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DISSERTATION ABSTRACT

Safia Chettih

Doctor of Philosophy

Department of Mathematics

September 2016

Title: Dancing in the Stars: Topology of Non-k-equal Configuration Spaces of Graphs

We prove that the non-k-equal configuration space of a graph has a discretized

model, analogous to the discretized model for configurations on graphs. We apply discrete

Morse theory to the latter to give an explicit combinatorial formula for the ranks of

homology and cohomology of configurations of two points on a tree. We give explicit

presentations for homology and cohomology classes as well as pairings for ordered and

unordered configurations of two and three points on a few simple trees, and show that the

first homology group of ordered and unordered configurations of two points in any tree is

generated by the first homology groups of configurations of two points in three particular

graphs, K1,3, K1,4, and the trivalent tree with 6 vertices and 2 vertices of degree 3, via

graph embeddings.
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CHAPTER I

INTRODUCTION

Configuration spaces are an area of current research with a long history at the

intersection of topology, geometry, and combinatorics. The ordered configuration space of

n points in a topological space X is

Confn(X) := {(x1, . . . , xn) ∈ Xn|xi 6= xj if i 6= j}

and the unordered configuration space is

Confn(X) := Confn(X)/Σn.

Configuration spaces naturally arise in a number of contexts. The most famous is

in the study of iterated loop spaces, of which [CLM76] is the definitive reference. The

space Confn(Rd) is homotopy equivalent to the nth-level object of the little d-disks operad.

By composition with the Kunneth map, the homology of Conf∗(Rd) inherits an operad

structure, and so the homology of a d-fold loop space is an algebra over this operad, which

is in fact the degree d Poisson operad.

The case d = 2 is special, in that Confn(R2) is a K(π, 1) and its fundamental group

is Bn, the braid group on n strands. Therefore, the group (co)homology of the braid groups

can be calculated from these spaces [FN62a, FN62b].

Clearly Confn(R2) is equivalent to the complement of the union of the pairwise

diagonals in R2n ∼= Cn. Arnol’d proved foundational results in the study of hyperplane

arrangements in [Arn69] by showing that Confn(C) is a K(π, 1) space and giving a simple

presentation for its cohomology ring.
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The study of configuration spaces can be organized based on the type of underlying

space. Configurations on Euclidean space have an extensive literature [FH00]. The

Leray spectral sequence corresponding to the inclusion Confn(X) ↪→ Xn converges to

H∗(Confn(X)), which is equivalent to the spectral sequence described on [CT78], and this

collapses after the E2 page if X is a smooth complex projective variety [Tot96]. If M is

the interior of a manifold with boundary, McDuff proved that Confn(M) satisfies integral

homological stability [McD75]. More recently, results have extended to a notion of stability

for the rational (co)homology of ordered configuration spaces on orientable manifolds

[Chu12].

In this dissertation, we focus on configuration spaces on graphs. Configuration

spaces on manifolds have been classically studied by means of fibrations, such as π :

Confn(M)→M where π(x1, . . . , xn) = x1. Maps such as these are no longer fibrations when

considering configurations on graphs, and so different techniques are necessary. Abrams

[Abr00] introduced a discretized model for the configuration space of n points on a graph,

which has the advantage of inheriting a nice combinatorial structure from the vertices and

edges of the graph. The (co)homology of configurations spaces can then be studied using

discrete Morse theory, which was laid out by Forman in [For98]. These discrete models

are very large cubical complexes, but a discrete Morse flow preserves their homotopy type

while ‘collapsing’ onto a much smaller subset of critical cells. In [Far06a], Farley defined a

discrete Morse flow on discretized unordered configuration spaces of graphs, which gives a

computation for the integral homology of unordered configuration spaces of trees.

In chapter II, I extend the Farley result to ordered configuration spaces of graphs, and

prove the following:
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When n = 2 and the graph is a tree T , there is only one non-trivial differential in the

resulting Morse chain complex M∗, ∂1 : M1 →M0, and so

H1(Conf2(T )) ' H1(Conf2(T )) ' Zk

where k = −1 +
∑
v s.t.
µ(v)≥3

(µ(v)− 1) (µ(v)− 2)

µ(v) is the valence of the vertex v, and all other (co)homology groups are trivial. I also

give an alternate proof for the homology equivalence of Confn(Γ) with Abrams’ discretized

model as a demonstration of methods used in later chapters.

Chapter III introduces a foundational tool in my exploration of graph configuration

spaces: explicit cycle/cocycle descriptions of configurations on trees. These give

presentations for the (co)homology of ordered and unordered configurations of two points

on a tree, which is a new result. I show that the first homology groups of ordered and

unordered configurations of two points in any tree is generated by the first homology groups

of configurations of two points in three particular graphs, K1,3, K1,4, and the trivalent tree

with 6 vertices and 2 vertices of degree 3, under graph embeddings. As part of the setup,

I give explicit presentations along with relations and evaluation pairings for configurations

of two or three points on a few simple trees, which allows me to describe the actions of the

forgetful and transfer maps on (co)homology classes. Finally, we make the connection with

detection of right-angled Artin groups.

Recently, there has been new interest in non-k-equal configurations, sometimes called

non-k-overlapping configurations. The ordered configuration space of n points, where no k

are equal, in a topological space X is

Confn,k(X) := Xn\{xi1 = . . . = xik for some k-set of indices 1 ≤ i1 < . . . < ik ≤ n}
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and the unordered non-k-equal configuration space is

Confn,k(X) := Confn,k(X)/Σn.

Confn,k(R) and Confn,k(C) are equivalent to complements of subspace arrangements,

and their cohomology groups can be expressed combinatorially [BW95]. Conf∗,k(Rd) form

a bimodule over ordered configurations in Rd. Their (co)homology was recently calculated

and described in terms of this geometric structure in [DT], which promises applications

to the description of the homology of d-fold loop spaces of fat wedges. Non-k-equal

configurations on graphs are a new subarea of these developments that has not previously

been explored, though it promises applications to a broader class of problems than the

standard configurations on a graph.

An overarching theme to this dissertation is that of discretization through open covers

by stars. In chapter IV, I prove a discretized model for non-k-equal configurations on a

graph in the spirit of Abrams, using such a cover to decompose the space into contractible

sets. The proof extensively utilizes the new methods illustrated in chapter II. Chapter V

goes into depth with calculations of non-3-equal configurations on a few simple trees, using

code that was run on SageMathCloud to simplify calculations. Appendix 1 provides this

code.

4



CHAPTER II

ORDERED CONFIGURATION SPACES OF GRAPHS

2.1. Discrete Model of Configuration Spaces of Graphs

Abrams [Abr00] introduced a discretized model for Confn(Γ), which we call Dn(Γ).

Dn(Γ) is a cubical complex with a combinatorial structure inherited from the vertices

and edges of the graph. We give an alternate proof of the homology equivalence between

Confn(Γ) and Dn(Γ) as an illustration of the techniques that will be used in the non-k-equal

setting.

We will work exclusively with finite, connected graphs, as the general case follows

directly from the Kunneth formula. We reduce to the case where every graph Γ has no

loops and at least one vertex of valence (or degree) ≥ 2. Given a graph Γ, we call V (Γ)

the set of vertices and E(Γ) the set of open edges. Γ is a 1-dimensional CW complex, whose

0-cells are V (Γ) and 1-cells are E(Γ) with attaching maps ∂e : {0, 1} → V (Γ). Let ∂i(e)

denote the image ∂e(i). Each edge has an orientation-preserving homeomorphism with the

unit interval, so Γ inherits a metric, the ‘shortest path’ between any two points in Γ. We

construct a new graph Γ′, which is a subdivison of Γ. For any edge e in E(Γ) such that

∂1(e) 6= ∂0(e), e ∈ E(Γ′) and ∂1(e), ∂0(e) ∈ V (Γ′). For any edge e in E(Γ) such that

∂1(e) = ∂0(e), we subdivide this edge by adding a vertex v to V (Γ′) and two edges a, b to

E(Γ′) such that ∂1(a) = ∂1(e), ∂0(a) = v, ∂1(b) = v, and ∂0(b) = ∂1(e). If Γ has no vertices

of valence ≥ 2, then Γ is the graph with two vertices and a single edge connecting them,

and we subdivide the unique edge in Γ, so that Γ′ is the graph with three vertices and two

edges connecting two pairs of vertices. If Γ′ is a subdivision of Γ, then the two graphs are

homeomorphic (as topological spaces), and so Confn(Γ) is invariant under subdivisions of
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FIGURE 1 A graph Γ.

the graph. Confn(Γ) also inherits a metric as a subspace of the n-fold product of a metric

space.

Let CΓ be the set of vertices of Γ of valence ≥ 2. Let V = {V1, V2, . . . , Vs} be an open

cover of Γ where each Vj is an open set containing a single vertex from CΓ and all of the

edges connected to this vertex, except their opposite endpoint if it is another vertex in CΓ.

Then each Vj is an open star in Γ, and we call the single vertex of valence ≥ 2 the central

vertex of Vj. An example of such an open covering is given in Figures 1 & 2.

Let σ be a choice of open star in V for each of the n configuration points. We say

a configuration conforms to this choice if points in the configuration which are assigned

to Vj by σ are in Vj and are closer to the central vertex of Vj than any point assigned to

some other star, along an edge in which they are both located. If there is at least one point

assigned to Vj, then we say that Vj is occupied. Notice that not all Vj must be occupied.

Furthermore, if Vj ∩ Vk 6= ∅, points assigned to Vj may move onto its intersection with Vk.

Let ω be a choice of one point in each occupied Vj. We call this point the designated point

6



FIGURE 2 The open cover V of Γ by three open stars

of Vj. We call λ a condition if it is a choice of σ and a compatible ω, and then Uλ is the

family of configurations conforming to σ where in each Vj the designated point is always the

closest to the central vertex along whichever edge of the star it is located on. In particular,

no point other than the designated point may be located at the central vertex, which we

consider as part of every edge of the star. Let U = {Uλ}, and if Λ is a set of conditions, we

define UΛ =
⋂
λ∈Λ Uλ. In particular, if c is a configuration which satisfies λ1, λ2, . . . , λm then

c ∈ U{λ1,λ2,...,λm}. We define ζb =

∐
b[0, 1)

0 ∼ 0
the star with b open edges.

Proposition 2.1.1. U is an open, finite cover of Confn(Γ).

Proof. Given a configuration c ∈ Uλ, let ε1 be the minimum distance between any two

points in the configuration, and let ε2 be the minimum distance from any non-designated

point to any central vertex. Then the family of configurations

{
c′
∣∣∣∣d(c′, c) <

min(ε1, ε2)

3

}
is

also in Uλ, so Uλ is open. Each configuration in Confn(Γ) is in at least one Uλ, so U covers

Confn(Γ). Finally, Γ is a finite graph, so it can be covered by a finite number of stars,
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and there are a finite number of ways to distribute n points into the stars and choose a

designated point in each occupied star.

Theorem 2.1.2. Each UΛ is the disjoint union of contractible spaces.

Proof. First we assume that the designated point of each Vj is the same for all λ ∈ Λ.

There is a map G : UΛ × [0, 1] → UΛ which pulls each designated point onto its central

vertex: if xωj is the designated point of Vj, at a distance of dωj from the central vertex,

then G(c, t) is the identity on all points in the configuration, except xωj is a distance

(1 − t)dωj from the central vertex. This is a straight-line homotopy in UΛ, because xωj

has no points in the configuration between it and the central vertex of Vj. Therefore G is

continuous, and a homotopy. Then G(UΛ, 1) is a family of configurations in ULambda with

some points fixed at central vertices of Γ and the rest constrained to move along some edge.

If there are bm non-designated points on an edge, regardless of whether or not they are all

assigned to the same star, the space of configurations of these bm points is homeomorphic to

{(d1, . . . , dm)|0 < d1 < . . . < dm < 1}. But this is exactly
o

∆
bm

, the open bm-simplex. Then a

connected component of G(UΛ, 1) is homeomorphic to
∏
m

o

∆
bm

, where m is the mth edge of

Γ. This is contractible, so any connected component of UΛ is contractible. Each component

of Uλ must be disjoint, because we cannot change the ordering of points on an edge or move

any point besides the xωj through the central vertices. Therefore UΛ is the disjoint union of

contractible spaces.

Finally, we consider the case where there are some conditions which pick different

designated points for at least one Vj. If there are at least two conditions which pick

different designated points for the same Vj, then any configuration in UΛ cannot have both

points on the same edge. In particular, neither one can move onto the central vertex of

Vj. Then there is a subset (perhaps empty) of the designated points which are always

the designated point of the same Vj for all λ ∈ Λ, which we call E. There is a map
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G′ : UΛ × [0, 1] → UΛ which pulls the points in E onto their associated central vertex,

defined analogously to G: each point xk ∈ E is at a distance of (1 − t)dk at time t and G′

is the identity on the remaining points. This is similarly a straight-line homotopy, and a

connected component of G′(UΛ, 1) is again homeomorphic to a product of open simplices.

Each component of UΛ is disjoint, because we cannot change the ordering of points on an

edge or move any point besides the points in E through the central vertices. Therefore UΛ

is the disjoint union of contractible spaces.

Remark 2.1.3. If Γ is covered by s stars, then |U| =

min(n,s)∑
r=1

(
n

r

)
s!

(s− r)!
rn−r. If only a

single star with b edges is occupied and |Λ| = `, then UΛ has
(n− `+ b− 1)!

(b− 1)!
connected

components.

Corollary 2.1.4. U is a good open cover of Confn(Γ), and so its nerve is an abstract

simplicial model for Confn(Γ).

Now we subdivide Γ futher, so that there are n segments between any two central

vertices in Γ and n segments between any central vertex and any root vertex in Γ. An

edge still refers to an edge e ∈ Γ from before this subdivision, between two central

vertices or between a central and a root vertex. The subdivision means that each edge will

have vertices at distance of multiples of 1/n from central vertices. Then Γn has a natural

cubical structure, with cells τ = (τ1, . . . , τn) such that τi ∈ V (Γ) or E(Γ). We define

Dn(Γ) = {τ ∈ Γn|τ i ∩ τ j = ∅ for any i 6= j} and DΛ = Dn(Γ) ∩ UΛ. It follows immediately

that D = {Dλ} is an open, finite cover of Dn(Γ).

Proposition 2.1.5. Let M be some subset of the points x1, . . . , xn and let ς be an order on

the points in M , and |M | = m. Let (0, 1) be subdivided into n equal segments, with a vertex
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at each multiple of 1/n ∈ (0, 1). Let Dm (0,1)
n

= {τ ∈ (0, 1)m|τ i ∩ τ j = ∅ for any i 6= j}, which

we can think of as the space of 1
n

-discrete configurations of m points in (0, 1). Let ∆m
ς be the

subset of Dm (0,1)
n

where the order of the points is given by ς. Then ∆m
ς is contractible.

Proof. Let cς be the configuration of points with order ς such that the first point is at the

vertex at 1/n, the second at 2/n, etc. There is a map H : ∆m
ς × [0, 1] → ∆m

ς which pulls

every configuration onto cς : from 0 ≤ 1/n, H(c, t) moves the first point in ς onto the vertex

at 1/n, from 1/n ≤ t ≤ 2/n, it moves the second, and so on. H(c, t) ∈ ∆m
ς for all c and

t, because the ith point in cς cannot be at any location i−1
n

or less along (0, 1). H is then a

concatenation of straight-line homotopies in ∆m
ς . Therefore ∆m

ς is contractible.

Theorem 2.1.6. Each DΛ is likewise the disjoint union of contractible sets.

Proof. First we assume that the designated point of each Vj is the same for all λ ∈ Λ. Then

there is a map F which moves the non-designated points at least 1/n away from the central

vertices and then moves the designated points onto their associated central vertex. It is

necessary to first move the non-designated points away, so that the function remains in

DΛ, which does not allow a point to occupy a vertex if there is another point on a segment

abutting that vertex. Let F : DΛ × [0, 1] → DΛ and c ∈ DΛ. If there is some point xi ∈ c

a distance di < 1/n from a central vertex, and xi is not the designated point associated to

that central vertex, xi must be on a different edge than the designated point. Then when

0 ≤ t ≤ 1/2, we move all such xi a distance of (2(1 − t) − 1)di + 2t/n from their central

vertex. xi can move up to 1/n from the central vertex and stay within Dλ, because all other

points on the same edge must be at a distance of 2/n or greater from the central vertex.

For all other points, F is the identity when 0 ≤ t ≤ 1/2. Then on 1/2 ≤ t ≤ 1, each

designated point xkj , which is at a distance dkj at t = 0, moves a distance of 2(1 − t)dkj

from the central vertex of Vj. Since there can be no points other than the designated
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point on the segments closest to the central vertex, this function stays within DΛ. It is

also a straight-line homotopy on each designated point and the identity or a straight-line

homotopy on each non-designated point, and therefore F is a homotopy. F (DΛ, 1) is a

family of configurations where some points are fixed at central vertices, and each remaining

point is constrained to move along some edge of the graph. Then a connected component of

F (DΛ, 1) is homotopic to a product over the occupied edges of the graph of ∆bm
ς , where

bm is the number of non-designated points on the mth edge and ς is their order. Each

component of DΛ is disjoint and Prop 2.1.5 shows that the ∆bm
ς are contractible, so DΛ is

the disjoint union of contractible sets.

Finally, we consider the case where there are some conditions which pick different

designated points for at least one Vj. If there are at least two conditions which pick

different designated points for the same Vj, then any configuration in DΛ cannot have

both points on the same edge, and neither one can move onto the central vertex of Vj.

Then there is the subset E (perhaps empty) of the designated points which are always the

designated point of the same Vj for all λ ∈ Λ. There is a map F ′ : DΛ × [0, 1] → DΛ which

moves points not in E at least 1/n away from the central vertices and pulls the points in

E onto their associated central vertex, defined analogously to F : on 0 ≤ t ≤ 1/2, if xi is

point not in E at a distance of less than 1/n from a central vertex, we move it a distance of

(2(1 − t) − 1)di + 2t/n from the central vertex. Then on 1/2 ≤ t ≤ 1, each point xk in E

moves a distance of 2(1 − t)dk from the central vertex of Vj. This is similarly a straight-line

homotopy, and a connected component of F ′(DΛ, 1) is again homeomorphic to a product of

∆bm
ς . Each component of DΛ is disjoint, because we cannot change the ordering of points on

an edge or move any point besides the points in E through the central vertices. Therefore

DΛ is the disjoint union of contractible spaces.

Theorem 2.1.7. The inclusion i : DΛ ↪→ UΛ induces a homology equivalence for all Λ.

11



Proof. Each component of DΛ includes into exactly one component of UΛ by definition.

Given a configuration of points on an edge e, there is a homeomorphism of e that fixes its

endpoints and sends the configuration to a discrete configuration: send the point in the

interior of e closest to ∂0(e) a distance of 1/n from ∂0(e), the second-closest point a distance

of 2/n, etc. Then given a configuration in UΛ, there is a homeomorphism of the graph which

sends it to a configuration in DΛ (though this choice of homeomorphism is obviously not

unique or continuous). The space of homeomorphisms of an edge is contractible, so there

is a path in UΛ between the configurations, and the discrete configuration is in the same

component of UΛ as the starting configuration. Therefore there is at least one component of

DΛ in each component of UΛ. Finally, there are exactly as many components of DΛ as there

are of UΛ, because a component is determined by the number and order of non-designated

points in each edge of the graph. Therefore the inclusion induces a bijection of components,

and as all components are contractible, this is a homology equivalence for all choices of

Λ.

Here we take a small digression to set up the machinery for a Mayer-Vietoris spectral

sequence in homology.

Proposition 2.1.8 (Prop 15.2 of [BT82]). Let Sq(X) denote the singular q-chains in X

and SUq (X) the singular q-chains subordinate to the countable open cover U = {Ua}a∈J . Let

Ua0...ap = Ua0 ∩ . . . ∩ Uap. Let δ be the C̆ech boundary operator

δ :
⊕

a0<...<ap

Sq(Ua0...ap)→
⊕

a0<...<ap−1

Sq(Ua0...ap−1)

(δc)a0...ap−1 =
∑
a

caa0...ap−1

12



where interchanging two indices introduces a minus sign, and

ε :
⊕
a

Sq(Ua)→ Sq(X)

is the sum. Then:

– the homology of (SU∗ (X), ∂) is isomorphic to H∗(X) in each dimension.

– the following sequence is exact:

0← SUq (X)
ε←
⊕
a0

Sq(Ua0)
δ←
⊕
a0<a1

Sq(Ua0a1)
δ← · · ·

Proposition 2.1.9. Let X be a topological space. The Mayer-Vietoris Spectral Sequence

associated to the decomposition of X by a countable open cover U is given by the double

complex E1
p,q =

⊕
|I|=p

Hq(UI) for p ≥ 0, q ≥ 0, and

d1 = δ∗ :
⊕

a0<...<ap

Hq(Ua0...ap)→
⊕

a0<...<ap−1

Hq(Ua0...ap−1)

This spectral sequence converges to the homology of X.

Proof. There is a spectral sequence associated to the double complex with E0
p,q the singular

q-chains in a p-fold intersection of open sets in U , vertical differentials the usual boundary

operator ∂, and horizontal differentials δ as in Prop 2.1.8. If we first take differentials

horizontally, the spectral sequence collapses immediately in all but the first column because

of exactness of the rows. Then the first column with vertical differentials is exactly the

chain complex (SU∗ (X), ∂). Therefore the spectral sequence converges, and to the desired

homology by Prop 2.1.8. If we take differentials vertically first, the spectral sequence

13



becomes the Mayer-Vietoris spectral sequence in homology, which therefore also converges

to the desired homology.

Theorem 2.1.10. H∗(Confn(Γ)) ∼= H∗(Dn(Γ))

Proof. The Mayer-Vietoris decompositions of Confn(Γ) by U and Dn(Γ) by D give two

spectral sequences as described in Prop 2.1.9. The inclusions of Prop 2.1.7 induce an

equivalence of the spectral sequences, as the E1 pages are isomorphic in each entry and

the differentials are given by inclusions. Therefore both spectral sequences must converge to

the same thing, with i∗ giving the equivalence.

2.2. Discrete Morse Theory

Now that the homology equivalence to a cubical complex has been established, the

(co)homology of configuration spaces can be studied using discrete Morse theory, which was

laid out by Forman in [For98]. The following definitions cleave to [Far06a], which differs

slightly from [For98] in detail but not in spirit.

Let X be a finite CW complex, and Ki the set of its open i-cells. For α, β ∈ K, we

write α ≤ β if α = β or α < β and we write α < β if α 6= β and α ⊆ β. We call α a regular

face of β if α(p) < β(p+1), α is homeomorphic to its preimage under the characteristic map

for β, and the closure of its preimage is a closed p-ball.

Definition 2.2.1. A discrete vector field W on X is a sequence of partial functions

Wi : Ki → Ki+1 such that

1. Each Wi is injective

2. If Wi(α) = β, then α is a regular face of β

3. im(Wi) ∩ dom(Wi+1) = ∅

14



Note that Wi is only defined on some subset of Ki. A W -path of dimension p is a

sequence of p-cells α0, α1, . . . , αr such that if W (αi) is undefined, αi+1 = αi and otherwise

αi+1 6= αi and αi+1 < W (αi). The W -path is non-stationary if α1 6= α0 and closed

if αr = α0. A discrete vector field W is a discrete gradient vector field if W has no

non-stationary closed paths. The critical cells are those which are not in the range nor

the doman of W , the collapsible cells are those in the range of W , and the redundant

cells are those in the domain of W . It is worth noting that a discrete gradient vector field

is equivalent to a discrete Morse function ([For98]), but we will not need to work with such

functions.

Proposition 2.2.2 ([Far06a]). Let C∗(X) denote the cellular chain complex of X, with ∂

the standard boundary map. We may extend Wi to a map Ci(X) → Ci+1(X) that preserves

our definitions of critical, collapsible, or redundant.

1. f = 1 + ∂W + W∂ is a chain map f : C∗(X) → C∗(X) called the discrete flow

corresponding to W , and for each chain there is some i such that f ◦i : C∗(X) →

C∗(X) stabilizes, so there is a well-defined chain map f∞

2. The complexes (C∗(X), ∂) and (M∗(X), π∂f∞) have isomorphic homology groups,

where Mi(X) is the free abelian group on critical i-cells, and π : Ci(X) → Mi(X) is

the projection

In [FS05], Farley and Sabalka defined a discrete gradient vector field (and associated

flow) V on Dn(Γ), the discretized model of Confn(Γ), and showed that when Γ is a tree T ,

Hi(Confn(T )) is free abelian with rank equal to the number of critical i-cells with respect

to the flow. We use the finite cover Dn(Γ) → Dn(Γ) to lift this field to a discrete gradient

vector field on Confn(Γ). We could not find the following result in the standard literature,

so we prove it for ourselves.
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Proposition 2.2.3. If X is a finite cubical complex, with finite covering map π : X̃ → X,

and V is a discrete gradient vector field on X, then there exists a discrete gradient vector

field Ṽ on X̃ which is the lift of V .

Proof. Let Ki be the set of open i-cells of X as before, and let Ãi be the subset of K̃i on

which Vi ◦ π is defined. Then for any α̃ ∈ Ãi, Vi ◦ π(α̃) is an open cell β of which α is a

regular face. Since the closed (i + 1)-ball is simply connected, there is a unique lift of the

attaching map of β such that α̃ is in its image. Then we define Ṽi(α̃) to be the restriction of

this lifted map to the open (i+ 1)-ball, which is some β̃ ∈ K̃i+1.

Then Ṽ is a sequence of partial functions Ṽi. Each Ṽi must be injective, because if two

regular faces of a cell both map to that cell in the cover, this implies that they map to the

same cell in the base, so they must be the same face. Similarly, Ṽi(α̃) = β̃ implies α̃ is a

regular face of β̃, and im(Ṽi) ∩ dom(Ṽi+1) = ∅. Therefore Ṽ is the discrete gradient vector

field on X̃ which is the lift of V .

The discrete gradient vector field V from [FS05] and [Far06a] is defined in the

following manner: choose a maximal tree T in Γ. Embed this tree in R2, and pick a vertex

? of valence 1 in T to be the root. Starting at ?, walk along the tree, following the leftmost

branch at any intersection, and consecutively number the vertices in the order in which

they are first encountered. Turn around when you reach a vertex of valence 1 and continue

numbering from the next leftmost branch. Let i(e) and t(e) denote the endpoints of the

edge e, where i(e) ≥ t(e) in the ordering on vertices. For a vertex v 6= ?, let e(v) denote the

unique edge of T incident with v and closest to ?.

Let τ = {τ1, . . . , τn−1, v} be a cell in Dn(Γ), which we can think of as a set of edges

and vertices because the configuration space is unordered. If e(v)∩τi = ∅ for i = 1, . . . , n−1,

then define the cell {τ1, . . . , τn−1, e(v)} to be the elementary reduction of τ from v, and

we say that v is unblocked in τ . Otherwise, there is some τi with e(v) ∩ τi 6= ∅, and we say
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v is blocked in τ by τi. If v is the smallest unblocked vertex of τ in the order on vertices,

then the reduction from v is principal.

We define V on Dn(Γ) inductively: if τ is a 0-cell, let V0(τ) be the principal reduction

of τ if it exists. For i > 0, let Wi(τ) be its principal reduction if it exists and τ 6∈ imWi−1.

An edge e ∈ τ is called order-respecting in τ if e ∈ T and e(v) ∩ e = t(e) implies

v > i(e) for every vertex v ∈ τ . An order-respecting edge in τ is minimal if i(e) is minimal

among the initial vertices of order-respecting edges in τ .

Theorem 2.2.4 (Thm 3.6 of [FS05]). – A cell is critical if and only if it contains no

order-respecting edges and all of its vertices are blocked

– A cell is redundant if and only if it

∗ it contains no order-respecting edges and at least one of its vertices is unblocked

OR

∗ it contains an order-respecting edge and there is some unblocked vertex v such

that v < i(e)

– A cell is collapsible if and only if it contains an order-respecting edge and, for any

v < i(e), v is blocked

We then have a classification of cells in Dn(Γ) with respect to Ṽ , where τ̃ is critical,

redundant, or collapsible if and only if τ is. For the embedded tree T with ordered vertices

in Figure 3, examples of a critical, redundant, and collapsible cell with respect to Ṽ are

shown in Figures 4-6.

For the remainder of the section, we assume that n = 2 and Γ is a tree T .

Proposition 2.2.5. Let Mi(Conf2(T )) be the critical i-cells of Dn(Γ) with respect to Ṽ ,

Mi(Conf2(T )) the critical i-cells of Dn(Γ) with respect to V . Then they are both trivial for

i ≥ 2.
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FIGURE 3 A tree T , embedded in R2 with ordered vertices

FIGURE 4 The critical cell (v4, [v3, v13]). The edge [v3, v13] is not order-respecting in this
cell, and the vertex v4 is blocked.

18



FIGURE 5 The redundant cell (v5, [v3, v13]). The edge [v3, v13] is not order-respecting in this
cell, but the vertex v5 is unblocked.

FIGURE 6 The collapsible cell (v16, [v3, v13]). The edge [v3, v13] is order-respecting in this
cell, and v16 > i([v3, v13]).
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Proof. There are no critical cells of dimension > 2, because there are no cells of degree > 2.

All the cells of degree 2 are collapsible, because there are no vertices in the cell, so all edges

are automatically order-respecting.

Proposition 2.2.6. M0(Conf2(T )) ∼= Z[(v?, v1)]⊕Z[(v1, v?)] and M0(Conf2(T )) ∼= Z[{v?, v1}]

Proof. There are only two critical 0-cells in the ordered case, because there are only two

ways for the vertices to be blocked in a cell with no edges; one of the points must be at the

root and the other must be at the first vertex after the root. In the unordered case there is

a single such configuration.

Proposition 2.2.7. M1(Conf2(T )) ∼= Zk where k =
∑

v s.t.
µ(v)≥3

(µ(v) − 1)(µ(v) − 2) and

M1(Conf2(T )) ∼= Zk′ where k′ = k
2

Proof. To construct a critical 1-cell, we need an essential vertex v′, an edge e which

terminates at that vertex, and another vertex v which we can place so that e is not order-

respecting and v is also blocked in the cell. If the essential vertex has valence µ, then there

are (µ − 1)(µ − 2) critical cells resulting from arrangements around that vertex: there are

µ − 1 edges which terminate at v′, and one of these is necessarily order-respecting because

it is the first edge to the left from v′. Therefore we must pick from the remaining µ − 2

edges to make a critical cell. If we pick the second edge from the left, there is one place

to put v so that the second edge is not order-respecting and v is also blocked, which is

at the initial vertex of the first edge. If we pick the third edge, there are now two places

to put v so that the cell is critical, and so forth. These are triangular numbers, and the

number of choices for e and v is the (µ − 2)th triangular number, which is
(µ− 2)(µ− 1)

2
.

There are two critical cells for each choice of e and v in the ordered case, so there are∑
v s.t.
µ(v)≥3

(µ(v)− 1)(µ(v)− 2) critical 1-cells in Dn(Γ) and half as many in Dn(Γ).
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Theorem 2.2.8. When n = 2 and the graph is a tree T , there is exactly one non-trivial

differential in the resulting Morse chain complex M∗, d1 : M1 →M0, and so

H1(Conf2(T )) ' H1(Conf2(T )) ' Zk

where k = −1 +
∑
v s.t.
µ(v)≥3

(µ(v)− 1) (µ(v)− 2)

H1(Conf2(T )) ' H1(Conf2(T )) ' Zk′

where k′ =
1

2

∑
v s.t.
µ(v)≥3

(µ(v)− 1) (µ(v)− 2)

µ(v) is the valence of the vertex v, and all other (co)homology groups are trivial.

Proof. The result for unordered configurations follows directly from the fact that every

critical 1-cell must be in the kernel of d1, and the universal coefficient theorem. For ordered

configurations, M1 and M0 are free abelian groups, and the image of d1 is Z[(v?, v1) −

(v1, v?)], so the kernel of d1 must have rank one lower than M1, which implies the theorem

above.

Though this is a new approach to the above result, it is not the first. The theorem

follows from the conclusions of [BF09], and agrees with the results of [Far06a] and

[CD14].The paper [MS16] also uses the decomposition of a tree graph into star subgraphs

to obtain a closed-form formula for the ranks of Hi(Confn(T )).
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CHAPTER III

TOPOLOGY OF CONFIGURATIONS OF TWO OR THREE POINTS

For the bulk of this chapter, we will focus on trees with a single central vertex and

three or four branches, which we call Y and X or the tree with two essential vertices,

each of valence 3, which we call H. We call any of these trees T nonspecifically, and we

consider configurations of two or three points on these graphs, with a more general result

for configurations of two points on any tree proven at the very end. For configurations of

two points, there are no (co)homology classes in degrees higher than 1 by Thm 2.2.8. The

branches of the trees Y , X, or H are labeled A through C, A through D, or A through E

respectively.

3.1. Homology Classes

There are three basic paths in the configuration space which represent homology

classes. In the ordered case, start with two points somewhere along the A branch, with

the first point further out than the second. Let VABC be the image of S1 ↪→ Conf2(T )

which shuffles the two points around the central vertex from the A branch to the B to the

C and back to the A, so that they switch their order, and then shuffling again from A to B

to C, so that they return to their starting configuration. This path is illustrated in Figure

7. Then γABC = [VABC ] ∈ H1(Conf2(T )). The unordered version of this class, denoted

γABC , is similar, except the points only need to be shuffled once around the central vertex

to return to where they started. Notice that γABC = γBCA = γCAB and γABC = −γACB, and

similar equalities hold for the ordered version. When we have at least four branches around

a central vertex, we can do the same shuffling around on four branches, and in the case

of ordered configurations we will only need to go around the central vertex once to return

22



FIGURE 7 A path in Conf2(T ) represeting the class γABC . The path starts in the upper left
corner and continues clockwise.

FIGURE 8 A path in Conf2(T ) represeting the class µABCD. The path starts in the upper
left corner and continues clockwise.

to the starting configuration. If we start from a configuration with both points on the A

branch and the first point farther from the center than the second, and shuffle them from A

onto B, C, D and return to A then this path represents the class µABCD ∈ H1(Conf2(T )),

illustrated in Figure 8. Notice that µABCD = γABC + γACD.

When there are at least two essential vertices with an edge between them, we can

shuffle the two points back and forth along this edge. Let TAB,ED be the image of S1 ↪→

Conf2(T ) which moves the first point from branch A to E, then the second point from B
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to D, then the first back to A, then the second back to B as in the sequence of pictures in

Figure 9. Then τAB,DE = [TAB,DE] ∈ H1(Conf2(T )). The unordered version of this class,

denoted τAB,ED is the same path where the labels of the points have been forgotten.

3.2. Cohomology Classes

Confn(T ) is not, in general, a manifold, but it is a polytope, and so it has a filtration

∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn = Confn(T ) by closed subspaces such that Xi\Xi−1 is a disjoint

union of i-dimensional manifolds. We call the closure of one of these manifolds a facet. We

say that two subspaces of a polytope are transversal if the sum of their tangent spaces at

every point in their intersection gives the tangent space of the facet containing that point.

We will represent a cohomology class with a union of codimension one co-oriented

submanifolds of facets that are transversal to the homology classes defined in the previous

section. Let W be a collection of codimensional one submanifolds (with boundary) of facets

such that for every submanifold V in the collection, and for every component of ∂V which

does not intersect the boundary of the polytope, then for every facet f which contains a

component and every facet F with f ∈ ∂F , there is a codimensional one submanifold V ′ of

F with ∂V ′ ∩ f = ∂V ∩ f . Then W is a closed, possibly singular subspace and we call it a

codimension one subvariety.

Proposition 3.2.1. A codimension one subvariety of a polytope X is a cocyle on the

subspace of chains transverse to each stratum of the polytope.

Proof. Let W be such a subvariety. It is enough to show that for every transverse σ : ∆2 →

X, σ−1(W ) is the disjoint union of piecewise smooth one-manifolds.

Any point x in Xn\Xn−1 has a neighborhood V such that W ∩ V is a codimension one

submanifold of V . Therefore by transversality σ−1(X ∩ V ) is a codimension one submanifold

24



F
IG

U
R

E
9

A
p
at

h
in

C
on

f 2
(T

)
re

p
re

se
ti

n
g

th
e

cl
as

s
τ A

B
,E
D

.
T

h
e

p
at

h
st

ar
ts

in
th

e
u
p
p

er
le

ft
co

rn
er

an
d

co
n
ti

n
u
es

cl
o
ck

w
is

e.

25



of ∆2. For a point in Xn−1 ∩ W , we will show that it abuts exactly two codimension one

submanifolds.

First note that σ−1(Xn−1 ∩ W ) is the intersection of σ−1(Xn−1) and σ−1(W ). By

transversality, σ−1(Xn−1\Xn−2) is a codimension one submanifold of ∆2. Its complement is

preimages of the codimension zero facets, and thus are codimension zero submanifold of ∆2.

At any point in σ−1(Xn−1), only two such manifolds can have that point in their closure.

Thus σ−1(Xn−1 ∩ W ) ⊂ σ−1(W ) is a collection of points, each of which is the boundary

of exactly two one-manifolds, the preimages of W intersected with the two abutting facets.

Together, this makes σ−1(W ) a piecewise smooth one-manifold.

Now we define a basic codimension one subvariety of Confn(T ), which we call a

detector:

Let ei and ej be edges in T which share a common endpoint. Let Weiej be the

subspace of Conf2(T ) such that the first point is on the edge ei, the second point is

on the edge ej, and they are both equidistant from the common endpoint. This is a

codimension one subvariety, and so with a co-orientation it represents a cohomology class.

The normal bundle to Weiej inside Conf2(T ) is oriented by assigning a positive orientation

to configurations where the first point is moving closer to the center vertex faster than the

second point, or where the second point is moving further from the center vertex faster

than the first, and the negative orientation to the opposite scenarios. Then let ηeiej ∈

H1(Conf2(T )) be the resulting cohomology class represented by Weiej with this orientation.

The unordered version is denoted ηeiej . By convention ηeiej = −ηejei , as both classes refer

to the subspace with a point on ei and a point on ej but with opposite orientations on the

normal bundle, while ηeiej and ηejei refer to different underlying subspaces.
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3.3. Presentations for Unordered Configurations

These are new results for the homology of unordered configuration spaces of the graph

H. Presentations for the cohomology ring H∗(Confn(T )) in terms of ‘cloud pictures’ were

given in [Far06b], but they are in terms of a different basis, and we don’t yet understand

how the two are related. By calculating the oriented intersection of homology and

cohomology classes, we can demonstrate pairings which give a lower bound for the ranks

of these groups. We obtain an upper bound from Theorem 2.2.8. In this section, the given

group presentations realize this upper bound unless otherwise noted.

Conf2(Y ) is homotopy equivalent to S1, and going around this circle is equivalent to

our three-branch-shuffling [Ghr01], so H1(Conf2(Y )) ∼= Z is generated by γABC and by

choosing the appropriate orientation we have the pairing

〈ηAB, γABC〉 = 1

The four inclusions Y ↪→ X induce homology maps whose images span all of

H1(Conf2(X)), with the relation

γABC + γACD = γABD + γBCD

There are six cohomology classes, whose pairings with the given homology classes are given

in Table 1. Each of these pairings is straightforward to verify by considering the oriented

intersection of the submanifolds representing γ and η. In particular, 〈ηAC , γABC〉 = −1

because the point on the branch C is approaching the central vertex of X while the point

on A is moving away when they are both equidistant from the central vertex. Relations
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TABLE 1 Evaluation Pairings for Conf2(X)

γABC γABD γACD γBCD
ηAB 1 1 0 0
ηAC -1 0 1 0
ηAD 0 -1 -1 0
ηBC 1 0 0 1
ηBD 0 1 0 -1
ηCD 0 0 1 1

between the cohomology classes are as follows:

ηAB + ηAC + ηAD = 0

ηBA + ηBC + ηBD = 0

ηCA + ηCB + ηCD = 0

ηDA + ηDB + ηDC = 0

The fourth equation is linearly dependent on the first three, so this is a presentation for

H1(Conf2(X)) ∼= Z3 and the pairings realize this rank. Paths in the configuration space

which represent non-trivial homology classes are made up of sequences of branch-switching

moves, such as when one point is stationary on the A branch, and the other point starts

on the B branch and moves off, either onto the C or D branch, and these relations arise

precisely from such moves.

The two inclusions Y ↪→ H induce homology maps whose images span all of

H1(Conf2(H)), with the relation

γABC − γCDE = τAB,ED
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TABLE 2 Evaluation Pairings for Conf2(H)

γABC γCDE τAB,ED

ηAB 1 0 1
ηAC -1 0 -1
ηBC 1 0 1
ηCD 0 1 -1
ηCE 0 -1 1
ηDE 0 1 -1

There are six cohomology classes, whose pairings with the given homology classes are given

by Table 2. Relations for cohomology classes are as follows:

ηAB = ηBC = −ηAC

ηCD = ηDE = −ηCE

so these cohomology classes are span H1(Conf2(H) ∼= Z2 and the pairings realize this rank.

We define maps Conf2(T ) → Conf3(T ) by adding a new point to a configuration

at one of the extremal vertices of the graph, after first ‘pushing in’ any points from the

configuration on that edge. In the case of Conf3(Y ), the three places to add in a new point

induce three maps on homology, and the three images of γABC , which look like γABC with

an extra point ’parked’ near the end of one of the three branches, span H1(Conf3(Y ))

linearly independently. We will denote these classes γA,ABC γB,ABC and γC,ABC for the

edge at which the extra point is parked. Let UA,AB be the codimension one subvariety of

Conf3(Y ) such that two of the points are equidistant from the central vertex along the A

and B branches, and the last point is somewhere further out along the A branch. Orient the

normal bundle by assigning a positive orientation to configurations where, of the two nearly

equidistant points, the one on the A branch is moving closer to the center vertex faster than

the point on the B branch, or where the point on B is moving further from the center vertex
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faster than the (nearly equidistant) point on A, and the negative orientation to the opposite

scenarios. Denote by ηA,AB ∈ H1(Conf3(Y ) the cohomology class represented by UA,AB with

this orientation. Similarly, we define ηB,AB ηB,BC ηC,BC etc. We have the pairings as given

in Table 3. Relations for cohomology classes are as follows:

TABLE 3 Evaluation Pairings for Conf3(Y )

γA,ABC γB,ABC γC,ABC
ηA,AB 1 0 0
ηB,AB 0 1 0
ηA,AC -1 0 0
ηC,AC 0 0 -1
ηB,BC 0 -1 0
ηC,BC 0 0 1

ηA,AB + ηA,AC = ηB.AB + ηB,BC = ηC,AC + ηC,BC = 0

so these classes span H1(Conf3(Y )) ' Z3 and their pairings with homology realize this rank.

The four extremal points which we can add to configurations in X induce four maps

on homology H1(Conf2(X)) → H1(Conf3(X)) which span H1(Conf3(X)), and the image

of the relation in H1(Conf2(X)) is also a relation in H1(Conf3(X)), so there are at most

12 linearly independent homology classes. Notice that this is the same image as the maps

induced by graph inclusion H1(Conf3(Y ))→ H1(Conf3(X)). In addition, we have

γA,ABC −γA,ABD +γA,ACD−γB,BCD +γB,BCA−γB,BDA +γC,CDA−γC,CDB +γC,CBA− . . . = 0

which spans H1(Conf3(X)) ' Z11. Let R∗,AB be the codimension one subvariety of

Conf3(X) such that two of the points are equidistant from the central vertex along the A

and B branches, respectively, and the third point is somewhere along the C or D branches
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or at the central vertex or along the A or B branches closer to the central vertex than

the equidistant points. Orient the normal bundle by assigning a positive orientation to

configurations where, of two nearly equidistant points along the A and B branches, the one

on the A branch is moving closer to the center vertex faster than the point on the B branch,

or where the point on B is moving further from the center vertex faster than the (nearly

equidistant) point on A, and the negative orientation to the opposite scenarios. Denote by

η∗,AB ∈ H1(Conf3(X)) the cohomology class represented by R∗,AB with this orientation.

We similarly define the classes η∗,AC η∗,BC etc as well as the classes of the form ηA,AB as

described previously. We have the relations

ηA,AB + ηA,AC + ηA,AD = 0

ηB,AB + ηB,BC + ηB,BD = 0

ηC,AC + ηC,BC + ηC,CD = 0

ηD,AD + ηD,BD + ηD,CD = 0

as well as

η∗,AB + η∗,AC + η∗,AD + ηB,AB + ηC,AC + ηD,AD = 0

and its three permutations by switching the branch labels, though the last is linearly

dependent on the other relations. Then 18 detector classes minus 7 relations gives a

subgroup of rank at most 11. The classes pair as given in Table 4, and so the cohomology

classes span H1(Conf3(X)) ' Z11 and we have presentations for the homology and

cohomology groups which realize this rank.
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3.4. Presentations for Ordered Configurations

These are new results for (co)homology of ordered configuration spaces of the graphs

Y , X, and H. As in the previous section, we can demonstrate pairings which give a lower

bound for the ranks of these groups, with an upper bound for configurations of two points

from Theorem 2.2.8. The group presentations in this section realize this upper bound unless

otherwise noted.

Conf2(Y ) is homotopy equivalent to S1, and going around the circle is equivalent to

our ordered three-branch shuffling, so H1(Conf2(Y ) is generated by γABC and we have the

pairing

〈ηAB, γABC〉 = 1

The four inclusions Y ↪→ X induce homology maps, but their images do not span all

of H1(Conf2(X)). Instead, the classes µABCD, µACBD, µACDB, µBCDA, µCBDA, µCDBA span

with the relations

µABCD − µACBD + µACDB = µBCDA − µCBDA + µCDBA

µABCD − µACBD − µCDBA = γABC

µABCD + µCBDA − µCDBA = γABD

µABCD + µACDB + µCBDA = γACD

µBCDA − µCBDA + µCDBA = γBCD

γABC + γACD = γABD + γBCD
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where the last relation is a linear combination of the first five, so we have a subgroup

of rank at most 5. The 12 η cohomology classes with all their permutations span

H1(Conf2(X)) ' Z5 and pair with the homology classes as in Table 5. We have the

relations

ηAB + ηAC + ηAD = 0

and its seven permutations by switching branch labeling and point order. The eighth

relation is linearly dependent on the first seven, so likewise these cohomology classes

spanH1(Conf2(X)) ∼= Z5.

The two inclusions (up to automorphism) of Y ↪→ H induce homology maps, but their

images do not span all of H1(Conf2(H)). Instead, the classes τAB,DE, τAB,ED, τBA,DE, and

τBA,ED along with γABC and γCDE span with the relations

γABC = τAB,ED + τBA,ED

γABC = τAB,DE + τBA,DE

γCDE = τBA,ED − τBA,DE

γCDE = τAB,DE − τAB,ED

The last relation is linearly dependent on the first three, so these form a subgroup of rank

at most 3. The 12 η cohomology classes span H1(Conf2(H)) and pair with homology as in

Table 6.

We have the relations

ηAB + ηAC = 0
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and its eleven permutations by switching branch labeling and point order. The last nine

are dependent on the first three, so these classes span H1(Conf2(H)) ∼= Z3 and the

(co)homology classes with relations realize the correct rank.

Adding a new labeled point at an extremal vertex to a configuration in Y gives us

nine maps H1(Conf2(Y )) → H1(Conf3(Y )) for each of the three branches of the graph and

each of the three ways to give the new point a number. These are analogous to the stability

maps for configurations in an open manifold, where new points are ‘pushed in’ from infinity.

The images of γABC , which we will denote γ1A,ABC , γ1B,ABC , etc and refer to collectively as

the image of stability maps, do not span H1(Conf3(Y )).

The motivation for a different map H1(Conf2(Y )) → H1(Conf3(Y )) comes from the

little-1-disks operad: given a configuration of two points in Y , take a neighborhood around

one of the points, remove it and glue in a configuration of two points in (0, 1). If we are

careful when a point is at the central vertex to pick a neighborhood that coincides with

the movement of the point through the central vertex, then we will get a path in Conf3(Y )

which comes from the path in Conf2(Y ), where now one of the points is shuffling around the

central vertex with a pair of points that move as a unit, always keeping some fixed distance

between them.

Remark 3.4.1. The space of framed embeddings of tn[0, 1] into Γ is homotopy equivalent to

Confn(Γ).

Specifically, let S1,23ABC be a path in Conf3(Y ) which starts with all three points on

the A branch, with 3 the closest to the central vertex, then 2, then 1, and shuffles 1 with 2

and 3 as a unit, maintaining the distance between them, as in the path representing γABC .

Then γ1,23ABC = [S1,23ABC ] ∈ H1(Conf3(Y )). We can think of this class as γABC except

with two points ‘inserted’ in the place of the old second point. By convention, γ1,23BCA is

represented by a path which starts with all three points on the B branch, and then shuffles
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1 with 2 and 3 as a unit, so unlike in previous cases there is no reason a priori to believe

that γ1,23ABC and γ1,23BCA are the same class. There are 18 of these classes, which we refer

to collectively as insertion classes, and together the parking and insertion classes span

H1(Conf3(Y )). We have the relations

γ1,23ABC + γ1A,ABC + γ3B,ABC + γ2A,ABC + γ3C,ABC = γ2,13ABC

and its five permutations,

γ1,23ABC + γ1A,ABC + γ1.32ABC = γ1,23BCA + γ1B,BCA + γ1,32BCA = γ1,23CAB + γ1C,CAB + γ1,32CAB

and its two permutations,

γ2,13ABC + γ1,32CAB = γ2,13BCA

and its five permutations. The last four are linearly dependent on previous relations, so 27

classes with 6 + 6 + 6 − 4 = 14 relations give a subgroup of rank at most 13. There are 36

cohomology detector classes, as there are six in H1(Conf3(Y )) and six ways to assign labels

to each one. The intersection matrix is too large to show in full, so we show a block of the

matrix in Table 7 that determines the rest of the matrix via permutation of the labels on

the points and automorphisms of the graph Y .

We have the relations

η1A,AB + η1A,AC = 0

η1A,BA + η1A,CA = 0

and their 16 permutations by switching branch labeling and point order, and

η1A,AB+η1A,BA+η2A,AB+η2A,BA = η1B,AB+η1B,BA+η2B,AB+η2B,BA = η1C,AC+η1C,CA+η2C,AC+η2C,CA
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and its two permutations by switching point order. Only five of these relations are linearly

independent, so H1(Conf3(Y )) ' Z13 is spanned by the cohomology detector classes, as

H1(Conf3(Y )) is spanned by the image of the stability and insertion maps, with the given

relations realizing the correct rank.

The four directions to push in a new point from the boundary of X induce 12 maps on

homology H1(Conf2(X)) → H1(Conf3(X)) and the images of the relations in H1(Conf2(X))

are relations in H1(Conf3(X)), so we have at most 12 × 5 = 60 linearly independent classes

from the image of the stability maps. Even with the addition of ‘insertion’ classes, these do

not span H1(Conf3(X)). The code in A.2 calculates the rank of H1(Conf3(X)) to be 61, and

we were able to extract homology classes that are not in the span of the images of stability

or insertion maps (according to Sage’s linear algebra package). These new homology classes

look like elements of the graph braid group on 3 strands: the path starts with the three

points on different edges of X, and then moves one point at a time onto the unoccupied

edge in cyclic order until the configuration comes around to the starting position again.

We have the relations

µ1A,ABCD + µ2C,CDAB = µ1,23ABCD

and its permutations which tells us all the ‘insertion’ classes are sums of the ‘parking’

classes. There are 108 cohomology detector classes, as there are 18 in H1(Conf3(X)), but

with relations

η1A,AB + η1A,AC + η1A,AD = 0

η1A,BA + η1A,CA + η1A,DA = 0
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and all their permutations we have at most 84 linearly independent cohomology classes.

η∗,AB + η∗,AC + η∗,AD + η1B,AB + η1C,AC + η1D,AD = 0

and its 23 permutations, though only 18 of these are linearly independent, so the η classes

sit inside H1(Conf3(X)) as a group of at most 84−18 = 66 linearly independent cohomology

classes. We have a block of the intersection matrix as in Table 8 and similar intersection

data for all permutations of the labels on the points and automorphisms of the graph X.

These form a block of rank at most 60 inside of the intersection matrix.

3.5. Forgetful and Transfer Maps

A first application of explicit representations for homology and cohomology classes

are chain and cochain level calculations. By ‘forgetful’, we mean f : Confn(T ) →

Confn(T ) which forgets the labels on a configuration of points. By ‘transfer’, we mean

t∗ : H1(Confn(T )) → H1(Confn(T )) which sums at the chain level over all possible labels

of a configuration.

Since f∗(γABC) = 2 · γABC , we see that f∗ : H1(Conf2(Y )) ' Z→ H1(Conf2(Y )) ' Z is

multiplication by 2.

Since f ∗(ηAB)(γABC) = 2, f ∗ : H1(Conf2(Y )) → H1(Conf2(Y )) must also be the times

2 map.

Since f∗(µABCD) = γABC + γACD (and similarly for the other µ and µ′ classes), we

see that the image of f∗ : H1(Conf2(X)) → H1(Conf2(X)) is generated by γABC + γACD,

γACB + γABD, and γACD + γADB. Notice that this is not surjective, but it is a full-rank

embedding with cokernel Z2.
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Since

f ∗(ηAB)(µABCD) = f ∗(ηAB)(µ′ACDB) = 1

while

f ∗(ηAB)(µACDB) = f ∗(ηAB)(µ′ABCD) = −1

and otherwise evaluates to zero, we see that f ∗ : H1(Conf2(X)) → H1(Conf2(X)) maps ηAB

to ηAB + ηBA, and similarly for other η classes. Then the image of f ∗ is generated by these

sums of η classes.

Obviously f∗(γA,ABC) = 2 · γA,ABC (and similarly for the other permutations), while

f∗(γ1,23ABC) = 2 · γA,ABC + γB,ABC + γC,ABC

f∗(γ1,23BCA) = γA,BCA + 2 · γB,BCA + γC,BCA = γA,ABC + 2 · γB,ABC + γC,ABC

f∗(γ1,23CAB) = γA,CAB + γB,CAB + 2 · γC,CAB = γA,ABC + γB,ABC + 2 · γC,ABC

Therefore the image of f∗ : H1(Conf3(Y )) → H1(Conf3(Y )) is not surjective, but is

generated by γA,ABC + γB,ABC , γB,ABC + γC,ABC , γA,ABC + γC,ABC , 2 · γA,ABC , 2 · γB,ABC , and

2 · γC,ABC .

Since f ∗(ηA,AB) = η1A,AB + η1A,BA + η2A,AB + η2A,BA + η3A,AB + η3A,BA, and similarly

for its permutations, the image of f ∗ : H1(Conf3(Y )) → H1(Conf3(Y )) is generated by such

sums.

Since f∗(µ1A,ABCD) = f∗(µ
′
1A,ABCD) = γA,ABC + γA,ACD and similarly for the other

permutations, we have that the image of the parking classes under f∗ : H1(Conf3(X)) →

H1(Conf3(X)) is generated by γA,ABC + γA,ACD, γA,ACD − γA,ABD, −γA,ABC + γA,ABD, and

their permutations by switching branch labeling.
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Since f ∗(η∗,AB) = η1∗,AB + η1∗,BA + η2∗,AB + η2∗,BA + η3∗,AB + η3∗,BA, and similarly for

its other permutations, the image of f ∗ : H1(Conf3(X)) → H1(Conf3(X)) is generated by

expressions of this form as well as η1A,AB + η1A,BA + η2A,AB + η2A,BA + η3A,AB + η3A,BA and

its permutations.

Since t∗(γABC) = γABC , we see that t∗ : H1(Conf2(Y )) ' Z → H1(Conf2(Y )) '

Z is an isomorphism, which means that f∗ ◦ t∗ is the times two map, which corresponds

to the double covering of unordered two-point configuration space by ordered two-point

configuration space.

Since t∗(ηAB)(γABC) = 1, t∗(ηAB) = ηAB and t∗ : H1(Conf2(Y )) ' Z →

H1(Conf2(Y )) ' Z is an isomorphism.

Since t∗(γABC) = γABC = µABCD +µACBD −µ′ACDB, and similarly for its permutations,

with a bit of manipulation we have that the image of t∗ : H1(Conf2(X)) → H1(Conf2(X)) is

generated by µABCD + µ′ABCD, and its permutations.

Since t∗(ηAB)(γABC) = 1 and otherwise zero, and similarly for its permutations, we

have that t∗(ηAB) = ηAB and t∗ : H1(Conf2(X))→ H1(Conf2(X)) is surjective.

Since t∗(γA,ABC) = γ1A,ABC + γ2A,ABC + γ3A,ABC , and similarly for its permutations,

we have that the image of t∗ : H1(Conf3(Y )) → H1(Conf3(Y )) is generated by such sums.

Then f∗ ◦ t∗ is the times three map, which corresponds to the triple covering of unordered

three-point configuration space by ordered three-point configuration space.

We have that t∗(η1A,AB) = t∗(η2A,AB) = t∗(η3A,AB) = ηA,AB and similarly for its

permutations, so t∗ : H1(Conf3(Y ))→ H1(Conf3(Y )) is surjective.

Since

t∗(γA,ABC) = γ1A,ABC + γ2A,ABC + γ3A,ABC = µ1A,ABCD + µ1A,ACBD − µ′ACDB + . . .
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and similarly for its permutations, with a bit of manipulation we have that the image of

t∗ : H1(Conf3(X))→ H1(Conf3(X)) is generated by sums of the form

µ1A,ABCD + µ′1A,ABCD + µ2A,ABCD + µ′2A,ABCD + µ3A,ABCD + µ′3A,ABCD

Since t∗(η1A,AB) = ηA,AB and t∗(η1∗,AB) = η∗,AB and similarly for their permutations,

we have that t∗ : H1(Conf3(X))→ H1(Conf3(X)) is surjective.

3.6. Generators for the Topology of Configurations of Two Points

In this section, let n = 2 and Γ be any tree T . Embeddings of the graphs Y , X, and

H into T induce inclusions of homology classes.

Theorem 3.6.1. H1(Conf2(T )) is generated by the homology classes induced by all possible

embeddings of Y ↪→ T and H1(Conf2(T )) by all detectors ηeiej for branches ei, ej ∈ T which

share a common endpoint.

Proof. Since there is no torsion, the universal coefficient theorem gives us H1(Conf2(T )) ∼=

H1(Conf2(T )). We must show that such induced homology classes pair with detectors to

give subgroups of full rank. We proceed by induction on the number of essential vertices.

If T has a single essential vertex v, then H1(Conf2(T )) ∼= Z
1
2

(µ(v)−1)(µ(v)−2) by Theorem

2.2.8. T must be planar, so we embed T in R2, start on an edge of T with endpoint v and

label the edges attached to v in clockwise order e1, . . . , eµ(v). The cases where µ(v) ≤ 4 are

covered in the calculations above. Otherwise, consider the set of homology classes {γe1eiej}.

There are 1
2
(µ(v)−1)(µ(v)−2) classes in this set, as there are (µ(v)−1)(µ(v)−2) to pick the

ei, ej, but γe1eiej = γe1ejei . Therefore we may write this set as {γe1eiej |i < j} and this pairs

with the set of {ηeiej |i < j and i, j 6= 1} so that the intersection matrix contains the block
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shown in Table 9. Then we have constructed a diagonal block of rank 1
2
(µ(v)− 1)(µ(v)− 2),

which is the full rank, by Thm 2.2.8.

Therefore H1(Conf2(T )) is generated by all the embeddings Y ↪→ T and H1(Conf2(T ))

by all detectors ηeiej .

Now we assume that this is true for all trees with fewer than m essential vertices. For

any tree T with m essential vertices, we can write it as the union of two trees T1 ∪ T2, each

with strictly fewer than m essential vertices, such that T1 ∩ T2 is an open edge of T . Then

from the Mayer-Vietoris sequence, we get that the rank of H1(Conf2(T )) is exactly the rank

of H1(Conf2(T1)) ⊕ H1(Conf2(T2)), which is the rank we expect. Therefore the homology

classes from T1 and T2 along with the detectors generate subgroups of H1(Conf2(T )) and

H1(Conf2(T )) of full rank.

The results of [MS16] imply the first half of Theorem 3.6.1, that the first homology

group of unordered configurations is generated by switching around the essential vertices of

a tree.

Theorem 3.6.2. H1(Conf2(T )) is generated by the homology classes induced by all possible

embeddings of Y,X,H ↪→ T and H1(Conf2(T )) by all detectors ηeiej for branches ei, ej ∈ T

which share a common endpoint.

Proof. Since there is no torsion, the universal coefficient theorem gives us H1(Conf2(T )) ∼=

H1(Conf2(T )). We must show that such induced homology classes pair with detectors to

give subgroups of full rank. We proceed by induction on the number of essential vertices in

T .

If T has a single essential vertex v, then H1(Conf2(T )) ∼= Z(µ(v)−1)(µ(v)−2)−1 by

Theorem 2.2.8. T must be planar, so we embed T in R2, start on an edge of T with

endpoint v and label the edges attached to v in clockwise order e1, . . . , eµ(v). If µ(v) ≤
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4 then the result follows from the calculations above. Otherwise, consider the set of

cohomology classes {ηeiej |i, j 6= 1 and if i = 2 then j 6= µ(v)} = E. There are

(µ(v) − 1)(µ(v) − 2) − 1 classes in this set, and the Table 10 demonstrates a block of the

intersection matrix (we write eµ instead of eµ(v) for simplicity). Then we have constructed

an upper-triangular block of rank (µ(v) − 1)(µ(v) − 2) − 1, which is the full rank by Thm

2.2.8. Now we assume that this is true for all trees with fewer than m essential vertices. For

any tree T with m essential vertices, we can write it as the union of two trees T1 ∪ T2, each

with strictly fewer than m essential vertices, such that T1 ∩ T2 is an open edge of T . Then

from the Mayer-Vietoris sequence, we get that the rank of H1(Conf2(T )) is one more than

the rank of H1(Conf2(T1)) ⊕ H1(Conf2(T2)), which is exactly the rank we expect. Since T1

and T2 share a single edge, there is some embedding H ↪→ T that sends one of the essential

vertices of H to an essential vertex of T1 and the other to an essential vertex of T2. Label

the images of the branches of H in T A through E according to their preimages. Then we

have the pairings given by the τAB,DE column of Table 6. Therefore τAB,DE along with the

homology classes from T1 and T2 generate a subgroup of H1(Conf2(T )) of full rank, and

similarly with the cohomology classes.

Corollary 3.6.3 (Detection Theorem). H∗(PB2(T ))
⊕res
↪→ H∗(PB2(Y )) ⊕ H∗(PB2(X)) ⊕

H∗(PB2(H)) and H∗(B2(T ))
⊕res
↪→ H∗(B2(Y ))

The second statement is a detection theorem for right-angled Artin groups, as it was

shown in [FS05] that B2(T ) is a RAAG for any T . However, it is still an open question

whether the same is true for pure braid groups.
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TABLE 5 Evaluation Pairings for Conf2(X)

µABCD µACBD µACDB µBCDA µCBDA µCDBA γABC γABD γACD γBCD

ηAB 1 0 -1 0 0 0 1 1 0 0
ηBA 0 0 0 1 0 -1 1 1 0 0
ηAC 0 1 1 0 0 0 -1 0 1 0
ηCA 0 0 0 0 1 1 -1 0 1 0
ηAD -1 -1 0 0 0 0 0 -1 -1 0
ηDA 0 0 0 -1 -1 0 0 -1 -1 0
ηBC 0 -1 0 1 0 0 1 0 0 1
ηCB 1 0 0 0 -1 0 1 0 0 1
ηBD 0 1 0 0 0 -1 0 1 0 -1
ηDB 0 0 -1 0 1 0 0 1 0 -1
ηCD 1 0 0 0 0 1 0 0 1 1
ηDC 0 0 1 1 0 0 0 0 1 1

TABLE 6 Evaluation Pairings for Conf2(H)

γABC γCDE τAB,ED τAB,DE τBA,ED τBA,DE

ηAB 1 0 1 1 0 0
ηBA 1 0 0 0 1 1
ηAC -1 0 -1 -1 0 0
ηCA -1 0 0 0 -1 -1
ηBC 1 0 0 0 1 1
ηCB 1 0 1 1 0 0
ηCD 0 1 -1 0 1 0
ηDC 0 1 0 1 0 1
ηCE 0 -1 0 -1 0 -1
ηEC 0 -1 1 0 -1 0
ηDE 0 1 0 1 0 1
ηED 0 1 -1 0 1 0
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TABLE 7 Block of Evaluation Pairings for Conf3(Y )

γ1A,ABC γ1,23ABC

η1A,AB 1 1
η1A,BA 1 0
η1A,AC -1 -1
η1A,CA -1 0
η2A,BA 0 1
η2A,CA 0 -1
η3C,AC 0 1
η3B,BC 0 -1
η3B,CB 0 1
η3C,BC 0 -1

TABLE 8 Block of Evaluation Pairings for Conf3(X)

µ1A,ABCD µ2A,ABCD µ3A,ABCD

η1A,AB 1 0 0
η1A,AD -1 0 0
η2A,AB 0 1 0
η2A,AD 0 -1 0
η3A,AB 0 0 1
η3A,AD 0 0 -1
η1∗,CB -1 0 0
η1∗,CD 1 0 0
η2∗,CB 0 -1 0
η2∗,CD 0 1 0
η3∗,CB 0 0 -1
η3∗,CD 0 0 1

TABLE 9 Block of Evaluation Pairings for Conf2(T )

γe1e2e3 γe1e2e4 γe1e2e5 · · · γe1e3e4 .....

ηe2e3 1 0 0 · · · 0 · · ·
ηe2e4 0 1 0 · · · 0 · · ·

...
... 0

. . . 0 · · ·
ηe3e4 0

... 0 1
... 0 0

... 0
. . .
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CHAPTER IV

NON-K-EQUAL CONFIGURATION SPACES OF GRAPHS

We begin by defining an open cover of the non-k-equal configuration space of n points

on a graph. As before, we may reduce to the case of a connected graph Γ with no loops and

at least one vertex of valence ≥ 2. Let V = {Vj} be the cover of Γ by open stars as defined

in Section 2.1.

Let σ be a choice of open star for each of the n configuration points. A configuration

conforms to this choice if points which are assigned to Vj by σ are in Vj and are strictly

closer to the central vertex of Vj than any point assigned to some other star, along an edge

in which they are both located. If there is at least one point assigned to Vj, then we say

that Vj is occupied. Notice that not all Vj must be occupied. Furthermore, if Vj ∩ Vk 6= ∅,

then points assigned to Vj may move onto edges of Vk (but not the central vertex) and vice

versa. Let ω be a partial order on the points of the configuration, so that it is a total order

on the points assigned to each Vj by σ. When referring to points assigned to a specific Vj,

we simply refer to their order as ω, so dω(i) is the distance of the ith point in the order from

the central vertex of Vj. We call λ a condition if it is a choice of σ and a compatible ω.

Then Wλ is the family of configurations conforming to σ such that for each Vj and for each

point of order i ≥ k assigned to Vj, dω(i) > dω(i′) for any point of order i′ ≤ i − (k − 1) on

the same edge. In particular, no point of order i ≥ k may be located at the central vertex,

which we consider as part of every edge of the star.

Proposition 4.0.4. W is an open, finite cover of Confn,k(Γ)

Proof. Given a configuration c ∈ WΛ, let ε1 be the minimum distance between any

two non-equal points in the configuration, and let ε2 be the minimum distance from

any point of order k or greater to any central vertex. Then the family of configurations
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{
c′
∣∣∣∣d(c′, c) <

min(ε1, ε2)

3

}
is also in Wλ, so Wλ is open. There are finitely many ways to

assign n points to open stars in Γ, and for each assignment there are finitely many ways

to order the points in each Vj, so W is finite. Given a configuration in Confn,k(Γ), count

outward from each vertex in CΓ, so that the closest point is ‘first’ in that open star, and

so forth. If two or more points are equidistant from a central vertex, we may put them in

any order. If a point could be counted in more than one open star, we may assign it to

either one, but any points in the same spot must be assigned to the same star. When all

the points in an open star have been ordered (including possibly as part of the ordering of

a different open star), we may stop counting from that central vertex. This process gives

a partial order ω and therefore a condition λ which the configuration satisfies, and so the

configuration is contained in Wλ. Therefore, W is a cover of Confn,k(Γ).

If Λ is a set of conditions, then WΛ = ∩λ∈ΛWλ. If |Λ| ≥ 1, we define a new binary

relation ≺ on the n points in a configuration. For all partial orders ω of the conditions in Λ

and all j indexing the open stars Vj, then xωj(t) ≺ xωj(s) when s− t ≥ k − 1. Note that ≺ is

not transitive nor total. If xj ≺ xi, we say that xj precedes xi

Then by definition WΛ is the family of configurations conforming to all σ of the

conditions of Λ such that di > dj for any point xi along the same edge as a point xj which

precedes it. Note that if both xi ≺ xj and xj ≺ xi, then xi and xj must be on different

edges of an open star with neither point allowed to occupy the central vertex. If there are

no xi such that xi ≺ xj, then we say that xj has no precedent.

Proposition 4.0.5. Let e be an edge of Γ and A be a connected component of WΛ. We

define πe : A → Confm,k(0, 1) as the map which first forgets the points of a configuration

which have no precedent and then projects a configuration on the graph onto a configuration

on the edge e. Then πe(A) is contractible for all edges of Γ and components of WΛ.
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Proof. The number of points which have at least one precedent (so they cannot move off

the edge they are on) and are constrained to move on the edge e is consistent across A,

and this is exactly m. An edge is covered by at most two open stars, so any points in e

have either been assigned to Vj by all σ, or V`, or sometimes Vj and sometimes V`. In order

for two points xi and xι to collide in WΛ (and by extension, πe(A)), it must be true that

σ(xi) = σ(xι) for all σ of the conditions in Λ.

First we assume that all points in a configuration in πe(A) are assigned to the same

star by every σ, though which star that is may change. A configuration p ∈ πe(A) then

defines a homeomorphism fp : πe(A) → (0, 1)m where each factor is the distance of a

point along e or between it and some preceeding point: the edge e has an orientation and a

configuration on e then defines an order ς on the points, where the ‘first’ point is the point

closest to ∂0(e) and so forth, and if at least two points are equal in p then their order is

determined by the order of their labels in N. Then fp(c) on the first factor is the distance

between ∂0(e) and xς(1); on the ith factor, we find the largest j such that xς(j) ≺ xς(i)

(if such a j does not exist we use ∂0(e) in place of xς(j)). Then fp(c) on the ith factor is

the distance between xς(j) and xς(i) as a proportion of the distance from xς(j) to ∂1(e).

This function is continuous and bijective with a continuous inverse, so πe(A) in this case

is contractible.

Now if not all the assignments are the same, we can partition the points into maximal

subsets where they are. Points from different subsets cannot collide, because there is

at least one condition which assigns them to different open stars. Therefore πe(A) is

homeomorphic to a product of configurations of points in these maximal subsets, which

reduces to a product of contractible spaces by the previous paragraph.

Theorem 4.0.6. Each WΛ is the disjoint union of contractible sets
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Proof. First we assume that the set of the first k − 1 points in each Vj is the same (though

they can be in any order) for all λ ∈ Λ. Given any λ ∈ Λ, there is a map Hλ : WΛ × [0, 1]→

WΛ which pulls the first k − 1 points of each open star onto their associated central vertex,

one at a time: let $ be the partial order of λ, so that x$j(i) is the ith point of $ in Vj.

Then when 0 ≤ t ≤ 1
k−1

, Hλ(c, t) moves each x$j(1) a distance of (k − 1)
(

1
k−1
− t
)
d$j(i)

from the central vertex of each occupied Vj, exactly as the function G from Theorem 2.1.2

moved the designated points. In the non-k-equal case, even though x$j(1) may not be the

‘first’ point in Vj for all conditions, there are strictly fewer than k points between it and

the central vertex by definition, and it has no precedents because its order must be strictly

less than k for each condition in Λ. Then when 1
k−1

≤ t ≤ 2
k−1

, Hλ(c, t) moves each

x$j(2) a distance of (k − 1)
(

2
k−1
− t
)
d$j(2) from the central vertex of Vj, and so forth for

each x$j(i). Therefore Hλ is a continuous function and the concatenation of straight-line

homotopies in WΛ, so Hλ itself is a homotopy. Hλ(WΛ, 1) is a family of configurations in

WΛ with some points fixed at central vertices and the rest constrained to move along some

edge. Therefore a connected component A of Hλ(WΛ, 1) is homeomorphic to a product

over the occupied edges of πe(A), which are all contractible by 4.0.5. Therefore WΛ is the

disjoint union of contractible sets. In particular, if there are two different conditions λ

and λ′ such that Wλ = Wλ′ , then the set of the first k − 1 points must be the same, so

Hλ(Wλ, 1) = Hλ′(Wλ′ , 1) and the homotopy type of intersections of sets in W does not

depend on which condition we choose to define the same underlying set.

Now we consider the case where the set of the first k − 1 points in each Vj may be

different for different conditions. In this case, let κ be the set of points which have no

precedent. We know that there are no more than k − 1 of these points assigned to any

open star, because there are at most k − 1 points in any Vj which do not have xωj(1)

as a precedent for any ω, and by adding conditions we can only increase the number of
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precedents. There is a map H ′λ : WΛ × [0, 1] → WΛ which pulls the points in κ onto their

associated central vertex, one by one, defined analogously to Hλ: on

[
i− 1

k − 1
,

i

k − 1

]
for

1 ≤ i ≤ k−1, each x$j(i) which has no precedents moves a distance of (k−1)
(

i
k−1
− t
)
d$j(i)

from the central vertex of Vj and H ′λ is the identity on the x$j(i) not in κ as well as the

other points. There are always strictly fewer than k points between any x$j(i) in κ and the

central vertex by definition, and any point which is allowed to occupy a central vertex is

moved onto it by this map. Then H ′λ is also a concatenation of straight-line homotopies,

and a connected component of H ′λ(WΛ, 1) is again homeomorphic to a product over the

occupied edges of πe(A), so WΛ is the disjoint union of contractible spaces.

Now we subdivide Γ so that there are at least n segments between any two central

vertices in Γ and at least n segments between any central vertex and any root vertex. An

edge still refers to an edge e ∈ Γ from before this subdivision, between two central vertices

or between a central and a root vertex. The subdivision means that each edge will have

vertices at distance of multiples of 1/n from central vertices. Then Γn has the structure of a

cubical complex, with cells τ = (τ1, . . . , τn) such that τi ∈ V (Γ) or E(Γ). We define

Dn,k(Γ) = {τ ∈ Γn|τ i1 ∩ . . . ∩ τ ik = ∅ for any k-set of indices 1 ≤ i1 < . . . < ik ≤ n}

Then Dn,k(Γ) is a subcomplex of Γn. We define Dλ = Dn,k(Γ) ∩Wλ and DΛ = ∩λ∈ΛDλ.

Proposition 4.0.7. Let M be some subset of the points x1, . . . , xn and |M | = m. Let Λ

be a set of conditions, and ≺ be the resultant binary relation on x1, . . . , xn. Let (0, 1) be

subdivided into n equal segments, and let Dm,k (0,1)
n

be the space of 1
n

-discrete non-k-equal

configurations of m points in (0, 1). Let ∆m
Λ be the subset of Dm,k (0,1)

n
where if xi ≺ xj for

xi, xj ∈M , then di < dj along (0, 1). Then if ∆m
Λ is nonempty, it is contractible.
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Proof. There is a map H ′ : ∆m
Λ × [0, 1] → ∆m

Λ which pulls every configuration of the points

in M onto a ‘lowest weight’ configuration: for 0 ≤ t ≤ 1
m−1

, H ′(c, t) moves the point xi

closest to 0 onto the vertex at 1/n (if there is more than one closest point, their order is

determined by the order of their labels in N). For 1
m−1
≤ t ≤ 2

m−1
, it moves the next closest

point xj to 1/n unless xi ≺ xj, in which case it moves xj to 2/n. For i−1
m−1

≤ t ≤ i
m−1

, it

moves the ith point to i/n. H ′(c, t) stays inside ∆m
Λ and H is a concatenation of straight-

line homotopies. Therefore ∆m
Λ is contractible.

Theorem 4.0.8. Each DΛ is likewise the disjoint union of contractible sets.

Proof. First we assume that the set of the first k − 1 points in each Vj is the same (though

they can be in any order) for all λ ∈ Λ. Given any λ ∈ Λ, there is a map Jλ : DΛ × [0, 1] →

DΛ which first moves any points of order k or above at least 1/n from each central vertex,

and then pulls the first k − 1 points of each open star onto their associated central vertex,

one at a time: if there is some point xi ∈ c which is not one of the first k − 1 points in an

open star Vj and its distance di from the central vertex of Vj is less than 1/n, then when

0 ≤ t ≤ 1/k, Jλ(c, t) moves xi a distance of k(1 − t)di + kt
n

away from the central vertex,

exactly as the function F from Theorem 2.1.6 moves the non-designated points. The xi are

able to move in this fashion, because if a point is on the interior of a segment in a discrete

configuration, then the configuration where the point has moved to one of the endpoints of

that segment must also be a discrete configuration by definition.

Let $ be the partial order of λ. Then when 1/k ≤ t ≤ 2/k, Jλ(c, t) moves each x$j(1)

a distance of k
(

2
k
− t
)
d$j(1) from the central vertex of Vj. Even though x$j(1) may not be

the ‘first’ point in Vj for all conditions, there are strictly fewer than k points between it and

the central vertex by definition, and it has no precedents because its order must be strictly

less than k for each condition in Λ. Therefore the function remains in DΛ. Similarly, on[
i
k
, i+1
k

]
for 2 ≤ i ≤ k − 1, Jλ moves x$j(i) a distance of k

(
i+1
k
− t
)
d$j(i) from the central
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vertex of Vj. Therefore Jλ is a continuous function and the concatenation of straight-line

homotopies in DΛ, so Jλ itself is a homotopy. Jλ(DΛ, 1) is a family of configurations in DΛ

with some points fixed at central vertices and the rest constrained to move along some edge.

Therefore a connected component A of Jλ(DΛ, 1) is homeomorphic to a product over the

occupied edges of ∆m
Λ , which are all contractible by 4.0.7. Therefore DΛ is the disjoint union

of contractible sets. In particular, if there are two different conditions λ and λ′ such that

Dλ = Dλ′ , then the set of the first k − 1 points must be the same, so Jλ(Dλ, 1) = Jλ′(Dλ′ , 1)

and the homotopy type of intersections of sets in Dn(Γ) does not depend on which condition

we choose to define the same underlying set.

Now we consider the case where the set of the first k − 1 points in each Vj may be

different for different conditions. In this case, let κ be the set of points which have no

precedent. We know that there are no more than k − 1 of these points assigned to any

open star, because there are at most k − 1 points in any Vj which do not have xωj(1)

as a precedent for any ω, and by adding conditions we can only increase the number of

precedents. There is a map J ′λ : DΛ × [0, 1] → DΛ which pulls the points in κ onto their

associated central vertex, one by one, defined analogously to Jλ: on 0 ≤ t ≤ 1/k, if xi

is a point not in κ at a distance of less than 1/n from a central vertex, J ′λ(c, t) moves xi a

distance of k(1 − t)di + kt
n

away from the central vertex, as Jλ did for all points of order

k or greater. Then on

[
i

k
,
i+ 1

k

]
for 1 ≤ i ≤ k − 1, J ′λ moves each x$j(i) in κ a distance

of k
(
i+1
k
− t
)
d$j(i) from the central vertex of Vj, just as Jλ moved the points of order

k − 1 or less. J ′λ is does not move any points not in κ when t ∈
[

1

k
, 1

]
. There are always

strictly fewer than k points between any x$j(i) in κ and the central vertex by definition,

and any point which is allowed to occupy a central vertex is moved onto it by this map. So

J ′λ is similarly a concatenation of straight-line homotopies, and a connected component of

J ′λ(DΛ, 1) is again homeomorphic to a product over the occupied edges of ∆m1
Λ ×∆m2

Λ × . . .,
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one factor for each maximal set of points constrained to an edge that are always assigned

to the same open star (points which are assigned to different stars by at least one condition

cannot collide). Therefore DΛ is the disjoint union of contractible spaces.

Theorem 4.0.9. The inclusion i : DΛ ↪→ WΛ induces a homology equivalence for all Λ.

Proof. Each component of DΛ includes into exactly one component of UΛ by definition.

Given a configuration of points on an edge e, there is a homeomorphism of e that fixes

its endpoints and sends the configuration to a discrete configuration: send the point (or

points, if they coincide) in the interior of e closest to ∂0(e) a distance of 1/n from ∂0(e), the

second-closest point(s) a distance of 2/n, etc. Then given a configuration in UΛ, there is a

homeomorphism of the graph which sends it to a configuration in DΛ (though this choice of

homeomorphism is obviously not unique or continuous). The space of homeomorphisms of

an edge is contractible, so there is a path in UΛ between the configurations, and the discrete

configuration is in the same component of UΛ as the starting configuration. Therefore there

is at least one component of DΛ in each component of UΛ. Finally, there are exactly as

many components of DΛ as there are of UΛ, because a component is determined by the

binary relation ≺ and the assignment of points with at least one precedent to some edge of

the graph. Therefore the inclusion induces a bijection of components, and as all components

are contractible, this is a homology equivalence for all choices of Λ.

Proposition 4.0.10. H∗(Confn,k(Γ)) ∼= H∗(Dn,k(Γ))

Proof. The Mayer-Vietoris decompositions of Confn(Γ) by U and Dn(Γ) by D give two

spectral sequences as described in Prop 2.1.9. The inclusions of Prop 2.1.7 induce an

equivalence of the spectral sequences, as the E1 pages are isomorphic in each entry and

the differentials are given by inclusions. Therefore both spectral sequences must converge to

the same thing, with i∗ giving the equivalence.
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CHAPTER V

NON-3-EQUAL CONFIGURATION SPACES ON TREES

In this section we focus on non-3-equal configurations of three points on the graphs

[0, 1] = I, Y and X. The branches of Y are labeled A through C, and the branches of X are

labeled A through D.

5.1. Conf3,3(I)

The ranks of the homology groups of Conf3,3(I) ∼= I3\{(x, x, x)} ' S1 are computed

in [BW95] and replicated by executing the code in A.3 of the Appendix: H1(Conf3,3(I)) ∼= Z

and Hi(Conf3,3(I)) ∼= 0 for i > 1. Let B be a path in Conf3,3(I) which starts with the first

point at 0 and the second and third points at 1, sends the second point to 0, the first point

to 1, the third point to 0, the second point to 1, the first point to 0, and the third point to

1. This path is highlighted in Figure 10. We can think of this path as the collapse onto I of

the braid on three colored strands given by alternating half-twists (of which there must be 6

in all to return to the starting point). Then β = [B] ∈ H1(Conf3,3(I)).

Consider the hyperplane x2 = x1
2

+ x3
2
∈ I3. Let E3>1 be the subspace of Conf3,3(I)

given by the intersection of this hyperplane with {x3 > x1}. There is a detector class η3>1 ∈

H1(Conf3,3(I)) represented by intersection with E3>1 where the normal bundle to E3>1 in

Conf3,3(I) is oriented so that configurations where x2 is approaching x1
2

+ x3
2

from above

or where x1
2

+ x3
2

is approaching x2 from below are positive and the opposite scenarios are

negative. We have the pairing

〈η3>1, β〉 = 1

so this gives a presentation for H1(Conf3,3(I)) and H1(Conf3,3(I)).
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FIGURE 10 A path in Conf3,3(I) representing the class β.

5.2. Conf3,3(Y )

Hi(Conf3,3(Y )) ∼= 0 for i > 1 and H1(Conf3,3(Y )) ∼= Z13 are given by executing the

code in A.4 of the Appendix. We demonstrate a subgroup of (co)homology classes along

with pairings for H1(Conf3,3(Y )), building off the bases demonstrated for H1(Conf2(Y )) in

Section 3.4.

Adding a new labeled point to a configuration so that it doubles a point already in

the configuration gives us three maps H1(Conf2(Y )) → H1(Conf3,3(Y )) for the three ways

to give the new point a label. There are three images of γABC ∈ H1(Conf3,3(Y )), which

we denote γ1,23ABC , etc and refer to collectively as insertion classes. Adding a new labeled

point to the central vertex of Y gives us three maps H1(Conf2(Y )) → H1(Conf3,3(Y ))

for the three ways to give the new point a label, and we call the images γ1∗,23ABC , etc.

Embedding I ↪→ Y induces a map H1(Conf3,3(I)) → H1(Conf3,3(Y )), and by abuse of

notation we also call this image β.
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Let WABB be the subspace of Conf3,3(Y ) such that the first point is on the A branch,

the second and third points are on the B branch, and d1 = d2/2 + d3/2. The normal bundle

to WABB inside Conf3,3(Y ) is oriented by assigning a positive orientation to configurations

where the first point is approaching the average of x2 and x3 from above or the average is

approaching x1 from below and the negative orientation to the opposite scenarios. Then let

ωABB = [WABB] ∈ H1(Conf2(T )) be the resulting cohomology class represented by WABB

with this orientation. We have the pairings

〈ωABB, γ1,23ABC〉 = 1 〈ωBAA, γ1,23ABC〉 = 1

〈ωABA, γ2,13ABC〉 = 1 〈ωBAB, γ2,13ABC〉 = 1

〈ωAAB, γ3,12ABC〉 = 1 〈ωBBA, γ3,12ABC〉 = 1

〈ωBAB, γ1∗,23ABC〉 = 1 〈ωAAB, γ1∗,23ABC〉 = 1 〈ωBBA, γ1∗,23ABC〉 = 1 〈ωABA, γ1∗,23ABC〉 = 1

〈ωABB, γ2∗,13ABC〉 = 1 〈ωAAB, γ2∗,13ABC〉 = 1 〈ωBBA, γ2∗,13ABC〉 = 1 〈ωBAA, γ2∗,13ABC〉 = 1

〈ωABA, γ3∗,12ABC〉 = 1 〈ωABB, γ3∗,12ABC〉 = 1 〈ωBAA, γ3∗,12ABC〉 = 1 〈ωBAB, γ3∗,12ABC〉 = 1

with other pairings within the subgroup zero.

5.3. Conf3,3(X)

Hi(Conf3,3(X)) ∼= 0 for i > 1 and H1(Conf3,3(X)) ∼= Z49 are given by executing the

code in A.5 of the Appendix. We demonstrate a subgroup of (co)homology classes along

with pairings for H1(Conf3,3(X)), building off the bases demonstrated for H1(Conf2(X)) in

Section 3.4.
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Adding a new labeled point to a configuration so that it doubles a point already in

the configuration gives us three maps H1(Conf2(X)) → H1(Conf3,3(X)) for the three ways

to give the new point a label. There are three images of µABCD ∈ H1(Conf3,3(X)), which

we denote µ1,23ABCD, etc and refer to collectively as insertion classes. Adding a new labeled

point to the central vertex of X gives us three maps H1(Conf2(X)) → H1(Conf3,3(X))

for the three ways to give the new point a label, and we call the images of µ1∗,23ABCD, etc.

Embedding I ↪→ X induces a map H1(Conf3,3(I)) → H1(Conf3,3(X)), and by abuse of

notation we also call this image β.

We have the pairings

〈ωABB, µ1,23ABCD〉 = 1 〈ωBAB, µ2,13ABCD〉 = 1 〈ωBBA, µ3,12ABCD〉 = 1

〈ωBAA, µ1,23BCDA〉 = 1 〈ωABA, µ2,13BCDA〉 = 1 〈ωAAB, µ3,12BCDA〉 = 1

〈ωAAB, µ1∗,23ABCD〉 = 1 〈ωBAB, µ1∗,23ABCD〉 = 1

〈ωAAB, µ2∗,13ABCD〉 = 1 〈ωABB, µ2∗,13ABCD〉 = 1

〈ωABA, µ3∗,12ABCD〉 = 1 〈ωABB, µ3∗,12ABCD〉 = 1

〈ωABA, µ1∗,23BCDA〉 = 1 〈ωBBA, µ1∗,23BCDA〉 = 1

〈ωBAA, µ2∗,13BCDA〉 = 1 〈ωBBA, µ2∗,13BCDA〉 = 1

〈ωBAA, µ3∗,12BCDA〉 = 1 〈ωBAB, µ3∗,12BCDA〉 = 1

with other pairings within the subgroup zero.
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APPENDIX

SAGE CODE

To simplify calculations with the cubical complexes in this dissertation, we executed

the following code in SageMathCloud.

A.1. Confn(Y )

def g e n e r a t e t r e e (n ) :

lookup = [ ( 0 , n−t−1 ,0) for t in range (n−1)]

lookup . append ( ( 0 , 0 , 0 ) )

lookup . extend ( [ ( t , 0 , 0 ) for t in range (1 , n ) ] )

lookup . extend ( [ ( 0 , 0 , t ) for t in range (1 , n ) ] )

t r e e = [ ]

for point in range (n−1):

t r e e . append ( [ po int +1])

t r e e . append ( [ n , 2∗n−1])

for point in range (n , 2∗n−2):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

for point in range (2∗n−1, 3∗n−3):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

return ( lookup , tuple ( t r e e ) )

def i t e r a t e o v e r c o n f (T, n ) :
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i t e r a t o r l i s t = [ xrange ( len (T) ) ] ∗ n

for p o i n t c o n f i g in xmrange i te r ( i t e r a t o r l i s t ) :

i f len ( set ( p o i n t c o n f i g ) ) == n : # p o i n t s a l l d i s t i n c t

y i e l d p o i n t c o n f i g

def downstream moves ( p o i n t c o n f i g , T) :

output = [ ]

p o i n t c o n f i g s e t = set ( p o i n t c o n f i g )

for p in p o i n t c o n f i g :

downstream = [ u for u in T[ p ] i f u not in p o i n t c o n f i g s e t ]

i f downstream == [ ] :

output . append ( [ None ] )

else :

output . append ( downstream )

return output

def downstream cubes ( p o i n t c o n f i g , T, lookup ) :

cubes = [ ]

moves = downstream moves ( p o i n t c o n f i g , T)

for combination in xmrange i te r ( moves ) :

new cube = [ ]

for ( coord inate , po int ) in zip ( combination , p o i n t c o n f i g ) :

embedded coords = lookup [ po int ]

i f coo rd inate == None : # t h i s p o i n t doesn ’ t move in t h i s cube

i n t e r v a l s = [ [ u , u ] for u in embedded coords ]
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else :

downstream embedded = lookup [ coo rd ina te ]

i n t e r v a l s = [ sorted ( [ u , v ] ) for (u , v ) in zip ( embedded coords , downstream embedded ) ]

new cube . extend ( i n t e r v a l s )

cubes . append ( new cube )

return cubes

def the complex (n ) :

( lookup , T) = g e n e r a t e t r e e (n)

cubes = [ ]

for p o i n t c o n f i g in i t e r a t e o v e r c o n f (T, n ) :

cubes . extend ( downstream cubes ( p o i n t c o n f i g , T, lookup ) )

return CubicalComplex ( cubes )

Then for any number n,

the complex (n ) . homology ( )

returns a list of the ranks of the reduced homology groups of Confn(Y ).

A.2. Confn(X)

The only difference from the previous section is in the definition of

generate_tree(n):

def g e n e r a t e t r e e (n ) :

lookup = [ ( 0 , n−t−1 ,0 , 0) for t in range (n−1)]

lookup . append ( ( 0 , 0 , 0 , 0 ) )

lookup . extend ( [ ( t , 0 , 0 , 0) for t in range (1 , n ) ] )

lookup . extend ( [ ( 0 , 0 , t , 0) for t in range (1 , n ) ] )
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lookup . extend ( [ ( 0 , 0 , 0 , t ) for t in range (1 , n ) ] )

t r e e = [ ]

for point in range (n−1):

t r e e . append ( [ po int +1])

t r e e . append ( [ n , 2∗n−1, 3∗n−2])

for point in range (n , 2∗n−2):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

for point in range (2∗n−1, 3∗n−3):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

for point in range (3∗n−2, 4∗n−4):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

return ( lookup , tuple ( t r e e ) )

A.3. Confn,k(I)

def g e n e r a t e i n t e r v a l (n ) :

lookup = [ ( 0 , n−t +1 ,0) for t in range (n+1)]

lookup . append ( ( 0 , 0 , 0 ) )

i n t e r v a l = [ ]

for point in range (n+1):

i n t e r v a l . append ( [ po int +1])

i n t e r v a l . append ( [ ] )

return ( lookup , tuple ( i n t e r v a l ) )
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def no k equa l ( p o i n t c o n f i g , k ) :

c o u n t l i s t = [ p o i n t c o n f i g . count ( i )<k for i in p o i n t c o n f i g ]

return c o u n t l i s t . count ( Fa l se)==0

def i t e r a t e o v e r c o n f ( I , n , k ) :

i t e r a t o r l i s t = [ xrange ( len ( I ) ) ] ∗ n

for p o i n t c o n f i g in xmrange i te r ( i t e r a t o r l i s t ) :

i f no k equa l ( p o i n t c o n f i g , k ) : # no k p o i n t s are e q u a l

y i e l d p o i n t c o n f i g

def downstream moves ( p o i n t c o n f i g , I , k ) :

l o c a t i o n l i s t = c o n f i g t o l o c a t i o n l i s t ( p o i n t c o n f i g , I )

output = [ None ]∗ len ( l o c a t i o n l i s t )

m u l t i p l i c i t y = [ len (u) for u in l o c a t i o n l i s t ]

for p in set ( p o i n t c o n f i g ) :

a v a i l a b l e p o i n t s = m u l t i p l i c i t y [ p ]

downstream points = [ u for u in I [ p ] i f m u l t i p l i c i t y [ u ] < k−1]

downstream = [ ]

for point in downstream points :

vacant spot s = k − m u l t i p l i c i t y [ po int ] − 1

downstream . append ( (min( a v a i l a b l e p o i n t s , vacant spot s ) , po int ) )

i f downstream == [ ] :

pass

else :
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output [ p]=downstream

return output

def c o n f i g t o l o c a t i o n l i s t ( con f i g , I ) :

l o c a t i o n l i s t = [ ]

for ver tex in range ( len ( I ) ) :

l o c a t i o n l i s t . append ( [ ] )

for point , l o c a t i o n in enumerate ( c o n f i g ) :

l o c a t i o n l i s t [ l o c a t i o n ] . append ( po int )

return l o c a t i o n l i s t

def l o c a t i o n l i s t t o c o n f i g ( mult , I , n ) :

c o n f i g = [ None ] ∗ n

for l o ca t i on , p o i n t l i s t in enumerate ( mult ) :

for point in p o i n t l i s t :

c o n f i g [ po int ] = l o c a t i o n

return c o n f i g

def s imultaneous moves ( p o i n t c o n f i g , I , k ) :

down moves = downstream moves ( p o i n t c o n f i g , I , k )

l o c a t i o n l i s t = c o n f i g t o l o c a t i o n l i s t ( p o i n t c o n f i g , I )

moves = [ ]

for s t a r t in range ( len ( I ) ) :

pos s ib l e moves =[ ]
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i f down moves [ s t a r t ] == None :

pass

else :

for (number , p lace ) in down moves [ s t a r t ] :

for t in Combinations ( l o c a t i o n l i s t [ s t a r t ] , number ) . l i s t ( ) :

pos s ib l e moves . append ( [ t , p l ace ] )

moves . append ( pos s ib l e moves )

return [ i for i in xmrange i te r ( moves ) ]

def downstream cubes ( p o i n t c o n f i g , I , lookup , k ) :

cubes =[ ]

sim moves=simultaneous moves ( p o i n t c o n f i g , I , k )

for move in sim moves :

c o o r d l i s t =[None ]∗ len ( p o i n t c o n f i g )

for [ po ints , p l ace ] in move :

for point in po in t s :

c o o r d l i s t [ po int ]= p lace

new cube =[ ]

for ( coord inate , po int ) in zip ( c o o r d l i s t , p o i n t c o n f i g ) :

embedded coords = lookup [ po int ]

i f coo rd inate == None : # t h i s p o i n t doesn ’ t move in t h i s cube

i n t e r v a l s = [ [ u , u ] for u in embedded coords ]

else :

downstream embedded = lookup [ coo rd ina te ]

i n t e r v a l s = [ sorted ( [ u , v ] ) for (u , v ) in zip ( embedded coords , downstream embedded ) ]
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new cube . extend ( i n t e r v a l s )

cubes . append ( new cube )

return cubes

def the complex (n , k ) :

( lookup , I ) = g e n e r a t e i n t e r v a l (n)

cubes = [ ]

for p o i n t c o n f i g in i t e r a t e o v e r c o n f ( I , n , k ) :

cubes . extend ( downstream cubes ( p o i n t c o n f i g , I , lookup , k ) )

return CubicalComplex ( cubes )

A.4. Confn,k(Y )

The only difference from the previous section is in the definition of

generate_interval(n) and the_complex(n,k):

def g e n e r a t e t r e e (n ) :

lookup = [ ( 0 , n−t−1 ,0) for t in range (n−1)]

lookup . append ( ( 0 , 0 , 0 ) )

lookup . extend ( [ ( t , 0 , 0 ) for t in range (1 , n ) ] )

lookup . extend ( [ ( 0 , 0 , t ) for t in range (1 , n ) ] )

t r e e = [ ]

for point in range (n−1):

t r e e . append ( [ po int +1])

t r e e . append ( [ n , 2∗n−1])

for point in range (n , 2∗n−2):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )
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for point in range (2∗n−1, 3∗n−3):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

return ( lookup , tuple ( t r e e ) )

def the complex (n , k ) :

( lookup , T) = g e n e r a t e t r e e (n)

cubes = [ ]

for p o i n t c o n f i g in i t e r a t e o v e r c o n f (T, n , k ) :

cubes . extend ( downstream cubes ( p o i n t c o n f i g , T, lookup , k ) )

return CubicalComplex ( cubes )

A.5. Confn,k(X)

The only difference from the previous section is in the definition of

generate_interval(n):

def g e n e r a t e t r e e (n ) :

lookup = [ ( 0 , n−t−1 ,0 , 0) for t in range (n−1)]

lookup . append ( ( 0 , 0 , 0 , 0 ) )

lookup . extend ( [ ( t , 0 , 0 , 0) for t in range (1 , n ) ] )

lookup . extend ( [ ( 0 , 0 , t , 0) for t in range (1 , n ) ] )

lookup . extend ( [ ( 0 , 0 , 0 , t ) for t in range (1 , n ) ] )

t r e e = [ ]

for point in range (n−1):

t r e e . append ( [ po int +1])

t r e e . append ( [ n , 2∗n−1, 3∗n−2])
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for point in range (n , 2∗n−2):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

for point in range (2∗n−1, 3∗n−3):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

for point in range (3∗n−2, 4∗n−4):

t r e e . append ( [ po int +1])

t r e e . append ( [ ] )

return ( lookup , tuple ( t r e e ) )
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