Lemma 5.4.2, each vU is in Cµ.

(ii) For j ∈ {1, . . . , a− 1, a+ 1, . . . , a+ b− 1}, where j →T j + 1 or j ↓T j + 1, then

ψjv
T is a linear combination of vU ∈ B for U / T, by [3, Lemma 4.9], and the

result follows by Lemma 5.4.2.

(iii) For j ∈ {1, . . . , a− 1, a+ 1, . . . , a+ b− 1}, where j ⇒T j+ 1, then ψjv
T is a linear

combination of vU ∈ B for U / T, by [11, Lemma 2.14], and the result follows by

Lemma 5.4.2.

(iv) Assume j ∈ {1, . . . , a − 1, a + 1, . . . , a + b − 1}, and j + 1 ⇒T j. Then sjT . T,

and sjw
T = wsjT, with `(wsjT) = `(wT) + 1. Then by Lemma 5.2.1, ψjv

T =

vsjT +
∑

U/sjT
cUv

U for some constants cU ∈ O. But (sjT)≤a = T≤a, so sjT ∈ Bµ

and the result follows by Lemma 5.4.2.

This exhausts the possibilities for T and completes the proof.
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Now define B.µ =
⋃
ν.µBν = {T ∈ B | sh(T≤a) . µ}. Then C.µ :=

∑
ν.µCν =

O{vT ∈ Sλ | sh(T≤a) . µ} is an Rα,β-submodule of Sλα,β. Define Nµ = Cµ/C.µ, and

write

xT = vT + C.µ ∈ Sλα,β/C.µ

for T ∈ B. To cut down on notational clutter in what follows, write ξ for λ/µ,

ξ(i) for the components λ(i)/µ(i) of λ/µ, and ξ
(i)
j for the jth row of nodes in ξ(i).

Then for T ∈ Tab(µ), t ∈ Tab(ξ), define Tt ∈ Tab(λ) such that (Tt)≤a = T and

Tt(A) = Y(t)(A) for nodes A ∈ ξ. From the definition it is clear that Nµ has

homogeneous O-basis

{xT | T ∈ St(λ), sh(cont(T≤a)) = µ} = {xTt | T ∈ St(µ), t ∈ St(ξ)}.

Write Tµξ := Tµtξ = Y(tξ), and write xµξ for xT
µξ

.

5.42. Constructing a morphism Sµ � Sλ/µ → Nµ

Define a (graded) morphism f from the free module Rα,β〈deg Tµ+ deg tξ〉 to Nµ

by f : 1α,β 7→ xµξ.

Proposition 5.4.1. The kernel of f contains the left ideal Kµ
α ⊗Rβ +Rα ⊗Kξ

β .

Proof. We show that the relevant generators of Kµ
α ⊗ Rβ, given by (i*)–(iii*) in

Definition 5.3.5 are sent to zero by f . The proof for Rα ⊗Kξ
β is similar.
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(i*) First we consider idempotents.

f [(1j − δj,iµ)⊗ 1β] = (1j,β − δj,iµ)xµξ =
∑
k∈Iβ

1jkx
µξ − δj,iµxξ

=
∑
k∈Iβ

δjk,iµiξx
µξ − δj,iµxµξ = δjiξ,iµiξx

µξ − δj,iµxµξ = 0.

(ii*) For 1 ≤ r ≤ a, we have by [3, Lemma 4.8] that f(yr) = yr · xµξ is an O-linear

combination of xU, where U ∈ B and U / Tµξ. But Tµξ is minimal such that

sh(T≤a) = µ, so each U ∈ B.µ, and thus f(yr) = 0.

(iii*) Note that r →Tµ r + 1 implies r →Tµξ r + 1, so by [3, Lemma 4.9] it follows

that for 1 ≤ r ≤ a− 1, f(ψr) = ψrx
µξ is an O-linear combination of xU, where

U ∈ B and U / Tµξ. But then as in (2) this implies that f(ψr) = 0.

The goal in the rest of this section is to show that in fact, the kernel of f contains

the the left ideal Jµα ⊗Rβ +Rα⊗Jξβ , i.e., gAµ⊗1β (resp. 1α⊗gAξ) are sent to zero by

f , for Garnir nodes Aµ ∈ µ (resp. Aξ ∈ ξ). As the proofs for µ and ξ are similar (see

Remark 5.4.9), we focus on the former and leave the latter for the reader to verify.

We will occasionally need to make use of the following lemma, proved in [11, Lemma

2.16]:

Lemma 5.4.4. Suppose λ ∈ Pκ
α, T ∈ St(λ), j1, . . . , jr ∈ {1, . . . , d − 1}, and that

when ψj1 · · ·ψjrzλ is expressed as a linear combination of standard basis elements,

vT appears with non-zero coefficient. Then the expression sj1 · · · sjr has a reduced

expression for wT as a subexpression.
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Note that wµξ := wTµξ is in D
µ
(1)
1 ,ξ

(1)
1 ,...,µ

(l)
n(λ,l)

,ξ
(l)
n(λ,l)

a,b , the set of minimal length

double coset representatives for

Sa ×Sb\Sa+b/Sµ
(1)
1
×S

ξ
(1)
1
× · · · ×S

µ
(l)
n(λ,l)

×S
ξ
(l)
n(λ,l)

,

and as such is fully commutative. Writing n := n(λ, l), in diagrammatic form we

have

wµξ =

µ
(1)
1 ξ

(1)
1 µ

(1)
2 ξ

(1)
2 · · ·

µ
(l)
n−1

ξ
(l)
n−1 µ

(l)
n ξ

(l)
n

· · · · · ·

.

Here we are letting µ
(j)
i in the diagram stand for (a1, . . . , ak), where a1, . . . , ak are the

entries (in order) in Tλ of the nodes contained in the ith row of µ(j), and similarly for

ξ
(j)
i .

Let 1 ≤ i ≤ l, 1 ≤ j ≤ n(λ, i). It will be useful to write wµξ = wDi,jw
R
i,jw

L
i,j, the

decomposition into fully commutative elements of Sa+b given as follows:

wµξ =



µ
(1)
1 ξ

(1)
1 µ

(1)
2 · · ·

ξ
(i)
j−2

µ
(i)
j−1

ξ
(i)
j−1

µ
(i)
j

ξ
(i)
j

µ
(i)
j+1 · · ·

ξ
(l)
n−1 µ

(l)
n ξ

(l)
n

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · · · · ·

wLi,j

wRi,j

wDi,j

.
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Define ψXi,j := ψwXi,j for X ∈ {L,R,D}, and set

ci,j =
∑

1≤h≤i−1
1≤k≤n(λ,h)

µ
(h)
k +

∑
1≤k≤j−1

µ
(i)
k ,

di,j =
∑

1≤h≤i−1
1≤k≤n(λ,h)

ξ
(h)
k +

∑
1≤k≤j−1

ξ
(i)
k .

If Ψ := ψr1 · · ·ψrs for some r1, . . . , rs, then we will write Ψ[c] := ψr1+c · · ·ψrs+c for

admissible c ∈ Z. The following lemma will aid us in translating between Garnir

relations defining Sλ and those defining Sµ.

Lemma 5.4.5. Assume r1, . . . , rs are such that ci,j + 1 ≤ r1, . . . , rs ≤ a − 1, and

Ψ = ψr1 · · ·ψrs . Then

Ψxµξ = ψDi,jψ
L
i,jΨ[di,j]ψ

R
i,jx

λ.

Proof. We go by induction on s, the base case s = 0 being trivial. By assumption we

have

Ψxµξ = ψr1 · · ·ψrsxµξ = ψr1ψ
D
i.jψ

L
i.jψr2+di,j · · ·ψrs+di,jψRi,jxλ.

Write iµ
(h)
k for the residue sequence associated with the nodes in µ

(h)
k in Tλ, and

similarly for iξ
(h)
k . In terms of Khovanov-Lauda diagrams, with the vector xλ pictured
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as being at the top of the diagram, we must show that

i
µ
(1)
1 i

ξ
(1)
1 i

µ
(1)
2 · · · i

ξ
(i)
j−2 i

µ
(i)
j−1 i

ξ
(i)
j−1 i

µ
(i)
j i

ξ
(i)
j i

µ
(i)
j+1 · · · i

ξ
(l)
n−1 iµ

(l)
n iξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · · · · ·

ψRi,j

ψLi,jψr2+di,j
· · ·ψrs+di,j

ψDi,j

ψr1

ψr2+di,j
· · ·ψrs+di,j

ψr1

is equal to

i
µ
(1)
1 i

ξ
(1)
1 i

µ
(1)
2 · · · i

ξ
(i)
j−2 i

µ
(i)
j−1 i

ξ
(i)
j−1 i

µ
(i)
j i

ξ
(i)
j i

µ
(i)
j+1 · · · i

ξ
(l)
n−1 iµ

(l)
n iξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · · · · ·

ψRi,j

ψLi,jψr1+di,j
· · ·ψrs+di,j

ψDi,j

ψr1+di,j
· · ·ψrs+di,j

Let j = wLi,jwr2+di,j · · ·wrs+di,jwRi,jiλ. Since sr1w
D
i,j = wDi,jsr1+di,j and `(sr1w

D
i,j) =

`(wDi,j) + `(sr1), it follows from Lemma 5.2.1 that

ψr1ψ
D
i,j1j = ψDi,jψr1+di,j1j +

∑
u/wDi,j

cuψuψ
εu
r1+di,j

fu(y)1j (5.3)
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for some constants cu ∈ O, polynomials fu(y1, . . . , yb+d), and εu ∈ {0, 1}. Thus it

remains to show that

ψuψ
εu
r1+di,j

fu(y)ψr2+di,j · · ·ψrs+di,jψRi,jψLi,jxλ = 0 ∈ Sλ/C.µ

for all u in the sum in (5.3). Let stR1 · · · stRNR be the preferred reduced expression for

wRi,j, and similarly for wLi,j. Pushing the y’s to the right to act (as zero) on xλ, this is

by lemma 5.2.1 an O-linear combination of terms of the form

ψuψ
εu
r1+di,j

ψε2r2+di,j
· · ·ψεsrs+di,jψ

εs+1

tR1
· · ·ψεs+NR

tRNR
ψ
εs+NR+1

tL1
· · ·ψεs+NR+NL

tL
NL

xλ (5.4)

for some εi ∈ {0, 1}. Write Θ for the sequence of ψ’s in (5.4). Assume vU appears with

nonzero coefficient when Θvλ is expanded in terms of basis elements. Then it follows

from Lemma 5.4.4 that one can write wU diagrammatically by removing crossings

from the diagram

µ
(1)
1 ξ

(1)
1 µ

(1)
2 · · ·

ξ
(i)
j−2 µ

(i)
j−1 ξ

(i)
j−1 µ

(i)
j

ξ
(i)
j

µ
(i)
j+1 · · ·

ξ
(l)
n−1 µ

(l)
n ξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · · · · ·

wRi,j

wLi,jsr1+di,j
· · · srs+di,j

ψDi,j

sr1+di,j
· · · srs+di,j

and in particular, removing at least one crossing from wDi,j, the third row of the

diagram, since u / wDi,j. But in any case, this implies that there is a pink strand that
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ends to the left of a blue strand, i.e., some t ≤ a such that (wU)−1(t) is in ξ
(h)
k for

some h, k. Then sh(U≤a) 6= µ. But since Nµ is an Rα,β-submodule, we must have

U ∈ Bµ. This implies that U ∈ B.µ, and hence xU = 0 ∈ Sλ/Cµ.

Let Aµ be a Garnir node in µ. This is also a Garnir node of λ, and when we

consider it as such, we will label it with Aλ. Let BAλ be the Garnir belt associated

with Aλ, and let BAµ be the Garnir belt of nodes in µ. Assume Aλ is in row j of

the ith component of λ. We subdivide the sets of nodes of µ
(i)
j , µ

(i)
j+1 and ξ

(i)
j in the

following fashion:

(i) We subdivide µ
(i)
j into three sets:

(a) Let µA,1 be the nodes of µ
(i)
j not contained in BAµ .

(b) Let µA,2 be the nodes of µ
(i)
j contained in bricks in BAµ .

(c) Let µA,3 be the nodes of µ
(i)
j contained in BAµ , but not contained in any

brick.

(ii) We subdivide ξ
(i)
j into three sets:

(a) Let ξA,1 be the nodes of ξ
(i)
j contained in a brick in BAλ which contains

nodes of µ.

(b) Let ξA,2 be the nodes of ξ
(i)
j contained in a brick in BAλ which is entirely

contained in ξ.

(c) Let ξA,3 be the nodes of ξ
(i)
j contained in BAλ , but not contained in any

brick.

(iii) We subdivide µ
(i)
j+1 into three sets:
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(a) Let µA,1 be the nodes of µ
(i)
j+1 contained in BAµ but not contained in any

brick.

(b) Let µA,2 be the nodes of µ
(i)
j+1 contained in bricks in BAµ .

(c) Let µA,3 be the nodes of µ
(i)
j+1 not contained in BAµ .

Now write wRi,j = wR
′

i,jw
R′′
i,j , where wR

′
i,j , w

R′′
i,j are given as follows:

wRi,j =



µ
(1)
1 ξ

(1)
1 µ

(1)
2 · · ·

µ
(i)
j ξA,1 ξA,2 ξA,3 µA,1 µA,2 µA,3

ξ
(i)
j+1

µ
(i)
j+2 · · ·

ξ
(l)
n−1 µ

(l)
n ξ

(l)
n

· · ·

· · · · · · · · ·· · ·

· · ·

wR
′′

i,j

wR
′

i,j

.

Let GAλ = ωTAλ and GAµ = ζTAµ , where ω ∈ DAλ and ζ ∈ DAµ . Then ω = ω2ω1,

where ω1, ω2 ∈ SAλ are given as follows:

wGAλ =



µ
(1)
1 ξ

(1)
1 · · ·

µ
(i)
j−1

ξ
(i)
j−1 µA,1 µA,2 µA,3 ξA,1 ξA,2 ξA,3 µA,1 µA,2 µA,3

ξ
(i)
j+1 · · · µ

(l)
n ξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

wTAλ

ω2

ω1

.

Then

ζwTAµwµξ = w(GAµ )tξ = wDi,jw
L
i,jw

R′

i,jw
GAλ = wDi,jw

L
i,jw

R′

i,jω1ω2w
TAλ . (5.5)
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This is best seen diagrammatically. On the right side of (5.5) we have

µ
(1)
1 ξ

(1)
1 · · ·

µ
(i)
j−1

ξ
(i)
j−1 µA,1 µA,2 µA,3 ξA,1 ξA,2 ξA,3 µA,1 µA,2 µA,3

ξ
(i)
j+1 · · · µ

(l)
n ξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

wTAλ

ω2

ω1

wLi,jw
R′
i,j

wDi,j

.

(5.6)

and pulling the µA,2, µA,3 strands to the left gives us the left side of (5.5):

µ
(1)
1 ξ

(1)
1 · · ·

µ
(i)
j−1

ξ
(i)
j−1 µA,1 µA,2 µA,3 ξA,1 ξA,2 ξA,3 µA,1 µA,2 µA,3

ξ
(i)
j+1 · · · µ

(l)
n ξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

wµξ

wT
Aµ

ζ

.
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Let ω1 = wAλ
r11
· · ·wAλr1n1 and ω2 = wAλ

r21
· · ·wAλr2n2 be reduced words for ω1 and ω2 in SAλ .

Now consider

w = (wAλ
r11

)ε
1
1 · · · (wAλr1n1 )ε

1
n1 (wAλ

r21
)ε

2
1 · · · (wAλr2n2 )ε

2
n2 ∈ SAλ , (5.7)

where each εhk ∈ {0, 1}. In other words, w is achieved by deleting simple transpositions

in SAλ from ω.

Lemma 5.4.6. If ε2k = 0 for some 1 ≤ k ≤ n2, then

ψDi,jψ
L
i,jψ

R′

i,j (σ
Aλ
r11

)ε
1
1 · · · (σAλr1n1 )ε

1
n1 (σAλ

r21
)ε

2
1 · · · (σAλr2n2 )ε

2
n2ψTAλxλ = 0.

Proof. By Lemma 5.2.1,

ψDi,jψ
L
i,jψ

R′

i,j (σ
Aλ
r11

)ε
1
1 · · · (σAλr1n1 )ε

1
n1 (σAλ

r21
)ε

2
1 · · · (σAλr2n2 )ε

2
n2ψTAλvλ

is an O-linear combination of elements of the form vT, where a reduced expression

for wT appears as a subexpression in the (not necessarily reduced) concatenation of

reduced expressions associated with

wDi,jw
L
i,jw

R′

i,j(w
Aλ
r11

)ε
1
1 · · · (wAλr1n1 )ε

1
n1 (wAλ

r21
)ε

2
1 · · · (wAλr2n2 )ε

2
n2wTAλ .

In other words, one can write wT by removing crossings in (5.6), and in particular

(since ε2k = 0 for some k), removing at least one of the pink/blue crossings in the

second row. In any case then, there is some pink strand that wT sends to the left

side, i.e., some c ≤ a such that (wT)−1(c) ∈ ξ(h)
k for some h, k. Then sh(T≤a) 6= µ.

But since wT is obtained by removing crossings in w(GAµ )tξ , we have T E GAµtξ. If
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sr is the transposition such that srG
Aµtξ ∈ St(λ), then Lemma 5.1.6 implies that

T E srG
Aµtξ ∈ Bµ, which in turn implies by Lemma 5.4.2 that T ∈ Bµ. But then

T ∈ B.µ, and thus xT = 0 ∈ Sλ/C.µ.

Every w ∈ DAλ can be written as a reduced expression of the form (5.7) for

some εhk ∈ {0, 1}. If ε2k = 0 for some 1 ≤ k ≤ n2, or equivalently, if there is some node

(a, b,m) in ξ such that wTAλ(a, b,m) 6= GAλ(a, b,m), then the above lemma implies

that

ψDi,jψ
L
i,jψ

R′

i,jτ
Aλ
w ψTAλxλ = 0,

and

ψDi,jψ
L
i,jψ

R′

i,jτ
Aλ
w ψTAλxλ = ψDi,jψ

L
i,jψ

R′

i,j (σ
Aλ
r11

)ε
1
1 · · · (σAλr1n1 )ε

1
n1ψω2ψ

TAλxλ

otherwise. Let fAλ and fAµ denote the number of bricks in the top row of BAλ

and BAµ respectively. Note that w = (wAλ
r11

)ε
1
1 · · · (wAλr1n1 )ε

1
n1ω2 is a reduced expression

for an element in DAλ if and only if (wAλ
r11

)ε
1
1 · · · (wAλr1n1 )ε

1
n1 is a reduced expression for

an element in DfAµ ,kAλ−fAλ . Since kAµ = kAλ − (fAλ − fAµ), this allows us to

associate DAµ with DAλ in the following way. Let D̂Aλ be the set of all w ∈ DAλ

such that ε2k 6= 0 for all k. Then there is a bijection between DAµ and D̂Aλ given by

u 7→ u[di,j]ω2.

Lemma 5.4.7. For all u ∈ DAµ ,

τuψ
TAµψµξxλ = ψDi,jψ

L
i,jψ

L′

i,jτu[di,j]ψω2ψ
TAλxλ.

215



Proof. This is easily seen in terms of Khovanov-Lauda diagrams, with xλ pictured as

being at the top of the diagram. The left side:

i
µ
(1)
1 i

ξ
(1)
1 · · · i

µ
(i)
j−1 i

ξ
(i)
j−1 iµ

A,1
iµ
A,2

iµ
A,3

iξ
A,1

iξ
A,2

iξ
A,3

i
µA,1 i

µA,2 i
µA,3 i

ξ
(i)
j+1 · · · iµ

(l)
n iξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ψµξ

ψT
Aµ

τu τu

is by Lemma 5.4.5 equal to

i
µ
(1)
1 i

ξ
(1)
1 · · · i

µ
(i)
j−1 i

ξ
(i)
j−1 iµ

A,1
iµ
A,2

iµ
A,3

iξ
A,1

iξ
A,2

iξ
A,3

i
µA,1 i

µA,2 i
µA,3 i

ξ
(i)
j+1 · · · iµ

(l)
n iξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ψR
′′

i,j

ψR
′

i,j

ψT
Aµ

[di,j ]

ψLi,jτu[di,j ]

ψDi,j

τu[di,j ]
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which, after an isotopy of strands, becomes the right side in the lemma statement:

i
µ
(1)
1 i

ξ
(1)
1 · · · i

µ
(i)
j−1 i

ξ
(i)
j−1 iµ

A,1
iµ
A,2

iµ
A,3

iξ
A,1

iξ
A,2

iξ
A,3

i
µA,1 i

µA,2 i
µA,3 i

ξ
(i)
j+1 · · · iµ

(l)
n iξ

(l)
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ψTAλ

ψω2

τu[di,j ]

ψLi,jψ
R′
i,j

ψDi,j

τu[di,j ]

completing the proof.

Lemma 5.4.8. Let Aµ be a Garnir node of µ. Then f(gAµ ⊗ 1β) = 0.
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Proof. We make use of Lemma 5.4.7 and the bijection between DAµ and D̂Aλ :

f(gAµ ⊗ 1β) = gAµ · xµξ =

 ∑
u∈DAµ

τuψ
TAµ

ψµξxλ

=
∑

u∈DAµ

ψDi,jψ
L
i,jψ

R′

i,jτu[di,j]ψω2ψ
TAλxλ

= ψDi,jψ
L
i,jψ

R′

i,j

∑
u∈DAµ

τu[di,j]ψω2ψ
TAλxλ

= ψDi,jψ
L
i,jψ

R′

i,j

∑
w∈DAλ

τwψ
TAλxλ

= ψDi,jψ
L
i,jψ

R′

i,jg
Aλxλ

= 0.

Remark 5.4.9. Although we have focused on Garnir nodes in µ, there are obvious

analogues (whose proofs are entirely analogous) of Lemmas 5.4.5, 5.4.6, and 5.4.7,

which imply the analogue of Proposition 5.4.8:

f(1α ⊗ gAξ) = 0

for Garnir nodes in ξ.

Proposition 5.4.2. The map f : Rα,β〈deg Tµ + deg tξ〉 → Nµ induces a graded

isomorphism

f : Sµ � Sξ
∼−→ Nµ.
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Proof. We have that f factors through to a map

Rα,β/(J
µ
α ⊗Rβ +Rα ⊗ Jξβ)〈deg Tµ + deg tξ〉 →Nµ

by Lemmas 5.4.1, 5.4.8 and Remark 5.4.9. However, we also have

Rα,β/(J
µ
α ⊗Rβ +Rα ⊗ Jξβ)〈deg Tµ + deg tξ〉 ∼= Rα/J

µ
α 〈deg Tµ〉 ⊗Rβ/J

ξ
β〈deg tξ〉 = Sµ � Sξ.

Moreover, for all T ∈ St(µ), t ∈ St(ξ),

f(vT � vt) = f(ψTvµ � ψtvξ) = ψTψt[a]xµξ = ψTψt[a]ψµξxλ = xTt +
∑
U/Tt

dUx
U

for some constants dU, by Lemma 5.2.1. Since {vT � vt | T ∈ St(µ), t ∈ St(ξ)} is a

spanning set for Sµ� Sξ and {xTt | T ∈ St(µ), t ∈ St(ξ)} is a basis for Nµ, it follows

that f is an isomorphism.

5.43. A basis for Sλ/µ and a filtration for Resα,βS
λ

Proposition 5.4.2 in hand, we may now prove two theorems which complete the

analogy with the definition (1.16) in the semisimple case, and justify our use of the

term skew Specht module for Sλ/µ.

Theorem 5.4.10. Let λ/µ ∈ S κ
µ,α. Then Sλ/µ has a homogeneous O-basis

{vt | t ∈ St(λ/µ)}. (5.8)

Proof. By Proposition 5.2, the set (5.8) spans Sλ/µ over O, and the set is linearly

independent by Proposition 5.4.2.
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Theorem 5.4.11. Let λ ∈ Pκ
α+β. Let {µ1, . . .µk} = {µ ∈ Pκ

α | µ ⊆ λ} and assume

the labels are such that µi . µj =⇒ i < j. Write

Vi :=
i∑

j=1

Cµj = O
{
vT ∈ Sλ | T ∈ St(λ), sh(T≤a) = µj for some j < i

}

for all i. Then

0 = V0 ≤ V1 ≤ V2 ≤ · · · ≤ Vk = Resα,βS
λ

is a graded filtration of Resα,βS
λ by Rα,β-submodules, with subquotients

Vi/Vi−1
∼= Sµi � Sλ/µi .

Proof. The fact that Vk = Resα,βS
λ follows from the fact that B =

⋃k
j=1Bµj and

{vT | T ∈ B} is a basis for Resα,βS
λ. Since Cµi ≥ Cµj if µj D µi, we have

Vi =
i∑

j=1

Cµj = Cµi ⊕
∑
j≤i−1
µj 6.µi

Cµj

and

Vi−1 =
i−1∑
j=1

Cµj =
∑
µj.µi

Cµj ⊕
∑
j≤i−1
µj 6.µi

Cµj = C.µi ⊕
∑
j≤i−1
µj 6.µi

Cµj ,

which implies that Vi/Vi−1
∼= Cµi/C.µi = Nµi

∼= Sµi � Sλ/µi .

Remark 5.4.12. Theorem 5.4.11 may be compared with [15, Theorem 3.1], which

gives a similar result for restrictions of classical Specht modules over the symmetric
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group algebra to Young subgroups. However, the connection between our skew Specht

Rα(F)-modules Sλ/µ and the skew Specht FSn-module S
λ/µ
FSn defined in [15] is not as

direct as may be expected. Taking e = ch F, it is shown in [6] that there exists a

surjection Rn :=
⊕

ht(α)=nRα � RΛi
n
∼= FSn. Inflating S

λ/µ
FSn along this map, we have

an Rn-module inflS
λ/µ
FSn , and truncating Sλ/µ yields an FSn-module prSλ/µ. However

it is not the case that prSλ/µ ∼= S
λ/µ
FSn nor inflS

λ/µ
FSn
∼= Sλ/µ in general, though the

(ungraded) dimensions do agree in the latter case, and both statements hold when

µ = ∅ and κ = (i).

For an explicit example of this difference, take e = ch F > 0, and n > 1. Let

λ = (ne− e+ 1, ne− 2e+ 2, ne− 3e+ 3, . . . , n),

µ = (ne− e, ne− 2e+ 1, ne− 3e+ 2, . . . , n− 1).

Then λ/µ consists of n disconnected nodes of some residue i (depending on κ). The

FSn-module S
λ/µ
FSn is isomorphic to the regular module FSnFSn, and thus inflS

λ/µ
FSn is

reducible. However, Sλ/µ as defined in this paper is irreducible—in fact it is the unique

irreducible Rnαi-module (up to grading shift), see [24, §2.2]. Moreover, prSλ/µ = 0

as FSn has no n!-dimensional irreducible modules.

5.44. Induction product of skew Specht modules

The following theorem was proved in [27, Theorem 8.2] in the context of Young

diagrams, but the proof is applicable with no significant alteration to the more general

case of skew diagrams.
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Theorem 5.4.13. Suppose that λ/µ ∈ S κ
α . Then

Sλ/µ ∼= Sλ
(1)/µ(1) ◦ · · · ◦ Sλ(l)/µ(l)〈dλ/µ〉,

as graded Rα-modules, where

dλ/µ = deg(tλ/µ)− deg(tλ
(1)/µ(1))− · · · − deg(tλ

(l)/µ(l)).

5.5. Joinable diagrams

In this section we present a useful, albeit rather technical, result regarding the graded

characters of skew Specht modules whose associated component diagrams jibe with

each other in a specific sense. This result, together with Theorem 5.4.13, will make it

possible for us to identify cuspidal modules in §5.7 while operating solely at the level

of characters.

Definition 5.5.1. Let l = 2, κ = (k1, k2), and λ = (λ(1), λ(2)) ∈ Pκ. Write xi :=

n(λ, i), and yi := λ
(i)
1 . If (x1, 1, 1) (the bottom left node in λ(1)) and (1, y2, 2) (the

top right node in λ(2)) are such that res(x1, 1, 1) = res(1, y2, 2) + 1, we call λ joinable.

In this section we will assume that λ is joinable. Define the one-part multicharges

κ∗ := (k2 +x1) and κ∗ := (k2 +x1−1). We now define λ∗/µ∗ ∈ S κ∗ and λ∗/µ∗ ∈ S κ∗

by setting:

λ∗ := (λ(1) + y2 − 1, . . . , λ(1)
x1

+ y2 − 1, λ
(2)
1 , . . . , λ(2)

x2
), µ∗ := ((y2 − 1)x1),
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and

λ∗ := (λ(1) + y2, . . . , λ
(1)
x1

+ y2, λ
(2)
2 , . . . , λ(2)

x2
), µ∗ := (yx1−1

2 ).

In other words, λ∗/µ∗ is achieved by shifting the Young diagram associated with λ(1)

until its bottom-left node lies directly above the top-right node of λ(2), and then

viewing this as a one-part skew diagram. Similarly, λ∗/µ∗ is achieved by shifting the

Young diagram associated with λ(1) until its bottom-left node lies directly to the right

of the top-right node of λ(2).

There is an obvious bijection τ ∗ (resp. τ∗) between nodes of λ and λ∗/µ∗ (resp.

λ∗/µ∗), given by

λ(1) 3 (a, b, 1) (a, b+ y2 − 1) ∈ λ∗/µ∗

λ(2) 3 (a, b, 2) (a+ x1, b) ∈ λ∗/µ∗

τ ∗

τ ∗

and, respectively,

λ(1) 3 (a, b, 1) (a, b+ y2) ∈ λ∗/µ∗

λ(2) 3 (a, b, 2) (a+ x1 − 1, b) ∈ λ∗/µ∗

τ∗

τ∗

Note that the charges κ∗ and κ∗ are chosen so that residues of nodes are preserved

under this bijection. Let T ∈ St(λ). Viewing the tableau as a function {1, . . . , d} → λ,

then composing with τ ∗ (resp. τ∗) gives a λ∗/µ∗-tableau (resp. λ∗/µ∗-tableau). Define

T∗ := τ ∗ ◦ T and T∗ := τ∗ ◦ T.

Then we have bijections

{T ∈ St(λ) | T(x1, 1, 1) < T(1, y2, 2)} St(λ∗/µ∗)
τ ∗
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and

{T ∈ St(λ) | T(x1, 1, 1) > T(1, y2, 2)} St(λ∗/µ∗)
τ∗

Example 5.5.1. Let e = 3, κ = (0, 1), λ(1) = (3, 2, 2) and λ(2) = (2, 2). Then λ is

joinable since res(3, 1, 1) = 1 = 0 + 1 = res(1, 2, 2) + 1. Then, with respect to the

row- and column-leading tableaux, we have:

Tλ =

1 2 3

4 5

6 7

8 9

10 11

(Tλ)∗ =

1 2 3

4 5

6 7

8 9

10 11

Tλ =

5 8 11

6 9

7 10

1 3

2 4

(Tλ)∗ =

5 8 11

6 9

7 101 3

2 4

Lemma 5.5.2. Let λ ∈Pκ be joinable, res(1, y2, 2) = i, and let T ∈ St(λ). Then

deg T∗ = deg T−
(
Λi, cont(λ(1))

)
if T(x1, 1, 1) < T(1, y2, 2), and

deg T∗ = deg T−
(
Λi+1, cont(λ(1))

)
if T(x1, 1, 1) > T(1, y2, 2).

Proof. We prove the first statement. The second is similar. Let U = T≤t for some t.

We’ll show that the claim holds for U:

deg(U∗) = deg(U)−
(
Λi, cont(sh(U)(1))

)
, (5.9)

going by induction on the size of sh(U).

For the base case we have sh(U) = (∅,∅), so that deg(U) = 0 = deg(U∗) = 0.
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Now we attack the induction step. By the inductive definition of degree for

tableaux, we just need to show that for every removable node A in U,

dτ∗(A)(sh(Y(U∗)))− dA(sh(U)) =


−1 A ∈ λ(1) and res(A) = i,

0 otherwise.

(5.10)

By the construction of U∗, it is clear that for 1 ≤ r ≤ x1−1 and j ∈ I, the r-th row of

sh(U)(1) has an addable (resp. removable) j-node if and only if the corresponding r-th

row in sh(Y(U∗)) has an addable (resp. removable) j-node. Similarly, for 2 ≤ r ≤ x2,

the r-th row of sh(U)(2) has an addable (resp. removable) j-node if and only if the

corresponding (x1 + r)-th row in sh(Y(U∗)) has an addable (resp. removable) j-node.

Thus it remains to compare addable/removable nodes of rows x1, x1 + 1 in sh(U)(1)

and row 1 in sh(U)(2) with the rows x1, x1 + 1 in sh(Y(U∗)).

For simplicity, we label

– B := (x1 − 1, 1, 1), the bottom-left node in λ(1). Write B∗ := τ ∗(B). Both B

and B∗ have residue i+ 1.

– C := (1, y2 − 1, 2), the node to the left of the top-right node in λ(2). Write

C∗ := τ ∗(C). Both C and C∗ have residue i− 1.

– D := (1, y2, 2), the top-right node in λ(2). Write D∗ := τ ∗(D). Both D and D∗

have residue i.

There are five cases to consider.

(i) {B,C,D} ∩ sh(U) = ∅.

– Row x1 of sh(U)(1) has addable node B iff B∗ is addable in sh(Y(U∗)). Row

x1 of sh(U)(1) has no removable nodes.
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– Row x1 + 1 of sh(U)(1) has no addable/removable nodes.

– Row 1 of sh(U)(2) has an addable (resp. removable) j-node iff row x1 + 1

of sh(Y(U∗)) has an addable (resp. removable) j-node.

– Row x1 of sh(Y(U∗)) has a removable i-node (the bottom-right node of µ∗

to be precise).

From this (5.10) follows.

(ii) {B,C,D} ∩ sh(U) = {B}.

– Row x1 of sh(U)(1) has an addable (resp. removable) j-node iff row x1 of

sh(Y(U∗)) has an addable (resp. removable) j-node.

– Row x1 + 1 of sh(U)(1) has an addable i-node, and no removable nodes.

– Row 1 of sh(U)(2) has an addable (resp. removable) j-node iff row x1 + 1

of sh(Y(U∗)) has an addable (resp. removable) j-node.

From this (5.10) follows.

(iii) {B,C,D} ∩ sh(U) = {C}.

– Row x1 of sh(U)(1) has addable node B iff B∗ is addable in sh(Y(U∗)). Row

x1 of sh(U)(1) has no removable nodes.

– Row x1 + 1 of sh(U)(1) has no addable/removable nodes.

– Row 1 of sh(U)(2) has an addable i-node D. Row 1 of sh(U)(2) has removable

node C iff C∗ is removable in row x1 + 1 of sh(Y(U∗)).

– Row x1 of sh(Y(U∗)) has no removable nodes.

– Row x1 + 1 of sh(Y(U∗)) has no addable nodes.
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From this (5.10) follows.

(iv) {B,C,D} ∩ sh(U) = {B,C}.

– Row x1 of sh(U)(1) has an addable (resp. removable) j-node iff row x1 of

sh(Y(U∗)) has an addable (resp. removable) j-node.

– Row x1 + 1 of sh(U)(1) has an addable i-node and no removable node.

– Row 1 of sh(U)(2) has an addable (resp. removable) j-node iff row x1 + 1

of sh(Y(U∗)) has an addable (resp. removable) j-node.

From this (5.10) follows.

(v) {B,C,D} ∩ sh(U) = {B,C,D}.

– Row x1 of sh(U)(1) has an addable (resp. removable) j-node to the right of

B iff row x1 of sh(Y(U∗)) has an addable (resp. removable) j-node to the

right of B∗. The (i + 1)-node B is not removable in row x1 of sh(U)(1) iff

row x1 + 1 of sh(Y(U∗)) has an addable (i+ 1)-node to the right of D∗.

– Row x1 + 1 of sh(U)(1) has an addable i-node and no removable node.

– Row 1 of sh(U)(2) has an addable (i + 1)-node. Row 1 of sh(U)(2) has

removable node D iff D∗ is removable in row x1 + 1 of sh(Y(U∗)).

From this (5.10) follows.

Thus in all cases, (5.10) is satisfied, and the lemma follows by induction.

Definition 5.5.3. We say that an arbitrary skew diagram λ/µ is minimal if µ
(i)
1 <

λ
(i)
1 and µ

(i)
n(λ,i) = 0 for all i. Less formally, a skew diagram is minimal if, in each

component, it has nodes in the top row and in the leftmost column.
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Definition 5.5.4. Let l=2. We say that λ/µ ∈ S κ is joinable if it is minimal and

λ is joinable.

Assuming λ/µ is joinable, define κ∗, κ∗, xi, yi as before, with respect to λ. In the

same vein as before we construct a skew tableau λ∗/µ∗ by shifting the skew diagram

λ(1)/µ(1) until the lower left node lies above the upper right node of λ(2)/µ(2), and we

construct a skew tableau λ∗/µ∗ by shifting the skew diagram λ(1)/µ(1) until the lower

left node lies directly to the right of the upper right node of λ(2)/µ(2). Specifically,

define λ∗/µ∗ ∈ S κ∗ and λ∗/µ∗ ∈ S κ∗ by setting:

λ∗ := (λ
(1)
1 + y2 − 1, . . . , λ(1)

x1
+ y2 − 1, λ

(2)
1 , . . . , λ(2)

x2
),

µ∗ := (µ
(1)
1 + y2 − 1, . . . , µ(1)

x1
+ y2 − 1, µ

(2)
1 , . . . , µ(2)

x2
),

and

λ∗ := (λ
(1)
1 + y2, . . . , λ

(1)
x1

+ y2, λ
(2)
2 , . . . , λ(2)

x2
),

µ∗ := (µ
(1)
1 + y2, . . . , µ

(1)
x1

+ y2, µ
(2)
2 , . . . , µ(2)

x2
).

With τ∗ and τ ∗ defined as before with respect to λ, we define

Tab(λ∗/µ∗) 3 t∗ := τ ∗ ◦ t and Tab(λ∗/µ∗) 3 t∗ := τ∗ ◦ t

for u ∈ Tab(λ/µ). We have bijections

{t ∈ St(λ/µ) | t(x1, 1, 1) < t(1, y2, 2)} St(λ∗/µ∗)
τ ∗

and

{t ∈ St(λ/µ) | t(x1, 1, 1) > t(1, y2, 2)} St(λ∗/µ∗)
τ∗
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Proposition 5.5.2. Let λ/µ ∈ S κ be joinable, with the top right node in λ(2) having

residue i. Let t ∈ St(λ/µ). Then

deg t∗ = deg t−
(
Λi, cont(λ(1)/µ(1))

)
if t(x1, 1, 1) < t(1, y2, 2), and

deg t∗ = deg t−
(
Λi+1, cont(λ(1)/µ(1))

)
if t(x1, 1, 1) > t(1, y2, 2).

Proof. We prove the first statement. The second is similar. Let ν = λ∗\sh((tλ)∗).

Then by definition,

deg t∗ = deg Y(t∗)− deg T(µ∗) (5.11)

deg t = deg Y(t)− deg Tµ (5.12)

deg Y(t)∗ = deg Y(Y(t)∗)− deg Tν (5.13)

Lemma 5.5.2 gives us

deg Y(t)∗ = deg Y(t)−
(
Λi, cont(λ(1))

)
(5.14)
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Note that Y(Y(t)∗) and Y(t∗) agree outside of µ∗, so

deg Y(t)∗ + deg Tν − deg Y(t∗) = deg Y(Y(t)∗)− deg Y(t∗)

= deg Y(Y(t)∗)≤|µ∗| − deg Y(t∗)≤|µ∗|

= deg Y ((Tµ)∗)− deg T(µ∗)

= deg(Tµ)∗ + deg Tν − deg T(µ∗)

= deg Tµ −
(
Λi, cont(µ(1))

)
+ deg Tν − deg T(µ∗),

(5.15)

using (5.9) in the last step. Combining equations (5.11)—(5.15) yields the result.

Lemma 5.5.5. Let λ/µ ∈ S κ be a joinable skew diagram, and assume the top right

node in λ(2) has residue i. With λ∗/µ∗ ∈ S κ∗ and λ∗/µ∗ ∈ S κ∗ defined as above, we

have

chq q(S
λ/µ) = qd

∗
chq q

(
Sλ
∗/µ∗
)

+ qd∗chq q
(
Sλ∗/µ∗

)
= qdλ/µchq q

(
Sλ

(1)/µ(1) ◦ Sλ(2)/µ(2)
)
,

where

d∗ =
(
Λi, cont(λ(1)/µ(1))

)
d∗ =

(
Λi+1, cont(λ(1)/µ(1))

)
dλ/µ = deg tλ/µ − deg tλ

(1)/µ(1) − deg tλ
(2)/µ(2) .

Proof. The first equality follows from Corollary 5.4.10 and Proposition 5.5.2, via the

bijections that τ ∗ and τ∗ induce on basis elements. The second equality is Theorem

5.4.13.

230



5.6. Cuspidal systems

Our primary motivation in developing the theory of skew Specht modules was to

describe real cuspidal modules.

5.61. Main results

For reader convenience we recall the needed results on cuspidal systems in this

section. Let α ∈ Φ+. Given an Rα-module M , we say M is semicuspidal (resp.

cuspidal) if Resαβ,γM 6= 0 implies that β is a sum of positive roots less than or equal

to (resp. less than) α, and γ is a sum of positive roots greater than or equal to (resp.

greater than) α. The following is proved in [24, 44], and Chapter III:

Theorem 5.6.1.

(i) For every α ∈ Φre
+, there is a unique simple cuspidal Rα-module Lα.

(ii) For every n > 0, the simple semicuspidal Rnδ-modules may be canonically

labeled {L(ν) | ν ` n}, where ν = (ν(1), . . . , ν(e−1)) ranges over (e − 1)-

multipartitions of n.

Let α ∈ Q+. Define the set Π(α) of root partitions of α to be the set of all pairs

(M,ν), where M = (nβ)β∈Ψ is a tuple of nonnegative integers such that
∑

β∈Ψ nββ =

α, and ν is an (e − 1)-multipartition of nδ. There is a bilexicographic partial order

≤ on Π(α), see [24]. Given (M,ν) ∈ Π(α), define the proper standard module

∆(M,ν) := L
◦nβ1
β1
◦ · · · ◦ L◦nβkβk

◦ L(ν) ◦ L
◦nβk+1

βk+1
◦ · · · ◦ L◦nβtβt

〈shift(M,ν)〉,
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where β1, . . . , βt are the real positive roots indexing nonzero entries in M , labeled such

that β1 � · · · � βk � δ � βk+1 · · · � βt, and shift(M,ν) =
∑

i=16=t(βi, βi)nβi(nβi −

1)/4.

Theorem 5.6.2. [24, Main Theorem]

(i) For every root partition (M,ν), the proper standard module ∆(M,ν) has

irreducible head, denoted L(M,ν).

(ii) {L(M,ν) | (M,ν) ∈ Π(α)} is a complete and irredundant system of irreducible

Rα-modules up to isomorphism.

(iii) [∆(M,ν) : L(M,ν)]q = 1, and [∆(M,ν) : L(M, ζ)]q 6= 0 implies (N,ν) ≤

(M, ζ).

(iv) L(M,ν)~ ∼= L(M,ν).

5.62. Minuscule imaginary representations

The ‘smallest’ simple semicuspidal imaginary modules, those in Rδ-mod, are of

particular importance. By the above, they are in bijection with (e−1)-multipartitions

of 1. We label them Lδ,i, for i ∈ I\{0}.

Proposition 5.6.1. For each i ∈ I\{0}, Lδ,i can be characterized up to isomorphism

as the unique irreducible Rδ-module such that i1 = 0 and ie = i for all words i of Lδ,i.

Proof. This is [24, Lemma 5.1, Corollary 5.3].

5.63. Minimal pairs

Let ρ ∈ Φre
+. A pair of positive roots (β, γ) is called a minimal pair for ρ if

(i) β + γ = ρ and β � ρ;
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(ii) for any other pair (β′, γ′) satisfying (i) we have β′ � β or γ′ ≺ γ.

Lemma 5.6.3. Let ρ ∈ Φre
+ and (β, γ) be a minimal pair for ρ. If L is a composition

factor of ∆(β, γ) = Lβ ◦ Lγ, then L ∼= L(β, γ) or L ∼= Lρ, up to shift.

Proof. This follows from the minimality of (β, γ) ∈ Π(ρ)\{ρ} and Theorem 5.6.2(iii).

One can be more precise in the case that (β, γ) be a real minimal pair for ρ; i.e., when

β, γ ∈ Φre
+. Define

pβ,γ := max{n ∈ Z≥0 | β − nγ ∈ Φ+}. (5.16)

Lemma 5.6.4. [24, Remark 6.5]. Let ρ ∈ Φre
+, and let (β, γ) be a real minimal pair for

ρ. Then

[Lβ ◦ Lγ] = [L(β, γ)] + qpβ,γ−(β,γ)[Lρ],

and

[Lγ ◦ Lβ] = q−(β,γ)[L(β, γ)] + q−pβ,γ [Lρ].

Lemmas 5.6.3 and 5.6.4 are useful in inductively constructing cuspidal modules.
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5.64. Extremal words

Let i ∈ I. Define θ∗i : 〈I〉 → 〈I〉 by

θ∗i (j) =


j1 · · · jd−1 if jd = i;

0 otherwise.

Extend θ∗i linearly to a map θ∗i : A 〈I〉 → A 〈I〉. Let x ∈ A 〈I〉, and define

εi(x) := max{k ≥ 0 | (θ∗i )k(x) 6= 0}.

Definition 5.6.5. A word ia11 · · · i
ab
b ∈ 〈I〉, with a1, . . . , ab ∈ Z≥0, is called extremal

for x if

ab = εib(x), ab−1 = εib−1
((θ∗ib)

ab(x)), . . . , a1 = εi1((θ
∗
i2

)a2 · · · (θ∗ib)
ab(x)).

A word i ∈ 〈I〉 is called extremal for M ∈ Rα-mod if it is an extremal word for

chq qM ∈ A I.

The following lemma is useful in establishing multiplicity-one results for Rα-

modules.

Lemma 5.6.6. [24, Lemma 2.28]. Let L be an irreducible Rα-module, and i =

ia11 · · · i
ab
b ∈ 〈I〉α be an extremal word for L. Then dimq Li = [a1]! · · · [ab]!.

5.7. Cuspidal modules and skew hook Specht modules

Take a balanced convex preorder � on Φ+. In this section we prove that the cuspidal

modules Lρ, for ρ ∈ Φre
+ are skew Specht modules associated to certain skew hook

shapes, and provide an inductive process for identifying them as such.
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5.71. Cuspidal modules for a balanced convex preorder

Throughout this section we work with Young diagrams and skew diagrams of

level l = 1. Let κ = (i). For i ∈ I, Let ιi = (1) ∈Pκ
αi

. The following is clear:

Lemma 5.7.1. For i ∈ I, Lαi
∼= Sιi .

Let κ = (0), and ηi ∈ S κ
δ be the hook partition of content δ with a node of

residue i in the bottom row. Let X0 = 0 and define Xi−1 := F{vT ∈ Sηi | resT(e) =

i− 1} ⊆ Sηi for 1 < i ≤ e− 1.

Lemma 5.7.2.

(i) Xi−1 is a submodule of Sηi .

(ii) Xi−1
∼= Lδ,i−1〈1〉 if i > 1.

(iii) Sηi/Xi−1
∼= Lδ,i.

Proof. For i > 1, it is easy to see that

{T ∈ St(ηi) | resT(e) = i− 1} = {T ∈ St(ηi) | deg T = 1}

and

{T ∈ St(ηi) | resT(e) = i} = {T ∈ St(ηi) | deg T = 0},

give a partition of St(ηi), and hence Xi−1 is the span of degree 1 elements in Sηi . As

there are no repeated entries in words of Sη1 , it follows that every negatively-graded

element of Rδ acts as zero on Sη1 , and hence Xi−1 is a submodule. Moreover all

words of Xi−1 are of the form (0, . . . , i − 1), and all word spaces are 1-dimensional

and in degree 1. Thus it follows from Proposition 5.6.1 that Xi−1
∼= Lδ,i−1〈1〉. Then
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all words of Sηi/Xi−1 are of the form (0, . . . , i) and all word spaces are 1-dimensional

and in degree 0, so again it follows from Proposition 5.6.1 that Sηi/Xi−1
∼= Lδ,i.

For 1 ≤ i ≤ e− 1, m ∈ Z≥0, let λm,i/µm,i be the skew hook diagram in S κ
mδ+αi

,

where l = 1, κ = ((1−m)i (mod e) ),

λm,i = (mi+ 1, ((m− 1)i+ 1)e−i, . . . , (i+ 1)e−i, 1e−i)

and

µm,i = (((m− 1)i)e−i, . . . , (2i)e−i, ie−i).

Lemma 5.7.3. For 1 ≤ i ≤ e− 1, m ∈ Z≥0, L(mδ + αi) ∼= Sλ
m,i/µm,i .

Proof. We prove this by induction on m. As λ0,i/µ0,i = ιi, the claim follows by Lemma

5.7.1. Now assume that L(mδ+ αi) ∼= Sλ
m,i/µm,i . It is easy to see that (mδ+ αi, δ) is

a minimal pair for (m+ 1)δ + αi (see [24, §6.1]). By Lemma 5.7.2, the factors of Sηi

are Lδ,i and Lδ,i−1〈1〉. Thus by Lemma 5.6.3 the only possible factors (up to shift) of

Sλ
m,i/µm,i ◦ Sηi are

L((m+ 1)δ + αi) and L(mδ + αi, δ
(j)), for j ∈ I\{0}, (5.17)

where we write δ(j) for the (e−1)-multipartition of 1 which is (1) in the jth component

and empty elsewhere.

Note that λ/µ := (λm,i, ηi)/(µ
m,i,∅) is joinable, with λ∗/µ∗ (as defined in §5.5)

equal to λm+1,i/µm+1,i, so by Lemma 5.5.5, we have

chq q(S
λm,i/µm,i ◦ Sηi) = qachq q(S

ζm+1,i

) + qbchq q(S
λ∗/µ∗)
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for some a, b ∈ Z. By injectivity of the character map [20, Theorem 3.17], it

follows that the only factors of Sλ
m+1,i/µm+1,i

are those in (5.17), up to some shift.

If t ∈ St(λm+1,i/µm+1,i), with i(t) = i1 · · · ik, note that αik−e+1
+ · · · + αik 6= δ, i.e.,

there is no sequence of removable nodes whose residues add up to δ, as is easily

seen. Thus Resmδ+αi,δS
λm+1,i/µm+1,i

= 0. But by adjointness and Theorem 5.6.2(i),

Resmδ+αi,δL(mδ + αi, δ
(j)) 6= 0 for all j ∈ I\{0}. Hence L(mδ + αi, δ

(j)) is not a

factor of Sλ
m+1,i/µm+1,i

for any j, and the only possible factor is L((m+1)δ+αi) some

number of times, with shifts.

Consider the extremal word

i = 0m+11m+1 · · · (i− 1)m+1(e− 1)m+1 · · · (i+ 1)m+1im+2

of Sλ
m+1,i/µm+1,i

. There are ((m+ 1)!)e−1(m+ 2)! distinct t ∈ St(λm+1,i/µm+1,i) such

that i(t) = i, so this is the (ungraded) dimension of the i-word space of Sλ
m+1,i/µm+1,i

.

By Lemma 5.6.6, the dimension of a module with extremal word i must be exactly

([m + 1]!)e−1[m + 2]!, which implies that L((m + 1)δ + αi) can only appear once in

Sλ
m+1,i/µm+1,i

, with some shift.

Let ttop ∈ St(λm+1,i/µm+1,i) be the tableau achieved by entering 1, . . . ,m in the

0-nodes of λm+1,i/µm+1,i from top to bottom, then m+ 1, . . . , 2m in the 1-nodes from

top to bottom, and so forth, until the (i− 1)-nodes are filled, then fill the nodes with

residue e− 1, e− 2, . . . , i in the same fashion, working from top to bottom. Then ttop

has residue sequence i, and

deg ttop =
(e− 1)m(m+ 1)

2
+

(m+ 1)(m+ 2)

2
.
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Let tbot be constructed in the same fashion, except with nodes filled from bottom to

top. Then

deg tbot = −(e− 1)m(m+ 1)

2
− (m+ 1)(m+ 2)

2
.

As these degrees are the greatest and least in the expression ([m + 1]!)e−1[m + 2]!

it follows that Sλ
m+1,i/µm+1,i

is symmetric with respect to grading, and hence

Sλ
m+1,i/µm+1,i ∼= L((m+ 1)δ + αi) with no shift.

For 1 ≤ i ≤ e− 1, m ∈ Z≥1, let l = 1, κ = ((1−m)i (mod e) ), and let λm,i/µm,i

be the skew hook diagram in S κ, where

λm,i = (mi, ((m− 1)i+ 1)e−i, . . . , (i+ 1)e−i, 1e−i−1)

µm,i = (((m− 1)i)e−i, . . . , (2i)e−i, ie−i).

Lemma 5.7.4. For 1 ≤ i ≤ e− 1, m ∈ Z≥1, L(mδ − αi) ∼= Sλm,i/µm,i〈1−m〉.

Proof. We go by induction on m, and the proof proceeds in the same manner as

Lemma 5.7.3. The base case is slightly different however. Sλ1,i/µ1,i is the hook

partition with residue content δ, and upper right corner with residue i− 1.

By [24, Lemma 5.2], L(δ−αi) factors through the cyclotomic quotient to become

the unique irreducible RΛ0
δ−αi-module. Consideration of the words of Sλ1,i/µ1,i shows

that it factors through the cyclotomic quotient as well. Moreover, all of its word

spaces are 1-dimensional and in degree 0, so it follows that Sλ1,i/µ1,i ∼= L(δ − αi).

The induction step proceeds as in Lemma 5.7.3, with (δ,mδ − αi) used as a

minimal pair for (m+ 1)δ−αi. Considering the induction product Sηi ◦Sλ1,i/µ1,i and

using Lemma 5.5.5, one sees that the only possible factor of Sλ1,i/µ1,i is L((m+1)δ−αi),
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some number of times, with shifts. Consideration of the extremal word

i = 0m+11m+1 · · · (i− 1)m+1(e− 1)m+1 · · · (i+ 1)m+1im

shows that L((m+1)δ−αi) appears but once as a factor of Sλ1,i/µ1,i , with some shift.

L((m + 1)δ − αi) must have i-word space of graded dimension ([m + 1]!)e−1[m]!. As

before, we define two standard λ1,i/µ1,i-tableaux; ttop, where the nodes are filled in

from top to bottom according to their order in i, and tbot, where the nodes are filled

similarly from bottom to top. Then

deg ttop =

[
(e− 1)m(m+ 1)

2
+

(m− 1)m

2

]
−m

deg tbot =

[
−(e− 1)m(m+ 1)

2
− (m− 1)m

2

]
−m.

On the right we have the greatest and least degrees in the expression ([m+1]!)e−1[m]!,

shifted by −m, hence L((m + 1)δ − αi) ∼= Sλ1,i/µ1,i〈1 − (m + 1)〉, completing the

proof.

5.72. Identifying cuspidal modules as skew hook Specht modules

We now present an inductive process for identifying cuspidal modules as skew

hook Specht modules with a certain shift.

Proposition 5.7.1. Let α be a real positive root, and assume that for all real positive

roots β with ht(β) < ht(α), we have Lβ ∼= Sλβ/µβ〈cβ〉 for some skew hook diagram

λβ/µβ ∈ S κ
β , where κ = (k) for some k ∈ I and cβ ∈ Z. Then the following process

gives a skew hook diagram λα/µα and cα ∈ Z such that Lα ∼= Sλα/µα〈cα〉.
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(i) If α = mδ + αi for some m ∈ Z≥0 and i ∈ I\{0}, then λα/µα = λm,i/µm,i and

cα = 0.

(ii) If α = mδ − αi for some m ∈ Z≥1 and i ∈ I\{0}, then λα/µα = λm,i/µm,i and

cα = 1−m.

(iii) Else there is a real minimal pair (β, γ) for α.

(a) If λ/µ := (λβ, λγ)/(µβ, µγ) is joinable, then λα/µα = λ∗/µ∗, and

cα = cβ + cγ − pβ,γ + (β, γ) + d∗ − dλ/µ;

(b) else λ/µ := (λγ, λβ)/(µγ, µβ) is joinable, λα/µα = λ∗/µ∗, and

cα = cβ + cγ + pβ,γ + d∗ − dλ/µ,

where d∗, d
∗ are as in Lemma 5.5.5, dλ/µ as in Lemma 5.4.13, and pβ,γ as in

(5.16).

Proof. (1) and (2) are Lemmas 5.7.3 and 5.7.4, so assume we are in case (3). There

exists a real minimal pair (β, γ) for α by [24, Lemma 6.9]. By assumption L(β) ∼=

Sλβ/µβ〈cβ〉, and L(γ) ∼= Sλγ/µγ〈cγ〉. We have β = mδ + (−1)s(αi + · · ·+ αj) for some

s ∈ {0, 1}, 1 ≤ i ≤ j ≤ e−1 and γ = m′δ+(−1)s
′
(αi′+ · · ·+αj′) for some s′ ∈ {0, 1},

1 ≤ i′ ≤ j′ ≤ e− 1. Since β + γ is a real root, one of the following must be true:

s = s′, j + 1 = i′ or s = s′, j′ + 1 = i or s = −s′, j = j′ or s = −s′, i = i′.

Note that since λβ/µβ (resp. λγ/µγ) is a skew hook diagram, s = 0 (resp. s′ = 0)

implies that the lower left node of λβ/µβ (resp. λγ/µγ) has residue i (resp. i′), and
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the top right node has residue j (resp. j′). If s = 1 (resp. s′ = 1), then the lower left

node of λβ/µβ (resp. λγ/µγ) has residue j + 1 (resp. j′ + 1), and the top right node

has residue i− 1 (resp. i′ − 1). In any case then, we see that one of (λβ, λγ)/(µβ, µγ)

or (λγ, λβ)/(µγ, µβ) must be joinable.

Assume the former, and set λ/µ := (λβ, λγ)/(µβ, µγ). Then, using Lemma 5.6.4,

[Sλβ/µβ ◦ Sλγ/µγ ] = q−cβ−cγ [Lβ ◦ Lγ] = q−cβ−cγ [L(β, γ)] + q−cβ−cγ+pβ,γ−(β,γ)[Lα].

Using Lemma 5.5.5 and the fact that chq q is injective on [Rα-mod], we also have

[Sλβ/µβ ◦ Sλγ/µγ ] = qd
∗−dλ/µ [Sλ

∗/µ∗ ] + qd∗−dλ/µ [Sλ∗/µ∗ ].

Thus, Lα must be (a shift of) Sλ
∗/µ∗ or Sλ∗/µ∗ . But 1β,γz

λ∗/µ∗ 6= 0, so Resβ,γS
λ∗/µ∗ 6= 0,

and thus the cuspidality property of L(α) implies it must be the latter, proving the

validity of step (3)(a). If instead, λ/µ := (λβ, λγ, µβ, µγ) is joinable, we use the

second statement in Lemma 5.6.4 and a similar argument to prove the validity of step

(3)(b).

Corollary 5.7.2. For a balanced convex preorder, all real cuspidal modules of Rα are

skew hook Specht modules up to some shift.

Proof. Apply Proposition 5.7.1 inductively, with base case given by Lemma 5.7.1.

Remark 5.7.5. In [32, §8.4], Kleshchev and Ram showed that in finite type A, the

cuspidal modules (associated to a convex lexicographic order) are Specht modules

associated to hook partitions. Thus one can view Corollary 5.7.2 as an affine analogue

of this fact.
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5.73. Cuspidal modules for a special preorder

To give a complete picture, we explicitly describe the skew Specht modules

corresponding to real positive roots in the case of a certain balanced e-row preorder

on Φ+, where the associated skew hook diagrams take on a very regular pattern. Take

(i) mδ + α � m′δ � m′′δ − α, for all m ∈ Z≥0, m′,m′′ ∈ Z≥1, α ∈ Φ′+.

(ii) mδ + αi + · · ·+ αj � m′δ + αi′ + · · ·+ αj′ if

i < i′; or i = i′,m < m′; or i = i′,m = m′, j < j′.

(iii) mδ − αi − · · · − αj � m′δ − αi′ − · · · − αj′ if

i > i′; or i = i′,m > m′; or i = i′,m = m′, j < j′.

Under this preorder, it is easy to see that for any α � δ not of the form mδ + αi, the

positive root β � α immediately preceding α in the order constitutes the lefthand side

of a real minimal pair (β, α−β) for α. Similarly, for α ≺ δ not of the form mδ−αi, the

positive root α � β immediately succeeding α in the order constitutes the righthand

side of a real minimal pair (α− β, β) for α. Then, applying the inductive process in

Proposition 5.7.1, we arrive at:

(i) For 1 ≤ i ≤ j ≤ e− 1 and m ∈ Z≥0, L(mδ+αi + · · ·+αj) ∼= Sλ/µ, where λ/µ is

the minimal skew hook diagram with residues shown on the left in Figure 5.1.

below, with the 0-node appearing on the inner corners m times, and the i-node

appearing on the outer corners m+ 1 times.
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(ii) For 1 ≤ i ≤ j ≤ e − 1 and m ∈ Z≥1, L(mδ − αi − · · · − αj) ∼= Sλ/µ〈1 − m〉,

where λ/µ is the minimal skew hook diagram with residues shown on the right

in Figure 5.1. below, with the 0-node appearing on the inner corners m times,

and the i-node appearing on the outer corners m− 1 times.

···

...

0 1

e−1

i+1

i

i−1 i

i+1

. .
.

···

...

0 1

e−1

i+1

i

i−1 i

i−1

i+1

j

...

···

...

0 1

e−1

j+2

j+1

i−1 i

i+1

. .
.

···

...

0 1

e−1

i+1

i

i−2 i−1

i−1

FIGURE 5.1. Skew hooks associated with real cuspidal modules.
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CHAPTER VI

CALCULATIONS

The work in this chapter has appeared in the articles [29, 28]. It is co-authored

with Alexander Kleshchev. We developed the results in the co-authored material jointly

over many meetings, and, by the nature of collaborative mathematical work, it is

difficult to attribute exact portions of the co-authored material to either Kleshchev or

myself individually.

In this chapter we prove some necessary, but rather technical results cited in

chapters III and IV.

6.1. Imaginary tensor space for non-simply-laced types

In this section we construct the minuscule Rδ-modules Lδ,i of color i for a Cartan

matrix C of non-simply-laced type, along with the endomorphisms τr of Mn = L◦nδ,i

that satisfy the Coxeter relations of the symmetric group Sn.

6.11. Minuscule representations for non-simply-laced types

Write Rz
α = O[z]⊗ORα, where z is an indeterminate element of degree 2. In the

spirit of [19, Section 1.3], we construct in each case an Rz
δ-module Lzδ,i with quotient

isomorphic to Lδ,i as an Rδ-module. Kang, Kashiwara and Kim were able to construct

this z-deformation of arbitrary modules for simply-laced types in general, but for the

non-simply-laced types considered below we are forced to be more explicit. This

approach allows us to construct the nonzero map τ out of the map R defined in [19,
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Chapter 1] which satisfies Coxeter relations, but unfortunately happens to be zero on

Lδ,i ◦ Lδ,i.

6.12. Construction of Lzδ,i in type B
(1)
l

We label the vertices of the diagram B
(1)
l as shown below in Figure 6.1..

0

1 2
· · ·

l−1 l

FIGURE 6.1. The diagram B
(1)
l .

Fix i ∈ I ′. Define

i :=


(0, 2, 3, . . . , l, l, l − 1, . . . , i+ 1, 1, 2, . . . , i) if i < l;

(0, 2, 3, . . . , l, 1, 2, . . . , l) if i = l.

Let Ci be the connected component of i in the weight graph Gδ. For j ∈ Ci, 1 ≤ k ≤

2l, define constants

ξj,r =



1 if jr = l and jt 6= l for all t < r

−1 if jk = l and jt = l for some t < r

0 otherwise

Let Lzδ,l be the graded free O[z]-module on basis

B = {vj | j ∈ Ci},
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where each vj is in degree 0. For i 6= l, let Lzδ,i be the graded free O[z]-module on

basis

B = {v(c)
j | c ∈ {±1}, j ∈ Ci},

where v
(c)
j is in degree c.

Define an action of generators of Rz
δ on Lzδ,l as follows:

1kvj := δj,kvj

yrvj :=


z2vj if ξj,r = 0

ξj,rzvj if ξj,r 6= 0

ψrvj :=


vsrj if jr · jr+1 = 0

0 otherwise.

If i 6= l, define an action of generators of Rz
δ on Lzδ,i as follows:

1kv
(c)
j := δj,kv

(c)
j

yrv
(c)
j :=



z2v
(c)
j if ξj,r = 0

ξj,rzv
(1)
j if ξj,r 6= 0, c = 1

−ξj,r
(
zv

(−1)
j + v

(1)
j

)
if ξj,r 6= 0, c = −1

ψrv
(c)
j :=



v
(c)
srj

if jr · jr+1 = 0

v
(−1)
j if c = 1, jr = jr+1 = l

0 otherwise.

246



Proposition 6.1. The formulas above define a graded action of Rz
δ on Lzδ,i, and Lzδ,i is

O[z]-free on basis B.

Proof. Assume i < l. We check that the given action agrees with the algebra relations

(2.42)–(2.48). That relations (2.42), (2.44), and (2.47) are satisfied is clear. For

purposes of checking relations we will have cause to combine cases to write the action

of yk and ψk as

yrv
(c)
j = [(1− δjr,l)z2 + ξj,rcz]v

(c)
j − δc,−1ξj,rv

(1)
j

ψrv
(c)
j = δjr·jr+1,0v

(c)
srj

+ δc,1δjr,jr+1δjr,lv
(−1)
j .

We omit idempotents 1j in the below, considering only j ∈ Ci, as other idempotents

act as zero and thus cause the the remaining relations to be satisfied.

Relation (2.43). We have

ytyrv
(c)
j :=yt

[
[(1− δjr,l)z2 + ξj,rcz]v

(c)
j − δc,−1ξj,rv

(1)
j

]
=[(1− δjr,l)z2 + ξj,rcz]

[
[(1− δjt,l)z2 + ξj,tcz]v

(c)
j − δc,−1ξj,tv

(1)
j

]
− δc,−1ξj,r

[
[(1− δjt,l)z2 + ξj,tcz]v

(1)
j

]
=[(1− δjr,l)z2 + ξj,rcz][(1− δjt,l)z2 + ξj,tcz]v

(c)
j

− δc,−1

[
(1− δjr,l)ξj,tz2 + (1− δjt,l)ξj,rz2 + 2ξj,rξj,t

]
v

(1)
j ,

which is invariant under the exchange of r and t, hence ytyrv
(c)
j = yrytv

(c)
j .

Relation (2.45). Assume jr · jr+1 = 0. Then

ytψrv
(c)
j = [(1− δ(srj)t,l)z

2 + ξsrj,tcz]v
(c)
srj
− δc,−1ξsrj,tv

(1)
srj

ψrysrtv
(c)
j = [(1− δjsrt,l)z

2 + ξj,srtcz]v
(c)
srj
− δc,−1ξj,srtv

(1)
srj
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We have (srj)t = jsrt, and since jr 6= jr+1, we have ξj,srt = ξsrj,t. Then

(ytψr − ψrysrt)v
(c)
j = 0 = δjr,jr+1(δt,r+1 − δt,r)v(c)

j .

Next assume jr = jr+1 = l, c = 1. Then

ytψrv
(1)
j = [(1− δjt,l)z2 − ξj,t]v(−1)

j − ξj,tv(1)
j

ψrysrtv
(1)
j = [(1− δjsrt,l)z

2 + ξj,srtz]v
(−1)
j .

There are a few cases to consider:

(i) t 6= r, r + 1. Then ξj,srt = ξj,t = δjt,l = δjsrt,l = 0, so

(ytψr − ψrysrt)v
(c)
j = 0 = δjr,jr+1(δt,r+1 − δt,r)v(c)

j .

(ii) t = r. Then ξj,t = δjt,l = δjsrt,l = 1, ξj,srt = −1, so

(ytψr − ψrysrt)v
(c)
j = −v(1)

j = δjr,jr+1(δt,r+1 − δt,r)v(c)
j .

(iii) t = r + 1. Then ξj,srt = δjt,l = δjsrt,l = 1, ξj,t = −1, so

(ytψr − ψrysrt)v
(c)
j = v

(1)
j = δjr,jr+1(δt,r+1 − δt,r)v(c)

j .

Now assume jr = jr+1 = l, c = −1. Then

ytψrv
(−1)
j = 0

ψrysrtv
(−1)
j = −ξj,srtv

(−1)
j .
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If t 6= r, r+ 1, then ξj,srt = 0. If t = r, then ξj,srt = −1, and t = r+ 1, then ξj,srt = 1.

In all these cases (3.2.8) is satisfied.

This leaves jr · jr+1 6= 0, with jr 6= 0 or jr+1 6= 0. Then ytψrv
(c)
j = ψrysrtv

(c)
j =

0. For j ∈ Ci, jr = jr+1 implies jr = jr+1 = l, so we have jr 6= jr+1. Then

δjr,jr+1(δt,r+1 − δt,r)v(c)
j = 0, so in all cases (2.45) is satisfied.

Relation (2.46). If jr · jr+1 ≥ 0, then this relation is clearly satisfied. So assume

jr · jr+1 < 0. In this case ψ2
rv

(c)
j = 0. Then we just check a few cases:

(i) jr, jr+1 6= l. Then

Qjr,jr+1(yr, yr+1)v
(c)
j = εjr,jr+1(yr − yr+1)v

(c)
j = εjr,jr+1 [z

2v
(c)
j − z

2v
(c)
j ] = 0.

(ii) jr = l − 1, jr+1 = l. Then since j ∈ Ci, we have ξj,r = 0, ξj,r+1 = 1, and

Qjr,jr+1(yr, yr+1)v
(c)
j = εl−1,l(yr − y2

r+1)v
(c)
j

= εl−1,l[z
2v

(c)
j − yr+1(czv

(c)
j − δc,−1v

(1)
j )]

= εl−1,l[z
2v

(c)
j − (cz(czv

(c)
j − δc,−1v

(1)
j )− δc,−1zv

(1)
j )] = 0.

(iii) jr = l, jr+1 = l − 1. Then since j ∈ Ci, we have ξj,r = −1, ξj,r+1 = 0, and

Qjr,jr+1(yr, yr+1)v
(c)
j = εl,l−1(y2

r − yr+1)v
(c)
j

= εl,l−1[yr(−czv(c)
j + δc,−1v

(1)
j )− z2v

(c)
j ]

= εl,l−1[(−cz(−czv(c)
j + δc,−1v

(1)
j )− δc,−1v

(1)
j )− z2v

(c)
j ] = 0.

Thus relation (2.46) is satisfied.
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Relation (2.48). We have

ψrψr+1ψrv
(c)
j = δjr·jr+1,0δjr j̇r+2,0

δjr+1·jr+2,0v
(c)
srsr+1srj

+ δc,1δjr·jr+1,0δjr+1,jr+2δjr+1,lv
(−1)
sr+1srj

+ δc,1δjr·jr+1,0δjr,jr+2δjr,lv
(−1)
j

+ δc,1δjr·jr+2,0δjr,jr+1δjr,lv
(−1)
srsr+1j

ψr+1ψrψr+1v
(c)
j = δjr·jr+1,0δjr j̇r+2,0

δjr+1·jr+2,0v
(c)
sr+1srsr+1j

+ δc,1δjr·jr+1,0δjr+1,jr+2δjr+1,lv
(−1)
sr+1srj

+ δc,1δjr·jr+1,0δjr,jr+2δjr,lv
(−1)
j

+ δc,1δjr·jr+2,0δjr,jr+1δjr,lv
(−1)
srsr+1j

.

So, since srsr+1sr = sr+1srsr+1, we have

(ψr+1ψrψr+1 − ψrψr+1ψr)v
(c)
j = 0.

Thus, if jr 6= jr+2, relation (2.48) is satisfied. If j ∈ Ci is such that jr = jr+2, it

follows that jr = jr+2 = l, and jr · jr+1 = 0. Then Qjr,jr+1 = 1, and again (2.48) is

satisfied.

The relations in case i = l are more easily verified by similar computations.

6.13. Construction of Lzδ,i in type C
(1)
l

We label the vertices of the diagram C
(1)
l as shown in Figure 6.2..

Fix i ∈ I ′. Let Lzδ,i,0 be the graded free 1-dimensional O[z]-module on generator

x0 (in degree 0). Define an action of Rz
α0

on Lzδ,i,0 by 1(0)x0 = x0, y1x0 = z2x0.
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0 1 2
· · ·

l−1 l

FIGURE 6.2. The diagram C
(1)
l .

Define

j(1) =


(1, . . . , l − 1, l, l − 1, . . . i+ 1) if i < l;

(1, . . . , l − 1) if i = l.

Let Lzδ,i,1 be the graded free 1-dimensional O[z]-module on generator x1 (in degree 0).

Define an action of generators of Rz
δ−α0−···−αi as follows:

1kx1 := δj(1),kx1

yrx1 :=



zx1 if r < l;

z2x1 if r = l;

−zx1 if r > l.

ψrx1 := 0.

If i > 1, define

j(2) = (1, . . . , i− 1),
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and let Lzδ,i,2 be the graded free 1-dimensional O[z]-module on generator x2 (in degree

0). Define an action of generators of Rz
α1+···+αi−1

on Lδ,i,2 as follows:

1kx2 := δj(2),kx2

yrx2 := −zx2

ψrx2 := 0.

Let Lzδ,i,3 be the graded free 1-dimensionalO[z]-module on generator x3 (in degree

0). Define an action of Rz
αi

on Lδ,i,3 by

1(i)x3 = x3

y1x3 =


−zx3 if i < l;

z2x3 if i = l.

Proposition 6.2. The formulas above define a graded action of the algebras Rz
α0

,

Rz
δ−α0−···−αi , Rz

α1+···+αi−1
and Rz

αi
on the modules Lzδ,i,0, Lzδ,i,1, Lzδ,i,2, and Lzδ,i,3

respectively, which are O[z]-free on their respective bases.

Proof. It is easily checked that the given action agrees with the algebra relations

(2.42)–(2.48).

Now define the Rz
α0,δ−α0−αi,αi-module

Lzδ,i =


Lδ,i,0 � Lδ,i,1 � Lδ,i,3 if i = 1;

Lδ,i,0 � Lδ,i,1 ◦ Lδ,i,2 � Lδ,i,3 if i > 1.
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If i = 1, write x = x0⊗x1⊗x3 and j = (0, j(1), 1). Otherwise write x = x0⊗x1⊗x2⊗x3

and j = (0, j(1), j(2), i). Then x is a word vector of word j, and Lzδ,i is O[z]-free on

basis

B = {ψux | u ∈ D1,2l−i−1,i−1,1
1,2l−2,1 }.

We are most of the way to defining an action of the standard generators of Rz
δ on

Lzδ,i. The generators 1k, yr, and ψr (for 1 < r < 2l − 1) act as already prescribed by

membership in the subalgebra Rz
α0,δ−α0−αi,αi . It remains to define ψ1v = ψ2l−1v = 0,

and 1kv = 0 (if k1 6= 0 or k2n 6= i) for all v ∈ Lzδ,i.

Proposition 6.3. The description above defines a graded action of Rz
δ on Lzδ,i, and Lzδ,i

is O[z]-free on basis B.

Proof. We check that the given action agrees with the algebra relations (2.42)–(2.48)

for Rz
δ . By construction, all relations that do not involve ψ1 or ψ2l−1 are easily seen

to be satisfied due to the local nature of the relations and the fact that Lzδ,i,1 ◦Lzδ,i,2 is

an Rz
δ−α0−αi-module. Additionally, all relations that involve 1k with k1 6= 0 or k2l 6= i

are trivially satisfied. We check the rest of the relations that are not immediately

obvious below, for basis vectors ψux ∈ B.

Relation (2.45). There is no u ∈ D1,2l−i−1,i−1,1
1,2l−2,1 such that (uj)2 = 0 or (uj)2l−1 =

i, so we just need verify that the left side of the relation is always zero. Indeed, ψ1

and ψ2l−1 always act as zero, and the action of y1 and y2l commute with all ψr’s by

construction, giving the result.

Relation (2.46). We have ψ2
1(ψux) = 0. Note that (uj)1 = 1, so we check:

Q0,1(y1, y2) · ψux = ε01(y1 − y2
2)ψux = ε01(z2ψux− y2

2ψux).
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Now either u(2) = 2, in which case y2
2ψux = ψuy

2
2x = z2ψux, or u(2) > 2, in which

case ψu = ψ′uψ2 · · ·ψ2l−ix for some ψu′ that does not involve ψ1 or ψ2. Then

y2
2ψux = y2

2ψ
′
uψ2 · · ·ψ2l−ix = ψu′y

2
2ψ1 · · ·ψ2l−ix.

Diagrammatically, y2
2ψ2 · · ·ψ2l−ix is of the form

0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i

=

0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i

−
0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i

−
0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i

where we picture the vector x as being at the top of each diagram. But then this is

z2ψ2 · · ·ψ2l−ix− zψ3 · · ·ψ2l−ix+ zψ3 · · ·ψ2l−ix = z2ψ2 · · ·ψ2l−ix,

so y2
2ψux = z2ψux, and thus Q0,1(y1, y2) · ψux = 0 in any case.

On the other side, we have ψ2
2l−1(ψux) = 0. Note that either (uj)2l−1 = i − 1

or (uj)2l−1 = i + 1. The case i = l is handled similarly to the above argument.

For simplicity assume i ≤ l − 2 (again the case i = l − 1 is handled similarly). If

(uj)2l−1 = i− 1, then ψu does not involve ψ2l−2 or ψ2l−1, and thus

Qi−1,i(y2l−1, y2l) · ψux = εi−1,i(y2l−1 − y2l) · ψux = εi−1,i(y2l−1ψux+ zψux),

but y2l−1ψux = ψuy2l−1x = −zψux, so this is zero. If (uj)2l−1 = i+ 1, then

Qi+1,i(y2l−1, y2l) · ψux = εi+1,i(y2l−1 − y2l) · ψux = εi+1,i(y2l−1ψux+ zψux),
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and ψu can be written ψu′ψ2l−2 · · ·ψ2l−i for some ψu′ that does not involve ψ2l−2 or

ψ2l−1. Then

y2l−1ψux = y2l−1ψu′ψ2l−2 · · ·ψ2l−ix = ψu′y2l−1ψ2l−2 · · ·ψ2l−ix.

Diagrammatically, y2l−1ψ2l−2 · · ·ψ2l−ix is of the form

0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i−1 i

=

0 1 2 · · · l−1 l l−1 · · · i+1 1 2 · · · i−1 i

which is −zψ2l−2 · · ·ψ2l−ix, so y2l−1ψux = −zψux. Thus Qi+1,i(y2l−1, y2l) · ψux = 0.

Relation (2.48). The only case for which this relation is non-trivial is when

i = l − 1. Indeed, in all other cases there is no k = uj where k1 = k3 or k2l−2 = k2l.

When i = l− 1, the non-trivial case occurs when (uj)2l−2 = l− 1, (uj)2l−1 = l. Then

ψu can be written ψu′ψ2l−3 · · ·ψlψ2l−2 · · ·ψl+1 for some ψu′ not involving ψ2l−3, ψ2l−2

or ψ2l−1. Then

Ql−1,l(y2l, y2l−1)−Ql−1,l(y2l−2, y2l−1)

y2l − y2l−2

ψux

= εl−1,l

(y2
2l − y2l−1)− (y2

2l−2 − y2l−1)

y2l − y2l−2

ψux

= εl−1,l(y2l + y2l−2) · ψux

= εl−1,l(−zψux+ y2l−2ψux)

= εl−1,l(−zψux+ ψu′y2l−2ψ2l−3 · · ·ψlψ2l−2 · · ·ψl+1x)

Diagrammatically, y2l−2ψ2l−3 · · ·ψlψ2l−2 · · ·ψl+1x is of the form

0 1 2 · · · l−1 l 1 2 · · · l−2 l−1

=

0 1 2 · · · l−1 l 1 2 · · · l−2 l−1
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But this is zψ2l−3 · · ·ψlψ2l−2 · · ·ψl+1x, so y2l−2ψux = zψux, and we are done.

6.14. Construction of Lzδ,i in type F
(1)
4

We label the vertices of the diagram F
(1)
4 as shown below in Figure 6.3..

0 1 2 3 4

FIGURE 6.3. The diagram F
(1)
4 .

Fix i ∈ I ′. If i ∈ {1, 2}, let X be the set of the following tuples:

(1, 2, 3, 4, 5, 6), (1, 3, 2, 4, 5, 6), (1, 2, 3, 5, 4, 6),

(1, 3, 2, 5, 4, 6), (3, 1, 2, 4, 5, 6), (1, 2, 3, 5, 6, 4),

(3, 1, 2, 5, 4, 6), (1, 3, 2, 5, 6, 4), (3, 1, 2, 5, 6, 4),

(3, 1, 5, 2, 4, 6), (1, 3, 5, 2, 6, 4), (3, 1, 5, 2, 6, 4),

(3, 5, 1, 2, 6, 4), (3, 1, 5, 6, 2, 4), (3, 5, 1, 6, 2, 4),

(3, 5, 1, 2, 4, 6), (1, 3, 5, 6, 2, 4), (1, 3, 5, 2, 4, 6).

If i = 3, let X be the set of the following tuples:

(1, 2, 3, 4, 5, 6), (1, 3, 2, 4, 5, 6), (1, 2, 3, 5, 4, 6),

(1, 3, 2, 5, 4, 6), (3, 1, 2, 4, 5, 6), (3, 1, 2, 5, 4, 6),

(3, 1, 5, 2, 4, 6), (3, 5, 1, 2, 4, 6), (1, 3, 5, 2, 4, 6).

If i = 4, let X be the set of the following tuples:

(1, 2, 3, 4, 6, 5), (1, 3, 2, 4, 6, 5), (3, 1, 2, 4, 6, 5).
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For a ∈ {1, . . . , 6}, define

ωa =


3, a ∈ {1, 3, 4, 6}

4, a ∈ {2, 5}

χa =


1 a ∈ {1, 2, 4}

−1 a ∈ {3, 5, 6}.

For ν ∈ X, define

iν =



(0, 1, 2, ων1 , ων2 , ων3 , 2, ων4 , ων5 , ων6 , 2, 1), i = 1

(0, 1, 2, ων1 , ων2 , ων3 , 2, ων4 , ων5 , ων6 , 1, 2), i = 2

(0, 1, 2, ων1 , ων2 , ων3 , 2, ων4 , ων5 , 1, 2, ων6), i = 3

(0, 1, 2, ων1 , ων2 , ων3 , 2, ων4 , 1, 2, ων5 , ων6), i = 4.

Let Ciν be the connected iν-component of the word graph Gδ. Let Lzδ,i be the free

graded O[z]-module on basis

B = {vν,j | ν ∈ X, j ∈ Ciν}.
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If i ∈ {1, 2}, the grading is given by

deg vν,j =



3, ν = (1, 3, 2, 5, 4, 6)

2, ν ∈ {(1, 2, 3, 5, 4, 6), (1, 3, 2, 4, 5, 6)}

1, ν ∈ {(1, 2, 3, 4, 5, 6), (3, 1, 2, 5, 4, 6), (1, 3, 2, 5, 6, 4), (1, 3, 5, 2, 4, 6)}

0, ν ∈ {(3, 1, 2, 4, 5, 6), (1, 2, 3, 5, 6, 4), (3, 5, 1, 2, 4, 6), (1, 3, 5, 6, 2, 4)}

−1, ν ∈ {(3, 1, 2, 5, 6, 4), (3, 1, 5, 2, 4, 6), (1, 3, 5, 2, 6, 4), (3, 5, 1, 6, 2, 4)}

−2, ν ∈ {(3, 5, 1, 2, 6, 4), (3, 1, 5, 6, 2, 4)}

−3, ν = (3, 1, 5, 2, 6, 4).

If i = 3, the grading is given by

deg vν,j =



2, ν = (1, 3, 2, 5, 4, 6)

1, ν ∈ {(1, 2, 3, 5, 4, 6), (1, 3, 2, 4, 5, 6)}

0, ν ∈ {(1, 2, 3, 4, 5, 6), (3, 1, 2, 5, 4, 6), (1, 3, 5, 2, 4, 6)}

−1, ν ∈ {(3, 1, 2, 4, 5, 6), (3, 5, 1, 2, 4, 6)}

−2, ν = (3, 1, 5, 2, 4, 6).

If i = 4, the grading is given by

deg vν,j =



1, ν = (1, 3, 2, 4, 6, 5)

0, ν = (1, 2, 3, 4, 6, 5)

−1, ν = (3, 1, 2, 4, 6, 5).
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For j ∈ Ciν , let µ(j) be the list of positions in j occupied by 3 or 4, in increasing

order. If jr ∈ {3, 4}, let l(r, j) ∈ {1, . . . , 6} be such that (µ(j))l(r,j) = r. For example,

if j = (0, 1, 2, 3, 3, 2, 4, 3, 4, 3, 2, 1), then µ(j) = (4, 5, 7, 8, 9, 10), and l(8, j) = 4.

We now define an action of generators of Rz
δ on Lzδ,i:

1kvν,j = δj,kvν,j .

yrvν,j =


z2vν,j , jr ∈ {0, 1, 2}

χνl(r,j)(zvν,j + Y (r, ν, j)), jr ∈ {3, 4}

ψrvν,j =



vν,srj , jr · jr+1 = 0

Ψ(r, ν, j), jr, jr+1 ∈ {3, 4}

0, otherwise.
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where

Y (r, ν, j) =



vj,(1,3,2,4,5,6), ν = (3, 1, 2, 4, 5, 6), l(r, j) ∈ {1, 2}

vj,(1,2,3,5,4,6), ν = (1, 2, 3, 5, 6, 4), l(r, j) ∈ {5, 6}

vj,(1,3,2,5,4,6), ν = (3, 1, 2, 5, 4, 6), l(r, j) ∈ {1, 2}

vj,(1,3,2,5,4,6), ν = (1, 3, 2, 5, 6, 4), l(r, j) ∈ {5, 6}

vj,(1,3,2,5,6,4), ν = (3, 1, 2, 5, 6, 4), l(r, j) ∈ {1, 2}

vj,(3,1,2,5,4,6), ν = (3, 1, 2, 5, 6, 4), l(r, j) ∈ {5, 6}

vj,(1,3,5,2,4,6), ν = (3, 1, 5, 2, 4, 6), l(r, j) ∈ {1, 2}

vj,(3,1,2,5,4,6), ν = (3, 1, 5, 2, 4, 6), l(r, j) ∈ {3, 4}

vj,(1,3,2,5,6,4), ν = (1, 3, 5, 2, 6, 4), l(r, j) ∈ {3, 4}

vj,(1,3,5,2,4,6), ν = (1, 3, 5, 2, 6, 4), l(r, j) ∈ {5, 6}

vj,(1,3,5,2,6,4), ν = (3, 1, 5, 2, 6, 4), l(r, j) ∈ {1, 2}
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and, continuing:

Y (r, ν, j) =



vj,(3,1,2,5,6,4), ν = (3, 1, 5, 2, 6, 4), l(r, j) ∈ {3, 4}

vj,(3,1,5,2,4,6), ν = (3, 1, 5, 2, 6, 4), l(r, j) ∈ {5, 6}

ε34vj,(1,2,3,5,6,4), ν = (3, 5, 1, 2, 6, 4), l(r, j) ∈ {1, 2, 3, 4}

vj,(3,5,1,2,4,6), ν = (3, 5, 1, 2, 6, 4), l(r, j) ∈ {5, 6}

vj,(1,3,5,6,2,4), ν = (3, 1, 5, 6, 2, 4), l(r, j) ∈ {1, 2}

ε43vj,(3,1,2,4,5,6), ν = (3, 1, 5, 6, 2, 4), l(r, j) ∈ {3, 4, 5, 6}

−vj,(1,2,3,4,5,6), ν = (3, 5, 1, 6, 2, 4)

ε34vj,(1,2,3,5,4,6), ν = (3, 5, 1, 2, 4, 6), l(r, j) ∈ {1, 2, 3, 4}

ε43vj,(1,3,2,4,5,6), ν = (1, 3, 5, 6, 2, 4), l(r, j) ∈ {3, 4, 5, 6}

vj,(1,3,2,5,4,6), ν = (1, 3, 5, 2, 4, 6), l(r, j) ∈ {3, 4}

vj,(1,3,2,4,6,5), ν = (3, 1, 2, 4, 6, 5), l(r, j) ∈ {1, 2}

0, otherwise.
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We also have

Ψ(r, ν, j) =



vsl(r,j)ν,srj νl(r,j) < νl(r,j)+1, sl(r,j)ν ∈ X

2ε43zvsrj,(1,2,3,4,5,6), ν = (1, 3, 2, 4, 5, 6), l(r, j) = 2

2ε34zvsrj,(1,2,3,4,5,6), ν = (1, 2, 3, 5, 4, 6), l(r, j) = 4

2ε43zvsrj,(1,2,3,5,4,6), ν = (1, 3, 2, 5, 4, 6), l(r, j) = 2

2ε34zvsrj,(1,3,2,4,5,6), ν = (1, 3, 2, 5, 4, 6), l(r, j) = 4

ε34vsrj,(1,2,3,4,5,6), ν = (3, 1, 2, 4, 5, 6), l(r, j) = 2

ε43vsrj,(1,2,3,4,5,6), ν = (1, 2, 3, 5, 6, 4), l(r, j) = 4

ε34vsrj,(1,2,3,5,4,6), ν = (3, 1, 2, 5, 4, 6), l(r, j) = 2

2ε34zvsrj,(3,1,2,4,5,6), ν = (3, 1, 2, 5, 4, 6), l(r, j) = 4

2ε43zvsrj,(1,2,3,5,6,4), ν = (1, 3, 2, 5, 6, 4), l(r, j) = 2

ε43vsrj,(1,3,2,4,5,6), ν = (1, 3, 2, 5, 6, 4), l(r, j) = 4

ε34vsrj,(1,2,3,5,6,4), ν = (3, 1, 2, 5, 6, 4), l(r, j) = 2

ε43vsrj,(3,1,2,4,5,6), ν = (3, 1, 2, 5, 6, 4), l(r, j) = 4

ε43vsrj,(3,1,2,4,5,6), ν = (3, 1, 5, 2, 4, 6), l(r, j) = 4

ε34vsrj,(1,2,3,5,6,4), ν = (1, 3, 5, 2, 6, 4), l(r, j) = 2,
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and, continuing:

Ψ(r, ν, j) =



ε34(2zvsrj,(3,1,5,2,6,4)

+vsrj,(1,3,5,2,6,4)

+vsrj,(3,1,2,5,6,4)), ν = (3, 5, 1, 2, 6, 4), l(r, j) = 2

ε43(2zvsrj,(3,1,5,2,6,4)

+vsrj,(3,1,5,2,4,6)

+vsrj,(3,1,2,5,6,4)), ν = (3, 1, 5, 6, 2, 4), l(r, j) = 4

2ε34zvsrj,(3,1,5,6,2,4)

+ε34vsrj,(1,3,5,6,2,4)

−vsrj,(3,1,2,4,5,6), ν = (3, 5, 1, 6, 2, 4), l(r, j) = 2

2ε43zvsrj,(3,5,1,2,6,4)

+ε43vsrj,(3,5,1,2,4,6)

−vsrj,(1,2,3,5,6,4), ν = (3, 5, 1, 6, 2, 4), l(r, j) = 4
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and, continuing:

Ψ(r, ν, j) =



ε34(2zvsrj,(3,1,5,2,4,6)

+vsrj,(1,3,5,2,4,6)

+vsrj,(3,1,2,5,4,6)), ν = (3, 5, 1, 2, 4, 6), l(r, j) = 2

−vsrj,(1,2,3,4,5,6), ν = (3, 5, 1, 2, 4, 6), l(r, j) = 4

−vsrj,(1,2,3,4,5,6), ν = (1, 3, 5, 6, 2, 4), l(r, j) = 2

ε43(2zvsrj,(1,3,5,2,6,4)

+vsrj,(1,3,2,5,6,4)

+vsrj,(1,3,5,2,4,6)), ν = (1, 3, 5, 6, 2, 4), l(r, j) = 4

ε34vsrj,(1,2,3,5,4,6), ν = (1, 3, 5, 2, 4, 6), l(r, j) = 2

ε43vsrj,(1,3,2,4,5,6), ν = (1, 3, 5, 2, 4, 6), l(r, j) = 4

2ε43zvsrj,(1,2,3,4,6,5), ν = (1, 3, 2, 4, 6, 5), l(r, j) = 2

ε34vsrj,(1,2,3,4,6,5), ν = (3, 1, 2, 4, 6, 5), l(r, j) = 2

0 otherwise.

Proposition 6.4. The formulas above define a graded action of Rz
δ on Lzδ,i, and Lzδ,i is

O[z]-free on basis B.

Proof. That the given action agrees with the algebra relations (2.42)–(2.48) for Rz
δ

has been checked via computer.

6.15. Construction of Lzδ,i in type G
(1)
2

We label the vertices of the diagram G
(1)
2 as shown below in Figure 6.4.. Fix
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0 1 2

FIGURE 6.4. The diagram G
(1)
2 .

i ∈ I ′. If i = 1, let X be the set of the following tuples:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

If i = 2, let X be the set of the following tuples:

(1, 2, 3), (2, 1, 3).

For the type G2 case, we assume O = C when defining Lzδ,i. For a ∈ {1, 2, 3}, define

χa =



1 a = 1

ξ a = 2

ξ2 a = 3.

For ν ∈ X, define

i =


(0, 1, 2, 2, 2, 1), i = 1

(0, 1, 2, 2, 1, 2), i = 2.

Let Lzδ be the free graded O[z]-module on basis

B = {vν | ν ∈ X}.
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If i = 1, the grading is given by

deg vν =



3, ν = (1, 2, 3)

1, ν ∈ {(2, 1, 3), (1, 3, 2)}

−1, ν ∈ {(2, 3, 1), (3, 1, 2)}

−3, ν = (3, 2, 1).

If i = 2, the grading is given by

deg vν =


1, ν = (1, 2, 3)

−1, ν = (2, 1, 3).

We now define an action of generators of Rz
δ on Lzδ :

1kvν = δk,ivν .

yrvν =



z3vν , jr ∈ {0, 1}

χνr−2zvν + Y (r − 2, ν), r ∈ {3, 4}

χν3zvν + Y (3, ν), r = 5, i = 1

ξ2zvν , r = 6, i = 2

ψrvν =


vsr−2ν , r ∈ {3, 4}, νr−2 < νr−1, sr−2ν ∈ X

0, otherwise,
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where

Y (t, ν) =



(−1)tv(1,2,3) ν = (2, 1, 3), t ∈ {1, 2}

(−1)t+1v(1,2,3) ν = (1, 3, 2), t ∈ {2, 3}

−v(1,3,2) ν = (2, 3, 1), t = 1

−v(2,1,3) ν = (2, 3, 1), t = 2

v(2,1,3) + v(1,3,2) ν = (2, 3, 1), t = 3

−v(1,3,2) − v(2,1,3) ν = (3, 1, 2), t = 1

v(1,3,2) ν = (3, 1, 2), t = 2

v(2,1,3) ν = (3, 1, 2), t = 3

−v(2,3,1) ν = (3, 2, 1), t = 1

−v(3,1,2) + v(2,3,1) ν = (3, 2, 1), t = 2

v(3,1,2) ν = (3, 2, 1), t = 3

Proposition 6.5. The formulas above define a graded action of Rz
δ on Lzδ,i, and Lzδ,i is

O[z]-free on basis B.

Proof. That the given action agrees with the algebra relations (2.42)–(2.48) for Rz
δ

has been checked via computer.

6.16. Construction of Lδ,i for non-simply-laced types

Let C be a Cartan matrix of type B
(1)
l , C

(1)
l , F

(1)
4 , or G

(1)
2 , and fix i ∈ I ′.

Proposition 6.6. Viewed as an Rδ-module, Lzδ,i has submodule W = O{zkb | k >

0, b ∈ B}, and Lzδ,i/W
∼= Lδ,i.
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Proof. Rz
δ has a two-sided ideal Rz

δz, with Rz
δ/R

z
δz
∼= Rδ as O-algebras. Lzδ,i is free as

an O-module with basis {zkb | k ∈ Z≥0, b ∈ B}, and has an Rz
δ-submodule Rz

δzL
z
δ,i =

O{zkb | k ∈ Z>0, b ∈ Bi}. Then L′δ,i := Lzδ,i/R
z
δzL

z
δ,i is an Rz

δ/R
z
δz
∼= Rδ-module which

is free as an O-module with basis {b | b ∈ B}.

All words j of L′δ,i have j1 = 0, je = i by construction. Thus all composition

factors are Lδ,i by [24, Corollary 5.3]. By considering the graded dimension of any

extremal word space in L′δ,i, it is clear that Lδ,i has composition multiplicity one in

L′δ,i, hence L′δ,i = Lδ,i.

Note that in the case of G2, where we previously assumed O = C, the coefficients

of the action of Rδ on the basis of Lδ,i are integral, so we may consider instead the

Z-form and extend scalars to construct Lδ,i for arbitrary O.

6.17. The endomorphism τr : Mn →Mn for non-simply-laced types

Let z, z′ be algebraically independent, and write Rz,z′
α for O[z, z′] ⊗O Rα. Then

Lz
′

δ,i ◦Lzδ,i and Lzδ,i ◦Lz
′

δ,i are Rz,z′

2δ -modules that are free as O[z, z]-modules. Recall the

map RLz
′
δ,i,L

z
δ,i

: Lz
′

δ,i ◦Lzδ,i → Lzδ,i ◦Lz
′

δ,i, and the intertwining elements ϕ defined in [19].

Proposition 6.7. Let vz ∈ Lzδ,i be a word vector of word i, with ykv
z = ckz

akvz for all

admissible k. Then RLz
′
δ,i,L

z
δ,i

(vz
′ ⊗ vz) is equal to

0 i2 i3 · · · ie 0 i2 i3 · · · ie

∏
k,m
ik=im

(ckz
ak − cmz′am )

+

0 i2 i3 · · · ie 0 i2 i3 · · · ie

∏
k,m>1
ik=im

(ckz
ak − cmz′am )

.
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When we diagrammatically describe module elements, we always picture the

vector as being at the top of the diagram, the algebra elements below and acting

upwardly, and O[z, z′]-coefficients at the bottom.

Proof. Note that i1 = 0, and ik 6= 0 for all k > 1. Let w1 be the block permutation of

the tensor factors as in (3.23). Then by definition RLz
′
δ,i,L

z
δ,i

(vz
′ ⊗ vz) = ϕw1(v

z ⊗ vz′).

We write this diagrammatically as

0 i2 i3 · · · ie 0 i2 i3 · · · ie

where any strand crossings in the gray section are understood to represent ϕ’s instead

of ψ’s. Assume k is the smallest such that ik = ie. Then the above is equal to

0 i2 ·· ik ik+1 ·· ie 0 i2 ·· ie−1 ie

−

0 i2 ·· ik ik+1 ·· ie 0 i2 ·· ie−1 ie

+

0 i2 ·· ik ik+1 ·· ie 0 i2 ·· ie−1 ie

.

By the commuting properties of the block intertwiner (see [19, Lemma 1.3.1]), we can

move the beads up to act on the tensor factors, and in the third term the ik-strand

can be pulled to the left, giving

0 i2 ·· ik ik+1 ·· ie 0 i2 ·· ie−1 ie

(ckz
ak − cez′ae )

+

0 i2 ·· ik ik+1 ·· ie 0 i2 ·· ie−1 ie

.
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The latter term is zero however; ψ1L
z
δ,i = 0 in all cases. We get a similar result for

the next smallest k′ such that ik′ = ie, and we work our way up the ie-strand to get

0 i2 · · · ie 0 i2 ·· ie−1 ie

∏
ik=ie

(ckz
ak − cez′ae )

.

Then we apply the same arguments to the ie−1-strand, and work our way up the

strands recursively, until we have

0 i2 · · · ie 0 i2 ·· ie−1 ie

∏
k,m>1
ik=im

(ckz
ak − cmz′am )

.

Then applying the definition of ϕ to the lone (0, 0)-crossing gives the result.

6.18. The map RLz
′
δ,i,L

z
δ,i

in type B
(1)
l

Fix i ∈ I ′. Recall the construction of Lzδ,i from section 6.12. Define the word

i :=

 (0, 2, 3, . . . , l − 1, l, l, l − 1, . . . , i+ 1, 1, 2, . . . , i) if i < l;

(0, 2, 3, . . . , l, 1, 2, . . . , l) if i = l.
(6.8)

Then i is an extremal word for Lzδ,i. Let

vz1 := v
(1)
i (i < l), vz1 := vi (i = l).
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Then vz1 is a vector of word i that generates Lzδ,i.

Proposition 6.9.

R(vz
′

1 ⊗ vz1) ∈ (z2 − z′2)4l−4
[
σ + (−1)l+i + (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′

1 ).

Proof. First, assume i < l. In view of Proposition 6.7, we focus on rewriting the term

C =

0 2 ·· i i+1 ·· l−1 l l l−1 ·· i+1 1 2 ·· i 0 2 ·· i i+1 ·· l−1 l l l−1 ·· i+1 1 2 ·· i

The algebra braid relation implies that
2 0 2

opens to become
2 0 2

, since if

the 0-strand is moved to the right side of the (2, 2)-crossing, it slides up to induce

a (0, 2)-crossing in the second factor or a (1, 2)-crossing in the first factor, both of

which are zero. In the future we will simply say that a shape such as ‘opens’ if the

the term in the associated algebra relation induces such strand crossings that act

as zero on either of the tensor factors. Next, the braids
3 2 3

through
l−1 l−2 l−1

open

in succession, giving

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

ε02ε23 · · · εl−2,l−1
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This is equal to A+B, where

A =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

ε02ε23 · · · εl−2,l−1

and

B =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

ε02ε23 · · · εl−1,l

The latter diagram is meant to stand for a sum of two terms; one taken with the black

bead in place and one with the gray bead. We focus on A for now. The upper
l l−1 l

opens, giving beads on the l-strands which move up to act on the tensor factors,

introducing a factor of (−z+z′). Next, the lower
l l−1 l

braid opens. Pulling strands

to the right, the braids
l−1 l l−1

through
i+1 i+2 i+1

open in succession. We now apply

the quadratic algebra relation to open
l−1 l

. One term in this relation is zero, and

the other has
l−1 l−1

, which becomes
n−1n−1

.

Next,
l−1 l−2 l−1

opens, and we apply the quadratic relation to
l−2 l−1

. Again one

term in this relation is zero, and the other has
l−2 l−2

, which becomes
l−2 l−2

. This
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process repeats for braids
l−2 l−3 l−2

through
i+1 i i+1

, giving

A =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+iε02ε23 · · · εi−1,i(z − z′)

.

Now, focusing on B and moving the beads up to act on the tensor factors, we

have that B = B1 +B2, where

B1 =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

ε02ε23 · · · εl−1,l(z + z′)

and

B2 =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)ε02ε23 · · · εl−1,l

.

We focus on B1. The braids
l−1 l l−1

through
i+1 i+2 i+1

open in succession. Then

l l−1 l

opens, introducing a quadratic term
l l−1

which opens, introducing
l−1 l−1

,

which becomes
l−1 l−1

. This process repeats with the braids
l−1 l−2 l−1

through
i+2 i+1 i+2

.
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Then
i+1 i i+1

opens, leaving
l l

, which becomes
l l

, and we have

B1 =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+iε02ε23 · · · εi−1,i(z + z′)

.

Now we consider B2. The braids
l−1 l l−1

through
i+1 i+2 i+1

open in succession. Then

l l−1 l

opens, leading to a quadratic term
l l−1

which opens to give
l−1 l−1

which

becomes
l−1 l−1

. This process repeats with braids
l−1 l−2 l−1

through
i+2 i+1 i+2

. Finally,

the
i+1 i i+1

braid opens, giving

B2 =

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+iε02ε23 · · · εi−1,i

Now we prove the following claim.

Claim.

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

is equal to (−1)ε02ε23 · · · εi−1,i(z
2 − z′2)vz1 ⊗ vz

′
1 .
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Proof of Claim. The braid
i i+1 i

opens, then the quadratic factor
i i+1

opens,

introducing a factor of (z2 − z′2). Then the braids
i−1 i i−1

through
1 2 1

open in

succession, giving

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)ε12 · · · εi−1,i(z
2 − z′2)

.

Next
i−1 i

opens, introducing
i i

, which becomes
i i

. The process repeats with

the quadratic factors
i−2 i−1

through
1 2

. Next the braids
2 0 2

and
3 2 3

through

i i−1 i

open in succession, proving the claim.

Then, applying the claim, we have that C = A+B1 +B2 is equal to

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+i+1(z2 − z′2)(z − z′)

.

+

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+i+1(z2 − z′2)(z + z′)

.

+

0 2 · · · l−1 l l l−1 · · · i+1 1 2 · · · i 0 2 · · · i i+1 · · · l−1 l l l−1 · · · i+1 1 2 · · · i

(−1)l+i+1(z2 − z′2)

.

Finally, simplifying and applying Proposition 6.7 gives the result.
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Now we assume i = l. Let

C =

0 2 · · · l−1 l 1 2 · · · l−1 l 0 2 · · · l−1 l 1 2 · · · l−1 l

.

We now attempt to simplify this term. The braids
2 0 2

and
3 2 3

through
l l−1 l

open in succession. This last relation introduces a factor of (z + z′), giving

0 2 · · · l−1 l 1 2 · · · l−1 l 0 2 · · · l−1 l 1 2 · · · l−1 l

ε02ε23 · · · εl−1,l(z + z′)

.

Now the braids
l−1 l l−1

and
l l−1 l

open, introducing a factor of
l l

, which becomes

l l

. Then the braid
l−1 l−2 l−1

opens, introducing a quadratic factor
l−1 l−2

, which

opens, yielding a factor
l−2 l−2

, which becomes
l−2 l−2

. This process repeats for the

braids
l−3 l−2 l−3

through
1 2 1

, giving

0 2 · · · l−1 l 1 2 · · · l−1 l 0 2 · · · l−1 l 1 2 · · · l−1 l

(−1)ε02ε23 · · · εl−1,l(z + z′)

.

Now, the braids
2 0 2

and
3 2 3

through
l l−1 l

open in succession. This last relation

introduces a factor of (−z + z′), so we have C = (z2 − z′2)vz1 ⊗ vz
′

1 , and applying

Proposition 6.7 completes the proof.
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6.19. The map RLz
′
δ,i,L

z
δ,i

in type C
(1)
l

Fix i ∈ I ′. Recall the construction of Lzδ,i from section 6.13. Take

i = (0, 1, 1, 2, 2, . . . , i− 1, i− 1, i, i+ 1, . . . , l − 1, l, l − 1, . . . , i). (6.10)

Then i is an extremal word for Lzδ,i. Let

vz1 := (ψ2i−1 · · ·ψ2l−2) · · · (ψ2k+1 · · ·ψ2l−i+k−1) · · · (ψ3 · · ·ψ2l−i)x.

Then vz1 is a vector of word i that generates Lzδ,i. To see this, note that

(ψ2i−3ψ2i−2) · · · (ψ5ψ6)(ψ3ψ4)vz1 = ψa1jx,

where j = (0, 1, . . . , n−1, n, n−1, . . . , i+1, 1, 2, . . . , i) and ψa = ψak · · ·ψa1 is such that

ψam1am−1···a1j is of degree zero for all 1 ≤ m ≤ k. But this implies that ψbψa1j = 1j

for some b, so x is in the Rz
δ-span of vz1, and x generates Lzδ,i, proving the claim.

Proposition 6.11.

R(vz
′

1 ⊗ vz1) ∈ (z2 − z′2)l+1
[
σ + (−1)l+i+1 + (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′

1 ).

Proof. For 1 ≤ k ≤ i, let

Ak =

0 1 1 ·· k−1k−1 k k ·· i−1 i−1 i i+1 ··n−1nn−1 ·· i 0 1 1 ·· k−1k−1 k k ·· i−1 i−1 i i+1 ··n−1nn−1 ·· i

.
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We now focus on simplifying the term A1, or

0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i

.

This is in A2 + (z − z′)Rz
δ ⊗ Rz′

δ A2, by a direct calculation, and Ak ∈ Ak+1 + (z −

z′)Rz
δ ⊗ Rz′

δ Ak+1 for all 2 ≤ k ≤ i− 1, which one sees by ‘pulling the (k − 1)-strands

to the right’. Using this fact recursively, we have that A1 ∈ Ai + (z − z′)Rz
δ ⊗Rz′

δ Ai,

where

Ai =

0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i

.

Now, via (i, i−1, i)-braid relations, moving crossed strands up to act on the individual

tensor factors as zero when possible, we have that Ai = B1 +B2, where

B1 =

0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i

εi−1,i
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and

B2 =

0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−1 l l−1 · · · i

.

We focus on B1.
i i−1

opens, introducing a (z − z′) factor. Next the braids
i+1 i i+1

through
l l−1 l

open in succession. Then
l−1 l l−1

opens, yielding
l−1 l−1

which

becomes
l−1 l−1

. Next, the braids
l−2 l−1 l−2

through
i i+1 i

open in succession, giving

B1 =

0 1 1 ·· i−1 i−1 i i+1 · · · l−1 l l−1 l−2 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−2 l−1 l l−1 ·· i

(−1)n+i+1(z − z′)

.

Next,
l−1 l−2 l−1

opens, leading to
l−1 l−2

, which opens, yielding
l−2 l−2

which becomes

l−1 l−1

. This process repeats for braids
l−2 l−3 l−2

through
i+1 i i+1

, giving

B1 =

0 1 1 ·· i−1 i−1 i i+1 · · · l−1 l l−1 · · · i+1 i 0 1 1 · · · i−1 i−1 i i+1 · · · l−2 l−1 l l−1 ·· i

(−1)n+i+1(z − z′)

.

Which simplifies to (−1)n+i+1(z − z′)2(vz1 ⊗ vz2). Now we focus on B2. The rightmost

i i−1 i

opens, then on the left side the braids
i i−1 i

through
l l−1 l

open in

succession. Then from the right, the braids
i+1 i i+1

through
l−1 l−2 l−1

open in
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succession. Then
l−1 l

opens, introducing a factor of (−z + z′), giving

B2 =

0 1 1 ·· i−1 i−1 i i+1 · · · l−1 l l−1 l−2 · · · i 0 1 1 · · · i−1 i−1 i i+1 · · · l−2 l−1 l l−1 ·· i

(−1)n+i(z − z′)

.

Now
l−1 l−2 l−1

opens, giving
l−2 l−1

, which opens yielding
l−2 l−2

, which becomes

l−2 l−2

. This process repeats with braids
l−2 l−3 l−2

through
i+1 i i+1

. Then
i i−1 i

opens, yielding
i−1 i

which opens, introducing a factor of (−2z′), so we have B2 =

(−1)n+i+1(z − z′)(2z′)(vz1 ⊗ vz
′

1 ). Then Ai = B1 +B2 = (−1)n+i+1(z2 − z′2)(vz1 ⊗ vz
′

1 ),

so A1 ∈ (z2 − z′2)
[
(−1)n+i+1 + (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′
1 ). Then Proposition 6.7

provides the result.

6.110. The map RLz
′
δ,i,L

z
δ,i

in type F4

Fix i ∈ I ′. Recall the construction of Lzδ,i from section 6.14. Let

i =



(0, 1, 2, 3, 3, 2, 4, 4, 3, 3, 2, 1), if i = 1;

(0, 1, 2, 3, 3, 2, 4, 4, 3, 3, 1, 2), if i = 2;

(0, 1, 2, 3, 4, 3, 2, 3, 4, 1, 2, 3), if i = 3;

(0, 1, 2, 3, 4, 3, 2, 3, 1, 2, 3, 4), if i = 4.

(6.12)
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Then i is an extremal word for Lzδ,i. Let

vz1 =



v(1,3,2,5,4,6),i if i ∈ {1, 2}

v(1,2,3,4,5,6),i if i = 3

v(1,2,3,4,6,5),i if i = 4

Then vz1 is a vector of word i, and it is easily seen from the action of generators that

vz1 generates Lzδ,i.

Proposition 6.13.

R(vz
′

1 ⊗ vz1) ∈ (z2 − z′2)24
[
σ + c+ (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′

1 ),

where c = 1 if i ∈ {1, 4} and c = −1 if i ∈ {2, 3}.

Proof. The proof of this proposition is a straightforward but lengthy calculation made

with the aid of a computer, using Proposition 6.7 and the same techniques as in the

B
(1)
l and C

(1)
l cases.

6.111. The map RLz
′
δ,i,L

z
δ,i

in type G
(1)
2

Fix i ∈ I ′. Recall the construction of Lzδ,i from section 6.15. Let

i =


(0, 1, 2, 2, 2, 1), if i = 1;

(0, 1, 2, 2, 1, 2), if i = 2.

(6.14)
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Then i is an extremal word for Lzδ,i. Let

vz1 := v(1,2,3).

Then vz1 is a vector of word i that generates Lzδ,i.

Proposition 6.15.

RLz
′
δ,i,L

z
δ,i

(vz
′

1 ⊗ vz1) ∈ (z3 − z′3)8
[
σ + (−1)i + (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′

1 ).

Proof. As in the F
(1)
4 case, the proof of this proposition is a straightforward but

lengthy calculation made with the aid of a computer, using Proposition 6.7 and the

same techniques as in the B
(1)
l and C

(1)
l cases.

6.112. Constructing τr from RLz
′
δ,i,L

z
δ,i

Let C be a Cartan matrix of type B
(1)
l , C

(1)
l , F

(1)
4 , or G

(1)
2 . Fix i ∈ I ′. In Sections

6.18-6.111 we have chosen a word vector vz1 of extremal word i that generates Lzδ,i,

and shown that

RLz
′
δ,i,L

z
δ,i

(vz
′

1 ⊗ vz1) ∈ f(z, z′)
[
σ + c+ (z − z′)Rz

δ ⊗Rz′

δ

]
(vz1 ⊗ vz

′

1 ),

for some c = ±1 and nonzero f(z, z′) ∈ O[z, z′]. As vz
′

1 ⊗ vz1 generates Lz
′

δ,i ◦ Lzδ,i and

RLz
′
δ,i,L

z
δ,i

is an Rz,z′

2δ -linear endomorphism, this implies that every element in the image

of RLz
′
δ,i,L

z
δ,i

is divisible by f . Let π : Lzδ,i◦Lz
′

δ,i � Lδ,i◦Lδ,i and π′ : Lz
′

δ,i◦Lzδ,i � Lδ,i◦Lδ,i

be the quotient maps given by setting z = z′ = 0. Then since Lz
′

δ,i ◦ Lzδ,i is free as

an O[z, z′]-module, there is a well-defined map τ̃ := π ◦ f−1RLz
′
δ,i,L

z
δ,i

which factors
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through π′ to give a R2δ-homomorphism

τ : Lδ,i ◦ Lδ,i → Lδ,i ◦ Lδ,i

such that τ(v2) = (σ + c)v2, where v2 = π(vz1 ⊗ vz
′

1 ) = π′(vz
′

1 ⊗ vz1).

Write v1 for the image of vz1 under the quotient Lzδ,i � Lδ,i of Proposition 6.6.

Then v1 spans the 1-dimensional top degree component (1iLδ,i)N of the (extremal)

word space 1iLδ,i in Lδ,i, and v2 = v1 ⊗ v1. Write vn for v1 ⊗ · · · ⊗ v1 ∈ Mn = L◦nδ,i .

Inserting the endomorphism τ into the r-th and (r + 1)-th positions in Mn yields

endomorphisms τr : Mn →Mn, vn 7→ (σr + c)vn.

Proposition 6.16. The endomorphisms τr satisfy the usual Coxeter relations of the

standard generators of the symmetric group Sn, i.e., τ 2
r = 1, τrτs = τsτr for |r−s| > 1

and τrτr+1τr = τr+1τrτr+1.

Proof. The braid relations follow from the fact that the map R satisfies these relations

(see [19, Chapter 1]). By Proposition 6.7 we have that f(z, z′) =
∏

k,m
ik=im

(ckz
ak −

cmz
′am), where ykv

z
1 = cakk v

z
1. Then it follows from [19, Lemma 1.3.1] that RLzδ,i,L

z′
δ,i
◦

RLz
′
δ,i,L

z
de,i

(vz
′

1 ⊗ vz1) = f 2(vz
′

1 ⊗ vz1), so τ 2(v1 ⊗ v1) = v1 ⊗ v1, and thus τ 2
r = 1.

6.2. Proofs of zigzag relations

This section is devoted to proving Lemmas 4.114 and 4.115, which are crucial in

determining the commutation relations among generating endomorphisms of ∆◦nδ . In

all cases, the approach to proving these lemmas is similar:

(i) Every element of ∆δ,i ◦∆δ,j should be written as a linear combination of terms

of the form ψw(x1⊗ x2)vi⊗ vj, where x1, x2 ∈ Rδ, and w is a minimal left coset

representative for S2d/Sd × Sd. Diagrammatically speaking, this is a matter
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of moving beads, and crossings of strands which originate from the same side,

to the top of the diagram by applying KLR relations.

(ii) Once all terms are rewritten as in (i), use Lemmas 4.100 through 4.103 to

simplify the expressions (x1⊗ x2)vi⊗ vj, rewriting these elements of ∆δ,i�∆δ,j

in the form of the basis in Theorem 4.106.

We have written a Sage program which performs steps (i) and (ii), and have used

this algorithm to verify Lemmas 4.114 and 4.115 in the exceptional cases of type E
(1)
` .

This program is available upon request. In the following proofs we assume C is of

type A
(1)
` or D

(1)
` .

Lemma 4.114. Let i, j ∈ I ′, and recall that vi ⊗ vj is a generator for ∆δ,i ◦ ∆δ,j.

Then we have

σ′vi ⊗ vj =



ξi[yd ⊗ 1 + 1⊗ (yd − 2y1)]vi ⊗ vi i = j;

ξiεij(ψj,i ⊗ ψi,j)vi ⊗ vj (αi, αj) = −1;

0 otherwise.

Proof. Case i = j, C = A
(1)
` . If ` = 1, the result is easily checked. Assume ` ≥ 2. We

depict σ′vi ⊗ vi diagrammatically, where vi ⊗ vi is conceived to be at the top of the

diagram:

0 1 · · · i−1 ` · · · i 0 1 · · · i−1 ` · · · i

.
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We now move crossings up, when possible, to act on the individual factors ∆δ,i,

and use Lemmas 4.95 and 4.102 to recognize when these terms are zero. Applying

the braid relation to the
1 0 1

braid, we see that the
1 0 1

term allows for the

(0, 1)-crossing to move up to act on ∆δ,i as zero, leaving only the remainder term

ε01

1 0 1

. This behavior will occur frequently enough that we will merely say that

the (i, i + 1, i)-braid ‘opens’. Indeed, the (1, 0, 1)- through (i− 1, i− 2, i− 1)-braids

open in succession, giving:

0 1 · · · i−1 ` · · · i+1 i 0 1 · · · i−1 ` · · · i+1 i

ε01 · · · εi−2,i−1

=

0 1 · · · i−1 ` · · · i+1 i 0 1 · · · i−1 ` · · · i+1 i

ε01 · · · εi−2,i−1εi+2,i+1 · · · ε`,`−1ε0,`

,

after the (`, 0, `)-braid opens, followed by the (`−1, `, `−1)- through (i+2, i+1, i+2)-

braids in succession. Now, applying the (i, i+ 1, i)-braid relation, this is equal to

0 1 · · · i−1 ` · · · i+1 i 0 1 · · · i−1 ` · · · i+1 i

ε01 · · · εi−2,i−1εi+2,i+1 · · · ε`,`−1ε0,`

+

0 1 · · · i−1 ` · · · i+1 i 0 1 · · · i−1 ` · · · i+1 i

ε01 · · · εi−2,i−1εi+1,iεi+2,i+1 · · · ε`,`−1ε0,`

(6.17)

In the left term in (6.17), the (i, i− 1, i)-braid opens, introducing an (i+ 1, i)-double

crossing, which opens to give

−ξi[1⊗ (yd−1 − yd)]vi ⊗ vi = −ξi[1⊗ (y1 − yd)]vi ⊗ vi.
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In the right term in (6.17), the (i, i− 1)-double crossing opens to give

ξi[yd ⊗ 1− 1⊗ yi]vi ⊗ vi = ξi[yd ⊗ 1− 1⊗ y1]vi ⊗ vi,

proving the claim.

Case i = j, C = D
(1)
` , 1 ≤ i ≤ `− 2. We depict σ′vi ⊗ vi diagrammatically:

0 2 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 · · · i 0 2 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 · · · i

.

We begin dragging the 0-strand to the right to simplify the diagram. The (2, 0, 2)-

braid opens, followed by the (3, 2, 3)- through (`− 1, `− 2, `− 1)-braids in succession.

Then the (` − 2, `, ` − 2)-braid opens, followed by the (` − 3, ` − 2, ` − 3)- through

(i+ 1, i+ 2, i+ 1)-braids in succession, giving (excluding straight strands on the left):

−̀2 · · · i+1 1 2 · · · i−1 i 0 2 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 2 · · · i−1 i

(−1)`+iε02ε23 · · · εi,i+1ε`−2,`−1

.

Now the (`− 2, `− 1)-double crossing opens, introducing a (`− 2, `− 3, `− 2)-braid

which opens, followed by a (`− 2, `− 3)-double crossing which opens. This sequence

repeats until the (i + 2, i + 1, i + 2)-braid opens, followed by (i + 2, i + 1)-double
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crossing which opens. Finally, the (i+ 1, i, i+ 1)-braid opens, giving:

1 2 · · · i−1 i 0 2 · · · i−1 i i+1 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 2 · · · i−1 i

(−1)`+iε02ε23 · · · εi−1,i

.

Now the central (i− 1, i, i− 1)- through (1, 2, 1)-braids open in succession, and then

(i − 2, i − 1)- through (1, 2)-double crossings open in succession. Then the (2, 0, 2)-

braid opens, followed by the (3, 2, 3)- through (i − 1, i − 2, i − 1)-braids opening in

succession, giving (omitting straight strands on the left):

i 0 2 · · · i−1 i i+1 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 2 · · · i−1 i

(−1)`+i+1

.

Now, applying the braid relation to the (i, i− 1, i)-braid gives

i 0 2 · · · i−1 i i+1 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 2 · · · i−1 i

(−1)`+i+1

+

i 0 2 · · · i−1 i i+1 · · · −̀2 −̀1 ` −̀2 · · · i+1 1 2 · · · i−1 i

(−1)`+i+1εi−1,i

In the term on the left, the (i, i+1, i)-braid opens, introducing (i−1, i)- and (i, i+1)-

double crossings which open, finally introducing an (i, i − 1, i)-braid which opens,
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giving

(−1)`+i[1⊗ (yd−1 − yd)]vi ⊗ vi = (−1)`+i[1⊗ (y1 − yd)]vi ⊗ vi

In the term on the right, the (i, i− 1)-double crossing opens, followed by an (i, i+ 1)-

crossing opening, finally introducing an (i, i− 1, i)-braid which opens, giving

(−1)`+i+1[yd ⊗ 1− 1⊗ y1]vi ⊗ vi,

proving the statement.

Case i = j, C = D
(1)
` , i = `, `− 1. We’ll check the i = ` case, the other case being

similar. We depict σ′vi ⊗ vi diagrammatically:

0 2 · · · −̀2 −̀1 1 2 · · · −̀2 ` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

.

As in the last case, we begin by pulling the 0-strand to the right. The (2, 0, 2)-braid

opens, then the (3, 2, 3)- through (`− 1, `− 2, `− 1)-braids open in succession, giving

(omitting straight strands on the left):

1 2 · · · −̀2 ` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

ε02ε23 · · · ε`−2,`−1

=

1 2 · · · −̀2 ` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

−ε02ε`−2,`−1

,

after the (1, 2, 1)-braid opens, followed by the (2, 1, 2)- through (`−2, `− `−3, `−2)-

braids. Now the (2, 3)- through (`−2, `−1)-braids open in succession. Then (2, 0, 2)-

braid opens, followed by the (3, 2, 3)- through (`−2, `−3, `−2)- braids in succession,
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giving (omitting straight strands on the left):

` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

(−1)

=

` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

(−1)

+

` 0 2 · · · −̀2 −̀1 1 2 · · · −̀2 `

−ε`−2,`

,

after applying the braid relation to the (`, `− 2, `)-braid. In the left term, the (`, `−

2, `)-braid opens, then the (`− 2, `)-double crossing opens, giving

−(1⊗ (yd−1 − yd))vi ⊗ vi = −(1⊗ (y1 − yd))vi ⊗ vi.

In the right term, the (`, `− 2)-double crossing opens, giving

(yd ⊗ 1− 1⊗ y`−2)vi ⊗ vi = (yd ⊗ 1− 1⊗ y1)vi ⊗ vi,

proving the claim in this case.

Case (αi, αj) = −1, C = A
(1)
` . We have j = i + 1 or j = i− 1. We will prove the

statement in the former case; the latter is similar. We write σ′vi⊗vj diagrammatically:

0 1 · · · i−1 ` · · · j i 0 1 · · · i−1 i ` · · · j

=

0 1 · · · i−1 ` · · · j i 0 1 · · · i−1 i ` · · · j

ε01 · · · εi−1,i

,

after the (1, 0, 1)- through (i, i−1, i)-braids open in succession. Now the (`, 0, `)-braid

opens, followed by the (`−1, `, `−1)- through (j, j+1, j)-braids in succession, giving

ξiεij(ψj,i ⊗ ψi,j)vi ⊗ vj, as desired.

289



Case (αi, αj) = −1, C = D
(1)
` , 1 ≤ i, j ≤ `− 2. We have j = i+1 or j = i−1. We

will prove the statement in the former case; the latter is similar. We write σ′vi ⊗ vj

diagrammatically:

0 2 · · · −̀2 −̀1 ` −̀2 · · · j 1 · · · i 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 · · · j

.

Dragging the 0-strand to the right, the (2, 0, 2)-braid opens, then the (3, 2, 3)- through

(`− 1, `− 2, `− 1)-braids open in succession. Then (`, `− 2, `)- and (`− 2, `, `− 2)-

braids open, followed by (`−3, `−2, `−2)- through (j+1, j+2, j+1)-braids opening

in succession. This gives (omitting straight strands on the left):

−̀2 · · · j+1 j 1 · · · i 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 · · · j

(−1)`+i+1ε02ε23 · · · εi+1,i+2ε`−2,`−1

.

Now the (` − 2, ` − 1)-double crossing opens. The (` − 2, ` − 3, ` − 2)-braid opens,

which introduces an (`−2, `−3)-double crossing which opens. This sequence repeats,

until the (j + 2, j + 1, j + 1)-braid opens, introducing a (j + 2, j + 1)-double crossing

which opens. Finally, a (j + 1, j, j + 1)-braid opens, giving (omitting straight strands

on the left):

j 1 2 · · · i−1 i 0 2 · · · i−1 i j j+1 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j

(−1)`+i+1ε02ε23 · · · εi,i+1

.
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Now the (i, j, i)-braid opens, and then the (i−1, i, i−1)-through (1, 2, 1)-braids open

in succession. Finally, the (j, j + 1, j)-braid opens, giving:

j 1 2 · · · i−1 i 0 2 · · · i−1 i j j+1 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j

(−1)`+iε02ε12εi+2,i+1

.

Now the (j, j + 1)-double crossing opens, followed by the (i − 1, i)- through (1, 2)-

double crossings in succession, giving (omitting strands on the right):

j 1 2 · · · i−1 i 0 2 · · · i−1 i j j+1 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j

(−1)`+i+1ε02ε23εi−1,i

.

Now the (2, 0, 2)-braid opens, followed by the (3, 2, 3)- through (j, i, j)-braids in

succession, giving (−1)`+i+1εi,i+1(ψj,i ⊗ ψi,j)vi ⊗ vj, as desired.

Case (αi, αj) = −1, C = D
(1)
` , `− 2 ≤ i, j ≤ `. We will check the case i = ` − 2,

j = `. The other cases are similar. We write σ′vi ⊗ vj diagrammatically:

0 2 · · · ` 1 · · · −̀2 0 2 · · · −̀1 1 · · · −̀2 `

.

Dragging the 0-strand to the right, the (2, 0, 2)-braid opens, then the (3, 2, 3)- through

(` − 1, ` − 2, ` − 1)-braids open in succession. The (` − 3, ` − 2, ` − 2)-braid opens,

and then the (` − 4, ` − 3, ` − 4)- through (1, 2, 1)-braids open in succession, giving
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(omitting straight strands on the left):

` 1 2 · · · −̀3 −̀2 0 2 · · · −̀3 −̀2 −̀1 1 2 · · · −̀3 −̀2 `

−ε02ε12ε`−2,`−1

=

` 1 2 · · · −̀3 −̀2 0 2 · · · −̀3 −̀2 −̀1 1 2 · · · −̀3 −̀2 `

−ε`−2,`−1

,

after the (`− 4, `− 3)- through (1, 2)-double crossings open in succession, followed by

the (2, 0, 2)- and (3, 2, 3)- through (` − 3, ` − 4, ` − 3)-braids opening in succession.

Now the (`− 2, `− 3, `− 2)-braid opens, introducing an (`− 2, `− 1)-double crossing

which opens, followed by (` − 2, ` − 3, ` − 2)- and (`, ` − 2, `)-braids opening, which

gives −εij(ψj,i ⊗ ψi,j)vi ⊗ vj, as desired.

Case (αi, αj) = 0, all types. By the usual manipulations of KLR elements (cf.

[3, §2.6]), we may write σ′vi⊗ vj as a sum of terms of the form 1bjbiψwxi⊗ xj, where

xi ∈ ∆δ,i and xj ∈ ∆δ,j, and w / σ′ (where we consider σ′ as an element of S2d) is a

minimal left coset representative for S2d/Sd×Sd. Since (bjbi)1 = (bjbi)d+1 = 0 and

i1 = 0 for every word i of ∆δ,i and ∆δ,j, it follows that w = id. But 1j∆δ,i = 0 by

Lemma 4.111, so σ′vi ⊗ vj = 0.

Lemma 4.115. Let i, j,m ∈ I ′ with (αi, αj) = −1. Then we have

(ψj,i ⊗ 1)σvm ⊗ vi = [σ(1⊗ ψj,i) + δj,mξj(1⊗ ψj,i)− δi,mξi(ψj,i ⊗ 1)]vm ⊗ vi.

Proof. Case m = j, C = A
(1)
` . Since i and j are neighbors, either j = i − 1 or j =

i + 1. We will prove the claim in the former case; the latter is similar. We depict
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(ψj,i ⊗ 1)σvj ⊗ vi diagrammatically:

0 1 · · · j−1 ` · · · i j 0 1 · · · j−1 j ` · · · i

=

0 1 · · · j−1 ` · · · i j 0 1 · · · j−1 j ` · · · i

Applying the braid relation to the (i, j, i)-braid, we have σ(1 ⊗ ψj,i)vj ⊗ vi, plus the

error term:

0 1 · · · j−1 ` · · · i+1 i j 0 1 · · · j−1 j ` · · · i+1 i

εj,i

.

the (i, i+ 1, i)- through (`, `− 1, `)-braids open in succession, giving

0 1 · · · j−1 ` · · · i j 0 1 · · · j−1 j ` · · · i

εi−1,iεi+1,i · · · ε`,`−1

=

0 1 · · · j−1 ` · · · i j 0 1 · · · j−1 j ` · · · i

εi−1,iεi+1,i · · · ε`,`−1ε0,`

,

after the (0, `, 0)-braid opens. Now, the (1, 0, 1)- through (j, j − 1, j)-braids open in

succession, giving ξj(1⊗ ψj,i)vj ⊗ vi, as desired.

Case m = i, C = A
(1)
` . We show that the claim holds in the case i = j + 1; the

case i = j − 1 is similar. We depict (ψj,i ⊗ 1)σvi ⊗ vi diagrammatically:

0 1 · · · j−1 j ` · · · i 0 1 · · · j−1 j ` · · · i

=

0 1 · · · j−1 j ` · · · i 0 1 · · · j−1 j ` · · · i

.
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Applying the braid relation to the (i, j, i)-braid, we get σvi ⊗ ψj,ivi plus the error

term:

0 1 · · · j−1 j ` · · · i+1 i 0 1 · · · j−1 j ` · · · i+1 i

εj,i

.

For this term, the (i+ 1, i, i+ 1)- through (`, `− 1, `)-braids open, giving

0 1 · · · j−1 j ` · · · i 0 1 · · · j−1 j ` · · · i

εi−1,iεi+1,i · · · ε`,`−1

=

0 1 · · · j−1 j ` · · · i 0 1 · · · j−1 j ` · · · i

εi−1,iεi+1,i · · · ε`,`−1ε0,`

,

after the (0, `, 0)-braid opens. Now the (1, 0, 1)- through (j, j − 1, j)-braids open in

succession, giving −ξi(ψj,i ⊗ 1)vi ⊗ vi, as desired.

Case m = j, C = D
(1)
` , 1 ≤ i, j ≤ `− 2. We check that (4.115) holds in the case

j = i+1. The case j = i−1 is similar. We depict (ψj,i⊗1)σvj⊗vi diagrammatically,

with vj ⊗ vi at the top of the diagram:

0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 j 1 2 · · · i−1 i

.
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The j-strand moves past the first (i, i)-crossing, as the open term in the (i, j, i)-braid

relation is zero. This gives

0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 j 1 2 · · · i−1 i

.

Applying the braid relation to the (i, j, i)-braid, we have σ(1 ⊗ ψj,i)vj ⊗ vj, plus

a remainder term. Now we simplify the remainder term. The (i, j, i)-braid opens,

followed by the (i − 1, i, i − 1)- through (1, 2, 1)-braids opening in succession. This

gives

0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 j 1 2 · · · i−1 i

ε1,2 · · · εj−2,j−1εj,j−1

.

Now the (2, 1, 2)- and (0, 2, 0)-braids open, followed by the (3, 2, 3)- through (`−1, `−

2, `− 1)-braids and the (`, `− 2, `)-braid, giving

0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 j 1 2 · · · i−1 i

ε02εj,j+1 · · · ε`−2,`−1ε`−2,`

.
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Now the (` − 2, `, ` − 2)-braid opens, followed by the (` − 3, ` − 2, ` − 3)- through

(j, j + 1, j)-braids opening in succession, giving

0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 1 2 · · · i−1 i j 0 2 · · · −̀2 −̀1 ` −̀2 · · · j+1 j 1 2 · · · i−1 i

(−1)`+j+1ε02ε`−2,`−1

.

Now the (` − 2, ` − 1)-double crossing opens. Then the (` − 2, ` − 3, ` − 2)-braid

opens, followed by the (` − 3, ` − 2)-double crossing. This pattern repeats until the

(j+2, j+1, j+2)-braid opens, followed by the (j+1, j+2)-double crossing. Then the

(j + 1, j, j + 1)-braid opens, which gives (omitting strands outside the central area)

1 2 · · · i−1 i j 0 2 · · · i−1 i j j+1 j+2

(−1)`+j+1ε02εj,j+1

· · ·

=

1 2 · · · i−1 i j 0 2 · · · i−1 i j j+1 j+2

(−1)`+j+1ε02ε23 · · · εj−1,j

after the (2, 3)- through (j, j + 1)-double crossings open. Now the (2, 0, 2)-crossing

opens, followed by the (3, 2, 3)- through (j, j − 1, j)-braids, giving (−1)`+j+1(1 ⊗

ψj,i)vj ⊗ vi, as desired.

Case m = j, C = D
(1)
` , `− 2 ≤ i, j ≤ `. We check that the claim holds in the

case i = ` − 2, j = `. The other cases are similar. We depict (ψj,i ⊗ 1)σvj ⊗ vi

296



diagrammatically:

0 2 · · · −̀1 1 · · · −̀2 ` 0 2 · · · ` 1 · · · −̀2

.

The `-strand moves past the first (`−2, `−2)-crossing, and applying the braid relation

to the next (`− 2, `, `− 2)-braid gives (1⊗ ψ`,`−2)v` ⊗ v`−2 plus an error term:

0 2 · · · −̀1 1 · · · −̀2 ` 0 2 · · · ` 1 · · · −̀3 −̀2

ε`,`−2

.

Now the (` − 3, ` − 2, ` − 3)- through (1, 2, 1)-braids open in succession. Then the

(2, 1, 2)-braid and (0, 2, 0)-braids open, followed by the (3, 2, 3)- through (` − 1, ` −

2, `− 1)-braids opening in succession, giving:

0 2 · · · −̀1 1 2 · · · −̀2 ` 0 2 · · · −̀1 ` 1 · · · −̀2

−ε0,2ε`−2,`−1ε`,`−2

.

Now the (2, 3)- through (` − 2, ` − 1)-double crossings open, introducing a (2, 0, 2)-

braid, which opens. Then the (3, 2, 3)- through (`−2, `−3, `−2)-braids open, followed

by a (`, `− 2, `)-braid which opens, giving ξ`(1⊗ ψ`,`−2)v` ⊗ v`−2, as desired.
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Case m = i, C = D
(1)
` , 1 ≤ i, j ≤ `− 2. We show that the claim holds in the case

i = j + 1; the case i = j− 1 is similar. We depict (ψj,i⊗ 1)σvi⊗ vi diagrammatically:

0 2 · · · ` −̀2 · · · i+1 1 · · · i 0 2 · · · ` −̀2 · · · i+1 1 · · · i

.

Now the (i + 1)-strand moves up to the right past the first (i, i)-crossing. Applying

the braid relation to the next (i, i+1, i)-braid gives (1⊗ψj,i)σvi⊗vi, plus a remainder

term:

0 2 · · · ` −̀2 · · · i+1 1 · · · i−1 i 0 2 · · · ` −̀2 · · · i+1 1 · · · i−1 i

εi+1,i

.

Dragging the i-strand to the left, the (i− 1, i, i− 1)- through (1, 2, 1)-braids open in

succession, followed by the (2, 1, 2)- and (0, 2, 0)-braids. Then the (3, 2, 3)- through

(`− 1, `− 2, `− 1)-braids open in succession, followed by the (`, `− 2, `)-braid, giving

(omitting straight strands outside the central area):

−̀2 · · · i+1 1 2 · · · i−1 i 0 2 · · · i−1 i i+1 · · · ` −̀2 · · · i+2 i+1

ε02εi+1,i+2 · · · ε`−2,`−1ε`−2,`

.
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Now the (2, 3)- through (i, i + 1)-double crossings open, introducing a (2, 0, 2)-braid

which opens, followed by (3, 2, 3)- through (i, i− 1, i)-braids which open, giving:

−̀2 · · · i+1 1 2 · · · i−1 i 0 2 · · · i−1 i i+1 · · · ` −̀2 · · · i+2 i+1

εi+2,i+1 · · · ε`−2,`−3

=

−̀2 · · · i+2 i+1 1 · · · i 0 2 · · · −̀1

(−1)`+iεi,i+1ε`−2,`−1

,

after the (` − 2, `, ` − 2)-braid opens, followed by the (` − 3, ` − 2, ` − 3)-through

(i+ 1, i+ 2, i+ 1)-braids in succession. Now the (`− 2, `)-double crossing opens. The

(` − 2, ` − 3, ` − 2)-braid opens, followed by an (` − 2, ` − 3)-double crossing which

opens. This sequence repeats until the (i + 2, i + 1, i + 2)-braid opens, followed by

an (i+ 2, i+ 1)-double crossing which opens. Finally, the (i+ 1, i, i+ 1)-braid opens,

giving −ξi(ψj,i ⊗ 1)vi ⊗ vi, as desired.

Case m = i, C = D
(1)
` , `− 2 ≤ i, j ≤ `. We show that the claim holds in the

case i = ` − 2, j = `; the other cases are similar. We depict (ψj,i ⊗ 1)σvi ⊗ vi

diagrammatically:

0 2 · · · −̀1 ` 1 · · · −̀2 0 2 · · · −̀1 ` 1 · · · −̀2

.
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The `-strand moves up past the first (`−2, `−2)-crossing. Applying the braid relation

to the next (`− 2, `, `− 2)-braid gives σ(1⊗ ψ`,`−2)v`−2 ⊗ v`−2, plus an error term:

0 2 · · · −̀1 ` 1 · · · −̀3 −̀2 0 2 · · · −̀1 ` 1 · · · −̀3 −̀2

ε`,`−2

.

Now we simplify this error term. The (`−3, `−2, `−3)- through (1, 2, 1)-braids open

in succession, giving (omitting straight strands to the right):

0 2 · · · −̀1 ` 1 · · · −̀3 −̀2 0 2 · · · −̀1 `

ε12 · · · ε`,`−2

=

0 2 · · · −̀1 ` 1 2 · · · −̀2 0 2 · · · −̀1 `

−ε02ε`−2,`−1ε`,`−2

,

after the (2, 1, 2)- and (0, 2, 0)-braids open, followed by the (3, 2, 3)- through (`−1, `−

2, ` − 1)-braids opening in succession. Now, the (2, 3)- through (` − 2, ` − 1)-braids

open in succession. Then the (2, 0, 2)- braid opens, followed by the (3, 2, 3)- through

(`− 2, `− 3, `− 2)-braids opening in succession. Finally the (`, `− 2, `)-braid opens,

giving (ψ`,`−2 ⊗ 1)v`−2 ⊗ v`−2, as desired.

Case j 6= m 6= i, all types. We may write

(ψj,i ⊗ 1)σvm ⊗ vi = σ(1⊗ ψj,i)vm ⊗ vi + (∗),

where (∗) is a linear combination of terms of the form 1bjbmψwx1⊗x2, where x1 ∈ ∆δ,m,

x2 ∈ ∆δ,i, and w / σ is a minimal left coset representative for S2d/Sd × Sd. As in

the similar case in Lemma 4.114, it follows that ψw = 1. Thus x1 is a vector of word

bj and x2 is a vector of word bm. Hence by Lemma 4.111, it follows that (∗) is zero
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unless m neighbors both j and i. But since i neighbors j by assumption, this cannot

be the case.
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