
ROBUST LARGE MARGIN APPROACHES FOR MACHINE LEARNING IN

ADVERSARIAL SETTINGS

by

MOHAMADALI TORKAMANI

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2016

DISSERTATION APPROVAL PAGE

Student: MohamadAli Torkamani

Title: Robust Large Margin Approaches for Machine Learning in Adversarial Settings

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Daniel Lowd Chair
Dejing Dou Core Member
Christopher Wilson Core Member
Hal Sadofsky Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded September 2016

ii

c© 2016 MohamadAli Torkamani

iii

DISSERTATION ABSTRACT

MohamadAli Torkamani

Doctor of Philosophy

Department of Computer and Information Science

September 2016

Title: Robust Large Margin Approaches for Machine Learning in Adversarial Settings

Many agencies are now using machine learning algorithms to make high-stake

decisions. Determining the right decision strongly relies on the correctness of the

input data. This fact provides tempting incentives for criminals to try to deceive

machine learning algorithms by manipulating the data that is fed to the algorithms.

And yet, traditional machine learning algorithms are not designed to be safe when

confronting unexpected inputs.

In this dissertation, we address the problem of adversarial machine learning;

i.e., our goal is to build safe machine learning algorithms that are robust in the

presence of noisy or adversarially manipulated data.

Adversarial machine learning will be more challenging when the desired

output has a complex structure. In this dissertation, a significant focus is on

adversarial machine learning for predicting structured outputs. First, we develop a

new algorithm that reliably performs collective classification, which is a structured

prediction problem. Our learning method is efficient and is formulated as a convex

quadratic program. This technique secures the prediction algorithm in both the

presence and the absence of an adversary.

iv

Next, we investigate the problem of parameter learning for robust, structured

prediction models. This method constructs regularization functions based on the

limitations of the adversary. In this dissertation, we prove that robustness to

adversarial manipulation of data is equivalent to some regularization for large-

margin structured prediction, and vice versa.

An ordinary adversary regularly either does not have enough computational

power to design the ultimate optimal attack, or it does not have sufficient

information about the learner’s model to do so. Therefore, it often tries to apply

many random changes to the input in a hope of making a breakthrough. This fact

implies that if we minimize the expected loss function under adversarial noise, we

will obtain robustness against mediocre adversaries. Dropout training resembles

such a noise injection scenario. We derive a regularization method for large-

margin parameter learning based on the dropout framework. We extend dropout

regularization to non-linear kernels in several different directions.

Empirical evaluations show that our techniques consistently outperform the

baselines on different datasets.

This dissertation includes previously published and unpublished coauthored

material.

v

CURRICULUM VITAE

NAME OF AUTHOR: MohamadAli Torkamani

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA

Isfahan University of Technology, Isfahan, Iran

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2016, University of
Oregon

Master of Science, Artificial Intelligence, 2006, Isfahan University of
Technology

AREAS OF SPECIAL INTEREST:

Machine learning, Statistics, Convex Optimization, Robust Modeling

PROFESSIONAL EXPERIENCE:

Graduate Research & Teaching Assistant, Department of Computer and
Information Science, University of Oregon, 2011 to present

Research Intern, Clari, Mountain View, California, 2015

Research Intern, Comcast Labs, Washington, D.C., 2012

Research Assistant, Department of Electrical Engineering and Computer
Science, Oregon State University, 2009 to 2011

GRANTS, AWARDS AND HONORS:

Graduate Teaching & Research Fellowship, Computer and Information
Science, 2011 to present

vi

PUBLICATIONS:

Torkamani, M., Lowd, D. (2013). Convex Adversarial Collective
Classification. In Proceedings of the 31th International Conference on
Machine Learning (ICML 2014), Pages 642-650.

Torkamani, M., Lowd, D. (2014). On Robustness and Regularization
of Structural Support Vector Machines. In Proceedings of the 30th
International Conference on Machine Learning (ICML 2013), Pages 577-585.

Torkamani, M., Lowd, D. (2016). Marginalized and Kernelized Dropout
Training for Support Vector Machines. Under review in Journal of Machine
Learning Research (JMLR).

vii

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor Daniel Lowd, who has given

me every opportunity to pursue my ideas, and whose mentorship has shaped

my development as a scientist. It has been an honor to be one of his first Ph.D.

Students. I appreciate all his contributions of time, ideas, and funding to make my

Ph.D. experience productive and stimulating.

I would like to thank my dissertation committee members Dejing Dou,

Christopher Wilson, and Hal Sadofsky. I also would like to thank Andrzej

Proskurowski and Jun Li for their constructive comments in the past years.

I gratefully acknowledge the funding sources, ARO grant and NSF grant that

made my Ph.D. work possible.

Lastly, I would like to thank my friends and family for all their wholehearted

support and encouragement. I want to thank my parents who raised me with

love and taught me to love science. And most of all for my loving, supportive,

encouraging, and patient wife Fereshteh, whose support during my Ph.D. is so

appreciated.

viii

To my wife, Fereshteh

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Motivation and approach . 2

1.2. Learning and prediction under uncertainty 4

1.3. Predicting complex outputs . 7

1.4. Contributions . 9

1.5. Thesis outline . 12

II. BACKGROUND . 15

2.1. Statistical learning . 15

2.2. Structured learning . 19

2.3. Adversarial machine learning 30

2.4. Applications of adversarial structured learning 42

III. CONVEX ADVERSARIAL COLLECTIVE CLASSIFICATION 48

3.1. Max-margin relational learning 51

3.2. Convex formulation . 56

3.3. Experiments . 61

3.4. Conclusion . 69

x

Chapter Page

IV. EQUIVALENCY OF ADVERSARIAL ROBUSTNESS AND
REGULARIZATION . 70

4.1. Preliminaries . 72

4.2. Robust structural SVMs . 73

4.3. Mapping the uncertainty sets 78

4.4. Robust optimization programs 81

4.5. Experiments . 89

4.6. Related work . 92

4.7. Conclusion . 94

V. MARGINALIZATION AND KERNELIZATION OF DROPOUT FOR
SUPPORT VECTOR MACHINES . 95

5.1. Related work . 97

5.2. Dropout in linear SVMs . 99

5.3. Dropout in non-linear SVMs 109

5.4. Empirical results . 118

5.5. Conclusion . 123

VI. CONCLUSION AND FUTURE DIRECTIONS 124

6.1. Summary of contributions . 124

6.2. Future directions . 125

xi

Chapter Page

APPENDICES

A. INTEGRALITY OF THE ADVERSARIAL SOLUTION IN CONVEX
ADVERSARIAL COLLECTIVE CLASSIFICATION 128

B. PROOFS FOR EQUIVALENCE OF ROBUSTNESS AND
REGULARIZATION IN LARGE MARGIN METHODS 138

C. DIRECT PROOF FOR DERIVATION OF MARGINALIZED LINEAR
SVM . 143

D. α-REG PROOF . 146

E. LINEAR TIME INFERENCE FOR DIMENSION DROPOUT IN RBF
KERNEL . 149

F. NOTATIONS AND SYMBOLS . 151

REFERENCES CITED . 153

xii

LIST OF FIGURES

Figure Page

1.1 The adversary manipulates the unseen data as a response to the learner’s
strategy. A robust model decreases the harmful effect of the adversarial
data alteration. 3

2.1 The supervised learning procedure . 16

3.1 The adversary knows the parameters of our classifier and can maliciously
modify data to attack. The learner should select the best classifier,
assuming the worst adversarial manipulation. 50

3.2 Accuracy of different classifiers in presence of worst-case adversary. The
number following the dataset name indicates the adversary’s strength
at the time of parameter tuning. The x-axis indicates the adversary’s
strength at test time. Smaller is better. 62

3.3 Accuracy of different classifiers in presence of random adversary. We
observe that even strong random attacks are not efficient in disguising
the true class of the sample. 66

3.4 The distribution of the learned weight values for different models.
The robust method tends to have a high density on the weights that
are saturated. 67

3.5 The sorted learned weights for each method. The robust method constrains
the maximum value of the weights. This suggests that robustness could
also be achieved through regularization with L∞ norm. 68

4.1 Average prediction error of robust and non-robust models, trained on year
2004 and evaluated on years 2003-2013. 93

5.1 The results of running a Monte-Carlo simulation of calculating 1−y(wT x̃+
b) for randomly drawn x̃’s and drawings from the approximated
Gaussian distributions. The dimension of each sample x̃ is 50 in the
histogram on the left. Right: simulation of the Berry-Esséen upper-
bound for different number of non-zero weights 102

5.2 Losses and differences in losses as a function of a single model weight.

xiii

Figure Page

Note that the marginalized cost function is always an upper-bound on
the hinge loss. Although the effective regularization function is non-
convex, the marginalized objective function itself is convex. 107

xiv

LIST OF TABLES

Table Page

5.1 Classification error (%) of linear classifiers on text datasets. The last
column is the decrease percentage of the prediction error for best
method (mostly SVM-Marg) vs. SVM. 120

5.2 Classification error (%) of approximated RBF kernel. 121

5.3 Classification error(%) curve for different size subsets of MNIST.
Comparing no-dropout standard RBF to Monte-Carlo dimension
dropout and α-Reg. The last row is the decrease percentage of the
prediction error for no dropout vs. the best dropout method. 122

xv

CHAPTER I

INTRODUCTION

“Things will go wrong in any given situation if you give them a chance.”

– Edward A. Murphy

Smith’s Law: “Murphy was an optimist.”

Machine learning is widely used for prediction and decision-making, often

taking the place of human agents. Reliability of machine learning algorithms is a

rising concern in many sensitive applications, where the input data can be noisy

and uncertain. The uncertainty and noise in the data used to be random most of

the time, but now, the criminals have incentives to adversarially change the data.

As tasks pertaining to detecting malicious activities are increasingly assigned to

machine learning algorithms, criminals become increasingly motivated to put extra

effort into deceiving these algorithms.

The traditional prediction models are vulnerable when confronting

unexpected or maliciously manipulated data. This vulnerability is a serious

problem for the applicability of this modern technology. The criminals are learning

to tactfully disguise their actions. They strive to elaborately design innocent-

looking fraudulent samples when attacking machine learning systems. As a result,

since the classical machine learning techniques are not constructed with a safety

mindset in the first place, their susceptibility to data manipulation makes them

untrustworthy in many of the high-stake applications.

1

In this thesis, we present machine learning methods that are resilient and

reliable. Our methods utilize domain knowledge and problem structures to deliver

reliable predictions. This work has advanced the state-of-the-art in adversarial

machine learning by introducing efficient algorithms for learning robust models

when the output space is exponential in the input size. We show that by taking

advantage of the weaknesses of the adversaries, we will be able to learn models that

are particularly reliable when being attacked by those parties.

1.1. Motivation and approach

Conventional statistical methods – including machine learning – suppose that

training and test instances are independently and identically drawn from the same

distribution (the IID assumption)1, which is frequently not true. Due to this fact,

the traditional machine learning algorithms do not offer a realistic solution to many

of the existing and emerging real-world problems, where there are fundamental

reasons for the data samples to be interdependent or to be drawn from different

distributions.

In fact, there are two common situations, in each of which the IID assumption

does not hold. First, the train and the test data might have been drawn from

two non-identical distributions. The difference in the distributions, at train

time and at test time, can derive from: constant changes in the underlying data

generation sources; random noise; subjective conceptual drift, e.g., change of topic

in a discussion forum; or, a pensive agent might have intentionally manipulated

some parts of the data. Spiteful manipulation of the data practically serves some

1If the data samples are independently and identically drawn from a distribution, then we say
the samples are IID. The mathematical modeling of the distribution of IID samples is simpler
and cleaner. Although the IID assumption rarely holds in practice, many statistical approaches,
including classical machine learning, still suppose that it is satisfied.

2

FIGURE 1.1. The adversary manipulates the unseen data as a response to the
learner’s strategy. A robust model decreases the harmful effect of the adversarial
data alteration.

interests of the adversaries. To satisfy their interests, the adversaries design specific

samples such that some utility functions are maximized.

The learner usually has little or no knowledge of the details of these utility

functions. However, the adversary has either full information or a partial guess

of the learner’s strategies or the parameters of its decision-making algorithm.

The adversary may increase its knowledge about the learner’s underlying model

by submitting query examples and studying the responses of the machine

learning system. Potentially, the adversary will be able to acquire a near-perfect

approximation of the internal functionality of the learner’s prediction system.

Interdependent data samples are the second cause of violation of the IID

assumption. The dependency of data samples can have different forms. For

example, the sentences in a paragraph of an English text are not statistically

independent. And in graphed data, wherein each vertex has a label, the label

of each node may depend on the labels of the neighboring nodes. A particularly

important type of dependency is when the desired output of the algorithm has

3

some internal structure; examples of such outputs are the parse tree of a sentence,

labeling of the nodes in a graph, and segments of an image.

To date, most of the modern methods in machine learning are designed to

solve only one of these two challenges; i.e., either they approach the problem of

inter-related data, or they develop robust algorithms against noise and natural

or adversarial changes in the distribution of the data samples. In this thesis, we

introduce novel methods in machine learning where both of the IID assumptions

are violated: The samples are not independent, and they are not drawn from a

static distribution at train and test time. In particular, we focus on the worst-case

scenario, where the unseen data in the future will be intentionally manipulated by

some adversary to deceive the machine learning algorithm (Figure 1.1).

We introduce a direct but efficient robust modeling approach for solving the

problem of label prediction on graphs, where some opponent changes the properties

of each node to misguide the labeling algorithm as much as possible. We will

consider the conditions under which the efficiency of this algorithm is guaranteed.

Then, we propose a regularization-based approach, which creates customized

optimization programs to adopt the weaknesses of the adversaries and converts

them to the points of strength of the machine learning algorithm. This is done

by learning robust models that take the ultimate advantage of how the adversary

budget allows joint changing of a set of values in the input data.

1.2. Learning and prediction under uncertainty

Learning classifiers in the presence of noisy and uncertain instances is a

challenging and important task in modern machine learning. Noise in the data may

refer to the observations that are added or multiplied by unknown random values,

4

that have missing attributes, or that have inaccurate labels. Many of the real-

world data, such as texts, gene expression data, or images and videos are naturally

noisy. The noise can variously derive from, e.g., human error in data collection,

data processing, and/or data tagging; measurement errors; and/or sub-optimal

sampling resolutions. However, the existence of adversarial uncertainty in the data

is a more severe issue. Given the prospect of cyber-crimes in this century, it is an

important and more challenging task to learn models that are not only robust to

random noise, but are also robust to the worst-case adversarial ones. Therefore,

developing algorithms that are robust to the uncertainty caused by adversaries is of

growing interest (Kloft and Laskov, 2007).

When the instances are noisy, in most of the cases, there exists little or no

knowledge about the level of uncertainty in the data. In adversarial scenarios, the

adversary usually aims for maximizing a utility function, while having some budget

constraints for changing individual sets of features. Therefore, as the learner, we

do not know whether the observed information is what it initially used to be, or if

the adversary has changed it according to some underlying set of constraints and

utilities.

The adversaries actively change their strategies: As the learner blocks them

on one front, they seek to find another vulnerability of the machine learning

system. This problem can be formulated as a game between the learner and the

adversary: Each side will be rewarded when it chooses the right strategies.

One of the earliest works in adversarial machine learning was reverse

engineering classifiers (Lowd and Meek, 2005b,a; Nelson et al., 2010). The idea

is to find optimal attacks as a response to the specific model that the machine

learning algorithm has learned. Then, the machine learning algorithm can adjust

5

itself to be able to correctly classify the optimal attack. This ends up in a race

between the two players of an antagonistic game: the learner and the adversary.

In general, finding the Nash equilibrium for this game is intractable. Dalvi

et al. (2004) suggest that instead of finding a Nash equilibrium, we can select

a strategy for the next move of the adversary. Brückner and Scheffer derive an

optimization approach for finding the Nash equilibrium in static prediction games

under certain convexity assumptions (Brückner and Scheffer, 2009; Brückner

et al., 2012). They also propose a formulation for approximating the Stackelberg

equilibria (Brückner and Scheffer, 2011; Sawade et al., 2013).

Assuming that an adversarial game is zero-sum leads to a min-max

formulation: The learner tries to minimize a worst-case loss function under the

adversarial manipulation of the input data. Globerson and Roweis (2006) modeled

this data manipulation by feature deletion at test time. A generalized version of

this method was later proposed by Teo et al. (2008).

Xu et al. (2009) show that penalizing the optimization program by the dual

norm of the adversarial constraint is equivalent to optimizing against a worst-case

adversary that can manipulate features within that constraining ball.

Developing secure algorithms that are not mistrained by poisoned data is a

different view of adversarial machine learning. Data poisoning refers to engineering

samples that are adversarially crafted to mislead a specific machine learning

algorithm (Kloft and Laskov, 2007; Laskov and Kloft, 2009; Laskov and Lippmann,

2010; Biggio et al., 2012).

The dropout technique is another method that was originally introduced

for stabilizing the behavior of deep neural networks in the presence of noise in

the unseen data: During the training phase, some attributes of the data are

6

randomly dropped out while learning the parameters (Srivastava et al., 2014). In

shallow models, such as logistic regression (LR), dropout behaves as a regularizer

that penalizes feature weights based on how much they influence the classifier’s

predictions (Wager et al., 2013). Since, in adversarial machine learning, robustness

is often equivalent to regularization through the right penalty function, we expect

to gain robustness by deriving regularization methods that emulate the effect of

dropout training.

On the other hand, in many real-world scenarios, the machine learning

algorithm does not need to be robust to the worst-case adversary. Instead, it

suffices to learn the model such that it is reliable when encountering an average

opponent that might change the input data frequently, yet randomly in order to

deceive the algorithm. This fundamental idea, suggests that if we minimize the

expected loss function under adversarial noise, we will gain some robustness against

average adversaries. Dropout training simulates such an adversarial behavior. In

this dissertation, we derive a closed-form formulation for the expected hinge loss.

Our formulation is convex, and can be optimized efficiently.

In this thesis, we further expand some of the algorithms mentioned above

to perform robust prediction of complex outputs. We will show how we can gain

robustness by designing the appropriate regularization functions. We induce the

regularization functions from a worst-case uncertainty set, or we derive them from

the implicit marginalization effect of applying the dropout framework.

1.3. Predicting complex outputs

Structured learning is the problem of finding a predictive model for mapping

the input data into complex outputs that have some internal structure. Structured

7

output prediction is a challenging task by itself, but the problem becomes even

more troublesome when the input data is adversarially manipulated to deceive

the predictive model. The problem of adversarial structured output prediction is

relatively new in the field of machine learning.

We can abstract many real-world applications as an adversarial structured

output prediction problem. A motivating example of adversarial structured

prediction is collective classification of interconnected and potentially dishonest

nodes of a network. In a collective classification problem (Sen et al., 2008), the

goal is to label a set of interconnected objects simultaneously, using both their

attributes and their relationships. For example, linked web pages are likely to have

related topics; friends in a social network are likely to have similar demographics;

and proteins that interact with each other are likely to have similar locations and

related functions. Probabilistic graphical models, such as Markov networks (Taskar

et al., 2004a; Koller et al., 2003), and their relational extensions, such as Markov

logic networks (Domingos and Lowd, 2009b), can handle both uncertainty and

complex relationships in a single model, making them well-suited to collective

classification problems (Torkamani and Lowd, 2013).

Many collective classification models are evaluated on test data that is

drawn from a different distribution than the training data. This can be a matter

of concept drift, such as varying topics in interconnected news web pages at

different times, or the change in the distribution can be attributed to one or more

adversaries who are actively modifying their behavior to avoid detection. For

example, when the search engines began to use incoming links to rank web pages,

spammers began posting comments on unrelated blogs or message boards, with

links back to their websites. Since incoming links are used as an indication of the

8

quality of the web page, manufacturing of the incoming links makes a spammy

website appear more legitimate. Web spam (Abernethy et al., 2010; Drost and

Scheffer, 2005) is one of many examples with explicitly adversarial domains; some

other examples are counter-terrorism, online auction fraud (Chau et al., 2006), and

spam in online social networks.

One important aspect of adversarial machine learning that is currently

missing in the literature of adversarial structured prediction is a deep analysis of

the vulnerability of structured output prediction methods to exploratory evasion

attacks. In particular, in the existing studies, the assumption is that the adversary

is completely aware of the classifier and the learned parameters of the classifier; but

this assumption will not hold in practice, in general. In real problems, such as a

web spam detector in a search engine, the parameters of the classifier are unknown

for the spammers, and the spammers need to infer them by exploration techniques.

In this thesis, we address the problem of adversarial structured prediction and

propose efficient algorithms for learning and prediction of structured outputs in

adversarial settings.

1.4. Contributions

In this thesis, we propose novel methods for constructing large margin

classifiers, which are robust to uncertainties and have a better generalization on the

future data. Tractability of the robust learning algorithms is a central theme in this

dissertation. We attack the hard problem of adversarial stuctured prediction. We

prove that robustness can be achieved by penalizing the problem by a customized

regularization function. Then, we show that the dropout framework also results

in a regularization effect in the large margin classifiers, which leads to a better

9

generalization of the predictive model. The following are the highlights of our

contributions:

1. Convex adversarial collective classification

We present a novel method for robustly performing collective classification in

the presence of a malicious adversary that can modify up to a fixed number of

binary-valued attributes. Our method is formulated as a convex quadratic

program that guarantees optimal weights against a worst-case adversary

in polynomial time. In addition to increased robustness against active

adversaries, this kind of adversarial regularization can also lead to improved

generalization, even when no adversary is present. In experiments on real and

simulated data, our method consistently outperforms both non-adversarial

and non-relational baselines.

2. Equivalency of adversarial robustness and regularization

Previous analysis of binary SVMs has demonstrated a deep connection

between robustness to perturbations over uncertainty sets and regularization

of the weights. We explore the problem of learning robust models for

structured prediction problems. We first formulate the problem of learning

robust structural SVMs when there are perturbations in the feature space.

We consider two different classes of uncertainty sets for the perturbations:

ellipsoidal uncertainty sets and polyhedral uncertainty sets. In both cases, we

show that the robust optimization problem is equivalent to the non-robust

formulation with an additional regularizer. For the ellipsoidal uncertainty

set, the additional regularizer is based on the dual norm of the norm that

constrains the ellipsoidal uncertainty. For the polyhedral uncertainty set, we

10

show that the robust optimization problem is equivalent to adding a linear

regularizer in a transformed weight space related to the linear constraints

of the polyhedron. We also show that the constraint sets can be combined,

and we demonstrate some interesting special cases. This represents the

first theoretical analysis of robust optimization of structural support vector

machines. Our experimental results show that our method outperforms

the non-robust structural SVMs on real-world data, when the test data

distributions are drifted from the training data distribution.

3. Robustness of large margin methods through dropout

regularization

Dropout training is a regularization technique that consists of setting

randomly selected input features or hidden units to zero for each training

example. Dropout training was originally proposed for deep neural networks,

but even shallow models, such as logistic regression, can benefit from

training with this kind of noise. In this thesis, we analyze dropout training

in support vector machines (SVMs). First, we derive a convex, closed-form

objective for linear SVMs that marginalizes over all possible dropout noise.

Our objective is simple, efficient to optimize, and closely approximates

the exact marginalization. For SVMs with non-linear kernels, we define

dropout over input space, feature space, and input dimensions. We introduce

methods for approximate marginalization over feature space dropout, even

when the feature space is infinite-dimensional, and Monte-Carlo methods

for input space and dimension dropout. We introduce two methods for

approximating dropout on the kernel feature map. The first uses a Fourier

basis to approximate a high-dimensional kernel with a finite feature map

11

and then applies our linear SVM dropout marginalization technique to the

transformed representation. The second approximately marginalizes over

dropout noise in the dual representation. In experiments on several text

datasets, our marginalized objective is more accurate than standard linear

SVM training. On several text datasets, our marginalized objective in the

primal form is more accurate than standard linear SVM training. On MNIST

and census data, both marginalized kernel dropout methods outperform the

standard RBF kernel. We also introduce a novel dimension dropout method

and show that it is more accurate than the standard RBF kernel on MNIST,

especially when the training sizes are smaller.

1.5. Thesis outline

The following is the summary of the dissertation’s chapters:

Chapter 2. Background: First, we review the basic concepts of statistical

machine learning and structured prediction methods. Then, we focus on the high-

level explanation of the adversarial machine learning algorithms. We introduce a

general framework that abstracts most of the adversarial scenarios as a generic

multi-agent game. The adversary’s counteractive effects on the learning and

prediction algorithms cause the learned model perform poorly in the future. To be

robust to unpredictable effects, we should know the capabilities of the adversaries.

We define a theoretical model for the adversary and categorize the properties of the

adversary based on different criteria.

Chapter 3. Convex adversarial collective classification: In this

chapter, we start by formulating the problem of adversarial collective classification

as a bi-level minimax optimization program. We show that under certain

12

interconnectivity conditions of the data graph, the solution of the lower-level

optimization program is guaranteed to be integral after relaxation. Then, we

introduce an equivalent quadratic optimization program that can be efficiently

solved. We run experiments on the various datasets, and we show that our method

always outperforms the baselines. This chapter is co-authored with my advisor

Dr. Daniel Lowd and is published in the thirtyth proceedings of international

conference on machine learning (Torkamani and Lowd, 2013).

Chapter 4. Equivalency of adversarial robustness and

regularization: We focus on learning robust models for generic structured

prediction problems. We discuss the different classes of uncertainty in the feature

space: ellipsoidal and polyhedral. Then, we derive the robust optimization problem

for each of these uncertainty sets. We show how the non-robust formulations

become equivalent to the robust ones by adding a customized regularizer to their

objective functions. We show how the customized regularization function should

be derived from each specific uncertainty set, and we study several special cases of

such sets. Finally, we derive a regularizer for combined ellipsoidal and polyhedral

uncertainty sets. This chapter is co-authored with my advisor Dr. Daniel Lowd and

is published in the thirty-first proceedings of international conference on machine

learning (Torkamani and Lowd, 2014).

Chapter 5. Marginalization and kernelization of dropout for

support vector machines: We study dropout training for support vector

machines. We derive a closed-form objective function for linear SVMs. This

objective is the result of marginalizing over the continuum of possible dropped

out noisy samples. We also discuss the possibility of applying dropout to SVMs

with non-linear kernels. We define the concept of applying dropout in input

13

space, feature space, and input dimensions, and we introduce several methods

for approximating the marginalization effect of dropout on kernel SVMs. The

experimental results on several datasets, such as text and image classification, show

that our methods are more accurate than the standard support vector machines.

This chapter is co-authored with my advisor Dr. Daniel Lowd and is under review

in the Journal of Machine Learning Research (JMLR).

Chapter 6. Conclusion and future directions: We summarize our

contributions. We also discuss the future research directions and how the proposed

methods in this thesis can be extended.

14

CHAPTER II

BACKGROUND

In this chapter, we review the basic concepts of adversarial machine learning.

Our focus is the on methods that also apply to structured prediction problems. The

chapter concludes with examples of real-world problems that are adversarial, and

the output space is structured.

2.1. Statistical learning

In machine learning, output prediction is the procedure of observing the state

x of some phenomenon (input) and using our understanding of the concept (learned

model) to predict some hidden property y of the observed data (output). In this

section, we briefly address the fundamentals of statistical machine learning.

2.1.1. Supervised learning

In supervised learning, the learner has access to samples that contain both

the attributes’ vectors and their corresponding labels. The training data samples

D = {(x1,y1), . . . , (xN ,yN)} ∈ (X × Y)N , are input-output pairs from the

past. We assume that each sample (xi,yi) is drawn from an underlying joint

distribution over inputs and outputs: P (X ,Y). Traditionally in machine learning,

the researchers usually assume that yi is the correct label for the input xi.

The goal is to find a mapping function (also known as a hypothesis function)

h ∈ H : X → Y , where H is the space of relevant hypotheses, and X and Y are the

set of possible inputs and outputs, respectively. Given x ∈ X , the predicted output

is ŷ = h(x) ∈ Y .

15

FIGURE 2.1. The supervised learning procedure

If Y = Rm (m-constant), then the problem is called regression; if |Y| = 2 (e.g.

Y = {0, 1}), then the prediction is called binary classification; if Y is a discrete set,

and |X | � |Y| > 2, then the problem is called multi-class classification. If |Y| is

extremely large and each member Y has some internal structure, then the problem

is called “structured prediction”.

The mapping function h should produce accurate predictions; i.e., for an

input xi, the predicted output ŷi = h(xi) should be “close” to the true output yi.

This closeness is usually defined by some non-negative loss function l : Y × Y → R

that determines the distance of ŷ to y. Sometimes the loss function l(y′, y) is not

convex; and therefore, the optimization problem in Equation 2.5 is not tractable.

Then, a convex surrogate function for l(y′, y) is used instead. We are interested

in the hypothesis h that generalizes well to the unseen samples of the joint

distribution over inputs and outputs. From a statistical point of view, we would

like to find h∗ ∈ H, such that the expected loss is minimized:

16

h∗ = arg min
h∈H

E(x,y)∼P (X ,Y) [l (h(x),y)] (Equation 2.1)

In real world problems, we don’t have access to the whole population, or

equivalently, we don’t know P (X ,Y); therefore, the empirical population (observed

samples from the past) is used, instead:

h∗ = arg min
h∈H

E(x,y)∼D [l (h(x),y)]

= arg min
h∈H

1

N

N∑
i=1

l (h(xi),yi) (Equation 2.2)

The term 1
N

∑N
i=1 l (h(xi),yi) is called the empirical risk. Figure 2.1 shows

the procedure of supervised learning.

2.1.2. Generalized linear models

Flexibility of h mostly depends on the function space H. We assume that h is

parameterized by a parameter vector w. In a general form, the hypothesis h can be

a search pocedure that finds the best output. We can assume that the best output

y maximizes some score function s(x,y; w), then h can be formally defined as:

h(x; w) = arg max
y∈Y

s(x,y; w) (Equation 2.3)

17

In this thesis, we suppose that the scoring function is linear in the parameters

w:

s(x,y; w) =
m∑
j=1

wjfj(x,y) = wT f(x,y) (Equation 2.4)

where fj(x,y) is an arbitrary function of values from the input and the

output space and is called a feature function. We refer to this parameterization

of the hypothesis function as a generalized linear model (GLM).

For some problems, such as when |Y| = 2, arg max
y∈Y

s(x,y; w) can be

calculated in closed-form; then, we will have an explicit form for the hypothesis

h.

2.1.3. Regularization

If the number of observed samples |D| is small, or if the number of possible

hypotheses |H| is extremely large, then the learned hypothesis h∗ in Equation 2.2

is likely to “overfit” the training data; i.e., we will achieve zero (or very small)

empirical loss, but large errors on output prediction for unseen (test) data. We

usually can not increase the number of training data, but we can control the

“flexibility” of the hypothesis h to prevent it from overfitting to the training data.

This task is performed by “regularizing” the hypothesis h. Regularization is done

by minimizing a linear combination of the empirical risk and a penalty function

ΩH(h) that controls the flexibility of h:

h∗ = arg min
h∈H

λΩH(h) +
1

N

N∑
i=1

l (h(xi), yi) (Equation 2.5)

18

This approach is called regularized risk minimization. The coefficient of

the regularization term λ is used to create a balance between the amount of

penalization of the model parameters and the empirical risk minimization.

We can interpret the regularized risk minimization as an a posteriori

probabilistic parameter learning method. The regularizer can be seen as the log

of the prior distribution over the parameters, while its partition function does

not depend on the parameters and can be removed from the objective of the

optimization program (Bishop, 2006).

Choosing the right regularization function is crucial in gaining the desirable

generalization effect. For example, in GLMs, if we have prior knowledge that

the weights are IID and are drawn from a Gaussian distribution, then we set

Ωw(w) = wTw. This assumption is somewhat common because the squared L2

norm is continuous, its derivative is simple, and it can be very efficiently optimized.

If we expect the weight vector w to be sparse, then we can implicitly assume that

it is drawn from a Laplacian distribution or equivalently set the regularization

function to the L1 norm: Ωw(w) =
∑m

j=1 |wj|

Clearly, such näıve assumptions are not necessarily optimal choices. Some

of the main contributions of this thesis are centered around recipes for deriving

effective regularization functions.

2.2. Structured learning

The traditional machine learning algorithms are designed to solve prediction

problems whose outputs are a fixed number of binary or real-valued variables1.

1In these prediction algorithms, the desired output must be representable as a K-dimensional
vector, where K is a constant (e.g. K = 1 for scalars). For example, for a desired output
y ∈ {c1, . . . , cK}, the common practice is to use a different representation for the output y. In

19

In contrast, there are problems with a strong interdependence among the output

variables, often with sequential, graphical, or combinatorial structures. These

problems involve prediction of complex outputs, where the output has some

structure such as trees and graphs; these kinds of outputs are called structured

outputs. Problems of this kind arise in security, computer vision, natural language

processing, robotics, and computational biology, among many others.

Structured prediction (Bakir et al., 2007) provides a unified treatment

for dealing with structured outputs. The structured prediction algorithms root

back in a few seminal works: McCallum et al. (2000); Lafferty et al. (2001);

Punyakanok and Roth (2001); Collins (2002); Koller et al. (2003); Altun et al.

(2003); McAllester et al. (2004); Tsochantaridis et al. (2006), among others.

In this section, we explain the basics of structured prediction methods. We

start with a brief explanation of the basics of supervised learning for structured

prediction, and then we present some of the most practiced training algorithms for

training structured predictors.

2.2.1. Motivation of using structured prediction

Before the emergence of the structured prediction algorithms, probabilistic

graphical models (PGMs) (Pearl, 1988) were the most successful methods for

solving problems with strongly interdependent outputs. By combining statistical

learning and graph theory, PGMs provide a framework for making an inference

about dependent variables and confounding factors. The basic idea behind PGMs

is that the probability distribution function of the variables in the model can be

factorized based on the graph of the direct dependencies among the variables.

this case, y will be represented as a K-dimensional binary vector y′, where y′
i = 1 if y = ci, and is

zero otherwise.

20

Although PGMs apply to many problems, they are overly general purpose,

which is inevitably costly. Using the probability distribution function of variables in

the model is desirable in theory, but estimating the parameters of the distribution

functions – especially the normalization constants (a.k.a. partition functions), can

be intractable. Structured prediction algorithms do not calculate the probability

distribution of the variables explicitly, and mainly avoid the calculation of

the normalization constants. Therefore, learning the parameters of structured

prediction models is usually tractable, especially when tailored to specific problems.

The principal theme in all structured output prediction problems is the

combinatorial nature of the labels. In particular, the number of possible outputs

in such problems is exponential in the input size. This fact makes these problems

distinctive from the classic problems that classical machine learning algorithms

have been trying to solve. Therefore, new algorithms are needed for handling such

problems.

2.2.2. Scoring function

A key concept in the state-of-the-art structured prediction algorithms is the

notion of extended feature function in a GLM setting. The inputs of the feature

functions are both the original input x ∈ X and a hypothesized output ỹ ∈ Y .

We define f(x,y) as the feature vector. The mathematical details of f(x,y) are

problem-specific. For example, in graphical models (Lauritzen, 1996), the feature

function is the same as the vector of all potential functions (Bilmes et al., 2001;

Torkamani and Lowd, 2013; Taskar et al., 2004a), and in maximum entropy

(MaxEnt) models (Theil and Fiebig, 1984), or equivalently in log-linear models,

the sufficient statistics are used as the feature functions.

21

In general, the choice of f(x,y) is a model selection problem. A specific

example is collective classification of inter-connected documents (such as web

pages) as “spam” and “non-spam”. Let E be the set of the edges between the

documents, where eik = 1 means that there is an edge from node i to node k

and is zero otherwise. Also, let xij be the indicator variable that represents if

the jth word is present in the ith document; for example if “v!agr@” has index

700 in the dictionary, then x200,700 = 1 means that the word “v!agr@” is present

in the 200th document, and x200,700 = 0 means it is not present. Also let yi ∈

{“spam”, “non-spam”} be encoded as the pair (yi1, yi2), where (yi1, yi2) = (1, 0)

means yi = “spam” , and (yi1, yi2) = (0, 1) means yi = “non-spam”. Now we can

define a simple feature function:

fjk(x,y) =
∑
i

xijyik (Equation 2.6)

fekk′(x,y) =
∑
i,j

eijyikyik′ (Equation 2.7)

The feature function f(x,y) now will be built by stacking all fjk(x,y)’s and

fekk′(x,y)’s in one vector. The feature function f(x, ỹ), with true values of x and

a hypothetical output ỹ is used as the higher level input to the mathematical

model that describes the relevance of output structure ỹ. In particular, a linear

combination of individual elements in f(x, ỹ) is used as the criterion for relevance

of the hypothetical output ỹ to the true y, and is called the scoring function.

Formally, the scoring function is defined in the following form:

score(x, ỹ,w) = wT f(x, ỹ) (Equation 2.8)

22

w is called the model weight vector, and the goal of the machine learning algorithm

is to learn such that the true labeling y gains the maximum score when plugged

into the score function. Unfortunately, it is possible that in some cases an alternate

labeling ỹ, which is very different than y also gains a high score. Therefore, the

learning algorithm needs to select a w that penalizes such scenarios. We want

to learn w such that the closer ỹ is to y, the higher the score of ỹ is. Therefore

∆(ỹ,y) is defined as a measure of dissimilarity between ỹ and y. The Hamming

distance between ỹ and y is one of the popular choices. The difference function

∆(ỹ,y) plays an important role in many of the weight learning algorithms for

structured output prediction.

In structured output prediction algorithms, a crucial problem is the hardness

of searching different applicable ỹ ∈ Y that maximizes the scoring function. In

particular, after learning a weight vector w, one will need to find the best output

for a given input. This is the “argmax problem” defined in Equation 2.9 and

referred to as maximum a posteriori (MAP) inference:

ŷprediction = hw(x)

= arg max
ỹ∈Y

wT f(x, ỹ) (Equation 2.9)

This problem is not tractable in the general case. However, for specific Y

and f(x,y), one can use methods such as dynamic programming algorithms or

integer programming algorithms to efficiently find solutions. In particular, if f(x,y)

decomposes over the vector representation of y, such that no feature depends on

other features that have the same elements of y, then the problem is efficiently

solvable.

23

2.2.3. Structured Prediction Methods

In this part, we briefly explain some of the primary methods for weight

learning in structured prediction methods.

2.2.3.1. Structured Perceptron

The structured perceptron is an extension of the standard perceptron

(Lippmann, 1987) to structured prediction (Collins, 2002; Collins and Duffy, 2002;

McDonald et al., 2010). The algorithm of learning w is shown in Algorithm 1.

Algorithm 1 AveragedStructuredPerceptron((x1, y1), . . . , (xN , yN),maxIter)

w ← [0, . . . , 0]T

c ← 1
for l = 1 to maxIter do

for i = 1 to N do
ŷi = arg maxỹ∈Y wT f(xi, ỹ)
if ŷi 6= yi then

w ← (1− θl)w + θlα (f(xi,yi)− f(xi, ŷi))
end if

end for
end for
return w

In Algorithm 1, θl is a real number between 0 and 1 that determines the

weight of the current update relative to previous weight in the lth iteration.

In a simple averaging algorithm, we can set θl = 1
i
. α as the learning

rate. The algorithm applies an update to the weight whenever the output of

arg maxỹ∈Y wT f(x, ỹ) is not equal to the true y. Note that the algorithm is only

applicable when the resulting output is either exactly equal to the true one, or it is

completely different. In other words, the difference function ∆(ỹ,y) ∈ {0, 1}. As a

consequence, this algorithm does not generalize well to unseen data.

24

2.2.3.2. Maximum entropy and log-linear models

The maximum entropy and log-linear models are duals of each other when

seen as optimization programs. Therefore, both of them are essentially the same

algorithm. In these algorithms, a parameterized distribution is discriminatively

defined over an output ỹ (or sometimes generatively over both the input x and the

hypothetic label ỹ), the feature function f(x,y) is seen as the sufficient statistics of

this distribution:

p(ỹ; x,w) =
1

z(x,w)
ewT f(x,ỹ) (Equation 2.10)

The function z(x,w) is the normalization function, and is called the partition

function. For z(x,w) we have:

z(x,w) =
∑
ỹ∈Y

ewT f(x,ỹ) (Equation 2.11)

The higher the value of p(ỹ; x,w) is for a specific ỹ, the more probable it is that ỹ

is “close” to the true labeling y. Sometimes, L(ỹ; x,w) = − log p(ỹ; x,w) is used as

measure of unlikeliness of ỹ; smaller L(ỹ; x,w) means better ỹ:

L(ỹ; x,w) = − log p(ỹ; x,w)

= −wT f(x, ỹ) + log(
∑
ỹ∈Y

ewT f(x,ỹ)) (Equation 2.12)

The maximum entropy framework is one of the most successful methods

for structured prediction. For example McCallum et al. applied this method to

sequence labeling problems (McCallum et al., 2000), and a lot of follow-up work

25

applied maximum entropy structured prediction in different disciplines (Califf and

Mooney, 2003; McDonald and Pereira, 2005; Begleiter et al., 2004; Punyakanok and

Roth, 2001; Chieu and Ng, 2002; Shen et al., 2007; Domke, 2013).

It is worth mentioning that conditional random fields (CRFs) can be seen as

a more general framework where a probability distribution is fitted to the data, and

the inference could be performed over structured outputs as well.

2.2.3.3. Re-ranking and search-based methods

Re-ranking is mostly applied to the natural language processing problems.

Assume that we have access to the Oracle that solves some inference problem, but

instead of generating “the best” output, it generates a list of “n best” outputs.

Then, the learner’s goal is to build a second model for choosing “one output” from

the “n best” outputs. A second model then improves this initial ranking, using

additional features as evidence. This approach allows a tree to be represented as

an arbitrary set of features, without concerns about how these features interact or

overlap, and without the need to define a derivation which takes these features into

account (Collins and Duffy, 2002; Collins and Koo, 2005).

Re-ranking has been applied in a variety of NLP problems including parsing

(Collins and Duffy, 2002; Collins and Koo, 2005; Charniak and Johnson, 2005),

machine translation (Shen et al., 2004; Och et al., 2003), question answering

(Ravichandran et al., 2003), semantic role labeling (Toutanova et al., 2005), and

other tasks. A main feature of re-ranking is that different loss functions can be

easily embedded into the algorithm and immediately tested. There are also some

drawbacks. For example, in a re-ranking algorithm, one should have an Oracle for

26

choosing n-best initial ranking, which may not be available, or n may be too large

to be useful.

Search-based structured prediction can be seen as an improved and more

advanced version of re-ranking. These algorithms are mostly developed by the

re-enforcement learning community and have a flavor of solving the structured

prediction problems from a planning perspective. Daumé et al. (Daumé Iii et al.,

2009) introduced search-based structured prediction with the SEARN (SEarch

And leaRN) algorithm. This algorithm integrates searching and learning to solve

structured prediction problems. SEARN is a meta-algorithm that transforms

structured prediction problems into simple classification problems, to which any

binary classifier may be applied. SEARN is able to learn prediction functions for

different loss functions and different features functions. There are several other

related works that use similar techniques (Daumé III and Marcu, 2005; Daumé III,

2009b,a; Doppa et al., 2012).

2.2.3.4. Maximum-margin Markov networks

The max-margin Markov network (M3N) class of structured prediction

methods are a generalization of max-margin methods in traditional machine

learning (also known as support vector machines (SVM)) to structured output

prediction settings. The early work by Taskar et al. (Koller et al., 2003; Taskar

et al., 2004a, 2005) was followed by a large quantity of additional progresses in

development of max-margin methods (Tsochantaridis et al., 2006, 2004; Yu and

Joachims, 2009; Sen et al., 2008; McDonald et al., 2007).

27

To date, the state-of-the-art structural SVM is the 1-slack formulation

(Joachims et al., 2009), which solves the following optimization program:

minimize
w,ζ

f(w) + Cζ subject to (Equation 2.13)

ζ ≥ max
ỹ

wT (φ(x, ỹ)− f(x,y)) + ∆(y, ỹ)

f(w) is a regularization function, that penalizes “large” weights. Depending on

the application, f(w) can be any convex function in general. Semi-homogeneous

functions, such as norms, or positive powers of norms are among the favorite

choices2. f(w) = 1
2
wTw is the most commonly used regularization function. For

simplicity, I have expressed the input data as a single training example, but it

can easily be expanded to set of N independent examples, each of which makes

an independent contribution to the loss function. The variable ζ is the only slack

variable, which should be minimized, along with the regularization function.

The large-margin Markov networks are developed as convex optimization

programs. Therefore, it is mathematically convenient to derive robust formulations

based on them. In this dissertation, we mainly focus on large-margin methods.

2.2.4. Optimization Algorithms

In most of the methods that we described above, the learning algorithm is

embedded into the model, but for the max-margin methods, we usually come up

with a mathematical optimization program. In the following, we briefly explain two

of the state-of-the-art optimization algorithms that are used for structured learning.

– Cutting plane algorithm:

2A function f(z) is semi-homogeneous if and only if f(az) = aαf(z) for some positive α.

28

In parameter learning of the max-margin structured methods, the goal is to

select the parameters for which the score of the true labels is ranked higher

than the score of all alternate labels. Theoretically, this can be done via a

convex optimization program, such as a quadratic program. The issue is

that the number of alternate labels is usually exponential in the input size;

therefore, listing all of them is intractable. The cutting plane algorithm at

each iteration finds the alternate labeling that is most different from the

true labeling and has the highest score, then adds appropriate constraints to

make sure the score of the true labeling is relatively higher than this alternate

labeling (Tsochantaridis et al., 2004, 2006; Koller et al., 2003; Taskar et al.,

2005; Yu and Joachims, 2009; Joachims et al., 2009)

– Column generation:

We can solve the convex program that is generated by the max margin

approach in its dual form. The dual optimization program has a similar

difficulty where the number of the dual variables is exponential in the

input size. Similar to the cutting plane algorithm, the column generation

method selects a dual variable at each iteration, and then adds it to the dual

program. Solving the problem in its dual form is useful because then we can

use the power of kernel functions. There are several works that use column

generation for parameter learning (Taskar et al., 2005; Teo et al., 2008; Smola

et al., 2007; McAuley et al., 2008).

– Exponentiated gradient:

The exponentiated gradient algorithm also solves the optimization program

in its dual form and uses a gradient ascent algorithm for each update

in each iteration. The key point in the algorithm is that the gradient is

29

exponentiated (i.e. eg is used instead of the gradient g), and there are

convergence theorems as well as experimental evaluations that prove the

efficiency of this approach (Kivinen and Warmuth, 1997; Bartlett et al., 2004;

Globerson et al., 2007; Collins et al., 2008).

2.3. Adversarial machine learning

In this section, we discuss the theoretical framework of adversarial machine

learning in general, and at the same time address the main branches of the existing

work that apply to structured prediction problems.

Adversarial machine learning studies machine learning techniques that are

robust against adversarial components, which rule over the process of input data

generation. As security challenges are increasing, the need for adversarial machine

learning algorithms is becoming more apparent these days (Laskov and Lippmann,

2010). In analogy with security problems, adversarial machine learning can be

seen as a game between two players, where one player wants to protect the normal

functionality of a system, and the other player wants to pursue its malicious goals.

In adversarial machine learning terminology, the first player is called the learner (or

the defender), and the second player is called the adversary (or the attacker) (Dalvi

et al., 2004). There has been a comprehensive body of work in recent years that

examines the security of machine learning systems; this set involves different classes

of possible attacks against machine learning systems (Lowd and Meek, 2005a;

Globerson and Roweis, 2006; Teo et al., 2008; Lowd and Meek, 2005b; Blanzieri and

Bryl, 2008; Brückner and Scheffer, 2009; Nelson, 2010; Brückner and Scheffer, 2011;

Dreves et al., 2011; Brückner et al., 2012; Dritsoula et al., 2012; Sawade et al.,

2013).

30

In the following subsection, we briefly address some of the most important

aspects of the state-of-the-art methods, and we will discuss the common themes in

adversarial machine learning algorithms.

We will also talk about regret minimization algorithms, which are somewhat

complementary to the adversarial machine learning. In the regret minimization

framework, Nature behaves like an adversary and sets the costs and rewards. The

goal is to choose a sequence of actions that minimizes the future regret. Regret is

defined as the sum of all incurred costs of chosen actions at all time steps, minus

the sum of the costs when only one best-fixed action or policy had been taken at all

the times. The best-fixed action would be the one that would have been selected if

all of the costs were known in hindsight.

In this section, our perspective is mostly from the learner’s point of view,

and we categorize the adversarial attacks based on higher-level properties of an

adversary. For an extensive collection of possible threats that make most of the

classical machine learning algorithms vulnerable to adversarial attacks refer to

Nelson (2010).

2.3.1. Adversary’s theoretical model

We start this section with some definitions:

Antagonistic adversary and zero-sum games: The adversary’s goals are

explicitly against the duties of the learner; i.e. the adversary’s win equally means

the learner’s loss and vice-versa. These games are called zero-sum, and such an

opponent is known as an antagonistic adversary.

Non-antagonistic adversary and non-zero-sum games: If the

opponent’s goals are implicitly against the learner’s goals, then the adversary is

31

seeking its benefits, which may or may not be directly harmful to the learner.

Whenever the amount of bilateral rewards and losses of each side of the game

are not necessarily equal, then the game is non-zero-sum. If increasing the cost

of the learner is not the primary aim of the adversary, then it is a non-antagonistic

adversary.

Modeling the non-zero-sum game is relatively simple. Let w ∈ W be

the parameters of the learners model, and a ∈ A be the parameters of the

adversary’s model, through which the adversary directly affects the performance of

the machine learning algorithm. W and A are respectively the action space for the

learner and the adversary. Also, let ra(w, a) be the loss function that the learner

wants to minimize by choosing the right w3. An antagonistic adversary wants to

maximize the loss of the learner by selecting an appropriate action a. Therefore,

the adversarial game can be formulated as:

min
w∈W

max
a∈A

ra(w, a) (Equation 2.14)

We present a general abstraction of adversarial games in Algorithm 2.

The machine learning algorithm (the learner) chooses an algorithm such

as decision tree classification, Näıve Bayes, support vector machine, etc., and

learns the parameters of the selected model based on its prior belief about the

adversary and the previously observed data. On the other hand, the adversary

also chooses an action from its plausible set of actions; this action is selected

3The function ra(w,a) is the reward of the adversary. In a zero-sum game, the reward function
for the learner is rl(w,a) = −ra(w,a); therefore, ra(w,a) is the loss function from the learner’s
perspective.

32

Algorithm 2 Adversarial Game

Initialize:

– Learner’s prior belief:

∗ The learner chooses a model M as the machine learning algorithm.

∗ The learner initializes its belief about the adversary’s set of strategies:
Â based on the previous observations.

∗ The learner selects parameters w of the model M based on Â and the
earlier observations.

– Adversary’s prior belief:

∗ The adversary chooses a set of strategies A based on its own prior
knowledge and restrictions.

∗ The adversary initializes its initial belief on the learner’s model M̂, and
its belief on the model parameters ŵ.

∗ The adversary chooses an action a ∈ A.

– Nature sets the laws:

∗ Nature chooses a set of incentives R.

while Set of Incentives R exists do
Defend:

– The learner updates its approximation of the adversary’s set of strategies Â.

– The learner updates parameters w based on Â and the observed adversary’s
action a.

– The learner gains reward rl(w, a) ∈ R
Attack:

– The adversary chooses an attack a ∈ A
– The adversary gains reward ra(w, a) ∈ R
– The adversary updates Â based on the observed reward ra(w, a) and its

new understanding of R.

Nature:

– Nature updates R.

end while

based on the adversary’s prior belief about the learner’s choice of the model

and its parameters. Note that each of the adversary’s or learner’s moves can be

randomized or deterministic. In fact, each of the players may choose a mixed

33

strategy, rather than a fixed move. It is Nature that decides on the amount of

positive or negative payoffs of each combination of the strategies that are chosen

by the players. For example, in email spam detection, there are three sides: the

spam-filter, the spammer, and the user of the email service. Some emails are

considered as spam by some users but are valuable information for some other

users. Therefore, if the spam filter algorithm wants to use a fixed model for all

users, then it should carefully update its belief about the pay-offs that are made by

Nature.

The order of the itemized events in Algorithm 2 can be completely arbitrary.

Each of the existing approaches to adversarial machine learning is designed based

on some assumptions about Algorithm 2. In the following, we briefly categorize the

main possibilities.

2.3.1.1. Type of adversarial problems

A key point of difference, among algorithmic approaches that are designed for

adversarial machine learning, is the order in which the events of Algorithm 2 occur.

In particular, the existing studies are mostly based on three general assumptions

regarding the possible order in which events occur:

– Based on Stackelberg competition scenario : The Stackelberg

competition model is a strategic game model where one of the players (called

“the leader”) plays first, and then the other player (called “the follower”)

plays sequentially. This model is the closest model to real-world challenges.

The learner (the leader) updates its model parameters after observing the

adversary’s (the follower’s) action, and possibly incurs some losses (Globerson

34

and Roweis, 2006; Teo et al., 2008; Brückner and Scheffer, 2011; Sawade

et al., 2013; Torkamani and Lowd, 2013).

– Based on Nash Equilibria: In these models, although the order of events

is arbitrary, hypothetically, there exist optimum joint strategies of both

players, where no player gains more rewards by deviating from its current

policy. It is a known fact from Game Theory that such optima do not

necessarily exist among pure strategies (Brückner and Scheffer, 2009; Dreves

et al., 2011; Brückner et al., 2012; Dritsoula et al., 2012).

– Based on Poisoning the Training Data: The adversary generates

several specially designed data points and injects them into the training

data. The adversary’s goal in these kind of attacks is to make the machine

learning algorithm learn a wrong model in the first place. Such attacks can be

designed to target individual machine learning algorithms (Biggio et al., 2012;

Dekel et al., 2010; Biggio et al., 2013a,b, 2014).

– Based on Regret Minimization: In these models, the adversary and

Nature are the same, and Nature chooses a new cost function for each action

of the learner at each iteration of the game. The goal is to minimize the

regret that the learner would suffer, in comparison with what they would have

chosen at a time in which they knew all of the costs imposed by Nature, in

hindsight, and had chosen a fixed strategy as the response. (Shalev-Shwartz,

2011; Ross et al., 2011, 2010).

In general, finding the Nash equilibrium becomes harder when the

dimensionality of the players’ actions is large and the utility functions are arbitrary.

Brückner and Scheffer (2009) show that under certain convexity and separability

35

conditions of the utility function, a Nash equilibrium exists; this equilibrium can be

found by simulating the adversarial game. Therefore, Stackelberg competitions are

more approachable techniques, because the learner should select the strategy that

restricts the worst-case adversary in a minimax formulation. The learner attempts

to minimize a loss function assuming a worst-case adversarial manipulation. An

unrealistic assumption that many of the papers make to simplify the problem is the

continuity of feature functions, which does not hold in many domains (Globerson

and Roweis, 2006; Teo et al., 2008; Brückner and Scheffer, 2011; Sawade et al.,

2013; Brückner and Scheffer, 2009; Dreves et al., 2011; Brückner et al., 2012;

Dritsoula et al., 2012).

Globerson and Roweis (2006) formulate the problem of feature deletion at

test time as a Stackelberg game. This method is only applicable to binary and

multi-label classification and does not apply to the structured output prediction

problems. Another weakness of this approach is that it is only robust to feature

deletion; other possible adversarial manipulations of data, such as feature, are

ignored. Teo et al. (2008) generalized the former method to all invariants of

input data4. This method is not practical whenever the number of possible

transformations is exponential in the input size (or sometimes infinite).

2.3.1.2. Knowledge about the opponent

From the knowledgeability perspective, there are two types of adversaries:

passive or active. Passive adversaries do not have access to the learner’s model,

so they try to attack the system, and observe the outcomes, in order to infer the

parameters of the algorithm working behind the scenes. Active adversaries have

4In machine learning and computer vision terminology, an “invariant” of a data point x with
label y is a variation of x, namely x̃, that the classifier of interest still labels it as y.

36

full access to the learner’s model and the parameters that the learner has selected

for the model (Lowd and Meek, 2005b,a; Blanzieri and Bryl, 2008). A passive

adversary may converge to an active adversary in theory, especially if the learner

does not update its model parameters. In real-world’ problems, the adversaries are

passive in general, but most of the existing studies focus on the active adversary

assumption.

It is also important for the learner to know the adversary’s limitations

and incentives. If the model is non-antagonistic, then the adversary has its own

incentives; knowing these incentives can be used in modeling the adversary. This

knowledge can be used in generating robust model parameters for the learner. The

effectiveness of our methods depends on how accurately we model the adversary,

but the true costs and constraints of the adversary are rarely known in advance.

There is not much work that models the incentives of the adversary, but there are a

few methods that assume that adversary is rational (Nguyen et al., 2013).

One advantage of the learner is the adversary’s limitations; most of the

Stackelberg games use this fact to learn robust models by incorporating the

restrictions of the adversary into the learning algorithm (Globerson and Roweis,

2006; Teo et al., 2008; Torkamani and Lowd, 2013; Livni and Globerson, 2012).

Some other recent papers have considered the relationship between regularization

and robustness to restricted adversaries in SVMs. Xu et al. (2009) demonstrate

that using a norm as a regularizer is equivalent to optimizing against a worst-

case adversary that can manipulate features within a ball defined by the dual

norm. There are several related works that expand this idea in different directions

(Xu et al., 2010; Xu and Mannor, 2012). For example in follow-up work Xu et al.

expand their approach to the robust regression problem(Xu et al., 2010).

37

2.3.1.3. The role of Nature

In Algorithm 2, we have separated the adversary and Nature. In fact, the

adversary follows the rules that Nature sets. For example, in stock markets, there

are some traders (adversaries) who want to increase their pay-offs by choosing the

right portfolio, but the demands of the market are the main criteria that affect

the stock indices. Another example is the laws of physics that Nature sets. A

robot controller algorithm should be robust to adversarial accidents that threaten

the autonomous robot agents, but falling from 2-feet-tall piece of rock is clearly

different than falling from a cliff which has the height of 500 feet. As a result, it is

important for both learner and the adversary to learn the laws of Nature as well.

2.3.2. Adversarial learning techniques

In this subsection, we review some of the primary techniques in adversarial

machine learning that are applicable to supervised learning methods, and we

formulate the adversarial game as set of optimization programs.

2.3.2.1. Utility-based approaches

Utility-based approaches are of the early works in adversarial machine

learning that are applicable to structured prediction as well. In these models, both

the learner and the adversary have their specific utility functions. The utilities

are some arbitrary reward functions. In a game-theoretic framework, each of the

players tries to maximize its reward. Brückner and Scheffer take this approach

in some of their papers. They show that for particular non-antagonistic utility

functions, the prediction game has a unique Nash equilibrium, and they derive

a simulation-based algorithm for finding the converging models (Brückner and

38

Scheffer, 2009; Brückner et al., 2012). In another work, they model the interaction

between the learner and the adversary as a Stackelberg game, in which the

learner plays the role of the leader and the adversary reacts to the learned model

(Brückner and Scheffer, 2011). This framework is, in fact, a minimax scenario

where the learner tries to minimize the maximum possible harmful damage that

the adversary can cause. These methods are not designed for structured prediction

problems, but their underlying framework is general purpose. Satisfying some of

the assumptions may not be possible, especially for finding the Nash equilibrium.

The main drawback of these works is that the formulations assume a relaxed action

space; this assumption does not hold in many structured (and non-structured)

output spaces.

Other works expand the analysis of the conditions for the existence of the

Nash equilibrium; for example, Dreves et al. have analyzed the Karush-Kuhn-

Tucker (KKT) conditions for which the generalized Nash equilibrium exists (Dreves

et al., 2011).

2.3.2.2. Max-margin-based Adversarial Structured Learning

The max-margin based algorithms include the large class of SVM classifiers.

Therefore, many adversarial methods are based on max-margin formulations. The

following is a brief review of each of these methods.

– Embedding the simulated adversary:

The key idea for making max-margin learning approaches robust to

adversarial data manipulation is to embed the adversarial uncertainty

component into the optimization program of the max-margin method.

(Schölkopf et al., 1997) were among the first authors who used the idea

39

of using virtual (e.g. noise-polluted) samples for training the model. This

approach was first used as an embedded part of the algorithm for binary

SVMs by Globerson and Roweis (2006) when a limited number of the features

could be set to zero by the adversary at test time. Later Teo et al. (2008)

expanded this idea to include a wider class of possible adversaries. The

main limitation of the latter work is that there should exist an efficient

computational procedure for simulating the adversary. This is not always

tractable because the number of possible adversarial manipulations of input

data can be extremely large.

Other approaches with a similar nature. For example, Biggio et al. (2011)

formulate the problem in the dual form and model the adversarial noise as

the Hadamard product of a noise matrix and the kernel matrix. Some other

authors assume that the adversarial noise is drawn from a distribution and

try to ensure robustness to that kind of perturbation (Livni and Globerson,

2012; Maaten et al., 2013).

– Robustness by regularization:

In general, robust optimization addresses optimization problems in which

some degree of uncertainty governs the known parameters of the model. Ben-

Tal and Nemirovski (Ben-Tal and Nemirovski, 1998, 1999, 2000, 2001) showed

that there exist a range of applications that could be formulated in a robust

convex optimization framework. Robust linear programming is a central

method in most of these formulations. Bertsimas and Sim (2004) show that

for box-bounded disturbances, the parameters can take the worst-case value,

and there is a trade-off between optimality and robustness. In Bertsimas

et al. (2004), the authors focus on the case when the disturbance of the inputs

40

is restricted to an ellipsoid around the actual values defined by some norm.

They show that the robust linear programming problem can be reduced to

a convex cone program, where the conic constraint is defined by the dual of

the original norm. A number of other authors have explored the application

of robust optimization to classification problems (e.g.,(Lanckriet et al., 2003;

El Ghaoui et al., 2003; Bhattacharyya et al., 2004; Shivaswamy et al., 2006)).

Recently, Xu et al. (2009) showed that regularization of support vector

machines can be derived from a robust formulation, and they also argue that

robustness in feature space entails robustness in sample space.

– Robustness to poisoning attacks:

Poisoning attack is used to refer to a scenario, where the adversary injects

some corrupted samples to the training data to make sure that the classifier

will learn a wrong model, and as a result, the test error increases. To the

best of my knowledge, there is no existing published work that attempts

to guarantee robustness against these kind of attacks. Filling this gap is

worthwhile, and it is specially relevant to applications in which the number

of training samples is limited.

Biggio et al. (2012) have studied this problem for non-structural prediction.

They investigate a family of poisoning attacks against SVMs. Most of the

learning algorithms assume that their training data comes from a natural

distribution, and therefore they are vulnerable to these kind of attacks. An

intelligent adversary can, to some extent, predict the change of the SVM’s

decision function due to malicious input and use this ability to construct

malicious data. Dekel et al. (2010) solve a similar problem for binary SVMs,

41

where they apply several relaxations to the integer program formulation

of the problem, and use L∞ as the regularizer. Because of this choice of

regularizer, they end up with a linear program. In their paper, they state that

with the choice of L∞ regularization their method is more efficient and don’t

go into more arguments. There are some other works in the literature that

attempt to train models that are robust to poisoning attacks (Biggio et al.,

2013a,b, 2014).

2.3.2.3. Online learning and regret minimization:

Online learning is based on the idea of choosing the best strategy based on

the data that is being received in a stream (Shalev-Shwartz, 2011). The amount

of available data is usually huge. Therefore, we prefer to look at each data point

only for a limited number of times – ideally only once. Regret minimization is an

adversarial method for learning in online settings.

2.4. Applications of adversarial structured learning

Improving the performance of structured prediction algorithms is one of our

main contributions in this thesis. In this section, we review the significance that

this improvement will have on the real-world applications.

2.4.1. Collective Classification

Many real-world relational learning problems can be formulated as a collective

classification problem. For example, webspam detection can be formulated as a

joint classification problem where each webpage is either spam or non-spam, and

the label of each webpage not only depends on its contents but also depends on

42

the label of neighboring webpages that are linked to it (Sen et al., 2008; Abernethy

et al., 2010).

Our paper “Collective Adversarial Collective Classification” (Torkamani and

Lowd, 2013), is the first published work in the field of structured output prediction

that is designed to be directly robust against adversarial manipulation of data

at test time. We assumed that the adversary can change up to D attributes of

all webpages, and by incorporating this limitation of the adversary5 in a robust

optimization program, we come up with an efficient method6 for robustly solving

the problem of collective classification in associative Markov networks (Taskar

et al., 2004a).

Other researchers have solved this problem with an implicit effort to address

the robustness issue. Sen et al. (2008) discuss that the “Iterative Classification

Algorithm” (Jensen and Neville, 2002; Lu and Getoor, 2003) is relatively robust

to the order that the nodes are visited, but their method is not robust to the

manipulation of test data. Tian et al. (2006) introduce an additional heuristic

weight on top of a dependency network (Neville and Jensen, 2007; Lowd and

Shamaei, 2011) to model the strength of the dependencies. Although this

additional weight makes the approach robust to random noise, the method is

not robust to malicious noise. McDowell et al. (2009) introduce the cautious

iterative classification algorithm, where at each local classification, the classifier also

generates a confidence criterion about the performed classification. If this criterion

is less than some threshold, the predicted label is ignored by the algorithm. This

5This is the main limitation of the adversary. Therefore, the adversary cannot manipulate
“everything” in the network.

6For binary labels, such as spam detection, the efficiency is guaranteed. When there are more
than two possible labels, the results are approximate, in theory but in practice, we get pretty
accurate results.

43

method is also heuristic and does not rely on the related literature of robust

machine learning.

Abernethy et al. (2010) introduce the “WITCH” algorithm, which uses a

graph regularization approach to utilizing the link information for regularizing the

model parameters. Their method gains implicit robustness due to regularization,

but it is not robust to adversarial attacks against the collective classification

algorithms.

2.4.2. Anomaly Detection

Anomaly detection is the problem of detecting unusual samples among some

ordinary ones. For example, detecting network intrusions or instances of credit

card fraud are acts of anomaly detection. An intrusion detection system is now

an important part of any computer network. When a set of agents in the network

collaborate in an attack, then the network protection system needs to perform

structured prediction to determine the role of each agent in the network. There

is a group of papers that use conditional random fields or hidden Markov models to

perform this task (Gupta et al., 2007, 2010; Qiao et al., 2002). The main drawback

of these methods is the issue of robustness of the algorithms. In other words, these

methods use machine learning algorithms to improve the robustness issue of the

system, but the used algorithms themselves are not robust to engineered attacks.

Song et al. (2013) introduce a one-class classification approach for detecting

the sequential anomalies. Their method is robust to outliers in the training data.

Although the method is elegant, what makes it less applicable to adversarial

settings is that the adversarially manipulated samples are different than outliers.

44

In particular, the adversary manipulates the data as a response to the learned

parameters of the classification method.

2.4.3. Practical applications

The following is a list of some of the real-world applications of adversarial

structured prediction.

2.4.3.1. Security applications

Security issues are becoming more serious and critical these days, and

naturally, machine learning tools are also being used to solve some of these

problems. The security challenges can be formulated as a game between the

defender (or learner) and the attacker (or the adversary). Not only the action

space in security games is large, but also the limited resources of the defender is

a challenge in most cases. In fact, in real-world security problems, there are not

enough agents to patrol all the targets that the adversary could attack. Therefore,

deciding the placement of the resources is highly important.

Pita et al. (2008); Jain et al. (2010b) have developed an algorithm called

ARMOR, which is now deployed at the Los Angeles International Airport

(LAX) to randomize the checkpoints on the roadways that enter the airport.

By randomization, the strategies are drawn from some mixture of strategy

distributions, rather than a taking a fixed pure strategy all the times. As a result,

the criminal will not be able to precisely determine the next action. Some other

related works are IRIS (Tsai et al., 2009), fast generation of the flight schedules

(Jain et al., 2010a), PROTECT (Shieh et al., 2012; Fang et al., 2013), GUARDS

45

(Pita et al., 2011), among others (Yin et al., 2011, 2012; Jiang et al., 2013b,a;

Basilico et al., 2009; An et al., 2012; Korzhyk et al., 2011).

Dickerson et al. (2010) look at security games from a graph theoretic

approach and propose a greedy algorithm for protecting the moving targets from

adversaries.

2.4.3.2. Computer vision

Both robustness and structured output prediction are highly needed in the

computer vision applications.

Fua et al. (2013) propose a working set based approximate subgradient

descent algorithm to solve the optimization program of the structured SVM. They

solve an image segmentation problem, where exact inference is intractable, and

the most violated constraints can only be approximated. They randomly sample

new constraints, instead of computing them using the more expensive approximate

inference techniques. This random sampling is not designed to explicitly block the

adversaries, but it gains some robustness at the prediction time. From the theory

point of view, we know that this method should not work well in general, because

the randomly selected constraints may be insignificant, and this slows down the

convergence of the algorithm. However, this method has been successful in their

application.

Gong et al. (2012) propose a structured prediction method where the output

space is a subset of two distinct manifolds, and their method tries to be robust to

noise and to choose the output from the right manifold. This method is shown

to be efficient in human motion-capturing from videos. Ranjbar et al. (2013)

focuses on keeping robust features in advance to gain robustness in the structured

46

prediction. Exploiting the domain knowledge is also a method that increases

robustness in play-type recognition for a football game, which is recorded by noisy

sensors (Chen et al., 2014b).

2.4.4. Speech recognition

As the applications of structured prediction grow in different subfields of

signal processing, the robustness issue becomes more prominent. Speech recognition

is an attractive example. Zhang et al. have parameterized a noise model, and they

have embedded it into the optimization program. They optimize for the noise

control parameter as well (Zhang et al., 2010, 2011). In their problem the noise

in the speech signal is not adversarial, and adversarial speech recognition is also

among the fields that have major applications in real-world problems.

In the next chapter, we introduce a novel method for efficient collective

classification in adversarial settings.

47

CHAPTER III

CONVEX ADVERSARIAL COLLECTIVE CLASSIFICATION

This work was published in the proceedings of the thirtieth International

Conference on Machine Learning (ICML 2013). I was the primary contributor

to the methodology and writing, and designed and conducted the experiments.

My Ph.D. advisor, Dr. Daniel Lowd contributed partly to the methodology and

writing. Daniel Lowd was the principle investigator for this work.

In collective classification (Sen et al., 2008), we wish to jointly label a set

of interconnected objects using both their attributes and their relationships. For

example, linked web pages are likely to have related topics; friends in a social

network are likely to have similar demographics; and proteins that interact with

each other are likely to have similar locations and related functions. Probabilistic

graphical models, such as Markov networks, and their relational extensions, such as

Markov logic networks (Domingos and Lowd, 2009a), can handle both uncertainty

and complex relationships in a single model, making them well-suited to collective

classification problems.

However, many collective classification models must also cope with test data

that is drawn from a different distribution than the training data. In some cases,

this is simply a matter of concept drift. For example, when classifying blogs,

tweets, or news articles, the topics being discussed will vary over time. In other

cases, the change in distribution can be attributed to one or more adversaries

actively modifying their behavior in order to avoid detection. For example, when

search engines began using incoming links to help rank web pages, spammers began

posting comments on unrelated blogs or message boards with links back to their

48

websites. Since incoming links are used as an indication of quality, manufacturing

incoming links makes a spammy web site appear more legitimate. In addition

to web spam (Abernethy et al., 2010; Drost and Scheffer, 2005), other explicitly

adversarial domains include counter-terrorism, online auction fraud (Chau et al.,

2006), and spam in online social networks.

Rather than simply reacting to an adversary’s actions, recent work in

adversarial machine learning takes the proactive approach of modeling the learner

and adversary as players in a game. The learner selects a function that assigns

labels to instances, and the adversary selects a function that transforms malicious

instances in order to avoid detection. The strategies chosen determine the outcome

of the game, such as the success rate of the adversary and the error rate of the

chosen classifier. By analyzing the dynamics of this game, we can search for an

effective classifier that will be robust to adversarial manipulation. Even in non-

adversarial domains such as blog classification, selecting a classifier that is robust

to a hypothetical adversary may lead to better generalization in the presence of

concept drift or other noise (Figure 3.1).

Early work in adversarial machine learning included methods for blocking the

adversary by anticipating their next move (Dalvi et al., 2004), reverse engineering

classifiers (Lowd and Meek, 2005b,a) (and later: (Nelson et al., 2010)), and

building classifiers robust to feature deletion or other invariants (Globerson and

Roweis, 2006; Teo et al., 2008). More recently, Brückner and Scheffer showed

that, under modest assumptions, Nash equilibria can be found for domains such as

spam (Brückner and Scheffer, 2009). However, current adversarial methods assume

that instances are independent, ignoring the relational nature of many domains.

49

In this chapter, we present Convex Adversarial Collective Classification

(CACC), which combines the ideas of associative Markov networks (Taskar et al.,

2004a) (AMNs) and convex learning with invariants (Teo et al., 2008). Unlike

previous work in learning graphical models, CACC selects the most effective

weights assuming a worst-case adversary who can modify up to a fixed number

of binary-valued attributes. Unlike previous work in adversarial machine learning,

CACC allows for dependencies among the labels of different objects, as long as

these dependencies are associative. Associativity means that related objects are

more likely to have the same label, which is a reasonable assumption for many

collective classification domains. Surprisingly, all of this can be done in polynomial

time using a convex quadratic program.

In experiments on real and synthetic data, CACC finds much better strategies

than both a näıve AMN that ignores the adversary and a non-relational adversarial

baseline. In some cases, the adversarial regularization employed by CACC helps

it generalize better than AMNs even when the test data is not modified by any

adversary.

FIGURE 3.1. The adversary knows the parameters of our classifier and can
maliciously modify data to attack. The learner should select the best classifier,

assuming the worst adversarial manipulation.

50

3.1. Max-margin relational learning

We use uppercase bold letters (X) to represent sets of random variables,

lowercase bold letters (x) to represent their values, and subscripts and superscripts

(xij, y
k
i) to indicate individual elements in those sets.

Markov networks (MNs) represent the joint distribution over a set of random

variables X = {X1, . . . , XN} as a normalized product of factors:

P (X) =
1

Z

∏
i

φi(Di)

where Z is a normalization constant so that the distribution sums to one, φi is

the ith factor, and Di ⊆ X is the scope of the ith factor. Factors are sometimes

referred to as potential functions. For positive distributions, a Markov network can

also be represented as a log-linear model:

P (X) =
1

Z
exp

(∑
i

wifi(Di)

)

where wi is a real-valued weight and fi a real-valued feature function. For the

common case of indicator features, each feature equals 1 when some logical

expression over the variables is satisfied and 0 otherwise.

A factor or potential function is associative if its value is at least as great

when the variables in its scope take on identical values as when they take on

different values. For example, consider a factor φ parameterized by a set of non-

negative weights {wk}, so that φ(yi, yj) = exp(wk) when yi = yj = k and 1

otherwise. φ is clearly associative, since its value is higher when yi = yj. An

associative Markov network (AMN) (Taskar et al., 2004a) is an MN where all

51

factors are associative. Certain learning and inference problems that are intractable

in general MNs have exact polynomial-time solutions in AMNs with binary-valued

variables, as will be discussed later.

An MN can also represent a conditional distribution, P (Y|X), in which case

the normalization constant becomes a function of the evidence, Z(X).

In this chapter, we focus on collective classification, in which each object in

a set is assigned one of K labels based on its attributes and the labels of related

objects. We now give an example of a simple log-linear model for collective

classification, which we will continue to use for the remainder of the chapter.

Following Taskar et al. (2004a), let yki = 1 if the ith object is assigned the kth

label, and 0 otherwise. We use xij to represent the value of the jth attribute of the

ith object. The relationships among the objects are given by E, a set of undirected

edges of the form (i, j).

Our model includes features connecting each attribute xij to each label yki ,

represented by the product xijy
k
i . To add the prior distribution over the labels, we

simply define an additional feature xi,0 that is 1 for every object, similar to a bias

node in neural networks. For each pair of related objects (i, j) ∈ E, we also include

a feature yki y
k
j which is 1 when both the ith and jth object are assigned label k.

This leads to the following model:

P (y|x) =
1

Z(x)
exp

∑
ijk

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
i y

k
j

 (Equation 3.1)

Note that all objects share the same attribute weights, wkj , and all links share the

same edge weights, wke , in order to generalize to unseen objects and relationship

graphs. This model can also be easily expressed as a Markov logic network

52

(MLN) (Domingos and Lowd, 2009a) in which formulas relate class labels to other

attributes and the labels of linked objects.

MLNs make it easy to compactly describe very complex distributions. For

example, a simple collective classification model can be defined using relatively

simple formulas, as shown in Table ??. The subscript j and superscript k indicate

that different formulas are defined for each attribute j ∈ {1, . . . ,M} and object

label k ∈ {1, . . . , K}. The formula from the first line defines features for the

prior distribution over labels in the absence of any attributes or links. The next

line relates each object’s attributes to its label. The third line relates the labels of

neighboring objects. Note that the first formula may be omitted as a special case

of the second if we assume that a special bias attribute Attribute0(o) is true for

every object o.

A common inference task is to find the most probable explanation (MPE),

the most likely assignment of the non-evidence variables y given the evidence.

This can be done by maximizing the unnormalized log probability, since log is a

monotonic function and the normalization factor Z is constant over y. For the

simple collective classification model, the MPE task is to find the most likely

labeling given the links and attributes:

arg max
y

∑
ijk

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
i y

k
j

In general, inference in graphical models is computationally intractable.

However, for the special case of AMNs with binary-valued variables, MPE

inference can be done in polynomial time by formulating it as a min-cut

problem (Kolmogorov and Zabin, 2004). For wke ≥ 0, our working example of a

53

collective classification model is an AMN over the labels y given the links E and

attributes x. In general, associative interactions are very common in collective

classification problems since related objects tend to have similar properties, a

phenomenon known as homophily. Markov networks and MLNs are often learned

by maximizing the (conditional) log-likelihood of the training data (e.g., Lowd

and Domingos (2007)). An alternative is to maximize the margin between the

correct labeling and all alternative labelings, as done by max-margin Markov

networks (M3Ns) (Taskar et al., 2004b) and max-margin Markov logic networks

(M3LNs) (Huynh and Mooney, 2009). Both approaches are intractable in

the general case. For the special case of AMNs, however, max-margin weight

learning can be formulated as a quadratic program which gives optimal weights

in polynomial time as long as the variables are binary-valued (Taskar et al., 2004a).

We now briefly describe the solution of Taskar et al., which will later motivate our

adversarial extension of AMNs. (We use slightly different notation from the original

presentation in order to make the structure of x and y clearer.)

The goal of the AMN optimization problem is to maximize the margin

between the log probability of the true labeling, h(w,x, ŷ), and any alternative

labeling, h(w,x,y). For our problem, h follows from Equation 3.1: h(w,x,y) =∑
i,j,k w

k
j xijy

k
i +

∑
(i,j)∈E,k w

k
ey

k
i y

k
j . We can omit the logZ(x) term because it cancels

in the difference. Margin scaling is used to enforce a wider margin from labelings

that are more different. We defined this difference as the Hamming distance:

∆(y, ŷ) = N −
∑

i,k y
k
i ŷ

k
i where N is the total number of objects. We thus obtain

the following minimization problem with an exponential number of constraints (one

54

for each y):

min
w,ξ

1

2
‖w‖2 + Cξ (Equation 3.2)

s.t. h(w,x, ŷ)− h(w,x,y) ≥ ∆(y, ŷ)− ξ ∀y ∈ Y

Minimizing the norm of the weight vector is equivalent to maximizing the margin.

The slack variable ξ represents the magnitude of the margin violation, which is

scaled by C and used to penalize the objective function. To transform this into a

tractable quadratic program, Taskar et al. modify it in several ways. First, they

replace each product yki y
k
j with a new variable ykij and add constraints ykij ≤ yki

and ykij ≤ ykj . In other words, ykij ≤ min(yki , y
k
j), which is equivalent to yki y

k
j for

yki , y
k
j ∈ {0, 1}. Second, they replace the exponential number of constraints with

a continuum of constraints over a relaxed set of y ∈ Y ′, where Y ′ = {y : yki ≥

0;
∑

k y
k
i = 1; ykij ≤ yki ; ykij ≤ ykj }. Since all constraints share the same slack

variable, ξ, we can take the maximum to summarize the entire set by the most

violated constraint. After applying these modifications, substituting in h and ∆,

and simplifying, we obtain the following optimization problem for our collective

classification task:

min
w,ξ

1

2
‖w‖2 + Cξ

s.t. w ≥ 0;

ξ −N ≥ max
y∈Y ′

∑
i,j,k

wkj xij(y
k
i − ŷki)

+
∑

(i,j)∈E,k

wke (ykij − ŷkij)−
∑
i,k

yki · ŷki (Equation 3.3)

Finally, since the inner maximization is itself a linear program, we can replace it

with the minimization of its dual to obtain a single quadratic program (not shown).

55

For the two-class setting, Taskar et al. prove that the inner program always has an

integral solution, which guarantees that the weights found by the outer quadratic

program are always optimal.

For simplicity and clarity of exposition, we have used a very simple collective

classification model as our working example of an AMN. This model can easily

be extended to allow multiple link types with different weights, link weights that

are a function of the evidence, and higher-order links (hyper-edges), as described

by Taskar et al. (2004a). Our adversarial variant of AMNs, which will be described

in Section 4, supports most of these extensions as well.

3.2. Convex formulation

Collective classification problems are hard because the number of joint label

assignments is exponential in the number of nodes. As discussed in Section 2,

if neighboring nodes are more likely to have the same label, then the collective

classification problem can be represented as an associative Markov network (AMN),

in which max-margin learning and MPE inference are both efficient. To construct

an adversarial collective classifier, we start with the AMN formulation (Equation

3.3) and incorporate an adversarial invariant, similar to the approach of Globerson

and Roweis (2006). Specifically, we assume that the adversary may change up to

D binary-valued features xij, for some positive integer D that we select in advance.

We use x̂ to indicate the true features and x to indicate the adversarially modified

features. The number of changes can be written as: ∆(x, x̂) =
∑

i,j xij+ x̂ij−2xijx̂ij

We define the set of valid x as X ′ = {x : 0 ≤ xij ≤ 1; ∆(x, x̂) ≤ D}. Note

that X ′ is a relaxation that allows fractional values, much like the set Y ′ defined by

56

Taskar et al. We will later show that there is always an integral solution when both

the features and labels are binary-valued.

In our adversarial formulation, we want the true labeling ŷ to be separated

from any alternate labeling y ∈ Y ′ by a margin of ∆(y, ŷ) given any x ∈ X ′.

Rather than including an exponential number of constraints (one for each x and y),

we use a maximization over x and y to find the most violated constraint:

max
y∈Y ′,x∈X ′

h(w,x,y)− h(w,x, ŷ) + ∆(y, ŷ)

= max
y∈Y ′,x∈X ′

∑
i,j,k

wkj xijy
k
i +

∑
(i,j)∈E,k

wkey
k
ij

−
∑
i,j,k

wkj xij ŷ
k
i −

∑
(i,j)∈E,k

wke ŷ
k
ij

+N −
∑
i,k

yki · ŷki (Equation 3.4)

Next, we convert this to a linear program. Since xijy
k
i is bilinear in x and y, we

replace it with the auxiliary variable zkij, satisfying the constraints: zkij ≥ 0; zkij ≤

xij; and zkij ≤ yki . The removes the bilinearity and is exactly equivalent as long as

xij or yki is integral.

Putting it all together and removing terms that are constant with respect to

x, y, and z, we obtain the following linear program:

max
x,y,z

∑
i,j,k

wkj (zkij − ŷki xij) +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

s.t. 0 ≤ xij ≤ 1;
∑
i,j

xij + x̂ij − 2xij x̂ij ≤ D

0 ≤ yki ;
∑
k

yki = 1; ykij ≤ yki ; ykij ≤ ykj

zkij ≤ xij ; zkij ≤ yki ∀i, j, k (Equation 3.5)

57

Given the model’s weights, this linear program allows the adversary to change

up to D binary features. Recall that, in the AMN formulation, the exponential

number of constraints separating the true labeling from all alternate labelings

are replaced with a single non-linear constraint that separates the true labeling

from the best alternate labeling (Eqs. Equation 3.2,Equation 3.3). This non-

linear constraint contains a nested maximization. We have a similar scenario, but

here the margin can also be altered by changing the binary features, affecting

the probabilities of both the true and alternate labelings. By substituting this

new MPE inference task (Equation 3.5) into the original AMN’s formulation, the

resulting program’s optimal solution will be robust to the worst manipulation of the

input feature vector:

min
w,ξ

1

2
‖w‖2 + Cξ s.t. w ≥ 0;

ξ −N ≥ max
x,y,z

∑
i,j,k

wkj (zkij − ŷki xij) +
∑

(i,j)∈E,k

wkey
k
ij

−
∑
i,k

yki · ŷki s.t.

0 ≤ yki ;
∑
k

yki = 1; ykij ≤ yki ; ykij ≤ ykj

0 ≤ xij ≤ 1;
∑
i,j

xij + x̂ij − 2xij x̂ij ≤ D

zkij ≤ xij ; zkij ≤ yki (Equation 3.6)

The mathematical program in Equation 3.6 is not convex because of the

bilinear terms and the nested maximization (similar to solving a bilevel Stackelberg

58

game). Fortunately, we can use the strong duality property of linear programs to

resolve both of these difficulties. The dual of the maximization linear program is a

minimization linear program with the same optimal value as the primal problem.

Therefore, we can replace the inner maximization with its dual minimization

problem to obtain a single convex quadratic program that minimizes over w, ξ,

and the dual variables (not shown). A similar approach is used by Globerson and

Roweis (2006). As long as this relaxed program has an integral optimum, it is

equivalent to maximizing only over integral x and y. Thus, the overall program

will find optimal weights. Taskar et al. (2004a) prove that the inner maximization

in a 2-class AMN always has an integral solution. We can prove a similar result for

the adversarial AMN:

Theorem 1. Equation Equation 3.5 has an integral optimum when w ≥ 0 and the

number of classes is 2.

Proof Sketch. The structure of our argument is to show that an integral optimum

exists by taking an arbitrary adversarial AMN problem and constructing an

equivalent AMN problem that has an integral solution. Since the two problems

are equivalent, the original adversarial AMN must also have an integral solution.

First, we use a Lagrange multiplier to incorporate the constraint ∆(x, x̂) ≤ D

directly into the maximization. The extra term acts as a “per-change” penalty,

which remains linear in x. Minimizing over the Lagrange multiplier effectively

adjusts this per-change penalty until there are at most D changes between x and

x̂, but does not affect the integrality of the inner maximization. Next, we replace

all x variables with equivalent variables v. Assume that either w1
j = 0 or w2

j = 0,

for all j. (If both are positive, then we can subtract the smaller value from both

to obtain a new set of weights with the same optimum as before.) We define v as

59

follows:

v1
ij =

xij if w1

j > 0,

1− xij if w1
j = 0.

v2
ij = 1− v1

ij

By construction: ∑
i,j,k

wkj xij(y
k
i − ŷki) =

∑
i,j,k

wkj v
k
ij(y

k
i − ŷki)

Thus, we can replace the x variables with v. Since the connections between the

vkij and corresponding yki variables are all associative, this defines an AMN over

variables {y,v}, which is guaranteed to have an integral solution when there are

only two classes.

By translating v back into x, we obtain a solution that is integral in both x

and y.

A complete proof can be found in Appendix A.

Many extensions of our model are possible. One extension is to restrict the

adversary to only changing certain features of certain objects. For example, in

a web spam domain, we might assume that the adversary will only modify spam

pages. We could also have different budgets for different types of changes, such as

a separate budget for each web page, or even separate budgets for changing the

title of a web page and changing its body. These are easily expressed by changing

the definition of X ′ and adding the appropriate constraints to the quadratic

program. Our model can also support higher-order cliques, as described by Taskar

et al. (2004a), as long as they are associative. For simplicity, our exposition and

experiments focus on the simpler case described above.

60

One important limitation of our model is that we do not allow edges to be

added or removed by the adversary. While edges can be encoded as variables in

the model, they result in non-associative potentials, since the presence of an edge

is not associated with either class label. Instead, the presence of an edge increases

the probability that the two linked nodes will have the same label. Handling the

adversarial addition and removal of edges is an important area for future work, but

will almost certainly be a non-convex problem.

3.3. Experiments

In this section, we describe our experimental evaluation of CACC. Since

CACC is both adversarial and relational, we compared it to four baselines: AMNs,

which are relational but not adversarial; SVMInvar (Teo et al., 2008), which is

adversarial but not relational; and SVMs with a linear kernel, which are neither.

AMNs, SVMInvar, and SVMs can be seen as special cases of CACC: fixing the

adversary’s budget D to zero results in an AMN, fixing the edge weights wke to zero

results in SVMInvar, and doing both results in an SVM.

3.3.1. Datasets

We evaluated our method on three collective classification problems.

Synthetic. To evaluate the effectiveness of our method in a controlled setting

where the distribution is known, we constructed a set of 10 random graphs, each

with 100 nodes and 30 Boolean features. Of the 100 nodes, half had a positive

label (‘+’) and half had a negative label (‘−’). Nodes of the same class were more

likely to be linked by an edge than nodes with different classes. The features

were divided evenly into three types: positive, negative, and neutral. Half of the

61

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(a) Synthetic dataset: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(b) Synthetic dataset: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(c) Synthetic dataset: 20%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(d) Political blogs: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(e) Political blogs: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(f) Political blogs: 20%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(g) Reuters: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(h) Reuters: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(i) Reuters: 20%

FIGURE 3.2. Accuracy of different classifiers in presence of worst-case adversary.
The number following the dataset name indicates the adversary’s strength at the
time of parameter tuning. The x-axis indicates the adversary’s strength at test
time. Smaller is better.

positive and negative nodes had different feature distributions based on their class;

that is, the positive nodes had more positive attributes and the negative nodes

had more negative attributes, on average. In such nodes, on average there are 6

words, one of which is of the opposite class’s words, two words are consistent with

the class label and three words are neutral. The other half of the nodes had an

ambiguous distribution consisting mainly of the neutral words (on average one word

62

is consistent with class label, one word is not consistent and 3 words are neutral).

Therefore, an effective classifier for these graphs must rely on both the attributes

and relations. On average, each node had 8 neighbors, 7 of which had the same

class and 1 of which had a different class.

Political Blogs. Our second domain is based on the Political blogs dataset

collected by Adamic and Glance (2005). The original dataset contains 1490 online

blogs captured during the 2004 election cycle, their political affiliation (liberal or

conservative), and their linking relationships to other blogs. We extended this

dataset with word information from four different crawls at different dates in

2012: early February, late February, early May and late May. We used mutual

information to select the 100 words that best predict the class label (Peng et al.,

2005), only using blogs from February and half of the blogs in early May, in order

to limit the influence of test labels on our training procedure. We found that some

of the blogs in the original dataset were no longer active, and had been replaced by

empty or spam web pages. We manually removed these from consideration. Finally,

we partitioned the blogs into two disjoint subsets and removed all edges between

nodes in the different subsets.

Reuters. As our third dataset, we prepared a Reuters dataset similar to the

one used by Taskar et al. (2004a). We took the ModApte split of the Reuters-21578

corpus and selected articles from four classes: crude, grain, trade, and money-fx.

We used the 200 words with highest mutual information as features. We linked

each document to the two most similar documents based on TF-IDF weighted

cosine distance. We split the data into 7 sets based on time, and performed the

tuning and then the training phases based on this temporal order (as explained in

3.3.3.).

63

3.3.2. Simulating an adversary

In real world adversarial problems, the adversary does not usually have

complete access to the model parameters. Researchers have widely studied the

different ways that an adversary can acquire access to the model parameters

actively or passively (Lowd and Meek, 2005b,a). In this section, we have examined

two extreme cases. In the first, the adversary has complete access to the model

parameters and manipulates the features to maximize the misclassification rate.

Since exactly maximizing the error rate is typically NP-hard, our intelligent

adversary instead maximizes the margin loss by solving the linear program in

(Equation 3.5). In the second scenario, the random adversary randomly toggles

D binary features, representing random noise or perhaps a very näıve adversary.

3.3.3. Methodology and metrics

In order to evaluate the robustness of these methods to malicious adversaries,

we applied a simulated adversary to both the tuning data and the test data. We

assumed the worst-case scenario, in which the adversary has perfect knowledge of

the model parameters and only wants to maximize the error rate of the classifier.

Since exactly maximizing the error rate is typically NP-hard, our intelligent

adversary instead maximizes the margin loss by solving the linear program in

Equation 3.5 for a fixed budget. Each model was attacked separately. On the

validation data, we used adversarial budgets of 0% (no adversarial manipulation),

10%, and 20% of the total number of features present in the data. This allowed

us to tune our models to “expect” adversaries of different strengths. Of course, we

rarely know the exact strength of the adversary in advance. Thus, on the test data,

64

we used budgets that ranged from 0% to 25%, in order to see how well different

models did against adversaries that were weaker and stronger than expected.

We used the fraction of misclassified nodes as our primary evaluation

criterion. For all methods, we tuned the regularization parameter C using held-out

validation data. For the adversarial methods (CACC and SVMInvar), we tuned the

adversarial training budget D as well. All parameters were selected to maximize

performance on the tuning set with the given level of adversarial manipulation.

For political blogs, we tuned our parameters using the words from the

February crawls, and then learned models on early May data and evaluated them

on late May data. In this way, our tuning procedure could observe the concept drift

within February and select parameters that would handle the concept drift during

May well. For Synthetic data, we ran 10-fold cross validation. For Reuters, we split

the data into 7 sets based on time. We tuned parameters using articles from time t

and t + 1 and then learned on articles at time t + 1 and evaluated on articles from

time t+ 2.

We used CPLEX to solve all quadratic and linear programming problems.

Most problems were solved in less than 1 minute on a single core.

All of our code and datasets are available upon request.

3.3.4. Results and discussion

Figure 3.2 shows the performance of all four methods on test data

manipulated by rational adversaries of varying strength (0%-25%), after being

tuned against adversaries of different strengths (0%, 10%, and 20%). Lower is

better. On the far left of each graph is performance without an adversary. To the

right of each graph, the strength of the adversary increases.

65

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(a) Synthetic dataset: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(b) Synthetic dataset: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(c) Synthetic dataset: 20%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(d) Political blogs: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(e) Political blogs: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
STACKED
AMN
CACC

(f) Political blogs: 20%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(g) Reuters: 0%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(h) Reuters: 10%

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Strength of adversary (%)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

SVM
SVMINV
AMN
CACC

(i) Reuters: 20%

FIGURE 3.3. Accuracy of different classifiers in presence of random adversary. We
observe that even strong random attacks are not efficient in disguising the true

class of the sample.

When a rational adversary is present, CACC clearly and consistently

outperforms all other methods. When there is no adversary, its performance is

similar to a regular AMN. On political blogs, it appears to be slightly better, which

may be the result of the large amount of concept drift in that dataset.

As expected, tuning against stronger adversaries (10% and 20%) makes

CACC more effective against stronger adversaries at test time. Surprisingly, tuning

66

FIGURE 3.4. The distribution of the learned weight values for different models.
The robust method tends to have a high density on the weights that are

saturated.

against a stronger adversary does not significantly reduce performance against

weaker adversaries: CACC remains nearly as effective against no adversary when

tuned for a 20% adversary as when tuned for no adversary. Specifically, when there

is no adversary at test time, the increase in error rate from training against a 20%

adversary is less than 1% on Synthetic and Reuters, and on Political the error rate

actually decreases slightly. Thus, this additional robustness comes at a very small

cost.

In Figures 3.2d, 3.2e, and 3.2f, the AMN classification error jumps sharply

as the adversary budget increases. This is the point when enough nodes are

mis-classified that links are actively misleading in one or two of the eight cross-

validation folds, leading to worse performance than the SVM for those folds.

This demonstrates that relational classifiers are potentially more vulnerable to

adversarial attacks than non-relational classifiers. A smoother version of this effect

can also be observed on both the synthetic dataset and Reuters.

Another interesting result was that our solutions on Reuters were always

integral, even though the number of classes is 4 and integrality is not guaranteed.

67

FIGURE 3.5. The sorted learned weights for each method. The robust method
constrains the maximum value of the weights. This suggests that robustness could
also be achieved through regularization with L∞ norm.

An inspiring observation is about the distribution of learned weights in robust

and non-robust models. The robust models have restricted the maximum value

that the weight parameter can take Figure (3.5). Intuitively, this means that if

the learner unconditionally trusts the importance of a certain feature, then it will

become a point of weakness for itself. The adversarial budget in this experiment

had been an L1, therefore, from a technical point of view, this result suggests that

we can achieve the same robustness by regularizing the weights by an L∞ norm.

This was the motivation of the work that we present in the next chapter.

We also performed additional experiments against irrational adversaries that

modify attributes uniformly at random. These random attacks had little effect on

the accuracy of any of the methods; all remained nearly as effective as against no

adversary (Figure 3.3).

68

3.4. Conclusion

In this chapter, we provide a generalization of SVMInvar (Teo et al., 2008)

and AMNs (Taskar et al., 2004a) that combines the robustness of SVMInvar

with the ability to reason about interrelated objects. In experiments on real and

synthetic data, CACC finds consistently effective and robust models, even when

there are more than two labels.

In the next chapter, we extend robustness to adversarial manipulation of

input data to generic structured prediction models. We show how robustness

is equivalent to regularization for structured models, and we propose methods

for developing customized regularization functions for particular adversarial

uncertainty sets.

69

CHAPTER IV

EQUIVALENCY OF ADVERSARIAL ROBUSTNESS AND

REGULARIZATION

This work was published in the proceedings of the thirty-first International

Conference on Machine Learning (ICML 2014). I was the primary contributor

to the methodology and writing, and designed and conducted the experiments.

My Ph.D. advisor, Dr. Daniel Lowd contributed partly to the methodology and

writing. Daniel Lowd was the principle investigator for this work.

Traditional machine learning methods assume that training and test data

are drawn from the same distribution. However, in many real-world applications,

the distribution is constantly changing. In some cases, such as spam filtering and

fraud detection, an adversary may be actively manipulating it to defeat the learned

model. In such cases, it is beneficial to optimize the model’s performance on not

just the training data but on the worst-case manipulation of the training data,

where the manipulations are constrained to some domain-specific uncertainty set.

For example, in an image classification problem, the uncertainty set could include

minor translations, rotations, noise, or color shifts of the training data. This type of

robust optimization leads to models that perform well on points that are “close” to

those in the training data.

In general, robust optimization addresses optimization problems in which

some degree of uncertainty governs the known parameters of the model Ben-

Tal and Nemirovski (1998, 1999, 2000, 2001); Bertsimas and Sim (2004). In

many of the existing robust formulations, robust linear programming is a central

method. For example, Bertsimas et al. Bertsimas et al. (2004) show that when the

70

disturbance of the inputs is restricted to an ellipsoid around the true values defined

by some norm, then the robust linear programming problem can be reduced to a

convex cone program. A number of other authors have explored the application

of robust optimization to classification problems (e.g., Lanckriet et al. (2003);

El Ghaoui et al. (2003); Bhattacharyya et al. (2004); Shivaswamy et al. (2006)).

Recently, Xu et al. Xu et al. (2009) showed that regularization of support vector

machines can be derived from a robust formulation. However, robustness for

structured prediction models has remained largely unexplored.

In this chapter, we develop a general-purpose technique for learning robust

structural support vector machines. Our basic approach is to consider the

worst-case corruption of the input data within some uncertainty set and use

this to define a robust formulation. This optimization problem is often much

harder than standard training of structural SVMs when written directly; we

overcome this obstacle by transforming the robust optimization problem into a

standard structural support vector machine learning problem with an additional

regularizer. This gives us both robustness and computational efficiency in the

structured prediction setting, as well as establishing an elegant relationship between

robustness and regularization for structural SVMs.

We demonstrate our approach on a new dataset consisting of snapshots of

political blogs from 2003 through 2013, based on the political blogs dataset from

Adamic and Glance (2005). Blogs are classified as liberal or conservative using both

their words and link structure. To make this more challenging, we train on blogs

from 2004 but evaluate on every year, from 2003 to 2013. In this domain, we define

an uncertainty set, show to construct an appropriate regularizer, and show that this

regularization can lead to substantially lower test error than a non-robust model.

71

4.1. Preliminaries

We begin by describing our notation and then provide a brief overview of

structural support vector machines.

x and y denote the vectorized input and the representation of the structured

output in the training data, respectively. For simplicity of notation, we assume a

single training example, such as a single social network graph, but our results easily

extend to a set of training examples.

The feature vector φ(x,y) is a function of both inputs and labels (and also

manipulated input or alternate labels, when used as the input argument). We use

∆φ(x,y, ỹ), to refer to the difference between two feature vectors with different

labels y and ỹ; in particular: ∆φ(x,y, ỹ) = φ(x, ỹ) − φ(x,y). The value of

wTφ(x, ỹ) is called the score of labeling x as ỹ, for the given model weights w.

∆(y, ỹ) is a scalar distance function, such as Hamming distance, which is a

measure of dissimilarity between the true and alternate labels.

We use ‖.‖ to refer to a general norm function and ‖.‖∗ for the dual norm of

‖.‖, where ‖y‖∗ = sup{yTx|‖x‖ ≤ 1}.

In this chapter, we focus on the derivation of robust formulations for 1-slack

structural SVM Joachims et al. (2009). (With minor changes, the results of this

chapter can be applied to n-slack structural SVMs as well, but we skip them here.)

The optimization program of a 1-slack structural SVM is:

minimize
w,ζ

f(w) + Cζ subject to (Equation 4.1)

ζ ≥ max
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

72

where x is the vector of all input variables, y is the desired structured query

variables, and w is the vector of the model parameters. The goal is to learn w.

f(w) is a regularization function that penalizes “large” weights. Depending

on the application, f(w) can be any convex function in general. Semi-homogeneous

functions, such as norms or powers of norms with power value equal to or greater

than 1, are among the favorite choices. (A function f(z) is semi-homogeneous if

and only if f(az) = aαf(z) for some positive α.) f(w) = 1
2
wTw is the most

commonly used regularization function.

4.2. Robust structural SVMs

In this section, we motivate and define a robust formulation of structural

SVMs. We begin by considering how an adversary might modify an input in order

to maximize the prediction error, and use this to derive a definition of a robust

structural SVM in sample space and feature space.

4.2.1. Worst-case/Adversarial data manipulation

Adversaries might have a wide range of goals, but in the worst case they will

antagonistically try to reduce the accuracy of the predictive model. For structural

SVMs, the predicted output is chosen by solving ỹ = arg maxỹ wTφ(x, ỹ), where

wTφ(x, ỹ) is the classification score. Thus, an adversary’s antagonistic goal would

be to replace the true input x with a manipulated version x̃ that maximizes the

classification loss ∆(y, ỹ). If the highest scoring label is not unique, we assume the

73

adversary tries to maximize the minimum loss in the set:

maximize
x̃

min
ỹ

∆(y, ỹ), subject to

ỹ ∈ arg max
ỹ 6=y

wTφ(x̃, ỹ)

x̃ ∈ S(x,y) (Equation 4.2)

S(x,y) is a domain-specific uncertainty set, which constrains the set of possible

corrupt inputs x̃. We always assume that x ∈ S(x,y), which means x can remain

unchanged. The set S(x,y) can contain a wide range of possible variations, such

as the amount of affordable/possible change in an attribute, or the restrictions that

are enforced on combinations of changes among several attributes.

The bi-level optimization program in (Equation 4.2) is not tractable in

general, especially when x and y have integer components. A slightly more

tractable solution is to relax the program and only require that ỹ be scored higher

than the true output y:

maximize
x̃,ỹ

∆(y, ỹ), subject to

wTφ(x̃,y) ≤ wTφ(x̃, ỹ)

x̃ ∈ S(x,y) (Equation 4.3)

The maximization in (Equation 4.3) might be infeasible, but its Lagrangian

relaxation is always feasible:

maximize
x̃,ỹ

λwT∆φ(x̃,y, ỹ) + ∆(y, ỹ)

subject to x̃ ∈ S(x,y) (Equation 4.4)

74

We want to attract the reader’s attention to the similarity of (Equation

4.4), and the nested max operation in the constraint of (Equation 4.1). In fact,

λwT∆φ(x̃,y, ỹ) + ∆(y, ỹ) is a component of the loss function that the learner

wants to minimize. In the next subsection, we reformulate the standard 1-slack

structural SVM so that the effect of adversarial manipulation of input data will be

minimized.

4.2.2. Robust formulation in sample space

Our goal is to find a set of model parameters that perform well against

the worst-case manipulated input x̃ in the uncertainty set. We formulate this

by replacing the loss-augmented margin in (Equation 4.1) with the worst-case

adversarial loss obtained by (Equation 4.4):

minimize
w

Cf(w) + sup
x̃∈S(x,y),ỹ

Lλ(w, x̃, ỹ,y) (Equation 4.5)

where Lλ(w, x̃, ỹ,y) = λwT∆φ(x̃,y, ỹ) + ∆(y, ỹ). We replace the maximization

with a sup operator to indicate that the maximum value might not be achieved.

Both λ and C are tunable parameters that can be determined by cross-validation.

In the following lemma we show that it is possible to tune only one of them by

performing a re-parameterization.

Lemma 1. For semi-homogeneous f(.), the problem (Equation 4.5) can be

equivalently re-written in the following form:

minimize
w

Cf(w) + sup
x̃∈S(x,y),ỹ

L(w, x̃, ỹ,y) (Equation 4.6)

where L(w, x̃, ỹ,y) = wT∆φ(x̃,y, ỹ) + ∆(y, ỹ)

75

Proof. Let w′ = λw, and C ′ = C
λα

. Then, for a semi-homogeneous f(.), where

f(aw) = aαf(w), we have Cf(w) = C
λα
f(λw). Therefore, for semi-homogeneous

regularization functions f(.) by re-parameterization of w′ as w, and C ′ as C,

(Equation 4.5) can be rewritten as (Equation 4.6).

Problem (Equation 4.6) is similar in form to a standard structural SVM,

except that the inner maximization is done over both x̃ and ỹ. This is potentially

much harder than simply maximizing over ỹ, since the input often has a much

higher dimension than the output. For example, when labeling a set of 1000 web

pages, there are only 1000 labels to predict but 1,000,000 possible hyperlinks that

the adversary could add or remove. In the next subsection, we show that we can

avoid the above-mentioned computational complexity by instead restricting the

variations in the feature space.

4.2.3. Robustness in feature space

Let ∆x be the disturbance in the sample space such that: x̃ = x + ∆x. Then,

by finite difference approximation1:

φ(x̃,y) = φ(x + ∆x,y) = φ(x,y) + δ(x̃,y)

φ(x̃, ỹ) = φ(x + ∆x, ỹ) = φ(x, ỹ) + δ(x̃, ỹ)

Note that we are not introducing any error; both functions δ(x̃,y) and δ(x̃, ỹ)

contain as many high-order approximation terms as needed for achieving

infinitesimal error introduction, although we never unpack these functions. In

fact, the difference between δ(x̃,y) and δ(x̃, ỹ) is particularly important; let

1For more on finite difference approximations, refer to Smith Smith (1985).

76

δỹ(x,y, x̃) = δ(x̃, ỹ)− δ(x̃,y), then:

φ(x̃, ỹ)− φ(x̃,y)

= φ(x + ∆x, ỹ)− φ(x + ∆x,y)

= φ(x, ỹ)− φ(x,y) + δ(x̃, ỹ)− δ(x̃,y)

= φ(x, ỹ)− φ(x,y) + δỹ(x,y, x̃) (Equation 4.7)

Therefore, the manipulation of the input data affects the margin L(.) in (Equation

4.6) through δỹ(x,y, x̃). In the rest of the chapter, we will use δi to refer to the ith

element of the vector δỹ(x,y, x̃).

Clearly, δỹ depends on the specific choice of the alternate labeling ỹ, as well

as x̃, x, and y. Let:

∆2Φ(x,y) = {δ = δỹ(x,y, x̃)| ∀x̃ ∈ S(x,y), ỹ} (Equation 4.8)

be the set of all possible variations. Note that ∆2Φ(x,y) is independent of

ỹ. In the next section, we introduce some mechanical procedures for calculating

∆2Φ(x,y) from S(x,y), for certain choices of S(x,y) and φ(x,y).

Lemma 2. Let L1(w, x̃, ỹ,y) = wT (φ(x̃, ỹ)− φ(x̃,y)) + ∆(y, ỹ), and L2(w, δ, ỹ) =

wT (φ(x, ỹ)− φ(x,y) + δ) + ∆(y, ỹ). Then we will have:

sup
δ∈∆2Φ(x,y),ỹ

L2(w, δ, ỹ) ≥ sup
x̃∈S(x,y),ỹ

L1(w, x̃, ỹ,y)

77

Proof sketch. The left-hand side of the inequality is equal to the right-hand side

except that the supremum is taken over a superset of function values. Thus, the

left-hand side cannot be any less than the right-hand side.

Now, we can rewrite the robust formulation in (Equation 4.6) over variations

in the feature space:

minimize
w

Cf(w) + sup
δ∈∆2Φ(x,y),ỹ

L(w, δ, ỹ) (Equation 4.9)

where L(w, δ, ỹ) = wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ).

By Lemma (2), the objective of (Equation 4.9) is an upper-bound for the

objective of (Equation 4.6); therefore, the formulation of the problem in (Equation

4.9) is an approximate, but more tractable, solution for (Equation 4.6).

In the next section, we will show that for a wide class of ∆2Φ(x,y)’s,

problem (Equation 4.9) reduces to an optimization program which can be solved

as efficiently as an ordinary 1-slack structural SVM.

4.3. Mapping the uncertainty sets

In many real world problems, there exists some expert knowledge about the

uncertainty sets in the sample space. For example, for the webpage classification

problem, a spammer can modify web pages by adding and removing words and

links, but is constrained by the cost of compromising legitimate web pages, which

takes time and effort, or obfuscating spam pages, which may make them less

effective at gaining clicks. We can approximate this with a simple budget on the

number of words and links the adversary can change over the entire dataset. Even

when such information is not readily available, it may be possible to infer an

78

uncertainty set from training data. For example, if our dataset contains outliers,

we can pair each outlier (x̃) with the most similar non-outlier (x) and take the

differences as possible directions of manipulation: ∆x = x̃ − x. The convex hull

of these difference vectors (or an approximation thereof) can be used to define an

uncertainty set for any instance.

Lemma 2 states that the robust formulation in feature space is a reasonable

approximation for the robust formulation in the sample space, but it does not

suggest any mechanical procedure for calculating the uncertainty sets in feature

space from the ones in the sample space. We now derive such procedures for certain

types of uncertainty sets and feature functions.

Many features of interest, including logical conjunctions, can be represented

as products of several variables. We define a multinomial feature function as a sum

of many such products:

φC(x,y) =
∑

(cx,cy)∈C

∏
i∈cx

xi
∏
i∈cy

yi (Equation 4.10)

where C is a set of cliques and (cx, cy) are the index sets of the attribute and

output variables that contribute to the feature. The summation groups together

many products that share the same pattern into a single, aggregate feature so that

they may be considered collectively. For example, in web page classification, the

multinomial feature
∑

i xi,jyi could represent the number of web pages with label 1

that contain word j. This is equivalent to having many features with tied weights.

Lemma 3. If the feature function φC(x,y) is multinomial with 0 ≤ x,y ≤ 1;

then, its disturbance δC can be upper-bounded by a function of the variations in the

79

sample space, and the following inequality relation holds:

|δC|p

αC|C|
p
q

≤
∑
cx∈C

∑
i∈cx

|x̃i − xi|p (Equation 4.11)

where p ≥ 1 is an arbitrary power value and 1
p

+ 1
q

= 1; α = max
cx∈C
|cx|(p−1); |cx| is the

number of evidence variables in cx; and |C| is the number of different sets cx in C.

Now, the resulting inequality of Lemma 3 can be used as the core inequality

for upper-bounding the variations in the feature space.

The proofs can be found in Appendix B.

The next theorem is the main result of this section.

Theorem 2. For multinomial feature functions and spherical uncertainty sets in

the sample spaceS(x,y) = {x̃ | ‖x̃ − x‖p ≤ B, p ≥ 1}, one can construct an

ellipsoidal uncertainty set in the feature space:

∆2Φ(x,y) = {δ| ‖Mδ‖p ≤ 1} (Equation 4.12)

where M is a diagonal matrix with 1

B(dαi)
1
p |Ci|

1
q

on the (i, i)th position. d, αi, and

|Ci| are appropriate constants.

Proof. Assume that P = {C1, . . . , CL} is a set of cliques that covers all variable xi’s.

Note that such a set should exist; otherwise, some variables are never used in the

model. For each of the cliques, we form a corresponding difference in the feature

function from Equation 4.7, and apply Lemma 3. By adding all of the resulting

80

inequalities, we obtain:

∑
Ci∈P

|δCi|p

αi|Ci|
p
q

≤ d

dim(x)∑
i=1

|x̃i − xi|p

= d‖x̃− x‖pp ≤ dBp

⇒
∑
Ci∈P

|δCi |p

Bpdαi|Ci|
p
q

≤ 1

⇒
∑
Ci∈P

(
1

B(dαi)
1
p |Ci|

1
q

|δCi |

)p

≤ 1

where αi = max
cx∈Ci
|cx|(p−1), and |cx| is the number of variables in cx. Since it is

possible that cliques cover overlapping sets of variables, the coefficient d ≥ 1 will

be used to maintain the inequality.

Now let 1

B(dαi)
1
p |Ci|

1
q

be the diagonal entry in matrix M that corresponds to

feature disturbance δCi . For this choice of M, ‖Mδ‖p ≤ 1.

We have an example of applying Theorem 2 in Section 6.2, which will show

how this construction works in practice.

Corollary 1. If S(x,y) = {x̃ | ‖x̃ − x‖1 ≤ B}, then M can be constructed by

setting 1
Bd

as its (i, i)th element, which results in a tighter upper bound.

The proof can be found in Appendix B.

4.4. Robust optimization programs

Our main contribution in this chapter is achieving robust formulations that

can be efficiently solved. We do this by demonstrating a connection between

robustness to certain perturbations in feature space and certain types of weight

regularization. In this section we derive formulations for achieving robust weight

81

learning in structural SVMs when ∆2Φ(x,y) is an ellipsoid, a polyhedron, or the

intersection of an ellipsoid and a polyhedron.

4.4.1. Ellipsoidal constrained uncertainty

We first consider the case when the uncertainty set ∆2Φ(x,y) is ellipsoidal.

Recall that any ellipsoid can be represented in the form of {t | ‖Mt‖ ≤ 1}, where

‖.‖ is the relevant norm.

Theorem 3. For ∆2Φ(x,y) = {δ | ‖Mδ‖ ≤ 1} where M is positive definite, the

optimization program of the robust structural SVM in (Equation 4.9) reduces to the

following regularized formulation of the ordinary 1-slack structural SVM:

minimize
w,ζ

Cf(w) + ‖M−1w‖∗ + ζ (Equation 4.13)

subject to

ζ ≥ sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

where ‖.‖∗ is the dual norm of ‖.‖.

Proof. We begin with the robust formulation of a structural SVM from (Equation

4.9), where the uncertainty set of δ is defined by the ellipsoid ‖Mδ‖ ≤ 1:

minimize
w

Cf(w) + sup
‖Mδ‖≤1,ỹ

L(w, δ, ỹ)

82

Let ν = Mδ, so that δ = M−1ν. Then we will have:

sup
‖Mδ‖≤1,ỹ

L(w, δ, ỹ)

= sup
‖Mδ‖≤1,ỹ

wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ)

= sup
‖Mδ‖≤1

wT δ + sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

= sup
‖ν‖≤1

wTM−1ν + sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

By definition of the dual norm, sup‖ν‖≤1(wTM−1)ν = ‖M−Tw‖∗. Since M−1 is also

a definite matrix, it is symmetric; therefore, ‖M−Tw‖∗ = ‖M−1w‖∗.

= ‖M−1w‖∗ + sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

By substitution, the rest of the proof is straightforward.

Note that Theorem 3 can still be applied when M is not positive definite by

using the Moore-Penrose inverse of M instead of the regular inverse. The result in

Theorem 3 uses the technique of robust linear programming with arbitrary norms

that is introduced in Bertsimas et al. (2004). This theorem can also be seen as a

generalization of Theorem 3 in Xu et al. (2009) to structural SVMs. Theorem 3

shows the direct connection between the robust formulation and regularization of

the non-robust formulation for structural SVMs.

Corollary 2. For disturbances of the form ‖δ‖ ≤ B in the feature space, with

B being a maximum budget for the applicable changes and ‖.‖ being an arbitrary

norm, robustness can be achieved by adding the regularization function B‖w‖∗ to

the objective.

83

Proof. Since ‖δ‖/B ≤ 1 ⇒ ‖ 1
B
δ‖ = ‖ 1

B
Iδ‖ ≤ 1. Let M = 1

B
I, then M−1 = BI.

Thus, ‖M−1w‖∗ = ‖BIw‖∗ = B‖w‖∗. By Theorem 3, B‖w‖∗ is the appropriate

regularization function.

Note that M can also be seen as a tuning parameter. In particular, if there is

a low-dimensional representation of M, then tuning M might be an option.

The commonly used L2 regularization can be in fact interpreted as a

regularization function that enforces robustness to disturbances in the feature space

that are restricted to a hypersphere.

Corollary 3. If f(w) = 0, then setting M = 1
C
I and ‖.‖ = ‖.‖2 will recover the

commonly used L2-regularized structural SVM.

Proof. If M = 1
C
I, then M−1 = CI. Note that the L2 norm is dual to itself.

Therefore, f(w) + ‖M−1w‖∗2 = 0 + ‖CIw‖2 = C‖w‖2.

Corollary 4. Robustness to variations restricted by a Mahalanobis norm ‖δ‖S =
√
δTSδ ≤ 1, where S is positive definite, is equivalent to adding the regularization

function ‖w‖S−1 =
√

wTS−1w to the objective.

Proof. Let S = UΛUT be the spectral decomposition of S. Set M = UΛ
1
2 UT

and the norm ‖.‖ to ‖.‖2. Then ‖Mδ‖2 =
√
δTMTMδ =

√
δTM2δ =

√
δTSδ.

Therefore the resulting regularization function will be ‖M−1w‖∗2 = ‖M−1w‖2 =
√

wTM−TM−1w =
√

wTUΛ−
1
2 UTUΛ−

1
2 UTw =

√
wTUΛ−1UTw =

√
wTS−1w =

‖w‖S−1 , Note that UTU = I because U is a unitary matrix.

4.4.2. Polyhedral constrained uncertainty

For some problems, an ellipsoid may not be a good representation of the

uncertainty set, but almost any convex uncertainty set can be approximated by a

84

polyhedron. In this subsection we consider the situations in which we are aware of

the shape of the polyhedral constraints on the variations in the feature space; i.e.,

∆2Φ(x,y) = {δ|Aδ ≤ b}. The next theorem shows that polyhedral uncertainty

sets are equivalent to linear regularization in a transformed feature space. We begin

with a supporting lemma.

Lemma 4. If x ∈ S(x,y), then for the corresponding ∆2Φ(x,y) = {δ|Aδ ≤ b}, b

is a non-negative vector.

Proof. x ∈ S(x,y), and φ(x̃, ỹ) − φ(x̃,y) = φ(x, ỹ) − φ(x,y) + δ. Therefore,

when x̃ = x then δ = 0, so we should have 0 ∈ ∆2Φ(x,y). Therefore, for δ = 0,

Aδ = A0 ≤ b; i.e., b ≥ 0.

Theorem 4. For ∆2Φ(x,y) = {δ|Aδ ≤ b}, the optimization program of the

robust structural SVM in (Equation 4.9) reduces to the following ordinary 1-slack

structural SVM

minimize
λ≥0,ζ

Cf(ATλ) + λTb + ζ (Equation 4.14)

subject to ζ ≥ sup
ỹ

λTA∆φ(x,y, ỹ) + ∆(y, ỹ)

Proof. By substituting the uncertainty set ∆2Φ(x,y) = {δ|Aδ ≤ b} into the

optimization program (Equation 4.9), we obtain:

minimize
w≥0

Cf(w) + sup
Aδ≤b,ỹ

L(w, δ, ỹ) (Equation 4.15)

85

We can rewrite sup
Aδ≤b,ỹ

L(w, δ, ỹ) as:

sup
Aδ≤b,ỹ

wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ)

= sup
Aδ≤b

wT δ + sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

We perform a Lagrangian relaxation on Aδ ≤ b:

= inf
λ≥0

sup
δ

(wT δ − λTAδ + λTb)

+ sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

= inf
λ≥0

(
λTb + sup

δ
(wT − λTA)δ

)
+ sup

ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

Note that the value of the sup
δ

(wT −λTA)δ will be +∞, unless w = ATλ, therefore:

=

inf
λ≥0

λTb + sup
ỹ

[wT∆φ(x,y, ỹ) + ∆(y, ỹ)]

if w = ATλ

+∞ otherwise.

Therefore (Equation 4.15) can be rewritten as:

minimize
w≥0

Cf(w) + inf
λ≥0

λTb +

sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

subject to w = ATλ (Equation 4.16)

86

By substituting w with ATλ, (Equation 4.16) can be equivalently written as

(Equation 4.14). Note that by Lemma (4), the value of b is is always non-negative,

so no value of λ can lead the value of the objective in the outer minimization to

negative infinity.

It is a known fact that maximization (or minimization) of L1 and L∞ norms

of affine functions can be converted to linear programs (Boyd and Vandenberghe,

2004). In the following proposition, we state that both Theorem 3 and Theorem 4

will lead to equivalent optimization programs in these cases.

Proposition 1. If the disturbances in the feature space are restricted by some

ellipsoid that is defined by L1 or L∞ norms, then optimization program that is

generated by Theorem 3 can be equivalently transformed to one that is generated

by Theorem 4

The proof can be found in Appendix B.

4.4.3. Ellipsoidal/Polyhedral conjunction

In some cases, the uncertainty set in feature space may resemble an ellipsoid

but with additional linear constraints. We can model this as the intersection of an

ellipsoid and a polyhedron. The following theorem describes how such uncertainty

sets can be transformed into regularizers.

Theorem 5. For ∆2Φ(x,y) = {δ|‖Mδ‖ ≤ 1,Aδ ≤ b}, the optimization program

of the robust structural SVM in (Equation 4.9) reduces to the following ordinary

87

1-slack structural SVM:

minimize
w,λ≥0,ζ

Cf(w) + ‖M−1(w −ATλ)‖∗ + bTλ+ ζ

subject to

ζ ≥ sup
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ) (Equation 4.17)

The proof of Theorem 5 is a combination of the proofs of Theorems 3 and 4.

First, we perform the Lagrangian relaxation as in the proof of 4, and then we add

the dual of M−1(w −ATλ) (the coefficient of δ) as the regularization term.

The results in Theorems 3, 4, and 5 apply to binary and multi-class SVMs as

well simply by restricting the space of y to a small set of values. For Theorem 3,

this reduces to results proved by Xu et al. (2009). For the later theorems, we are

not aware of any analogous previous work in binary or multi-class SVMs.

Some limiting cases of Theorem 5 are also interesting. For example, for a

(geometrically) infinitely large polyhedron Aδ ≤ b (e.g., elements of the vector b

are infinitely large), λ must be 0, which recovers the regularization term ‖M−1w‖∗

introduced in Theorem 3.

Let λ1, . . . , λm be the eigenvalues of M. If min(λi) → +∞ (for example, a

diagonal matrix with very large numbers on the diagonal), then as a result δ →

0 in the robust formulation. Intuitively, this means that the uncertainty set only

contains the unmodified input x. In this case, M−1 approaches the zero matrix,

and as a result the regularization term ‖M−1(w − ATλ)‖∗ fades as expected. On

the other hand, if max(λi) → 0, then ‖M−1(w − ATλ)‖∗ ≈ ‖LMI(w − ATλ)‖∗ =

LM‖(w −ATλ)‖∗, where LM → +∞. Therefore, the constraint w = ATλ must be

satisfied, leading to (Equation 4.14).

88

4.5. Experiments

We demonstrate the utility of our approach by applying it to a collective

classification problem.

4.5.1. Dataset

We introduce a new dataset based on the political blogs dataset collected

by Adamic and Glance (2005). The original dataset consists of 1490 blogs and their

network structure from the 2004 presidential election period. Each blog is labeled

as liberal or conservative. We expanded this dataset by crawling the actual blog

texts in different years to obtain a vector of 250 word features for each blog in each

yearly snapshot from 2003 to 2013. We used the internet archive website (https:

//archive.org/web/) to obtain snapshots of each blog in each year. We selected

the snapshot closest to October 10th of each year and removed blogs that were

inactive for an 8 month window (4 months before and after October 10th).

The political affiliation of a blog can thus be inferred from both the words

on the blog and its hyperlink relationships to other blogs, which are likely to have

similar political views. Since political topics evolve quickly over time, we expect a

significant amount of concept drift over the years, especially over the word features.

Since the test distribution is evolving significantly, we might expect a robust model

to outperform a non-robust model when trained and tested on different years.2

2We plan to release both the expanded political blogs dataset and our robust SVM
implementation after publication of this work.

89

4.5.2. Problem Formulation

In our experiments, we use both word features and link features. We

construct one multinomial feature for each word i and label k, φik(x,y) =∑
j x

w
jiyjk, where xwji = 1 if the jth blog contains the ith word, and yjk = 1

if the jth blog has label k. We also construct a link feature for each label k:

φk(x,y) =
∑

ij x
e
ijyikyjk, where xeij = 1 if there is a link from the ith blog to the

jth blog.

For our constraints, we assume that the number of words added or removed

is bounded by some budget, Bw, and the number of edges by another budget, Be.

Thus, letting xw be vector of all word-related variables, ‖x̃w−xw‖1 ≤ Bw. Similarly,

‖x̃e − xe‖1 ≤ Be.

In order to construct the uncertainty set in the feature space, we follow the

construction procedure in Theorem 2 and then apply Corollary 1. For the word

features φik and edge features φk we can construct separate uncertainty sets:

|δik| ≤
∑
i

|x̃wik − xwik|

⇒
∑
l

|δik| ≤
∑
i,l

|x̃wik − xwik| = ‖x̃w − xw‖ ≤ Bw

|δek| ≤
∑
i,j

|x̃eij − xeij| = ‖x̃e − xe‖ ≤ Be

In our domain there are two classes, liberal and conservative, so k ∈ {0, 1}.

As a result:
∑1

k=0

∑
l
|δlk|
2Bw
≤ 1, and

∑1
k=0

|δek|
2Be
≤ 1. Summing the equalities and

dividing by two:

∑
lk

|δlk|
4Bw

+
∑
k

|δek|
4Be

≤ 1

90

Finally, let δ = [δ11, . . . , δnm, δe0, δe1]T , where m = 250 is the number of words

attribute that are chosen from training data, and n is the number of the nodes in

the graph. Then, M is a diagonal matrix with entries [1
4Bw

, . . . , 1
4Bw

, 1
4Be

, 1
4Be

], so we

will have ‖Mδ‖1 ≤ 1. Note that, in this uncertainty translation, the base case of

Lemma 3 holds in the first place, so the inequality is in its tightest form.

4.5.3. Methods and Results

We partitioned the blogs into three separate sub-networks and used three-way

cross-validation, training on one sub-network, using the next as a validation set for

tuning parameters, and evaluating on the third. We used mutual information to

select the 250 most informative words separately for each training set. However,

rather than training, tuning, and testing on the same year, we trained and tuned on

the snapshot from 2004 and evaluated the models on every snapshot from 2003 to

2013.

Standard structural SVMs have one parameter C that needs to be tuned. The

robust method has an additional regularization parameter C ′ = 1/Be = 1/Bw

which scales the strength of the robust regularization.3 We chose these parameters

from the semi-logarithmic set {0, .001, .002, .005, .1, . . . , 10, 20, 50}. We intentionally

added 0 to this set to allow the algorithm remove one of the regularization terms.

We learned parameters using a cutting plane method, implemented using the

Gurobi optimization engine 5.60 (Gurobi Optimization, 2014) for running all

integer and quadratic programs. We ran for 50 iterations and selected the weights

from the iteration with the best performance on the tuning set.

3In general, Be and Bw could be tuned separately, but we did not do this in our experiments.

91

Figure 4.1 shows the average error rate of the robust and non-robust

formulations in each year. In 2004, both have very similar accuracy. This is not

surprising, since they were tuned for this particular year. In years before and

after 2004, the error rate increases for both models. However, the error rate of

the robust model is often substantially lower than the non-robust model. We

attribute this to the fact that the robust model has additional L∞ regularization

(since L∞ is the dual of the L1 uncertainty set used). This prevents the model from

relying too much on a small set of features that may change, such as a particular

political buzzword that might go out of fashion. These results demonstrate that

robust methods for learning structural SVMs can lead to large improvements in

accuracy, even when we do not have an explicit adversary or a perfect model of the

perturbations.

4.6. Related work

In this chapter, the big picture of our formulation for robustness in the

presented algorithms is based on a minimax formulation, where the learner

minimizes a loss function and, at the same time, the antagonistic adversary tries to

maximize the same quantity. Some related work has focused on designing classifiers

that are robust to adversarial perturbation of the input data in a minimax

formulation. For example, Globerson and Roweis (2006) introduce a classifier

that is robust to feature deletion. Teo et al. (2008) extend this to any adversarial

manipulation that can be efficiently simulated. Livni and Globerson (2012) show

that a minimax formulation of robustness in the presence of stochastic adversaries

results in L2 (Frobenius for matrix weights) regularization, and for the multi-class

case results in two-infinity regularization of the model weights. Torkamani and

92

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
10

15

20

25

30

35

40

Test Year

P
re

di
ct

io
n

E
rr

or
 (

%
)

Robust Model
Non−robust model

FIGURE 4.1. Average prediction error of robust and non-robust models, trained on
year 2004 and evaluated on years 2003-2013.

Lowd (2013), show that for associative Markov networks, robust weight learning for

collective classification can be efficiently done with a convex quadratic program.

Xu et al.’s work on robustness and regularization (Xu et al., 2009) is the

most related previous work, which analyzes the connection between robustness and

regularization in binary SVMs. Our work goes well beyond these results (and the

ones mentioned in the introduction) by analyzing arbitrary structural SVMs and

showing how they can be made robust without directly simulating the adversary, by

choosing the appropriate regularization function.

93

4.7. Conclusion

In this chapter, we showed that the robust formulation of structural SVMs,

which is intractable in general, can be reduced to tractable optimization programs

for special uncertainty sets. We also showed that for multinomial feature functions,

ellipsoidal uncertainty in sample space can be translated to one in feature space.

We also showed that robustness to polyhedral uncertainties, can be achieved by

linear regularization of the objective and linear transformation of the feature space.

We introduced a new dataset that can be used for structured output prediction in

the presence of distribution change over time. Experimental results showed that our

method outperforms the standard non-robust approach in the presence of concept

drift in the real word data.

So far our focus had been on worst-case adversarial changes in the input data.

In the next chapter, we introduce a regularization method, which robustifies the

machine learning in the presence of average adversaries. The proposed method

optimizes a new loss function, which is the expected hinge loss function under

dropout noise.

94

CHAPTER V

MARGINALIZATION AND KERNELIZATION OF DROPOUT FOR

SUPPORT VECTOR MACHINES

This work is under review in the Journal of Machine Learning Research

(JMLR). I was the primary contributor to the methodology and writing, and

designed and conducted the experiments. My Ph.D. advisor, Dr. Daniel Lowd

contributed partly to the methodology and writing. Daniel Lowd was the principle

investigator for this work.

A central problem in machine learning is learning complex models that

generalize to unseen data. One common solution is to use an ensemble of many

models instead of a single model. Another strategy is to expand the dataset, either

implicitly or explicitly, by exploiting invariances in the domain. Both strategies

reduce the variance of the estimator, leading to more robust models. Dropout

training can be viewed as an instance of either of these strategies. In dropout

training, portions of the model or input data are randomly “dropped out” while

learning the parameters (Srivastava et al., 2014). Thus, dropout can be viewed as

optimizing a distribution of models, or optimizing a model on a distribution over

datasets. In deep networks, this reduces co-adaptation of the weights and allows

more complex models to be learned with less overfitting. In shallow models, such as

logistic regression (LR), dropout acts as a regularizer that penalizes feature weights

based on how much they influence the classifier’s predictions (Wager et al., 2013).

Support vector machines (SVMs) are among the most popular and effective

classification methods, obtaining state-of-the-art results in many domains. SVM

training algorithms reduce generalization error by maximizing the (soft) margin

95

between the classes. For linear classifiers, this amounts to minimizing the hinge

loss plus a quadratic weight regularizer. To learn a non-linear classifier, SVMs can

use a kernel function to compute dot products in a high-dimensional feature space

without constructing the explicit feature representation. While the max-margin

principle is helpful in improving generalization, overfitting remains a risk when

learning complex functions from limited data. Kernelized SVMs are at the greatest

risk, due to their increased expressivity.

Previous work on dropout has mostly focused on deep networks and logistic

regression (Srivastava et al., 2014; Wager et al., 2013; Wang and Manning, 2013;

Maaten et al., 2013). For logistic regression, there are methods to make training

more efficient by approximating or marginalizing over the randomness introduced

by dropout (Wager et al., 2013; Maaten et al., 2013). Other papers analyze the

quantitative and qualitative effect of dropout in logistic regression (Wager et al.,

2013, 2014). The only work on dropout in SVMs is limited to linear SVMs and

consists of a relatively complicated method for optimizing the marginalized dropout

objective (Chen et al., 2014a).

In this chapter, we analyze dropout in both linear and non-linear SVMs. Our

goal is to develop methods that are simple, efficient, and effective at improving the

generalization of SVMs on real-world datasets. For linear SVMs, we show that the

expected hinge loss under dropout noise can be closely approximated as a smooth,

closed-form function. This marginalized dropout objective is easy to optimize and

leads to improved performance on a number of datasets.

For non-linear SVMs, we present two methods for efficiently performing

dropout on the kernel feature map, even when this feature map is high- or infinite-

dimensional. Our first method generates a linear representation of the input

96

data by randomly sampling from the Fourier transformation bases of the kernel

function as introduced by Rahimi and Recht (2007). It then learns a linear SVM

with marginalized dropout noise on this transformed feature representation. The

second method approximates the effect of dropout in feature space by adding a

weighted L2 regularizer to the dual variables in the SVM optimization problem.

In experiments on digit classification and census datasets, both methods lead to

improved performance compared to a standard SVM with a radial basis function

(RBF) kernel, but the transformed feature representation method is more effective

than dual regularization.

5.1. Related work

The connection between different types of noise and regularization has been

explored by many authors. For example, Bishop (1995) shows that adding Gaussian

noise to neural network inputs while training is equivalent to L2 regularization of

the weights. For the case of linear SVMs, Xu et al. (2009) demonstrate that worst-

case additive noise with bounded norm is equivalent to regularizing the weights

with the dual norm. Globerson and Roweis (2006) introduce the “nightmare at test

time” scenario in which an adversary removes a certain number of features from the

model, setting them to zero. They propose a modified SVM formulation to optimize

performance against such an adversary.

Wager et al. (2013) analyze the regularization effect of dropout noise in

generalized linear models (GLMs) by computing a second-order approximation to

the expected loss of the dropout-corrupted data. This allows the dropout objective

to be optimized explicitly rather than implicitly. Unfortunately, this second-order

97

approximation cannot be applied to linear SVMs because the hinge loss is not

differentiable.

Maaten et al. (2013) also introduce methods for learning linear models with

corrupted features, marginalizing over the corruption by introducing a surrogate

upper bound of the logistic loss. For certain loss functions and noise distributions,

they can compute the marginalized objective directly; for logistic loss, they

minimize an upper bound on the expected loss instead. They do not consider

hinge loss. Chen et al. (2014a) extend these methods to analyze linear SVMs with

dropout noise. Since exactly computing the marginalized objective is hard, the

authors introduce a variational approximation. They optimize this approximate

objective using expectation maximization and iterative least squares. The goals

of Chen et al. are similar to ours, but our formulation is simpler and easier to

optimize.

Wang and Manning (2013) introduce a fast way to approximate the expected

dropout gradient. The key idea is to draw the noised activation of each unit from a

normal distribution instead of directly sampling many Bernoulli variables. By using

this approximation several times for each training example, the variance of the

gradients is reduced without a significant increase in computation time. They also

present a closed-form solution which relies on approximating the logistic function as

a Gaussian cumulative distribution function.

In this chapter, we also use a Gaussian approximation to the noisy dot

products. However, we focus on hinge loss rather than logistic loss, and we show

how to compute compute the gradient analytically without sampling or introducing

any additional approximations.

98

Dropout is significantly different from additive noise, since the expected

perturbation of a feature depends on its value in the data. For example, features

that are already zero will be perturbed by standard additive noise, but remain

unchanged by dropout. Instead, dropout noise is best viewed as an instance of

multiplicative noise, since each feature is multiplied by 0 with some probability δ

and 1/(1− δ) with probability (1− δ).

To date, there has been limited exploration of training with multiplicative

noise other than dropout1, and no study of training SVMs with multiplicative

noise. In this chapter, we address both of these questions, leading to a better

understanding of how noise relates to generalization in different types of models.

5.2. Dropout in linear SVMs

A standard formulation for learning linear SVMs is to minimize the hinge loss

of the training data with a quadratic regularizer on the weights:

minimizew,b
λ

2
‖w‖2

2 +
N∑
i=1

[1− yi(wTxi + b)]+ (Equation 5.1)

where w and b are the model parameters (weights and bias); the training data

consists of instance and label pairs, xi ∈ Rn and yi ∈ {+1,−1}; λ is the L2

regularization coefficient; and [z]+ = max(z, 0) is the hinge function. We focus

on binary classification, where labels are +1 and −1; multiclass classification can be

reduced to binary classification.

The idea of dropout training is to optimize performance over a distribution

of model structures or datasets. For linear SVMs, this amounts to minimizing the

1Wang et al. (2013) also consider multiplicative Gaussian noise, and observe that it is
equivalent to dropout under the quadratic approximation.

99

expected loss over noisy versions of the training data:

minimizew,b
λ

2
‖w‖2

2 +
N∑
i=1

Ex̃i [1− yi(wT x̃i + b)]+ (Equation 5.2)

For dropout noise, x̃i is constructed by removing features from the original training

example xi with some dropout probability δ. More formally, x̃i can be represented

as xi with multiplicative noise: x̃ij = ζjxij, where ζj = 0 with probability δ and

ζj = 1/(1− δ) with probability 1− δ. Note that E[ζj] = 1 and E[x̃i] = xi.

When the data is low-dimensional, or the data matrix is extremely sparse,

it may be affordable to compute the expected loss or its gradient exactly. More

formally, when there are few non-zeros in a data sample or the weight vector is

expected to be sparse (e.g., because of an `1 regularization), then Ex̃i [1− yi(wT x̃i +

b)]+ can be expanded to
∑

ξ p(ξ)[1−yi((w�xi)
T ξ+b)]+, where ξ is the vector of the

multiplicative noise in all dimensions, � is the elementwise (Hadamard) product,

and p(ξ) = δ(#zeros in ξ)(1−δ)(#ones in ξ). Since the number of applicable dropout noise

vectors is exponential in the number of the non-zeros in w � xi (i.e., ‖w � xi‖0),

for small values of ‖w � xi‖0 the computation of the expected value of the loss

function under dropout noise may be tractable. There can be cases where the data

is not sparse, but the weight vector is expected to be sparse, due to a sparsity-

inducing penalty. Even in such a scenario, if we start the optimization algorithm

with a sparse initial weight vector, we may be able to calculate the exact dropout

expectation during the optimization.

The difficulty comes when the data is high-dimensional and the expected

weight vector is relatively dense. Then, neither the expected loss nor its gradient

can be efficiently calculated.

100

The simplest alternative is to approximate the expected loss with sampling or

Monte-Carlo methods. For online learning algorithms (such as Pegasos (Shalev-

Shwartz et al., 2011)), noisy instances can be generated in each iteration. For

batch learning algorithms, we can approximate this expectation using K noisy

replications of the dataset:

minimizew,b
λ

2
‖w‖2

2 +
1

K

K∑
k=1

∑
(x̃,y)∈D̃(k)

[1− y(wT x̃ + b)]+

where D̃(k) is the kth noisy replication of D, in which each instance x has

been replaced by a noised instance x̃.

The Monte-Carlo approach is simple, but it can be computationally

expensive. Obtaining a good approximation of the expectation may require many

iterations for online algorithms or many noisy replications of the data for batch

algorithms. Thus, we propose to approximate the expectation analytically, rather

than stochastically.

The advantages of an analytic approximation are faster training times and

more accurate solutions. This idea has already been applied to dropout in logistic

regression, either optimizing an approximation or an upper bound on the expected

logistic loss (Wager et al., 2013; Maaten et al., 2013). For linear SVMs, the

quadratic approximation cannot be applied, because hinge loss is non-differentiable.

In this section, we derive a smooth approximation of the expected hinge loss.

The objective is easy to compute and can be optimized directly with standard

gradient-based methods.

101

50 60 70 80 90 100 110
0

500

1000

1500

2000

2500

3000

3500

4000

The margin value

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Dropout

Linderberg−Feller CLT

(a)

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

Number of Non−zero Weights

E
m

pi
ric

al
 U

pp
er

−
bo

un
d

Simulated Berry−Esseen Upper−bound

(b)

FIGURE 5.1. The results of running a Monte-Carlo simulation of calculating
1− y(wT x̃+ b) for randomly drawn x̃’s and drawings from the approximated

Gaussian distributions. The dimension of each sample x̃ is 50 in the
histogram on the left. Right: simulation of the Berry-Esséen upper-
bound for different number of non-zero weights

Let x̃i = xi � ζ (ζ = [ζ1, . . . , ζm]T and m is the dimension of xi) be the

corrupted version of x and y be its label, such that ζj’s are independently and

identically drawn from a Bernoulli distribution with parameter δ. According to

the Lindeberg-Levy central limit theorem, if we have minimum and maximum

values for the features and the weights, by the increase of the dimension m and

non-zero weights and features per example, the margins of the SVM for this sample

converge-in-distribution as following: 1 − y(wT x̃i + b)
.D.−→ N (1 − y(wTxi +

b), δ
1−δ
∑m

j=1 x
2
ijw

2
j).

In practice, in an SVM training process with fixed regularization, the weights

have bounded magnitude. This is similar to the approach of Wang and Manning

(2013), where they propose a similar application of the central limit theorem to

improve the speed of Monte-Carlo dropout in logistic regression. Figure 5.1a shows

an example distribution over margin values according to sampled dropout noise and

102

the approximated Gaussian distribution. Although the dimension of the sample

vectors in this simulation is small (∼ 50), we observe a close match between the

two histograms.

Lemma 5. The expected value of the hinge function over a normal distribution is:

Eξ∼N (µ,σ2)[ξ]+ = µΦ(
µ

σ
) + σφ(

µ

σ
) (Equation 5.3)

where Φ and φ are respectively the cumulative and probability density functions of a

normal distribution with zero mean and variance equal to one.

The proof is provided in Appendix C.

Therefore, by Lemma 5, the optimization program of the SVM with L2

regularization in the primal form (Problem Equation 5.2) with dropout noise can

be approximated by the following optimization program:

minimizew,b
λ

2
‖w‖2

2 +
N∑
i=1

uiΦ(
ui
σi

) + σiφ(
ui
σi

) (Equation 5.4)

where ui = 1− yi(wTxi + b), σi =
√

δ
1−δ
∑m

j=1 x
2
ijw

2
j (m is the number of features), Φ

and φ are the cumulative and probability density functions of the standard normal

distribution. A direct proof is given in Appendix C.

5.2.1. Convexity

The marginalized cost function (Equation 5.4) is nonlinear, but it is always

convex. We use the following lemma for proving its convexity:

103

Lemma 6. Let f : Rm → R be a multivariate function. Also let g(t) = f(x0 + t∆x)

(t ∈ R) for some arbitrary x0,∆x ∈ Rm. If g(t) is convex in t for all x0,∆x ∈ Rm,

then f(x) is convex in x.

Proof. By the definition of convexity, it suffices to show (1 − λ)f(A) + λf(B) ≥

f((1 − λ)A + λB) for any λ ∈ [0, 1] and any A,B ∈ Rm. Let x0 := A and ∆x :=

B −A, then the former inequality is equivalent to (1− λ)g(0) + λg(1) ≥ g(λ), which

holds by assumed convexity of g.

In the following theorem, we prove that the proposed cost function is

surprisingly convex. Therefore, it can be efficiently optimized by off-the-shelf

optimization algorithms.

Theorem 6. The marginalized loss f(w, b; yi, xi) = uiΦ(ui
σi

) + σiφ(ui
σi

) is jointly

convex in w and b for any given sample and label pair (xi, yi), where ui = 1 −

yi(w
Txi + b), σi = σδ

√∑m
j=1 x

2
ijw

2
j .

Proof. Consider a slice cut of the objective function in an arbitrary direction

(∆w,∆b) from an arbitrary point (w, b) in the parameter space.

Let:

ui(t) = 1− yi
(
(w + t∆w)Txi + b+ t∆b

)
= 1− yi(wTxi + b)− t(yi∆wTxi + yi∆b)

= U −∆Ut

σi(t) = σδ

√∑
k

x2
ik(wk + t∆wk)2 = σδ

√∑
k

x2
ik(w

2
k + 2twk∆wk + t2∆w2

k)

= σδ

√∑
k

x2
kw

2
k + t

∑
k

2x2
kwk∆wk + t2

∑
k

x2
k∆w

2
k)

= σδ
√
S + pt+ qt2 (Equation 5.5)

104

where U = 1 − yi(w
Txi + b), ∆U = yi(∆w

Txi + ∆b), S =
∑

k x
2
kw

2
k,

p =
∑

k 2x2
kwk∆wk and q =

∑
k x

2
k∆w

2
k. Also, let f(t) = ui(t)Φ(ui(t)/σi(t)) +

σi(t)φ(ui(t)/σi(t)). Based on Lemma 6, if f(t) is convex in t for any (xi, yi), w, b,

∆w and ∆b, then f(w, b; yi, xi) is jointly convex in its parameters. We have:

∂2f(t)

∂2t
=

e
− (U−∆Ut)2

2(S+pt+qt2)σ2
δ ((2∆US + ∆Upt+ pU + 2qtU)2 + (4qS − p2)(S + tp+ qt2)σ2

δ)

4
√

2π(S + tp+ qt2)5/2σδ

=
e
− (ui)

2

2σ2
i ((2∆US + ∆Upt+ pU + 2qtU)2 + (4qS − p2)σ2

i)

4
√

2π(σ)5/σ4
δ

(Equation 5.6)

Note that the denominator of the second derivative is non-negative

(4
√

2π(σ)5/σ4
δ ≥ 0), and in the nominator, all terms are always non-negative,

except 4qS − p2, which can be negative for some values of S, p and q (i.e.

e
− (U−∆Ut)2

2(S+pt+qt2)σ2
δ ≥ 0, (2∆US + ∆Upt+ pU + 2qtU)2 ≥ 0 and (S + tp+ qt2)σ2

δ ≥ 0).

By definition, σi(t) is always non-negative. Consider the hypothetical values

of S, p and q, for which, there exist some t such that σi(t) = σδ
√
S + pt+ qt2 = 0.

Then the roots of σi(t), will be t =
−p±
√
p2−4qS

2q
.

As long as σi(t) has no real roots (i.e.
√
p2 − 4qS is imaginary), we will have

(4qS − p2) > 0, and as a result ∂2f(t)
∂2t

> 0.

The marginalized cost function is undefined for σi = 0, which appears in

ui
σi

, however, it is continuous and convex in the limit as σi(t) → 0 (or equivalently

t → −p±
√
p2−4qS

2q
, when p2 − 4qS ≥ 0). Let mint σi(t) = 0 (i.e. for some values of S,

p and q, p2 − 4qS ≥ 0), then it is easy to show that:

105

lim
σi(t)→0+

f(t) =

ui(t) ui(t) > 0

0 ui(t) ≤ 0

= [ui(t)]+ = [1− yi((w + t∆w)Txi + b+ t∆b)]+

which is the hinge loss of misclassifying the ith sample as t varies. As a result,

if σi(t) = 0 for the ith training sample, then the contribution of that sample to the

overall objective function will be exactly the same as adding a regular hinge-loss.

Clearly, the overall objective remains convex: addition of several convex functions

result in a convex function. Therefore, for any possible σi(t) (σi(t) ≥ 0), the

function f(t) is convex. Correspondingly, f(w, b; yi, xi) will be convex (by Lemma

6).

5.2.2. Regularization effect

The resulting cost function (Equation 5.4) can be directly optimized, and it is

not the same as the hinge loss any more. In order to understand the theoretical

reasons of why dropout performs well in shallow model such as SVMs, we can

compare the resulting cost function with ordinary hinge-loss. From a theoretical

point of view, the generalization power of dropout-based methods comes from the

regularization penalty Rdropout(w) that dropout incurs to the model weights:

Rdropout(w) =
N∑
i=1

uiΦ(
ui
σi

) + σiφ(
ui
σi

)− [1− yi(wTxi + b)]+(Equation 5.7)

106

where ui = 1 − yi(w
Txi + b), σi =

√∑m
j=1 x

2
ijw

2
j . Although, the incurred

regularization function is highly non-convex, but as proved the previous section, the

overall cost function remains convex (5.2).

−6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

Varying w
j

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Dropout Noise applied to Hinge−loss

Hinge Loss Cost

Closed−form Dropout regularization of the Hinge Loss

(a) Single sample’s contribution to the loss
function

−5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Varying w
j

In
c
u

rr
e

d
 R

e
g

u
la

ri
z
a

ti
o

n
 F

u
n

c
ti
o

n

(b) The regularization effect of one sample (i.e. the

marginalized loss minus the hinge loss)varying the

weight vector in one dimension.

−20 −15 −10 −5 0 5 10 15 20
5

10

15

20

25

30

35

40

45

50

55

Varying w
j

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Dropout Noise applied to Hinge−loss

Hinge Loss Cost

Closed−form Dropout regularization of the Hinge Loss

(c) Aggregated loss of several samples

−20 −10 0 10 20
0

1

2

3

4

5

Varying w
j

In
c
u

rr
e

d
 R

e
g

u
la

ri
z
a

ti
o

n
 F

u
n

c
ti
o

n

(d) The aggregated regularization effect of several

samples from a one dimensional cut of the loss

function

FIGURE 5.2. Losses and differences in losses as a function of a single model
weight.

Note that the marginalized cost function is always an upper-bound on the hinge
loss. Although the effective regularization function is non-convex, the marginalized
objective function itself is convex.

107

5.2.3. Approximation quality

Since the approximation depends on the central limit theorem, (assuming that

zi = 1 − yi(w
Txi + b) ∼ N (ui, σ

2
i)), this method should be used when the data

is not extremely sparse (e.g., there are at least 10 non-zero features in the average

sample), and the regularization penalty does not favor extremely sparse solutions.

More formally, let ui = 1 − yi(w̄T x̃i + b) be a random variable that represents

the margin for some fixed weights w̄ and some arbitrary dropped-out sample x̃i

with the desired label yi, and mw̄ be the number of non-zero elements in w̄. Also

let Fui(z) = Pui(ui ≤ z) be the cumulative density function (CDF) of ui. By the

Berry-Esséen theorem, the supremum of the difference between the CDF of ui and

its Gaussian approximation is upper-bounded by:

sup
z
|Fui(z)− Φ(

z − µi
σi

)| ≤ Cρi
σ3
i

√
mw̄

(Equation 5.8)

By the best estimate to date, C ≤ 0.4748 (Korolev and Shevtsova, 2012).

ρi is the third moment of ui, and can be calculated in closed-form. In Figure 5.1b,

we simulate this upper-bound for different numbers of non-zero weights on a toy

dataset. In practice, we observe that the true and the approximated distributions of

ui closely match each other as in Figure 5.1a.

It is easy to prove that the optimization program in (Equation 5.4) is

always an upper bound on the regular SVM’s objective. Therefore, the dropout

approximation is in fact an optimization transfer that intrinsically applies

extra regularization effects on the learned weights. The objective is an smooth

approximation of a convex function (the expected hinge-loss), and is easily

108

differentiated and optimized with gradient descent, LBFGS, or other standard

methods.

We provide visual intuition about our proposed approximation in Figure 5.2.

In Figure 5.2a, We consider one single sample, and show the hinge loss (red), its

closed form expectation from Equation 5.3 (green), and the Monte-Carlo function

when the function is averaged over actual dropout noisy samples (blue). The noised

hinge loss provides an upper bound that is tight at the extremes and smooth in

between. Figure 5.2c shows how several samples with different margins form the

aggregated loss function. As the dimensionality of model weights increases, the

approximation tightly converges to the true expectation which is convex. For very

low-dimensional inputs (∼ 4-5), the method can still be applied but might perform

poorly. This method is appropriate for real-world problems, where we deal with

hundreds or thousands of dimensions.

5.3. Dropout in non-linear SVMs

By using the kernel trick, SVMs can learn a linear classifier in a higher

dimensional feature space without explicitly constructing those features. The kernel

trick relies on the dual SVM optimization program:

maximizeα
∑
i

αi −
1

2

∑
i,j

yiyjαiαjk(xi, xj)

subject to
∑
i

yiαi = 0, 0 ≤ αi ≤ 1/λ ∀i (Equation 5.9)

where y is the vector of labels, λ is the L2 regularization weight of the primal

optimization program, and k(xi, xj) = f(xi)
Tf(xj) is the dot-product (reproducing

109

kernel) of a feature function vector f(.) in a Hilbert space. For many feature

functions, the kernel entry k(xi, xj) can be calculated even if f(x) has no explicit

representation and is infinite dimensional. Instead of maintaining feature weights

w (which could be infinite dimensional), the dual problem uses instance weights α.

The predicted label for a new instance x′ is given by: sign(
∑

i yiαik(xi,x
′)). The

instances xi with αi > 0 are commonly referred to as support vectors.

5.3.1. Defining dropout in kernels

In deep networks, dropout can be applied to the input layer, any of the

hidden layers, or some combination of them. In SVMs with non-linear kernels, we

can analogously apply dropout noise to the either the input space attributes or the

implicit features.

Given a kernel function k(xi, xj) with corresponding feature function f ,

we define the kernelized dropout function, k̃(xi, xj, ζ, ξ), as a function of both

the instances, xi and xj, and the dropout noise, ζ and ξ. The specific definition

depends on the type of dropout:

– Input space dropout:

k̃(xi, xj, ζ, ξ) = k(ζ � xi, ξ � xj)

– Feature space dropout:

k̃(xi, xj, ζ, ξ) = (ζ � f(xi))
T (ξ � f(xj))

We can also drop the whole support vectors (i.e. dropping out α’s). This

turns out to be very similar to some variations of bagging, therefore we skip it in

this chapter.

110

For a linear kernel, feature space and input space are identical, so dropout

in both spaces is the same. Dimension dropout is also the same, since excluding

dimensions from the kernel calculation is equivalent to multiplying those attributes

by zero.

kζ,ξ(ζ � xi, ξ � xj) =
∑

l:ζl 6=0,ξl 6=0

(ζlxi,l)(ξlxj,l)

=
∑
l

(ζlxi,l)(ξlxj,l) = k(ζ � xi, ξ � xj) (Equation 5.10)

More generally, dimension dropout is equivalent to input space dropout for

any kernel function that only depends on the dot-products of the original vectors,

and not the original vectors themselves. That is, if k(xi, xj) = g(xTi xj) for some

function g, then dimension dropout is equivalent to input space dropout. This

includes all polynomial kernels, which can be expressed as k(xi, xj) = (xTi xj + c)d.

One kernel where they differ is the radial basis function (RBF) kernel:

k(xi, xj) = exp
(
−γ‖xi−xj‖2

2

)
. The RBF kernel is translation invariant, so that

k(xi + ∆, xj + ∆) = k(xi, xj). Standard input space dropout does not maintain

this invariance, since the effect of zeroing out an attribute depends on its original

magnitude.

Dropout can be applied both to training and testing data. In fact after

learning the model, we can apply the dropout noise to the test data, and then

perform the classification on the corrupted input (or make the final classification

by the ensemble result of classifying several noisy versions of the same input data).

We address this issue later. In Appendix E, we derive the marginalized (expected)

prediction function for dimension dropout in RBF kernels.

111

Ideally, we would like to find the dual solution for the kernelized version of

Equation 5.2. Instead of the one-to-one correspondence of αi’s and xi’s, we need

to index each αi by the noise value as well. If we let αi(ζ) be the corresponding

dual variable for the noisy sample x̃i = ζ � xi (or equivalently, the noisy feature

f̃(xi) = ζ � f(xi)), then Equation 5.9 turns to the following calculus of variation

optimization problem:

maximize
α

E[αi(ζ)]

−1

2

∑
i,j

yiyjE[αi(ζ)αj(ξ)k̃(xi, xj, ζ, ξ)]

subject to
∑
i

yiEζ [αi(ζ)] = 0,

0 ≤ αi(ζ) ≤ 1/λ ∀i, ζ (Equation 5.11)

where ζ and ξ are drawn from the dropout noise distribution.

Proposition 2. After applying dropout in input or feature space to a valid kernel,

the resulting matrix is a valid kernel.

Proof. We first define an augmented instance space X ′ containing both the original

attributes and the dropout noise, e.g., x′i = (xi, ζ) and x′j = (xj, ξ). We then define

a kernel k′ over this space by constructing an appropriate feature function f ′. For

input space dropout, let f ′(x′i) = f(ζ � xi), and for feature space dropout, let

f ′(x′i) = ζ � f(xi). In both cases, it follows that k̃(xi, xj, ζ, ξ) = f ′(x′i)
Tf ′(x′j) =

k′(x′i, x
′
j).

The kernel from input dimension dropout is not guaranteed to be positive

semidefinite (PSD). However in practice, we rarely observed non-PSD kernels;

112

even the rare cases of non-PSD kernels had very small (in magnitude) negative

eigenvalues. We solved the optimization programs by implementing on-the-fly

kernels in LibSVM, and solved the corresponding optimization programs by the

SMO algorithm. In our experiments, the optimization programs always converged.

Example 5.1. We present an example in which dropout in dimension

can result in a non-PSD kernel. For a dataset with only two samples

{x1 =

 1

0

 , x2 =

 0

1

}, suppose dimension-dropout generates the following

noisy dataset: {x̃1
1 =

 1

×

 , x̃2
1 =

 ×
0

 , x̃1
2 =

 ×
1

 , x̃2
2 =

 0

×

}, where ‘×’

means that the corresponding dimension is dropped. Then the RBF-dimension-

dropout kernel will generate the following kernel matrix, which has negative

eigenvalues for some values of γ:

1 1 1 e−γ

1 1 e−γ 1

1 e−γ 1 1

e−γ 1 1 1

(Equation 5.12)

In the rest of this section, we introduce several approximations and variations

of Equation 5.11, which we will evaluate in the experiments section.

5.3.2. Marginalized dropout in feature space

For many kernels, the explicit feature representation is extremely high-

dimensional or even infinite-dimensional. Therefore, direct application of dropout

marginalization will not be practical. In this subsection, we introduce two methods

113

for taking advantage of both the efficiency of kernel tricks and the accuracy

improvement by dropout.

5.3.2.1. Kernel approximation

Although kernel methods have proven to be successful in predictive non-

linear models, learning these models requires O(n2) memory as well as a long

training time, and computing the decision function can be costly when the number

of support vectors is large. These two issues make kernel methods less practical,

especially on large datasets. Randomized algorithms for approximating kernel

matrices (Schölkopf, 2002; Blum, 2006) have inspired several methods for efficiently

converting the training and evaluation of kernel machines into linear weight

learning and score prediction (Rahimi and Recht, 2007; Le et al., 2013). The

basic idea behind these methods is to find a relatively low-dimensional feature

representation z(x) such that z(xi)
T z(xj) approximates the desired kernel function,

k(xi, xj).

Besides the practical efficiency of such feature representation methods, we can

take advantage of more complicated linear methods to improve the prediction. For

example, this will allow us to naturally apply the marginalized linear SVM method

from Section 5.2. on z(x) as the training features.

We have built on Rahimi and Recht’s method (Rahimi and Recht, 2007) by

focusing on the RBF kernel. However, it can be applied to any other translation-

invariant kernel as well. Their method is based on Bochner’s theorem (Rudin,

2011): “A continuous translation-invariant kernel k(xi, xj) = k(xi − xj) on Rd

is positive definite if and only if k(∆) is the Fourier transform of a non-negative

measure.” By randomly sampling from the terms of this Fourier transformation,

114

we can approximate the kernel with some convergence guarantees. As a result,

for the RBF kernel, k(xi, xj) = exp
(
−γ‖xi−xj‖22

2

)
, we can randomly draw random

frequencies {β1, . . . , βD} from a normal probability density function with mean

zero and covariance 2γdI (d is the dimension of input space and I is the identity

matrix), and draw random rotation angles {α1, . . . , αD} uniformly from [0, 2π].

Then, z(x) =
√

2
D

[cos(βT1 x + αi), . . . , cos(βTDx + αD)]T will be the linear feature

representation, such that z(xi)
T z(xj) ≈ exp

(
−γ‖xi−xj‖22

2

)
.

Our experimental results show that applying the marginalized linear SVM on

top of this feature representation will outperform the accuracy of an exact kernel

SVM on the MNIST and Adult datasets.

5.3.2.2. α-Regularization

Next, we consider dropout in the feature space of the original kernel feature

mapping. Formally: k(x̃i, x̃j) = f̃(xi)
T f̃(xj), where f̃(x) = f(x)�ζ, Eζ [f̃(x)] = f(x)

(i.e., E[ζ] = 1), and let var(ζ) = σ2
ζI, where I is the identity matrix.

We would prefer to optimize the marginalized dropout objective directly, as

done in the linear case. There are two key challenges. First, the dual formulation

in Equation 5.11 has an exponential number of variables, one for each possible

corruption of each training instance. Second, for infinite-dimensional feature

functions, the dropout noise will also be infinite-dimensional. We can solve both

problems by introducing a simple approximation: we constrain the value of αi(ζ)

to a constant αi for all ζ. In other words, all noisy copies of the same instance will

share the same weight in the SVM.

The following theorem shows how this simplification results in a tractable

approximation of Equation 5.11.

115

Theorem 7. When each αi is constant, Equation 5.11 is equivalent to standard

SVM learning (Equation 5.9) with a modified kernel Q = K + σ2
ζK � I, where K is

the original kernel matrix and σ2
ζ is the variance of each dimension of the dropout

noise, ζl.

The proof can be found in Appendix D.

This optimization problem can be viewed as adding a weighted L2 regularizer

on the αi weights:

R(α) =
σ2
ζ

2

∑
i

k(xi, xi)α
2
i (Equation 5.13)

Therefore, we refer to this technique as α-regularization. In the dual program

of L2-SVMs (where the squared value of hinge-loss is minimized) (Chang et al.,

2008), there is a similar regularization effect, but with constant coefficients.

Our proposed α-regularization method puts a different weight on each of the

dual variables in order to approximate the effect of dropout noise in the feature

representation.

Note that all of the support vectors learned with α-regularization must

be instances in the original training data. For a linear kernel, this means that

the weight vector must lie within the span of the training data. Derezinski

and Warmuth (2014) present hardness results for predictors that use linear

combinations of instances, suggesting that this can be a serious disadvantage on

some problems. In contrast, neither Monte-Carlo dropout, nor the marginalized

linear SVM, nor the marginalized linear SVM on the approximated kernel has this

restriction.

116

5.3.3. Monte-Carlo dropout in input space and dimension

We can create a Monte-Carlo approximation of Equation 5.11 by replacing

the expectations over all dropout noise with K samples of dropout noise for each

training instance. This is equivalent to learning from several noisy copies of the

training data. For input space dropout, we can create several noisy replications of

the training data and apply standard SVM learning algorithms. This works because

input space dropout applies noise before computing the kernel.

For input dimension dropout, we need to keep track of the dropout noise

explicitly and use it to modify the kernel computation. For example, for the

RBF kernel, k(xi, xj) = e−γ‖xi−xj‖
2
. When applying dimension dropout, we need

to modify the distance computation so that it only considers non-dropped-out

dimensions. Let d(xi, xj; ζ, ξ)
2 =

∑
l:ζl 6=0,ξl 6=0(ζlxi,l − ξlxj,l)2. Then k̃rbf (xi, xj, ζ, ξ) =

e−γd(xi,xj ,ζ,ξ)
2
. To implement this efficiently, we represent xi and xj as sparse vectors

where all unspecified dimensions are dropped out and all non-dropped-out zeros

are encoded explicitly. In the kernel computation, we iterate only over dimensions

where both xi and xj have a defined value (which could be zero).

The key advantage of input dimension dropout is that it maintains the

translation-invariance property of RBF kernels. The key disadvantage is that

the resulting kernel matrix may be non-PSD. In our experiments, we found that

input dimension dropout outperforms the ordinary RBF kernel. Furthermore, the

negative eigenvalues of this kernel were usually very small in magnitude and did

not cause any practical problems for the sequential minimal optimization (SMO)

algorithm. If necessary, techniques for stabilizing the optimization of non-PSD

kernels could be applied here as well (Lin and Lin, 2003).

117

For RBF kernels, a model learned with dropout may work poorly on non-

noisy instances. We apply two different approaches in our experiments. The

first is to ignore this difference and apply the model directly. For small dropout

probabilities (5%-10%), the additional bias should be small. The second approach

is to compute the expected kernel function over all possible dropout noise.

Since each dropout probability is independent, this can be done in linear time.

(The proof is provided in Appendix E.) We refer to this latter approach as the

“corrected” prediction. In both cases, dropout noise is applied by removing random

features and not rescaling the remaining features; the rescaling correction (1/(1−δ))

is designed for linear models and causes problems when support vectors and test

instances are scaled differently.

5.4. Empirical results

Datasets. We ran our experiments on several text classification datasets,

the MNIST digit classification dataset (LeCun et al., 1998), and the Adult dataset

from the UCI repository. The text datasets were two sentiment analysis datasets

(PolarityV2, Subj) introduced by Pang and Lee (2004), three datasets based on

20-newsgroups (AthR, BpCrypt, XGraph) previously used by Wang and Manning

(2012), and four Amazon sentiment datasets (Books, Kitchen, DVD, Electronics).

We also constructed an artificial dataset called M27 from MNIST. In M27, we have

selected all 2 and 7 digits from MNIST. For each digit, we randomly selected two

integer numbers i ∈ [1, 390] and j ∈ [391, 784], then set all pixels that correspond

to the indices from i to j of the vectorized 784-dimensional digit image to zero. We

repeat this for the training, the tuning, and the testing data.

118

Methods. On the text datasets, our main point is to show the comparative

performance of different linear SVM-based methods: we compare the marginalized

SVM (SVM-Marg), Monte-Carlo dropout (SVM-MC), and α-regularization (α-

Reg), all with linear kernels (Table 5.1). For nonlinear kernels we focus on radial

basis functions (RBF). We compare different linear methods that use the random

Fourier bases as feature representation with the exact regular SVM and our

proposed α-regularization method (Table 5.2).

Experimental Setup. For the text classification experiments, we used five

fold cross validation. For the Monte-Carlo methods, we generate K copies of the

training data and apply dropout noise to each sample independently. Learning

with noisy replications of the training data is an approximation to minimizing the

expected loss when the noise elements are randomly drawn from their respective

distribution. All hyper-parameters are selected by cross-validation. For the

approximated kernel experiments in Table 5.2, we set the dimension of Fourier

bases D = 4000 for MNIST and M27 datasets, and D = 1500 for the Adult dataset.

But, we tuned all other hyper-parameters using held-out data, then re-trained the

final model by including both the training and tuning data samples.

Nonlinear models (without linear approximation) are more sensitive to hyper-

parameters. Because of this fact, we have also tuned σ2
ζ for the nonlinear kernel

α-regularization method, as well as the `2 regularization coefficient λ, and the

RBF kernel parameter γ for all methods. On the other hand, the tuning procedure

usually selected larger dropout probabilities for linear (both linear and linear

approximation of RBF) models.

Results. Table 5.1 shows the error percentage of each linear classifier

on each of the text datasets. The best-performing variant is shown in bold.

119

Marginalized dropout outperforms all other methods-except in one dataset, on

which α-regularization outperforms SVM-Marg. Monte-Carlo dropout training

led to improved results on all datasets. α-Reg led to slight improvements on

seven of nine datasets but usually worked worse than SVM-Marg, suggesting that

marginalization in the primal is more effective when applicable. We have also

compared our methods with logistic regression, LR with Monte-Carlo dropout,

and LR with (marginalized) deterministic dropout (Wang and Manning, 2013).

The results have a solid basic trend, whenever SVM itself outperforms LR, the

SVM-based dropout methods also outperform the LR-based dropout methods, and

vice-versa.

TABLE 5.1. Classification error (%) of linear classifiers on text datasets. The last
column is the decrease percentage of the prediction error for best
method (mostly SVM-Marg) vs. SVM.

Dataset SVM SVM-MC α-Reg SVM-Marg Err.Dec.(%)

AthR 7.16 8.98 6.74 6.88 5.87
(SVM-Marg:3.91)

BpCrypt 2.22 1.52 2.22 1.21 45.49
Polar2 19.70 18.90 18.70 16.10 18.27
Subj 12.96 11.76 13.00 11.12 14.20
XGraph 9.33 8.51 9.02 7.48 19.83
Books 17.43 16.95 17.35 13.34 23.46
Kitchen 12.31 11.61 11.91 10.61 13.74
DVD 17.55 16.84 17.61 15.43 12.08
Elect. 14.01 13.82 13.91 11.88 15.06

We compared the performance of several linear weight learning algorithms

using Fourier basis features for approximating the RBF kernel with ordinary RBF

kernel on three datasets in Table 5.2. We observe that the simple least-squares

(LS+Fourier) method (Rahimi and Recht, 2007) outperforms the exact RBF kernel

120

on two datasets just by itself. However, when it is combined with the marginalized

SVM it outperforms all other methods.

We also observe that α-regularization always outperforms the regular

kernel SVM on these datasets. However, it does not work nearly as well as the

marginalized SVM on the Fourier basis. We attribute this difference to the fact

that α-regularization is constrained to only using support vectors from the original

dataset, unlike the marginalized SVM.

The highest gain is achieved on M27, where the training and testing is

performed on samples with large missing portions. This fact suggests that dropout

might be also useful for learning with missing data in non-linear models. (Dekel

et al. (2010) have directly addressed this issue for linear models using a relaxation-

based technique.)

TABLE 5.2. Classification error (%) of approximated RBF kernel.

Dataset RBF-SVM
Exact

LS
(Fourier)

α-Reg Lin.SVM
(Fourier)

Marg.SVM
(Fourier)

Err.Dec.(%)

MNIST 1.43 2.41 1.41 1.48 1.37 4.38
M27 6.31 5.97 6.05 5.66 4.93 27.99
Adult 15.1 14.9 14.97 14.93 14.84 1.75

Stacked jittered features are known to help improve the prediction accuracy of

kernel SVMs on MNIST (Decoste and Schölkopf, 2002). The jittered pixels depend

on the geometrical location of non-zero pixels. Unlike stacked jittered features,

dropout works equally well with any fixed permutation of the pixels (regardless of

the geometric shape of digits), therefore dropout training is different than learning

with additional virtual features. Both methods can be applied simultaneously, but

in this work, we would like to measure the amount of improvement that can be

achieved only by applying dropout noise.

121

TABLE 5.3. Classification error(%) curve for different size subsets of MNIST.
Comparing no-dropout standard RBF to Monte-Carlo dimension
dropout and α-Reg. The last row is the decrease percentage of the
prediction error for no dropout vs. the best dropout method.

Training size 1000 2500 5000 10000 25000 50000 60000

No-DO 6.84 4.70 3.54 2.85 2.10 1.53 1.43
α-Reg 6.85 4.69 3.57 3.05 2.07 1.49 1.41

DO 6.44 4.26 3.34 2.65 1.95 1.50 1.40

Err.Dec.(%) 5.85% 9.36% 5.65% 7.02% 7.14% 4.58% 2.80%

For dimension dropout, we can efficiently marginalize the dropout effect

on the kernel at the prediction time. In Appendix C, we derive the marginalized

prediction function. Table 5.3 shows results for variants of RBF SVMs on MNIST.

We vary the training size from 1000 to 60,000 instances. On average, dropout

shows small but consistent improvements over no dropout with training instances.

On average, training with dropout noise leads to a 5.77% reduction in error. For

smaller number of samples, prediction with expected kernel performs better than

all other methods. α-Reg was slightly more accurate than no dropout for larger

training sets. For the Monte-Carlo methods, we used 100 noisy replications of the

training data for the linear methods. For the kernel methods: we used 10 noisy

replications training subsets of sizes 1000, 2500, 5000, and 10000; 6 replications

for sample size of 25000; and, 3 replications for the samples sizes 50000 and

60000. Larger numbers of replications become increasingly expensive, due to the

increased number of support vectors and larger kernel matrices. In experiments

with 3 replications of 60,000 examples, the accuracy for increased to 98.61% which

suggests more replications could result in higher prediction accuracy.

122

5.5. Conclusion

While previous results (Hinton et al., 2012; Maaten et al., 2013; Wager

et al., 2013; Wang et al., 2013; Wang and Manning, 2013) show that learning with

dropout noise can improve the accuracy of neural networks and logistic regression,

our work confirms that dropout training can improve the prediction accuracy of

SVMs as well.

In this chapter, we introduced two new methods that take advantage of

dropout learning without actually drawing samples from a noise distribution. These

methods marginalize the effect of dropout in the primal (Marginalized SVM) and

dual formulations (α-Regularization) of the SVM optimization program. Both of

these methods are simple and easy to implement. The experimental results show

that these methods often outperform ordinary SVMs.

This results are the first work to use dropout to improve the performance

of SVMs with non-linear kernels. We presented two types of dropout with kernels

and experimentally showed their effectiveness. We showed that randomized kernel

approximation may be used along with marginalized dropout in primal to improve

both the performance and efficiency of kernel machines.

123

CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

This thesis presents novel convex optimization algorithms for learning robust

large margin models. Our methods rely on formulating the machine learning

problems as mathematical optimization programs that can be efficiently solved.

In all of our contributions, we started from a conceptual formulation of the problem

and converted it to a manageable and convex problem, which can be solved by off-

the-shelf convex optimization methods.

6.1. Summary of contributions

– Convex adversarial collective classification Our method robustly

performs collective classification in the presence adversary. The formulation

is a convex quadratic program that can be effieciently solved. This solution

improved the performance of collective classification, even if there was no

adversarial component in the test data. Our method consistently outperforms

both non-adversarial and non-relational baselines.

– Equivalency of adversarial robustness and regularization Our method

takes advantage of the adversary’s weakness, and converts their weakness

to its strength. For each adversary that is capable of altering the feature

space, we can derive specific regularization functions that immunes the

machine learning algorithm to that type of adversary. Since the method only

adds extra convex regularization functions to the objective of the original

optimization program, little computation overhead is added. Therefore, the

124

problem can be optimized in the same order as the non-robust optimization

program.

– Robustness of large margin methods through dropout

regularization Average adversaries do not have enough information about

the underlying machine learning system, and they do not have ample

computation resources to calculate an optimal attack. As a result, they resort

to frequent random attacks. Their hope is that some of the random changes

in the input data finally tricks the machine learning algorithm. In order

to be robust against such adversaries, we can minimize the expected loss

function, when data is randomly changing. Dropout training is a great match

for such circumstances. We derive the regularization effect of marginalized

dropout on linear and non-linear SVMs. Our derivation is simple and convex.

Experimentally we show that our method is efficient, and that it almost

always outperforms regular SVMs.

6.2. Future directions

The ideal goal is to design a global recipe for robustness that applies to

most of the machine learning algorithms; however, only the vulnerability of a

few of machine learning algorithms is studied in depth; many algorithms remain

unexplored.

6.2.1. Improving Adversarial Machine Learning

The robustness of many of the machine learning algorithms is not studied

in depth yet. As we suggest in Algorithm 2, a range of combinations of explicit

125

adversarial and chance-based adverse situations can be studied altogether. Some

other future directions in adversarial machine learning are:

– Scaling-up current methods

Scaling up adversarial methods to large datasets remains an open issue. A

promising direction is using online algorithms that are shown to be successful

in other fields of machine learning.

– Learning utility functions

If we can approximate the opponent’s utility, then we will have a more

realistic model of the adversarial game. In addition, we will be able to use

decision theoretic approaches to model non-zero-sum games. Solving non-

zero-sum games in adversarial settings is another important issue that needs

to be addressed.

– Efficient use of knowledge about the opponent

We have shown that by taking advantage of adversary’s limitations, we can

design more robust algorithms; yet, there are still many details about how to

translate the raw knowledge about the adversary into useful parameters in the

learning algorithm.

All of these items apply to both structured and non-structured output

prediction.

6.2.2. Expansion of Existing Work to Structural Settings

There exist many methods in adversarial machine learning that are designed

for specific problems. By right abstraction, these methods can be generalized to the

wider class of structured output prediction. Good examples of such methods are

126

regret minimization algorithms; these methods are based on elegant mathematical

foundations, and they are designed to be robust against adversarial noise. There

are only a couple of papers that use regret minimization algorithms for structured

output prediction. An important feature of regret minimization algorithms is that

they are mostly based on some scalable online algorithm, which is a great candidate

for scaling up existing structured prediction algorithms.

On the other hand, regret minimization algorithms can also benefit from the

work that is already done in the field of adversarial machine learning. The current

regret minimization algorithms assume that the adversary is completely arbitrary1.

A potential improvement to regret minimization algorithms can be gained by

restricting the adversary in a more realistic and practical way.

In this thesis, we derived a formulation for robustness through dropout

regularization in ordinary SVMs. This method can be expanded to be applied to

structured prediction problems as well. Due to the hardness of the optimization

problems of structured learning, this expansion needs more research and is

not trivial. However, our promising result on the ordinary SVMs suggests that

marginalized dropout should improve structured prediction as well.

1Although there are some simple versions of bounded adversaries, which are mostly from the
reinforcement learning community, the possible restrictions of the adversary are not studied as
comprehensively as it’s done in adversarial machine learning.

127

APPENDIX A

INTEGRALITY OF THE ADVERSARIAL SOLUTION IN CONVEX

ADVERSARIAL COLLECTIVE CLASSIFICATION

Lemma 7. For K=2, any fixed j and 0 ≤ xij, y
k
i ≤ 1, ŷki ∈ {0, 1},

∑
k y

k
i = 1 and∑

k ŷ
k
i = 1, if Akj =

∑N
i=1 min(xij, y

k
i)− xij ŷki , then

∑K
k=1A

K
j ≥ 0.

Proof. A1
j + A2

j =
∑N

i=1 min(xij, y
1
i)− xij ŷ1

i + min(xij, y
2
i)− xij ŷ2

i . Since y1
i + y2

i = 1

and ŷ1
i + ŷ2

i = 1, we can rewrite it as
∑N

i=1 min(xij, y
1
i)−xij(ŷ1

i + ŷ2
i)+min(xij, 1−y1

i)

=
∑N

i=1 min(xij, y
1
i) + min(xij, 1− y1

i)− xij. Now three cases can happen:

(a) If xij ≥ max(y1
i , 1−y1

i), then min(xij, y
1
i)+min(xij, 1−y1

i)−xij = y1
i +1−y1

i−xij

= 1− xij ≥ 0.

(b) If min(y1
i , 1 − y1

i) ≤ xij ≤ max(y1
i , 1 − y1

i), then min(xij,min(y1
i , 1 − y1

i)) +

min(xij,max(y1
i , 1 − y1

i)) − xij = min(xij,min(y1
i , 1 − y1

i)) + xij − xij =

min(xij, y
1
i , 1− y1

i) ≥ 0.

(c) If xij ≤ min(y1
i , 1−y1

i), then min(xij, y
1
i)+min(xij, 1−y1

i)−xij = xij+xij−xij

= xij ≥ 0.

Therefore min(xij, y
1
i) + min(xij, y

2
i) − xij is always nonnegative and consequently

A1
j +A2

j =
∑N

i=1 min(xij, y
1
i)− xij ŷ1

i + min(xij, y
2
i)− xij ŷ2

i is always nonnegative.

Lemma 8. For K = 2, in the optimal solution of the final quadratic program, W ∗

satisfies the following property: min(w1
j , w

2
j) = 0 ∀j = 1 . . .m.

Proof. Let θj = min(w1
j , w

2
j), we define u1

j = w1
j − θj and u2

j = w2
j − θj, by

substitution the objective of the constraint’s linear program will be:

128

∑
i,j,k

(ukj + θj)z
k
ij − (ukj + θj)xij ŷ

k
i +

∑
(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij︸ ︷︷ ︸
B

=
∑
j

∑
i

u1
jz

1
ij − u1

jxij ŷ
1
i + u2

jz
2
ij − u2

jxij ŷ
2
i + θj(z

1
ij − xij ŷ1

i + z2
ij − xij ŷ2

i) +B

=
∑
j

∑
i

Fij + θj
∑
i

Hij︸ ︷︷ ︸
≥0

+B

In which Fij and Hij are:

Fij = u1
jz

1
ij − u1

jxij ŷ
1
i + u2

jz
2
ij − u2

jxij ŷ
2
i

Hij = z1
ij − xij ŷ1

i + z2
ij − xij ŷ2

i

According to Lemma 7,
∑

i(z
1
ij−xij ŷ1

i +z2
ij−xij ŷ2

i) ≥ 0, therefore the coefficient

of each θj is non-negative. Since θj = min(w1
j , w

1
j) ≥ 0, thus:

i. If the optimization algorithm chooses smaller value for θj, the relaxed

inequality constraint will not be violated, and also smaller θj will not imply

larger ξ.

ii. A smaller θj will directly reduce the objective value.

Therefore, the optimization algorithm chooses the smallest possible θj, which is

θj = 0 ∀j. So min(w1
j , w

2
j) = 0 or equivalently w1

jw
2
j = 0 ∀j = 1 . . .m.

Theorem 8. Adversary’s problem in Equation 3.4, has integral solution for both X

and Y .

129

Proof. According to Lemma 8, we know that min(w1
j , w

2
j) = 0 for all j. So we can

rewrite Equation 3.4 as:

max
y∈Y ′,0≤x≤1

∑
i,j

Dij +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij

(Equation A.1)

Where Dij = w1
jz

1
ij−w1

jxij ŷ
1
i +w2

jz
2
ij−w2

jxij ŷ
2
i . Here we assume that either w1

j

or w2
j is not zero. Because this is the interesting case, otherwise the proof is trivial.

Therefore, since either w1
j or w2

j is zero. We have:

Dij = w1
j min(xij, y

1
i)− w1

jxij ŷ
1
i + w2

j min(xij, y
2
i)− w2

jxij ŷ
2
i

= I(w1
j = 0)

[
w1
j min(1− xij, y1

i)− w1
j (1− xij)ŷ1

i + w2
j min(xij, y

2
i)− w2

jxij ŷ
2
i

]
+

I(w2
j = 0)

[
w1
j min(xij, y

1
i)− w1

jxij ŷ
1
i + w2

j min(1− xij, y2
i)− w2

j (1− xij)ŷ2
i

]
Let vkij = xijI(wkj > 0) + (1 − xij)I(wkj = 0), where I(.) is the indicator

function, then:

Dij = I(w1
j = 0)

[
w1
j min(v1

ij, y
1
i)− w1

jv
1
ij ŷ

1
i + w2

j min(v2
ij, y

2
i)− w2

jv
2
ij ŷ

2
i

]
+

I(w2
j = 0)

[
w1
j min(v1

ij, y
1
i)− w1

jv
1
ij ŷ

1
i + w2

j min(v2
ij, y

2
i)− w2

jv
2
ij ŷ

2
i

]
=

(
I(w1

j = 0) + I(w2
j = 0)

) [
w1
j min(v1

ij, y
1
i)− w1

jv
1
ij ŷ

1
i + w2

j min(v2
ij, y

2
i)− w2

jv
2
ij ŷ

2
i

]
= w1

j min(v1
ij, y

1
i)− w1

jv
1
ij ŷ

1
i + w2

j min(v2
ij, y

2
i)− w2

jv
2
ij ŷ

2
i (Equation A.2)

130

Clearly, we v1
ij + v2

ij = 1, because:

v1
ij + v2

ij = xijI(w1
j > 0) + (1− xij)I(w1

j = 0) + xijI(w2
j > 0) + (1− xij)I(w2

j = 0)

= xij
[
I(w1

j > 0) + I(w2
j > 0)

]︸ ︷︷ ︸
=1

+(1− xij)
[
I(w1

j = 0) + I(w2
j = 0)

]︸ ︷︷ ︸
=1

= xij + 1− xij = 1.

Obviously, as a result we will have zkij = min(vkij, y
k
i), because otherwise

increasing zkij can increase the objective, so the solver program will choose the

maximum possible value for zkij. By Lemma 9, and reformulation of suggested Dij

in Equation A.2, we conclude that Equation A.1 has integral solution for yki and vkij

for all i, j and k = 1, 2. Since inetgrality of vkij implies integrality of xij, proof is

complete.

Lemma 9. If K=2, for any W = [W 1,W 2], W k = [wk1 , . . . , w
k
m]T , linear program in

Equation A.1, has an integral solution.

Proof. Here, our argument is similar to the proof of the Theorem 1 of Taskar et al.

(2004a). We show that for any fractional solution X (and respectively V) and Y of

Equation A.1, we can construct a new feasible integral assignment X′ and Y ′, that

increases the objective or does not change it.

Since all wke ’s and wkj ’s are positive, therefore, ykij = min(yki , y
k
j) and zkij =

min(yki , xij); this means that the slack variables corresponding to zkij ≤ yki ,zkij ≤ xij

and ykij ≤ yki ,ykij ≤ ykj are zero, because otherwise by increasing ykij or zkij, the

objective could be increased.

Let λk = min(mini,yki >0 y
k
i ,minij,vkij>0 v

k
ij) and λ = λ1 or λ = −λ2. We

propose a new construction of solution, that either increases the objective or does

131

not change it, and at the same time reduces the number of fractional values in the

solution.

v
′1
ij = v1

ij − λI(0 < v1
ij < 1), v

′2
ij = v2

ij + λI(0 < v2
ij < 1)

z
′1
ij = z1

ij − λI(0 < z1
ij < 1), z

′2
ij = z2

ij + λI(0 < z2
ij < 1)

y
′1
i = y1

i − λI(0 < y1
i < 1), y

′2
i = y2

i + λI(0 < y2
i < 1)

y
′1
ij = y1

ij − λI(0 < y1
ij < 1), y

′2
ij = y2

ij + λI(< 0y2
ij < 1)

It is obvious that by this update, at least two of the fractional values become

integral. First, we show that in this new construction, values remain feasible. So we

need to show that v
′1
ij + v

′2
ij = 1,y

′1
i + y

′2
i = 1, v

′k
ij ≥ 0, y

′k
i ≥ 0, y

′k
ij = min(y

′k
i , y

′k
j) and

z
′k
ij = min(v

′k
ij , y

′k
i). In the following we show that all of the feasibility requirements

are satisfied.

v
′1
ij + v

′2
ij = v1

ij − λI(0 < v1
ij < 1) + v2

ij + λI(0 < v2
ij < 1 = v1

ij + v2
ij = 1.

y
′1
i + y

′2
i = y1

i − λI(0 < y1
i < 1) + y2

i + λI(0 < y2
i < 1) = y1

i + y2
i = 1.

Above we used the fact that if v1
ij is fractional, then v2

ij will also be fractional, and

similarly if y1
i is fractional then y2

i will also be fractional, since v1
ij + v2

ij = 1 and

y1
i + y2

i = 1. To show v
′k
ij ≥ 0 and y

′k
i ≥ 0, we prove that minij v

′k
ij ≥ 0 and

mini y
′k
i ≥ 0.

132

min
ij

v
′k
ij = min

ij
(vkij − (min(min

i,yki >0
yki , min

ij,vkij>0
vkij))I(0 < vkij < 1))

= min

(
min
ij

vkij,min
ij

[
vkij − (min(min

i,yki >0
yki , min

ij,vkij>0
vkij))

])

≥ min

(
min
ij

vkij,min
ij

[
vkij − (min

ij,vkij>0
vkij)

])

≥ min
ij

[
vkij − (min

ij,vkij>0
vkij)

]
= 0.

min
i

y
′k
i = min

i
(yki − (min(min

i,yki >0
yki , min

ij,vkij>0
vkij))I(0 < yki < 1))

= min

(
min
i

yki ,min
i

[
yki − (min(min

i,yki >0
yki , min

ij,vkij>0
vkij))

])

≥ min

(
min
i

yki ,min
i

[
yki − (min

i,yki >0
yki)

])
≥ min

i

[
yki − (min

i,yki >0
yki)

]
= 0.

The last step in showing that the proposed construction is feasible is showing

that y
′k
ij = min(y

′k
i , y

′k
j) and z

′k
ij = min(v

′k
ij , y

′k
i).

y
′1
ij = y1

ij − λI(0 < y1
ij < 1)

= min(y1
i , y

1
j)− λI(0 < min(y1

i , y
1
j) < 1)

= min(y1
i − λI(0 < y1

i < 1), y1
j − λI(0 < y1

j < 1))

= min(y
′1
i , y

′1
j).

133

y
′2
ij = y2

ij + λI(0 < y2
ij < 1)

= min(y2
i , y

2
j) + λI(0 < min(y2

i , y
2
j) < 1)

= min(y2
i + λI(0 < y2

i < 1), y2
j + λI(0 < y2

j < 1))

= min(y
′2
i , y

′2
j).

z
′1
ij = z1

ij − λI(0 < z1
ij < 1)

= min(v1
ij, y

1
i)− λI(0 < min(v1

ij, y
1
i) < 1)

= min(v1
ij − λI(0 < v1

ij < 1), y1
i − λI(0 < y1

i < 1))

= min(v
′1
ij , y

′1
i).

z
′2
ij = z2

ij + λI(0 < z2
ij < 1)

= min(v2
ij, y

2
i) + λI(0 < min(v2

ij, y
2
i) < 1)

= min(v2
ij + λI(0 < v2

ij < 1), y2
i + λI(0 < y2

i < 1))

= min(v
′2
ij , y

′2
i).

So far we have shown that the new variable construction is feasible, and

it remains to show that we can increase the objective. We substitute the newly

constructed feasible values in Equation A.1 and subtract the objective with

unchanged values from it. Then we show that with proper choice of λ = λ1 or of

λ = −λ2, we can improve the objective.

134

Vold =
∑
i,j

Dij +
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij

=
∑
i,j

w1
jz

1
ij − w1

jv
1
ij ŷ

1
i + w2

jz
2
ij − w2

jv
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki +
∑
i,j

δij(1− 2x̂ij)xij

=
∑
i,j

w1
jz

1
ij − w1

jv
1
ij ŷ

1
i + w2

jz
2
ij − w2

jv
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

+
∑
i,j

δij(1− 2x̂ij)
[(
I(w1

j > 0)− I(w1
j = 0)

)
v1
ij + I(w1

j = 0)
]

=
∑
i,j

w1
jz

1
ij − w1

jv
1
ij ŷ

1
i + w2

jz
2
ij − w2

jv
2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
k
ij −

∑
i,k

yki · ŷki

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
v1
ij + C.

Above we have used the fact that xij = I(w
′k
j > 0)v

′k
ij + I(w

′k
j = 0)(1 − v

′k
ij) =

I(w
′1
j > 0)v

′1
ij + I(w

′1
j = 0)(1− v′1ij) =

(
I(w

′1
j > 0)− I(w

′1
j = 0)

)
v
′1
ij + I(w

′1
j = 0).

135

Vnew =
∑
i,j

w1
jz
′1
ij − w1

jv
′1
ij ŷ

1
i + w2

jz
′2
ij − w2

jv
′2
ij ŷ

2
i

+
∑

(i,j)∈E,k

wkey
′k
ij −

∑
i,k

y
′k
i · ŷki

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
v
′1
ij + C

=
∑
i,j

[w1
j (z

1
ij − λI(0 < z1

ij < 1))− w1
j ŷ

1
i (v

1
ij − λI(0 < v1

ij < 1))

+ w2
j (z

2
ij + λI(0 < z2

ij < 1))− w2
j ŷ

2
i (v

2
ij + λI(0 < v2

ij < 1))]

+
∑

(i,j)∈E

[
w1
e(y

1
ij − λI(0 < y1

ij < 1)) + w2
e(y

2
ij + λI(0 < y2

ij < 1))
]

−
∑
i

ŷ1
i · (y1

i − λI(0 < y1
i < 1)) + ŷ2

i · (y2
i + λI(0 < y2

i < 1))

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
(v1
ij − λI(0 < v1

ij < 1)) + C

= Vold +
∑
i,j

[w1
j (−λI(0 < z1

ij < 1))− w1
j ŷ

1
i (−λI(0 < v1

ij < 1))

+ w2
j (λI(0 < z2

ij < 1))− w2
j ŷ

2
i (λI(0 < v2

ij < 1))]

+
∑

(i,j)∈E

[
w1
e(−λI(0 < y1

ij < 1)) + w2
e(λI(0 < y2

ij < 1))
]

−
∑
i

ŷ1
i · (−λI(0 < y1

i < 1)) + ŷ2
i · (+λI(0 < y2

i < 1))

+
∑
i,j

[
δij(1− 2x̂ij)

(
I(w1

j > 0)− I(w1
j = 0)

)]
(−λI(0 < v1

ij < 1)).

136

Therefore, we can write Vnew − Vold as:

Vnew − Vold = λ[
∑
i,j

[−w1
j I(0 < z1

ij < 1) + w1
j ŷ

1
i I(0 < v1

ij < 1)

+w2
j I(0 < z2

ij < 1)− w2
j ŷ

2
i I(0 < v2

ij < 1)]

+
∑

(i,j)∈E

[
−w1

eI(0 < y1
ij < 1) + w2

eI(0 < y2
ij < 1)

]
−
∑
i

ŷ1
i · (−I(0 < y1

i < 1)) + ŷ2
i · (+I(0 < y2

i < 1))

+
∑
i,j

−δij(1− 2x̂ij)
(
I(w1

j > 0)− I(w1
j = 0)

)
I(0 < v1

ij < 1)]

= λD.

The change in objective is λD, and since D is constant with respect to λ, by

choosing λ = −λ2 for negative D, or λ = λ1 for positive D, we can always have

positive or zero λD. It means that the integral solution will increase the objective

or will not change it, while leaving fewer fractional values.

137

APPENDIX B

PROOFS FOR EQUIVALENCE OF ROBUSTNESS AND

REGULARIZATION IN LARGE MARGIN METHODS

Proof of Lemma 3:

Proof. We form δCỹ(x,y, x̃) from Equation 4.7:

δC = δCỹ(x,y, x̃) =

φC(x̃, ỹ)− φC(x̃,y)− φC(x, ỹ)− φC(x,y) =∑
(cx,cy)∈C

(
∏
i∈cx

x̃i −
∏
i∈cx

xi)(
∏
i∈cy

ỹi −
∏
i∈cy

yi) (Equation B.1)

For an individual elements of the vector δ as expanded in (Equation B.1), we

can apply Hölder’s inequality to the right-hand side:

|δC| ≤

(
∑
cx∈C

|
∏
i∈cx

x̃i −
∏
i∈cx

xi|p)
1
p (
∑
cy∈C

|
∏
i∈cy

ỹi −
∏
i∈cy

yi|q)
1
q

where 1
p

+ 1
q

= 1. Since |
∏

i∈cy ỹi −
∏

i∈cy yi|q ≤ 1, we will have:∑
cy∈C |

∏
i∈cy ỹi −

∏
i∈cy yi|q ≤ |C|, therefore:

|δC| ≤ |C|
1
q (
∑
cx∈C

|
∏
i∈cx

x̃i −
∏
i∈cx

xi|p)
1
p

138

After applying Lemma 10 and raising both sides of the inequality to the power of p,

we will have:

|δC|p ≤ |C|
p
q (α

∑
cx∈C

∑
i∈cx

|x̃i − xi|p)

⇒ |δC|p

α|C|
p
q

≤
∑
cx∈C

∑
i∈cx

|x̃i − xi|p (Equation B.2)

where α = max
cx∈C
|cx|(p−1), and |cx| is the number of variables in cx.

The proof of Lemma 3 depends on the following lemma:

Lemma 10. For any sequence a1, . . . , an, b1, . . . , bn, such that 0 ≤ ai, bj ≤ 1, we

have |
∏n

i=1 ai −
∏n

i=1 bi|p ≤ n(p−1)
∑n

i=1 |ai − bi|p.

Proof. For n = 1, the inequality is trivial. Let u1 =
∏bn/2c

i=1 ai, u2 =
∏bn/2c

i=1 bi,

v1 =
∏n

i=bn/2c+1 ai, and v2 =
∏n

i=bn/2c+1 ai. Also it is a known fact that |f + g|p ≤

2p−1(|f |p + |g|p) g, f ∈ R. We have:

|
n∏
i=1

ai −
n∏
i=1

bi|p = |u1v1 − u2v2|p

= |u1v1 − u1v2 + u1v2 − u2v2|p

≤ 2p−1(|u1v1 − u1v2|p + |u1v2 − u2v2|p)

= 2p−1(up1|v1 − v2|p + vp2|u1 − u2|p)

≤ 2p−1(|v1 − v2|p + |u1 − u2|p)

139

by recursive application of the above procedure, the products can be decomposed at

most log2 n times. Therefore,

|
n∏
i=1

ai −
n∏
i=1

bi|p ≤ 2(p−1) log2 n

n∑
i=1

|ai − bi|p

= np−1

n∑
i=1

|ai − bi|p

Proof of Corollary 1:

Proof. We begin with the result of Theorem 4.3, where 1

B(dαi)
1
p |Ci|

1
q

is the coeficient

of variations in the feature corresponding to clique Ci. Since p = 1 then q =∞, and

αi = max
cx∈Ci
|cx|(p−1) = 1:

1

B(dαi)
1
p |Ci|

1
q

=
1

Bd|Ci|
1
∞

=
1

Bd

Also in (Equation B.2), set p = 1 and q =∞.

|δC| ≤

(
∑
cx∈C

|
∏
i∈cx

x̃i −
∏
i∈cx

xi|) max
cy∈C
|
∏
i∈cy

ỹi −
∏
i∈cy

yi|

Since maxcy∈C |
∏

i∈cy ỹi −
∏

i∈cy yi| = 1, we will be using a tighter upper-

bound.

Proof of Proposition 1:

140

Proof. We prove the case when regularization function is ‖w‖ = ‖w‖∞ (the proofs

for ‖M−1w‖∞ and ‖M−1w‖1 are very similar, but for simplicity we chose this

case). Recall that the optimization program of the robust structural SVM is:

minimize
w,ξ

c1f(w) + c2‖w‖∞ + ξ subject to (Equation B.3)

ξ ≥ max
ỹ

wT (φ(x, ỹ)− φ(x,y)) + ∆(y, ỹ)

It can be re-written as:

minimize
w,ξ,t

c1f(w) + c2t+ ξ subject to

ξ ≥ max
ỹ

wT (φ(x, ỹ)− φ(x,y)) + ∆(y, ỹ)

wi ≤ t, − wi ≤ t ∀wi

In vector form we can write these constraints as: w ≤ 1t and −w ≤ 1t. Clearly,

there are two vectors s1 and s2 for which:

w + s1 = 1t ⇒ w = 1t− s1

−w + s2 = 1t ⇒ w = s2 − 1t

Let γ = [s1
T s2

T t]T , m = dim w, Is1 = [Im×m 0m×m 0m×1], Is2 =

[0m×m Im×m 0m×1], and It = [01×m 01×m 1]. (i.e. s1 = Is1γ, s2 = Is2γ, t = Itγ). By

substitution:

w = 1Itγ − Is1γ = (1It − Is1)γ

w = Is2γ − 1Itγ = (Is2 − 1It)γ

141

which implies (1It − Is1)γ = (Is2 − 1It)γ, therefore: (2 ∗ 1It − Is1 − Is2)γ = 0, or

equivalently γ ∈ N (2 ∗ 1It − Is1 − Is2), where N (.) returns the null-space of the

input matrix. Let columns of matrix B span N (2 ∗ 1It − Is1 − Is2), also let γ = Bλ,

we will have w = (1It − Is1)Bλ. Let A = BT (1It − Is1)T and b = It
T , then we can

rewrite Problem (Equation B.3) as:

minimize
λ≥0,ξ

c1f(ATλ) + c2b
Tλ+ ξ subject to

ξ ≥ max
ỹ

λTA(φ(x, ỹ)− φ(x,y)) + ∆(y, ỹ)

Note that since (2 ∗ 1It − Is1 − Is2)B = 0, we will have (1It − Is1)B = (Is2 − 1It)B,

and A can be the transpose of any of them.

142

APPENDIX C

DIRECT PROOF FOR DERIVATION OF MARGINALIZED LINEAR SVM

In the following, we provide a direct proof for the asymptotic results of

marginalizing the linear SVMs.

Let fe(w, b) be the exact dropout-marginalization of the regularized hinge

loss:

fe(w, b) = λ‖w‖+
∑
i

Eξ max(0, 1− yi(wTxi � ξ/(1− δ) + b))

= λ‖w‖+
∑
i

Eξ(1− yi(wTxi � ξ/(1− δ) + b))I(1− yi(wTxi � ξ/(1− δ) + b) ≥ 0)

where I is the step function (i.e. I(True) = 1 and I(False) = 0). Let l(w, b) =

Eξ(1 − yi(w
Txi � ξ/(1 − δ) + b))I(1 − yi(w

Txi � ξ/(1 − δ) + b) ≥ 0). If zi =

1− yi(wTxi � ξ/(1− δ) + b) ∼ N (µi, σ
2
i), then:

l(w, b) = EξziI(zi ≥ 0) =

∫ ∞
−∞

ziI(zi ≥ 0)φξ(zi)dzi

=

∫ ∞
0

ziφξ(zi)dzi =

∫ ∞
0

zi
φ(zi−µi

σi
)

σi
dzi

=

∫ ∞
0

zi
φ(zi−µi

σi
)

σi
dzi (Equation C.1)

where φξ(zi) is the PDF of N (µi, σ
2
i), and φ(zi) is the PDF of the standard

normal distribution (i.e. N (0, 1)).

143

We can construct the expectation of the truncated normal in the following

way:

l(w, b) = lim
b−→+∞

∫ b

0

zi
φ(zi−µi

σi
)

σi

(
Φ(b−µi

σi
)− Φ(0−µi

σi
)

Φ(b−µi
σi

)− Φ(0−µi
σi

)

)
dzi

=

∫ +∞

0

zi
φ(zi−µi

σi
)

σi

(
1− Φ(−µi

σi
)

1− Φ(−µi
σi

)

)
dzi (Equation C.2)

where Φ(x) is the CDF of standard normal distribution. Since, Φ(−x) =

1− Φ(x), we have:

l(w, b) =

∫ +∞

0

zi
φ(zi−µi

σi
)

σi

(
Φ(µi

σi
)

1− Φ(−µi
σi

)

)
dzi

= Φ(
µi
σi

)

∫ +∞

0

zi
φ(zi−µi

σi
)

σi(1− Φ(−µi
σi

))
dzi (Equation C.3)

Note that
φ(
zi−µi
σi

)

σi(1−Φ(
−µi
σi

))
is the PDF of truncated normal distribution:

N (µi, σ
2
i |0 ≤ zi ≤ +∞), therefore:

l(w, b) = Φ(
µi
σi

)Ezi∼N (µi,σ2
i)(zi)

= Φ(
µi
σi

)(µi + σi
φ(−µi

σi
)

1− Φ(−µi
σi

)
) (Equation C.4)

Because of the symmetry of the standard normal distribution, we have

φ(−µi
σi

) = φ(µi
σi

) and 1− Φ(−µi
σi

) = Φ(µi
σi

), therefore:

144

l(w, b) = µiΦ(
µi
σi

) + σiφ(
µi
σi

) (Equation C.5)

145

APPENDIX D

α-REG PROOF

In this appendix, we provide a proof for Theorem 7.

Proof. We start with Problem Equation 5.11. By expanding the expectation, we

will have:

maximizeα
∑
i

∫
ζi∈Z

αi(ζi)dP (ζi)−
1

2

∑
i,j

yiyj

∫
ζi,ζj∈Z

αi(ζi)αj(ζj)k̃(xi, xj, ζi, ζj)dP (ζi)dP (ζj)

subject to
∑
i

yi

∫
ζi∈Z

αi(ζi)dP (ζi) = 0, 0 ≤ αi(ζi) ≤ C ∀i, ζi (Equation D.1)

The theorem assumes αi(ζi)’s are independent of ζi’s and equal to scalars αis,

and f̃(x) = f(x) � ζi (i.e. dropout in feature space). So (Equation 5.11) can be

written as:

maximizeα
∑
i

αi −
1

2

∑
i,j

yiyj

∫
ζi,ζj∈Z

αiαj(f(xi)� ζi)T (f(xj)� ζj)dP (ζi)dP (ζj)

subject to
∑
i

yiαi = 0, 0 ≤ αi ≤ C ∀i, (Equation D.2)

We have:

146

1

2

∑
i,j

yiyj

∫
ζi,ζj∈Z

αiαj(f(xi)� ζi)T (f(xj)� ζj)dP (ζi)dP (ζj)

=
1

2

∑
i,j

yiyjαiαjEζi,ζj∼p(δ)[
∑
k

fk(xi)fk(xj)ζikζjk]

=
1

2

∑
i,j

yiyjαiαj
∑
k

fk(xi)fk(xj)Eζik,ζjk∼p(δ)[ζikζjk] (Equation D.3)

Eζik,ζjk∼p(δ)[ζikζjk] = Eζik,ζjk∼p(δ)[(ζik − 1)(ζjk − 1) + ζik + ζjk − 1]

= Eζik,ζjk∼p(δ)[(ζik − 1)(ζjk − 1)] + Eζik∼p(δ)[ζik] + Eζjk∼p(δ)[ζjk]− 1

= Eζik,ζjk∼p(δ)[(ζik − 1)(ζjk − 1)] + 1

= I(i = j)σ2
ζ + 1

where I(i = j) = 1 if i = j and zero otherwise, Eζik∼p(δ)[ζik] = Eζjk∼p(δ)[ζjk] =

1. Since ζik and ζjk are identically and independently drawn from the noise

distribution,

Eζik,ζjk∼p(δ)[(ζik − 1)(ζjk − 1)] =

var(δ) = σ2

ζ if i = j

0 if i 6= j

147

Therefore,

1

2

∑
i,j

yiyjαiαj
∑
k

fk(xi)fk(xj)Eζik,ζjk∼p(δ)[ζikζjk]

=
1

2

∑
i,j

yiyjαiαj(1 + I(i = j)σ2
ζ)
∑
k

fk(xi)fk(xj)

=
1

2

∑
i,j

yiyjαiαj(1 + I(i = j)σ2
ζ)k(xi, xj)

148

APPENDIX E

LINEAR TIME INFERENCE FOR DIMENSION DROPOUT IN RBF KERNEL

In the Chapter 5, we briefly mention the marginalized prediction for dropout-

dimension, based on the expected kernel function. We now show how this is

obtained.

Theorem 9. For dimension dropout, the expected RBF kernel function between a

support vector x with noise ξ and a test instance x′ has the following closed-form

solution:

Eζ [k̃(x, x′, ξ, ζ)] =
∏
l:ξl 6=0

(δ + (1− δ)e−γ(xl−x′l)
2

)

Proof. The dimension dropout RBF kernel is defined as follows:

k̃(x, x′, ξ, ζ) = e−γd(x,x′,ξ,ζ)2

where d(x, x′, ξ, ζ)2 =
∑

l:ξl 6=0,ζl 6=0(xl − x′l)
2. We can also express this kernel as a

product:

k̃(x, x′, ξ, ζ) =
∏

l:ξl 6=0,ζl 6=0

e−γ(xl−x′l)
2

=
∏
l:ξl 6=0

e−γζl(xl−x
′
l)

2

For dropout noise, ζl equals 0 with probability δ and 1 with probability 1− δ. Since

each ζl is drawn independently, we can convert the expectation of a product to a

product of expectations:

Eζ

[∏
l:ξl 6=0

e−γζl(xl−x
′
l)

2

]
=
∏
l:ξl 6=0

Eζl

[
e−γζl(xl−x

′
l)

2
]

=
∏
l:ξl 6=0

(δ + (1− δ)e−γ(xl−x′l)
2

)

149

Since the SVM prediction is a linear function of kernel values, the expected

prediction is a linear function of the expected kernel values:

Eζ

[∑
i

yiαik̃(xi, ξi, x
′, ζ)

]
=
∑
i

yiαiEζ [k̃(xi, ξi, x
′, ζ)]

Each expected kernel value can be computed in linear time by iterating over the

non-dropped-out features of the support vector.

150

APPENDIX F

NOTATIONS AND SYMBOLS

|A| The determinant of matrix A

‖x‖0 The L0 norm of vector x. ‖x‖0 is used to indicate the number

of non-zero elements in x.

‖x‖p The Lp norm of vector x. ‖x‖p = (
∑m

i=0 |xi|p)
1
p

0 A vector of zeros

1 A vector of ones

A Matrix A ∈ Rn×m for some positive integers n and m; bold

capital letters are used for matrices.

AT The transpose of matrix A

Aij The element of A in row i and column j

A�B Hadamard (element-wise) product of matrices A � B :

(A � B)ij = AijBij. Same notation is used for the Hadamard

product of vectors.

diag(x) The m×m diagonal matrix, in which the elements of vector x

form the diagonal.

m The dimension of a random vector or a feature function

n The number of samples in a dataset

x A scalar x ∈ R

151

x Vector x ∈ Rm for some positive integer m; bold lowercase

letters are used to indicate vectors. Vectors are assumed

to be m × 1 dimensional matrices (i.e. column vector):

x = [x1, . . . , xm]T

xi The ith element of x

x ∼ fx(θ) Random variable (vector) x is drawn from the probability

distribution fx, which is parameterized by vector θ.

N (µ,Σ) A Gaussian (normal) distribution with mean µ and covariance

matrix Σ

φ(x;µ,Σ) The probability density function (PDF) of the normal

distribution N (µ,Σ). φ(x;µ,Σ) = 1√
|2πΣ|

e−
1
2

(x−µ)TΣ−1(x−µ)

φ(x) The standard normal PDF with mean 0 and variance 1 (i.e.

N (0, 1)). φ(x) = 1√
2π
e−

1
2
x2

. For univariate random variable

x ∼ N (0, 1), we have: φ(x;µ, σ2) = φ(x−µ
σ

).

Φ(t;µ,Σ) The cumulative density function (CDF) of the normal

distribution N (µ,Σ). Φ(t;µ,Σ) =
∫

x≤t
φ(x;µ,Σ)dx

152

REFERENCES CITED

Abernethy, J., Chapelle, O., and Castillo, C. (2010). Graph regularization methods
for web spam detection. Machine Learning, 81(2):207–225.

Adamic, L. and Glance, N. (2005). The political blogosphere and the 2004 US
election: divided they blog. In Proceedings of the 3rd International Workshop
on Link Discovery, pages 36–43. ACM.

Altun, Y., Tsochantaridis, I., Hofmann, T., et al. (2003). Hidden markov support
vector machines. In ICML, volume 3, pages 3–10.

An, B., Kempe, D., Kiekintveld, C., Shieh, E., Singh, S., Tambe, M., and
Vorobeychik, Y. (2012). Security games with limited surveillance. Ann Arbor,
1001:48109.

Bakir, G. H., Hofmann, T., Scholkopf, B., Smola, A. J., Taskar, B., and
Vishwanathan, S. V. N. (2007). Predicting Structured Data. MIT Press.

Bartlett, P. L., Collins, M., Taskar, B., and McAllester, D. A. (2004).
Exponentiated gradient algorithms for large-margin structured classification.
In Advances in Neural Information Processing Systems (NIPS) 18.

Basilico, N., Gatti, N., and Amigoni, F. (2009). Leader-follower strategies for
robotic patrolling in environments with arbitrary topologies. In Proceedings of
The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 57–64. International Foundation for Autonomous
Agents and Multiagent Systems.

Begleiter, R., El-Yaniv, R., and Yona, G. (2004). On prediction using variable order
markov models. J. Artif. Intell. Res.(JAIR), 22:385–421.

Ben-Tal, A. and Nemirovski, A. (1998). Robust convex optimization. Mathematics
of Operations Research, 23(4):769–805.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear
programs. Operations research letters, 25(1):1–13.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear programming
problems contaminated with uncertain data. Mathematical Programming,
88(3):411–424.

Ben-Tal, A. and Nemirovski, A. (2001). On polyhedral approximations of the
second-order cone. Mathematics of Operations Research, 26(2):193–205.

153

Bertsimas, D., Pachamanova, D., and Sim, M. (2004). Robust linear optimization
under general norms. Operations Research Letters, 32(6):510–516.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations research,
52(1):35–53.

Bhattacharyya, C., Pannagadatta, K., and Smola, A. J. (2004). A second order
cone programming formulation for classifying missing data. Advances in
neural information processing systems, 17:153–160.

Biggio, B., Corona, I., Nelson, B., Rubinstein, B. I., Maiorca, D., Fumera, G.,
Giacinto, G., et al. (2014). Security evaluation of support vector machines in
adversarial environments. arXiv preprint arXiv:1401.7727.

Biggio, B., Fumera, G., and Roli, F. (2013a). Security evaluation of pattern
classifiers under attack.

Biggio, B., Nelson, B., and Laskov, P. (2011). Support vector machines under
adversarial label noise. Journal of Machine Learning Research-Proceedings
Track, 20:97–112.

Biggio, B., Nelson, B., and Laskov, P. (2012). Poisoning attacks against support
vector machines. arXiv preprint arXiv:1206.6389.

Biggio, B., Pillai, I., Rota Bulò, S., Ariu, D., Pelillo, M., and Roli, F. (2013b). Is
data clustering in adversarial settings secure? In Proceedings of the 2013
ACM workshop on Artificial intelligence and security, pages 87–98. ACM.

Bilmes, J., Zweig, G., Richardson, T., Filali, K., Livescu, K., Xu, P., Jackson, K.,
Brandman, Y., Sandness, E., Holtz, E., et al. (2001). Discriminatively
structured graphical models for speech recognition. In Report of the JHU
2001 Summer Workshop.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization.
Neural Computation, 7(1):108–116.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Blanzieri, E. and Bryl, A. (2008). A survey of learning-based techniques of email
spam filtering. Artificial Intelligence Review, 29(1):63–92.

Blum, A. (2006). Random projection, margins, kernels, and feature-selection. In
Subspace, Latent Structure and Feature Selection, pages 52–68. Springer.

Boyd, S. P. and Vandenberghe, L. (2004). Convex optimization. Cambridge
university press.

154

Brückner, M., Kanzow, C., and Scheffer, T. (2012). Static prediction games for
adversarial learning problems. the Journal of Machine Learning Research,
13(1):2617–2654.

Brückner, M. and Scheffer, T. (2009). Nash equilibria of static prediction games. In
Advances in Neural Information Processing Systems 22.

Brückner, M. and Scheffer, T. (2011). Stackelberg games for adversarial prediction
problems. In Proceedings of the Seventeenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press.

Califf, M. E. and Mooney, R. J. (2003). Bottom-up relational learning of pattern
matching rules for information extraction. The Journal of Machine Learning
Research, 4:177–210.

Chang, K.-W., Hsieh, C.-J., and Lin, C.-J. (2008). Coordinate descent method for
large-scale l2-loss linear support vector machines. The Journal of Machine
Learning Research, 9:1369–1398.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent
discriminative reranking. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 173–180. Association for
Computational Linguistics.

Chau, D., Pandit, S., and Faloutsos, C. (2006). Detecting fraudulent personalities
in networks of online auctioneers. Knowledge Discovery in Databases: PKDD
2006, pages 103–114.

Chen, N., Zhu, J., Chen, J., and Zhang, B. (2014a). Dropout training for support
vector machines. In Proceedings of Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 1752–1759, Quebec, Canada.

Chen, S., Feng, Z., Lu, Q., Mahasseni, B., Fiez, T., Fern, A., and Todorovic, S.
(2014b). Play type recognition in real-world football video. WACV.

Chieu, H. L. and Ng, H. T. (2002). A maximum entropy approach to information
extraction from semi-structured and free text. AAAI/IAAI, 2002:786–791.

Collins, M. (2002). Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing, pages
1–8, Philadelphia, PA. ACL.

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing and tagging:
Kernels over discrete structures, and the voted perceptron. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
263–270. Association for Computational Linguistics.

155

Collins, M., Globerson, A., Koo, T., Carreras, X., and Bartlett, P. L. (2008).
Exponentiated gradient algorithms for conditional random fields and
max-margin markov networks. The Journal of Machine Learning Research,
9:1775–1822.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural language
parsing. Computational Linguistics, 31(1):25–70.

Dalvi, N., Domingos, P., Mausam, Sanghai, S., and Verma, D. (2004). Adversarial
classification. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 99–108, Seattle,
WA. ACM Press.

Daumé III, H. (2009a). Semi-supervised or semi-unsupervised? In NAACL
Workshop on Semi-supervised Learning for NLP. Citeseer.

Daumé III, H. (2009b). Unsupervised search-based structured prediction. In
Proceedings of the 26th Annual International Conference on Machine
Learning, pages 209–216. ACM.

Daumé Iii, H., Langford, J., and Marcu, D. (2009). Search-based structured
prediction. Machine learning, 75(3):297–325.

Daumé III, H. and Marcu, D. (2005). Learning as search optimization:
Approximate large margin methods for structured prediction. In Proceedings
of the 22nd international conference on Machine learning, pages 169–176.
ACM.

Decoste, D. and Schölkopf, B. (2002). Training invariant support vector machines.
Machine learning, 46(1-3):161–190.

Dekel, O., Shamir, O., and Xiao, L. (2010). Learning to classify with missing and
corrupted features. Machine learning, 81(2):149–178.

Derezinski, M. and Warmuth, M. K. (2014). The limits of squared Euclidean
distance regularization. In Advances in Neural Information Processing
Systems, pages 2807–2815.

Dickerson, J. P., Simari, G. I., Subrahmanian, V., and Kraus, S. (2010). A
graph-theoretic approach to protect static and moving targets from
adversaries. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages
299–306. International Foundation for Autonomous Agents and Multiagent
Systems.

Domingos, P. and Lowd, D. (2009a). Markov Logic: An Interface Layer for AI.
Morgan & Claypool, San Rafael, CA.

156

Domingos, P. and Lowd, D. (2009b). Markov logic: An interface layer for artificial
intelligence, volume 3. Morgan & Claypool Publishers.

Domke, J. (2013). Structured learning via logistic regression. In Advances in Neural
Information Processing Systems, pages 647–655.

Doppa, J. R., Fern, A., and Tadepalli, P. (2012). Output space search for
structured prediction. arXiv preprint arXiv:1206.6460.

Dreves, A., Facchinei, F., Kanzow, C., and Sagratella, S. (2011). On the solution of
the kkt conditions of generalized nash equilibrium problems. SIAM Journal
on Optimization, 21(3):1082–1108.

Dritsoula, L., Loiseau, P., and Musacchio, J. (2012). A game-theoretical approach
for finding optimal strategies in an intruder classification game. In Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 7744–7751.
IEEE.

Drost, I. and Scheffer, T. (2005). Thwarting the nigritude ultramarine: Learning to
identify link spam. In Proceedings of the Sixteenth European Conference on
Machine Learning, pages 96–107. Springer.

El Ghaoui, L., Lanckriet, G., and Natsoulis, G. (2003). Robust classification with
interval data. Computer Science Division, University of California.

Fang, F., Jiang, A. X., and Tambe, M. (2013). Optimal patrol strategy for
protecting moving targets with multiple mobile resources. In Proceedings of
the 2013 international conference on Autonomous agents and multi-agent
systems, pages 957–964. International Foundation for Autonomous Agents and
Multiagent Systems.

Fua, P., Li, Y., Lucchi, A., et al. (2013). Learning for structured prediction using
approximate subgradient descent with working sets. In Computer Vision and
Pattern Recognition (CVPR), number EPFL-CONF-185082.

Globerson, A., Koo, T. Y., Carreras, X., and Collins, M. (2007). Exponentiated
gradient algorithms for log-linear structured prediction. In Proceedings of the
24th international conference on Machine learning, pages 305–312. ACM.

Globerson, A. and Roweis, S. (2006). Nightmare at test time: robust learning by
feature deletion. In Proceedings of the Twenty-Third International Conference
on Machine Learning, pages 353–360, Pittsburgh, PA. ACM Press.

Gong, D., Zhao, X., and Medioni, G. (2012). Robust multiple manifolds structure
learning. ICML.

157

Gupta, K. K., Nath, B., and Kotagiri, R. (2010). Layered approach using
conditional random fields for intrusion detection. Dependable and Secure
Computing, IEEE Transactions on, 7(1):35–49.

Gupta, K. K., Nath, B., and Ramamohanarao, K. (2007). Conditional random
fields for intrusion detection. In Advanced Information Networking and
Applications Workshops, 2007, AINAW’07. 21st International Conference on,
volume 1, pages 203–208. IEEE.

Gurobi Optimization, I. (2014). Gurobi optimizer reference manual.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580.

Huynh, T. and Mooney, R. (2009). Max-margin weight learning for Markov logic
networks. In In Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD-09). Bled, pages 564–579. Springer.

Jain, M., Kardes, E., Kiekintveld, C., Ordóñez, F., and Tambe, M. (2010a).
Security games with arbitrary schedules: A branch and price approach. In
AAAI.

Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., and Ordóñez, F.
(2010b). Software assistants for randomized patrol planning for the lax
airport police and the federal air marshal service. Interfaces, 40(4):267–290.

Jensen, D. and Neville, J. (2002). Linkage and autocorrelation cause feature
selection bias in relational learning. In Proceedings of the Nineteenth
International Conference on Machine Learning, pages 259–266, Sydney,
Australia. Morgan Kaufmann.

Jiang, A. X., Nguyen, T. H., Tambe, M., and Procaccia, A. D. (2013a). Monotonic
maximin: A robust stackelberg solution against boundedly rational followers.
In Decision and Game Theory for Security, pages 119–139. Springer.

Jiang, A. X., Yin, Z., Zhang, C., Tambe, M., and Kraus, S. (2013b).
Game-theoretic randomization for security patrolling with dynamic execution
uncertainty. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages 207–214. International
Foundation for Autonomous Agents and Multiagent Systems.

Joachims, T., Finley, T., and Yu, C.-N. J. (2009). Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59.

158

Kivinen, J. and Warmuth, M. K. (1997). Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132(1):1–63.

Kloft, M. and Laskov, P. (2007). A poisoning attack against online anomaly
detection. In NIPS Workshop on Machine Learning in Adversarial
Environments for Computer Security. Citeseer.

Koller, B., Carlos, T., and Daphne, G. (2003). Max-margin markov networks. In
Advances in Neural Information Processing Systems (NIPS) 17, Vancouver,
BC, Canada.

Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via
graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 26(2):147–159.

Korolev, V. and Shevtsova, I. (2012). An improvement of the berry–esseen
inequality with applications to poisson and mixed poisson random sums.
Scandinavian Actuarial Journal, 2012(2):81–105.

Korzhyk, D., Conitzer, V., and Parr, R. (2011). Solving stackelberg games with
uncertain observability. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 3, pages 1013–1020. International
Foundation for Autonomous Agents and Multiagent Systems.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling data. In Proceedings of the
Eighteenth International Conference on Machine Learning, pages 282–289,
Williamstown, MA. Morgan Kaufmann.

Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., and Jordan, M. I. (2003). A
robust minimax approach to classification. The Journal of Machine Learning
Research, 3:555–582.

Laskov, P. and Kloft, M. (2009). A framework for quantitative security analysis of
machine learning. In Proceedings of the 2nd ACM workshop on Security and
artificial intelligence, pages 1–4. ACM.

Laskov, P. and Lippmann, R. (2010). Machine learning in adversarial environments.
Machine learning, 81(2):115–119.

Lauritzen, S. L. (1996). Graphical models. Oxford University Press.

Le, Q., Sarlós, T., and Smola, A. (2013). Fastfood-computing hilbert space
expansions in loglinear time. In Proceedings of the 30th International
Conference on Machine Learning, pages 244–252.

159

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lin, H.-T. and Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the
training of non-PSD kernels by SMO-type methods. Technical report,
Department of Computer Science, National Taiwan University.

Lippmann, R. P. (1987). An introduction to computing with neural nets. ASSP
Magazine, IEEE, 4(2):4–22.

Livni, R. and Globerson, A. (2012). A simple geometric interpretation of SVM
using stochastic adversaries. Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics.

Lowd, D. and Domingos, P. (2007). Efficient weight learning for Markov logic
networks. In Proceedings of the Eleventh European Conference on Principles
and Practice of Knowledge Discovery in Databases, pages 200–211, Warsaw,
Poland. Springer.

Lowd, D. and Meek, C. (2005a). Adversarial learning. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 641–647. ACM.

Lowd, D. and Meek, C. (2005b). Good word attacks on statistical spam filters. In
Proceedings of the Second Conference on Email and Anti-Spam (CEAS),
pages 125–132.

Lowd, D. and Shamaei, A. (2011). Mean field inference in dependency networks:
An empirical study. In AAAI.

Lu, Q. and Getoor, L. (2003). Link-based classification. In ICML, volume 3, pages
496–503.

Maaten, L., Chen, M., Tyree, S., and Weinberger, K. Q. (2013). Learning with
marginalized corrupted features. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 410–418.

McAllester, D., Collins, M., and Pereira, F. (2004). Case-factor diagrams for
structured probabilistic modeling. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pages 382–391. AUAI Press.

McAuley, J. J., Caetano, T. S., and Smola, A. J. (2008). Robust near-isometric
matching via structured learning of graphical models. In Advances in Neural
Information Processing Systems (NIPS) 22, pages 1057–1064.

160

McCallum, A., Freitag, D., and Pereira, F. C. (2000). Maximum entropy markov
models for information extraction and segmentation. In ICML, pages
591–598.

McDonald, R., Hall, K., and Mann, G. (2010). Distributed training strategies for
the structured perceptron. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 456–464. Association for Computational
Linguistics.

McDonald, R., Hannan, K., Neylon, T., Wells, M., and Reynar, J. (2007).
Structured models for fine-to-coarse sentiment analysis. In Annual
Meeting-Association For Computational Linguistics, volume 45, page 432.

McDonald, R. and Pereira, F. (2005). Identifying gene and protein mentions in text
using conditional random fields. BMC bioinformatics, 6(Suppl 1):S6.

McDowell, L. K., Gupta, K. M., and Aha, D. W. (2009). Cautious collective
classification. The Journal of Machine Learning Research, 10:2777–2836.

Nelson, B. (2010). Behavior of Machine Learning Algorithms in Adversarial
Environments. PhD thesis, Electrical Engineering and Computer Sciences
University of California at Berkeley, California, United States.

Nelson, B., Rubinstein, B., Huang, L., Joseph, A., Lau, S., Lee, S., Rao, S., Tran,
A., and Tygar, J. (2010). Near-optimal evasion of convex-inducing classifiers.
In Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics (AISTATS) 2010, volume 9, Chia Laguna Resort, Sardinia,
Italy.

Neville, J. and Jensen, D. (2007). Relational dependency networks. The Journal of
Machine Learning Research, 8:653–692.

Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., and Tambe, M. (2013). Analyzing
the effectiveness of adversary modeling in security games. In Conf. on
Artificial Intelligence (AAAI).

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar,
S., Shen, L., Smith, D., Eng, K., et al. (2003). Syntax for statistical machine
translation. In Johns Hopkins University 2003 Summer Workshop on
Language Engineering, Center for Language and Speech Processing,
Baltimore, MD, Tech. Rep.

Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics, page 271.
Association for Computational Linguistics.

161

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, CA.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
27(8):1226–1238.

Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M., Western, C.,
Paruchuri, P., and Kraus, S. (2008). Deployed armor protection: the
application of a game theoretic model for security at the los angeles
international airport. In Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems: industrial track, pages
125–132. International Foundation for Autonomous Agents and Multiagent
Systems.

Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., and Steigerwald, E. (2011).
Guards: innovative application of game theory for national airport security.
In Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, pages 2710–2715. AAAI Press.

Punyakanok, V. and Roth, D. (2001). The use of classifiers in sequential inference.
arXiv preprint cs/0111003.

Qiao, Y., Xin, X., Bin, Y., and Ge, S. (2002). Anomaly intrusion detection method
based on hmm. Electronics Letters, 38(13):663–664.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines.
In Advances in neural information processing systems, pages 1177–1184.

Ranjbar, M., Lan, T., Wang, Y., Robinovitch, S. N., Li, Z.-N., and Mori, G. (2013).
Optimizing nondecomposable loss functions in structured prediction. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 35(4):911–924.

Ravichandran, D., Hovy, E., and Och, F. J. (2003). Statistical qa-classifier vs.
re-ranker: what’s the difference? In Proceedings of the ACL 2003 workshop on
Multilingual summarization and question answering-Volume 12, pages 69–75.
Association for Computational Linguistics.

Ross, S., Gordon, G. J., and Bagnell, J. A. (2010). A reduction of imitation
learning and structured prediction to no-regret online learning. arXiv preprint
arXiv:1011.0686.

Ross, S., Gordon, G. J., and Bagnell, J. A. (2011). No-regret reductions for
imitation learning and structured prediction. In In AISTATS. Citeseer.

162

Rudin, W. (2011). Fourier analysis on groups. John Wiley & Sons.

Sawade, C., Scheffer, T., et al. (2013). Bayesian games for adversarial regression
problems. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 55–63.

Schölkopf, A., Simard, P., Vapnik, V., and Smola, A. (1997). Improving the
accuracy and speed of support vector machines. Advances in neural
information processing systems, 9:375–381.

Schölkopf, D. (2002). Sampling techniques for kernel methods. In Advances in
Neural Information Processing Systems 14: Proceedings of the 2001
Conference, volume 1, page 335. MIT Press.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T.
(2008). Collective classification in network data. AI Magazine, 29(3):93.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2):107–194.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A. (2011). Pegasos: Primal
estimated sub-gradient solver for svm. Mathematical programming,
127(1):3–30.

Shen, D., Sun, J.-T., Li, H., Yang, Q., and Chen, Z. (2007). Document
summarization using conditional random fields. In IJCAI, volume 7, pages
2862–2867.

Shen, L., Sarkar, A., and Och, F. J. (2004). Discriminative reranking for machine
translation. In HLT-NAACL, pages 177–184.

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., and
Meyer, G. (2012). Protect: A deployed game theoretic system to protect the
ports of the united states. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 13–20.
International Foundation for Autonomous Agents and Multiagent Systems.

Shivaswamy, P. K., Bhattacharyya, C., and Smola, A. J. (2006). Second order cone
programming approaches for handling missing and uncertain data. The
Journal of Machine Learning Research, 7:1283–1314.

Smith, G. D. (1985). Numerical solution of partial differential equations: finite
difference methods. Oxford University Press.

Smola, A. J., Vishwanathan, S., and Le, Q. V. (2007). Bundle methods for machine
learning. In Advances in Neural Information Processing Systems (NIPS) 21,
pages 1377–1384.

163

Song, Y., Wen, Z., Lin, C.-Y., and Davis, R. (2013). One-class conditional random
fields for sequential anomaly detection. In Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, pages 1685–1691.
AAAI Press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

Taskar, B., Chatalbashev, V., and Koller, D. (2004a). Learning associative Markov
networks. In Proceedings of the twenty-first international conference on
machine learning. ACM Press.

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). Learning
structured prediction models: A large margin approach. In Proceedings of the
22nd international conference on Machine learning, pages 896–903. ACM.

Taskar, B., Wong, M. F., Abbeel, P., and Koller, D. (2004b). Max-margin Markov
networks. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, MA.

Teo, C., Globerson, A., Roweis, S., and Smola, A. (2008). Convex learning with
invariances. In Advances in Neural Information Processing Systems 21.

Theil, H. and Fiebig, D. G. (1984). Exploiting continuity: Maximum entropy
estimation of continuous distributions. Ballinger Cambridge, MA.

Tian, Y., Huang, T., and Gao, W. (2006). Robust collective classification with
contextual dependency network models. In Advanced Data Mining and
Applications, pages 173–180. Springer.

Torkamani, M. (2014). Adversarial structured output prediction. Available
athttp://www.cs.uoregon.edu/Reports/ORAL-201406-Torkamani.pdf. Oral
Comprehensive Exam.

Torkamani, M. and Lowd, D. (2013). Convex adversarial collective classification. In
Proceedings of the 30th International Conference on Machine Learning
(ICML), pages 642–650.

Torkamani, M. A. and Lowd, D. (2014). On robustness and regularization of
structural support vector machines. Proceedings of the Thirty-First
International Conference on Machine Learning (ICML), pages 577–585.

Toutanova, K., Haghighi, A., and Manning, C. D. (2005). Joint learning improves
semantic role labeling. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 589–596. Association for
Computational Linguistics.

164

Tsai, J., Kiekintveld, C., Ordonez, F., Tambe, M., and Rathi, S. (2009). Iris-a tool
for strategic security allocation in transportation networks.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support
vector machine learning for interdependent and structured output spaces. In
Proceedings of the twenty-first international conference on Machine learning,
page 104. ACM.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2006). Large margin
methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6(2):1453.

Wager, S., Fithian, W., Wang, S., and Liang, P. S. (2014). Altitude training:
Strong bounds for single-layer dropout. In Advances in Neural Information
Processing Systems, pages 100–108.

Wager, S., Wang, S., and Liang, P. (2013). Dropout training as adaptive
regularization. In Advances in Neural Information Processing Systems, pages
351–359.

Wang, S. and Manning, C. (2013). Fast dropout training. In Proceedings of the
30th International Conference on Machine Learning (ICML-13), pages
118–126.

Wang, S., Wang, M., Wager, S., Liang, P., and Manning, C. D. (2013). Feature
noising for log-linear structured prediction. In EMNLP, pages 1170–1179.

Wang, S. I. and Manning, C. D. (2012). Baselines and bigrams: Simple, good
sentiment and topic classification. In Proceedings of the ACL, pages 90–94.

Xu, H., Caramanis, C., and Mannor, S. (2009). Robustness and regularization of
support vector machines. The Journal of Machine Learning Research,
10:1485–1510.

Xu, H., Caramanis, C., and Mannor, S. (2010). Robust regression and lasso. IEEE
Transactions on Information Theory, 56(7):3561–3574.

Xu, H. and Mannor, S. (2012). Robustness and generalization. Machine learning,
86(3):391–423.

Yin, Z., Jain, M., Tambe, M., and Ordóñez, F. (2011). Risk-averse strategies for
security games with execution and observational uncertainty. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI).

Yin, Z., Jiang, A. X., Johnson, M. P., Kiekintveld, C., Leyton-Brown, K.,
Sandholm, T., Tambe, M., and Sullivan, J. P. (2012). Trusts: Scheduling
randomized patrols for fare inspection in transit systems. In IAAI.

165

Yu, C.-N. J. and Joachims, T. (2009). Learning structural svms with latent
variables. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1169–1176. ACM.

Zhang, S.-X., Gales, M. J., et al. (2011). Structured support vector machines for
noise robust continuous speech recognition. In INTERSPEECH, pages
989–990.

Zhang, S.-X., Ragni, A., and Gales, M. J. F. (2010). Structured log linear models
for noise robust speech recognition. Signal Processing Letters, IEEE,
17(11):945–948.

166

