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DISSERTATION ABSTRACT
Robert W. Muth
Doctor of Philosophy
Department of Mathematics
June 2016

Title: Representations of Khovanov-Lauda-Rouquier Algebras of Affine Lie Type

We study representations of Khovanov-Lauda-Rouquier (KLR) algebras of affine
Lie type. Associated to every convex preorder on the set of positive roots is a
system of cuspidal modules for the KLR algebra. For a balanced order, we study
imaginary semicuspidal modules by means of ‘imaginary Schur-Weyl duality’. We
then generalize this theory from balanced to arbitrary convex preorders for affine
ADE types. Under the assumption that the characteristic of the ground field is greater
than some explicit bound, we prove that KLR algebras are properly stratified. We
introduce affine zigzag algebras and prove that these are Morita equivalent to arbitrary
imaginary strata if the characteristic of the ground field is greater than the bound
mentioned above. Finally, working in finite or affine affine type A, we show that skew
Specht modules may be defined over the KLR algebra, and real cuspidal modules
associated to a balanced convex preorder are skew Specht modules for certain explicit
hook shapes.

This dissertation contains previously published (unpublished) co-authored

material.
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CHAPTER I

INTRODUCTION

This chapter contains coauthored material, both published and unpublished. In
fact, this dissertation is a compilation of four previously existing articles, three of
which are joint work with Alexander Kleshchev. Chapter III has appeared as [29)],
which is accepted for publication. Chapter IV has appeared as [30, 28], and chapter
V' has appeared as [40], all of which have been submitted for publication. This
introduction and Chapter II contain portions of the introductions and preliminary
sections of [29, 30, 28, 40]. Chapter VI contains calculations performed in [29, 28].
Interested readers are encouraged to read and refer to the original sources rather than

this dissertation.

Let g be a Kac-Moody Lie algebra, with associated symmetrizable Cartan
matrix C. Let k be an arbitrary field of characteristic p. There is a certain Z-
graded associative k-algebra R,, called a Khovanov-Lauda-Rouquier (or KLR) algebra
associated to every « in the positive root lattice. These algebras were introduced
independently by Khovanov and Lauda [20] and Rouquier [42] in 2008.

The main result about KLR algebras, and the motive for their introduction, is
that they categorify the upper half of the quantum group U, (g)*. This means that
one may recover the quantum group structure from categories of representations of
the KLR algebra by decategorifying—taking the Grothendieck group. Writing 4f for

the Z[q, ¢~ ']-subalgebra in U,(g)" generated by divided powers, we have

PProi(Ra)] = Af, PRep(Ra)] = af",

« e}



where Proj(R,) (resp. Rep(R,)) is the full subcategory of projective (resp. finite
dimensional) modules in the category R,-mod of finitely generated graded R,-
modules. The multiplication and co-multiplication structures in the Grothendieck

group come, respectively, from certain induction and restriction functors:
Indg’;ﬁ : (Ra ® Rg)-mod — R, p-mod, Resgzﬁ : Rorp-mod — (R, ® Rg)-mod.

It will be convenient to write M o N for Indg’zﬂ MX N.

The existence of interesting morphisms between objects in R,-mod, invisible at
the level of the quantum group, yield a rich structure and make the representation
theory of KLLR algebras a compelling and fruitful area for research.

In this dissertation we study the representation theory of KLR algebras of
untwisted affine Lie type. Though there are different ways to study this subject,
the focus in this paper is to investigate the presence of a stratified structure on R,-
mod, and the so-called cuspidal modules and standard modules associated with this
structure.

In [32] Kleshchev and Ram gave a classification via Lyndon words of simple
representations of KLLR algebras of finite type, as irreducible heads of certain standard
modules. McNamara [38] generalized the Lyndon word approach to arbitrary convex
orders on the positive root system in finite type. For KLR algebras of affine Lie type
two different approaches to the theory of standard modules were proposed by Tingley
and Webster [44] and Kleshchev [24]. This dissertation builds on the approach of [24],

which we describe in the next section.



1.1. Cuspidal systems

Let the Cartan matrix C be of arbitrary untwisted affine type. In particular,
the simple roots «; are labeled by i € I = {0,1,...,l}, where 0 is the affine vertex
of the corresponding Dynkin diagram. We have an (affine) root system & and the
corresponding finite root subsystem ® = ® NZ-span(ay, ..., q;). Denote by ¢’ and
®, the sets of positive roots in & and P, respectively. Then &, = <I>i}rn L @, where

P = {nd | n € Z-o} for the null-root 4, and

P ={B+nd| B e, n€ls}U{-B+nd|B €D, nels}

As in [1], a convex preorder on @ is a preorder < such that the following three

conditions hold for all 5,7y € ®,:

B=yory=2p; (1.1)
if 6 <yand +~v€dy, then <3 +v =, (1.2)
B <~ and v < §if and only if S and « are proportional. (1.3)

Convex preorders are known to exist. Let us fix an arbitrary convex preorder < on
&, . From (1.3) we have that § <~ and v < § happens for § # v if and only if both
£ and ~ are imaginary. We write § < v if § < v but v A . The following set is

totally ordered with respect to <:

U= 3 U {6} (1.4)



It is easy to see that the set of real roots splits into two disjoint infinite sets
= {B €| B =0} and O := {f € D | B < I}

If p is a partition of n we write u - n and n = |u|. By an [-multipartition of n,
we mean a tuple g = (uM, ... u®) of partitions such that [p®M] + .-+ + [u] = n.
The set of all [-multipartitions of n is denoted by &, and & = U,>0Z,. A root
partition of a is a pair (M, p), where M is a tuple (m,),cw of non-negative integers
such that > pew MpP = @, and g is an [-multipartition of ms. It is clear that all but

finitely many integers m, are zero, so we can always choose a finite subset
prL> - >ps>0>p > >pg

of W such that m, = 0 for p outside of this subset. Then, denoting m, := m,,, we

can write any root partition of « in the form

(Mvﬂ):(ple"vp;nsvﬂvat_ta"'apTl_l)a (1'5)

where all m,, € Z>o, p € &, and

S t
Zmupu + |6 + Zm,up,u = a.
u=1 u=1

We write II(«) for the set of root partitions of a. The set II(«) has a natural partial
order ‘<’ see §III.
Let p € ®,. For M € R,-mod, we say that M is semicuspidal if ResgﬁM #0

implies that (3 is a sum of positive roots less than or equal to p, and 7 is a sum



of positive roots greater than or equal to p. We say that M is cuspidal if these
inequalities are strict. If p is imaginary and M is semicuspidal, we say that M is
1maginary.

A cuspidal system (for a fixed convex preorder) is the following data:

(Cusl) A cuspidal irreducible R,-module L, assigned to every p € ®'f.

(Cus2) An irreducible imaginary R,s;-module L(u) assigned to every u € &,. It is

required that L(A) % L(p) unless A = p.

It is proved in [24] that (for a fixed convex preorder) cuspidal modules exist and

are determined uniquely up to an isomorphism.

Given a root partition m = (p", ..., p0, p, p"r ", ..., p ;") € I(a) as above,
the corresponding standard module is:
A(r) = qS‘h(’r)L;Tl o---0L o L(p) o Lyt oo L7, (1.6)

where ¢®*(™) means that grading is shifted by a certain integer sh(r).
Theorem. (Cuspidal Systems) [24, Main Theorem| For any convex preorder there

exists a cuspidal system

{Ly|pe@PU{L(p) | p e 2}

Moreover:

(i) For every root partition m, the standard module A(rm) has irreducible head;

denote this irreducible module L(T).

(ii) {L(m) | m € ()} is a complete and irredundant system of irreducible R,-

modules up to isomorphism and degree shift.
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[

(iii) For every root partition w, we have L(m)® = L(r).

(iv) For all root partitions m,0 € Il(a), we have that [A(r) : L(r)], = 1, and

[A(7) : L(0)], # 0 implies 0 < .

(v) The induced module L5 is irreducible for all p € @ and n € Zo.

1.2. Imaginary Schur-Weyl duality

The above theorem gives a ‘rough classification’ of irreducible R,-modules. The
main problem is that we did not give a canonical definition of individual irreducible
imaginary modules L(p). We just know that the amount of such modules for R, is
equal to the number of [-multipartitions of n, and so we have labeled them by such
multipartitions in an arbitrary way.

In this work we address this issue. Our approach relies on the so-called imaginary
Schur-Weyl duality. This theory in particular allows us to construct an equivalence
between an appropriate category of imaginary representations of KLR algebras and
the category of representations of the classical Schur algebra.

Let us make an additional assumption that the convex preorder is balanced, which

means that

(I)If = {B +nd ’ g e (I);, n c ZZO}‘ (17)

This is equivalent to

a; = nd = g (iel',ne€Zs). (1.8)

Of course, we then also have ¢ = {—-3+nd | B € ¢, n € Z-o}. Balanced convex

preorders always exist, see for example [2].



1.21. Imaginary Schur-Weyl duality

The first steps towards imaginary Schur-Weyl duality have already been made in
[24]. First of all there are the minuscule representations—the irreducible imaginary
representations which correspond to [-multipartitions of 1. There are exactly [ such

multipartitions, namely p(1),..., u(l), where

with the partition (1) in the ith position. For each i = 1,...,[, we have defined an

irreducible Rs-module Ls;, see [24, Section 5], and set

Lu(i) =Ly (1<i<l).

The imaginary tensor space of color i is the R,s-module

Mn,i = ng (]. S 1 S l)

In [24, Lemma 5.7] it is proved that any composition factor of a mized tensor space

My 10---0Mpy,

is imaginary. We call composition factors of M,,; irreducible imaginary modules of
color 1. The following theorem reduces the study of irreducible imaginary modules to
irreducible imaginary modules of a fixed color:

Theorem. (Reduction to One Color) [24, Theorem 5.10] Suppose that for each

n € Zso and i € I', we have an irredundant family {L;(X\) | A = n} of irreducible



imaginary Rns-modules of color i. For a multipartition A = (A\V,... A\V) ¢ 2,
define
L) = LiADYo ..o L,;(\D).

Then {L(\) | A € P} is a complete and irredundant system of irreducible imaginary
Rys-modules. In particular, the given modules {L;(\) | A= n} give all the irreducible
imaginary modules of color i up to isomorphism.

In view of this theorem, we need to construct irreducible imaginary R,s-modules
L;(\) of color i. We will now fix ¢ and drop the index ¢ from our notation. We must
describe the composition factors of the imaginary tensor space M, = M, ; and show
that they are naturally labeled by the partitions A\ of n.

The R,s-module structure on the imaginary tensor space M,, yields an algebra
homomorphism R,s — Endg(M,). Define the imaginary Schur algebra .7, as the

image of R,s under this homomorphism. In other words,

n = Rus/Anng (M,).

Modules over R,s which factor through to .7, will be called imaginary modules (of
color 7). Thus the category of imaginary R,s-modules is the same as the category of
Z,-modules.

It is clear that M, and its composition factors are imaginary modules.
Conversely, any irreducible .#,-module appears as a composition factor of M,. So
our new notion of an imaginary module fits with the old notion of an irreducible
imaginary module in the sense of cuspidal systems.

The first major result of this dissertation is:

Theorem 1. (Imaginary Schur-Weyl Duality)



(i) M, is a projective #,-module.

(ii) The endomorphism algebra Endg, ,(M,) = Endy, (M,) of the imaginary tensor
space M, is isomorphic to the group algebra F'S,, of the symmetric group S,
(concentrated in degree zero). Thus M, can be considered as a right F'S,, -

module.

(iii) Endpe, (M,) = 7.

Parts (i) and (ii) of Theorem 3 are Theorem 3.44, and part (iii) is
Theorem 3.101(ii).

In view of Theorem 1, we have an exact functor

Y @ Sp-mod — FS,-mod, V +— Homy, (M,,V). (1.9)

Unfortunately, v, is not an equivalence of categories, unless the characteristic of the
ground field is zero or greater than n, since in general the .#,-module M,, is not
a projective generator. In order to resolve this problem, we need to upgrade from

imaginary Schur-Weyl duality to imaginary Howe duality.

1.22. Imaginary Howe duality
Let x,, := deen g. In view of Theorem 1, M, is a right F'&,,-module. Define

the imaginary divided and exterior powers respectively as follows:

Zn:={m e M, | mg—sgn(g)m =0 for all g € G, },

A, = M,x,.



For h € Z~¢, denote by X (h,n) the set of all compositions of n with h parts:

X(h,n) = {(n]_,...,nh) EZgo|n1+...+nh:n}.

The corresponding set of partitions is

Xi(h,n) :={(ny,...,np) € X(h,n) |ny >--- > ny}.

For a composition v = (nq,...,n,) € X(h,n), we define the functors of imaginary

induction and imaginary restriction as

I} :=1Indy,s.. 0,6 0 Bnis,..n,s-mod = Ry,5-mod

v

and

*IZL = Resm(gr'.’nhg : Rn(g—mod — Rm(g nh(g—mod.

77777

These functors ‘respect’ the categories of imaginary representations. For example,
given imaginary R, s-modules V; for b = 1,..., h, the module [J}(V; X---XV},) is also

imaginary. Define

7V =12, R K Z,,),

A =T (A, B B A, ).

Now, let Sy, ,, be the classical Schur algebra, whose representations are the same
as the degree n polynomial representations of the general linear group GL;(F), see

[12]. In particular, it is a finite dimensional quasi-hereditary algebra with irreducible,

10



standard, costandard, and indecomposable tilting modules
Lu(A), An(A), Vi(A), Th(A) (A € Xy(h,n)).

Theorem 2. (Imaginary Howe Duality)

(i) For eachv € X (h,n) the /,-module Z¥ is projective. Moreover, for any h > n,

we have that Z = @yex(hm) Z" is a projective generator for 7.

(ii) The endomorphism algebra Endy, (Z) is isomorphic to the classical Schur
algebra Shn. Thus Z can be considered as a right Sp,-module.
(iii) Endg, ,(Z) = Z.

Part (i) of Theorem 4 is Theorem 3.74(iii), part (ii) is Theorem 3.66, while part

(iii) follows from (i) and (ii) and general Morita theory.

1.23. Morita equivalence

Theorem 2 allows us to plug in Morita theory to define mutually inverse

equivalences of categories

apgp  Sp-mod — Sy ,-mod, Vi Homy, (Z,V) (1.10)

Bhn : Spp-mod — F-mod, W= Z ®g,  W. (1.11)

Denoting by f, , the usual Schur functor, as for example in [12, §6], by definitions we
then have a commutative triangle (up to isomorphism of functors):

Shm—mod

FS,,-mod L Z,-mod

11



Let A € X, (n,n) and h > n. We can also consider A as an element of X (h,n).

Define the graded .#,-modules (hence, by inflation, also graded R,s-modules):

L(A) = Bun(Ln(N), (1.12)
AN = Bua(An(N), (1.13)
V(A) = Brn(Vi(N), (1.14)
TN = Bra(Th(N). (1.15)

Theorem 3. (Imaginary Schur Algebra) The imaginary Schur algebra ., is a
finite dimensional quasi-hereditary algebra with irreducible, standard, costandard, and

indecomposable tilting modules

LY, AN, VA, T(A) (A € Xo(h,n)).

We also study an imaginary analogue of Ringel duality, certain Gelfand-Graev
fragments of the graded character of imaginary representations, and an imaginary

analogue of the Jacobi-Trudi formula.

1.3. Stratifying KLR algebras of affine ADE types

Restricting attention to KLR algebras R, of untwisted affine ADFE types, we
are able to generalize much of the theory of the previous section from balanced to
arbitrary convex preorders. In particular, we obtain an analogue of the imaginary
Howe duality theory in complete generality. To do this, we take advantage of two
added ingredients: the recent work of McNamara [39], which gives the desired result

in characteristic zero, and reduction modulo p.

12



1.31. Stratifying KLR algebras

Under the assumption p = 0, it is proved in [39] that R, is properly stratified.
Informally, this means that the category R,-mod of finitely generated graded R,-
modules is stratified by the categories Bg-mod for much simpler algebras Be. Our
goal then is to apply reduction modulo p arguments to generalize this result to the
case where p is greater than some explicit bound, related to the bound appearing in
James’ Conjecture.

We define the semicuspidal algebra C,,, so that the category of finitely generated
semicuspidal R,,-modules is equivalent to C,,-mod. Projective indecomposable
modules in C),,-mod are used to define standard modules for Ry. We show that
our definitions, which use parabolic induction of semicuspidal representations, agree
with a general categorical definition of standard modules. We then verify the flatness
condition in the definition of properly stratified algebras. To verify the standard
filtration condition we need a certain Ext result, following McNamara’s argument in
[39]. With this theorem in hand, a standard argument gives:

Theorem 4. Let a =Y ., n; € Q1 and assume that p > min{n; | i € I}. For any

el

convex preorder on ® , the algebra R, is properly stratified.

1.32. Affine zigzag algebras and imaginary strata

Description of the algebras B¢ in the previous section are easily reduced to the
semicuspidal cases, which split into real and imaginary subcases. In the real case we
have By, = k[z1,...,2,)%", the algebra of symmetric polynomials in n variables, but
the imaginary case B,s is not so easy to understand.

Working with a balanced convex order, we prove that Bs = k[z] ® A, where A is

the zigzag algebra of [14] corresponding to the underlying finite Dynkin diagram I
13



obtained by deleting the affine node from I', and k[z] is the polynomial algebra. In
order to describe the higher imaginary strata, we introduce the rank n affine zigzag

algebra AT

n

which is defined for any connected graph without loops. We show that
B,s is (graded) Morita equivalent to the affine zigzag algebra AZH corresponding to
I if p > min{n,; | i € I} (or p=0).

Denoting

An& = @ A(A) and B,; = EndRmS (A"6>Op’

AEPn

we have that B,s is the basic algebra Morita equivalent to C,s. It turns out that
the parabolically induced module A", which can be considered as a C,s-module, is
always projective in the category C,s-mod. However, it is a projective generator in
Cprs-mod if and only if p > n or p = 0. So under these assumptions, the endomorphism
algebra of A§" is Morita equivalent to Cy,5 and B,,5. Otherwise, it is Morita equivalent

to their idempotent truncations. The following result is proved under no restrictions

on p. In fact, it holds over an arbitrary commutative unital ground ring k.

Theorem 5. Assume that the convex preorder on ®, is balanced. Then we have an

isomorphism of graded algebras
Endg,,(A§") = A,

where AZH is the affine zigzag algebra of type I". In particular, Bs = k[z] @ A.

14



1.4. Skew Specht modules and real cuspidal modules

Restricting attention to affine type A, we examine a connection between classical
representation theory of symmetric groups and the cuspidal system theory of KLR

algebras.

1.41. Skew Specht modules

Let O be a commutative ring with identity, and let &, be the symmetric group
on d letters. To every partition A of d, or equivalently, every Young diagram with
d nodes, there is an associated O&;-module S} called a Specht module, which has
O-basis in correspondence with standard A-tableaux. Over the complex numbers,
the group algebra of &, is semisimple, and it is well known that {S3 | A - d} is a
complete set of irreducible representations. For k < d, we consider &, a subgroup
of &4 with respect to the first k letters, and denote the copy of &, embedded in Gy

with respect to the last k letters as &).. For A+ d and u + k,
5)/" .= Home, (S, Resg, 53) (1.16)

is a Z&!, ,-module. In fact, 52/ # 4 0 if and only if the Young diagram for p is
contained in that of A\, so going forward we assume that is the case. The set of
nodes \/p in the complement is called a skew diagram, and Sg/ " is called a skew
Specht module. As a Z-vector space, 52/ " has basis in correspondence with standard
A/p-tableaux, and there is an analogue of Young’s orthogonal form for skew Specht
modules. When O = F is a field of positive characteristic, semisimplicity fails, but
skew Specht modules still arise as subquotients of restrictions of Specht modules to

Young subgroups.

15



More generally, to an l-multipartition X, one may associate a Specht module S*
over a cyclotomic Hecke algebra of level [, of which the group algebra of G, is a special
(level one) case. Brundan and Kleshchev [6] showed that over an arbitrary field such
algebras are isomorphic to a certain cyclotomic quotient R4 of the Khovanov-Lauda-
Rouquier (KLR) algebra Ry = @y(4)=q fla- In [27], Kleshchev, Mathas and Ram
gave a presentation for S* over R,, in terms of a ‘highest weight’ generator v* and
relations which include a homogeneous version of the classical Garnir relations for
Specht modules.

In this work we define graded skew Specht modules over R, by extending, in
the most obvious way, the presentation of [27] to skew diagrams A/u. We prove that
this yields a graded R,-module S** with homogeneous basis in correspondence with
standard A/p-tableaux. We show that for A of content 5 + «, the Rg ® R,-module

Resg oS has an explicit graded filtration with subquotients of the form S* X SA/H,

1.42. Real cuspidal modules

Our motivation for constructing graded skew Specht modules arose from the
study of real cuspidal modules over KLR algebras of affine type A. We prove the
following theorem for every balanced convex preorder .

Theorem 6. For a real root o € @, the irreducible cuspidal module L, is isomorphic
to a skew Specht module SM*, where A/ is an explicit skew hook diagram (dependent
on ).

This gives a presentation for cuspidal modules, along with a description of the
graded character which can be read off from the skew hook diagram. This result can

be seen as an affine analogue of a result by Kleshchev and Ram [32, §8.4], which
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showed that in finite type A, the cuspidal modules are Specht modules associated to

certain hook partitions.

1.5. Overview

In Chapter II we present preliminary definitions and results which will be required
throughout the dissertation. Preliminaries which are specific to a given chapter will
appear in that section. In Chapter III we prove imaginary Schur-Weyl duality. In
Chapter IV we generalize the results of III to arbitrary convex orders in affine ADE
types, present proof of the stratification result, and describe the imaginary strata.
In Chapter V we define skew Specht modules in type A, and use these to describe
real cuspidal modules. Technical calculations and results needed to prove results in

Chapters III and IV are relegated to Chapter VI.
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CHAPTER II

PRELIMINARIES

This chapter contains sections of the the articles [29, 30, 28, 40]. The papers [29,
30, 28] were co-authored with Alexander Kleshchev. We developed the results in the
co-authored material jointly over many meetings, and, by the nature of collaborative
mathematical work, it is difficult to attribute exact portions of the co-authored material

to either Kleshchev or myself individually.

2.1. Ground rings

Throughout the paper, F' is a field of arbitrary characteristic p > 0. We also
often work over a ring O, which is assumed to be either Z or F. Denote the ring
of Laurent polynomials in the indeterminate ¢ by & := Z[q,¢']. We use quantum

integers

ng=("-q¢™)/(g—qgHed (neZ),

and the quantum factorials [n]} := [1]4[2], . .. [n,-

2.2. Symmetric groups and Schur algebras

In this section we review the standard facts and combinatorics related to

symmetric groups and Schur algebras.

2.21. Partitions and compositions

We denote by X(h,n) the set of all compositions of n with h parts (some of
which could be zero), X, (h,n) the set of al partitions of n with at most h parts, and
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Xi(n) = Xi(n,n) the set of partitions of n. Sometimes we write A = n to indicate
that A € X, (n) and A F n to indicate that A € X(n,n). The standard dominance
order on X (h,n) is denoted by “<”.

We will use the special elements ¢4, ...,¢, € X(h,1), where
em=(0,...,0,1,0,...,0)

with 1 in the mth position. For a composition p E n we denote by u* F n the unique
partition obtained from p by a permutation of its parts. For A + n, we have its
transpose partition A\ - n.

If p> 0, then A € X, (h,n) is p-restricted if \,—\, 1 < pforallr =1,2,... h—1.
A p-adic expansion of X is some (non-unique) way of writing A = A(0) + pA(1) +
p?A(2) + ... such that each A(i) € X, (h,n(i)) is p-restricted. This can be applied to
a partition A F n considered as an element of X (n,n), in which case the nth part

An < 1, and so the p-adic expansion is unique.

2.22. Coset representatives

Let A = (A1,...,Aq) F n, and let &, be the corresponding standard parabolic
subgroup of &,, i.e. &, is the row stabilizer in &,, of the row leading tableau T
obtained by allocating the numbers 1,...,n into the boxes of A from left to right in
each row starting from the first row and going down. The column leading tableau Ty
obtained by allocating the numbers 1,...,n into the boxes of A from top to bottom

in each column starting from the first column and going to the right. Denote

X\ = Z w, yi= Z sgn(w)w (AEn),

weS ) weG
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where sgn(w) is the sign of the permutation w € &,,. Sometimes we also use the
notation sgng, and sgng, to denote the sign representations of the corresponding
groups.

Let © € &,. If 26,27 ! is a standard parabolic subgroup, say &, for some
composition u, we write u =: x\ and say that x permutes the parts of A, i.e. in that
case we have

S = 6,.

We recall some standard facts on minimal length coset representatives in
symmetric groups, see e.g. [8, Section 1]. For A F n, denote by D} (resp. *D,)
the set of the minimal length left (resp. right) coset representatives of &, in G,,.

Note that the permutation module
Per? := indgg’; trive, ~ 06, x)
has an O-basis {g® 1| g € D}, and similarly for the signed permutation module
SPer* := indggz sgng, ~ 06,y\ ~ Per? ®sgng, -

More generally, if v F n and ) is a refinement of v, denote D} := D) N &, and
AD, :=*D,, N&,. Then D) (resp. *D,) is set of the minimal length left (resp. right)

coset representatives of G, in &,. Moreover,
D)= {wy |2z €D’ yeD)and "D, = {yzr |z €"D,, y € D,}. (2.1)

For two compositions A, u F n set *D¥ := DF N *D,,. Then *D¥ is the set of
the minimal length (&, &,)-double coset representatives in &,,. If x € *D¥, then
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S\ N 2GS,z ! is a standard parabolic in &,,. This standard parabolic corresponds
to certain composition of n, which we denote A N xu. Similarly, 27 'S,z N &, is the

standard parabolic corresponding to a composotion 7'\ N u. Thus:
S\ N xGHx_l = G)raps iGN S, =61\, (z € *DM). (2.2)
Moreover, z permutes the parts of z7'A Ny, and z(z™*ANp) = AN zu, so
xGm*IAﬁpx_l = GAmxu~

For A - n define uy to be the unique element of " D* such that Gyu NuyGyuy*t =

{1}; in other words, uy is defined from u)T* = Tj.

Lemma 2.3. [8, Lemma 4.1] If A F n, then y\«O&,x, is an O-free O-module of rank

one, generated by the element yyeuyx,y.

2.23. Schur algebras

The necessary information on Schur algebras is conveniently gathered in [5,
Section 1]. We recall only some most often needed facts for reader’s convenience.

The Schur algebra Sh,, = Shn,o is defined to the endomorphism algebra

writing endomorphisms commuting with the left action of OG,, on the right.

Let A, u € X(h,n) and u € &,,. The right multiplication in O&,, by

Iur = Z w (2.4)

weG L UGy NHY
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induces a well-defined homomorphism of left OG,,-modules
@y - Per' — Per* .

Extending ¢/, , to all of ¢ X(hn) Per” by letting it act as zero on Per” for v # u, we

obtain a well-defined element

©x € Shn- (2.5)

Lemma 2.6. S is O-free with basis {¢¥ \ | u, A € X(h,n), u € #D*}.

Lemma 2.7. For h > n, the O-linear map « : F'S,, = S}, ,,, defined on a basis element

w

w € &, by K(w) := ¢{la) 1ny, s a (unital) ring embedding.

One can also define the Schur algebra using the signed permutation modules. So

consider instead the algebra

Endogn( @ SPer”).

veX (h,n)

For \,u € X(h,n) and u € G,, set

Spy = Z sgn(w)w. (2.8)

weSL UG\ NHY

Lemma 2.9. The algebras S}, and Endps,, <@V€X(h n) SPer”) are isomorphic, the
natural basis element ¢} , of Sp, corresponding under the isomorphism to the
endomorphism which is zero on SPer” for v # p and sends SPer” into SPer via

the homomorphism induced by right multiplication in O&,, by s}, .
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2.24. Representation theory of Schur algebras

We recall some facts about the representation theory of S}, ,,, assuming now that
O = F'. All the results gathered here are explained in detail and properly referenced

in [5, Section 1]. First of all, it is known that the elements

() = @l € S (1€ X(hym) (2.10)

are idempotents. We have a weight space decomposition for W € S}, ,-mod:

The subspaces e(u)W are the weight spaces of W.

The irreducible Sy ,-modules are parametrized by the elements of X (h,n). We
write Lp(\) for the irreducible Sj, ,-module corresponding to A € X,(h,n). In
particular, L,(\) has highest weight A, i.e. e(A)Ly(A) # 0 and e(u)Ly(A) = 0 for
all p € X(h,n) with £ . It is known that Sy, is a quasi-hereditary algebra with
weight poset (X, (h,n),<). In particular, we have associated to A\ € X (h,n) the
standard and costandard modules Ap(A) and Vj(A) such that Ay (A) (resp. Vi(N))
has simple head (resp. socle) isomorphic to Lj()\), and all other composition factors
are of the form Ly (u) with p < A.

For A € X (h,n) and v € X (h,n), denote by ky, the dimension of the v-weight
space of Ly (A):

kx, = dime(v)L(N). (2.11)
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In particular, if char F' = 0, then L,(\) = Ap(\) and so it is well-known that k), =
K., where

K, := t{semistandard A-tableaux of type v}, (2.12)

also known as the (), v)-Kostka number. To give the necessary definitions, we consider
A as a partition, and so we can speak of the corresponding Young diagram. A A-tableau
is an allocation of numbers from the set {1,...,h} (possibly with repetitions) into
the boxes of the Young diagram A. A A-tableau is of type v if each 1 < k < n appears
in it exactly v, times. A A-tableau is column strict if its entries increase down the
columns. A A-tableau is row weak if its entries weakly increase from left to right along
the rows. A A-tableau is semistandard if it is row weak and column strict.

The algebra S}, ,, possesses an anti-automorphism 7 defined on the standard basis
elements by T(cpjjA) = gpi(;. Using this, we define the contravariant dual M7 of an
Shn-module M to be the dual vector space M* with action defined by (s - f)(m) =
f(r(s)m) for all s € Sp,,,m € M, f € M*. We have L,(\)" =~ L,(\) and Ap(\)" =~
Vi(A) for all A € X (h,n).

Given a left Sj, ,-module M, we write M for the right Sj, ,-module equal to M
as a vector space with right action defined by ms = 7(s)m for m € M, s € S, ,,. This
gives us modules Lj,(\), Ay(\) and V() for each A € X (h,n).

Lemma 2.13. Sy, has a filtration as an (S, ,, Sh,»)-bimodule with factors isomorphic
to Ap(\) ® An()\), each appearing once for each \ € X4 (h,n) and ordered in any
way refining the dominance order on partitions so that factors corresponding to more

dominant \ appear lower in the filtration.

We have an algebra map Sh 41 — Shn ® Shy, which enables us to view the
tensor product M ® M’ of an Sy ,-module M and an Sj,;-module M’ as an Sp -

module. Let Vj, = L;((1)) be the natural module. The nth tensor power V," can
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be regarded as an Sj ,-module. We also have the symmetric, divided and exterior
powers: S™(Vi) = Vi((n)), Z"(Vi) = An((n)), A™(Vi) = Lp((1™)). More generally,

given v = (ny,...,n,) € X(h,n), define

SU(Vi) o= S (V) @ -+ @ 8™ (Vi) (2.14)
Z'(V) =2 (Vi) ® - ® Z"(Vp), (2.15)
AV(Vh) =A™ (Vh> K- ® A”a(Vh) (2.16)

all of which can be regarded as Sy ,-modules.

Lemma 2.17. For v € X (h,n) we have:
(i) the left ideal Sy, ,e(v) of Sy, is isomorphic to Z¥(V},) as an Sj,,-module;

(ii) providing h > n, the left ideal Sy, ,x(y,) of S, is isomorphic to A¥(V},) as an

Sh.n-module, where x : F&,(V) — S),, is the embedding of Lemma 2.7.

A finite dimensional S} ,-module M has a standard (resp. costandard) filtration
if M has a filtration 0 = My C M; C ... C M, = M such that each factor M;/M; 4
is isomorphic to a direct sum of copies of Ap(A) (resp. V(X)) for some fixed A €
X4 (h,n) (depending on 7).
Lemma 2.18. If M, M" are modules with standard (resp. costandard) filtrations then
sois M @ M'.

In particular, Lemma 2.18 implies that for any v € X (h,n), the modules S¥(V},),
and A”(V},) have costandard filtrations, while Z¥(V},) and A”(V}) have standard

filtrations.
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Lemma 2.19. Let h > n and A € X, (h,n), we have that the homomorphism space
Homg, ,(Z*(Vy), AN (V3)) is one-dimensional, and the image of any non-zero such

homomorphism is isomorphic to Ay ().

If p > 0, then for and h,n,r € Z>¢, there is a Frobenius homomorphism
F, : Shapr = Shons
twisting with which one gets the Frobenius twist functor
Shn-mod — S, ,r-mod, M +— MU

For example L(A)I ~ L(p")). The Steinberg tensor product theorem is:

Lemma 2.20. Suppose that A € X, (h,n) has p-adic expansion A = A(0) + pA(1) +

P’A(2) +.... Then, Ly(\) =~ Ly(A\(0)) ® LyA(1)T @ Ly(A2)P @ ....

2.25. Induction and restriction for Schur algebras

For a composition x = (h1, ..., h,) E h there is a natural Levi Schur subalgebra

Syn EB Shins @+ @ Shana € Shons (2.21)

ni+-+ng=n

and the usual restriction, and induction functors:

Shon . S
resg " 1 Spp-mod — Sy p-mod, indg'” 1S ,-mod — S ,-mod .
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Moreover, fix [ < h and embed X (I, k) into X (h, k) in the natural way. Let e be

the idempotent

e=ep; = Z e(p) € Shon. (2.22)

neX(l,k)

Lemma 2.23. We have S;,, >~ eS}, ne.

Then, we have the Schur functor
trunSl : Spp-mod — ) ,-mod, M +— eM (2.24)
and its left adjoint
inflg"" : S-mod — Spp-mod, N i Spae ®es, e N. (2.25)

Lemma 2.26. If n < [ < h, then the functors trung?’: and inﬂg;": are mutually

quasi-inverse equivalences of categories.

Lemma 2.27. Let | < h and p = (p1,...,un) € Xy (h,n).
(i) If p41 # 0 then trungz’: Ln(p) = trunglh " Ap(p) = trunsh” V() = 0.

(ii) If w41 = 0, we may regard p as an element of X, (l,n), and then we have

trunsh" Lp(p) ~ Li(p), trungi‘: Ap(p) ~ Ay(p), and trungi: Vi) = V().
Lemma 2.28. If x = (hy,...,hy) F hand v = (nqy,...,n,) E n, with h, > n, for all

r=1,...,a, then

mdsh TR X7) and (1nﬂSh ™M) @ ® (inflyme 7)

Shl ny Sha Nna

are isomorphic functors from Sj, ,,,-mod x - -- x S} ,,.-mod to S}, ,-mod.
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2.26. Schur functors

Here we review the material of [5, Section 3.1] for future references. Let .
be a finite dimensional F-algebra, P € .#-mod be a projective module, and H =
End(P), writing endomorphisms commuting with the left .#-action on the right.

Define the functors:

a:=Homgy(P,7) : -mod — H-mod,

b= P®yx?: H-mod — .¥-mod.

The « is exact, and ( is left adjoint to «.

Given an .-module V', let Op(V') denote the largest submodule V’ of V' such that
Hom (P, V') = 0. Let O (V) denote the submodule of V' generated by the images of
all .-homomorphisms from P to V. Any .#-module homomorphism V' — W sends
Op(V) into Op(W) and O (V) into OF (W), so we can view Op and O as functors
Z-mod — #-mod. Finally, any homomorphism V' — W induces a well-defined .-
module homomorphism V/Op(V) — W/Op(W). We thus obtain an exact functor
Ap @ -mod — .¥-mod defined on objects by V +— V/Op(V). The following two

lemmas can be found for example in [5, 3.1a, 3.1¢]:
Lemma 2.29. The functors o 8 and oo Ap o 8 are both isomorphic to the identity.
Lemma 2.30. If V,W € %-mod satisfy OF(V) = V and Op(W) = 0, then
Hom »(V, W) ~ Hompy (a(V), a(W)).

The main result on the functors a, 8, proved for example in [5, 3.1d], is:
Theorem 2.31. The functors o and Ap o 8 induce mutually inverse equivalences of

categories between H-mod and the full subcategory of .’-mod consisting of all V' €

#-mod such that Op(V) =0 and OF(V) =V.
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An easy consequence is the following relation between the irreducible modules,

see [5, 3.1e]:

Lemma 2.32. Let {E,, | m € M} be a complete set of non-isomorphic irreducible
-modules appearing in the head of P. For all m € M, set D,, := a(E,,). Then,

{D,, | m € M} is a complete irredundant set of irreducible H-modules, and Ap o
B(Dp,) ~ Ep,.

Finally, we will make use of the following more explicit description of the effect

of the composite functor Ap o 5 on left ideals of H, see [5, 3.11]:

Lemma 2.33. Suppose that every composition factor of the socle of P also appears in

its head. Then for any left ideal J of H, we have Ap o 5(J) ~ PJ.

2.3. Lie theoretic notation

Throughout the paper

C = (cij)ijer

is a Cartan matriz of untwisted affine type, see [17, §4, Table Aff 1]. We have

1=1{0,1,....1},

where 0 is the affine vertex. Following [17, §1.1], let (b, II,II") be a realization of the
Cartan matrix C, so we have simple roots {«; | i € I}, simple coroots {«) | i € I},

and a bilinear form (+,-) on h* such that

2(0[1', Oéj)

Cij - (Oéi, al)

for all 4,j € I. We normalize (-, -) so that (o, ;) = 2 if «; is a short simple root.
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The fundamental dominant weights {A; | i € I} have the property (A;, o) = d;j,
where (-, -) is the natural pairing between h* and . We have the integral weight lattice

P = ®;c/Z - \; and the set of dominant weights Py = > ._; Z>o - \;. Fori € I we

el
define

g =2, nli= [0y, [n]; = Inlg,e (2.34)

Denote Q4 := @,;Z>o - ;. For a € Q, we write ht(a) for the sum of its
coefficients when expanded in terms of the «;’s.

Let g’ = g(C’) be the finite dimensional simple Lie algebra whose Cartan matrix
C’' corresponds to the subset of vertices I’ := I\ {0}. The affine Lie algebra g = g(C)
is then obtained from g’ by a procedure described in [17, Section 7]. We denote by
W (resp. W') the corresponding affine Weyl group (resp. finite Weyl group). It is
a Coxeter group with standard generators {r; | i € I} (resp. {r; | i € I'}), see [17,
Proposition 3.13].

Let @ and @ be the root systems of g’ and g respectively. Denote by @’ and

., the set of positive roots in & and @, respectively, cf. [17, §1.3]. Let
0 = apag + araq + - - - + apoy. (2.35)
By [17, Table Aff 1], we always have
ao = 1. (2.36)
We have

0 — g = 0, (237)
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where 6 is the highest root in the finite root system @'. Finally, &, = &' L &',

where

O™ = {nd | n € Zso}

and

P ={f+nd| B e, n€Ls}U{-B+nd|B €D, necls}

2.4. KLR algebras

Define the polynomials in the variables u, v

{Qij(u,v) € Flu,v] | i,j € I}

as follows. For the case where the Cartan matrix C # Agl), choose signs ¢;; for all

1,7 € I with ¢;; <0 so that ;565 = —1. Then set:

0 if i = j:
Qij<u7v) = 1 lf Cij = O7

gij(u™ —v=%) if ¢;; < 0.
For type Agl) we define

0 if i = j;

(u—v)(v—u) ifi#j.

Qij (u, U) =

Fix a € Q4 of height d. Let

Ia:{i:(il,...,z’d)Eld|ai1+---+aid:a}.
31
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The KLR-algebra R, = R,(O) is an associative graded unital O-algebra, given by

the generators

{Lilie Ly U{yr, ... yat U{tr, ... a1}

and the following relations for all 2,5 € I, and all admissible r, ¢:

lilj = 5’i,j1ia Zielali = 1;

Yrli = Layes Yy = Yers
Yrli = 15,400
(Yer — UrYs, ) Li = iy (01 — O10) 13
V215 = Qiyis (U Yr1) 1

Urthy = Yy (Jr —t| > 1);

(wr—l—lwrwr—i-l - %%H%) L;

Qir,ir+1 (yr+27 yTJrl) - Qir7ir+1 (yT7 yTJrl)
Yr+2 — Yr

=0

1;.

’L'r »ir+2

The grading on R, is defined by setting:

deg(1;) =0, deg(y,ls) = (v, i), deg(,l;) = —(ai,, a4, ).

(2.41)

(2.42)

(2.43)
(2.44)
(2.45)
(2.46)

(2.47)

(2.48)

It is pointed out in [21] and [42, §3.2.4] that up to isomorphism R,, depends only

on the Cartan matrix and «.
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Fix in addition a dominant weight A € P,. The corresponding cyclotomic KLR

algebra R? is the quotient of R, by the following ideal:

\
<A:O‘i1>

Jé\ = (yl 11, | 1= (ilu s 7id> S [a>' (249)

For each element w € S, fix a reduced expression w = s,, ...s,, and set

ww = wrl .- -%m-

In general, v, depends on the choice of the reduced expression of w.

Theorem 2.50. [20, Theorem 2.5], [42, Theorem 3.7] The elements

{wwyznl ...y;ndli | w € Sd, mi,..., Mg € Zzo, 1€ Ia}

form an O-basis of R,.

There exists a homogeneous algebra anti-involution

T: Ry — Ry, i1 yr—=ye, s (2'51)

foralli e l,, 1<r<d and1<s<d If M =&, ,M,is a finite dimensional
graded R,-module, then the graded dual M® is the graded R,-module such that
(M®),, := Homp(M_,,, O), for all n € Z, and the R,-action is given by (zf)(m) =
f(r(z)m), for all f € M® me M,z € R,.

We remark that there is also a diagrammatic presentation of KLR algebras given
in [20]. This presentation is particularly convenient for large calculations, and we will

make use of it in Chapters V and V1.
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2.41. Basic representation theory of R,

Let H be any (Z-)graded F-algebra. By a module V over H, we always mean
a graded left H-module. We denote by H-Mod the abelian category of all graded
left H-modules, with morphisms being degree-preserving module homomorphisms,
which we denote by Hom. Let H-mod denote the abelian subcategory of all finite
dimensional graded H-modules, and [H-mod] be the corresponding Grothendieck
group. Then [H-mod] is an &/-module via ¢™[M] := [¢™M], where ¢"* M denotes the
module obtained by shifting the grading up by m, i.e. (¢"M),, := M,,_,,. We denote
by hompg (M, N) the space of morphism in H-Mod, i.e. degree zero homogeneous
H-module homomorphisms. Similarly we have ext;(M, N).

For n € Z, let Homy(M,N), := hompg(¢"M,N) denote the space of all

homomorphisms that are homogeneous of degree n. Set

Hompy (M, N) := @ Homy (M, N),,.

neL

For graded H-modules M and N we write M = N to mean that M and N are
isomorphic as graded modules and M ~ N to mean that they are isomorphic as
H-modules after we forget the gradings.

For a finite dimensional graded vector space V = @,z V,, its graded dimension
is dim, V := ) ., (dimV,)¢" € &/. Given M,L € H-mod with L irreducible, we
write [M : L], for the corresponding graded composition multiplicity, i.e. [M : L], ==
Y nez nq", Where a, is the multiplicity of ¢"L in a graded composition series of M.

Going back to the algebras R, = R.(F), every irreducible graded R,-module
is finite dimensional [20, Proposition 2.12], and there are finitely many irreducible

modules in R,-mod up to isomorphism and grading shift [20, §2.5]. A prime field is a

34



splitting field for R,, see [20, Corollary 3.19], so working with irreducible R,-modules
we do not need to assume that F' is algebraically closed. Finally, for every irreducible
module L, there is a unique choice of the grading shift so that we have L® — L [20,
Section 3.2]. When speaking of irreducible R,-modules we often assume by fiat that
the shift has been chosen in this way.

For ¢« € I, and M € R,-mod, the ¢-word space of M is M; := 1;M. We have
M = @iefa M;. We say that ¢ is a word of M if M; # 0. A non-zero vector v € M;
is called a wvector of word ¢. Note from the relations that . M; C M; ;.

Let M be a finite dimensional graded R,-module. Define the g-character of M
as follows:

chy M =Y "(dim, M;)i € o/ 1,.

icl,
The g-character map ch, : R,-mod — /1, factors through to give an injective <7-
linear map from the Grothendieck group ch, : [R,-mod] — &/1,, see [20, Theorem
3.17].

2.42. Induction, coinduction, and duality for KLR algebras

Given a, 8 € Q4+, weset R, 3 := R,®Rs. Let MXIN be the outer tensor product
of the R,-module M and the Rg-module N. There is an injective homogeneous (non-
unital) algebra homomorphism R, 3 — R,+s mapping 1; ® 1; to 1;j, where ¢j is the
concatenation of the two sequences. The image of the identity element of R, g under

this map is

i€ly, je]ﬂ
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Let Indzjgﬁ and Resgzﬁ be the corresponding induction and restriction functors:

Indgzﬁ = Royplas®r, ;7 : Rag-mod — Rayp-mod,

Reszj%ﬂ = lapgRats®r,. 57+ Rayp-mod — R, g-mod.

We often omit upper indices and write simply Ind, g and Res, 3.

Note that Res, g is just left multiplication by the idempotent 1,4, so it is
exact and sends finite dimensional modules to finite dimensional modules. By
20, Proposition 2.16], 1, 3R.+p is a free left R, g-module of finite rank, so Res, g
also sends finitely generated projectives to finitely generated projectives. Similarly,
R,151, 5 is a free right R, g-module of finite rank, so Ind, g is exact and sends finite
dimensional modules to finite dimensional modules. The functor Ind, g is left adjoint
to Res, g, and it sends finitely generated projectives to finitely generated projectives.

These functors have obvious generalizations to n > 2 factors:

Ind,, . ~.: Ry, . 4.-mod — Ry ..\ -mod,

Resy,,..vn @ Byi4eqpy,-mod — R, o -mod .

If M, € R,,-Mod, for a =1,...,n, we define

Myo-oM,=Ind, . MK &M, (2.52)
In view of [20, Lemma 2.20], we have
chy (Myo---0oM,)=ch,(M;)o---och,(M,). (2.53)
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Finally, the functors of induction and restriction have parabolic analogues. For
example, given a family (o4 )1<q<n, 1<p<m Of elements of Q, set > af =: f3, for all
1 < b < m. Then we have obvious functors

Indﬁl;'“;ﬁm and Resﬂulm;ﬁm

(ad,.,af)ss(od, . an) (af s ( @y s )

While the induction functor Ind,, . .

n

is left adjoint to the functor Res,, ..,

the right adjoint is given by the coinduction:

COind’Yl,---,’Yn = COlndzi—i_—i_’y" = HomR’Yl

Ym0 TEOMRy 'Yn(]"ylv-w')’nR’YlJ"""i"Yn’ ?)

Induction and coinduction are related as follows:

For v := (71,...,7) € Q}, we denote

dy) =Y ().

1<m<k<n

Lemma 2.54. [35, Theorem 2.2] Let v := (v1,...,7) € Q7}, and V,, be a finite-

dimensional R, -module for m =1,...,n. Then
Ind,,.. ., Vi B BV, = ¢ Coind,,.., Vo K- R V.

Lemma 2.55. Let v := (71,...,7) € Q}, and V,, be a finite dimensional R, -module

form=1,...,n. Then

(Vio---0V,)® qu(l)(‘/@O"-OVl@).

37



Proof. Follows from Lemma 2.54 by uniqueness of adjoint functors as in [23, Theorem

3.7.5] 0

Lemma 2.56. Let V € Ryp-mod, 2 € I, and v € 1,V be a non-zero homogeneous
vector with Ryv = V. Assume that there is only one irreducible Rg-module L up to

~ with 1;L # 0 and [V : L], # 0. Then head V =~ L.

Proof. 1f W is the radical of V' then V/W = @, m,.(q)L, for simple modules L,, with
L, % L, for r # s, and multiplicities m,(q) € Z[q,q']. By assumptions, there exists
r such that L = L,, ms(q) = 0 for s # r, and v+ W € m,(q)L,. Finally, v + W

generates m,(q)L,, so m,(q) is of the form ¢%. O

2.43. Crystal operators and extremal words

The theory of crystal operators has been developed in [20], [35] and [18] following
ideas of Grojnowski [13], see also [23]. We review necessary facts for the reader’s
convenience.

Let a € Q4 and 7 € I. It is known that R,,, is a nil-Hecke algebra with unique

(up to a degree shift) irreducible module

LGy = g L)

]

Moreover, dim, L(i") = [n]; We have functors

Ro—a: o
e; : Ro-mod — R,_,,-mod, M — RestizZ’“’ o Resq—q;,0, M,

fi : Ro-mod — Ryjq,-mod, M — Ind, o, M X L(7).
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If L € R,-mod is irreducible, we define

fiL :=head(f;L), &L :=soc(eL).

A fundamental fact is that f;L is again irreducible and &L is irreducible or zero. We
refer to €; and fz as the crystal operators. These are operators on B U {0}, where B
is the set of isomorphism classes of the irreducible R,-modules for all & € ). Define

wt: B — P, [L]— —a if L € Ry-mod.

Theorem 2.57. [35] B with the operators é;, f; and the function wt is the crystal graph

of the negative part U,(n_) of the quantized enveloping algebra of g.

For M € R,-mod, define

gi(M) = max{k >0 | e¥(M) # 0}.

Then €;(M) = max{e;(7) | g is a word of M}, where for j = (j1,...,jq4) € I,

62(]) = max{k: Z 0 | jd—k—i—l == jd = Z} (258)

is the length of the longest i-tail of 3. Define also

ef(M) :=max{k>0|j == jp =1 for aword j = (ji,...,Ja) of M}

)

to be the length of the longest i-head of the words of M.
Proposition 2.59. [35, 20] Let L be an irreducible R,-module, i € I, and € = ¢;(L).

(i) e;L is either zero or it has a simple socle; denote this socle €;L interpreted as 0
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(ii) f;L has simple head denoted fiL:

(iif) &f;L ~ L and if &L # 0 then fié;L ~ L;
(iv) = = max{k > 0 | (L) £ 0};

(v) Resa—cajea; L >~ LK L(i").

Recall from (2.49) the cyclotomic ideal J». We have an obvious functor of

inflation infl* : R*-mod — R,-mod and its left adjoint
pr® : R,-mod — R-mod, M +— M/J*M.

Lemma 2.60. [35, Proposition 2.4] Let L be an irreducible R,-module. Then pr*L # 0

if and only if ef(L) < (A, o) for all i € I.

Let M € R,-mod and ¢ = i{*...43,", with ay,...,a, € Z~o, be a word of M.

Then ¢ is extremal for M if

ap = 5ib(M); Ap—1 = E4_, (éibe) y eee o, Q1 = &gy (é?j e é?be).

It follows that s # i1 forall bk =1,...,b— 1.

Lemma 2.61. [24, Lemma 2.10] Let L be an irreducible R,-module, and ¢ =
it .. .iy" € I, be an extremal word for L with i) # i41. Set N := Zl;nzl o
1) (e, @i,,)/4. Then

b

dim, L; = H[ak];k and dim1;Ly =dim1;L_y = 1.
k=1
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2.44. Mackey Theorem

We state a slight generalization of Mackey Theorem of Khovanov and Lauda
20, Proposition 2.18]. First some notation. Given k = (k1,...,kx) € QF, and a

permutation x € Gy, we denote

TE = (Kg-1(1), - - -, Kg-1(N))-

Correspondingly, define the integer

s(z, k) = — Z (K, Kk )-

1<m<k<N, z(m)>z(k)

Writing R, for R, . there is an obvious natural algebra isomorphism

SN
0"t Ry — Ry
permuting the components. Composing with this isomorphism, we get a functor
R,mod — R,.-mod, M s ¢ M.
Making an additional shift, we get a functor
R.-mod — Ry.-mod, M s M := ¢*@&) (" M).

For the purposes of the following theorem, let us fix

7:(’}/17"-7’771)6QZ- and é:(ﬁlaaﬂm)eQT
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with

Mt A=t B = a

Denote dff := ht(af) and d := ht(a).

Let D(3,7) be the set of all tuples a = (@} )1<a<n, 1<b<m Of elements of @ such
that > " jaf =~ foralll<a<nand ) af = forall<b<m.

For each a € D(8,7), we define permutations z(a) € &y, and 2(a) € &4. The

permutation z(a) maps

1 12 2 n
(O, ey QU Oy ooy Qe O )
to
1 n 1 n 1 n
(O, oy Q] Qe Qe Q).

On the other hand, w(a) is the corresponding permutation of the blocks of sizes dj.

Example 2.62. Assume that n = 2, m = 3, and all df = 2. Then z(a) € &¢ is the
permutation which maps 1 +— 1,2+ 3,3 +— 5,4+ 2,5+ 4,6 — 6. In diagrammatic

form:

On the other hand, w(a) € &3 is the corresponding block permutation:

i 2 3 4 5 6 7 8 9 10 11 12

- |W||
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Let M € R.,-mod. We can now consider the B.1 . n. .1 » -module
2l (oS RIRTTIoS IR TTEH e 7 PR e 2408

Finally, let < be a total order refining the Bruhat order on &, and for a € D(f,7),

consider the submodules

Feo(M):= > Rghy ® 1,M C ResInd3 M,

weD(B,7), wlw(a)

Feo(M) := > Rgthy @ 1,M C Res§Ind M.

weD(B,y), w<w(a)

Theorem 2.63. Let

Y= m) €QF and B=(B1,...,0n) € QY
with
’Yl‘i‘""i"}/nzﬁl‘i‘""i‘ﬁm:i@,

and M € R,-mod. With the notation as above, the filtration (F<o(M))aen(s) is a
filtration of Resg Ind, M as an Rg-module. Moreover, the subquotients of the filtration

are:

Proof. For m = n = 2 this follows from [20, Proposition 2.18]. The general case can be

proved by the same argument or deduced from the case m = n = 2 by induction. [
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2.5. Convex preorders and root partitions

We now describe the theory of cuspidal systems from [24]. Recall the notion of a
convex preorder on ¢, from (1.1)—(1.3). General theory of cuspidal systems is valid
for an arbitrary convex preorder, but for the theory of imaginary representations we
will need an additional assumption that the preorder is balanced, see (1.7), (1.8).

Recall that I’ = {1,...,l}. We will consider the set & of [-multipartitions
A - ()\(1)7 ) )\(l))v

where each \(V) = (,\ﬁ“, )xgi), ...) is a usual partition. We denote

A=) AL

iel’

For n € Z>g, the set of all A € & such that |A| = n is denoted Z,.

Recall the totally ordered set W defined in (1.4). Denote by Se the set of all
finitary tuples M = (m,),cv € Zgo of non-negative integers. The left lexicographic
order on Se is denoted <; and the right lexicographic order on Se is denoted <,. We

will use the following bilexicographic partial order on Se:
M<N if and only if M <; N and M >, N.

Let

™= <M7/;l’> = (pT17"'7pZLS7H7th7t7"'7p711171>

be a root partition as in (4.13), so that M € Se and y € &,,;. For p € ¥, we define

M

, = m,p, and consider a tuple |M| = (M,),ev € QY. Ignoring trivial terms, we
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can also write
|M| = (mlpb <oy, MsPs, m557 m_¢P—t, - - - 7m—1p—1)'
Then we have a parabolic subalgebra

R\M| = Rm1p1 ..... MsPsy MO tP—tyeeey 1 P—1 - Ra-
We will use the following partial order on the set II(«) of root partitions of a:

(M, ) < (N,v) if and only if M < N and if M = N then u = v. (2.64)

2.6. Cuspidal systems and standard modules

Let < be an arbitrary convex preorder on ®,. Recall the definition of a cuspidal

system

{Ly | pe@FFU{L(p) | p e 2}

from §1.1.

For every a € Q4 and m = (M, u) € Tl() as in (4.13), we define an integer

sh(r) = sh(M, ) == 3 (p, p)m,(m, — 1)/4, (2.65)

pEPL®

the irreducible R|y;-module

Le= Ly =¢™™ LI K- WL K L(p) WL WL (2.66)

p-1"
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and the standard module
A(m) = A(M, p) == il Ly™ oo Lo™ o L(p)o L™ o L. (2.67)

Note that A(M, p) = Indjar Lz -

Theorem 2.68. [24] Given a convex preorder there exists a corresponding cuspidal

system {L, | p € @} U{L(A) | A € Z}. Moreover:

(i) For every root partition 7, the standard module A(7) has irreducible head;

denote this irreducible module L(r).

(ii) {L(m) | m € II(a)} is a complete and irredundant system of irreducible R,-

modules up to isomorphism and degree shift.
(iii) For every root partition 7, we have L(m)® = L(m).

(iv) For all 7,0 € TI(a), we have that [A(w) : L(r)], = 1, and [A(7) : L(o)], # 0

implies 7 < 0.

(v) For all (M,pu),(N,v) € I(a), we have that ResjyL(M,pu) = Ly, and
Res|y| L(M, ) # 0 implies N < M.

(vi) The induced module L™ is irreducible for all p € @ and n € Z.
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CHAPTER III

IMAGINARY SCHUR-WEYL DUALITY

The work in this chapter has appeared in the article [29], which has been accepted
for publication in the Memoirs of the American Mathematical Society. It is co-
authored with Alexander Kleshchev. We developed the results in the co-authored
material jointly over many meetings, and, by the nature of collaborative mathematical
work, it is difficult to attribute exact portions of the co-authored material to either

Kleshchev or myself individually.

3.1. Imaginary tensor space

In this chapter we assume that the fixed convex preorder we are working with
is balanced, so that a; = nd = ag for all i € I’ and n € Z~q. It turns out that the
theory of imaginary representations is independent of the choice of a balanced convex

preorder. Denote

e := ht(9).

Recall the irreducible imaginary representations of R,s; defined by the property
(Cus2) in §1.1.  The irreducible imaginary representations of Rs; are called
minuscule imaginary representations. The minuscule imaginary representations can

be canonically labeled by the elements of &7 as explained below.

Lemma 3.1. [24, Lemma 5.1] Let L be an irreducible Rs-module. The following are

equivalent:
(i) L is minuscule imaginarys;

(ii) L factors through to the cyclotomic quotient R?O;
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(iii) we have 4; = 0 for any word ¢ = (iy,...,1.) of L.

We always consider RA0-modules as R,-modules via infl*".

Proposition 3.2. [24, Lemma 5.2, Corollary 5.3] Let ¢ € I'.

(i) The cuspidal module Ls_,, factors through Rf;ﬂai and it is the only irreducible

R?Eai—module.

(ii) The minuscule imaginary modules are exactly
{Ls; = fiLs—q, | i € I'}.

(ili) e;Ls; = 0 for all j € I\ {i}. Thus, for each ¢ € I’, the minuscule imaginary
module L;; can be characterized uniquely up to isomorphism as the irreducible

Rg\o—module such that i, = ¢ for all words ¢ = (i1, ...,%) of Ls;.

For each i € I', we refer to the minuscule module Ls; described in Proposition 3.2

as the minuscule module of color i. Let
H<Z> =(0,...,0,(1),0,...,0) e & (1el) (3.3)

be the [-multipartition of 1 with (1) in the ¢th component. We associate to it the

minuscule module L;;:

L(p(7)) := Ls; (iel). (3.4)
Lemma 3.5. [24, Lemma 5.4] Let i € I'. Then ¢;(Ls;) = 1.

The minuscule modules are defined over Z, see [24, Remark 5.5]. To be more

precise, for each i € I, there exists an Rs(Z)-module Ls; 7 which is free finite rank
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over Z and such that L;s; 7z ® F is the minuscule imaginary module Ls; p over Rs(F)

for any ground field F'. In particular,

End]g(s (Ld,i,O) = 0. (36)

The imaginary tensor space of color i is the R,s-module

M, = L. (3.7)

In this definition we allow n to be zero, in which case My, is the trivial module over
the trivial algebra Ry. A composition factor of M, ; is called an irreducible imaginary
module of color i. Color is well-defined in the following sense: if n > 0 and L is an
irreducible imaginary R,s-module of color 4, then L cannot be irreducible imaginary
of color j € I'. Indeed, every word appearing in the character of M,,;, and hence in

the character of L, ends on 1.
Lemma 3.8. [24, Lemma 5.7] Any composition factor of M, 10---0M,, ; is imaginary.
The following theorem provides a ‘reduction to one color’:

Theorem 3.9. [24, Theorem 5.10] Suppose that for each n € Zs¢ and i € I’ we have
an irredundant family {L;(\) | A = n} of irreducible imaginary R,s-modules of color

i. For a multipartition A = (A ... AW) € &2, define

L) = Li(AM) o0 L;(AD).

Then {L(A) | A € £,,} is a complete and irredundant system of irreducible imaginary
R,s-modules. In particular, the given modules {L;(\) | A = n} give all the irreducible

imaginary modules of color ¢ up to isomorphism.
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Corollary 3.10. Suppose that for each n € Z>, and for each ¢ = 1,...,[, we have an
irredundant family {L;(A) | A = n} of irreducible imaginary R,s-modules of color i.
Then each irreducible imaginary R,s-module of color ¢ is isomorphic to one of the

modules L;(\) for some A F n.

Proof. Let L be an irreducible imaginary R,s-module of color ¢. By Theorem 3.9, we
must have L ~ Li(uM) o ---o L;(u®) for some multipartition (™, ..., u®) € 22,.
It remains to note that @) = () for all j # 4, for otherwise j would arise as a last

letter of some word arising in the character of L, giving a contradiction. O]

If the Cartan matrix C is symmetric, then the minuscule representations can
be described very explicitly as certain special homogeneous representations, see [24,

Sections 5.4,5.5].

Lemma 3.11. [24, Lemma 5.16] Let ¢ € I’. Then we can write Ag — 0 + a; = w(i)Ag

for a unique w(i) € W which is Ag-minuscule.

By the theory of homogeneous representations [24, Sections 5.4,5.5], the
minuscule element w(i) constructed in Lemma 3.11 is of the form we(; for some

strongly homogeneous component C(i) of Gs_,.

Lemma 3.12. [24, Lemma 5.17| Let t € I',d := e—1 = ht(0—c;) and § = (J1,...,ja) €

C(i). Then the cuspidal module L;s_,, is the homogeneous module L(C(i)), and we

have:
(i) j1=0;
(ii) jq is connected to ¢ in the Dynkin diagram, i.e. a;,; = —1

(iii) if j, = 4 for some b, then there are at least three indices by, b, bs such that

b < by < by < bg < d such that Aiby = Ajpy = Qjpy = —1.
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Now we can describe the minuscule modules as homogeneous modules:

Proposition 3.13. [24, Proposition 5.19] Let i € I’. The set of concatenations
Ci:={3113 € C1)}

is a homogeneous component of G, and the corresponding homogeneous Rs-module

L(C;) is isomorphic to the minuscule imaginary module L.

Example 3.14. Let C = Al(l) and i € I'. Then L;; is the homogeneous irreducible

Rs-module with character

chy Ls; = 0((1,2,...,i =)o (l,I—1,...,i+1))i.
For example, Ls; and L;s; are 1-dimensional with characters

chy, Lsy = (0,0, —1,...,1), ch,Ls; = (01...1),

while for [ > 3, the module Ls;_; is (I — 2)-dimensional with character

1-3
chy L1 =Y (0,1, Lr+1,...,1—1).
r=0
Example 3.15. Let C = Dl(l) and ¢ € I'. By Proposition 3.13, we have that Ls; is the
homogeneous module L(C;), where C; is the connected component in G containing
the following word:

(0,2,3,...,0—2,1,1—1,1—2,...i+1,1,2,...,0) ifi<l—1,
(3.16)

0,2,3,...,1—2,1—1,1,2,...,1—2,1) if i = 1.
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If the Cartan matrix C is non-symmetric, the explicit construction of the

minuscule representations Ls; is more technical. It is explained in Chapter VI.

3.11. Imaginary tensor space and its parabolic analogue

Fix i € I', and recall from (3.7) the imaginary tensor space M, ; = Lg% of color i.
We are going to study irreducible imaginary R, s-modules of color 7, i.e. composition
factors of M, ;. Since i is going to be fixed throughout, we usually simplify our
notation and write M, for M, ;, Ls for Ls;, etc. Recall that we denote by e the
height of null-root 9.

Throughout we fix an extremal word
T = (i1,...,7) (3.17)

of Ls so that the top degree component (1;Ls)y of the word space 1;Ls is 1-
dimensional, see Lemma 2.61. To be more precise, for a symmetric Cartan matrix
C, the module Ls is homogeneous by Proposition 3.13, i.e. all its word spaces are 1-
dimensional, and we can take ¢ to be an arbitrary word of Ls. For non-symmetric C, we
make a specific choice of 4 as in (6.8), (6.10), (6.12), (6.14) in types B&l), C§1), FS), Ggl)
respectively.

Pick a non-zero vector v € (1;Ls)y. Recall that Ls is defined over Z, so we may

assume that (1;Ls)ny = O - v. Denote
Uy =U @ @u € LY (3.18)

We identify L?” with the submodule 1 ® L?" cCM,= Ind57,,,75L&”, so v, can will be
considered as an element of M,,. Note that v, generates M, as an R,s-module, and
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that

Uy, € (11}1]\/[”)”]\[

By degrees,

yrvn:O (1§T§n>

More generally, let v = (nq,...,n,) E n. Consider the parabolic subalgebra

RV,(S = Rn15 ..... ngd - Rn5> (319)

and consider the I, s-module

M, =M, XK M,

with generator

vl/ ::Un1®"'®vna-

By transitivity of induction this module embeds naturally into M, as an R, ;-

submodule.

Lemma 3.20. M® = M,. In particular, every composition factor of the socle of M,

appears in its head.
Proof. This is [24, Lemma 5.6]. O

We denote by er the composition

ev = (enq,...,en,) E en.

The following lemma immediately follows from the Basis Theorem 2.50:
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Lemma 3.21. Let v = n. Then

MI/: ®)¢M®L?n

n
wEDéi

as O-modules. In particular,

Mn: @ ¢w®L?n
)

weDs"
as O-modules.
Define
Vo := Ress. s M,. (3.22)
More generally, for a composition v = (nq,...,n,) E n, set

8oiad
V, = Resy 5" M, 2V, K- - KV,

Clearly v, € V,,.
To describe V,, and V,, we introduce the block permutation group B, as the
subgroup of &, generated by the block permutations wq, ..., w,_1, where w, is the

product of transpositions

re

weo= [ Bb+e) (1<r<n). (3.23)
b=re—e+1
The group B, is isomoprphic to the symmetric group &,, via

L8, = B,, s, — w, (1<r<n).

o4



Note that each element «(w) € B,, belongs to ngf:). For example, if n = 2 then, in

terms of Khovanov-Lauda diagrams [20] we have

¢w1 2 =

Define

and

(weG,),

Ow =0y, ...0p

m

where we have picked a reduced decomposition w = s,, ...s,

Let us write 0" for (9,...,0) with n terms. By definition, V,, = Resg=M,, is an

Rsn-module.

Proposition 3.24. We have:
(i) As an Rgi-module, V,, has a filtration with n! composition factors = L5".

(i) As an O-module, V,, = P V(w), where V(w) := o, @ LZ".

weSy,
(i) 1M, = Byes, (0w ® (1;Ls)"")

(iv) (1;2M,),n is the top degree component of the weight space 1;2M,, and

(11”Mn)nN = @wGGHO ’ (Uw ® Un).

Proof. (i) follows by an application of the Mackey Theorem 2.63, using the property

(Cus2) of Ls and the fact that (d,6) = 0 to deduce that all grading shifts are trivial.
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(i) is proved by a word argument. Indeed, given words 3, ... ™ of Ls, we
have i{") = -+ = i = 0 by Lemma 3.1(iii). So, the only shuffles of i), ..., i which
lie in V,, are permutations of these words. So the result follows from Lemma 3.21.

(iii) follows from (ii), and (iv) follows from (iii). O

Corollary 3.25. All R, s-endomorphisms of M,, are of degree zero, and dim Endg,_,(M,,) <

nl.

Proof. This follows from the adjointness of the functors Ind and Res and

Proposition 3.24(i). O

3.2. Imaginary Schur-Weyl duality

In this section, we prove the key fact that Endg ,(M,) is isomorphic to the
group algebra of the symmetric group &,,. We distinguish between the cases where
the Cartan matrix C is symmetric and non-symmetric. The symmetric case can be
handled nicely using the work [19]. For the non-symmetric case we have to appeal to
the computations made in Chapter V1.

Assume in this paragraph that C is symmetric. We review the Kang-Kashiwara-
Kim intertwiners [19] adapted to our needs. Definition 1.4.5 of [19] yields a non-zero

Rss-homomorphism

T M2 N q(é,(s)72(5,5),14»23]\4'27

where (-, ), and s are as in [19, §1.3,(1.4.8)]. (This homomorphism would be denoted
rrsLs 0 [19].) Since (6,0) = 0, and all endomorphisms of M, are of degree zero
by Corollary 3.25, it follows that s = (9,9), and we actually have 7 : My — M.

Now, it follows from [19, Proposition 1.4.4(iii)], the adjointness of Ind and Res, and
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Proposition 3.24(ii) that

7' ®@v?) =0y (VP @0 + (v, v?) v @ v? (v',v? € L) (3.26)

for some c(v',v?) € O. In particular

7(v2) = (01 + ¢)vo (3.27)

for some constant ¢ € O.

Even if C is not symmetric, there is an endomorphism 7 of My with the property
(3.27), see Chapter VI. So from now on we use it in all cases.

Inserting the endomorphism 7 into the rth and r 4 1st positions in M, = L§",

yields endomorphisms

7 My, — M, v, = (0, + c)v, (1 <r<n). (3.28)

We note that the elements 7, go back to [27], where a special case of Theorem 3.29
below is checked, see [27, Theorem 4.13].
We always consider the group algebra OG,, as a graded algebra concentrated in

degree zero.

Theorem 3.29. The endomorphisms 7, satisfy the usual Coxeter relations of the
standard generators of the symmetric group &, i.e. 72 =1, 7,7, = 7,7, for [r—s| > 1,

and 7,7,417, = Tp417+Tr+1. Lhis defines a (degree zero) homomorphism

F&,, — Endg ,(M,)?
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which is an isomorphism.

Proof. 1f C is symmetric, we use the elements ¢,, from [19, Lemma 1.3.1(iii)]. Then
7,’s satisfy braid relations, as noted in [19, p.16]. For the quadratic relations, by
definition, 77 maps v, to ((2' — 2)"**¢2 v,)|.=»—0, where the action is taking place
in (Ls), o (Ls).» and we consider v, as a vector of (Ls), o (Ls),s in the obvious way.
Since ysv, = 0 in Ls we have ysv,, = 2zv, in (Ls), for all s. So the product in the right
hand side of [19, Lemma 1.3.1(iv)] is easily seen to act with the scalar (2/ — z)2(®%)n
on the vector v, € (Ls). o (Ls).. Since we already know that s = (9, 0),, it follows
that 72v, = v,. Since v, generates M,, as an R,s;-module, we deduce that 72 = 1.

If C is not symmetric, then we check in Proposition 6.16 that the 7, still satisfy
the quadratic and braid relations.

For an arbitrary C let w € &,, with reduced decomposition w = s,, ...s,,,. Then

in view of (3.28), for 7, :== 7, ... 7, (the product in Endg ,(M,)°), we have

Tw(vn) = (0p, +¢) ... (0p,, + C)vp. (3.30)
It follows that
Tw(vn) = 0u(n) + > cuoutn (e, € 0), (3.31)
u<w

where < is the Bruhat order. In view of Proposition 3.24(ii), the elements {7, | w €

S, } are linearly independent, and the result follows from Corollary 3.25. n

In view of the theorem, we can now consider M, as an (R,s, O, )-bimodule,
with the right action mw = 7,(m) for m € M, and w € &,,, where the linear

transform action 7, is defined by (3.30).

Corollary 3.32. We have:
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(i) As Rsn-modules, V, & @, . LE¥mw = (LFm)#,

(ii) As O-modules,

1im M, = @wGGn(liLé)&nw and (12 M)y = Guee, O - vaw.

Proof. Since LE™ is irreducible as an Rgs.-module, the result now follows from

Theorem 3.29 and Proposition 3.24. O

Let ug € G5, be the minimal length element such that
upi® = i = (iy, 41,19, 49, . . ., de, de).

Example 3.33. If C is symmetric, we know that L is homogeneous, and S0 4,, # i1

for all 1 < m < e. So in that case, we have that

2n—1 if1<n<e,
Ug M (3.34)
2(n—e) ife<n<2e.

In terms of Khovanov-Lauda diagrams,

wuo 1'L =

Note that in all cases, we can write

01 = Yy, (3.35)

for some v € Ga,.

29



Lemma 3.36. The constant ¢ appearing in (3.27) is equal to £1. Moreover, 1,010 =

— 2Cwu0 V2.

Proof. By Theorem 3.29, we have 72 = 1. It follows that (o7 + ¢)?vy = vy Or 03V, =
(—2co1 + 1 — ¢?)vs.

On the other hand, note that ,,v2 # 0 spans the top degree component of
the word space (Ms);r2r. It follows that ¢, 01v2 = dip,,v2 for some constant d.
Multiplying on the left with 1, as in (3.35), this yields o?vy = dojvs. Comparing

with the previous paragraph, we conclude that 1 — ¢ = 0 and d = —2c. O

Lemma 3.37. Let w € &,,, and v!,...,v" € Ls. Then

('@ @ =0, @ ®@0v"") (mod Z o, @ LE™)

u<w

and

O'w(vl ® P ® ’Un> = (’Uw_ll ® e ® Uw_ln)w (mod Z L?nu) .

u<w

Proof. The second statement follows from the first. Further, note that the first

statement in the special case where v! = --- = v" = vy is contained in (3.31).

For the general case, write v! = zv1,...,v" = x,v; for some z1,...,%, € Rs. Then,

using (3.31) and considering x; ® - -+ ® z,, € Rgn as an element of R,5 O Rsn, we get

(V'@ @V = (70, @ - @ Tpvy )W
=T @@z (1@ @ v)w)

= (@1 @ @) (0uV1 @ @)+ Y (V1 @ @ 1y)).

u<w
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Using the fact that all our vectors belong to V,,, Proposition 3.24(ii), and the relations

in R,s5, we have for any u < w that

(1@ @ xp)oy (V1 ® - ® V1) = 0 (Te1V1 ® -+ @ Ty v1) (mod Z% ® L5

r<<u

=0,(v" ® - ®0v"") (mod Z% ® LE"),

r<u

which proves the lemma. O

Remark 3.38. If C is symmetric, then an induction on the Bruhat order and (3.26)

allow us to strengthen Lemma 3.37 as follows: for any v!,...,v™ € L, we have

W' @ @ w =0,(0 @ @V + Y oV @ @) (3.39)

u<w
for some scalars ¢, € O (depending on v', ... v™).
If ¢ = —1, it will be convenient to change the sign, so let us redefine 7, so that
7 (vn) = (cop + 1)v, (1 <r<n). (3.40)

Remark 3.41. The constant ¢ in general depends on the choice of the signs ¢ ;
in the definition of the KLR algebra. For symmetric C, it can be proved that ¢ =

IL <r<s<e Ciris- We are not going to need this result.
3.3. Imaginary Schur algebras

A key role in this paper is played by the imaginary Schur algebra

fyn = yn,(? = Rné/ AHHRMS(M”),
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and its parabolic analogue for v = (n,...,n,) E n:

Sy =50 =Ry,s/ AnnRu’é(MV) =S R RS, (3.42)

Modules over R,s which factor through ., will be called imaginary modules.
Thus the category of imaginary R,s-modules is the same as the category of .7,-
modules.

We make use of the following useful criterion:

Lemma 3.43. (‘Schubert’s Criterion’) Let A be a (graded) algebra and 0 — Z —
P — M — 0 be a short exact sequence of (graded) A-modules with P (graded)
projective. If every (degree zero) A-module homomorphism from P to M annihilates

Z, then M is a (graded) projective A/Ann4 (M )-module.
Proof. The proof given in [5, Lemma 3.2a] goes through for the graded setting. [

Now we can prove our first key result.

Theorem 3.44. M, is a projective .#,-module, and

Endy, (M,) = 06, (3.45)

Proof. The second statement comes from Theorem 3.29. It suffices to prove the first
statement for the special case v = (n). We will apply Schubert’s Criterion to see that
M,, is projective as a .%,-module. Let P := ¢"V R,,51;» Then we have a (homogeneous)
surjection 7 : P—M,,, 1;» — v,.

To verify the assumptions in Lemma 3.43, it suffices to show that every
(homogeneous) homomorphism ¢ : P — M can be written as ¢ = f o7 for
f € endg, ;(M,). Since P is generated by 1, it suffices to prove that ¢(1;) =
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f(r(1)) = f(v,). By Proposition 3.24(iv) and Corollary 3.32(ii), the vector

©(1in) € (1;2»M,,),n can be written as a linear combination

o(Lin) € (1inMy)un = Z CoUpl) = Z CoTw(Un) (cw € O).

weSy, weG,

So we can take f =) CwTw- Now apply Schubert’s Criterion to see that M, is

wEGn

projective. O

3.31. Characteristic zero theory

In this section, we assume that O = F. If the characteristic of F' is zero or

greater than n, the imaginary Schur algebra is semisimple and Morita equivalent to

FG,:

Theorem 3.46. Assume that char ' = 0 or char F' > n. Then ., is semisimple, M,,

is a projective generator for .#,, and ., is Morita equivalent to F'G,,.

Proof. Under the assumptions on the characteristic, the endomorphism algebra of
the .#,-module M,,, which we know is isomorphic to F'S,,, is semisimple. In view of
Lemma 2.33, we conclude that M, is semisimple as an .#,,-module. By definition, the
imaginary Schur algebra .7, is semisimple, and the theorem now follows from Morita

theory. O]

The theorem defines a Morita equivalence
Y : Fp-mod — FS,,-mod .

One can easily show that for N € .#,-mod and M € .¥,,-mod, there is a functorial

6n+m

isomorhism 7y, 4m (N o M) = indg" s Yn(N) B, (M). We will not do it now, since

63



more general result will be obtained (for an arbitrary ground) field in Section 3.61

using Schur algebras.

3.4. Imaginary induction and restriction

Throughout the section v = (ny,...,n,) F n. Recall the parabolic subalgebra
R, s C R, from (3.19).

Consider the functors of imaginary induction and imaginary restriction:

I = Ind™ .5 - Ry s-mod — R,5-mod,

*I" := Res™ nys - Fns-mod — R, s-mod .

Let 1,5 C I,,5 be the set of the concatenations 7 = j(1)...j(a) such that j(b) € I,,s

forallb=1,... a. Set

1,5 := Z 1;.

jelu,ﬁ
Then 1,5 is the identity in R, s and *I)M = 1, ;M. The functor I} is left adjoint to

the functor *I”. The following result (partially) describes the right adjoint:

Lemma 3.47. For a composition v = (ny,...,n,) F n consider the opposite
composition v°P := (ng,...,n1) F n. Let V be an R,s-module, and V, be an R,,s-
module for b =1,...,a. Then there is a functorial isomorphism

Homp, ,("1;V,Vi®--- W V,) = Homp,,(V, Lo Vo ) - - - K V).

Proof. This follows from Lemma 2.54. m

In view of Theorem 3.29, M, is an (R, s, O6,)-bimodule, so we can regard

I"M, as an (R,s, 06, )-bimodule. Similarly, M, is an (R,s, O&,)-bimodule, so we
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can regard *I"M,, as an (R, s, OGS, )-bimodule. Recall that we identify L5 with a

natural Rs.-submodule of M,,.

Lemma 3.48. We have:
(i) I'M, = M, as (R,s, 06, )-bimodules.
(i) *I'M,, = M, ®ps, O6,, as (R, s, 06, )-bimodules.

(iii) We have the following decompositions of O-modules:

emn) emn)

:JcGDg,, , Ye¥Dy, xEDéV , Ye¥Dy,

Proof. (i) By transitivity of induction, I”"M, = M, as R,s-modules. By definition,
the isomorphism is compatible with the right O&,-module structures.

(iii) Recall the decomposition M, = @, _pem ¢wLli” from Lemma 3.21. Note,
using word argument, that wwL?” c *Iy)M, =1,,M, for w € Dﬁin) if and only if
w can be written (uniquely) as w = xt(y), where z € DY), y € "D, and lw) =
{(z)+£(c(y)), and otherwise 1, L¥" N 1,,,,M, = 0. This gives the first decomposition.

To deduce the second decomposition from the first, observe by a word argument,
that each ¢, Li"y C *I"M,,. Next, note using Lemma 3.21 that each 0, L5 = LE"
as vector spaces. As 1, LE" — 1), X"y is an invertble linear transformation, we also
have that v, L¥"y = L¥" as vector spaces. Now, by dimensions, it suffices to prove

that the sum erbéin),yeum ¥, LBy is direct. Well, if

Z wzvm,yy =0 (349)

en)

xED((zu WYEY Dy
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with v, € L¥", let x,y be chosen so that zy € &, is Bruhat maximal with v, # 0.
Rewriting the left hand side of (3.49) using Lemma 3.37, gives ¢,0,v,, + (¥) = 0,

where

(%) € > o0y L5

2'eD("), y' €D, z'y' Fuy
We get a contradiction.

(ii) follows from (iii). O

In view of Lemma 3.48(ii), the R, s-action on *I]'M,, factors through the quotient
S, so *I'M, is a .%,-module in a natural way. In Corollary 3.75 we will prove a
stronger result that the functor I} sends .#,-modules to .#,,-modules and the functor

“I7" sends .7,,-modules to .#,-modules.

Corollary 3.50. The following pairs of functors are isomorphic:
(i) I} o (M,®0s, ?) and (M,®es, ?) © indg: : O6,-mod — R, 5-mod.
(ii) *I} o (M,®ps, ?) and (M,®0s, ?) 0 resg: : 06,,-mod — R, s-mod.

Proof. (i) Take N € O6,-mod. Using Lemma 3.48(i), we have natural isomorphisms

M, ®os, indgf N = M, ®ps, 06, Qos, N = M, ®ps, N

= (IyM,) ®ps, N = 1) (M, ®0s, N),

as required.

(i) Using Lemma 3.48(ii), for an O&,,-module N, we have natural isomorphisms

1M, ®os, N) = (*I)M,) @os, N = (M, ®os, 06,) Ros, N

~ M, ®os, resg” N,
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as required. 0

We need a version of the Mackey Theorem for imaginary induction and
restriction.  Recall the notation from Section 2.22. In particular, given two
compositions A\, u F n and z € *D* we have compositions A N zy and 271\ N p.
Moreover, the corresponding parabolic algebras Ryngus and R;-1yn,s are naturally

isomorphic via an isomorphism
IL, : Rynaps — Re-1anus (3.51)
which permutes the components. Composing with this isomorphism we get a functor
R,-1znpe-mod — Ryngys-mod, M — “M.

Note that we do not need any grading shifts. With this notation, we have:

Theorem 3.52. (Imaginary Mackey Theorem) Let A, F n, and M be an .7,-
module. Then there is a filtration of *I{17 M with subfactors
[Qﬂxuw(*lu

z= 1N

M)  (x€*DH).

Proof. This follows from the usual Mackey Theorem 2.63 using the fact that all

composition factors of M are imaginary in the sense of (Cusp2). [

3.5. Imaginary Howe duality

The imaginary Schur-Weyl duality described previously is not quite sufficient to
describe the composition factors of M,, at least when the characteristic of the ground

field is positive. The problem is that even though M, is a projective module over the
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imaginary Schur algebra, it is not in general a projective generator. We construct
the desired projective generator as a direct sum Z = @, X(hm) 2" of ‘imaginary
divided powers’ modules, and the endomorphism algebra of Z turns out to be the
classical Schur algebra Sy, ,. This leads to an equivalence of module categories for
the imaginary and the classical Schur algebras. First, we need to develop a theory of
“Gelfand-Grave modules”.

Throughout the section, v = (nq,...,n,) En € Z~y.

3.51. Gelfand-Graev modules

Denote by wy the longest element of &,,, and for ¢ € I, consider the element

n
TYni = ¢wo H y:z_l S Rnaia
m=1

and the R,,,-module

Fn,i — q;n(nfl)/ZR

nozf}/n,i-

The following is well-known:

Proposition 3.53. The algebra R, is isomorphic to the affine nil-Hecke algebra and
has unique (up to isomorphism and degree shift) irreducible module, denoted L(:™)

with formal character [n]}(i"). Moreover:

(1) yn; is a primitive idempotent in R,,,. In particular, I',; is a projective

indecomposable R,,,-module. In fact, I, ; is the projective cover of L(i").

(ii) T, isisomorphic to the polynomial representation of the affine nil-Hecke algebra

Ry, (with degree shifted down by (o, a;)n(n — 1)/4); in particulr, I, ; has an
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O-basis

{yll)l c. y,zn’}/n’i | b17 c. 7bn S Z20}7
and the formal character ¢; """ V/%(1 — ¢2)~"(i").

(iii) Let (my,...,ms) En. Then

Resmlai,...,msairni = q;n(nil)/2+2;€:1 mi(miil)/2l—\m1,i X.. . X Fms,'

)

Proof. For (i) and (ii), see for example [20, section 2.2] or [26, Theorem 4.12]. Part

(iii) follows easily from (i) and (ii) by characters. O
Now, recall the word ¢ = (iy,...,1%.) from (3.17). We rewrite:
i= g (3.54)
with jx # jgwq for all k =1,2,... r — 1. Define the Gelfand-Graev idempotent:
Yng 1= Ynmar @ Tnmags @ @ Ynmejr € Rumiaj, mmaajy,...nmeaz, © Bne-
By Proposition 3.53(i),
H g Y Rss 2 Ty gy © Ty o © -+ © Do,
is a projective R,s-module which we refer to as the Gelfand-Graev module. By

Proposition 3.53(ii),

T
chy Ty = [ [ g™ "™ V(1= )7 G 0 G5 0o i
k=1
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More generally, we consider the (parabolic) Gelfand-Graev idempotent
Yv,6 = VYny,é K- & Vna,d € RI/,5 g Rn57 (355)

and the projective R, s-module

r,:= H H qj_knbmk(nbmk_l)/zRu,é,yyﬁ ~7, X -XT,,

b=1 k=1
with character
_ —npmg(nymyp—1)/2 2 \—nyms
ch,I', = H 4, (1-¢2)
b=1 k=1
X (j{llml 0---0 j:ilmr) o (j?aml o oj;}amr)_

Lemma 3.56. We have
Resnm1aj1,...,nmrozjr Mn =~ L(]?ml) IX e IX L(]:‘Lmr)

Proof. The lemma is obtained by an application of the Mackey Theorem or a character

computation. O

Proposition 3.57. We have:

(i) *17T, = T', & X, where X is a projective module over R,; such that

Hompg, , (X, M,) = 0.

(ii) Hompg ,(T'y, M,) = O.
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(iii) We have an isomorphism of right modules over OS,, = Endpg, ,(M,):

Hompg, ,(I'y, M,) = sgng .

Proof. (ii) By Frobenius Reciprocity, Hompg, , (I, M,,) is isomorphic to

By Proposition 3.53, 'y, j, B - - X, 5. is the projective cover of L := L(j™") X
-+« X L(j7m). The result now follows from (3.6) and Lemma 3.56.

(i) By the Mackey Theorem and Proposition 3.53(iii), the module

* TN
IV I, = ReSn15 nad IIldnmloéj1 nmyay, P”ml,j1 X... X anth

..........

has filtration with factors of the form

(Fm1,17j1 © I‘771«1,27.7'2 ©---0 le,ryjr) XI T XI (Fma,lvjl © Fma,2:j2 ©---0 Fmam:jr)’

where > . my o =mngd forallt =1,....a, > ) mys =nm, forall s =1,...,r,
and we ignore grading shifts. All of this modules are projective, so we actually have
a direct sum. One of the terms is I',—it corresponds to taking m,, = nym; for all
1<t<a,1<s<r.

Now, note, using Lemma 3.47 that

HomRVﬁ (*]SF”“ MV) = HomRu,(s (*ISF’M Mn1 X - X Mna)

=~ Hom,s(Ty, Iop (M, B -+ - K M, )) = Hom,,s(T,,, M,,).
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By part (ii), the latter Hom-space is isomorphic to O. On the other hand, again
by (ii), we have that Hom, s(I',, M,) = O. We conclude that I', appears in *I]'T,
with graded multiplicity 1, and other projective summands do not have non-trivial
homomorphisms to M, as required.

(iii) Note that I',, is generated by a vector of the word j := (ji™,...,7"™").
Under any homomorphism from I',, to M, this generating vector is mapped to a
vector in the word space 1;M,,. So, it suffices to show that an arbitrary w € &,, acts
on the whole word space 1;M,, with the scalar sgn(w). Let u be the shortest element
of &,,c such that u-2" = j. Then any other vector in 1;M,, can be written in the form
{ph,v,} for some x. So it suffices to prove that ,v,s,. = —,v, for an arbitrary

simple generator s, of G, with 1 <r < n.

Recall the definition of uy € G, from Lemma 3.36. For 1 < r < n, let

807‘ . 626 ~ Gl(r—l)e X 626 X 61(n—r—1)e(_>6ne

be the natural embedding and ug(r) := ¢, (uo).

There exists v € &4 such that 1, = ¥ y,). So by Lemma 3.36, we have

¢ugr<vn) = wu’¢uo(r)0rvn = _20¢u’¢u0(r)vn = _20¢uvn-

Therefore, using (3.40), we get

VunSy = VuTr(Vn) = Pulco, + 1) (vn)

= C¢uar(vn) + ¢uvn - _2¢uvn + ¢uvn = _¢uvn7

completing the proof. O
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Remark 3.58. In type Al(l), we can strengthen Proposition 3.57(i) to claim that
I, = T',. Indeed, in this case each simple root appears in § with multiplicity one,

from which one can easily deduce that ch, *I]T', = ch,I',.

3.52. Imaginary symmetric, divided, and exterior powers

Let

X, = Z g and Vo 1= Z sgn(g)g.

gEGn gGGn
Define imaginary symmetric, divided, and exterior powers as the following R,s-

modules:

Sy, == M, /span{mg — sgn(g)m | g € &,,, m € M,},
Zn ={m € M, | mg —sgn(g)m =0 for all g € G,,},

A, = M,x,.

These R,s-modules factor through the quotient .#, to induce well-defined .#,-
modules. It is perhaps unfortunate that our symmetric powers correspond to the
sign representation and our exterior powers correspond to the trivial representation;
curiously this is the same phenomenon as for finite GL,, cf. [5, section 3.3].

Note that A,, = M, x, # 0 and M,y, # 0 for example by Theorem 3.29. Finally,

by definition, M,y, is a submodule of Z,. Recall the word % from (3.17).

Lemma 3.59. We have 1;nA,, = (1;L5)*"x,, and 13»M,,y, = (1;L5)¥"y,. Moreover, if

O =F (ie. O is afield) then A, and M,y, are irreducible R,s-modules.

Proof. We prove the lemma for A,,, the argument for M,y, being similar.
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By Corollary 3.32, the word space 1;2M,, is isomorphic to free right module
over 06, with basis (1;L5)®", and under this isomorphism the generator v, € M,
corresponds to 1 € OG,,. Therefore 1;nA,, = 13 M, %, = (1;Ls)*"x,,.

We know that M, is a projective .#,-module and every composition factor of its
socle appears in its head, see Theorem 3.44 and Lemma 3.20. Also, left ideal F'G,,x,
is an irreducible F'S,-module. Using these remarks, the irreducibility of A,, = M, x,

follows from Lemmas 2.33 and 2.32. OJ
Lemma 3.60. We have S, = M, ®os, sgng,. Moreover, if O = I’ then:

(i) S, has simple head isomorphic to M,y,, and no other composition factors of

S, are isomorphic to quotients of M,,.
(i) Z, = (S,)®.

(iii) Z, has simple socle isomorphic to M,y,, and no other composition factors of

Z, are isomorphic to submodules of M,,.

Proof. Write M := M,, for short. By definition, M ®ose, sgng, is the quotient of
M ®o sgng, by span{mg ® 1 —sgn(g)m ® 1 | g € &,, m € M}. If we identify
M ®osgng, and M as O-modules in the natural way, this immediately gives the first
statement.

(i) Let o, 5 and Ap be the functors defined in Section 2.26, taking the projective
module P to be the .#,-module M of Theorem 3.44. Then, the previous paragraph
shows that S, = f(sgng ). As every composition factor of the socle of M appears in

its head by Lemma 3.20, we conclude using Lemmas 2.33 and 3.59 that

Ap o f(sgng,) = Ap(Sn) = Myn
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is an irreducible .#,-module. We deduce that My, appears in the head of S,, and no
other composition factors of S,, appear in the head of M. Since S,, is a quotient of
M, this means that .S,, has simple head.

(ii) In view of Lemma 3.20, we choose some isomorphism ¢ : M — M®¥ of R,
modules. This choice induces an isomorphism « : Endg, (M) — Endg ,(M®) with
() = p((p1f)0) for all f € M® and 6 € Endg_,(M), writing endomorphisms on
the right. On the other hand, there is a natural anti-isomorphism § : Endg , (M) —
Endg, ,(M®) defined by letting 6* be the dual map to 6 € Endg ,(M). Now if we set
o := k' of, we have defined an anti-automorphism of F&, = Endg ,(M). Define
a non-degenerate bilinear form on M by (v,w) := ¢(v)(w) for v,w € M. For any

h € F'G,, we have

(va(h),w) = (o7 ((V)hF), w) = (p(V)hF) (w) = (v)(wh) = (v, wh).

By definition, S,, = M/span{vh — sgn(h)v | h € F&,,, v € M}. So

S® > lwe M| (w,vh —sgn(h)v) =0forallve M,h € F&,}
={w e M | (wo(h) — sgn(h)w,v) =0 for allve M, h € F&,}

={w € M | wh = sgn(o(h))w for all h € FS,}.

To complete the proof, it remains to show that sgn(o(h)) = sgn(h) for all h €
F'&,,. We can consider sgno o as a linear representation of F'G P, so we either have
sgn o o = sgn as required, or sgn o o = id. In the latter case, S? contains A,, as an
irreducible submodule, see Lemma 3.59, whence S,, contains Mx, in its head. But
this is not so by (i), unless Mx,, = My,, in which case, applying Lemma 2.32, the

sign representation of F'S,, is isomorphic to its trivial representation and we are done.
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(iii) This follows from (ii) by dualizing, using (i). O

3.53. Parabolic analogues

For v = (ny,...,n,) Fn, let
X, = Z g and y, = Z sgn(g)g.
gEGV QEGV

We have the parabolic analogues of symmetric, divided and exterior powers, namely

the .%,-modules

S, := M, /span{mg — sgn(g)m | g € &,, m € M,},
Z,:={m € M, | mg —sgn(g)m =0 for all g € &,},

A, = M,x,.

In view of (3.42), if v = (ny,...,n,) then S, = S, X---XS, | and similarly for Z, A.
In view of this observation, the basic properties of S, Z, and A, follow directly from

Lemmas 3.59 and 3.60.

Lemma 3.61. For any v F n, we have *I'S,, = S, and *I'Z,, = Z,.

Proof. We prove the first statement, the second one then follows from Lemma 3.60(ii)
since the restriction functor *I” commutes with duality. By Lemma 3.60, we have

Spn = M, ®rs, sgng, and S, = M, @rs, sgn,. Now, using Corollary 3.50(ii), we get
IS, = 1D (M, ©re, sgng,) = M, @re, (tesg! sgng,) = M, ®re, sgng,

which is isomorphic to S, as required. n
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Define R,,s-modules

S = M,/ span{mg — sgn(g)m | g € &,, m € M,},
Z" :={m € M, | mg = sgn(g)m for all g € &,},

A = M, x,.

If we identify M,, = I}'M, as (R,s, OGS, )-bimodules as in Lemma 3.48(i), it is easy
to check that the quotient S” of M,, is identified with the quotient ]S, of I]M,.

Similarly we get the analogous results for Z and A. Thus:

SV IS, Z'I'Z, A I'A, (3.62)

Note that Z¥ contains M, y, as a submodule.

Lemma 3.63. We have S” = M, ®osg,, (indg: sgng, ). Moreover, if O = F then:

(i) (S¥)® = 2" where v°P = (n,,...,n;) is the opposite composition;

(ii) No composition factors of Z¥/M,y, are isomorphic to submodules of M,,.
Proof. By Lemma 3.60, we have S, = M, ®ps, sgng . Therefore, using

Corollary 3.50(i) and (3.62) , we get that

M, ®os,, (indg’: sgneu) ~ S, =S
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(i) Using (3.62), Lemma 2.55, and Lemma 3.60(ii), we have

(S 1S, X---K S, )*
= I (Sy K- KSY)

~ (Z, B R Z,,) = 2

(ii) Let o, B and Ap be the functors defined in Section 2.26, taking the projective
module P to be the .#,-module M, of Theorem 3.44. Now, indg: sgng, is the left ideal
FG&,y, of F&,,. So, by Lemmas 3.20 and 2.33, we get Ap o ﬂ(indg’: sgng ) = Myy,.
Using the first statement of the lemma and the definition of the functor Ap o 3,
we see that S¥ = B(indg: sgng, ) is an extension of M,y, and a module having no
composition factors in common with the head (or equivalently by Lemma 3.20 the

socle) of M,,. Now (ii) follows on dualizing using (i) and Lemma 2.55. O

3.54. Schur algebras as endomorphism algebras

Recalling the theory of Schur algebras from Section 2.23, fix an integer h > n
and let Sj,, = Sh.n,0 denote classical the Schur algebra, always considered as a graded
algebra in a trivial way, i.e. concentrated in degree zero.

Recall the elements ¢y \ from (2.5) and gy , from (2.4). Our first connection

between R,s and the Schur algebra arises as follows:

Theorem 3.64. Let O = F. Then there is an algebra isomorphism

Shn — End g, (@yeX(h,n) AV) ;
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under which the natural basis element ¢y | of Sj,;, maps to the endomorphism which
is zero on the summands A” for v # p and sends A* into A* via the homomorphism

induced by right multiplication in M, by g, ,.

Proof. Let Ap o B denote the equivalence of categories from Theorem 2.31, for the
projective .%,-module P = M,,, see Theorem 3.44. By Lemmas 3.20 and 2.33, we

have

@ueX(h,n) Ar = AP © 5 (@VEX(h,n) PeI'V> :

So the endomorphism algebras of €D, ¢ x (A" and D, () Per” are isomorphic.
The latter is Sp, by definition. It remains to check that the image of ¢} \ under
the functor Ap o 3 is precisely the endomorphism described. This follows using

Lemma 2.33 one more time. O

Note in the theorem above and in the similar results below that the algebra S}, ,,

acts with degree zero homogeneous endomorphisms, so in particular we have

Endg, (@VGX(h,n) AV) =endy, <@yeX(h,n) AV) :

Recalling that S}, can also be described as the endomorphism algebra

Endpgn( @ SPer”),

veX (h,n)

and the elements (2.8), the same argument as in the proof of Theorem 3.64 shows:

Proposition 3.65. Let O = F. Then there is an algebra isomorphism

Sh,n L) Endyn (®V€X(h,n) Mny11> 9
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under which the natural basis element ¢y | of Sj,;, maps to the endomorphism which
is zero on the summands M,y, for v # p and sends M,y, into M,y via the

homomorphism induced by right multiplication in M, by s ,.
Our final endomorphism algebra result is as follows:

Theorem 3.66. Let O = F. Then there is an algebra isomorphism

S — Endg, <®ueX(h,n) ZV) ,

under which the natural basis element ¢y | of S;,;, maps to the endomorphism which
is zero on the summands Z¥ for v # p and sends Z* into Z* via the homomorphism

induced by right multiplication in M, by s, ;.

Proof. First, we check that the endomorphisms in the statement of the theorem are
well-defined. For this we need to see that, as submodules of M,, Z"s; , C Z A To
prove this, it suffices by definition of Z* to prove that Z = 1\ (8 —1) = 0 for all simple
transpositions s, € &,. Right multiplication by sZ’/\(sr — 1) yields an R,s-module
homomorphism from Z* to M,,. Considering two cases: where 1 = (1") and p # (1),
we see that the element s}, \(s, — 1) always annihilates the submodule M,y, of Z*.
So in fact, s; (s, — 1) must annihilate all of Z# by Lemma 3.63(ii).

Let S be the subalgebra of Endg, (@ueX(h,n) Z”) consisting of all
endomorphisms which preserve the subspace @B, X (hon) My, € @, X (hon) AR

Restriction gives an algebra homomorphism

S — Endpg,, <®ueX(h,n) Mnyy> ’
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which is injective by Lemma 3.63(ii) and surjective by the previous paragraph
and Proposition 3.65. This shows in particular that the endomorphisms of
the module @VEX(h,n) Z" defined in the statement of the theorem are linearly
independent and span S. It remains to check using dimensions that S equals all
of Endp (@Ve X(hn) Z”). On expanding the direct sums, this will follow if we can
show that

dim Hompg, ,(Z*, Z*) = dim Hompg, (SPer”, SPer*)
for all A\, u € X(h, k). We calculate using Lemmas 3.63 and 2.29:
Homp ,(Z*, Z*) = Homp, (S, S*")
=~ Homp, , (3(SPer™™), B(SPer*™))
>~ Hompg, (SPer*”, a0 B(SPer*™))

>~ Hompg, (SPer*”, SPer*™)

>~ Hompg, (SPer”, SPer*),

as desired. [

3.55. Projective generator for imaginary Schur algebra

Recalling the idempotents v, s and 7,5 from Section 3.51, we introduce the

following temporary notation:

Yn = Rné’VnMny YI/ = RV,éVVMV' (367>
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Later it will turn out that Y,, = Z,, and Y, = Z,. It easy to see that

Y,2Y, K--KY, .

Recall for the next lemma that by definition, Z, is a submodule of M,,.

Lemma 3.68. If O = F, then:

(i) Y, is the image of any non-zero element of the one dimensional space
Hompg, ('), Z,). Moreover, the latter Hom-space is concentrated in degree

Z€ero.
(i) *IMY, 2,

Proof. (i) By Proposition 3.57, we have Homp, ,(I',, M,) = F', and the image of any
non-zero map in this homomorphism space is contained in Z,.
(ii) By (i), Y, is a non-zero submodule of M, so Hompg ,(Y,, M,) # 0. Now,

using Lemmas 3.48(i) and 3.47, we get

0 # Homg, (Y, M,) = Homg, (Yo, Lje» Myor) = Hompg, ;(*1,) Yy, M,).

In particular, *I]'Y,, # 0.

Now let 6 : I';, — Z,, be a non-zero homomorphism. By (i), we have im 6 =Y,,.
By Proposition 3.57, we have *I'T", = T', @ X for X with Homg, (X, M,) = 0, and
by Lemma 3.61, we have *I7'Z, = Z,. So, applying the exact functor *I to 6 and
restricting to I',, we obtain a homomorphism 6 : T', — Z, with image *I"Y},, which

is non-zero by the previous paragraph. By (i), the image of f is Y,,. O

By Proposition 3.57, we have that Y, = im p, for a map p, : I'y, — M, which

spans the one-dimensional space Homp, ,(I',, M,). By functoriality, this map induces
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a map

p’: )T, = 1Y,.

Lemma 3.69. Any map f : I)'T', — M, factors through p”, i.e. there exists a unique
map f : I"Y, — M, such that f = f op”. In particular, for any submodule N C M,

we have dim, Hompg (I}, N) = dim, Homg ,(I'Y,, N).

Proof. By adjointness of I and *I, the map f is functorially induced by a map
f, : Iy, — *I'M,. By Lemma 3.48(ii), we have *I"M, = M, Qps, O6,. By
Proposition 3.57(ii), the map f, factors through p,, i.e. there exists f, : Y, — *I" M,

such that f, = f, op,. Now take f to be functorially induced by f, . O]

Lemma 3.70. Let O = F. For any A, u E n, all of the spaces

HOHIRWS(I/Y\LY)\, IZY#), (371)
HOHIRM (I;\LFA,[ZY/L)? (372)
Homp, ,(13Tx, I Z,,) (3.73)

have (graded) dimension equal to | D#|.

Proof. We consider only (3.72), since by Lemma 3.69, the result for (3.71) follows
from that for (3.72), and the proof for (3.73) is similar to that for (3.72), using that
IV Z, = Zy according to Lemma 3.61.

By adjointness of I} and *I7, we have

Hompg, , (13T, ]EYM) = Hompg, , (T, *I;LIZLLYM).
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Since I'y is projective, the Imaginary Mackey Theorem 3.52 show that

dim, Homp, ,(Ts,*I}I}Y,) = > dim, H,,

xeADE

where

H, = Homp, ,(Ty, Iﬁmz(*ﬂ‘ Y,))

z=iIaNp T H

By Lemma 3.68, we have *I'" ;| ¥, & Y,-1)n,, s

H, = HOIHRA’(; (FA’ ]iﬂmlty)\mxﬂ)'

Note that the composition A Nz is a refinement of A. Denote by v the composition
obtained by from A N xu by taking the parts of this refinement within each part A,
of A in the opposite order. By Lemmas 3.47 and 3.68 and Proposition 3.57(i)(ii), we

now have
H, = Homp, ,(*I)T,Y,) = Homp,,(T,,Y,) = F.

This completes the proof. O

Recall that X (n) can be identified with the set of the partitions of n. The

following theorem is the main result of the chapter:

Theorem 3.74. If © = F then:

(i) The submodules Z,, and Y,, of M, coincide. So Z, can be characterized as the

image of any non-zero homomorphism from I',, to M,,.

(ii) The number of non-isomorphic composition factors of the R,s-module M, is

equal to | X (n)|.
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(iii) Z¥ is a projective .%,-module, for all v E n. Moreover, for any h > n, we have

that @, X(hm) £° 18 & projective generator for .7,.

Proof. Fix some h > n and set

Z = EBueX(h,n) 1,2, = ®V€X(h,n) z",
Y = @I/EX(hJL) ]SYW

F = @VEX(}Z,’VL) ]SFV'

As Y, is a non-zero submodule of Z,, it contains the simple socle M,y, of Z, as a
submodule, see Lemma 3.60(iii). Applying I to the inclusions M,y, C Y, C Z,, we

see that M,y, C I'Y, C I'Z, as naturally embedded submodules of M,,. So

®V€X(h,n) My, CY C Z.

Also observe that Y is a quotient of I'; since each Y, is a quotient of I',. By

Lemmas 3.70 and 2.6, we have

dim Hompg ,(Y,Y) =dim Hompg ,(I',Y) = dim Hompg, , (T, Z)

= > DY =dimS),.

Au€X (h,n)

Since I' is projective it contains the projective cover P of Y as a summand. Now

the equality dim Hompg ,(Y,Y) = dim Hompg , (I',Y") implies that

dimHompg ,(Y,Y) = dimHompg ,(P,Y).
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This verifies the condition in Lemma 3.43, so Y is a projective R,s/Anng ,(Y)-
module.

As Homp ,(I',Y) and Hompg ,(I', Z) have the same dimension, every R,;-
homomorphism from I' to Z has image lying in Y . So since Y is a quotient of
I', we can describe Y alternatively as the subspace of Z spanned by the images of all
R, s-homomorphisms from I' to Z. This description implies that Y is stable under
all R,s;-endomorphisms of Z. So, restriction gives a well-defined map Endg, ,(Z) —
Endg, (V). It is injective since we know from Theorem 3.66 and Proposition 3.65 that
the homomorphism Endg ,(Z) — Endg,, (@Ve X(hn) Mny,,) induced by restriction
is injective. Since Endg ,(Z) = S, and Endg, ,(Y') has the same dimension as Sj,,
we deduce that Endg, ,(Y) = Shp.

For h > n, the number of irreducible representations of S}, is equal to | X (n)].
Combining what we have already proved with Fitting’s lemma [34, 1.4], we deduce
that Y has the same amount of non-isomorphic irreducible modules appearing in its
head. It follows in particular that M has at least | Xy (n)| non-isomorphic composition
factors. Since n and ¢ are arbitrary, we can now apply Corollary 3.10 to conclude
that M has exactly | X (n)| non-isomorphic composition factors, and we have proved
(ii).

Since Y is a direct sum of submodules of M,,, the assumption on the number of
composition factors now implies that every irreducible constituent of M,, appears in
the head of Y. Hence every irreducible constituent of M,, appears in the head of the
projective R,s-module I'. Now we know that every homomorphism from I' to Z has
image lying in Y, while every composition factor of Z/Y appears in the head of the

projective module I". This shows Z =Y, and we have proved (i).
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Further, observe that M, = Z(!") is a summand of Y = Z, hence Anng ,(Y) =
Anng ,(M). In other words, R,s/Anng (V) = .7,. We have already shown that Y
is a projective R,s/Anng ,(Y)-module, which means that Z and all its summands
are projective .#,-modules. Taking h large enough, this shows in particular that
IV Z, = ZV is projective for each v F n.

Finally, to show that every irreducible .#,-module appears in the head of Z,
note that M, is a faithful .#,-module, and so every irreducible .#,-module appears
as some composition factor of M,,, and we have seen that a copy of every composition

factor of M, does appear in the head of Y = Z. O

Corollary 3.75. The functor I} sends .#,-modules to .#,,-modules and the functor *I}}

sends .¥,-modules to .%,-modules.

Proof. We prove the first statement, the second statement is proved similarly. Since
I is exact, it suffices to check the first statement on projective .#,-modules. In turn,
since according to the parabolic analogue of Theorem 3.74, every indecomposable
projective ., -module is a submodule of M,, we just need to check that I'M, is a

“,-module. But this is clear since I]' M, = M,, by Lemma 3.48. O

In this chapter we begin to exploit the Morita context provided by Theorem 3.74.

Throughout the chapter, except in §3.8, we assume that O = F.
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3.6. Morita equivalence

Let h > n,and Z = @VGX(,W) Z¥. We always regard Z as a (%, Sh,)-bimodule,

with S, ,, acting as in Theorem 3.66. Define the functors

app Sp-mod — Sp,-mod,  V— Homg, (Z,V)

Bhn @ Shp-mod — S -mod, W — Z ®g,  W.

Proposition 3.76. The functors oy, and 35, are mutually inverse equivalences of

categories between .#,-mod and S}, ,-mod.

Proof. This follows from the fact that Z is a projective generator for ., proved in

Theorem 3.74(iii). 0

Recall from Chapter II that S}, ,, is a quasi-hereditary algebra with weight poset
X4 (h,n) partially ordered by the dominance order <. We can identify X (h,n) with
the set X, (n) of partitions of n, since h > n. Also, for A € X (n), the algebra Sy,
has the irreducible module L;()), the standard module A,(\) and the costandard

module Vj(A). For all A € X, (n), define the (graded) .#,-modules:

L) = Bua(La(N), (3.77)
AN = Bra(An(N), (3.78)
V(A) = Bua(Va(N). (3.79)

Since B, is a Morita equivalence, the imaginary Schur algebra .7, is a quasi-
hereditary algebra with weight poset X (n) partially ordered by <. Moreover,
{L)}, {AN)} and {V(A)} for all A € X, (n) give the irreducible, standard and

costandard .#,,-modules. The following facts follow from Morita equivalence.
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Lemma 3.80. Let A\, u € Xy (n). Then:

(i) A(A) has simple head isomorphic to L()), and all other composition factors are

of the form L(v) for v < A.

(i) [AM) = L)) = [An(A) = Ln()]-

We next explain why the definitions (3.77)-(3.79) are independent of the choice
of h > n. Take h > | > n and, using Lemma 2.23, identify S;,, with the subalgebra
eSpne of Sy, where e is the idempotent of (2.22). Recall an equivalence of categories

from Lemma 2.26:

- Sh.n
1nﬁslh,;m 0 Sjp-mod — Sp p-mod : M = Sy, e Qe e M.

Lemma 3.81. The functors 3, o inﬂgl’f’: and 3, from S;,-mod to .#,-mod are

isomorphic.

Proof. The module @/\ex(l,n) Z* is precisely the (#,,5;,)-subbimodule Ze of Z. So

Bi,n 18 isomorphic to Ze®g, ,..7- Now we have the functorial isomorphisms
Z ®S}L,n (Sh7n€ ®eSh,n€ M) = (Z ®S}L,n Shvne) ®eSh,n€ M = Ze ®€S}L,n6 M

for any M € S;,,-mod. O

By Lemmas 2.26 and 2.27, we have that L,(\) = inﬂgf‘: L;()\). Hence
Lemma 3.81 yields f;,,(Li(N)) = Brn(Ln(N)) as #,-modules. So, the definition (3.77)
is independent of the choice of h > n, and a similar argument gives independence of

h for (3.78) and (3.79).
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In conclusion of this section, we make a small detour to mixed imaginary tensor
spaces of §1.2. For n = (nq,...,n;) € lem the corresponding mixed tensor space is
defined as

Mn = nl,lo”'o nl,l;

where M, ; is a colored space of color ¢ for each ¢ € I’, which can be considered as a
module over the (color i) imaginary Schur algebra .7, ; := R,/ Anng, (M, ;). Let

n =ny +---+ ny, and define the mized imaginary Schur algebra
Fn = Rys/ Anng (M,,).

Moreover, for h; > n; and v € X(n;, h;) we have defined modules Z! (previously

denoted for brevity Z" since we had ¢ € I’ fixed), and

Zin)= @ zv (el

veX(ni,n;)

We have functors ay, »,; := Homg, (Z(n;,1),7) and By, n,i = Z(i,n:)®s, , 7. Set
Zn=21,n1)0--0Z(l,n).

The following result strengthens Theorem 2 from the Introduction.

Proposition 3.82. We have
(i) Z, is a projective generator for .7,.
(ii)) Endy, (Z,) = Endynl,l(Z(nl, 1)®- - ® Endynlyl(Z(nl,l)) = Shn = Sy ®

e ® Shz,nr
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(iii) The functors ap, = Homgy, (Z,,7) : Sp-mod — Sp,-mod and Sh, =
Zn®s,,7 1 Spm-mod — Sp-mod, are mutually inverse equivalences of

categories between .#,,-mod and Sy, ,,-mod.

(iv) There is a functorial isomorphism

6h,n(WI R VVZ) = 6h1,n1,1(W1) ©:-+0 Bhl,nl,l(m/l>

for Wy € Sy, n,-mod, ..., W, € S, »,-mod.

Proof. Part (i) follows from Theorem 3.74(iii). Part (ii) follows from Theorem 3.66
and Mackey Theorem. Part (iii) follows from part (i). Part (iv) follows from the

definitions and transitivity of induction. ]

3.61. Induction and Morita equivalence

In this section we prove a key result that our Morita equivalence ‘intertwines’
imaginary induction and tensor products for usual Schur algebras. We fix an integer
h > n, and a composition v = (nq,...,n,) F n. Recall the Morita equivalence

Bhn  Shp-mod — ,-mod.

Theorem 3.83. We have an isomorphism of functors from Sj, ,,-mod x - - - xS}, ,, .-mod

to .¥,-mod:

Ig(ﬁh,nl? .- X ﬁh,na?) = ﬁh,n(? & .- ®?)

Proof. Choose x = (h1, ..., hy) E h with hy > ny, for k =1,...,a, and denote S, , :=

Shymy @+ @ Shyn,- Write X (x,v) for the set of all compositions v = (g1,...,9n) €
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X (h,n) such that

Ti= (glv s 7gh1)a Y2i= (gh1+17 ce agh1+h2)7 e Yat= (gh1+~~+ha—1+1> s 7gh)

satisfy v, € X (hg,ng) foreach k =1,... a.

Consider the set of triples:
Q={(7.6,u) | 7,6 € X(x,v), u € DJ}.

For a triple (v,d,u) € Q, we have ~,dx € X(hg,ni) for each k£ = 1,...,a, and
u = (ug,...,u) € &, = &, X -+ x &,, with each uy € *D%. So we have the
element

=U e U1 Ugq,
Prs = P © @Y 5 € Sy

Then {@Y ;5 | (7,0,u) € Q} is a basis for S, ,.
Recall the (., Sp,n)-bimodule Z = ¢ x () 121 = Drexn) Z*, and define

also the (., Sy )-bimodule

7%= @,\GX(X,V) [KZA = (@AleX(thl) Zh) XX (@Aaexma,na) ZA“) :

Then I)ZX%" is an (4, Sy, )-bimodule in a natural way. Moreover, by transitivity
of induction, we have I;Z%" = P, y(, . ZA, 80 I"ZX" can be identified with the

summand Ze, of the (.7, Sy )-bimodule Z, where e, is the idempotent

e, = Z e(N) € Sha.

AeX (x,v)
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Identifying e, S, ne, with Endy, (Ze,), we obtain an algebra embedding of
Sy, into e,Sye,. By definition of the actions of S, , and e,S,,e, on Ze, and
Lemma 3.48(i), this embedding maps the basis element ¢¥ ; € S, ,, to ¢ ; € €,Shney,

for all (v,d,u) € Q. In other words:

Claim 1. Identifying Sy, with a subalgebra e,Spne, via the map ¢ 5 = ©5 5, the
(Fns Syv)-bimodule I} ZXV is isomorphic to Ze,, regarding the latter as a (%, Sy )-

bimodule by restricting the natural action of e, Sy ne, to Sy ...

Now let S, ,, be the Levi subalgebra of S}, as in (2.21). Then e, is the central
idempotent of S, , such that e,S, ,e, = S, .. So in fact, the embedding of S, , into
e, Sy ney from Claim 1 identifies S, , with the summand e, S, ,e, of S, ,. Making this

identification, define the functor
I = Shnev®e,s, ne,? o Sy-mod — Sp ,-mod.

Using associativity of tensor product, the functor I can be thought of as the composite
of the natural inflation functor S, ,e,®ec,s, .e,? 1 Syp-mod — S, ,-mod followed by
ordinary induction indgz’: : Sy n-mod — S, ,-mod as defined in Section 2.25. In view

of this, the following fact follows immediately from Lemma 2.28:

Claim 2. The following functors from Sp, n,-mod X - -+ X Sy, n.-mod to S ,-mod are

isomorphic:

. Sh,n1 . Sh,na
I(7X---X7) and 1nﬂ5hl’nl? ® - @inflg™ 7.
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Now note that from Claim 1 and associativity of tensor product we have the

natural isomorphisms

I3(2¥" ®s,, N) = (1;2¥") ®s, , N = Ze, @5, , N

= Zel/ ®6VS N=Z ®Sh,n Sh,nel/ ®e,,$' N,

x,nCv x,n€v

which is S5, (I(N)). Thus we have proved:

Claim 3. The functors I}} o (Z¥'®g, ,7) and By, oI from Sy ,-mod to ,-mod are

1somorphic.

We have the isomorphism of functors from Sj, ,,-mod X --- x Sp, n,-mod to
<,-mod:

5h1,n1? IX Tt IX Bha,na? g nyy ®SX7V (? IX R IX ?)

So, in view of Claims 2 and 3, we have

Claim 4. There is an isomorphism of functors

I (Brymy T+ B By, 7) & ﬁh,n(inﬂsh’nl TR ® inﬂg:“a ?)

S}Ll,nl asna

from Sp, p,-mod X - -+ X Sy, ,.-mod to ,-mod.

Finally, by Lemma 2.26, the functors
inflg "™+ Sy, pe-mod = Sy -mod (1< k < a)

. . . a5k,
are equivalences of categories. By Lemma 3.81, the functors 3y, ,, o mﬂsh::k and S,

are isomorphic. The theorem follows on combining these statements and Claim 4. [
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As a first application, we get the commutativity of induction product on the

category of imaginary representations:
Corollary 3.84. Let M € .%,,-mod and N € .%,-mod. Then M o N =2 N o M.

Proof. For sufficiently large h we have M = B,,,(V), N = Bpn(W), M o N =

Ini (MR N), and N o M = I;m70 (N K M). Now the result follows from V @ W =

(n,m)

W ® V and the theorem. O

As a second application we establish a version of Steinberg Tensor Product
Theorem. Let p = char F' > 0 and A - n. Considered A as an element of X (n,n).

Recall from Section 2.21, that there exists a unique p-adic expansion
A= A0) +pA(1) +p*A(2) ...

such that the partitions A\(0) F mg, A(1) F mq, A(2) F mq,... are all p-restricted.

With this notation we have:

Theorem 3.85. (Imaginary Steinberg Tensor Product Theorem) Let n, :=

p'm, for r =0,1,2,..., and consider the composition
v = (ng,ny,na,...) En.

Then
LN =1] (L()\(O)) X L(pA(1)) X L(pQ)\(Q)) X... )

Proof. This comes from Theorem 3.83 and Lemma 2.20. O

As a third application, we prove that imaginary induction and restriction respect

standard and costandard filtrations. A filtration 0 = My C M; C ... C M, = M of
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an .%,-module M is called standard (resp. costandard) if for each k = 1,...,b, the
quotient My /Mj_q is isomorphic to A(A) (resp. V(A)) for some A F n (depending
on k). Similarly, a filtration 0 = My C M; C ... C M, = M of an .%,-module M
is called standard (resp. costandard) if for each k = 1,...,b, the quotient M}, /M, _,
is isomorphic to A(A) K-+ K A(N,) (resp. V(A) K --- K V(),)) for some \; +

ni,...\q F n, (depending on k).

Theorem 3.86. We have

(i) The functor I} sends .#,-modules with standard (resp. costandard) filtrations

to .#,-modules with standard (resp. costandard) filtrations.

(ii) The functor *I?* sends .#,-modules with standard (resp. costandard) filtrations

to .#,-modules with standard (resp. costandard) filtrations.

Proof. (i) It suffices to check that I'(A(A) X --- K A(),)) has a standard filtration,

for arbitrary Ay F nq,..., Ay F n,. By Theorem 3.83,

L (AA) B BA(A)) = Brn(Br(A) @ -+ @ Ap(Aa)).

So the result follows since Ay (A1) ® - - - ® Ap(\,) has a standard filtration as an Sy, ,-
module by Lemma 2.18. This proves (i) in the case of standard filtrations; the result
for costandard filtrations is proved similarly.

(ii) We prove (ii) in the case of costandard filtrations; the analogous result for
standard filtrations follows by dualizing. Take N € .¥,-mod with a costandard
filtration. Using the cohomological criterion for costandard filtrations [10, A2.2(iii)],
we need to show that Extl, (M,*I"N) = 0 for all M € .%,-mod with a standard
filtration. For such M, by (i) and the cohomological criterion for costandard

filtrations, we have Exti%(] "M, N) = 0. So the result follows from the following:
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Claim. For M € .%,mod and N € .%,-mod, we have Extl, (M,*I'N) =
Ext!, (I"M,N).

To prove the claim, the adjoint functor property gives us an isomorphism of
functors Hom g, (M, ?)o*I = Hom g, (I'M, 7). Since *I7 is exact and sends injectives
to injectives (being adjoint to the exact functor I7'), an application of [16, 1.4.1(3)]

completes the proof of the claim. O

Corollary 3.87. Let v = (ny,...,n,) En, AFn, and \; F ny,..., A\, F n,. Then both

of

(i) the multiplicity of A()) in a standard filtration of I7'(A(A) X --- K A(A,)),

(ii) the multiplicity of A(A;) W --- K A(\,) in a standard filtration of *IA(\)
are given by the Littlewood-Richardson rule.

Proof. The modules in (i) and (ii) have standard filtrations by Theorem 3.86. Now (i)
follows from Theorem 3.83 and the classical fact about tensor product multiplicities
over the Schur algebra, and (ii) follows from (i) and adjointness, together with the

usual properties of standard and costandard filtrations. O

3.7. Alternative definitions of standard modules

Our goal now is to give two alternative definitions of the standard module A(\)
without reference to the Schur algebra and Morita equivalence. Recall from (2.15)

and (2.16) the modules Z¥(V},) and A¥(V},) for the classical Schur algebra Sy, ,,.

Lemma 3.88. For v F n, we have Z¥ = (), ,,(Z"(V4)) and AY = B, o (A (V4)).

Proof. By Lemma 2.17(i), we have Z"(V},) = S, ,e(v). So, by Lemma 2.33, we get
Brn(Shne(v)) = Ze(v), which is precisely the summand Z¥ of Z by the definition of

the action from Theorem 3.66.
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For the second statement, using the embedding x from Lemma 2.7 and
Lemma 2.17(ii), we have AY(V,) = Sp.k(y,). So, by Lemma 2.33, we get
Brin(N(V2)) = Zk(y,). By definition of k, together with Theorem 3.66, we have

Zk(y,) = Mnsgn(y,) = M,x, = A", as required. n

In view of Lemma 3.20, the antiautomorphism 7 of R, factors through to give

a (homogeneous) antiautomorphism

T S = S,

which leads to the notion of contravariant duality ® on .#,-mod. We have a (not
necessarily degree zero) isomorphism L(A\)® = L(\) for each A € X (n), since this is

true even as R,s-modules. We now prove a stronger result:

Lemma 3.89. For all A € X, (n) we have L(\)® = L(A\) and A(N)® = V(A).

Proof. By Lemma 3.88, M,, = Z(1") = 8, . (V;¥"). So the only (graded) composition
factors of M,, are of the form L()\) for A € X, (n) and each such L(\) occurs with
some non-zero graded multiplicity my € Z~o. The formal characters of the modules
L(A) are linearly independent. Hence, since chy M, = >\ x. (,) machy L(A) is bar-
invariant, by Lemma 3.20, we conclude that each ch, L()) is bar-invariant, which
immediately implies that L(A)® = L(\). It follows from a general theory of quasi-
hereditary algebras that A(\)® is the costandard module V(\) up to a degree shift,

and now the first statement of the lemma implies the second one. O

Now we obtain the desired characterizations of A()). Recall the element uy € &,

from Lemma 2.3.

Theorem 3.90. Let A+ n. Then:
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(i) Homy, (Z*,A"") = F, and the image of any non-zero homomorphism in

Hom gy, (Z*, AM") is isomorphic to A(\);
(ii) A()) is isomorphic to the submodule Z*uyuxye of M,.

Proof. (i) follows from Lemma 3.88, the definition (3.78), and Lemma 2.19, since S, ,,
is an equivalence of categories.

(ii) Note that Z* contains M,y as a submodule. Moreover, as M, is a faithful
F&,,-module and yyuy«xye # 0 by Lemma 2.3, we conclude that M,y uexye # 0.
Hence ZMuyuxye # 0. Finally, observe that Z*uyuxye is both a homomorphic image

of Z* and a submodule of A*". So the result follows from (i). O

We will write M for the right .%,-module obtained from M € .%,-mod by twisting
the left action into a right action using the antiautomorphism 7 of .#,. In this way,

we obtain right .%,-modules L(\), A()), and V().

Theorem 3.91. We have

(i) 7, has a filtration as a (.%,, .%,)-bimodule with factors isomorphic to A(\) ®
A()\), each appearing once for each A - n and ordered in any way refining the
dominance order on partitions so that factors corresponding to most dominant

A appear at the bottom of the filtration.

(ii) Z has a filtration as a (.%,, Sj.»)-bimodule with factors A(\) ® Aj,()\) appearing
once for each A = n and ordered in any way refining the dominance order so
that factors corresponding to most dominant A\ appear at the bottom of the

filtration.

Proof. (i) This follows from the general theory of quasi-hereditary algebras, as is

explained for example after [5, (1.2¢e)].
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(ii) The functor Z®g, ,? can be viewed as an exact functor from the category of

(Sh.n, Snn)-bimodules to the category of (.7, Sp.n)-bimodules. We have:

Z ®s,,, (Bn(N) ® Ay(N) = (Z ®s,, An(N) @ Ap(X) = AN) @ Ayp(N).

So applying Z®g, 7 to the filtration of Lemma 2.13 gives the result. O]

3.8. Base change

Recall that O denotes the ground ring which is always assumed to be either Z
or F. The algebras S, p, -%,, and the modules M,, Z*, etc. are all defined over Z,
although in many results proved in the previous sections we have assumed that O is a
field. We now work over O = Z, and study the base change from Z to F'. Throughout
this section, it will also be convenient to denote by K a field of characteristic zero and
use notation like ., 7, 7 r, S Kk, etc. to specify the ring over which the objects

are considered.

Lemma 3.92. We have:
(i) M,z is a Z-free module of finite rank with M, 7z ®z F = M,, p;

(ii) Z,z is a Z-free module of finite rank with Z, z ®z F = Z,, . Moreover, Z,, ; =

Yn,Z = Rné(Z)anMn,Z

Proof. (i) comes from the Lemma 3.21.
(ii) By (i), M,z is a lattice in M, x, and by definition, we have Z,, 7z = Z, x N
M, 7. So Z, 7 is a lattice in Z,, k, and also a direct summand of the Z-module M, 7.

Hence the natural map

7 ZmZ Qg F— Mn,Z ®z F = Mn,F
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is injective. Since the action of &,, on M, is compatible with base change, we have
im¢C Z, p.

Recall the submodule Y,, = R,sv,M, from (3.67). Note that the natural
(not necessarily injective) map from Y,z ®z F' to M, p has image Y, r. Now by
Propsosition 3.57(iii), Y,z C Z,z, so Y, r C im i. By Theorem 3.74(i), Y. r = Z, r,
so by the previous paragraph, the map ¢ : Z,, 7 ®z F' — Z,, r is an isomorphism.

Finally, the embedding Y,, 7 — Z, 7z has to be an isomorphism, since otherwise
for some field F' the induced map Y,, z ®z F' — Z,, 7 ®z F is not surjective, and so the
composition

Yoz @2z F = Zpnz @2 F — Znr=Yyr
is not surjective, giving a contradiction. ]

Since induction commutes with base change, we deduce:
Corollary 3.93. Let v = n. Then Zj is a Z-free module of finite rank with Z7 ®z F' =
Z%.

Now we can define standard modules over Z. For A - n, set

AZ()\) = Z%U)\trX)\tr.

Compare this to Theorem 3.90(ii), in which we worked over a field.

Theorem 3.94. Az()) is Z-free of finite rank with Az(\) ®z F = Ap(X). Moreover,

the formal characters of Az(\) and Ap()\) are the same.

Proof. By definition 22 is a submodule of M, z, and Az(\) is a submodule of the
torsion free Z-module M, 7, so Az(\) is torsion free. There is a natural map Az(\)®z

K — M, g, which is injective since K is flat over Z. It is easy to check that the
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image of this map is precisely Ag (), proving that Az(\) is a Z-lattice in Ag(A). In
particular, Az(\) has rank equal to dim Ag(X). By Theorem 3.91(ii) with A = n, we

have

Y dimZyg =) (dim Ax(N))(dim A, k()

veX(n,n) AFn
where A, () denotes the standard module for the Schur algebra S,,, k. In view
of Corollary 3.93, dim Z}, = dim Z}, and it is well-known that the dimensions of

standard modules for the Schur algebra do not depend on the ground field. So
Y dimZy =) (dim Ag(N)(dim A, #(N)).

veX(n,n) AFn

There is a natural map i : Az(\) ®z F — M, p with image Ap(\) induced by
the embedding Az(\) — M, z. So dimAg(A) > dim Ar(A) . On the other hand,

applying Theorem 3.91(ii) over F', we have that

> dimZy =) (dim Ap(N))(dim A, p(X)).

veX(n,n) AFn

Comparing with our previous expression, we conclude that dim Ap(\) = dim Ag ()

for all A - n. Hence i is injective. The result about the characters is now clear. [l

We now show that the imaginary Schur algebra and its Morita equivalence with

a classical Schur algebra are defined over Z.

Theorem 3.95. We have:
(i) Snz is Z-free of finite rank with .7, 7 @z F = .7, p;

(ii) Z% is a projective .7, z-module for each v F n;

(i) Bndu, . (@,exun 7) = Shnz
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(iv) D, e X(n,n) £z, 18 & projective generator for .7, z, so ., z is Morita equivalent to

Sh,n,Z for h > n.

Proof. (i) By definition, .#, 7 is the Z-submodule of Endz(M,, z) spanned by the

images of the Z-basis elements of R,s5z which are of the form Yottt ... yfld

1;. Since
the degree of each y, is 2, all but finitely many such elements act as zero, so ., 7 is
finitely generated over Z, whence .7, 7 is a lattice in .7, k.

The natural inclusion %, 7<= Endz(M,, z) yields a map
yn’z Kz F — Endz(Mn’Z) R F = EIldF(Mn<F))

whose image is ./, p. This map is injective since dim.”, x = dim.”, r by
Theorems 3.91(i) and 3.94.

(ii) By Corollary 3.93, we have Z) @z F' = Z}, which is a projective .7, p-module
by Theorem 3.74. Therefore, in view of the Universal Coefficients Theorem, Z7 is a
projective ., z-module.

(iii) Denote

Eo:=Endy,, ( € 2Z¢).

veX (n,h)

By Theorem 3.66, we have Er = Sy, , p. Moreover, Ey is an O-lattice in Eg, and there
is a natural embedding Fz ®7 F' — Ep, cf. [34, Lemma 14.5]. The last embedding
is an isomorphism by dimension. So we can identify £y ® K with Fx and Fy ®z F
with Er.

Now, the basis element i of Ex = Sh.n k acts as zero on all summands except
Z%, on which it is induced by the right multiplication by Sy - By definition, Z; =
Zy N M, 7. Also, Sy € LGy, therefore s, | stabilizes M, ;. Hence Z8sux C Z3, s0

each 90}2 \ € Ek restricts to give a well-defined element of E;. We have constructed a
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isomorphic copy Sz of Sz in Eyz, namely, the Z-span of the standard basis elements

(PZ)\ E Sh7n7K.

It remains to show that Sz = E7. We have a short exact sequence of Z-modules:

0— Sz = Ez — Q7 — 0,

and we need to prove that ()7 = 0, for which it suffices to prove that QY7 ®z F = 0.

Tensoring with F', we have an exact sequence

Sz®zF—Z)EF—>Qz®ZF—>0

The map 7 sends 1 ® ¢y, \ to the corresponding endomorphism ¢y \ defined as in
Theorem 3.66. Hence, ¢ is injective, so ¢ is an isomorphism by dimensions, and
Q7 ®z F = 0, as required.

(iv) By (ii), @,cxmn £z is a projective .7, z-module. For h > n, it is
a projective generator, because this is so on tensoring with F, using (i) and

Theorem 3.74. O

3.9. Ringel duality and double centralizer properties

Let S be a quasi-hereditary algebra with weight poset (A, <) and standard
modules A(A). Recall that a (finite dimensional) S-module is called tilting if it
has both a standard and a costandard filtrations. By [41], for each A € A, there
exists a unique indecomposable tilting module T'(\) such that [T'(A) : A(A)] =1 and
[T(\) : A(p)] = 0 unless pu < A. Furthermore, every tilting module is isomorphic
to a direct sum of indecomposable tilting modules T'(\). A full tilting module is a
tilting module that contains every T'(A), A € Ay, as a summand. Given a full tilting
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module 7', the Ringel dual of S relative to T is the algebra S* := Endg(7)°P. Writing
endomorphisms on the right, 7' is naturally a right Endg(7")-module, hence a left
S*-module. Ringel [41] showed that S* is also a quasi-hereditary algebra with weight
poset A, but ordered with the opposite order. We will need the following known

result (for references see [5, Section 4.5]).

Lemma 3.96. Regarded as a left S*-module, T is a full tilting module for S*.

Moreover, the Ringel dual Endg«(7")°P of S* relative to T is isomorphic to S.

Applying Ringel’s theorem first to the Schur algebra Sj,, we obtain the

indecomposable tilting modules {7}, (\) | A € X (h,n)} of Sp,,. For h > n, define

TN == Bun(Ti(N)  (AFn). (3.97)

Since B, is Morita equivalence, {T'(\) | A F n} are the indecomposable tilting

modules for .%,.

Lemma 3.98. The indecomposable tilting modules for .7, are precisely the
indecomposable summands of A" for all v F n. Furthermore, for A - n, the module
T(\) occurs exactly once as a summand of AN, and if T'(y1) is a summand of A*" for

some = A, then p < A.

Proof. By [10, Section 3.3(1)], Th()\) occurs exactly once as a summand of A" (V},),
and if Tj, () is a summand of A*" (V},) then p < X. Now the result follows on applying

the functor (3, and using Lemma 3.88. O

Corollary 3.99. For A F n, the module T'()\) is the unique indecomposable summand

of A*" containing a submodule isomorphic to A(X).
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Proof. By Theorem 3.90(i), A*" has a unique submodule isomorphic to A()). By
Lemma 3.98, A*" has a unique summand isomorphic to T(\) and for any other

summand M of A", we have Hom .y, (A(X), M) = 0. O

Theorem 3.100. (Imaginary Ringel Duality) Let h > n. The .#,-module T :=
D, cx(nny A" is a full tilting module. Moreover, the Ringel dual .7 of ., relative to

T is precisely the algebra S;" where S}, , acts on T as in Theorem 3.64.

Proof. By Lemma 3.98, T is a full tilting module. The second statement is a

restatement of Theorem 3.64. ]

So far we have only had ‘halves’ of imaginary Schur-Weyl and Howe dualities,
namely: Endg, (M,) = FS,, and End <@uex(h,n) A”) = Shn. Now we can finally

establish the ‘second halves’.

Theorem 3.101. (Double Centralizer Properties) Let A > n. Then:

(i) Endg, (@%X(hm) AV> = Spn and Endg, | (@Vex(h’n) AV) ~ .. where the

right S}, ,-action is as in Theorem 3.64;

(ii) Endg, (M,) = F&,, and Endpg, (M,) = .7, where the right F'S,-action is as

in Theorem 3.44.

Proof. (i) Combine Theorem 3.100 with Lemma 3.96.

(ii) By Theorem 3.44, we know already that F'S, = Endgy, (M,). Let e :=
e((1™)) € Spm, see (2.10). We know that T (\) is a summand of AN (V},), for any
A € Xi(h,n). So, by Lemma 2.17(ii), 7,()) is both a submodule and a quotient of
the S ,,-module Sy e. Moreover, Sy, e = V2" so Sy e is self-dual. From this one
deduces a (well-known) fact that every composition factor of both the socle and the

head of T;,(\) belongs to the head of the projective Sy, ,-module Sy, ,e.
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Now let T := @ueX(h,n) A”, and set T to be the left Sh.n-module obtained from
the right module 7" by twisting with 7. Then T is a full tilting module for Sh.n by
Lemma 3.96 and Theorem 3.100. So, by the previous paragraph, every composition
factor of the socle and the head of T’ belongs to the head of Shne. By Lemma 2.30,
we deduce that Endg, , (T) = Endeghyne(ef). Switching to right actions, and using
(i), we have now shown that ., = End,g, ,.(T'e). So, to prove (ii), it suffices to show
that Endres, (M,) = End.g, ,.(Te).

As aleft .#,-module, M, = Te. Recall the map  from Lemma 2.7 and the action
of Sp., on T from Theorem 3.64. One now easily checks that the (7, S}, ,e)-bimodule
Te is isomorphic to the (.7, F'&,)-bimodule M,,, if we identify F'S,, with eS), e, so
that w — k(sgn(w)w) for each w € &,,. In view of this, we have Endpg, (M,) =

Endeshme(Te). O

We conclude this section with imaginary analogues of well-known results of
Donkin and Mathiew-Papadopoulo. For A F n we denote by P()) the projective
cover of L(\) in the category .#,-mod. Similarly, for € X (h,n), let P,(p) denote
the projective cover of Ly (p) in the category Sy ,-mod. Using Morita equivalence, we
get:

PO = BunlPiN)  (AF ). (3.102)

Recall the generalized Kostka numbers k) , from (2.11).

Theorem 3.103. For v € X (h,n) we have:
(i) 2" = @, Py
(i) A =Dy, T(AT)Fr.

Proof. (i) By [9, Lemma 3.4(i)], we have Z"(V},) = @,.,, Po(\)®**». Now apply the

equivalence of categories (3, ,,, using (3.102) and Lemmas 3.88.
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ii) By [37, Corollary 2.3], we have A (V},) = T, (A)¥Fx v Now apply the
AFn

equivalence of categories [y, using (3.97) and Lemmas 3.88. O

Throughout the chapter we assume that O = F' unless otherwise stated, and

h > n.

3.10. Characters of imaginary modules
Let h > n, A € X, (h,n), and p € X(h,n). Recall the notion of a column strict
A-tableau from Section 2.24. Denote

coly ,, := g{column strict M-tableaux of type p}. (3.104)

Recalling the Sj, ,-module A*"(V},) defined in (2.16), the following equality for its

weight multiplicities is clear:

dim e() AN (Vi) = coly .

The following combinatorial result is easy to check using the definition of coly ,:

Lemma 3.105. Let A € X, (h,n), p € X(h,n). If the last column of the partition A
has height [, and A € X (h,n — ) is the partition obtained from A by deleting this

last column, then

coly,, = g COls ey ey, -
1<s1<---<s5;<h,
,u—esl—m—ESlEX(h,n)

Recall the classical Kostka numbers from (2.12).

Lemma 3.106. Let A\, utn. Then coly, =Y, K K, o
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Proof. We have the well-known fact that over C the module A (V},) decomposes as
A (Vi) = @, An(v™)#Eva | Passing to the dimensions of the p-weight spaces in

the last equality yields the lemma. O]

3.101. Gelfand-Graev words and shuffles

Recall from (3.17) that we have fixed an extremal word 2 = iy . ... of Ls. Recall

that iy = 0 and i, = i. As in (3.54), we also write ¢ in the form

t=gt g (with jg # jreq forall 1 <k <r).

Note that always m; = 1. We define the Gelfand-Graev words (of type 1):

g™ =g; =ijiy...i¢ =" g€ Ins

for any n € Z- and, more generally, for any composition p € X (h,n), set:

g' =g ... g e, (3.107)

Lemma 3.108. Let n =10y + --- + 1, for some [y,...,l, € Z~y. Suppose that for each
1 < ¢ < a, we are given a word j(c) of the imaginary tensor space M; . Assume
that a Gelfand-Graev word g* of type ¢ appears as a summand in the shuffle product

jW o 04 Then 5V, ... 5 are all Gefand-Graev words of type .

D and

Proof. Clearly we may assume that @ = 2. Then we may write V) = A
7@ = k@1@ 9o that gi*) appears in the shuffle product k) o k®). Recall that
glm) = g gmem Tt follows that kW = 59 jor k@ = 5% b with ap+by =
mypy for all k = 1,...,r. Note that as + by = mou; = ma(ay + by). We claim that
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as = aymeo and by = bymsy. Indeed, otherwise either ay > ayms or by > byms. But
the first inequality contradicts the fact that 5V = EMWIW is a word of M;,, and the
second inequality contradicts the fact that j @ = k1D is a word of M,,. Continuing
this way, we see that a, = mya; and by = myby for all k = 1,...,r. In other words,
kY = gl and k® = g®). Now the Gelfand-Graev word g#2) ... g(#») appears in
the shuffle product IV o I® . Moreover, IV and 1® are words of M, o, and M;,_y,,

respectively. So we can apply induction on the length of . O

For n € Z>(, we denote

Note by Lemma 2.61 that dim, 1;Ls = ¢(1), since we have chosen ¢ to be an extremal

word in Ls. For o € X (h,n), denote

c(p) :i=c(py) . ..c(up) = H [mk,um];k €. (3.109)

In the simply laced types all my = 1, and so ¢(u) = ([pal} . .. [1n]})".

Recall the numbers coly ,, defined in (3.104).

Proposition 3.110. Let A € X, (h,n) and p € X (h,n). Set A\* = (I1,...,1,). Then g*

appears in the quantum shuffie product
i"o---ogl (3.111)

with the coefficient c(p)coly ,,/c(1)".
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Proof. We apply induction on a. If a = 1, then (3.111) is just the concatenation

i = g('"), and the result is clear since ¢((1")) = ¢(1)" and col(ny 1n) = 1. For the
inductive step, let a > 1 and denote by A € X, (h,n —l,) the partition obtained from
A by deleting its last column. By the inductive assumption, for any v € X (h,n —[,)

we have that g” appears in the quantum shuffie product

S =i o...0gl

with coefficient c(v)coly, /c(1)"l. Now (3.111) is S o i'. By Lemma 3.108, if the
word 7 appearing in S has the property that some Gelfand-Graev word g appears
in the shuffle product j o (3®))%, then the word j must itself be Gelfand-Graev, i.e.
j = g” for some v € X(h,n — l,). Moreover, note that g* appears in g” o i if and
only if p is of the form p = v +e, +---+&, forsomel < s < -+ <5, < h,in
which case g* appears in g” o i" with the coefficient c(u)/c(v)c(1)%. Now the result

follows in view of Lemma 3.105. O]

Recall Gelfand-Graev modules I'y, = I'y,,,, 5, 0 -+ - 0 L'y, 5. from Section 3.51.
Lemma 3.112. Let M € R,s-mod and p € X(n,h). Then
dimgy Mgn = ¢(p) dim, Homp ,(I'y, 0--- 0Ty, , M).

Proof. Let

0= (Hamay, .oy A Q- oy BT Ly -y [T, ).
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Consider the irreducible module

L= L™ ) B RLGe™) B DL ™) B B L)

over the parabolic R,. Note that dim, Mg. = c(u)[Res,M : L],. Since I',; is the

projective cover of L(i™) by Proposition 3.53(i), [Res, M : L], equals

dim, Homp, (T B BT, B BT, 0 o K- R/ Resg M),

and the result follows by the adjunction of Ind and Res. m

3.102. Gelfand-Graev fragment of the formal character of A())

Recall Gelfand-Graev words g* = g from Section 3.101, scalars ¢(n), c(u) € <7
from (3.109), and R,,s-modules L(\), A(X), T’ () from (3.77), (3.78), (3.97).

Lemma 3.113. We have L((1™)) = A((1")) = T((1")) = A,, the Gelfand Graev word
g = 4" appears in ch, A((1")) with multiplicity ¢((1")) = ¢(1)", and g* with

e X(n,n)\ {(1")} does not appear in ch, A((1")).

Proof. Tt well-known for the usual Schur algebras that 7,,((1")) = A, ((1")) = L,(1").
By applying the Morita equivalence 3, , and Lemma 3.98, we now obtain L((1")) =
A((1™) = T((1™)) = A™ = A,,, and the first two statements follow from Lemma 3.59.

For the last statement, let © € X(n,n) \ {(1")}. We have to prove that
A((1"))ge = 0. In view of Theorem 3.94, we may assume that F' has characteristic
zero. By Lemma 3.112, we need to prove that Homp ,(I'), 0--- 0T, A,) = 0. We

have by adjunction of Ind and Res and Lemma 3.48(ii):

HomRn(S (FNI ©---0 Pll/n’ Mn) = Home.,(S (F
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By Proposition 3.57(iii), the latter space is isomorphic as a right F'6&,-module to
sgngs, ®re, 'S, This module is annihilated by the (right) multiplication by
X,. Therefore the right multiplication by x, annihilates the image of any non-zero
homomorphism from I',, o---oT", to M,. On the other hand, the right multiplication
by x, acts as an automorphism of A,, = M, x, since F' has characteristic zero. This

implies that Homp, ,(I'), 0--- 0T, A,) =0. O
Recall that for a composition p F n we denote by p* = n the unique partition

obtained from p by a permutation of its parts.

Corollary 3.114. Let A = n and p F n. Then g* appears in ch, AN with the coefficient

c(p)coly . In particular, g* appears in ch, AN with the same coefficient as g*".

Proof. Let A = (Iy,...,1,). Then in view of Lemma 3.113, we have

A=A o0 0A, =A(1") o0 A(1k).

So if g# appears in chy AN, then g* appears in the shuffle product j(l) 0---0 j(“),
where 7 is a word of A(1%) for all ¢ = 1,...,a. By Lemma 3.108, each 7 is a
Gelfand-Graev word (of type ). By Lemma 3.113, we have 5@ = g} = 4 for
c=1,...,a. Now the result follows from Proposition 3.110. The second statement

comes by noticing that coly , = coly ,+ and ¢(p) = c¢(p™). O

Recall the Kostka numbers K , from (2.12). The matrix K = (K ,)xurn 18

unitriangular, in particular it is invertible. Let

N = (Nyu)apun = K

be the inverse matrix.
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Lemma 3.115. Let A = n. We have:
(i) chy AN =) K aer chy A(pr) = chy AN) + Y Kpyee e chy Apa):
uEn <A

(i) chy AA) =Y Nyor o chy A" = chy AN 43~ Nyer oo chy AP

[ p<A
Proof. By Lemma 3.113 and Theorem 3.94, the characters of A* and A(u) are
independent of the ground field for all 4 F n. So we may assume that F' = C,
in which case A(p) = V(u) = T(n) = L(p) for all p = n. Now (i) follows from

Theorem 3.103(ii), and (ii) follows from (i). O

We can now determine the multiplicity of any Gelfand-Graev word in the
standard module A(X). We refer to this partial character information as the Gelfand-

Graev fragment of the character.

Theorem 3.116. Let A= n and puF n, and v F n. Then:

(i) dimg A(N)ge = dim, A(N)

gvt

(i) dimg A(A)gn = c(p) Kxp

Proof. (i) By Lemma 3.115(ii), we have

dimq A()\)gu — Z Nutrj)\tr dlmq (Autr)gu .

pukn

So it suffices to prove that dim, (A*")g = dim, (A“tr)gﬁ for all 4 F n. But this is

contained in Corollary 3.114.
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(ii) Using Lemma 3.115(ii), Corollary 3.114 and Lemma 3.106, we get:

dimg A(N)gr = Y Nyer aer dimg (A7) g

vkn

= Z Ny e e(p)coly,

vkn

g Z NVtI“’AtY C(,UJ)KI{”,},LKI{,I/H

v,kkn

= Z () Ktr 0 aee = (1) Kx i

kkn

where we have used that N = KL O
We can extend the above result to the Gelfand-Graev fragments of characters of
other imaginary modules:

Corollary 3.117. Let A = n and v F n, and suppose that h > n, W € S}, ,,-mod, and

M = Bp,(W) € .#,-mod. Then
dim, Mgy = c(v) dime(v)W.

In particular, dim, L(A)gv = c(v)k) .

Proof. Note that {ch, A,(p) | p = n} is a linear basis in the character ring of modules

in S ,-mod. So we can write chW =3 . n,chA,(u) for some n, € Z. Applying

ukn

the Morita-equivalence f3, ,,, we then also have

ch, M = Z nuchy Ap).

ukn
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So, applying Theorem 3.116,

dim, Mg = Znudimq Ap)gr = Z nuc(v) dime(v)Ap(p)

ukEn pukn

= c(v) dime(v)W,

as required. O

3.103. Imaginary Jacobi-Trudy formula

The formal characters of standard modules A(A) in terms of the characters of
the modules A(1™) can in principle be found from Lemma 3.115, since the modules
AY are just A(1™)o---o0 A(1™) if v = (ny,...,n,). A standard way of dealing with
the inverse matrix N = K1 is through Jacobi-Trudy formulas.

Let A = (l,...,l,) F n. Note by Corollary 3.84 that
ch, A(1%) o ch, A(1") = ch, A(1") o ch, A(1¥) (K, 1 € Zso).

So we can use the quantum shuffle product to make sense of the following determinant

as an element of &/ 1,s:

2(X) := det (ch, A(ll”r“)) € ;.

1<r,s<a
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where ch, A(1°) is interpreted as (a multiplicative) identity, and ch, A(1™) is

interpreted as (a multiplicative) 0 if m < 0. For example, if A = (3,1, 1), we get

chy A(1%) ch, A(14) chy A(19)
2((3,1,1)) =det 1 chy A(1)  chy A(12)
0 1 ch, A(1)

=ch, A(1%) o chy A(1) o chy A(1) 4 chy A(1°)

— ch, A(1*) o ch, A(1) — ch, A(1%) o ch, A(1%).

Remark 3.118. The characters of the modules A(1™) are well-understood in many
situations. Let ¢ be the color of the tensor space we are working with, and 2 =
(i1,...,1%.) so that 7. = i. Then ¢™ is a word of A(1™) = L(1™), see Lemma 3.113.
Oftentimes the word 2™ is homogeneous, and so A(1™) is the homogeneous irreducible
module associated to the connected component of 2™ in the word graph. For example

in Lie type C = Al(l) this is always the case.

Theorem 3.119. (Imaginary Jacobi-Trudy Formula) Let A - n. Then ch, A(\) =
D (A7),

Proof. Let \* = (I, ...,1,) and take h > n. It follows from the classical Jacobi-Trudy

formula that in the Grothendieck group of Sy ,,-mod we have

[AR(V)] = det (A" (Vi) )1<rs<a
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with determinant defined using multiplication given by tensor product. Applying the

equivalence of categories (3}, ,,, Theorem 3.83, and Lemmas 3.88, 3.113 we get

[AN)] = det([Ar,—r+s])1<rsza = det([AQL")])1<rsza

with determinant defined using multiplication given by induction product ‘o’. Passing

to the formal characters, we obtain the required formula. O
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CHAPTER IV

STRATIFYING KLR ALGEBRAS OF SYMMETRIC AFFINE LIE TYPE

The work in this chapter has appeared in the articles [30, 28], which have been
submitted for publication. It is co-authored with Alexander Kleshchev. We developed
the results in the co-authored material jointly over many meetings, and, by the nature
of collaborative mathematical work, it is difficult to attribute exact portions of the

co-authored material to either Kleshchev or myself individually.

4.1. Stratification

Throughout this chapter, unless otherwise stated, k is an arbitrary field of
characteristic p > 0. In this section, we mainly follow [33]. All notions we consider,

such as algebras, modules, ideals, etc., are assumed to be (Z-)graded.

4.11. Graded algebras

We recall some basics of graded representation theory, and introduce Laurentian
algebras in this section. If H is a Noetherian (graded) k-algebra, we denote by
H-mod the category of finitely generated graded left H-modules. The morphisms in
this category are all homogeneous degree zero H-homomorphisms, which we denote
homy (—, —). For V € H-mod, let ¢’V denote its grading shift by d, so if V,, is the
degree m component of V, then (¢?V),, = V,,_4. For a polynomial a = > aqq® €

Z[q,q "] with non-negative coefficients, we set aV := @ ,(¢?V)®".
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For U,V € H-mod, we set

Hompy (U, V) := @ Homp (U, V)a,
dez.
where Homp(U,V)y := hompy(q?U,V). We define ext?(U,V) and Ext7(U,V)
similarly. Since U is finitely generated, Hompy (U, V') can be identified with the set
of all H-module homomorphisms ignoring the gradings. A similar result holds for
Ext%; (U, V), since U has a resolution by finitely generated projective modules. Given
V,W € H-mod, we write V ~ W to indicate that V = ¢"W for some n € Z.

A vector space V is called Laurentian if its graded components V,, are finite
dimensional and V,,, = 0 for m < 0. Then the graded dimension dim, V' is a Laurent
series. An algebra is called Laurentian if it is so as a vector space. In this case all
irreducible H-modules are finite dimensional, there are only finitely many irreducible
H-modules up to isomorphism and degree shift, and every finitely generated H-
module has a projective cover, see [25, Lemma 2.2].

Let H be a Laurentian algebra. We fix a complete irredundant set {L(7) | 7 € II}
of irreducible H-modules up to isomorphism and degree shift. By above, the set II is

finite. For each 7 € I, we also fix a projective cover P(m) of L(rm). Let
M (r) :=rad P(n) (r e 1I), (4.1)

so that P(m)/M(m) = L(m).

From now on we assume in addition that H is Schurian, i.e. End(L(7)) = k for
all 7. For any V € H-mod and 7 € II, the composition multiplicity of L(7) in V is
defined as [V : L(7)], := dim, Hom(P(7),V) € Z((q)).
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4.12. Standard objects and stratification

We continue with the notation of the previous subsection. Let ¥ be a subset
of II. An object X of the category C := H-mod belongs to ¥ if [X : L(o)], # 0
implies 0 € ¥. Let C(X) be the full subcategory of C consisting of all objects which
belong to 3. The natural inclusion tx : C(X) — C has left adjoint Q¥ : C — C(X)
with Q*(V) = V/O*(V), where O*(V) is the unique minimal submodule among
submodules U C V such that V/U belongs to 3. Let also Ox(V) be the unique
maximal subobject of V' which belongs to X.

Applying O to the left regular module H yields a (two-sided) ideal O*(H) < H.
By [33, Lemma 3.12], for V € H-mod, we have O*(H)V = O*(V). Set H(X) :=
H/O¥(H). Then we can regard Q*(V) as an H(X)-module and identify C(X) and
H(X)-mod. In this way, @ becomes a functor Q* : H-mod — H(X)-mod .

We now suppose that there is a fixed surjection

(1]

o: 11— (4.2)

for some set = endowed with a partial order <. We then have a partial preorder <

on IT with 7 < ¢ if and only if o(7) < p(0). For 7 € II and £ € = we set

o, ={cell|o<n}, Iep:={ocell|o <},

Heg:={oell|o(o) <&}, lee :={o €Il | p(o) <&}

and write O™ := Olls= O := O, Q7 = Q<w H.¢ := H(ll<), etc.
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Recalling (4.1), we define for all 7 € II:
K(r) := O=7(P(r)) = O="(M()),  K(r):= O<"(M(m)),

and

A(r) = Q="(P(m)) = P(r)/K(m),  A(w) = P(m)/K(r). (4.3)

Note that K(w) D K(w), so A(m) is naturally a quotient of A(w). Moreover,
head A(7) = head A(7) = L(7). We call the modules A(7) standard and the modules
A(7) proper standard. By [33, Lemma 3.10], A(n) is the projective cover of L(r) in
the category C<,. For V € C, a finite A-filtration (or a standard filtration) is a
filtration V =V, D V4 D .-+ D Vy = 0 such that each for 0 < n < N we have
Vi/ Vi1 =~ A(m) for some 7 € 1.

Let £ € 2. Then C is a Serre subcategory of C<¢, and the quotient category
Ce = C</Cx, (4.4)

is called the ¢-stratum. Up to isomorphism and degree shift, {L(7) | o(7) = &}
is a complete family of simple objects in Cg, and Pe(7) := A(71)/O¢(A(n)) is the

projective cover of L(m) in Cg. Finally, setting

Al)= B A(r) and B :=Endy(A())™, (4.5)

T€QTL()

by [33, Corollary 4.9], the stratum category Cg is graded equivalent to Be-mod.
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We have a natural exact projection functor R¢ : C<¢ — Cg¢. If we identify Cg

and Bg-mod, the functor R¢ becomes
Re = Hompy_ (A(§), —) : Hege-mod — Be-mod.
Its left adjoint
gf = Ag ®B5 — Bg—mOd — Hgg—mod (46)

is called a weak standardization functor. By [33, Lemma 4.11], if o(w) = & then
A(r) 2 E(Pe(m)) and A(7) = E(L(w)). A weak standardization functor is called a
standardization functor if it is exact. This is equivalent to the requirement that A(&)

is flat as a Be-module.

Definition 4.7. The algebra H as above is called properly stratified (with respect

to the fixed preorder <) if the following properties hold:

(Filt) For every 7 € II, the object K (7) has a finite A-filtration with quotients of the

form ¢?A(o) for o > 7.

(Flat) For every £ € =, the right Be-module A(§) is finitely generated and flat.

4.13. Convex preorders

Recall the notion of convex preorders on the positive roots ®,. We denote by
U = @ U {4} the set of indivisible positive roots. In this section we prove some

needed results on convex preorders.

Lemma 4.8. [39, Lemma 3.7] There is w € W’ such that p(®,s) = wd’, .
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Let p(®,5) = w®’ according to the lemma. For i € I’, we denote

Then 7" € @, 7"+ =, and 4" = 0 = 7; . Note that A5 := {y,..., 7} isa

base in ®'.

Lemma 4.9. [39, Example 3.5] Let A be any base in & and o € A. There exists a

convex preorder = on ¢, with the following three properties:
(i) @=G+0=a+20>---=0---=—a+20> —a+0 > —a;

(iii) Every root in ®%, which is not of the form a4 nd, is either greater than & or

less than —a.

In this subsection we write = for = (mod Z9) .

Lemma 4.10. Let i € I’ and 7" = n* + 6* for some n*,0* € Q.. Suppose that
nT is a sum of positive roots < vl-i, and 6% is a sum of positive roots > %'i. Then
N~ +nt #~v unless nt =60 =0.

Proof. By assumption, 07 is a sum of positive roots = 7;". Since ;" > 4, these positive
roots are in ®.s5. So we can write T = an:l cmYm With coefficients ¢, € Zxo.
Furthermore, 7~ is a sum of positive roots less than ;. As 7, < 0, these positive
roots are in ®_5. So we can write n~ = — an:l dpnYm with coefficients d,,, € Z>.
Assume that n~ + 7T = 7,7, in which case _ = n,. As {d,7,...,7} are linearly
independent, we deduce that all d,, and ¢, with m # ¢ are zero and d; + ¢; = 2.

If d; = 1 then §~ = n* = 0, which implies ~ = n™ = 0 by height considerations.

If d; = 0, we have n= = 0 so n~ = 0 by heights, which implies 6= = ™ =, and
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0. =~ —~; = 2v. Since ht(0") < ht(v;"), we deduce that 6 is a sum of positive
roots which are strictly greater than ~;". As (0,,7;") = 4, any presentation of 0T as
a sum of positive roots which are strictly greater than ;" must have at least four

summands. Fach of these summands is a non-negative linear combination of ~,,’s.

This contradicts 7 = 2v;. The case d; = 2 is similar to the case d; = 0. O

Lemma 4.11. Let n € Z-g and 6 = 6, + 0F for r = 1,...,n, with each 6, being
a sum of positive roots < ¢ and each 6 being a sum of positive roots = §. If

S0 = n%i, then 0F = %-i forallr=1,...n.

r=1"r

Proof. For 1 < r < n we have 0F = :I:Zgzl cij;-“ for some cfi € Zsg. So

tny, = £> 0, Z;Zl cfjvf. Now linear independence of the ’yf modulo ZJ and

considerations of height imply cfj = 0;,; for all 7. O

4.14. Kostant partitions and root partitions

In this subsection we recall the definition of Kostant partitions and root
partitions, modifying our notation slightly to emphasize the connection to
stratification. Let 6 € Q1. A Kostant partition of 6 is a tuple £ = (23)gew of non-
negative integers such that > s w58 = 0. If {#1 = --- = 8.} = {8 € ¥ | 25 # 0},
then, denoting x,, := xg,, we also write £ in the form & = (577, ..., 57"). We denote by
=(0) the set of all Kostant partitions of #. Denoting the left (resp. right) lexicographic
order on Z(0) by <; (resp. <), we will always use the bilezicographic partial order <
on Z(0), i.e. £ < if and only if £ <; ¢ and £ >, (.

Let « € W. By convexity, the Kostant partition («) is the unique minimal
element in =(a). A minimal pair for o is a minimal element in =(a) \ {(a)}. A
minimal pair for a exists, provided « is not a simple root, which we always assume

when speaking of minimal pairs for a. Using the property (Con2) from [24, §3.1], it
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is easy to see that a minimal pair is always a Kostant partition of the form (53,~) for

B,7 € ¥ with 5 > ~. A minimal pair (3,) is called real if both § and «y are real.

Lemma 4.12. Let o € ®F. If o has no real minimal pair, then o = v + né for some
i € I'and n € Z-y, in which case (v;* + (n —1)4, ) is a minimal pair for ;% +nd and

(0,7 + (n—1)d) is a minimal pair for 7, + nd.

Proof. The first half is [39, Lemma 12.4]. For the second half, if (v;* 4+ (n — 1)d,6) is
not a minimal pair for ¥;" 4+ nd, then we would be able to write v;* +nd = 5+ v with
B,7 € ®.5. But modulo § both 8 and v are positive sums of v;’s, which leads to a

contradiction. The argument for ;" + nd is similar. O]

If p is a usual partition of n, we write p = n and n = |u|. An [-multipartition of
nis a tuple p = (u, ..., u®) of partitions such that |p| := |p®] + - + [p@| = n.
The set of the all [-multipartitions of n is denoted by &, and & = L,>0 .

A root partition of 0 is a pair (€, i), where & = (25)gew € Z(0) and p € Py,
We write II(0) for the set of root partitions of §. There is a natural surjection
p: I(0) — Z(0), (&, 1) = & The bilexicographic partial order < on Z(f) induces a
partial preorder < on II(f), i.e. 7 < ¢ if and only if p(7) < p(o).

Let (&, ) € I1(0) with € = (z)secw. As all but finitely many integers x5 are zero,
there is a finite subset 8y > --- > 85 = 0 = f_¢ > --- = [B_; of ¥ such that 3 =0
for B € W outside of this subset. Then, denoting z, := x3,, we can write any root

partition of  in the form

(5’&):( f17‘"7/83137H7/8f2t7"’7/8f11)7 (4']‘3)

where all , € Zxo, p € &, and |p|d + 3wy, = 0.
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4.15. Reduction modulo p

The KLR algebra Ry is defined over an arbitrary commutative unital ring k, and
if we need to to emphasize which k we are working with, we will use the notation Ry j.
Likewise in the notation for modules. Let p be a fixed prime number, and F := Z/pZ
be the prime field of characteristic p. We will use the p-modular system (F,O, K)
with F'=TF,, O =Z, and K = Q,.

Let £k = K or F, and V;, be an Ryj-module. An Ryop-module Vi is called
an O-form of V. if every graded component of Vp is free of finite rank as an O-
module and, identifying Ry o ®e k with Ry, we have Vo ®o k =V, as Ry -modules.
Every Vk € Rgg-mod has an O-form: pick Ry g-generators vq,...,v, and define
Vo = Rpo-v1 + -+ Rypo-vi. We always can and will pick the generators which
are homogeneous weight vectors. Let Vi € Ry x-mod and Vp be an O-form of Vi.
The Ry p-module Vi ®p F is called a reduction modulo p of V. Reduction modulo
p in general depends on the choice of V. However, as explained in [22, Lemma 4.3],

we have a generalization of the standard result for finite groups:

Lemma 4.14. If Vx € Ry g-mod and Lp is an irreducible Ry p-module, then the

multiplicity [Vo ®o F' : Lg|, is independent of the choice of an O-form Vi of V.
Reduction modulo p commutes with induction and restriction [22, Lemma 4.5]:

Lemma 4.15. Let 0 = (01,...,0n) € Q7,0 = 01+ -+ + 0, Vo € Ry,0o-mod, and
Wo € Rpo-mod. Then for any O-algebra k, there are natural isomorphisms of Ry -
modules

(IndQV@) R k = IndQ(V@ ®o k)

and of Ry;-modules

(RGSQWO) Ro k= RGSQ(WO Xo ]{7)
127



In particular, reduction modulo p preserves formal characters. This fact together
with linear independence of formal characters of irreducible modules has the following

consequence:

Lemma 4.16. Let Vi,...,V, be Ry x-modules such that ch, Vi, ..., ch, V. are linearly
independent. Let Lq,...,Ls be a complete set of composition factors of reductions

modulo p of the modules Vi, ..., V,. Then s > r.

4.2. Semicuspidal modules

The main goal of this section is to generalize some results of Chapter III and [39].
In Chapter III we assumed that the convex order was balanced, while [39] assumes
that p = 0. We want to avoid both of these assumptions.

In this section we often work with a composition v = (ng,...,n,) of n,
the corresponding parabolic subalgebra R,s := R,,5.. n,.5, and the corresponding

induction and restriction functors I} := Ind,, ;5. n.s and *I]} := Res, 5. n.s-

4.21. Semicuspidal modules

We fix a convex preorder < on ¢, an indivisible positive root o, and n € Z~.
Following [39] (see also [32, 38, 24, 44]) an R,,-module V is called semicuspidal if
0,n € Qt, 0 +n=na, and Resy,V # 0 imply that 0 is a sum of positive roots < «
and 7 is a sum of positive roots = a.

Weights ¢ € 1™, which appear in some semicuspidal R,,-modules, are called

semicuspidal weights. We denote by 1'% the set of non-semicuspidal weights. Let

1nsc = Z 1,,,

ielng

nsc
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Following [39], define the semicuspidal algebra

Cna = Onmk = Rna/RnalnscRna- (417)

Then the category of finitely generated semicuspidal R,,,-modules is equivalent to the

category C),o-mod.

Theorem 4.18. Let o € ®% and n € Z-,. There is a unique up to isomorphism
irreducible ®-self-dual semicuspidal R,-module. We denote it L(a). Moreover,
L(a") = "™ Y/2[(a)°" is the unique up to isomorphism irreducible ®-self-dual

semicuspidal R,,-module.
Proof. Follows from the main results of [24], see also [44]. O

Lemma 4.19. Let o € @ and n € Z-y. Then L(a")p is a reduction modulo p of

L(Oén)K
Proof. See [24, Proposition 4.9] and [22, Lemma 4.6]. O

In the rest of this section we work with the imaginary case trying to understand

the irreducible semicuspidal R,s-modules.

4.22. Minuscule imaginary modules

The proof of the following lemma in [39, Lemma 12.3] seems to need the

assumption p = 0, but the same result will later follow in general from Lemmas 4.19

and 4.21(iii).

Lemma 4.20. [39, Lemma 12.3] Assume that p = 0. Let a € ¥, L € R,-mod be

a semicuspidal module, and (/3,7) be a minimal pair for a. Then all composition
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factors of Res, gL are of the form L, X Lg, where L, is an irreducible semicuspidal

R,-module and Lg is an irreducible semicuspidal Rg-module.

By [24], there are exactly |#7;| = [ isomorphism classes of self-dual irreducible
semicuspidal Rs-modules. These modules can be labeled canonically by the elements
of I', see [24] for balanced convex orders, and [39, 44] in general. We now describe
the approach of [39]. One needs to be careful to make sure that the assumption p =0
made in [39] can be avoided. Recall the base A, = {v,..., v} in @/ from §4.13
and the roots v;°. In characteristic zero, parts (i) and (ii) of the following result are

contained in [39], and this will be used in the proof.

Lemma 4.21. Let i € I'. Then the module L(v; ) o L(v;") has a simple ®-self-dual

head. Moreover, denoting this simple module by L;;, we have the following:

(i) The Rs-module Ls; is cuspdial, and {Ls; | ¢ € I'} is a complete and irredundant

system of irreducible ®-self-dual semicuspidal Rs-modules.
(ii) Res - +Ls; = L(7; ) W L(v;"), and Res,yjf,,ijM =0if 7 # .
(iii) Reduction modulo p of L, i is Ls; p.

Proof. By Mackey’s Theorem and Lemma 4.10, we have Res_ - _+(L(7; ) o L(yh)) =
L(v; )X L(~;). If L is a simple constituent of the head, then L(v; )X L(v;") appears
in the socle of Res - _+L. Since Res is an exact functor and the multiplicity of the

(3

irreducible @-self-dual module L(v; ) X L(;") in Res - +(L(7; ) o L(%;")) is 1, the
head is simple and self-dual. The first part of (ii) also follows.

Now, we explain that in characteristic zero, (i) and (ii) are contained in [39].
Indeed, (i) is [39, Theorem 17.3]. To see the second part of (ii), in view of [39,

Theorem 13.1] and Lemma 4.9, we may assume that (7", 7;) is a minimal pair for 4,

in which case by Lemma 4.20, all composition factors of Res - _+L;; are of the form
VARV
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L(v;) B L(~]), in particular, L(v;) X L(v;) appears in the socle of Resvjfﬂng,i,
whence Ls; is a quotient of L(’yj’ )o L(fy;.r), ie. Ls; = Lsj, giving a contradiction.

Pick R-forms L(y)g of L(vf)kx. By Lemmas 4.15 and 4.19, we have that
L(v;)r o L(v;")r is an R-form of L(v; )x o L(7; )y for k = K or F. We have
a surjection ¢ L(77 )k o L3 )k — Lo Let Lysn = 9(L(r7)r o L )n).
Note that Ls;r is an R-form of Ls;; x. On the other hand, we have a surjection
L(v;)ro L(v)r — Lsir ®r F. This implies that L; s r is a quotient of Ls; g ®r F.
As Ls; i is semicuspidal by [39], it now follows that so is Ls; p.

Let j # i. By the characteristic zero result, we have Reswj-n; Ls;xk = 0. It now
follows that Resy;,y]%Lé,i,F = 0, too, which completes the proof of (ii). By (ii), we
conclude that Ls; p % Ls jr. By counting, we complete the proof of (i).

To prove (iii), note by characters that all composition factors of Ls; r ®r F' are

semicuspidal. Now we can conclude that Ls; p ®r F' = Ls; p using (ii). O

Following the terminology of [24], we call the modules Ls; minuscule modules.

4.23. Imaginary Schur-Weyl duality

In this section we recall some results from the Chapter III, and generalize these
results to the case of an arbitrary convex order in this symmetric Lie type situation.
Fix ¢« € I'. Recall the minuscule module Ls; from §4.22. Consider the R,s-
module M, ; := L7} and the algebra .7, ; 1= R,s/ Anng ,(M,;). Since i is fixed, we
often suppress it from our notation and write Ls = Ls;, M,, = M, ;, S, = S5, etc.
We have the following result, the proof of which given in Chapter III does not
use the fact that the convex order is balanced. We record it again here for reader

convenience.

Theorem 4.22. Let ¢ € I' and n € Z~q. Then:
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(i) Endg,,(M,)? = endg, , (M,)? = kG,
(ii) M, is a projective .#,-module, and M? = M,,.

(iii) Assume that p > n or p = 0. Then ., is semisimple, M, is a projective

generator over .%,, and .#, is Morita equivalent to kS,,.

By Theorem 4.22, if p = 0, the number of composition factors of M, is equal
to the number of partitions of n. Now using reduction modulo p argument involving

Lemmas 4.21(iii) and 4.16, we deduce that the same is true in general:

Lemma 4.23. The number of composition factors of M,, up to isomorphism and

degree shift, is equal to the number of partitions of n.
Recall the roots ;™ and 7; from §4.13. As i is fixed we will denote v := 7.

Lemma 4.24. We have Res,y_ ny My, = L(y™) X L(7).

Proof. Follows using Mackey’s Theorem and Lemmas 4.11, 4.21(ii). O]
For o € @', we denote by P(a™) the projective cover of the irreducible

semicuspidal module L(a™). We will use a special projective module, which we we
refer to as a Gelfand-Graev module. Note that its definition is different from the one

in Chapter III even for balanced orders:

Ip =Tni=P0H") o P(Y).

Lemma 4.25. We have dim, Hompg,_,(I",,, M,,) = 1.

Proof. We have Homg,,(I'n, M,) = Homg,, . (P(7") B P(7}),Respy_ nyy My). So

the result follows from Lemma 4.24. ]
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Denote by 1g, the trivial (right) £&,-module. Note that Hompg (T, M,)
is naturally a right k&,-module, since G, acts on M, on the right in view of
Theorem 4.22(i). Since this module is 1-dimensional by Lemma 4.25, it is either
the trivial or the sign module. If it happens to be the sign module, we redefine the
right action of &,, on M, by tensoring it with the sign representation. So we may

assume without loss of generality that

HOHIRM(F”, Mn) = 16n' (426)

For a composition v = (ny,...,n,) € A(h,n), we define the R, s-modules

M, =M, X---XM,,, I'=I,X---KI',, and I'V:=IT,.

We have the parabolic analogue .#, of .7, defined as

S, = RV’(;/AHHRW;(MV) = ynl Q- ®ynh'

The functors *I}} and I} induce the functors between .#,-mod and .#,-mod.

Lemma 4.27. We have *IJT", = T', ® X, where X is a projective R, s-module with

Hompg, (X, M,) = 0.

Proof. Mackey’s Theorem yields a filtration of

-----

with projective subquotients, one of which is I', (ignoring grading shifts for now). So

we get a decomposition *I"T,, = ¢T", ® X where X is a projective module. It remains
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to notice that dim, Hompg, ,(*I)T,, M,) = 1, which is done using adjointness of Res

and Coind. n

4.24. Divided powers

We recall some results of Chapter III and extend to the arbitrary convex order

case. Set x, := Y .o ¥. Set

X, = Myz, and Z,:={ve M,|vr=uvforalzxec&,}.

Fixing a non-zero R,s-homomorphism f, : I';, — M,,, we also set Y,, :== im f,, C M,
cf. Lemma 4.25. Eventually we will prove that Y,, = Z,. For now, it is only clear

from (4.26) that Y,, C Z,,. From Chapter III, we have

Lemma 4.28.
(i) X, is an irreducible R,s-module.

(ii) soc Z, = X,,, and no composition factor of Z, /X, is isomorphic to a submodule

of M,,.

From now on fix h > n. For L = X, Z,Y and a composition v = (nq,...,np) €

A(h,n), we set L, := Ly, ®--- W L,,, LV := [)L,, and L := @, cpq,,) L. For the

vEA

proof of the following results see §3.5.
Lemma 4.29. For L = X, 7)Y, we have *I'L,, = L,,.

Theorem 4.30. For L = X or Z, there is an algebra isomorphism Endg , (L) =

S(h,n), where S(h,n) is the classical Schur algebra.
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Lemma 4.31. Let A\, u € A(h,n). Then

dim, Homp ,(Y*,Y*) = dim, Homp,_,(T'*, Y*)

= dim, Homp, (I, Z") = |6,\6,/6,|.

We give a slightly simpler proof of the following result compared to Theorem

3.74:

Theorem 4.32. We have:

(i) Z = EBVeA(h’n) Z" is a projective generator for .7,.

Proof. (i) As 'Y, is a non-zero submodule of Z,, it contains the simple socle X, of Z,,,
see Lemma 4.28. Applying I} to the embeddings X, C Y, C Z,, we get embeddings

XY CY¥ CZ¥. By Lemma 4.31,

dim, Hompg , (YY) = dim, Homg ,(I",Y) = dim, Hompg_ ,(I", Z)

= Y 6)\6,/6,] = dimS(h,n),

MUEA(h,N)

the last equality for the dimension of the classical Schur algebra being well-known.
In particular, this implies that Y is projective as an R,,s/Anng (Y )-module by
the Schubert’s criterion, see e.g. [5, Lemma 4.3.1]. But M,, = Y1) is a summand of
Y, so Anng ,(Y) = Anng ,(M,), and Y is a projective .#,-module. By the classical
theory [12], the number of isomorphism classes of irreducible S(h, n)-modules equals
to the number of partitions of n. By Fittings’ Lemma, the number of isomorphism

classes of indecomposable summands of Y equals the number of isomorphism classes
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of irreducible modules over Endg ,(Y') = S(h,n). We now deduce from Lemma 4.23
that Y is a projective generator for .#,.

(ii) By (i), every irreducible .#,,-modules appears in the head of the projective
R,s-module I'. As dim, Hompg ,(I',Y) = dim, Hompg ,(I", Z), every homomorphism

from I" to Z has image lying in Y, and it follows that Y = Z. O

4.25. Imaginary semicuspidal irreducible and Weyl modules

Recall that we have fixed h > n. By Theorem 4.32, we may regard Z as a

(%, S(h,n))-bimodule. Then by Morita theory, we have an equivalences of categories
By : S(h,n)-mod = Z-mod, W = Z @gpn) W.

By the classical theory [12], the Schur algebra S(h,n) is quasihereditary with
irreducible module L¢;(A) and standard modules Wi (A) labeled by the partitions

A F n. Recall that we are working with a fixed 7 € I'. Define the .¥,-modules:

L(A) = Li(A) := Bu(Laa (X))

W) = Wi(A) = Sa(Wa (M)

so that {L;(A\) | A F n} is a complete and irredundant family of irreducible modules
over ./, = ., up to isomorphism and degree shift. By inflating, these are irreducible
semicupsidal R,s-modules. It is easy to see that L;(A\)® = L;(\).

Now we complete a classification of the irreducible semicuspidal R, s-modules.

To every multipartition py = (u(l), e ,,u(l)) e &,, we associate the R,s-module

L(p) = Llw(l)) o.-- OLZ(M(Z))-
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Theorem 4.33. Let n € Z~(. Then

(i) {L(p) | p € Pn} is a complete and irredundant set of ®-selfdual irreducible

semicuspidal R,s-modules up to isomorphism.

(ii) For A, € 2, with A\ = [u®] =:n,; for all i = 1,...,1, we have

[Resn,s,.msL(pt) 1 Li(AY) B B L (AD)]g = 6y 0

77777

Proof. The proof is the same as that of [24, Theorem 5.10, Lemma 5.11]. [

Theorems 1 and 2 from the Introduction, except for the reduction modulo p
statement in Theorem 2, follow easily from the results obtained in this section together
with Schubert’s criterion [5, Lemma 4.3.1]. The part of Theorem 2 concerning

reduction modulo p comes from Corollary 4.60 below.

4.3. Stratifying KLR algebras

Throughout the section v € ¥, § € Q4 and 7 € I1(0).

4.31. Semicuspidal standard modules

For real a, we denote by A(a™) the projective cover of L(a™) in the category
Cpo-mod. We also denote by A(u) the projective cover of L(u) in the category
Cys-mod. Sometimes, we will also use a special notation As; for the projective cover
of Ls; in Cs-mod, in other words As; = A(u(i)), where pu(7) is the multipartition of
1 with the only non-empty component z(i)® = (1).

Lemma 4.34. Let « € ¥ and V € C,,-mod. Denote A := A(a”) if « is real, and
A = A(p) for any p € &, if @ = 4. Then Ext (A,V) =0.
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Proof. Any extension of A by V belongs to C,,-mod. Since A is a projective object

in C,,-mod, the extension has to split. O
Lemma 4.35. Let o € @, and n =ny + -+ +ng for ny, ..., ng € Z>p. Then:

(1) Afa)er =gV [n]l Ala”).

3

Q

Q2

I
Q

N/
I

Ala™) K- K A(a™).

.....

Proof. (i) All composition factors of A(a)°™ are of the form L(a"), so it is an Cj,-
module. We claim that this C),,-module is projective. It suffices to prove that

Extt. (A(a), L(a™)) = 0, which follows from Exty, (A(a)", L(a™)). But

........

Now,

oL(a™) = [n]!'L(a)®", (4.36)

.....

cf. [7, Lemma 2.11], so the claim follows from the Kiinneth formula and Lemma 4.34.

~

It follows from the previous paragraph that A(a)°" = m(q) A(a™) for some
m(q) € Z[q,q']. To prove that m(q) = [n]! it suffices to observe using (4.36) that
dim, Hompg,  (A(a)°", L(a™)) = [n]l.

(ii) follows from (i) and the computation of Res,,a,. . n.a(A(a)), which is

performed using Mackey’s Theorem and convexity. O]

4.32. Standard modules

To a Kostant partition & = (57*,...,0") € Z(0) we associate a parabolic
subalgebra

R§ = R$151 Q- ® erﬁr C Ry
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and the corresponding functors

Rese : Rg-mod — Re-mod  and Indg, Coind : Re-mod — Ry-mod. (4.37)

For every 7 = (&, ) € I1(0) as in (4.13), we define the proper standard module

A(m) = L(Bi") o+ o L(B7*) o L(p) o L(B%") 0+~ o L(BZ)") = Ind¢Lx,  (4.38)

and the standard module

A(m) = A(B) o - 0 A(BF*) o A(p) 0 A(BT") o+ 0 A(BZ") = IndeAr,  (4.39)

where we have used the notation

Ly =LK - RL(E") K L(p) X LB )R- R L(B*),

A= AR BASS) B A RAF) K- RA(F)

for modules over the parabolic subalgebra R¢. In Lemma 4.44 we will show that these

definitions agree with general definitions from §4.12. Define also

V(r) := Coind¢ L, = A(m)® (7 € T1(9)), (4.40)

the isomorphism coming from Lemma 2.54.

Theorem 4.41. [24] Let 6 € Q). We have:

(i) For every 7 € I1(0), the module A(7) has simple head; denote it L(m).

139



(ii)) {L(m) | = € TI(#)} is a complete and irredundant system of irreducible Ry-

modules up to isomorphism and degree shift.
(iii) For every m € I1(#), we have L(m)® = L(w).

(iv) Then in the Grothendieck group [Rg-mod], we have [A(7)] = [L(x)] +

> oen dro[L(0)] for some d,, € Z[q,q~'] (which depend on p).

(v) For all m,0 € II(6), we have that Res,x L(7) = L, and Res,)L(m) # 0 implies

o <.
Corollary 4.42. Let 0 € Q4 and 7,0 € I1(0).
(i) Resp)A(m) # 0 implies o < 7, and Res ) A(7) = L.

(ii) Res,)V(7) # 0 implies ¢ < 7 and Resy(m V(1) = L.

2

iii) Res,»A(mw) # 0 implies 0 < 7, and Res,(nA(7 A,
(o) p(T)

Proof. If Res,)A(r) # 0, then Res,)L(7") # 0 for some composition factor L(7”)
of A(r). So, using Theorem 4.41(v), we get 0 < 7/ < 7. The rest of (i) follows
from the exactness of Res and Theorem 4.41(iv),(v). The proofs of (ii) and (iii) are

similar. O

Proposition 4.43. Let 6 € Q4, m,0 € I1(A), and m € Z>,. Then

Ext (A(7), V(o)) =0

unless p(m) = p(o). Moreover, if p(r) = p(o), then Exty (A(7), V(o)) = 0 and
dim, Homg, (A(r),V(0)) = 6, .. In particular, head A(r) = L(r).
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Proof. The proof follows that of [39, Proposition 24.3|. By adjointness of Coind and
Res, we have

Ext, (A(m), V(o)) = Ext’gp(d) (Resp)A(T), Ly)

By Corollary 4.42(iii), Res,,)A(7) # 0 implies ¢ < 7. On the other hand, by

adjointness of Ind and Res, we have

Ext (A(r), V(o)) = Exty (Ar, Res, V(o).

By Corollary 4.42(ii), Res,x V(o) # 0 implies 7 < 0. So we are reduced to p(7) =

p(0), in which case, using Corollary 4.42(iii), we have
Ext (A(7),V(0)) = Exty  (Resyo)A(T), Ly) = Exty (Ax, Lg).

Now, the result follows from Kiinneth formula and Lemma 4.34. O]
Lemma 4.44. Let § € Q4 and 7 € 11(6).

(i) A(m) is the largest quotient of P () all of whose composition factors L(o) satisfy

o <.

(ii) A(n) is the largest quotient of P(m) which has L(m) with multiplicity 1 and

such that all its other composition factors L(o) satisfy o < .

(iii) Let I(m) denote the injective hull of L(w) in the category of all graded Ry-
modules. Then V(7) is the largest submodule of I(7) which has L(w) with

multiplicity 1 and all its other composition factors L(o) satisfy o < 7.

Proof. (i) Since head A(7) = L(7), we have a short exact sequence 0 — X — P(7) —

A(m) — 0, and it suffices to prove that Hompg, (X, L(0)) = 0 if 0 < 7. Using the long
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exact sequence which arises by applying Hompg, (—, L(0)) to the short exact sequence,

we have to prove Exty, (A(r), L(c)) = 0 for o < 7. But
Ext}%o (A(m), L(0)) = Ext}%p(w) (Ax, ResymL(o)).

In view of Theorem 4.41(v), we may assume that p(m) = p(c), in which case
Res,x)L(0) = L,. Now, the result follows from Kiinneth formula and Lemma 4.34.
(ii) In view of Theorem 4.41(i), we have a short exact sequence 0 — X — P(7) —
A(rmr) — 0, and it suffices to prove that Hompg, (X, L(c)) = 0 if o < 7. Using the long
exact sequence which arises by applying Hompg, (—, L(0)) to the short exact sequence,
we have to prove Extp (A(r),L(0)) = 0 for 0 < m. But Exty (A(r), L(o)) =
EXt}«zpm (Lx,Resyx)L(0)). An application of Theorem 4.41(v) completes the proof.
(iii) In this proof only, we will work in the larger category of all graded Ry-
modules. By (4.40), soc V(7) = L(7), so there is a short exact sequence 0 — V(7) —
I(r) - X — 0, and it suffices to prove that X does not have a submodule, all of
whose irreducible subfactors are ~ L(o) with ¢ < 7. So it suffices to prove that X
does not have a finitely generated submodule Y, all of whose composition factors are
~ L(o) with o < w. Otherwise apply Hompg, (Y, —) to the short exact sequence to get

an exact sequence
Homp, (Y, I(7)) — Hompg, (Y, X) — Extg, (Y, V(1)) — 0.

Note that the middle term of this sequence is non-zero, while the first term is zero

since the socle of I(7) is L(m). Finally, the third term is zero. Indeed,

Extp, (Y, V(7)) = Ext, (Y, Coind,(n Lr) = Exty  (ResymY, Lr) = 0,

142



since Res,r)Y = 0 in view of Theorem 4.41(v). This a contradiction. O

4.33. Standardization functor

We now want to check the condition (Flat) from Definition 4.7, which guarantees

existence of standardization functor.

Proposition 4.45. Let 7,0 € I1(0) satisty p(m) = p(o) =: £&. Then the natural map

Hompg, (Ar, As) — Hompg, (A(7), A(c)) is an isomorphism.

Proof. By adjointness, we have Hompg,(A(7), A(o)) = Hompg, (Ar, Res¢A(0)). By

Corollary 4.42(iii), Res¢A(o) =2 A,, and the result follows. O

Corollary 4.46. Let £ € =(0), A(§) = P yA(m), and A¢ == D ¢ Ax. Then

nEp~ (¢ n€p~!

the natural map Endg, (A¢) — Endg,(A()) is an isomorphism of algebras.

Theorem 4.47. Let 0 € Q4+, & € Z(0), A = P A(r), and By :=

TEPTL(€)
Endg,(A(€))°P. Then, as a right Be-module, A(€) is finitely generated projective,

in particular, finitely generated flat.

Proof. We write ¢ in the form ¢ = (8]*,...,0%) for py > --- = [,. Note that
Endg, (A¢)® = Bgar ®- - <@ Bger. So by Corollary 4.46, we have Be = Bgn ®- - -® Bgar.
Moreover, each A(S%m) is a projective generator in the category Cj, 5,-mod. So, by
Morita theory, A(p%m) is finitely generated projective as a right module over its
endomorphism algebra Bgzm. It follows that A, is finitely generated projective as a
right module over its endomorphism algebra Be. Finally since Ry is free of finite rank

over R, it follows that A(§) = Ind¢A; is finitely generated projective over Be. [

We have established the property (Flat) from Definition 4.7. The property

(Filt) is more difficult to check. We are missing the equality Exty, (A(7), V(g)) = 0
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if p(m) = p(o), which is needed for standard arguments as in [7, Theorem 3.13]
yielding a A-filtration on P(7). So we will have to proceed in a round about way
using reduction modulo p and the results of McNamara [39] who has established the
result in characteristic zero. For now, note using Proposition 4.43 and the Kiinneth
formula, that it suffices to prove the following for all n € Z-:

Exty, (Aa"), L(a") = Exty (AQ), L(w) =0 (a € P, A pe P,).

4.34. Boundedness

Let 6 = > ._;a;a; and n = ht(#). Recalling that I = {0,1,...,l}, pick a

.a;

permutation (i, ..., i) of (0,...,1) with a;, > 0, and define i := iy°---i," € I°.

i€l

Then the stabilizer of ¢ in .S,, is the standard parabolic subgroup .S; := SaiO XX Sail.
Let S? be a set of left coset representatives for S,,/S;. Then by [20, Theorem 2.9] or

[42, Proposition 3.9], the element

Z=Z; = Z (yw(l) —I— .o + yw(ail))lw,i (448)

wes?
is central of degree 2 in Ry. Let Ry be the subalgebra of Ry generated by

{lielbu{y [ 1<r<n}U{y, —yr1 | 1 <7 <n}.

The restrictions from Ry to Rj of modules L(w),Ls,;, A(mw), etc. are denotes

L'(m), Ls;, A'(m), ete.

Lemma 4.49. [4, Lemma 3.1] We have
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1) {(y1 —y2)™ (Y1 — Yu)™ ' Tuls | My € Zsg,w € Sy, 4 € 1%} is a basis for

Ry.
(i) If a;, - 1x # 0 in k, then there is an algebra isomorphism Ry = R ® k[z].

For § € &, \ {n-¢ | p|n}, and in particular for § € W, there always exists an

index 79 with a;, - 1 # 0. We always make this choice. Then:
Corollary 4.50. For € ¥, we have R, = R, ® k[z].

Let a € ¥, and L be an irreducible R,-module. Then z acts as zero on L, so the
restriction L' is an irreducible R/ -module by the corollary. For o € &, we consider

the module over R, = R, ® k[z]:

Aa) = L'(0) ® k[2]. (4.51)

Eventually we will prove that A(a) 2 A(a).
Lemmas 4.21(iii) and 4.19 show that the statement of Lemma 4.20 holds without
the assumption p = 0. This statement and Lemma 4.21(ii) is all that is needed for

the argument of [39, Theorem 15.5] to go through, so we get:

Lemma 4.52. [39, Theorem 15.5] Let o« € W. Then dimension of the graded

components dim(C,), are bounded as a function of d.

Note that A(a) € C,-mod and F[z] acts on A(a) freely, so the restriction of
the natural surjection ¢ : R, — C, to F|z] is injective, and its image gives us a
central subalgebra F'[z] C C,. Every projective C,-module is free over the subalgebra
F[z], and by Lemma 4.52, it has to be free of finite rank. Moreover, we can write
C, = C!, ® F[z] for the finite dimensional algebra C! := ¢(R.). The same argument

works for Cs. Thus:
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Corollary 4.53. Let a € V. Every standard R,-module is free of finite rank upon
restriction to the subalgebra F[z]. Moreover, we can represent C,, as a tensor product
of algebra C, = C!, ® F[z] with finite dimensional C”,.

It is now clear that A(a) = P'(a) ® F[z] and A;; = P§; ® F|2], where P'(a)
is the projective cover of L'(a) in Cj-mod and Pj; is the projective cover of Lj; in

Cj-mod. The following result in characteristic zero is obtained in [39]:

Lemma 4.54. Let « € U and i € I'.

(i) If « € & and (f,7) is a real minimal pair for a, then there exists a short exact

sequence

0= qA(B)oAy) = Aly) o A(B) = A(a) — 0.

(ii) If n > 1 and o = 4 + nd, then, setting B+ := 7= + (n — 1)d, there exist short

exact sequences of the form

0= A(B%) 0 Agi = Agi o A(BT) =(q+q A +nd) =0,

0— Asi o A(B7) = A(B7) 0 As; —(q+ ¢ )A(y; —nd) — 0.

(iii) If o = §, then there exists a short exact sequence

0= ¢* A(y) 0 Aly7) = Al ) 0 A(yF) = Agy — 0.

Proof. (i) Lemma 4.52 and the central subalgebra F[z] C C,, are the main ingredients

in the proof of [39, Lemma 16.1], which now goes through to give the short exact

sequence
0—=qA(B)oA(y) = A(y) e A(B) = Q =0,
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where @) is a projective C,-module. To prove that @ = A(«) it suffices to prove that
dim, Homp, (@, L(«)) = 1. Applying Hompg, (—, L()) to the short exact sequence
and observing that Hompg, (A(8) o A(y), L(«)) = 0 by semicuspidality of L(«), we see
that it suffices to prove that dim, Homp, (A(y)oA(f), L(«)) = 1. By adjointness, this
dimension equals the multiplicity [Res, g : L(y) X L(5)],. In view of Lemma 4.19,
this multiplicity if independent of the characteristic of the ground field. Since the
result is true in characteristic zero by [39], we deduce that it also holds in positive
characteristic.

(ii) is proved analogously to (i).

(ili) In view of [39, Theorem 13.1] and Lemma 4.9, we may assume that (v, 7;)

is a minimal pair for §. As in (i), we have a short exact sequence

0= ¢ AMF) oAy ) = Ay ) o A(yF) = Q =0,

where () is a projective Cs-module. To prove that ) = A, it suffices to prove that
dim, Hompg, (@, Ls;) = 0, which follows by applying Hompg, (—, Ls ;) to the short
exact sequence and observing that Homg, (A(y;")oA(y, ), Ls;) = 0 by semicuspidality

of Lsj, while dim, Hompg, (A(7;) o A(7;"), Ls ;) = d;; by Lemma 4.21(ii). O

4.35. Stratification

Recall from the end of §4.33 that to prove that R, is properly stratified we need
some Ext-result. In this subsection we prove the missing result under an explicit

restriction on p. Again, we follow [39] closely.

Lemma 4.55. Let As := @, Asi. Then A§™ is a projective C),5-module. Moreover,

el

if p>n or p=0, then A§" is a projective generator in C},s-mod.
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Proof. To prove that Aj§" is projective in C,s-mod, it suffices to show that

Exte, (A§",L) = 0 for any irreducible Cys-module L, which would follow from

.....

~~~~~

.....

To show that A$" is a projective generator, it now suffices to show that
dim, Homg, ,(A§", L(p)) # 0 for any p € 22,, which from Theorems 4.22(iii) and

4.33. [l

Theorem 4.56. Let a € ¥ and n € Z,.

(i) Let @« = 6. If p > n or p = 0, then for all A, u € Z,, we have

Ext® (A(A), L(p)) = 0 for all m > 0.
(ii) If a is real, then Ext (A(a"), L(a™)) = 0 for all m > 0.

Proof. (i) By Lemma 4.55, A3™ is a projective generator in C,s-mod, so it suffices to

prove that Exty (A§", L(p)) = 0 for all p € &7,. The last Ext group is isomorphic to

..........
-----

LXK L, with each L, € Cs-mod, so by the Kiinneth formula, we may assume that
n =1, ie. we need to prove Exty (As;, Ls;) = 0 for all 4,5 € I" and m > 0. But this
follows by applying Homp,(—, Ls;) to the short exact sequence in Lemma 4.54(iii),
using Lemma 4.21(ii) and induction on the height.

(ii) In view of Theorem 4.18(i) and Lemma 4.35(i), we may assume that n = 1. To
prove Exty (A(a), L(a)) = 0, we apply Homp, (—, L(a)) to the short exact sequence

in Lemma 4.54(i),(ii), and use (i) and induction on height. O

Taking into account the results of §§4.32,4.33, we now have:
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Corollary 4.57. Let 0 = > ._;n,a; € Q4+ and assume that p > min{n; | i € I}.

iel
For any convex preorder on @, the algebra R, is properly stratified with standard

modules {A(r) | m € TI(#)} and proper standard modules {A(r) | m € TI(6)}.

4.4. Reduction modulo p of irreducible and standard modules
4.41. Reduction modulo p of irreducible modules

We already know from Lemma 4.19 that reduction modulo p of a real
semicuspidal module L(a")k is L(a™)p. We now look at reductions modulo p of
some imaginary semicuspidal modules. For A\, u F n, we denote by d¥ (A, u) :=
(Wi (M) @ Lei(N)] the decomposition numbers for the classical Schur algebra S(n,n)
in characteristic p. It is known that d?; (A, A) = 1 and d%; (A, ) = 0 unless p < A
in the dominance order. For A\, u € &2, we define dP(A, p1) = [[,cp dey (A9, ) if
IAD] = |u®] for all i € I', and set dP(), ) := 0 otherwise. Again, d”(A,A) = 1 and
dP(\, 1) = 0 unless p < ), which means by definition that 4@ <A@ for all i € I,
Lemma 4.58. Let ¢ € I’ and A, o = n. Then W;(A\)F is reduction modulo of W;(\)x =

Li(N) k. In particular, [L;(A)o @ F': Li(p)rlg = dey (A, ).

Proof. The first statement is proved exactly as Theorem 3.94. The second statement

now follows by the Morita equivalence f3,, from §4.25. m

Lemma 4.59. Let A\, u € &,,. Then L(\)o ®o F is semicuspidal, and [L(A)o ®o F :

L(p)rlg = d?(A, ).

Proof. Induction and reduction modulo p commute by Lemma 4.15, so the result

follows from Lemma 4.58 and Theorem 4.33(i). O

Corollary 4.60. For p € &, and p > n, reduction modulo p of L(p)x is L(p)r.
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Let 8 € Q1 and 7 € I1(A). Let 1 € Ry be a primitive idempotent such that
Ry plp = P(m)p. By an argument in [22, §4.1], there is an idempotent 1o € Ry o
with 1p = 1o ® 1. Let P(m)o := Rpoleo. Extending scalars to K we get a projective
Ry o-module P (7)o ®o K. So we can decompose it as a direct sum of some projective

indecomposable modules P(0) .

Lemma 4.61. Let A € &, and m = ({,A) € II(#). Then in the Grothendieck group

[Ry p-mod], we have

[L(m)o ®o F] = [L(n)r] + Y A wIL((E w)r] + Y ano[L(0)r]

p<A o<m

for some bar-invariant Laurent polynomials a, , € Z[q,q']. Moreover,

P(m)o @0 K = P(m)x & @@ & (1, N P((§, 1)k & @D a0 P(0) k.

P> o>T
Proof. Similar to the proof of [22, Lemma 4.8], but using Lemma 4.59. n

Corollary 4.62. All composition factors L(o)p of a reduction modulo p of A(m)g

satisfy o < 7.

4.42. Reduction modulo p of standard modules

The proof of following result uses an idea from [43].

Lemma 4.63. Let m € II(A). Then A(m)r contains a submodule M such that

A(m)p/M is a reduction modulo p of A(7)g.

Proof. By Lemma 4.61, we can decompose P(m)p ®0o K = P(m)g @ @ for some
Ry g-module Q. Since A(m)g is a quotient of P(m)g, there is an Ry g-submodule

Vk C P(m)o ®p K with P(m)p ®0 K/Vk = A(rm)k. Let Voo = Vi N P(7)o, where we
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consider P(m)o as an O-submodule of P(7)p ®p K in a natural way. Note that Vj is
a pure Ry o-invariant sublattice in P(7)p and P(7)o/Ve is an O-form of A(m)k. So
(P(m)o/Vo) ®o F, which is a reduction modulo p of A(7)g, is a quotient of P(7)p.
By Corollary 4.62, all composition factors L(o)r of (P(7)o/Vo) ®e F satisfy o <,
so by definition of A(m)r as the largest quotient of P(7m)r with such composition

factors, (P(m)o/Vo) ®o F' is a quotient of A(7)p. O

Let o € @' and n € Z~,. We have a semicuspidal standard module A(a")-.
Pick a generator v € A(a")k which is a homogeneous weight vector. Consider the
R0 o-invariant lattice A(a”)o 1= Rua.0 - v, and the reduction A(a™)p ®o F.

By Lemma 4.21, Res - +Ls; = L(y; ) X L(v;") and Res - +Ls; = 0 for j # i.
So, picking a weight j= of L(v), we have a weight j° := 5 5% of Ls; such that
1;iLs5 = 0 for all j # 4. Pick a homogeneous generator v € As; r of weight 3.

Consider the invariant lattice As; 0 := R50 - v and the reduction As; o ®p F.

Lemma 4.64. We have

(i) A(a™)o ®o F is a semicuspidal R, r-module with simple head L(a™)p, and so

it is a quotient of A(a™)p.

(ii) Asio ®o F is a semicuspidal Rsp-module with simple head Lj; r, and so it is

a quotient of As; p.

Proof. By Lemma 4.19, L(a™)p ®p F = L(a™)F is irreducible, so all composition
factors of A(a™)p ®e F' are isomorphic to L(a")p, i.e. this module is semicuspidal.
By Lemma 4.21(iii), we see similarly that As; 0 ®o F' is also semicuspidal. In both
situations, v®1 € Ap ®p F' is a cyclic generator of Ap ®p F', and it remains to apply
Lemma 2.56. 0

Now we can prove a stronger result:
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Theorem 4.65. Let a € @ and i € I'. Then A(a)r = A(a)o ®o F and As; p =

Asio®o F.

Proof. Apply induction on ht(«). The base being clear, and the inductive step is

obtained from Lemmas 4.64 and 4.54 by character considerations. O
Corollary 4.66. If a € ®'¢, then A(a) = A(a) and Endg, (A(a)) = Flz].

Proof. Since L'(«) is irreducible, we deduce by adjointness that A(«) has simple head,
whence it is a quotient of A(«). Now compare the characters using [39, Theorem 18.3]

in characteristic zero and Theorem 4.65. O

Corollary 4.67. If a € @ and n € Zso, then A(a™)r = A(a")o ®o F and

Endg, (A(a™) 2 Flz, ..., 2,)%".

Proof. The first statement follows from Lemmas 4.64(i), 4.35 and Theorem 4.65 by
induction on n. The second statement then follows using the fact that it is true in

characteristic zero [39]. O
We can now prove that certain cuspidal algebras C,, are ‘defined over integers’.
Corollary 4.68. Let a € &, and n € Z~(. Then C,, 0 and Cs o are free over O, with

Chak = Chao ®o k and Cs, = Cs50 ®p k for and k = F or K.

Proof. We explain the argument for Cy, the argument for C,, being similar. The
isomorphisms Cs; = Cs50 ®o k are clear, and it suffices to prove that dim, Cs5 x =
dim, Cs p. But dim, Csy = > .. (dimg Lj;)(dim, As,), which, as we have now proved,

is the same for £k = K and F. O]

We conjecture that a similar statement is true in general. The part which remains

open is:
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Conjecture 4.69. Let n € Z-o and k = F or K. Then C,;0 is free over O and

Crsr = Chso Q0 k.

The only difficult thing here is to show that ()5 » has no p-torsion. The following

result implies that C,50 at least has no p-torsion if p > n.

Lemma 4.70. Let n € Zsg, p € &y, and p > n. Then A(u)r is a reduction modulo

p of A(H)K

Proof. Working over k = I or K, by Lemma 4.55, A§" is a projective generator
in Cps-mod. So, we can decompose AF" = D,z m(p)A()r with non-zero

multiplicities m(u), which a priori might depend on k. Moreover,

el
- Z dlmq HomRa ,,,,, 5(A511 &Aészesé ..... 6L(:u))
U1 geney in€l’
= > [Ress.sL(p)) : Lssy B+ B Ly, ],
L yeeny inef/

The last expression is independent of k by Corollary 4.60. It now follows from
Lemma 4.63 by a character argument that chy A(u)r = chy A(p)x and that A(u)r

is a reduction modulo p of A(u)gk. O

4.5. Zigzag algebras

In this section we introduce the affine zigzag algebra AT, which is intended to

describe the higher imaginary strata. Let I' = (I'g,I'1) be a connected graph without
loops or multiple edges. Eventually, we will need only the case where I' is of finite

ADE type, but for now do not need to assume that in this section. We also do not
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need to assume that k is a field. If 7,5 € 'y, we use the notation :—j to indicate

that {i,7} € I'1. In this case we say that i and j are neighbors.

4.51. Huerfano-Khovanov zigzag algebras
The zigzag algebra A := A(L') of type I is defined in [14] as follows:

Definition 4.71. First assume that [I[y|] > 1. Let I' be the quiver obtained by
doubling all edges between connected vertices and then orienting the edges so that if
i and j are neighboring vertices in I', then there is an arrow a’/ from j to ¢ and an

arrow a’* from i to j. For example, A, is the quiver in Figure 4.1. below.

af—2,6—1

=261

FIGURE 4.1. The quiver A,.

Then A(T) is the path algebra of T, generated by length-0 paths e; for i € Ty,

and length-1 paths a®/, modulo the following relations:
(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equivalent.

If Tg| = 1, i.e. T' = A;, we merely decree that A(T") := k[c|/(c?), where c is an

indeterminate in degree 2.

For type I' # A4, for every vertex 4, let j be any neighbor of i, and write ¢ for

the cycle a’/a’. The relations in A(I') imply that ¢ is independent of choice of j.
154



Define ¢ := Y, ¢”. Then A(T) has basis
{a™ | i € Ty, j a neighbor of i} U {c™e; | i € 'y, m € {0,1}}.
Note that A(T") is graded by path length. The graded dimension is
dim, A(T) = |To|(1 + ¢*) + 2T q. (4.72)

4.52. Affine zigzag algebras
We define the rank n affine zigzag algebra AX(T) as follows:

Definition 4.73. If |T'g| > 1, let AZH(F) be the graded k-algebra generated by the
elements

{e;|telftuf{s|1<t<n—-1}
Ufai? |1<t<m, i,j € Do with i—j} U{z, | 1< t< n}

in degrees 0,0, 1, 2 respectively, subject only to the relations

Eierg e =1, eie; = 0;5€;, (4.74)

S1€; = €s,iSt,  Zi€i = €Zy, A€ = 04, i€ i 1 iieirenindt s (4.75)
s =1, SiSu = SuS¢ if |t —u| > 1, SS1415¢ = St41StSt415 (4.76)
s;al) = ai’f(u)st, al/al’ = al™a™", al "aliqtl =, (4.77)
(1-— 5t’u5i7j/5y’j)ai’jag’jl =(1- 5t7u)af:’j'ai’j, (4.78)

Z1Zy = ZuZi, ztaZ’j = af;jzt, (4.79)
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plus one final relation, which we give after introducing a convenient bit of notation.
For 1 <t <nand i € Iy, let j be any neighbor of 7, and set cgi) .= a/al’. This is

well-defined by (4.77). Then set ¢; := >, 1, . The final relation is

/

(Out = Oups1)(Ct + Cep1)es G = ipqn;

(stzu - ZSt(u) St)ei = <5u,t — 6u7t+1)ait+1’it ait_{_ifﬂei it it+1; (480)

0 otherwise.

\

If Tg| = 1, let A*"(T") be the graded k-algebra generated by the elements

{ss|1<t<n—-1}U{c|1<t<n}U{z|1<t<n}

in degrees 0, 2,2 respectively, subject only to the relations

s =1, SiSu = SuS¢ if |t —u| > 1, SS1415¢ = St41SSt415 (4.81)
22y = 2,2y, GGy = (1 — 64u)CuCs,  Z4Cy = CuZt,  SiCu = Coy(w)St, (4.82)
(Stzu — zst(u)st) = (51“5 — 5u,t+1)(ct + Ct+1). (483)

4.53. Basis Theorem

For 1 <t <n, we will write af;’i :=1. If 7,5 € I'{j such that i, = j; or 4, j¢ for

all t, we write 2——3, and define

4, . JUL,J1 | Sinadn
a* :=a; a;mIn,
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The elements sq,...,s,_1 satisfy the Coxeter relations of the symmetric group, so

for a reduced decomposition w = s, ---s. € &,, we have well-defined elements

Sw =Sy, S, € AX(D). For t € Z2, we will write z¢ = 2} - - - 2 and for u € {0, 1}"
we will write ¢c* = ¢} ---c%. Finally, it will be useful to write e;..; := 1 € A*(I)

when |I'g| = 1, so that we may consider this case as part of the larger family of affine

zigzag algebras.

Theorem 4.84. The following set is a k-basis for AX(T):
{ztc a""Is,e;}, (4.85)

ranging over w € &,, i—uwj € Iy, t € Z%;, and w € {0,1}" such that u, <
5Zm7(w])m

Proof. From the defining relations, one may easily see by induction that Azﬁ(f‘)
is spanned by the elements in (4.85). We show that these elements are linearly

independent by constructing a faithful representation for A*¥(T"). Define

. . Gim (wi)m T1
Vi= @@ ke zwn . wa)(shwg)) / (a0

weby,
i—uwjely
where sh(%, w3) :=n — 6, (wj), — = i, (wj)n» a0d 2’s and z’s are indeterminates of

degree 2. If a polynomial f belongs to the component corresponding to w € &,, and
1—wyj € I'j, we will label it with subscripts, a la f;, ;. Elements of &,, act on z’s
and z’s by place permutation.

For by, by € Z>o, define g,.p, 4, € k2, 2,41 to be zero if by = by, and

b b |b1—b2|—1
. 17— U2 min(by,b r _|b1—ba|—r—1
gT,bl,bz = (ZrZr—i—l) ( ! 2) Z ZT' ZT,+1
by — by 2
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otherwise. For 1 <r <n, w € G,,, and 2,7 € I'{j, we also define

(
Tr & Tri1 Uy = Z.T'f‘].;
Mg = (G wiyet Oirr (i) Tr) Gy iy it O (ui)yin Trg1) by}
0 otherwise.

\

3 : t _ h tn I+l
Finally, if m* = 21" ---znx"™" -

o --x2n i3 a monomial in some summand of V for

t € 22, then for 1 < r < n define m*" := m?/zl 274} With this notation out of the

way, we describe a well-defined action of generators of A?T(T") on V:

t t
€ My wi = 5k7imi,w37
t t
Zp My 5 = (zxm )7:71U7j7
,J t — . L o ) .
A My = 5j,ir[(6j,(wy)r + 51,(wj)r$r)m ]Zl"'lr—lmr-}—l'”lnywvﬂ7

Sr My g = [sr (mt)]sri,srw,j + [hT’,i,w,ng7tr7tr+1Sr(mt7r)]s'ri7w7j'
If |To| = 1, we additionally define the action

¢, - mt = (x,m"),.

Excluding (4.80) and (4.76) for now, one may directly check that this action
obeys the defining relations of A*¥(T"). Then the relation (4.80) may be checked with

the aid of the following easily verified fact:

e tetl
Iritr+1tr41 = Ar+l9rtetrin = 2 Rrpl = Ar9rtetesr T 9rteteia+1-
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This leaves the Coxeter relations. The relation s.s, = s,s,, for |r —u| > 1,
may be directly checked. Note that s?z, = z,s? already holds as operators on V, by
the relations already proven. Now we prove that s> = 1 on V by induction on the

z-degree d,(t) := t; + -+ + t,, of m}

1‘7w7] :

The base case d.(t) = 0 is easy to check.

Then, for d.(t) > 0, we may write mj,, ; = (21*)iw,; for some 1 < b < n. Then by

the induction assumption,

2 t 2 ~t 2 ~t 2 ~t ~t t
=5, (M )iws = 5,2 - Mg = 26Sp "My g = Zb " Mg 5 = Myap 5+

The braid relation follows in a similar fashion, after noting that

(srsr—l—lsr - sr+1srsr+1)zb = ZSTST+1ST‘b(STST+IS7’ - Sr+lsrs'r’+1)

as operators on V' by the relations already proven. Thus V' is an A*(T")-module.

The elements in (4.85) act as linearly independent operators:

t u_ t,wj _ t1 tn U1 Un
Z'c"a""sye - Ipiae = O k(21 - 202y - 20 )i g

which proves the theorem. O

Corollary 4.86. We have

1+ ¢*)|To| + 2¢T4]\"
diqugﬂ“(r):n;<( +4*)|To + 2| 1|) |

1—¢?
The affine zigzag algebra A*T(I") possesses an anti-involution 7 which sends a%/

a]?z

r o

and is the identity on the other generators. By applying 7 to Theorem 4.84 it
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follows that Af‘ff has bases similar to (4.85) with generators written in the opposite

order. Thus we have

Corollary 4.87. A*(T") is free as both a left and right k[z1, ... ,z,]-module.

4.54. Center of the affine zigzag algebra

It will be convenient to define some additional elements of A (T). Write ¢ :=
Yor Gy For 1l <r <t <mn,setx, =—c¢—c if Iy =1, and if [Ty| > 1, set for

any ¢ € I'}:

—(clt Ve iy = iy

Xt,’l‘ei = _azm’tta;‘t,lvﬂei Z.t ZT"

0 otherwise,

and then set x;, = Zierg Xt €.

The following lemma follows by inductively applying relations (4.80) or (4.83).

Lemma 4.88. We have s,zlzl , = zlz! s, for all t € Z>(, and

t t ‘tT+1_tr|_1
tr tr+1_ tri15tr _ r+17"tr min(tr,t +1) K |t'r+1_tr|_"€_1
$rZ,Z, (172, 2, 1S = ﬁxr-ﬁ-lﬂ“(zrzr-‘rl) " 2,2, 11 )
| r+17 7‘| =0

for all tr 7£ tr—i—l € ZZO'

Let C be the commutative subalgebra of AT(T") generated by all z’s, ¢’s and e’s.
For x € Cand 1 <t < n, let x; be the unique element of the subalgebra generated by

all z’s, c’s and €’s excluding ¢;, such that x — x; € ¢;C.

Lemma 4.89. The center Z(A*) of the affine zigzag algebra consists of all elements
x € C such that
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(i) x is invariant under the diagonal action of &,, on
klzi, ... 2, @ ket ..., Cu] ® (@kei).

(ii)) For all 1 < ¢ < n and every bijection b : Iy — Iy, x; is invariant under the

action e; ¥ €, i 1 b(is)ii1,..in OLL @ierg ke;.

Proof. First we show that Z(A*) C C. Write X for the basis (4.85). For w € &,
write X D X, = {z!c*a®*“Is,e;}, over all admissible ¢, u, %, 7. One may easily show by
induction on the Bruhat order that if x, € kX,,, then (x,z, — z,%w) € k(U <, Xor)
foralll<r<nandwe &,,.

Let 0 # x € Z(A*). Then x may be uniquely written as > X, where each

weG,
X, € kX,. Assume that 0 € &,, is such that x, # 0 and x, = 0 for all w € &,, with

l(w) > £(0). Then for every 1 < r < n we have

0= (z,x—xz,) = Z (zrXy — XwZp) + Z (zpXy — XwZr)

0(w)=t() (w)<t(o)
— Z (Z,. — Zw(,«))Xw +,
(w)=(c)

wherey € k(| t(w)<t(o) X,,), after applying the claim in the first paragraph. Since each
(z0 — Zu(r))%w € kX, the basis theorem implies in particular that (z, — z,())%, = 0,
so by Corollary 4.87 we have o(r) = r for every r. Thus ¢ = id, and x € kXjq.
Moreover, since centrality implies that e;xe; = 0 for ¢ # j, no a’s may appear in x;
we have that x is a k-linear combination of basis elements of the form ztc*e;. Hence

x € C.
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Now we show that x € C commutes with every a’/ if and only if x satisfies (ii).

Use the basis theorem to write x =), . . At iztce; for some Agq; € k. Then

2,7 ©ie t u_i,j
xa,” —ay’x = E (Mt = Mty iy yiipg1in )2 €277 €5
tau,t
ur=0,ir=3

Thus x commutes with every a%/ if and only if Aty = Atw; whenever u, = 0 and
1y = j; for all £ 2 r. Since x, = Zt,u,i,w:o )\t,uﬂ-ztc“ei, the claim follows.

Finally, we show that x € C commutes with every s, if and only if x satisfies (i).
The ‘if” direction follows easily from the defining relations and Lemma 4.88, so we
will prove the ‘only if’ direction. For x € A*(T), we say x involves ztc*a**Is, e; if the
basis expansion of x includes this term with a nonzero coefficient. Then for a tuple

t € 7%, define d(t) =t +--- +t,, and set
d(x) := max{d(t) | x involves z'c*a“"“Js,e; for some w,4,w,j}.

Now assume x € C is central. We may use the basis theorem to write x = x" + x”,
where X' = Ztuid(t):d(x) Aewizic¥e;, and d(x") < d(x). For all 1 < r < n it follows

from relations and Lemma 4.88 that d(s.x"s, —x") < d(x), and

/ / t_u
SpX'Sy — X = § ()\srt,s,-u,sri - )\t,unl)z ce; + Yy

tu,t

d(t)=d(x)

where d(y) < d(x). Thus, by the basis theorem and centrality of x, it follows that
it srwsyi = At for all d(t) = d(x). But then, by Lemma 4.88, we have that y = 0,
and therefore x' commutes with every s, and satisfies (i). Thus x” = x —x’ commutes

with every s,, so by induction, x” also satisfies (i), completing the proof. O]
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Corollary 4.90. The algebra A*™(T) is indecomposable.

Proof. By Lemma 4.89, the only primitive central idempotent is 1, so the result

follows. L

4.55. Cyclotomic zigzag algebras

By the basis theorem, the subalgebra of Aflff(l") generated by all e;’s and ai’j s is
naturally isomorphic to A(T")®™ (if |T'g| = 1, interpret this as the subalgebra generated
by c;’s). Moreover, the subalgebra of A*(I") generated by all s,’s is isomorphic to
kS,,. Together they generate the subalgebra isomorphic to the semidirect tensor

product
A, (1) =AD" @ kS,

with the action of &,, on the tensors in A(T')®™ by place permutation. We refer to
this algebra as the finite zigzag algebra of rank n. It makes an appearance in [45].

Define the Murphy elements in A, (") as follows:
r—1
L, ::qur@(t,r) (r=1,...,n)
=1

where (¢,7) € G,, is the transposition of ¢ and 7.

Lemma 4.91. For each 4 € T2, let k; € k. Let f: A*(T") — A,(T") be the map which

sends

Z, Ir + E Rgy_1--50514C€4,5

iery
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and is the identity on all other generators. Then f is a surjective homomorphism of

graded k-algebras. The kernel of this homomorphism is the 2-sided ideal generated
by z; — Zz’erg K;C€;.

Proof. That f is a surjective homomorphism is easily checked. It is also easy to see
from the defining relations that A is in fact generated by 7/ := z; — Zz‘erg K;iC&;,
together with all the e;’s, s;’s and a’’s (or ¢;’s in the case |Ty| = 1). Then
AT A2 AT g generated by the images of these generators (excluding z'), and since
7 € ker f, the homomorphism f factors through to a surjection f : AM /A A _,
A,,. There also exists a surjection g in the other direction which sends the generators

of A, to their images in A™ /A?TZA ~ Then f and g are mutual inverses, and the

second statement follows. O

Let m € Z~y, and let K : I'j = k™ be any function. We define the cyclotomic
zigzag algebra A%(T) to be the quotient of A?T(I") by the 2-sided ideal generated by

the element

Since c is central and nilpotent it follows that z; is nilpotent in A%(I"), and thus—
inductively applying the relation (4.80)—every z; is nilpotent. Thus A7 (I") is finitely
generated as a k-module by Theorem 4.84. By Lemma 4.91 we have A¥(I') = A,

when m = 1.
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4.56. Diagrammatics for the affine zigzag algebra

For reader convenience, we provide a diagrammatic description of the algebra

A*T(T). We depict the (idempotented) generators as the following diagrams:

L2 TR T T DY oy i1 e dp . i

S8, = | >< | al're; = | + | for 4,

i1 ipg1ir U dm ip g im

J

The red color is just intended to highlight that the label for the rth strand has
changed. Then A*!(T) is spanned by planar diagrams that look locally like these
generators, equivalent up to the usual isotopies (see [20]). Multiplication of diagrams
is given by stacking vertically, and products are zero unless labels for strands match.

Then the defining local relations can be drawn as follows:
=4 11

JJ; =0 (i,j, k distinct) Ji = Jr (V)

i J i J

S5 G
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Jr |+| Jrifz':j;

J

XXX XA =

0 otherwise.

4.6. The minuscule imaginary stratum category

For the remainder of this chapter we assume =< is a balanced order. We also
assume that the graph I' is the Dynkin diagram corresponding to the finite type

Cartan matrix €', and write A for A(T"), A>T for A2T(T), etc.

4.61. Special words

For each i € I’, we choose a special word b’ € I°:
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Type AV : b1 =012+ (i — )0l —1)({ —2)--- (i + 1)i
(

023400 —2)(0 —3)--- (i +1)123---i if 1 <i<{l—2;

Type Dy : b = 0234-.. (¢ — 2)£123 - (£ — 1) ifi=0—1;
0234 (0= 1)123 - (£ = 20 ifi=1¢
(024354265431 if i = 1.
024354136542 if i = 2;
024354126543 it i = 3;
Type Eél) b=

024354123654 if i = 4;
024354123465 if 1 = 5;

024354123456 if 1 =6

013425463542765431 if i = 1;
013425463541376542 if ¢ = 2;
013425463541276543 if ¢ = 3;
Type E(71) ;b= 0013425463541237654 i i = 4;
013425463541234765 if 1 = 5;

013425463541234576  if ¢ = 6;

013425463541234567 if 1 =7
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087654231435642576435428765431 if 1 = 1;
087654231435642576435413876542 if 1 = 2;
087654231435642576435412876543 if 1 = 3;
A 087654231435642576435412387654  if ¢ = 4;
T E(l) . bl —
ype bg - :
087654231435642576435412348765 if 1 = 5;

087654231435642576435412345876  if © = 6;

087654231435642576435412345687 if i = T;

087654231435642576435412345678 if © = 8.

\

Let d = ht(d). Following [31], for 1 < r < d and @ € I°, we say s, € Gy
is 4-admissible if («,,;,,,) = 0. More generally, s,, ---s,, is a reduced expression
for w € &4 and each s,, is (s, IR sy, %)-admissible, then we say w is ¢-admissible.
This property is independent of reduced expression for w. In addition, admissibility
is preserved by products in the sense that if w is ¢-admissible and w’ is (wi)-
admissible, then w'w is i-admissible. The connected component of i is Con(z) :=
{wt | i-admissible w € &,}. Clearly Con(z) = Con(j) if and only if ¢ € Con(j). We
will write G* := Con(b’) and G° := |J,_,, G".

iel’

Definition 4.92. Let 4 € I°. For t € {1,...,d}, define the t-neighbor sequence of i

to be nbr,(2) := (nq,...,ny) € {0, N, S}, where

S, if Z'r = Zt,
Ny = N, if (air, Oéit) < O,

0, otherwise.
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Then nbr,(2), the reduced t-neighbor sequence of 4, is achieved by deleting all 0’s from

nbr,(2).

Example 4.93. Take ¢ = AYY. Then i = 01726354 € G*, nbrg(i) = 000N0S, and
nbr(é) = NS.

The following is clear:
Lemma 4.94. If s, is 4-admissible, then nbr, (s,4) = nbr,(4).

Lemma 4.95. Let 4, j € I’ such that (a;, ;) = —1.

(i) If 4 € G°, then 4 satisfies the homogeneity condition: if 4, = i, for some r < s,

then there exist t,u with r < t < u < s such that («;,,®;,) = (q;,, a;,) = —1.

(i) For all ¢ € G, we have i; = 0, iq = i, i1 is a neighbor of iy, and iy_; is a

neighbor of 4.

(iii) If ¢ # A" and § € G, then

(NSN)*NS, if 1 <t<d;
nbr, (4) = (4.96)

(NSN)INNS, ift=d,

for some a > 0.
(iv) If i € G° and r < d — 1, then s,4 € G° if and only if s, is 4-admissible.

(v) There exists some w; ; € &4 such that w; ;b = b', and w; ; = wys4_1w,, where

wy is b’-admissible and w; is s4_;wyb’-admissible.

(vi) For any ¢,4' € G*, there exists a unique wy ; € &4 such that wy ;4 = ¢' and wy ;

is z-admissible.
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(vii) For any 2 € G* and j € G, there exists a unique w; ; € &, such that w; ;7 = 1,

and w; j; = w154-1w2, where wy is t-admissible and w; is s4_;wot-admissible.

Proof. (i) Tt is straightforward to check that b’ satisfies the homogeneity condition.
Thus by [31, Lemma 3.3], every ¢ € G' satisfies this condition.

(ii) If 1 < r < d, then (b"), has a neighbor somewhere to the left and right
in b’, so no b'-admissible element w may send r to 1 or d, so i; = (bi)l = 0, and
ig = (b")g =i for every i € G7. Moreover it cannot be that iq_; = iq by (i), and if it
were the case that (o, @;, ) = 0, then we would have sq_12 € G*, but (s4_1%)4 # 1,
a contradiction. Thus 741 and 74 are neighbors, and a similar argument proves the
same for 7, and 5.

(iii) We have by part (ii) that s; and sy, are never admissible transpositions
for ¢ € G°. Therefore, by Lemma 4.94, it is enough to check that that statement (iii)
holds for the special words b, which may be readily done.

(iv) The statement holds for » = 1 by part (ii), since s; is never ¢-admissible,
and i3 = 0 for every ¢ € G°. Let 1 < r < d— 1. If s, is not 4-admissible, then
(q,,0,,,) = —1 by (i). By part (iii), nbr, ,(¢) = (NSN)*N.S for some a > 0. Then
nbr, (s,4) = (NSN)2S. But then again by part (iii), s,4 ¢ G°.

(v) In type A,Sl), for 1 < i < £ we may take w; ;41 = Sq_1--- Si+1, and in type
Dﬁl), take w;it1 = Sg—1--Sq— it 1 < 4 < € —3, w91 = S4—1° " Sd—e—1, and
We—2¢ = Sq—1°*-S4—¢—2. In both types, if j > 7, we may simply take w;; to be
the inverse of w; ; defined above. This leaves the exceptional types Eél), where the
existence of such elements can be easily verified.

(vi) The existence of wy ; is guaranteed by the definition of G* = Con(¢), and we
note that ¢-admissible elements are in bijection with G? since i-admissible elements

cannot transpose similar letters. This proves uniqueness.
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(vii) We may take w;; = w; piw; jwy ; to show existence. Uniqueness follows as
in part (vi) from consideration of the fact that no similar letters are transposed in

this product. O

4.62. Minuscule semicuspidal modules

Recall from §4.21 that, when k is a field, the irreducible semicuspidal Rs-modules

may be canonically labeled Ls;, for i € I'.

Lemma 4.97. [24, Lemma 5.1, Corollary 5.3] Let k be a field. For each i € I', Ls;
can be characterized up to isomorphism and grading shift as the unique irreducible

Rs-module such that ¢; = 0 and i4 = 7 for all words ¢ of L.

Lemma 4.98. For each i € I', chy Ls; = Y ;i T

Proof. By Lemmas 4.95(i) and [31, Theorem 3.4], there exists a homogeneous
irreducible Rs-module with character ) . ..%. By Lemmas 4.95(ii) and 4.97, this

module must be Ls;. O

Therefore G° is a complete set of semicuspidal words in I°, and we have C5 =
Ré/RélnscRéa where Lnse = Ei615\G5 1;.

Lemma 4.99. Assume C # Agl). For all 4 € G, sq_11 € G-,

Proof. By Lemma 4.95(ii), i4_1,74 are neighbors, and by Lemma 4.95(iii) ¢ satisfies
(4.96), so it follows that s4_1% also satisfies (4.96). Moreover s;_1% also satisfies the
homogeneity condition in Lemma 4.95(i); if it did not there would be some ¢ such
that nbr,(s4—1¢) contains a subword SS or SNS, which is not the case. For every
1 <r <d-—1, 1 has a neighbor to the left and right in ¢, so the same is true in
Sq-1t, and consideration of nbr,(%) shows that (s4_1)4_1 also has neighbors to the left

and right in sy 12. Thus j; = 0 and j; = (s4_1%)q = iq_1 for every j € Con(sy_12).
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Then there is an irreducible homogeneous module with character > :cconis, i)

which by Lemma 4.97 is isomorphic to Ls;, ,. But by Lemma 4.98, we must have

Con(sq_11) = Gla-1. O

4.63. A spanning set for Cj

For each w € &4, choose a distinguished reduced expression w = s,, - - - s,,, and
define v, = ¥,, ---1¥,, € Rs. In general, this element will depend on the choice of
reduced expression, but as we will see, this is not the case in C;. We will write v; ;

(resp. ;) for the element 1y, ; (vesp. 1y, ;) defined in Lemma 4.95.

Lemma 4.100.
(i) The algebra Cj is non-negatively graded.

(ii) The elements 1), are independent of reduced expression for w in Cs.

(iii) In Cs, ¥y = ys,1)¥r, for all r,t.

Proof. All of these follow from Lemma 4.95(i). We have 1; = 0 in Cj if i, = 4,41 for
some 1 < r < d. So there are no generators 1, 1; in negative degrees, hence (i). Part
(iii) also follows from that observation. Finally, semicuspidal words have no subwords

of the form iji, so braid relations hold on the nose, hence (ii). O

Lemma 4.101. The following facts hold in Cy:
i) yi=-=va1.
(i) (1 —ya)®> = 0.

Proof. For this proof, it will be convenient to use the diagrammatic presentation for

Rs, see [20]. For now, we assume that C # Agl). We prove (i) first. Let ¢ = Qigiz---iq4 €
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G9. Let 1 < r < d. The following diagram is zero in Cj since all semicuspidal words

start with 0, and 7, # 0:

We will simplify this diagram using relations. Note that we may ignore strands to
the right of 4, and strands whose colors do not neighbor i,. Omitting such strands,

and recalling from Lemma 4.95(iii) that nbr, () = (NSN)*NS for some a > 0, we

have, using the relations in Ry:

N § N N S N..- N S§ N N S N § NN S N..- N § N N 8§
—

N § N N S N..- N § N N S

N 8§ NN S N... N S N N S N §S N N S N... N § N N 5§

~—

The first term in the last line involves an (.S, S)-crossing and hence is zero in Cj.

We may continue on in this fashion, moving the S strand past N.SN-triples, until we

arrive at

N 8§ NN S N..- N S N N S
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The (N, S) crossing opens, giving +(ys — y,)1;, for some s < r. Recalling that the
initial diagram was zero, we have ys1; = y,.1;. Applying induction on r, for every
semicuspidal word 2, it follows that y; = --- = y4_1 in Cjy.

Now we prove (ii). Let ¢ = Oigis - --iq € G°. Again, this diagram is zero in Cj:

As in the proof of (i), we omit non-neighbors of i4, and use the fact that nbr,(é) =

(NSN)*NNS from Lemma 4.95(iii) to write

o d2 i3 ...'d1 g N S NN S N.--- N 8§ N N N s

We then move the S-strand past (NSN)-strands as in the first part, to arrive at

N §S N N S N.-- N § N N N S

Applying the quadratic relation twice yields £(y; — ya)(ys — ya) 14, for some t < s < d.
But then y; = ys = y1 by (i), so we have (y; — yq)?1; for all semicuspidal words %,
which implies the result.

Finally, assume C = Agl). Then d = 2, G° = {01}, and so claim (i) is trivial.
Since 119 = 0 in Cs, we get 0 = 11100 = Yilg = £(y1 — v2)*1lo1 = £(y1 — 2)?,

proving claim (ii). O

Lemma 4.102. Let u € 4. We have ¢, 1; = 0 in Cs unless:
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(i) 4 € G, ui € G, and u = w,;;, in which case deg(1,1;) = 0, or;

ii) ¢ € G°, ui € G for some j € I’ such that (o, ;) = —1, and u = wy; 4, in
.] J d ’

which case deg(,1;) = 1.

Proof. Note that in type A", we have G% = {01}, so ¥11p; = 0, and in this case the
lemma is trivial. Thus we restrict our attention to the other cases.

Assume that 1,1; = eyl # 0. Then it must be that 4, ui € G°. We may
write u = w'w”, where w” € G,4_1 and w’ is a minimal length left coset representative
of §4_1 in &,. By Lemma 4.100(ii), ¥, = ¥y tyr. By Lemma 4.95(iv), w” must be
t-admissible. If w’ = id, then wiy = i4, deg(¥,1;) = 0 and we are in case (i) by the
uniqueness of Lemma 4.95(vi).

Assume w’ # id. Then for some r, w' = s,8,,.1--S4_1 is a reduced expression
for w'. By Lemma 4.100(ii), ¥y, = ¥,t41 - g_1¢r in Cs. By Lemma 4.95(iv),
SpSpt1- - Sq—2 18 Sq_iw”i-admissible. Further, (o, ,,a;,) = —1 by Lemma 4.95(ii),

so deg(1,1;) = 1, and we are in case (ii) by the uniqueness of Lemma 4.95(vii). [

Given a word 4 € G°, define
W; = {w;; € &4 | j € G’ for some j such that (aj,a;,) # 0}.

Note that by Lemma 4.95(vi) and (vii), W; is in bijection with Ujef/,(aj,ozid);éo G,

Lemma 4.103. If deg(1,1;) > 1, then (y; — y4)¥w1; = 0 in Cy.

Proof. By Lemma 4.102, we only need consider the case where 4 € G and w € W;.
Since deg (1, 1;) > 1, it must be that wi € G7, where (o, a;,) = —1, s0 (Wi)g = j # 14

and (wé); =43 = 0. Thus w(1) = 1 and w(d) < d, so by Lemma 4.100(iii), we have
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that

(11 — Ya)Ywli = Yu(Y1 — Yw(@)Lis

but 1 — Yw@ = 0 in Cs by Lemma 4.101(i). O

Proposition 4.104. The following is a spanning set for Cj:
X o= {8y — ya)™bwli | 4 € G w € Wiym 4 deg(hy13) < 1,b € Zso .
Proof. By the basis theorem [20, Theorem 2.5] or [42, Theorem 3.7], we have that

bg_ .
(- v (v — ya) "l | € I w € &g, b; € Zso}

spans Rs. We get the spanning set X by throwing out elements of this set which are

known to be zero or redundant in Cs via Lemmas 4.101, 4.102 and 4.103. ]

4.64. A basis for (s

To prove linear independence of X, we construct a graded Rsg-module which

descends to a faithful Cs-module. Let

V= ( P k[z,x]/(xQ)) ® ( . k[z,fc]<1>/<fv>>,

ijeGs i,§€G°
i4=Jd (Qig,0j,)=—1

where z, r are indeterminates in degree 2. We will label polynomials f(z, z) belonging
to the %, 7-th summand of V' with subscripts, a la f; ;. The seemingly extraneous
indeterminate x in the second group of summands is included for convenience in

describing the action on V.
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Lemma 4.105. The vector space V is a graded Rs-module, with the action of

generators defined in types C # Agl) as follows:

L« fij = Okifi

(

(2f)ij 1<r<d-1;
Yr - fig =
k(zf—:cf)@j r=d
)
fs,ij s, is t-admissible;
fsarig r=d—1and iqg = jg;
U fog =

€id»jd(xf)5d—1":7j r=d-—1and ig1 = jg

0 otherwise.

\

Ifc= Agl), the action of 1, y, are as above, but ¢¥;v =0 for all v € V.

Proof. Note that this action is well-defined by Lemma 4.99. It is a straightforward
check using the facts on semicuspidal words in Lemma 4.95 that this action obeys

the defining relations of Rs. O
The Rs-module V' descends to a Cs-module since 1,V = 0. Moreover, the

elements of our putative basis X act on V as linearly independent operators:

b m 5ivj(zb)Wivi deg(wwlz) =1 (and thus m = O)’
Y1 (y1 — ya) " w1 - ;= h
5i7j( bxm)w’iai deg(¢wlz) = 0.

This proves

Theorem 4.106. The set X of Proposition 4.104 is a basis for C.

177



For each o € @, and dominant weight A associated to C, there is an important
quotient RA of R, called the cyclotomic KLR algebra (see e.g. [20, 6]). Of relevance to
the discussion at hand is the level-one case ng\o; it is by definition the quotient of Rs by
the two-sided ideal generated by the elements {yfil’o 1; | 4 € I°}. By [24, Lemma 5.1],
when k is a field, {Ls; | i € I'} is a full set of irreducible modules for R3°, so 1; = 0
in Rg\o unless © € G?. Thus there is a natural surjection Cs —» ng\o =~ Cs5/Csy1Cs.

We may also construct a map R?O — Cj by defining

li'_> 1'ia @DTH@bm Yr = Yr — Y1.

This is a well-defined homomorphism of algebras which splits the natural surjection

Cs — R?O. Thus Theorem 4.106 has the following

Corollary 4.107. Cs = k1] ® Rg\o as graded k-algebras, and Ré\o, considered as a

subalgebra of Cs, has basis
{(y1 — ya)"wli | 3 € G°,w € Wi, m + deg (¢, 15) < 1},

4.65. Description of B;s

The orthogonal idempotents {1; | i € G°} in Cjs are primitive, since (1;Cs1;)o is
l-dimensional. Setting 1, := 1,; and 15 = Zjep 1;, we have that Csl; = Aj; and
As = @je[’ Ag’j = (Csla.

The following theorem establishes a Morita equivialence between the cyclotomic

KLR algebra R?” and the zigzag algebra A.

Theorem 4.108. 1AR£° 1a = A as graded k-algebras.
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Proof. By Corollary 4.107, 1AR§°1A, has basis

{r—wa)™ 1y | e I',me{0,1} Ui 1 | 0,5 €I, (o, ) = —1}.

Color the vertices of C' with +’s and —’s in an alternating fashion. We define a linear

map f : 1AR§° 1A — A on the above basis.

.
c™e;  if color(i) = +
fly —ya)™ L] =
—c™e; if color(i) = —
\
(

gija’  if color(i) = +
flsali] =

al? if color(i) = —

\

It is straightforward to check that f is an algebra homomorphism using the lemmas
in §4.63, noting in particular that v, ;1;;1;, = €;;(y1 — yq)1; in Cs for neighboring i
and j. As f is a bijection of bases, it is an isomorphism. O
Since 1nCs1a = k[h] ® 1AR§°1A by Corollary 4.107, we have the following
Corollary 4.109. Endc, (As) = 1aCs51a = k[z] @ A as graded algebras, where z is an
indeterminate in degree 2.
There is an algebra isomorphism A°® — A given by a’/  a’*, so we have

Corollary 4.110. Bs = Ende, (As)P = k[z] ® A.

4.7. On the higher imaginary stratum categories

Now we will build on the previous section to explicitly describe the algebra
End¢, ,(A§") for all n. We will show that Ende ,(A$") is isomorphic to the rank n

affine zigzag algebra Af‘f, defined in §4.52 for I' being the finite type Dynkin diagram
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of type C', giving a Morita equivalence between B,s and Azﬁ when k is a field of

characteristic p = 0 or p > n.

4.71. Endomorphisms of A§"

The following lemma follows from consideration of Theorem 4.106:

Lemma 4.111. For 4,5 € I', Home, (As;, Asj) = 1,C51;, and 1,C51; has basis
{1y = 9a)"1; | b € Zzo,m € {0,1}} if i = j,
and
(Y1931 | b € Zso} if (i, 0) = 1,

and is zero otherwise.

Lemma 4.112. For n € Z>, we have

n!(+2(0 —1)q + Lg*)"

dimq Endcna (Agn) = (1 _ q2)n

..........

to A¥". But AX" is projective as a C5 @ - - - ® Cs-module, so these subquotients are

in fact summands. Thus Frobenius Reciprocity gives

Endcna(Agn) = HOHIC&...Cé (A?n, (A?n)éBn!)
= ((Ende, (As))°") ™™

= (kfz) @ A)°") ™"
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as vector spaces. The result follows by consideration of (4.72) above. ]

To avoid confusion, let v; be the generating vector of word b’ in As;, so that v;
corresponds to 1; via the equality As; = Cs1;. Let vs = Zig, v; € As. Per the last

section, we have the homomorphisms

e; . A(g — A5,i zZ . Ag — Ag C: Ag — Ag a A&j — A&i

Vs > U; Vs > Y1Vs vs = (Y1 — Ya)s vj ;0

which generate Ende,(As) and satisfy the relations in the zigzag algebra. For 1 <
r <n,let z., ¢, a’ € Endg, ,(Ag") be defined by inserting the relevant map into the
rth slot of A¥" and inducing. Writing A; := As;, o -+ 0 Ay, for ¢ € (I')", we have
that AF" = @,y Ai. Let €; be the projection Ag" — A; C AF" induced from
e, ® Qe .

Now we describe a last family of endomorphisms of A". Let i,j € I'. As
explained in Chapter ITI, we have a nonzero degree-zero homomorphism r*/ : Ls; o
Ls; — Lsj o Ls;. We will describe this map explicitly later in this section. We have
L§? = Gaz}jel’ Ls; o Ls;, so we may consider r := ng, r% as an endomorphism of
L3?. More generally, for 1 < ¢ < n, we have an endomorphism 7, of Ly" given by
inserting r into the (¢,¢ 4+ 1)-th slots and inducing. It can be seen that ry...,r, 4
satisfy Coxeter relations of the symmetric group G,,, and, together with projections
to summands, generate a space 1" of dimension ¢"n! in Ende, , (L") = Endc, , (L§")o-

Now, for 1 <t < n, we lift r; to some homogeneous 7; € End¢, ,(A$™)o.

Lemma 4.113.
(i) The homogeneous lift of an endomorphism of L™ to A$™ is unique.

(ii) The elements 74, ..., 7, 1 satisfy the Coxeter relations of &,,.
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Proof. The space T C End¢, ,(L§")o has a basis which lifts to give ¢"n! linearly
independent elements in Ende ,(A§")o, so by Lemma 4.112; this is a basis for
Endc ,(A$")o. It follows that homogeneous lifts must be unique. Part (ii) follows

from (i) and the fact that ry,...,r,_; satisfy Coxeter relations. O

Define & € {£1} in all types as follows:

1 c=alY;

€10 E€re—180¢ C= A21>)1;
{1 =

(~1)f ¢=n;";

~1 c=gV.

\

Then for all other ¢ € I’, define &; such that §¢&; = —1 if (o, ;) = —1.

Let 0,0" € Ras be the following products of v’s, displayed diagrammatically:

1 2 d d+1  d+2 ... 2d 2 d d+1  d+2 ... 2d

N

The labels in this case only indicate strand position and are not meant to color the
strands.

In order to understand the multiplicative structure of End¢, ,(A$"), we will need
to describe the maps 7; more explicitly and examine commutation relations between
these maps and the others detailed above. The following two lemmas are steps
in this direction. Their proofs are straightforward but rather lengthy exercises in

manipulating KLR diagrams. For this reason we defer the proofs until Chapter VI.
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Lemma 4.114. Let 4,5 € I, and recall that v; ® v; is a generator for As; 0 As ;. Then

we have

)
Eilya®@1+1® (ya — 2u1)|vi @ v 1 = j;

T B U = (1 ® i) O v (i, o) = =1;

0 otherwise.

\

Lemma 4.115. Let 4, j,m € I’ with (o;, a;) = —1. Then we have
(Vi @ 1)ovy @ v; = [0(1 @1j4) + 65,m&(1 @ Vj) — 6im&i(Y5: @ 1)]vm @ v;.

Following [19], let = be an indeterminate in degree 2, and let ¢ : Ry — k[z] ® R;s
be the algebra homomorphism defined by ¢(1;) = 1;, t(¢,) = ¥, and (y,) = y, + .
Let Ls,;. = k[x] ® Ls; be the k[x] ® Rs-module with action twisted by ¢. There
is a homomorphism T;ch/ i Lsig o Lsja — Lsja o Ls;, defined in terms of certain
intertwining elements of Rs. Then 7% is equal to

e (R e M

z,x’

where s is maximal such that ri’i,(LMz 0 Lsjw) C (v —a")Lsjaw 0 L
For ¢« € I', let x; € Ls; (vesp. x; € Ls;) be the image of v; in the quotient

As; = Ls;. It can be seen as that

(@ @ xy) = (¢ — 2)ou; @ i + (¢ — ) o'e; @

z,x’
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where k = Zzzl ZZ=1 i bl All y's and ¢’s of positive degree act as zero on Lg;

and Ls;, so, pushing the results of Lemma 4.114 through to Ls ;. o Ls, , shows that

o'x; @ x; = 0;;&(x — )y ® xy. Thus v (z; @ ) = (0 + &idij)r; ® @4

It may be seen via Theorem 4.106 and word considerations that (1, As;0As;)o

has basis {v; ®v;, ov; ®v;} if i = j, and {ov; ® v;} if ¢ # j. Thus the lifting condition

implies that 71 (v; ®v;) = (049; ;&)v; ®v;. More generally, for 1 <t <nand < € (I')"

we have that 7,(v;; ® -+ ® v;,) is equal to

(1®"'®(0+6it,it+1§it)® '"®1)U’i1®"'®,Uit_1®vit+l®vit Q iy @ Q Uy,

where o + 6;,;,,,&, occupies the (¢,¢ 4 1)-th slots.

Lemma 4.116. For 1 <t <n,1<u<n,and € (I')",

(Fral? — al’f(u)ft)ei =0, (TeCy — CsyuyTe)es = 0,
4
(Ougt = Out1)&i (o + coqr)es it = lgy1;
(thu - Zst(u)rt)ei < (5u7t o 6U,t+1)£it€it+17ita1ztt+l7“az:’—lf+le’i (aiw aiz+1) =—1

0 otherwise.

\

Proof. 1t is enough to check this in the case n = 2.

P (0; @ V) = (i @ 1)(0 4 G5 i) Um @ 05,

a57 71 (V; @ V) = (0 + 6;m&) (1 @ Y1) vm © ;.
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The first claim then follows for v = 1 by Lemma 4.115, and since 7% = 1, the claim
also holds for u = 2, completing the proof of the first statement.

The second statement follows from the first when C # Agl) since ¢; may be

expressed in terms of a’s. When € = A" we have

flcl(vl & Ul) = [(y1 - yg) ® 1](0' + 1)1)1 ® V1

caf1(v1 @ 1) = (0 + D1 @ (y1 — y2)]v1  v1.

The equality of these expressions is easily verified.

For the final statement, let ¢ = ji for j,i € I’. Then for u = 1, we have

Tz1ei(v; @ v;) = (y1 ® 1) (0 + 6; ;&) v @ v;

=o(1®@y1)v; ®v; — 0'v; @ v; + 6; ;& (Y1 @ 1)v; ® vy,
after applying a KLR braid relation. Since
29165 (V; @ v;) = (0 +6;,;6) (1 ® y1)v; ®@ vy,
the result follows from the definitions of the maps and Lemma 4.114. The case u = 2

follows from the first two statements. O

For w = sy, --- 5, € 6y, define 7, = 74, --- 7, € Endg ;(A3")o. By Lemma

m

4.113(ii) this definition is independent of reduced expression for w. For convenience

we will set a)’ = 1.
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Lemma 4.117. The algebra Endc ,(A§") is generated by the elements e;, 74, z,, and

aii (and ¢, in type A"). Moreover, Endc , (A3 has basis

t1 tn U1 U 81,(w35)1 iny(WF)n 2
{1zt - cimay ceeanm ( )”rwej}, (4.118)

ranging over w € &, ty, € Z>q, Um € {0,1}, up < 05, (wj)m, and 3,5 € (I')" such

that (Oéim, Oé(wj)m) 7& 0.

Proof. For w € &,,, define the block permutation bl(w) € &,,4 by
bl(w)(a) = w([a/d]|)d + (a — 1 mod d) — d + 1.

Then we have

ty tn U1 un 01,(wi)1 in,(WJ)n _
Zl ...Zn’”cl ...Cn”al ...an’” ”rwej(fvjl®...®vjn>_

Vbt (U1 (W1 = Ya) " Dlwg)iin @+ @ Yn(Y1 — Ya) " V(uwg)yin)Vis @ -+ @ 4,

plus terms of the form ¢,y x1 ®- - -®x,, where x,, € A; , and w’ € &,,4 is a minimal left
coset representative for &,,4/Sg X - - - X &4 such that w’ is lower than bl(w™!) in the
Bruhat order. Thus, using Lemma 4.111 and induction on the Bruhat order, it can be
shown that the elements (4.118) form a linearly independent set of endomorphisms.

Now, comparing graded dimension with Lemma 4.112 proves the result. O

4.72. Proof of the Main Theorem

Theorem 4.119. Endg ,(A$") 2 Ende, , (AS") =2 A (C') as graded k-algebras.
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Proof. We construct a map f : AT — Endc ,(A$") on generators:

(2] _ 1.
. i 8ijat fj - 1)
€; — €4, St > T, Zy — 2, at’ —

with ¢; — ¢ in type Agl). By Theorem 4.108, Lemma 4.113, and Lemma 4.116,

aff

images of the generators obey the defining relations of A7",

and hence f defines an
algebra homomorphism. Moreover, f is a bijection (up to sign) of the basis elements

of Lemma 4.118 and Lemma 4.84, so f is an isomorphism. O

Corollary 4.120. If k is a field of characteristic p = 0 or p > n, then B,s is Morita

equivalent to A (C).

Proof. In this situation the module A§" is a projective generator for B,s, so B, is
Morita equivalent to Endg, ,(AZ")°P =2 (A2T)°P But the map A — (A2T)oP which
sends ai’j — a{’i, and is the identity on other generators, is easily seen to be an algebra

isomorphism, so the result follows. O
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CHAPTER V

SKEW SPECHT MODULES AND REAL CUSPIDAL MODULES IN TYPE A

The work in this chapter has appeared in the article [40], which has been submitted

for publication.

In this chapter we develop the theory of skew Specht modules in finite and affine
type A, and investigate their connection to the cuspidal systems developed in the
previous chapters. First we briefly recall the Lie theoretic notation associated with

these types.

5.1. Preliminaries
5.11. Lie theoretic notation

We use notation similar to [27], [24]. Let e € {0,2,3,4,...} and I = Z/eZ. Let
' be the quiver with vertex set I and a directed edge i — j if j =i — 1 (mod e).

(1)

e—1

Thus I' is a quiver of type A, if e = 0 or A, ’; if e > 0. The corresponding Cartan

matriz C = (a; ;)i jer is defined by

2 ifi=j;
0 ifjAiitl;

—1 ifi— jori<j;

—2 ifi s
\

Let (h,II,IIV) be a realization of (a;;); jer, wWith root system ®, positive roots P,
simple roots {«; | ¢ € I}, fundamental dominant weights {A; | 7 € I'}, and normalized
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invariant form (-,-) such that (a;, ;) = a;; and (A, ;) = 6; ;. Let Py be the set

of dominant integral weights, and let Q4 = €, ; Z>o«; be the positive root lattice.

el

For oo =3, ., mioy € Q4, define the height of o to be ht(a) = >, ., m;. When e > 0,

i€l

we label the null-root 6 = > ._; ;. Finally fix a level | € Z-( and a multicharge

el

H:(kl,...,kl)EIl.

5.12. Words

Sequences of elements of I will be called words, and the set of all words is denoted

(I). If 4 =iy ---iqg € (I), then |¢| := oy, +--- + o, € Q4. For a € @, denote

(Do :={i e )| i| = a}.

If « is of height d, then &, with simple transpositions si,...,s,;_1 has a left action

on (I), via place permutations.

5.13. Young diagrams

An [-multipartition X of d is an [-tuple of partitions (A1), ..., A®) such that
SY_ MA@ =d. For 1 <i <1, let n(A,4) be the number of nonzero parts of A@.
When | = 1, we will usually write A = A = A1), The Young diagram of the partition
Ais

{(a,b,m) € Zisg X Zisg x {1,..., 1} |1 < b <A™,
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We call the elements of this set nodes of A\. We will usually identify the multipartition

with its Young diagram. To each node A = (a,b,m) we associate its residue

resA =res"A =k, + (b—a) (mod e) .

An i-node is a node of residue i. The residue content of A is cont(X) := >~ 45 Oresa €

(4. Denote

Pr={X € P" | cont(A) = a}, (ae@y).

and set A = Uht(a):d DL For A\, p € P, we say A dominates p, and write A D> p,

if
m—1 c m—1 c
DN SN = Y D
a=1 b=1 a=1 b=1

foralll <m <l[landc>1.
A node A € X is removable if A\{A} is a Young diagram, and a node B ¢ X is
addable if XU {B} is a Young diagram. Define A4 := A\{A} and A" := AU {B}.
Let X' = (A" ... A signify the conjugate partition to X, where A\®' is

obtained by swapping the rows and columns of (9.

5.14. Tableaux

Let A € 225, A A-tableau T is an injective map T : {1,...,d} — A, i.e. alabeling
of the nodes of A with the integers 1,...,d. We also label the inverse of this bijection

with T; if T(r) = (a,b,m) we will also write T(a,b, m) = r. We set resz(r) = resT(r).
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The residue sequence of T is the word

i(T) = 4"(T) = resy(1) - - -resy(d) € (I).

A A-tableau is row-strict if T(a,b,m) < T(a,c,m) when b < ¢, and column-strict
if T(a,b,m) < T(c,b,m) when a < ¢. We say T is standard if it is row- and column-
strict. Let Tab(X) (resp. St(X)) be the set of all (resp. standard) A-tableaux.

Let A € &%, i € I, A be a removable i-node, and B be an addable i-node of A.

We set

ds(X) := #{addable i-nodes strictly below A} — #{removable i-nodes strictly below A}

d?(X) := #{addable i-nodes strictly above B} — #{removable i-nodes strictly above B}.

In [3, Section 3.5, the degree of T is defined inductively as follows. If d = 0,
then T = @ and degT := 0. For d > 0, let A be the node occupied by d in T. Let

T.q € St(A4) be the tableau obtained by removing this node, and set

deg T := da(A) + deg Ty.

Similarly, define the dual notion of codegree of T by codeg @ = 0 and

codeg T := d*(\) + codeg T_g.

The group &, acts on the set of A-tableaux on the left by acting on entries;
considering T as a function A — {1,...,d}, we have w-T = wo T. Let T* be the

A-tableau in which the numbers 1,2, ..., d appear in order from left to right along the
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suiccessive rows, starting from the top. Let Ty := (T*)’, where we define the conjugate
tableau in the obvious way.

For each A-tableau T, define permutations w? and wr € &, such that

w'TA = T = w;Ty.

5.15. Bruhat order

Let ¢ be the length function on &, with respect to the Coxeter generators
S1,...,84-1. Let < be the Bruhat order on &,, so that 1 < w for all w € &,.

Define a partial order < on St(A) as follows:

SAT <— wsﬁwT.

5.16. Skew diagrams and tableaux

Let A\, u € &%, with p C X as Young diagrams. Then we call A/p = A\p a
skew diagram. A (level one) skew diagram is called a skew hook if it is connected and
does not have two nodes on the same diagonal. We may consider a Young diagram
as a skew diagram with empty inner tableau. With p fixed, let .77 ; be the of skew
diagrams A/p such that [A/p| = d. Let &j = J.],; Residue and content for
skew diagrams are defined as before; for example cont(A/p) := >~ oy Jp Qresa € Q..

Denote

T o = AN € F) | cont(N/p) = a}.

For A/p,v/p € 7, we say that A/u dominates v/u, or A/p > v/p, if A > v.
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For A/u € 7~

Wi @ A/p-tableau is a bijection t : {1,...,d} — A/p. Let

Tab(A/p) be the set of A/p-tableaux. We define the residue sequence of i(t) in the
same manner as for Young tableaux, and t»* we define to be the A/u-tableau in
which the numbers 1,...,d appear in order from left to right, starting from the top.
We will write 2V# := 4(t*#). For every A/p-tableau t, define a A-tableau Y(t) by
setting Y(t)(a,b,m) = TH(a, b, m) for (a,b,m) € p and Y(t)(a, b, m) = t(a,b,m)+ |p|

for (a,b,m) € A/p. For example, if | =1, A = (4,4,1), and g = (2,1, 1), then

[\
ot
D

13]4]5]"

1
M = 112 and  Y(tM") =[3]7/8]9].
4

Let St(A/p) be the set of standard (i.e. row- and column-strict) A/pu-tableaux.

For t € St(A/p), we define
degt := degY(t) — deg T*.

The symmetric group Sy acts on Tab(A/u) in the obvious fashion. For t €

Tab(A/p), define w* by wtt»* = t. Define a partial order on Tab(A/pu) as follows:
s <t ifand only if w® < w®.

Lemma 5.1.1. Let s,t € Tab(A/p). Then s 9 t if and only if Y(s) < Y(t).

Proof. Let w* be the image of w* under the ‘right side’ embedding &4 — &), x &4 —
Sx. Then w'® = wrw) | with ((wf®) = ((wt) 4 L(w!®™), and similarly for

wY®) . Since w® < w* if and only if ws < wt , the result follows. O
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Remark 5.1.2. In order to translate between the orders in the various papers cited,
we provide the following dictionary. Our partial order on partitions and tableaux
agrees with that of [3]. In [27] the order on tableaux (which we'll call <;;) amounts
to S <y T <= w® < w". As is shown in [27, Lemma 2.18(ii)], when S, T € St(u),
we have S Jy T <= S > T. In [36], the reverse Bruhat order (1 > w) is used
on elements of &4, and the order on tableaux (which we’ll call <,,) is defined (on
row-strict tableaux) by the shape condition in Lemma 5.1.5. Thus Lemma 5.1.5 will

give S d); T <= S D> T when S, T are row-strict.

For nodes A, B in A/u, we say that A is earlier than B if tM#(A) < tM#(B);
i.e. A is above or directly to the left of B, or in an earlier component.

Let T be a A-tableau and suppose that r = T(ay, b1, m;) and s = T(ag, by, ms).
We write r 7t s if mqy = mso, a1 > ag and by < by; informally, if » and s are in
the same component of A and s is strictly to the northeast of r. We write r 7 s if
r /'t s or my > my. Other rotations of the symbols 7; and 2z have similarly obvious
meanings.

The following lemmas are proved in [3] and [36] in the context of Young diagrams,
but the proofs carry over to skew shapes without significant alteration. The first

lemma is obvious.

Lemma 5.1.3. Let t € St(A/p). Then s,t € St(A/u) if and only if r7r + 1, or
r+ 1A

Lemma 5.1.4. Let s,t € Tab(A/p). Then s < t if and only if s = (a1b1) - - - (a,b,)t
for some transpositions (a1b), . .., (a,b,) such that for each 1 < n < r we have a,, < b,

and b, is in an earlier node in (a,41bp41) - - (@b, )t than a,.

Proof. This follows from applying Lemma 5.1.1 and [3, Lemma 3.4] to Y(s) and

Y(t). O
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Given A/p € 77 and a row-strict t € Tab(A/p), for all 1 < a < d define t<, to

be the tableau obtained by erasing all nodes occupied by entries greater than a.

Lemma 5.1.5. Let s,t be row-strict A/p-tableaux. Then s < t if and only if

sh(Y(s)<q) > sh(Y(t)<,) for each a = || + 1,..., |p| + d.
Proof. This follows from Lemma 5.1.1 and [36, Theorem 3.8]. O

Lemma 5.1.6. Let A/p € & and s,t € St(A/p), and 7 € {1,...,d — 1} such that

rler+1lorr—¢r+1. Then s<s,t implies s < t.

Proof. By [3, Lemma 3.7], Y(s) 9 Y(s,t) = 5,4, Y(t) if and only if Y(s) < Y(t), and

the result follows by Lemma 5.1.1. m

5.2. Manipulating elements of KLR algebras

Let o € Q4 and ht(a) = d. For every w € &y, fix a preferred reduced expression
w = S, S, and define ¢, = ¥, ---1Y, € R,. In general 1, depends on the
choice of reduced expression. When w is fully commutative however, i.e., when one
can go from any reduced expression for w to any other using only the braid relations
of the form s,.s; = s, for |r —t| > 1, the element v, is independent of the choice of

reduced expression.

For A/p € &, and t € Tab(A/p), define

wt = ww‘-
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Lemma 5.2.1. Let t € St(A/u). f w* =s,, ---s,, is areduced decomposition in Sy,

then
degt - degt)\/“ = deg(wm o 'wrm 11’"/#)'

Proof. Write ¢ = |ul|. Let s, -+ s, be a reduced decomposition for w!®*) " Then

— Y(tA/”)

WY = Sy ¢ Sp,4c 18 Teduced and wf® = wtw = Spyde Spp4eSty St 1S

reduced. Then by [3, Corollary 3.13] we have

dng(t) — deg ™ = deg(wm—i-c o ‘¢Tm+c,¢}t1 oy, z’")
= deg(d)m—i—c o '¢Tm+cliy(t>\/ﬂ)) + deg(wh te '¢tn i")

= deg(try - p Linju) + deg(hy, -y, 1in)

and
deg Y(tM*) — deg T = deg(ty, - - - 1br, 1),

which implies the result. O

Proposition 5.2.1. Let f(y) = f(y1,...,94) € Olyi,...ya| be a polynomial in the

generators y, of Ry. Let 1 <ry,...,r,, <d—1. Then

(1) f) e, -, 1; is an O-linear combination of elements of the form
o g(y)La, where g(y) € Oyr.....yal, cach 6 € {0,1), and s - st

T1 ™m

1$ a reduced expression.
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(ii) Ifw = 8y, -+ sy, is reduced, and sy, - - - Sy, is another reduced expression for w,

then

Ury G L = Yy, L+ Y dutbugu(y)1s,

uw

where each d, € O, g,(y) € Olyi,...,ya|, and each u in the sum is such that

l(u) < m — 3. Alternatively,

77Z}r1 o ./I7Z)7'm]"i = 1/%1 o 'wtmli + (*)7

where (x) is an O-linear combination of elements of the form gt ---ahsmg(y),

where g(y) € Olyr, ..., ya4), € € {0,1}, €, =0 for at least three distinct i’s, and

S8 4s a reduced erpression.

T1 Tm

Proof. This is proved in [3, Lemma 2.4] and [3, Proposition 2.5], for the case of

cyclotomic KLR algebras, but the cyclotomic relation is not used in the proof. O]

Theorem 5.2.2. [20, Theorem 2.5], [42, Theorem 3.7] Let av € (). Then
{’l/]wyTl X 'y;ndli | w & Gd,ml, oo, My € Zzo,i € <[>a}

is an O-basis for R,.

5.3. Skew Specht modules

In this section we define the graded skew Specht module SM#. In fact, the
construction is exactly the same as the one given for graded (row) Specht modules
(associated to Young diagrams) in [27], only applied in the more general context of

skew diagrams. For the reader’s convenience, and since the particulars will be put to
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use often in Section 5.4, we provide the construction of skew Specht modules here.
The ‘spanning’ result [27, Prop. 5.14] and the proof given in that paper also generalize

without much difficulty to the skew case.

5.31. Garnir skew tableaux
Let A = (a,b,m) be a node of A/ € #*. We say A is a Garnir node if
(a+1,b,m) is also a node of A/u. The A-Garnir belt B4 is the set of nodes

B = {(a,ec;m)eX/plc>blU{(a+1,¢,m) €N/ |c<b}

The A-Garnir tableau is the A/p-tableau g? that is equal to t*/* outside the Garnir
belt, and with numbers t»#(a, b, m) through t»*(a+1, b, m) inserted into the Garnir

belt, in order from bottom left to top right.

Lemma 5.3.1. Suppose that A/pu € 7, A is a Garnir node of A/p, and t €

Tab(A/p). If t < g, then t agrees with t*»# outside the A-Garnir belt.

Proof. Since w8" fixes the entries outside the Garnir belt, w* < w8 must do the

same. 0

5.32. Bricks

Take A/p € 7 and Garnir node A = (a,b,m) € A/p. A brick is a set of nodes

{(c,d,m), (c,d+1,m),...,(c,d+e—1,m)} CB*
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such that res(c,d, m’) = res(A). Let k* be the total number of bricks in B#, and let
f# be the number of bricks in row a of B4. Label the bricks Bi},..., Bi in order
from left to right, beginning at the bottom left.

For 1 <r < k?, let w? € &, be the element that swaps B and B2 ;. Define

the group of brick permutations
GA = <w14, “ e ,w;?A_1> & Gk’A'

This is the trivial group if k&4 = 0, e.g. if e = 0.

Let Gar” be the set of row-strict A/p-tableaux which are are obtained by the
action of &4 on g#. All tableaux in Gar® save g are standard. By Lemma 5.1.5, g
is the unique maximal element of Gar”, and there exists a unique minimal element
t4, which has the bricks B4, ..., B}“A in order from left to right in row a, and the
remaining bricks in order from left to right in row a + 1. By definition, if t € Gar?,
then i(t) = (g?). Define 4! as this common residue sequence.

Let 24 be the set of minimal length left coset representatives of & A X Gpa_ga

in 4. We have
Car? = {wt? | w € ).
Lemma 5.3.2. Suppose that A/u € 77 and A € A/p is a Garnir node. Then
Gar*\{g"} = {t € St(A/p) | t < g” and i(t) = i}

Moreover, degt = deg s,g* — a;,;,,, for all t € Gar*\{g"}, where r = g(A) — 1.

Proof. The first statement is clear from the preceding discussion and Lemma 5.3.1.
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For the second statement, we instead prove that codeg(s,g?) — codeg(t) =

—aj, i,,,, which is equivalent by [3, Lemma 3.12]. By the definition of codegree,
and the fact that Y(t) and Y(s,g”) agree outside of the bricks of the Garnir belt,
it is enough to consider the case where A/ is a two-row Young diagram, with
A=Ap=((ke—1,(k*—fYe)),and A = (1, (k*— f4)e, 1). Each brick contributes
0 to codeg(t), and every brick contributes 0 to codeg(s,g”), except for By, s (the
rightmost brick in the bottom row), which contributes 2 if e = 2 and 1 if e > 2. Thus
codeg(t) = 0 and codeg(s,g?) = —a;,. and the result follows. O

Tr41s

5.33. The skew Specht module

Fix a Garnir node A € A/p. Define

ol i=tpalia and 7= (0 + 1)1,

T

Write v € &4 as a reduced product wf‘l e w;fl of simple generators in &4. If u € 24,

then u is fully commutative, and thus we have well-defined elements
{74 = T;?"'T;i |ue 24).

For any s € Gar®, we may can write w® = usw®" so that (w®) = £(u®) + L(w®")
and u® € 2, and the elements )y, ¢tA and ¢® = ¢us¢tA are all independent of the

choice of reduced decomposition.
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Definition 5.3.3. Let A/u € %

a0

and A € A/p be a Garnir node. The Garnir

element is

gt = Z Ayt € R.. (5.1)

uegA
By Lemma 5.3.2, all summands on the right side of (5.1) are of the same degree.

Definition 5.3.4. Let a € Q, d = ht(a), and A/p € 77 . Define the graded skew
row permutation module MM* = M**#(0O) to be the graded R,-module generated

by the vector m** in degree degt**# and subject only to the following relations:
(i) 1;mMe = 5j,i>‘/“m>\/u for all 3 € (I)q;
(ii) yymMr =0forallr =1,...,d;
(iii) ,m** =0forall r =1,...,d — 1 such that r —,x/u 7+ 1.

Definition 5.3.5. Let a € Q, d = ht(a), and A/p € 7 ,. We define the graded
skew Specht module SM* = SME(O) to be the graded R,-module generated by the

vector z** in degree degt** and subject only to the following relations:
(i) 1,22k = 5]-’“/“2)‘/” for all j € (I)y;
(ii) y2M* =0forallr =1,...,d;
(iii) ¥,zM* =0 for allr = 1,...,d — 1 such that r —.a/u 7+ 1;
(iv) g*2*# = 0 for all Garnir nodes A € A/p.

In other words, SM# = (Ra/Ji‘/“)(deg(t)‘/“», where J2'* is the homogeneous

left ideal of R, generated by the elements

(i*) 1 — 6, am for all g € (I)a;
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(ii*) y, forall r =1,...,d;
(iii*) o, for all r = 1,...,d — 1 such that r —au r+ 1;
(iv¥) g* for all Garnir nodes A € A\/p.

The elements (i*)-(iii*) generate a left ideal K*# such that R,/K** = M**#. So

we have a natural surjection M>»# — SM# with kernel J** generated by the Garnir

relations gAm*#* = (0. This surjection maps m»* to z*#* and JM#* = Jo [BmA/h,

For t € Tab(A/p), we write

mt = ptmMH e MAP and vt =t e SAMH

5.34. A basis for M**and a spanning set for S**

Theorem 5.3.6. The elements of the set

{m* | t € Tab(A/p) is row-strict}

form an O-basis for M>#,

Proof. This is [27, Theorem 5.6] in the Young diagram case. But since M** is a
permutation module in the sense of [27, §3.6], the proof in the skew case also follows

immediately from [27, Theorem 3.23]. [

Proposition 5.3.1. The elements of the set

[o* | £ € StA/m)} (5.2)

span SM# over O. Moreover, we have deg(v®) = deg(t) for all t € St(\/p).
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Proof. Using Lemma 5.2.1,
deg(v*) = deg (¢ 13 zM*) = deg(¢*1,nu) + deg(zM#) = deg(t) — deg(tM*) + deg(zM*),

which proves the second statement, as deg(z**) = deg(t**) by definition.

The proof of the first statement follows exactly as it does in the Young diagram
case provided in [27, Proposition 5.14]—there are clear skew analogues of the results in
[27, §5.5-5.6]—the only caveat is that our preferred partial order on standard tableaux
is opposite that of [27], so one must swap the direction of ‘<’ signs when necessary,

and make use of the analogous skew dominance results in Lemmas 5.1.1-5.1.6. [

5.4. Restrictions of Specht modules

In this section we show that for X € 2%, 5, the R, g-module Res, 35 has a

filtration with subquotients isomorphic to S#X.S*#, with u € 225 and A/p € SN
As a consequence, we get that (5.2) is an O-basis for SM#. For the case of Young

diagrams, this was shown in [27, Corollary 6.24]:

Theorem 5.4.1. Let A € 22%. Then S* has O-basis {v7 | T € St(A\)}.

5.41. Submodules of Res, 35*

Let o, 8 € Qy and ht(a) = a,ht(8) = b. Let A € 7, 5, p € P By Theorem

5.4.1, S 5 := Res, 5(S*) has O-basis {v" | T € B}, where

B ={T € St(\) | cont(sh(T<,)) = a},

203



since 1, 50" = o' if and only if ¢(T) = 4; - - - iq4p has a;, + -+ + @;, = «, and is zero

otherwise. Define
B,={T€B|sh(T<,)>pu} and C,=0{"€S*|TeB,}.

Lemma 54.2. f U, T€ B,ULT,and T € B, then U € B,,.
Proof. 1f U < T, then by Lemma 5.1.5, sh(U<,) > sh(T<,) &> p. O
Lemma 5.4.3. Cy, is an R, g-submodule of S}, ;.

Proof. We show that C), is invariant under the action of generators of R,g. For

idempotents 1;; this is clear. Let T € B,,.

(i) For 1 <j <a+b, y;o" is an O-linear combination of v¥ € B for U4T, by [3,

Lemma 4.8]. By Lemma 5.4.2, each v" is in C,.

(ii) Forje{l,...,a—1,a+1,...,a+b—1}, where j =1 j+1or j |t j+ 1, then
;0" is a linear combination of v¥ € B for U« T, by [3, Lemma 4.9], and the

result follows by Lemma 5.4.2.

(iii) For j € {1,...,a—1,a+1,...,a+b—1}, where j A j+ 1, then ¢;v" is a linear
combination of v¥ € B for U<T, by [11, Lemma 2.14], and the result follows by

Lemma 5.4.2.

(iv) Assume j € {1,...,a—1l,a+1,...,a+b—1}, and j + 14 j. Then s;T> T,
and s;w" = w*7T, with {(w*") = ¢(w") + 1. Then by Lemma 5.2.1, o0 =
8T 4 ZqujT cyv? for some constants ¢y € O. But (s;T)<q = T<q, s0 ;T € By,

and the result follows by Lemma 5.4.2.

This exhausts the possibilities for T and completes the proof. O
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Now define B,y = UU,,, By = {T € B | sh(T<,) > p}. Then Gy =3, C) =
O{v" € 5* | sh(T<,) > p} is an R, g-submodule of S} ;. Define N, = C,,/C,,,, and

write
.ZUT - UT + OD/.L € SC?,[‘]/CDIJ'

for T € B. To cut down on notational clutter in what follows, write & for A/pu,
€9 for the components A@ /u of A\/p, and 5]@ for the jth row of nodes in £@.
Then for T € Tab(p), t € Tab(§), define Tt € Tab(A) such that (Tt)<, = T and
Tt(A) = Y(t)(A) for nodes A € £ From the definition it is clear that N, has

homogeneous O-basis
{27 | T € St(A),sh(cont(T<,)) = u} = {2 | T € St(u), t € St(&)}.

Write TH := THté = Y(t¢), and write 2#¢ for ™.

5.42. Constructing a morphism S* X S*#* — N,

Define a (graded) morphism f from the free module R, s(deg T + deg t¢) to N,,

by f:las+— zH8.
Proposition 5.4.1. The kernel of f contains the left ideal K¥* ® Rg + Ry ® Kg.

Proof. We show that the relevant generators of K* ® Rpg, given by (i*)-(iii*) in

Definition 5.3.5 are sent to zero by f. The proof for R, ® Kg is similar.
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(i*) First we consider idempotents.

FI(L = m) @ 1g] = (L — Gjam )2 = Y 1jpat® — 6 uact
kelp

kelf
(ii*) For 1 < r < a, we have by [3, Lemma 4.8] that f(y,) = y, - z*¢ is an O-linear
combination of 2¥, where U € B and U < TS, But TH¢ is minimal such that

sh(T<,) = p, so each U € B,,,, and thus f(y,) = 0.

(iii*) Note that r —1u r + 1 implies 7 —pue 7 + 1, so by [3, Lemma 4.9] it follows
that for 1 <r <a — 1, f(,) = ¥,2#¢ is an O-linear combination of z¥, where

U € B and U< T#¢. But then as in (2) this implies that f(¢,) = 0.

[]

The goal in the rest of this section is to show that in fact, the kernel of f contains
the the left ideal J* ® Rg+ R, ® JS, ie., g @15 (resp. 1, ® g”%¢) are sent to zero by
f, for Garnir nodes A,, € p (resp. A¢ € €). As the proofs for p and £ are similar (see
Remark 5.4.9), we focus on the former and leave the latter for the reader to verify.
We will occasionally need to make use of the following lemma, proved in [11, Lemma
2.16]:

Lemma 5.4.4. Suppose A € P T € St(A), j1,..-,7r € {1,...,d — 1}, and that
when v, -+ -1);, 2> is expressed as a linear combination of standard basis elements,

v’ appears with non-zero coefficient. Then the expression s, ---s;. has a reduced

expression for w? as a subexpression.
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[COI OO ()
£ . . iy oMy (. 7{,,1 ..
Note that w#é = w™ isin 2, Q07D the set of minimal length

double coset representatives for

6a X 6b\6a+b/6ugl) X 6£§1) X e X Gu(l) x & o

n(A,l) 5n()\,l)
and as such is fully commutative. Writing n := n(A,l), in diagrammatic form we
have

o)

n—1 n—1

I O RN O R C

H1 urg) s&”

wHé =

()

Here we are letting p;”’ in the diagram stand for (aq, ..., ax), where ay, ..., a; are the

entries (in order) in T* of the nodes contained in the ith row of 1), and similarly for
).
Let 1 <i<1I,1<j<n(A\i). It will be useful to write w"é = wfjwfjwfj, the

decomposition into fully commutative elements of &, given as follows:

(O]
5} Enla Hg) 5;,")

wH€ =
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Define ¢} := thyx, for X € {L, R, D}, and set

Cij = Z ,Uéh) + Z M]E:l),

1<h<i—1 1<k<j—1
1<k<n(Ah)
_ (h) (2)
dij= Y &+ > &
1<h<i—1 1<k<j—1
1<k<n(Ah)
If U := 4, -1, for some rq,... 1, then we will write W] := ¢, 4¢- - 1y 4. for

admissible ¢ € Z. The following lemma will aid us in translating between Garnir

relations defining S* and those defining S¥.

Lemma 5.4.5. Assume 7q,...,7rs are such that ¢;; +1 < rq,...,ry < a—1, and

U =, - ,.. Then

DL R_A
\IW“E:%J i,j\lj[di,j] i, -

Proof. We go by induction on s, the base case s = 0 being trivial. By assumption we

have

D L R _A
Wt = (L '¢T5I“£ = wrlwi.j¢i.j¢72+di,j e '¢Ts+di,j i,i% -

., (M) . . . . .
Write ¢#%  for the residue sequence associated with the nodes in ;L,(gh) in T*, and

.e(h) . . .
similarly for % . In terms of Khovanov-Lauda diagrams, with the vector z* pictured
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as being at the top of the diagram, we must show that

U U

L
ViiYrotd; ;T Yrstd;

6
|

Yy | |

ORI

w’"2+di,j

[ A N S |

EeE—lll

is equal to

M m vg;.i; “591 §§'

R
Vi

—

L
Vil td; i Yrstd;

A
L ETECEE EFET )

R ;A
Wrgtd; ; Wy 5

D

. . L .
Let j = w;jwryia, ;- Since s, w;

((wp) + ((sy,), it follows from Lemma 5.2.1 that

D
wn wi,j 1.7

D
u<]inj
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SN

D
- ¢i,j¢r1+di,j 1j + Z Cu¢“ r1+d”

(1)
it

| KX

wrs+di,j

I

| 1

» .
’“ﬁdz\j .

i

/““s+di,j

I

| 1

_ D
= W;Sr4d;; and L(s,,w

fu(y)1;

(1)
iﬂnl ,‘,Eg)

(1)
» ifsll)

Sl ili n

) =

(5.3)



for some constants ¢, € O, polynomials f,(y1,...,%s+a), and €, € {0,1}. Thus it

remains to show that

u R ;L A A
;1+d”fU( )wrﬁdi,j o 'wTerdi,jwi,j it = 0es /CW

for all u in the sum in (5.3). Let sz - Sig be the preferred reduced expression for

R

w;;, and similarly for w ;- Pushing the y’s to the right to act (as zero) on z*, this is

by lemma 5.2.1 an O-linear combination of terms of the form

€5t N €Es+Np+1 s+Nrp+Np A
Vs, Vb, U U OO A (5

for some ¢; € {0,1}. Write © for the sequence of 1’s in (5.4). Assume vY appears with
nonzero coefficient when ©v* is expanded in terms of basis elements. Then it follows
from Lemma 5.4.4 that one can write w’ diagrammatically by removing crossings

from the diagram

i i i L L
S Y L e OB O

M ST
I FTTT T

SRARRERNINREY

and in particular, removing at least one crossing from wg, the third row of the

diagram, since u < w . But in any case, this implies that there is a pink strand that
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ends to the left of a blue strand, i.e., some ¢t < a such that (w")~'(¢) is in 5,(:1) for
some h,k. Then sh(U<,) # p. But since N, is an R, g-submodule, we must have

U € B,,. This implies that U € B,,,, and hence z' = 0 € S*/C,,. ]

Let A,, be a Garnir node in p. This is also a Garnir node of A, and when we
consider it as such, we will label it with Ay. Let B4* be the Garnir belt associated
with Ay, and let B4 be the Garnir belt of nodes in p. Assume Ay is in row j of
the ith component of A. We subdivide the sets of nodes of MY), uﬁl and fj(z) in the

following fashion:
(i) We subdivide ;/Jg-i) into three sets:

(a) Let u! be the nodes of ,uy) not contained in B4+,
(b) Let u? be the nodes of ,uy) contained in bricks in B4,
(c) Let p™3 be the nodes of ;/Jg-i) contained in B4+, but not contained in any
brick.
(ii) We subdivide & ]@ into three sets:
(a) Let ¢4 be the nodes of fj@ contained in a brick in B4* which contains
nodes of u.

(b) Let £4?2 be the nodes of £J@ contained in a brick in B4* which is entirely

contained in &.

(c) Let €43 be the nodes of 5](1) contained in B4*, but not contained in any

brick.

(iii) We subdivide #5'21 into three sets:
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(a) Let a1 be the nodes of ,uﬂl contained in B4» but not contained in any

brick.
(b) Let a2 be the nodes of ,uﬁl contained in bricks in B4»

(c) Let pas be the nodes of ,uﬁl not contained in B4+

. / 7 7 .
Now write wZ-Rj = ij wiRj , where wﬁ, w-Rj are given as follows:
( i i
pD D WD A A2 A3 wan man mas Sta mda €0 e

TSI 1)

R’

g

Let G4 = wT4 and G4 = (T4, where w € 2* and ¢ € 2. Then w = wyw,

where wy,ws € &4 are given as follows:

P “;—1 5§'1’—)1 pAt A2 AB AL A2 cAS S ua kA2 HAS 5;21 w)
WTAA
Ax
t M
w2
w1 |
L
Then
TAFL Ap tg D L ! Ax D L / A
Cwt ™k = ) = )] Pwlww®™ = wlwlwwiwaw” (5.5)
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This is best seen diagrammatically. On the right side of (5.5) we have

WO e e € A A as A a2 A wan wan mas S WD €D

u(11) 55” “;(;'[71 5§11 pAl A2 AS AL A2 cAB3 S ua BA2 HAS 5521 “g) ng)
> S
e L S S
e N
ST
= ==
{ 3 3\ 3 3
wTAM W
| >§<
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A A A A .
Let w; = wrﬁ coew N and wy = wrf -w; > be reduced words for w; and w; in S,
1 ny 1 no
Now consider
Axyel Axvel [ Axye? Ay \e2
w = (w 1>‘)61 P (w 1)‘ )enl (w 2>\)€1 e (w 2)\ )enz E GAA’ (57)
Ty T”l Ty Tn2

where each € € {0, 1}. In other words, w is achieved by deleting simple transpositions

in G from w.
Lemma 5.4.6. If ei = 0 for some 1 < k < ny, then

/ A 1 A 1 A 2 A 2 A
¢5j¢£j fj(gr?)el ... (gri)em (gr%k)ﬁ . (UT%AZ)%WT AeA = .

Proof. By Lemma 5.2.1,
Axye! Axvel / _Ax\e? A A
¢Z¢£jw5 (OT%A)Q . (0‘T1>‘ )€n1 (O‘T{‘)el .. (O-T;‘ )6712 @/)T oA

is an O-linear combination of elements of the form v”, where a reduced expression

for w' appears as a subexpression in the (not necessarily reduced) concatenation of
reduced expressions associated with

D, L, R Axyet Ax el Axyé? Ax\é2 T

wl’]wz’]wz’](wr% ) 1... (wT}’Ll) ny (wr% ) ... (w n2) 2w

In other words, one can write w' by removing crossings in (5.6), and in particular

(since €; = 0 for some k), removing at least one of the pink/blue crossings in the

second row. In any case then, there is some pink strand that w? sends to the left

side, i.e., some ¢ < a such that (w")™(c) € f,gh) for some h,k. Then sh(T<,) # p.

But since w” is obtained by removing crossings in w®* )ts, we have T < GA»ts. If
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s, is the transposition such that s,G4%t¢ € St(\), then Lemma 5.1.6 implies that
T < 5,G*%t¢ € B, which in turn implies by Lemma 5.4.2 that T € B,,. But then

T € By, and thus 2" =0 € S*/C,,.. O

Every w € 2 can be written as a reduced expression of the form (5.7) for
some €' € {0,1}. If €2 = 0 for some 1 < k < ny, or equivalently, if there is some node
(a,b,m) in & such that wT4*(a,b,m) # G*(a,b,m), then the above lemma implies
that

D L R _Ax.TA X _
i ViV T T =0,

and

D L R _Ax T4\ X _ D L R
Tt = (

Axyel A 1 TAX A
57 Wi Tw 55 Wi Wi g UT%A)EI”'<UT}:)E"1¢UJ2¢ x

otherwise. Let f4* and f“» denote the number of bricks in the top row of B4

. 1 1 . .
and B“* respectively. Note that w = (wﬁ*)el e (w;f‘lA )mMwy is a reduced expression
1 n

1
. . . Axyel Axvel - .
for an element in 24 if and only if (wrl)‘)el - (wﬂ)‘)enl is a reduced expression for
1

ni

an element in 27" HFP=F2 1 Gince k4w = kA — (4% — f4), this allows us to
associate Z24# with 24 in the following way. Let 2 be the set of all w € @4
such that €2 # 0 for all k. Then there is a bijection between 24+ and 72 given by

u +—r U[d@j](&)g.

Lemma 5.4.7. For all u € 24+,

A A D L L AX A
T T e = i Vi i,jTU[di,j]wwsz Yt
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Proof. This is easily seen in terms of Khovanov-Lauda diagrams, with 2> pictured as

being at the top of the diagram. The left side:

i“gl) 7;5(11) 1“591 1£§i)1 i#A’l iMA’2 iNA‘3 iﬁA’l iﬁA’z iﬁA‘B HAL RA2 S G HAS zsﬁ')l i#%m ifg)
— S SSSS
pHE ~\~ SSSS \0
e T e
’s..'.
( Y ) N )
wTAM
N\
VAVA O\
is by Lemma 5.4.5 equal to
i“(ll) iégl) i“g'i)l 1551)1 bt A2 A8 AL A2 e AS g map pag isfi)l i#SLl) issf)

R
- | | ‘ ‘

oR
Vi

P [di, 5]

Y irulds ) Tuldig)

, D
Yig
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which, after an isotopy of strands, becomes the right side in the lemma statement:

i"gl) ifgl) ) ;:)1 1.5;1)1 iier’l iHA’z ,'MA’S iEAJ iEA’2 iEA’s HAL HA2 GHASB iféﬁ ,;Mgw,” ifg)
1/)TA)\
P
\ M/
Tuldy, ] Tuld; ]
/7N
7
vl
vl
completing the proof. O

Lemma 5.4.8. Let A, be a Garnir node of p. Then f(g* ® 15) = 0.
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Proof. We make use of Lemma 5.4.7 and the bijection between 24# and DA,

f(gA“ ® 15) _ gA“ 'xuﬁ — Z TUI/JTAM ¢u£x>\

uePAn

DL R TAX A
= Z %‘,j i, i,jTu{di,j]ww;zw z

ueP4n

D L R AX A
:%,ﬂ/}i,j i, Z Tu[di,j]¢w2¢T Y

ueg4n

D L R TAXN A
= i i Vi Z T "

wEPDAX
DL R Ax, A
:1/%‘,1'%,]'%,;‘9 A

=0.

]

Remark 5.4.9. Although we have focused on Garnir nodes in p, there are obvious
analogues (whose proofs are entirely analogous) of Lemmas 5.4.5, 5.4.6, and 5.4.7,

which imply the analogue of Proposition 5.4.8:
fla®g'e) =0

for Garnir nodes in §.

Proposition 5.4.2. The map f : R,p(degT# + degt®) — N, induces a graded

isomorphism

fiSFRSE S N,
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Proof. We have that f factors through to a map
Rap/(J4 ® Rs + Ro ® J5)(deg T + deg t&) — N,
by Lemmas 5.4.1, 5.4.8 and Remark 5.4.9. However, we also have
Ras/(J%® Rs+ Ry ® J5)(deg T + deg t&) = R, /JH(deg T*) ® Rs/J5(degté) = S* X S¢.
Moreover, for all T € St(u), t € St(£),

FOTRVY) = fTo* B ytet) = T alat = YTyTlajytiat = 2T + ) " dya®

U«Tt

for some constants dy, by Lemma 5.2.1. Since {v" K v* | T € St(p),t € St(&€)} is a
spanning set for S# X S¢ and {z™ | T € St(p),t € St(€)} is a basis for N, it follows

that f is an isomorphism. O]

5.43. A basis for S** and a filtration for Res, 35*

Proposition 5.4.2 in hand, we may now prove two theorems which complete the
analogy with the definition (1.16) in the semisimple case, and justify our use of the

term skew Specht module for SM*#.

Theorem 5.4.10. Let A/p € 7 . Then SMH has a homogeneous O-basis

{v* |t € St(A/p)}. (5.8)

Proof. By Proposition 5.2, the set (5.8) spans S** over O, and the set is linearly

independent by Proposition 5.4.2. O
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Theorem 5.4.11. Let A € P27, 5. Let {py, ... pp} = {p € Zf | p € A} and assume

the labels are such that p, > p;, = @ <j. Write
V= iC’uj =0 {v" € S*| T € St(A),sh(T<,) = p; for some j < i}
j=1
for all . Then
0=V Vi < Vo< -+ < Vi = Resq 38
is a graded filtration of Res, 39 by R, g-submodules, with subquotients
Vi/Vioy & SHi R SMHi,

Proof. The fact that V3 = Res,3S> follows from the fact that B = Ule B, and

{v™ | T € B} is a basis for Res,,gS*. Since €y, > Cy,, if p; > p;, we have

V; = ZCHJ' = Cy’i ® Z CH’]’
j=1

and
i1
Vii=) Cuy=3 Cu® >, Cuy=Cop® ) Cp,
=1 o j<i j<i1
MR 1 Yh
which implies that V;/Vi_y = C, /Cip, = N, = S X S ki O

Remark 5.4.12. Theorem 5.4.11 may be compared with [15, Theorem 3.1, which

gives a similar result for restrictions of classical Specht modules over the symmetric
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group algebra to Young subgroups. However, the connection between our skew Specht
Ro(F)-modules SM# and the skew Specht F&,,-module Sﬂ;\g:l defined in [15] is not as
direct as may be expected. Taking e = ch F, it is shown in [6] that there exists a
surjection R, := @ht(a):n R, — RM =2 FG,,. Inflating S]E’}é’i along this map, we have
an R,-module infl Sﬁé‘: , and truncating SMH vields an F&,-module pr S**. However
it is not the case that pr SM# = Sﬁé’: nor infl S]}\éi >~ SMi in general, though the
(ungraded) dimensions do agree in the latter case, and both statements hold when
p =2 and k = (7).

For an explicit example of this difference, take e =ch F > 0, and n > 1. Let

A=(ne—e+1,ne—2e+2,ne—3e+3,...,n),

p=(ne—emne—2e+1,ne—3e+2,...,n—1).

Then A/p consists of n disconnected nodes of some residue i (depending on ). The
F&,,-module S]Pﬁ\é‘i is isomorphic to the regular module g, FS,,, and thus infl Sﬁé’: is
reducible. However, SM* as defined in this paper is irreducible—in fact it is the unique
irreducible R,,,-module (up to grading shift), see [24, §2.2]. Moreover, pr SM* = 0

as FS,, has no n!-dimensional irreducible modules.

5.44. Induction product of skew Specht modules

The following theorem was proved in [27, Theorem 8.2] in the context of Young
diagrams, but the proof is applicable with no significant alteration to the more general

case of skew diagrams.
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Theorem 5.4.13. Suppose that A/p € %, Then

GMi o DD A (dx/y).
as graded R,-modules, where
dxyp = deg(tM™) — deg(tX/H™) — .o — deg (X,

5.5. Joinable diagrams

In this section we present a useful, albeit rather technical, result regarding the graded
characters of skew Specht modules whose associated component diagrams jibe with
each other in a specific sense. This result, together with Theorem 5.4.13, will make it
possible for us to identify cuspidal modules in §5.7 while operating solely at the level

of characters.

Definition 5.5.1. Let [ = 2, k = (k1, k), and XA = (A1, \?) € 2% Write 2, :=
n(X, 1), and y; := /\gi). If (21,1,1) (the bottom left node in A) and (1,%,,2) (the

top right node in A®) are such that res(zy, 1,1) = res(1, 4o, 2) + 1, we call A joinable.

In this section we will assume that A is joinable. Define the one-part multicharges
k* = (ky+m1) and ki, 1= (ka+2;—1). We now define \*/u* € % and \,/p. € S

by setting:

o= (D gy — 1 A gy — 1P AG)), p=((y2 = 1)),

1 [ )]
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and

A= D fyo, D 4y A AR (= (L),

) 1

In other words, \*/u* is achieved by shifting the Young diagram associated with A"
until its bottom-left node lies directly above the top-right node of A®), and then
viewing this as a one-part skew diagram. Similarly, \./pu. is achieved by shifting the
Young diagram associated with A" until its bottom-left node lies directly to the right
of the top-right node of \(?).

There is an obvious bijection 7* (resp. 7.) between nodes of A and \*/u* (resp.

A/ ), given by

A3 (a,b,1) — (a,b+ys —1) € X*/pu*

A® 5 (a,b,2) ——— (a+21,b) € X*/p*

and, respectively,

T
A > (CL, b7 1) — (CL,b + yQ) < )\*/:u*

T
A2 3 (a,b,2) ——— (a+ 21 — 1,b) € \/pt

Note that the charges £* and k, are chosen so that residues of nodes are preserved
under this bijection. Let T € St(X). Viewing the tableau as a function {1,...,d} — X,

then composing with 7* (resp. 7.) gives a A\*/u*-tableau (resp. A./p.-tableau). Define
T":=7"0oT and T,:=7.0T.

Then we have bijections

*

{T € St(A) | T(z1,1,1) < T(L, 4, 2)} ——— St(A\*/p*)
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and

(T e StA) | T(e, 1, 1) > T(1, 42, 2)} —— St(A,/p1.)

Example 5.5.1. Let e = 3, k = (0,1), A(). = (3,2,2) and A® = (2,2). Then X is
joinable since res(3,1,1) =1 =0+ 1 = res(1,2,2) + 1. Then, with respect to the

row- and column-leading tableaux, we have:

1]2]3] 1]2]3] 8 [11] 51811
A 4 N 4 9 6|9
7 =T6T7 (TY)" = 6|7 Tx =770 (Ta)s = 3|70
K 24
8]9 10[11 3
10[11 24

Lemma 5.5.2. Let A € 2" be joinable, res(1,yq,2) = ¢, and let T € St(A). Then
deg T = deg T — (A, cont()\(l)))
if T(x1,1,1) < T(1, y9,2), and
deg T, = deg T — (Ais1, cont()\(l)))

if T(Il, 1, 1) > T(].7 Yo, 2)
Proof. We prove the first statement. The second is similar. Let U = T<; for some t.
We’ll show that the claim holds for U:

deg(U*) = deg(U) — (A, cont(sh(U)™M)) (5.9)

going by induction on the size of sh(U).

For the base case we have sh(U) = (&, &), so that deg(U) = 0 = deg(U*) = 0.
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Now we attack the induction step. By the inductive definition of degree for

tableaux, we just need to show that for every removable node A in U,

—1 A€ XY and res(A) = i,
ey (D(¥(U))) — da(sh(V)) = (5.10)

0 otherwise.

By the construction of U*, it is clear that for 1 <r < xy—1 and j € I, the r-th row of
sh(U)M has an addable (resp. removable) j-node if and only if the corresponding r-th
row in sh(Y(U*)) has an addable (resp. removable) j-node. Similarly, for 2 < r <z,
the r-th row of sh(U)® has an addable (resp. removable) j-node if and only if the
corresponding (z1 + r)-th row in sh(Y(U*)) has an addable (resp. removable) j-node.
Thus it remains to compare addable/removable nodes of rows zy, z; + 1 in sh(U)®)
and row 1 in sh(U)® with the rows 1,1 + 1 in sh(Y(U*)).

For simplicity, we label

— B := (x; — 1,1,1), the bottom-left node in A"). Write B* := 7*(B). Both B

and B* have residue ¢ + 1.

— C := (1,y2 — 1,2), the node to the left of the top-right node in A®). Write

C* :=7*(C). Both C and C* have residue 7 — 1.

— D := (1,42,2), the top-right node in A?). Write D* := 7*(D). Both D and D*

have residue 7.
There are five cases to consider.
(i) {B,C,D}Nsh(U) = @.

— Row 7 of sh(U)M) has addable node B iff B* is addable in sh(Y(U*)). Row

1 of sh(U)™® has no removable nodes.
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— Row 1 + 1 of sh(U)™ has no addable/removable nodes.

— Row 1 of sh(U)® has an addable (resp. removable) j-node iff row x; + 1

of sh(Y(U*)) has an addable (resp. removable) j-node.
— Row z; of sh(Y(U*)) has a removable i-node (the bottom-right node of fi,
to be precise).
From this (5.10) follows.
(ii) {B,C,D} nsh(U) = {B}.
— Row = of sh(U)™® has an addable (resp. removable) j-node iff row z; of
sh(Y(U*)) has an addable (resp. removable) j-node.
— Row z; + 1 of sh(U)") has an addable i-node, and no removable nodes.
— Row 1 of sh(U)® has an addable (resp. removable) j-node iff row x; + 1
of sh(Y(U*)) has an addable (resp. removable) j-node.
From this (5.10) follows.
(iii) {B,C, D} nsh(U) ={C}.
— Row 7 of sh(U)M) has addable node B iff B* is addable in sh(Y(U*)). Row
1 of sh(U)M has no removable nodes.
— Row z; + 1 of sh(U)") has no addable/removable nodes.

— Row 1 of sh(U)® has an addable i-node D. Row 1 of sh(U)® has removable

node C' iff C* is removable in row z; 4+ 1 of sh(Y(U*)).
— Row z; of sh(Y(U*)) has no removable nodes.

— Row z; + 1 of sh(Y(U*)) has no addable nodes.
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From this (5.10) follows.
(iv) {B,C,D}Nsh(U) ={B,C}.
— Row = of sh(U)®) has an addable (resp. removable) j-node iff row ; of
sh(Y(U*)) has an addable (resp. removable) j-node.
— Row z; + 1 of sh(U)") has an addable i-node and no removable node.
— Row 1 of sh(U)® has an addable (resp. removable) j-node iff row x; + 1
of sh(Y(U*)) has an addable (resp. removable) j-node.
From this (5.10) follows.

(v) {B,C,D}Nsh(U) = {B,C,D}.

— Row 2 of sh(U)") has an addable (resp. removable) j-node to the right of
B iff row z; of sh(Y(U*)) has an addable (resp. removable) j-node to the
right of B*. The (i + 1)-node B is not removable in row z; of sh(U)(!) iff

row z; + 1 of sh(Y(U*)) has an addable (i 4+ 1)-node to the right of D*.
— Row z; + 1 of sh(U)") has an addable i-node and no removable node.
— Row 1 of sh(U)® has an addable (i + 1)-node. Row 1 of sh(U)?® has

removable node D iff D* is removable in row z1 + 1 of sh(Y(U*)).

From this (5.10) follows.

Thus in all cases, (5.10) is satisfied, and the lemma follows by induction. O

Definition 5.5.3. We say that an arbitrary skew diagram X/p is minimal if ugi) <
/\gi) and uif()A,i) = 0 for all . Less formally, a skew diagram is minimal if, in each

component, it has nodes in the top row and in the leftmost column.
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Definition 5.5.4. Let [=2. We say that A/u € % is joinable if it is minimal and

A is joinable.

Assuming A/p is joinable, define x*, k4, z;,y; as before, with respect to A. In the
same vein as before we construct a skew tableau \*/u* by shifting the skew diagram
AW /M) until the lower left node lies above the upper right node of A /u(?) and we
construct a skew tableau A\*/u* by shifting the skew diagram A\ /() until the lower
left node lies directly to the right of the upper right node of A®/u(®. Specifically,

define \*/u* € % and \,./p. € %" by setting:

A= A dg— 1, AL 4y — 1,02 D),

1 [ 5]

*

= (g )

+y2—1,...7ﬂxl (2) (2))7

+yo— L gy

and

A= A 4y, A £ AP AR,

Y xT1 ) xTo

(1) (1)

2
M 1= (,ul +y27 cee nuxl 2 (2))

+y2>u2 ey Mg,

With 7, and 7* defined as before with respect to A, we define
Tab(A*/p*) 5 t* i =770t and Tab(A\./pe) D ty =T, 0t

for u € Tab(A/p). We have bijections

*

{t € StA/p) | t(x1,1,1) < 6(1,2,2)} —— St(A*/u*)

and

{t € StO/p) | £, 1,1) > £(1, 10, 2)} —— St(\*/pr*)
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Proposition 5.5.2. Let A/ € .7* be joinable, with the top right node in \®) having
residue i. Let t € St(A/wm). Then

degt* =degt — (A, cont()\(l)/,u(l)))
Z.ft(xl: 17 1) < t<17 Y2, 2)7 and
degt, = degt — (Ais1, cont()\(l)/u(l)))

Z.ft(‘rla 17 1) > t(173/272)-

Proof. We prove the first statement. The second is similar. Let v = A\*\sh((t*)*).

Then by definition,

degt* = deg Y(t*) — deg T"") (5.11)
degt = degY(t) — deg T# (5.12)
degY(t)" = degY(Y(t)*) — deg T" (5.13)
Lemma 5.5.2 gives us
deg Y(t)* = deg Y(t) — (A;, cont(A1V)) (5.14)
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Note that Y(Y(t)*) and Y(t*) agree outside of p*, so

degY(t)" + deg TV — deg Y(t*) = deg Y(Y(t)*) — deg Y(t¥)
= deg Y(Y(t)")<|us| — deg Y(t")<|ur|
= deg Y ((T#)*) — deg T*")
= deg(TH)* + deg T — deg T
= deg T* — (A, cont(u(l))) + deg T — deg T,

(5.15)

using (5.9) in the last step. Combining equations (5.11)—(5.15) yields the result. [

Lemma 5.5.5. Let A/p € " be a joinable skew diagram, and assume the top right
node in A® has residue 7. With N /p* € L% and N/, € .7 defined as above, we

have
Chqq(s)‘/“) _ qd*chqq (SA*/“*) + qd*Chqq (SA*/M*) — qd*/ﬂchqq (S)‘(l)/“(l) o SA(Q)/“(2)> :
where

d* = (Ai,cont()\(l)/,u(l)))
d, = (AiH,cont()\(l)/u(l)))

dx/p = deg tMH — deg gAY deg @ /n®

Proof. The first equality follows from Corollary 5.4.10 and Proposition 5.5.2, via the

bijections that 7" and 7, induce on basis elements. The second equality is Theorem

5.4.13. 0
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5.6. Cuspidal systems

Our primary motivation in developing the theory of skew Specht modules was to

describe real cuspidal modules.

5.61. Main results

For reader convenience we recall the needed results on cuspidal systems in this
section. Let a € ®,. Given an R,-module M, we say M is semicuspidal (resp.
cuspidal) if Resj M # 0 implies that 3 is a sum of positive roots less than or equal
to (resp. less than) «, and + is a sum of positive roots greater than or equal to (resp.

greater than) «. The following is proved in [24, 44], and Chapter III:

Theorem 5.6.1.
(i) For every a € @, there is a unique simple cuspidal R,-module L.

(ii) For every m > 0, the simple semicuspidal R,s;-modules may be canonically
labeled {L(v) | v F n}, where v = (W, ... v D) ranges over (e — 1)-

multipartitions of n.

Let o € Q4. Define the set II(«) of root partitions of o to be the set of all pairs
(M, v), where M = (ng)sew is a tuple of nonnegative integers such that ),y ng8 =
a, and v is an (e — 1)-multipartition of ns. There is a bilexicographic partial order
< on II(«), see [24]. Given (M,v) € II(«), define the proper standard module

Z(M7 y) = L;Tfﬁ 0---0 L;Zﬁk o L(V) ° LOan-H 0---0 ngﬁt <Sh1ft(M, V)>,

Br+1
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where 31, ..., 0; are the real positive roots indexing nonzero entries in M, labeled such
that 81 = -+ = By = 0 = Byi1 -+ = B, and shift(M,v) = >, (8, Bi)ng, (ng, —
1)/4.

Theorem 5.6.2. [24, Main Theorem]

(i) For every root partition (M,v), the proper standard module A(M,v) has

irreducible head, denoted L(M,v).

(ii) {L(M,v) | (M,v) € II(a)} is a complete and irredundant system of irreducible

R,-modules up to isomorphism.

(iii) [A(M,v) : L(M,v)], = 1, and [A(M,v) : L(M,)], # 0 implies (N,v) <
(M, C).

5.62. Minuscule imaginary representations

The ‘smallest” simple semicuspidal imaginary modules, those in Rs-mod, are of
particular importance. By the above, they are in bijection with (e—1)-multipartitions

of 1. We label them Ls;, for i € I\{0}.

Proposition 5.6.1. For eachi € I\{0}, Ls; can be characterized up to isomorphism

as the unique irreducible Rs-module such that iy = 0 and i. =1 for all words @ of L ;.

Proof. This is [24, Lemma 5.1, Corollary 5.3]. O

5.63. Minimal pairs

Let p € @', A pair of positive roots (3, ) is called a minimal pair for p if

(i) B+v=pand B> p;
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(ii) for any other pair (4’,7') satisfying (i) we have §' > 8 or 7/ < 7.

Lemma 5.6.3. Let p € @7 and (8, v) be a minimal pair for p. If L is a composition

factor of A(B,v) = Lgo L., then L = L(3,v) or L = L,, up to shift.

Proof. This follows from the minimality of (5,v) € II(p)\{p} and Theorem 5.6.2(iii).
[

One can be more precise in the case that (3, ) be a real minimal pair for p; i.e., when

B, € ®. Define

Pgy =max{n € Zxo | B —ny e &, }. (5.16)

Lemma 5.6.4. [24, Remark 6.5]. Let p € ®, and let (3, ) be a real minimal pair for

p. Then

[Lg o Ly) = [L(B, )] + ¢~ PI(L, ],

and

[Ly o Lg) = q~ PP [L(B,7)] + ¢ "7 [L,).

Lemmas 5.6.3 and 5.6.4 are useful in inductively constructing cuspidal modules.
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5.64. Extremal words

Let i € I. Define 6} : (I) — (I) by

Y. JieJaar i ja =1
0;(3) =
0 otherwise.

Extend 6 linearly to a map 6} : o/ (I) — </ (I). Let x € &/ (I), and define

gi(w) := max{k > 0| (67)*(z) # 0}.

Definition 5.6.5. A word i{" ---4;* € (I), with a1,...,a, € Z>o, is called extremal

for z if

ap = &, (), ap1 = €5, , ((05,)" (x)), ..., a1 = &, ((03,)" - - (0;,)" ().

A word ¢ € (I) is called extremal for M € R,-mod if it is an extremal word for

Chqu cdI.

The following lemma is useful in establishing multiplicity-one results for R,-

modules.

Lemma 5.6.6. [24, Lemma 2.28]. Let L be an irreducible R,-module, and ¢ =

it -iy® € (I), be an extremal word for L. Then dim, L; = [a1] - - - [ap]'.

5.7. Cuspidal modules and skew hook Specht modules

Take a balanced convex preorder < on ®,. In this section we prove that the cuspidal
modules L,, for p € ®IF are skew Specht modules associated to certain skew hook

shapes, and provide an inductive process for identifying them as such.
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5.71. Cuspidal modules for a balanced convex preorder

Throughout this section we work with Young diagrams and skew diagrams of

level [ = 1. Let & = (i). Fori € I, Let ¢; = (1) € &} The following is clear:
Lemma 5.7.1. Fori € I, L,, = S*.

Let k = (0), and n; € .#F be the hook partition of content ¢ with a node of

residue 4 in the bottom row. Let X, = 0 and define X; | := F{vT € 8™

resr(e) =

i—1}CStforl<i<e—1.

Lemma 5.7.2.
(i) X;_1 is a submodule of S™:.
(i) X1 = Ls;—1 (1) if i > 1.
(iii) S™/X;_1 = Ls,.

Proof. For i > 1, it is easy to see that

{T € St(n;) | resr(e) =i — 1} ={T € St(n;) | deg T = 1}

and

{T € St(n;) | resr(e) =i} = {T € St(n;) | deg T = 0},

give a partition of St(n;), and hence X; i is the span of degree 1 elements in S™. As
there are no repeated entries in words of S, it follows that every negatively-graded
element of Rs act