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DISSERTATION ABSTRACT 
 
Sage R. Bauers 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
December 2016 
 
Title: Nanoarchitecture-Property Relationships in TiSe2 Based Nanolaminates 
for Development of Novel Design Strategies in Composite Thermoelectric 
Materials 
 
 

This dissertation is centered on investigation of metastable thermoelectric 

thin film materials and is split into 3 primary sections. Section 1 focuses on 

formation mechanisms of FeSbx compounds from layered precursors. It was 

found that a compositionally favorable and homogeneous nucleation environment 

allowed for the nucleation of a metastable phase, which surprisingly resembles 

the local coordination environment of the precursors, even in cases where they 

are compositionally unfavorable. Over the course of this work, the technique of 

normal-incidence thin film pair distribution function analysis is introduced, 

which allows for rapid acquisition and analysis of local structure data from intact 

thin films. 

Section 2 investigates changes in the stacking sequences of 

([PbSe]1+δ)m(TiSe2)n nanolaminate materials, which consist of interleaved layers of 

each compound in the chemical formula, and how these changes effect the 

thermoelectric power factor. Homologous series of systematically varying m and n 

values are investigated and measured properties are correlated back to the 

designed nanoarchitecture of the laminate materials. It is found that the 

compounds are stabilized by electron exchange between constituents at the 

interfaces, and that ‘doping’ of the laminate structure by changing the relative 
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amounts of each constituent is an effective means of optimizing their transport 

properties. It is also shown that interface density between constituents can be 

utilized to optimize performance. 

Section 3 moves from the case of PbSe layers, which maintain their 

structure, to SnSe layers that significantly distort as the layer size is changed. 

The distortions in SnSe are observed to occur from templating off TiSe2 layers. As 

the size of the SnSe layers increases, relatively fewer templated interfacial atoms 

exist and stabilization of interior atoms must also be considered. The coarse 

behaviors developed in ([PbSe]1+δ)m(TiSe2)n hold, but the structural distortions in 

SnSe likely change the band structure of this constituent and hence the 

composite material, complicating the analysis. In some cases, these changes 

allow for radically different behavior, best exemplified with high TiSe2 ratios in 

([SnSe]1+δ)1(TiSe2)n displaying significant enhancement of the Seebeck coefficient 

at cryogenic temperatures over the low-n and PbSe-containing analogues. 

This dissertation includes previously published and unpublished 

coauthored material. 
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CHAPTER I 
 

INTRODUCTION: DESIGNING THERMOELECTRIC MATERIALS USING 2D 
LAYERS 

 

 The work in this chapter was accepted on 2016-01-27 for publication as 

a chapter in Handbook of Solid-State Chemistry published by Wiley-VCH and is 

coauthored with my advisor and research group leader, David C. Johnson. I am 

the primary author. 

1.1. Introduction 

Thermoelectrics have long been a tantalizing class of devices – solid state 

junctions with no moving parts and the ability to reversibly convert between 

thermal and electric field gradients and only fundamentally limited by Carnot 

efficiency. Since almost all industrial processes produce waste heat, accounting 

for an estimated 20-50% of the initial energy input, capturing this heat as a 

usable form of energy could significantly reduce both cost of operation and 

offset the total environmental cost of said processes. This has never been a 

more important consideration than now. The 2015 revision of United Nations’ 

world population prospects announced the world population is expected to 

reach 8.5 billion by 2030 and over 11 billion by 2100. Climate change makes 

reducing carbon dioxide emissions critically important to maintain the livability 

of the planet, and producing additional power from waste heat obviously 

reduces the amount of fossil fuels that need to be consumed. To sustain our 

growing population, and indeed support the current numbers, every effort must 

be made to maximize our resources, and thermoelectric power generation may 

be one viable option. However, the discovery of materials with high enough 

thermoelectric performance to provide either power or cooling on a cost 

competitive basis has proved difficult except in niche applications. Even after 

several concentrated waves of concerted research efforts in the US and around 

the world, most current commercial devices still rely on decades-old material 

technologies. The crux of this problem lies in the difficulty of balancing the 

several interdependent and contradictory material properties. 
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This discussion is written for an audience familiar with the basic tenants 

of solid state physics and chemistry, but not necessarily with thermoelectric 

materials. Discussion is centered around optimization at the material level as 

opposed to modules. We begin with a colloquial discussion of how the basic 

transport physics that govern thermoelectric performance can be used to guide 

materials research. Also presented are the common strategies for finding high 

performance materials that have been traditionally used over the last two 

decades. The body of the work outlines the current and recent strategies both 

for finding new materials and for further optimizing the existing library of high 

performance materials. Throughout we include examples and discussions of 

some of the current ‘state of the art’ materials. We especially emphasize the role 

of low dimensional composite structures and give our perspective on future 

directions of research in this realm. 

 

1.2. Physical Picture 

Understanding the flow of charge and heat has been the focus of both 

fundamental and applied transport studies in solid state materials for decades. 

Nontrivial thermoelectric materials display an entanglement of the processes by 

which these flows proceed – an electronic or heat current may induce a current 

of the other property. This behavior is captured by the Seebeck coefficient – a 

spatially independent material property defined as the electric field generated 

by a thermal gradient across a material, which is obtained experimentally by 

measuring a voltage as a function of the magnitude of an applied temperature 

difference. 

Conceptually, the Seebeck coefficient is a reasonable material parameter 

to define when considering any solid material outside of thermal equilibrium. 

The larger thermal motion from carriers at the hot end of a material will cause 

diffusion of these carriers towards the cold side of the material. The open-circuit 

equilibrium between this diffusive separation and the restoring electric field 

defines the Seebeck coefficient of the material. When separately considering the 

flow of charge or heat in a particular material, we have a strong intuitive base 

we can draw upon to roughly determine the properties, but the same is not 
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immediately obvious for the Seebeck coefficient. However, an expression for the 

Seebeck coefficient may be derived from Boltzmann transport theory, which 

describes both heat and charge flow in most solids. The full integral expression 

reduces to a simple relationship in the degenerate carrier regime, which is a 

reasonable regime for functional thermoelectric materials. This relationship is 

called the Mott formula:1 

 

! = #$
3
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)

* ln - .
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where ! is the Seebeck coefficient, ' is Boltzmann’s constant, - is the electrical 

conductivity, ( is the absolute temperature, ) is the elementary charge, and .2 

is the Fermi energy. Over a small energy range it is reasonable to consider 

mobility,&3, to be energy independent and conductivity to be monotonic with the 

density of states (DOS). Thus a convenient metric to find materials with large 

Seebeck coefficients is to begin the search in materials with large energy 

derivatives in the density of states function, 4(.), near the chemical potential. 

However, functional implementation of thermoelectric materials depends 

on more than the Seebeck coefficient. In addition to the maximization of the 

Seebeck voltage, it is also important to consider materials such that energy may 

be effectively transferred to (from) a load (source) (high electronic conductivity) 

and that a temperature gradient may be maintained (low thermal conductivity). 

The combination of these parameters leads to a temperature-dependent 

dimensionless figure of merit defined for thermoelectric materials as: 

 

7( = !$-
8& ( 

 

Where 8 is the total thermal conductivity, which is the sum of contributions 

from both the lattice (89) and the charge carriers (8:). The co-dependence of the 

terms in the figure of merit makes finding materials with high zT values a 
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challenging task. The figure of merit for useful thermoelectric materials typically 

has a value of approximately 1. Given a promising starting material, there are 

two obvious routes for obtaining a higher zT values: maximizing the numerator, 

which contains the electronic contributions (called the power factor) while 

maintaining a low thermal conductivity, or minimizing the thermal conductivity 

without impacting the power factor. However, the interplay between the various 

parameters has shown either task to be far from trivial. First, let us look at the 

power factor. 

The higher dimensionality of the Seebeck coefficient in the figure of merit 

of thermoelectric materials has given an historic precedent to research focused 

on finding a high Seebeck coefficient. If one considers the approximations of a 

parabolic band and energy independent scattering, the Mott formula reduces to 

the Pisarenko relationship:2 

 

! = 8#$'$
3)ℎ$ =∗( #

3?

@
$& 

 

Where ℎ is Planck’s constant, =∗ is the carrier effective mass from the shape of 

4(.), and ? is the carrier density. We see that high Seebeck coefficients result 

from heavy bands with low carrier concentrations, similar to as expected from a 

chemical potential at the µ’ or µ’’ positions in the left pane of Figure 1.1. This is 

consistent with our previous metric of finding high Seebeck coefficients in 

regions with rapidly changing DOS, as flat bands (high =∗) will integrate to a 

high DOS over narrow ΔE, and the edge of these bands, where carrier density is 

lowest, will give the largest energy derivatives. However, recent works have 

discussed at length that many of the efforts to find high Seebeck coefficients 

have been stymied by these heavy bands, which negatively affect mobility, and 

thus the electrical conductivity.3,4 Instead, a balance of a high Seebeck 

coefficient and carrier mobility can be achieved in a material with several low-

mass pockets in the band structure, as shown in the center pane of Figure 1.1., 

which when integrated result in a high effective mass as perceived in the 

density of states.5 This case of several degenerate band extrema is most-likely to 
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occur in compounds with high symmetry, further guiding our search towards 

materials with these structures.6 

 

 

Figure 1.1. Speculative band structure from a compound with (left) a single 
heavy carrier pockets and a compound with (middle) several lighter carrier 
pockets. However, both compounds might integrate to similar profiles (right) in 
g(E) and have similar effective masses as perceived by the density of states. 
When doped n-doped (p-doped), the chemical potential in each moves toward µ’ 
(µ’’), populating the respective pockets with carriers. The light degenerate bands 
maintain their high mobility, despite the high perceived mass. 

 

A second approach is to focus on the denominator of zT, the thermal 

conductivity. The total thermal conductivity is the sum of heat moved by the 

lattice, or phonons, and heat flow associated with the flow of charge (8 = 89 +
8:). A coupling in the mechanisms by which heat and charge are moved 

through a material by the electronic component leads to compounds with a high 

electrical conductivity also having a high thermal conductivity. This is often 

estimated using the Wiedemann-Franz law, which states that at a certain 

temperature 8: is proportionally related to the electronic conductivity of the 

material by a constant called the Lorenz number, B (8: = B-(). Even when 

taking this coupling is taken into account, the maximization of the electronic 

conductivity is still always favorable to achieve a high value of zT due to the 

figure of merit’s functional form. Thus, the total thermal conductivity must be 

lowered by either minimizing the Lorenz number, B, or the lattice contribution 

to the thermal conductivity, 89. 
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While there is no explicit necessity for it to be so, there is often an 

observed coupling of high 89 in materials with high -. To be very general, 

crystalline materials might conduct both well, whereas glasses would not. Still, 

the general strategy of finding materials with structures conducive to inherently 

low thermal conductivities at the expense of the electronic component has been 

fruitful. For example, compounds with octahedrally coordinated metal centers, 

such as the various IV-VI metal dichalcogenides, generally have a large degree 

of phonon-phonon interactions and show much better thermoelectric 

performance than III-V compounds with higher mobilities.7 Outside of these few 

cases, materials with low thermal conductivities have historically been found by 

searching for complex inorganic structures, typically ternary or quaternary 

compounds with large and sometimes highly anisotropic unit cells. More 

recently, several other approaches and extensions to this strategy have been 

taken to decouple phonon and electronic transport in thermoelectric materials, 

which will be discussed later.  

Armed with the previous discussions, it is valuable to consider limits to a 

material's thermoelectric performance. Assuming a material that behaves 

according the Wiedemann-Franz law, has a zero thermal conductivity of the 

lattice, and a Lorenz number for a typical metal (2.45 x 10-8 V2 K-2), we can 

determine a minimum Seebeck coefficient that will define an upper limit to the 

figure of merit. The expression for the minimum Seebeck coefficient is simply 

SMin = (L x zTTarget)½. For example, if we want to target a value of zT of 1 in a 

particular compound, the absolute lowest value of Seebeck coefficient for the 

compound to hit the target is 157 µV K-1. Similarly, to obtain a zT value of 2, S 

must be 221 µV K-1 and for a value of 4 this becomes 313 µV K-1. This 

reinforces the earlier discussion about the importance of the magnitude of the 

Seebeck coefficient in determining zT. As a material’s carrier density decreases 

and carriers move away from the degenerate limit, L decreases and the SMin 

slightly decreases. This suggests that the Seebeck coefficient serves as a useful 

guide for evaluating a material’s prospects as a functional thermoelectric with a 

single measurement, provided a model exists that extrapolates Seebeck 

coefficients for different carrier concentrations and temperatures. It also 
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emphasizes the need to minimize lattice thermal conductivity, which will be 

discussed next. 

 

1.3. Optimizing thermoelectric materials: minimizing lattice conductivity 

1.3.1. The electron crystal phonon glass approach 

Since its introduction by Slack in the 1990s, much of the research in 

bulk thermoelectric materials have centered around the pursuit of his electron 

crystal/phonon glass (PGEC) concept.8 Two approaches to lowering thermal 

conductivity have dominated: the development of new bulk single phase 

structures, which typically have large and very complex unit cells, and the 

synthesis of nanocomposites, which consist of nanoscale inclusions within a 

bulk material, most often with both constituents having more conventional and 

simple structures. Both of these approaches were inspired in part by Slack’s 

framing of the challenge in finding an improved thermoelectric material. Slack 

argued that by finding structures with rigid covalent cages that incorporate 

loosely bound “rattling” atoms with large displacement parameters into the cage 

voids, one could create a material with a high figure of merit. He reasoned that 

electrical mobility would remain high by conduction via the cage behaving as an 

electron crystal, but the material would effectively scatter acoustic phonons via 

interactions with the “rattling” atom, lowering the phonon mean free path. The 

material would behave as a phonon glass due to the static and dynamic 

displacement of the "rattling" atom. In general, to maximize the effects from the 

structure, the host cage should be designed as a narrow band-gap 

semiconductor with small differences in electronegativity between atoms 

whereas the rattling ion should be a small but heavy atom to maximize the 

thermal displacement and disorder from the rattling. Several classes of 

materials fit Slack’s criteria, and a large body of work exists investigating the 

thermoelectric properties of clathrates9, zintl phases10, skutterudites11, and 

other structures. A few specific examples are briefly discussed below. 

Skutterudites are typically made up of MX6 metal-pnictide octahedra and 

have a cubic structure similar to the ReO3 motif but with the anions along four 

parallel edges of the unit cell displaced inward resulting in a structure 
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consisting of eight corner sharing MX6 octahedra per unit cell. This anion 

displacement creates a four-fold ring and an adjacent open cage, within which a 

rattling atom may be incorporated. The skutterudite structure is shown in 

Figure 1.2. For thermoelectric applications, antimonide skutterudites are of the 

most interest. The cation composition of the host skutterudite lattice and both 

the composition and fill ratio of ions incorporated into the cage are used to 

tailor and optimize the material’s physical properties. Researchers have also 

focused on tuning the temperature at which an optimal value for zT is achieved 

via chemical substitutions. To date the highest performing skutterudite, a 

CoSb3 host filled with Ba, La, and Yb making an n-type material, exhibits a zT 

value of 1.7 at 850 K.12 Skutterudites are among the highest performing 

materials optimized to date and have been prepared with similar properties by 

many research groups around the world. Consequently, considerable 

development has been done to incorporate them into both working modules and 

segmented couples. 

 

 

Figure 1.2. Polyhedral and ball-and-stick schematics of a filled skutterudite 
structure. The rattling atoms are typically low-valance heavy atoms to maximize 
their displacement parameters and thus their effectiveness at phonon-
scattering. The host lattice consists of metal centers octahedrally coordinated 
by a pnictide and should be highly covalent and conductive.  

 

Zn4Sb3 has also been the focus of considerable detective work as 

researchers focused on initial reports of unusual properties that were greatly 

dependent on composition and preparation conditions. It was discovered that 

interstitial Zn atoms in Zn4Sb3 greatly reduce the thermal conductivity relative 
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to the ZnSb compound, which has similar stoichiometry, structural features, 

and transport properties. Multiple interstitial sites in the Zn4Sb3 unit cell were 

shown to have large displacement parameters, which serve to lower the thermal 

conductivity below those of the best skutterudites, due to the greater degree of 

disorder available to the lattice.13 This results in a two- to three-fold increase in 

the figure of merit in between 200-400 °C, demonstrating the power of Slack’s 

original concept. 

 

1.3.2. Other methods to reduce thermal conductivity 

Other methods besides the PGEC concept have also been used to 

discover new materials with low thermal conductivities. Among these strategies 

are using engineered structures and interfaces to scatter phonons, which can 

include low dimensional materials, defect incorporation, or controlling 

crystalline grain size. Another approach altogether has been finding simple 

lattices with natural tendencies for phonon-phonon scattering interactions to 

occur. 

By introducing nanoscale precipitates with similar structures into the 

lattice of a host bulk material the thermal conductivity may be substantially 

lowered without severely impacting the power factor. For example, several 

enhancements to the zT value of PbTe have been seen in the LAST and SALT 

compounds, which incorporate of AgSbTe2 or NaSbTe2 clusters into the rock-

salt structure.14,15 These results have lead to further work on optimizing PbTe 

and the approach of using materials that have been designed with a patterned 

structure over many length scales to scatter phonons, which has provided us 

with some of the most promising thermoelectric materials to date. By 

strategically controlling and introducing point defects, nanoprecipitates, and 

grain boundary size, lead chalcogenide thermoelectric materials have been 

synthesized with lattice thermal conductivities at or near the amorphous 

limit.16–18 By carefully selecting synergistic band structures in the components 

of the composite material, favorable electrical transport properties between the 

host and guest compounds can be tailored, enhancing the power factor as 

well.19 This approach has resulted in bulk PbTe with embedded SrTe 
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nanoprecipitates and engineered grain boundaries having an exceptional 2.2 

value for zT. The Bi2Te3 family has also benefitted from the nanostructuring 

approach, resulting in BiSbTe alloys having an enhanced room-temperature zT 

value of 1.2 and a peak value of 1.4 at ca. 100 °C.20 These results are extremely 

promising, though questions about the long-term stability of nanostructured 

composites at elevated temperatures in large thermal gradients remain. 

Perhaps the most exciting recent development in thermoelectric materials 

has come from single-crystal SnSe, which doesn’t follow Slack’s guidelines. It 

was found that SnSe displays an exceptionally high (record) value of zT (2.6) 

along the b-axis at 923 K, due to favorable electronic transport (S2σ ~ 10 µW 

cm-1 K-2) and very low thermal conductivity (< 0.4 W m-1 K-1) in this direction.21 

SnSe takes on a distorted rock-salt structure, which forms layers along the a-

axis. One would expect this direction to exhibit both the lowest thermal and 

electrical conductivity and while this is true in SnSe, the increased thermal 

conductivity along the b- and c-lattice directions is negligible compared to the 

increased electrical conductivity, leading to the exceptional values of zT along 

these directions. Unlike typical metals and semiconductors, thermal 

conductivity in SnSe decreases with T in the range of 300-700 K. A thermal 

conductivity that is inversely related to temperature is indicative of a material 

with a high degree of Umklapp scattering. This behavior and the high value of 

zT in SnSe is highly surprising for both a simple structure and single crystal 

and highlights a different strategy – finding materials with a large inherent 

phonon anharmonicity – as an avenue for achieving a high figure of merit. 

Another particularly exciting avenue for bulk materials with low thermal 

conductivity and high values of zT is in materials which undergo structural 

instabilities such as Peierls distortions or charge density waves (CDW). CDWs 

are structural distortions arising from strong electron-phonon coupling and are 

found in layered materials whereby an in-plane pairing of atoms serves to 

stabilize the structure. This stabilization breaks the symmetry of the 2D ‘sheet’ 

as a modulation of atomic density along one direction in the in-plane structure 

is formed. This affects both electrical and thermal transport properties in the 

material. A CDW exists in the layered structure of In4Se3-δ and it was shown 

that the distortion lowers the in-plane thermal conductivity below that of the 
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stacking direction, which is quite surprising as the layers in the material are 

bonded by weaker van der Waals type forces.22 The lower thermal conductivity, 

as well as a more favorable power factor along the in-plane direction, lead to 

value of 1.48 for zT, which is ~300% higher than reported for the cross-plane 

value in the same material.22 

 

1.4. Thermoelectric materials: maximizing power factor 

Traditionally, maximizing the power factor in a thermoelectric material is 

done by doping the compound to control carrier concentration. In most cases, 

the Seebeck coefficient varies inversely with carrier density while the 

conductivity varies proportionally. Neglecting the thermal component, the ideal 

carrier density optimizes the power factor with respect to these behaviors. In 

essence, this puts the chemical potential at the ideal level for mixed 

electronic/thermoelectric transport for a given shape of g(E). Doping any 

material in this fashion will continue to be an important step in any future 

work, but several additional approaches have been either proposed or 

implemented in achieving power factors much greater than possible with carrier 

concentration optimization alone. 

Deliberate band engineering of bulk materials by the introduction of 

resonance states near the Fermi level has been a promising direction to 

increase the power factor.23 By carefully selecting a dopant level with states 

overlapping those of the host compound, electronic coupling between the host 

and dopant can introduce a resonance level in the density of states, which 

perturbs the electronic structure towards the ideal case of a delta function at 

the Fermi level, as argued by Mahan and Sofo and seen in Figure 1.3.24 

Resonant states in Tl doped PbTe considerably raise the Seebeck coefficient 

above the value expected by the Pisarenko relationship, resulting in an 

enhancement of zT at these carrier concentrations.25 This leads to a zT of about 

1.5 at 800K without nanostructuring the material. It should be noted that while 

the net gain in zT is appreciable, the introduction of the resonant states did 

come at the expense of mobility in the form of higher effective carrier mass. 

Other dopants, such as Na in PbTe, have been shown to enhance the zT value 
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nearly as much, but these results are attributed to moving the chemical 

potential to sharp regions within the PbTe DOS profile as opposed to the 

introduction of resonant states.26 The increase in Seebeck coefficient is less 

pronounced than the Tl doped compound, but a higher mobility results in 

similar overall performance.26 In each of these cases, the favorable electronic 

interaction between the host and added element (Tl or Na) may be optimized by 

controlling dopant densities. 

 

 

Figure 1.3. (left) Adapted from reference 25. Schematic g(E) for PbTe with and 
without resonant levels. (right) Adapted from reference 26. Sharp features in g(E) 
from resonant states created by Tl doping increase the Seebeck coefficient 
relative to PbTe that is Na-doped to a similar carrier concentration but without 
resonant coupling. However, recent density function theory (DFT) calculations 
of PbTe have predicted a values similar to PbTe:Tl without enhancement from 
band resonances.26,27 

 

Another approach to thermoelectric materials discovery based on on 

increasing the power factor is based on the ideas and theory of which were 

pioneered by Hicks and Dresselhaus in the early nineties. By incorporating 

promising materials into quantum well or quantum wire nanostructures, Hicks 

and Dresselhaus noted that an enhancement of zT could be achieved by the 

introduction of sharp features into the density of states and greatly enhancing 

the Seebeck coefficient.28,29 This is consistent with the theory developed by 

Mahan and Sofo, showing that the power factor is maximized when the density 

of states at the chemical potential takes the form of a Dirac delta function.24 
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The papers published by Hicks and Dresselhaus began a wave of research on 

low dimensional systems. Shortly after the initial predictions by Hicks and 

Dresselhaus, an enhancement of the Seebeck coefficient and in some cases zT 

was observed from low dimensional materials, in both quasi 1D and 2D 

confined structures of bismuth, antimony, or their chalcogenides.30–34 However, 

these results have not always been repeatable and increases in the value of zT 

were attributed to a decrease in the lattice conductivity as much as 

enhancement of the power factor.35–37 

High power factors have also been discovered in strongly correlated 

electron systems. In these materials, interactions between carriers become too 

strong to be neglected. This typically happens when electrons are localized to f- 

or d-orbitals and strong Coulombic and spin interactions lead to correlated 

behavior between carriers. This leads to the creation of hybridized heavy bands. 

The existence of the heavy correlated bands can amplify the thermopower 

significantly over an uncorrelated material. Depending on filling in these heavy 

fermion systems, both correlated metals and correlated semiconductors may be 

formed. The highest energy derivative in 4(.) is expected to occur in rare-earth 

compounds with mixed valence f-level electrons, implying metals containing 

these electrons near the chemical potential should be promising grounds for 

finding anomalously high Seebeck coefficients for their carrier densities.38,39 

YbAl3 is an example of such a material, possessing an exceptionally high room-

temperature power factor of 180 µW K-2cm-1 at 300 K.40 The large peaks in 4(.) 
of YbAl3 near the Fermi energy, shown in Figure 1.4., come from the  4f-levels in 

Yb41 and without the background states come very close to approximating the 

δ-function like profile. Enhancement of the Seebeck coefficient in correlated 

semiconductors is especially highlighted by FeSb2, which has a colossal 

Seebeck coefficient of 45,000 µV K-1 and an unparalleled power factor of over 

103 µW K-2cm-1 at low temperatures.42 This behavior has been explained by 

enhancement of the thermopower by strongly correlated 3d-electrons in the 

system. While the high thermal conductivity at these temperatures has limited 

FeSb2 use as a functional thermoelectric material, the results illustrate the 

exceptional power factors that have been found in correlated electron systems. 



 
 

14 

 

Figure 1.4. Density of states for YbAl3 modeled after calculated data in 
reference 41. The delta-function like features in g(E) near the chemical potential 
result in high Seebeck coefficients for the compound, despite a metal-like 
carrier density. This results in unparalleled room-temperature power factors for 
the material.  

 

Another class of compounds that have also shown great promise as spin-

correlated thermoelectric materials are the layered cobalt oxides. The compound 

NaxCo2O4 shows a high Seebeck coefficient for its carrier density, on the order of 

100 µV K-1.43 A large spin entropy present in the family of materials is 

responsible for the significantly increasing the Seebeck coefficient. This 

degeneracy can be removed by making measurements at low temperatures and 

high magnetic fields, which suppresses the thermopower and indicates that the 

correlated spin behavior is the source. Careful extrapolation of these results to 

300K for the NaxCo2O4 compound shows that most of the room temperature 

thermopower results from the correlated spin enhancement.43 
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1.5. Bridge to nanolaminate structures 

Looking at the last few decades of research, a rational methodology and 

understanding for systematically reducing the thermal conductivity of materials 

has been well developed. Gains have also been made in the power factors of 

materials, but most of the highest gains come outside the classic picture of 

balancing the contribution of the Seebeck coefficient and conductivity by 

optimizing the carrier concentration. The current forum is too brief and the 

collective understanding too narrow to give a full account of the how strongly 

correlated electron behaviors affect thermoelectric properties. However, there is 

currently a large research effort in understanding this behavior. Further 

investigating and developing a deeper understanding of structure-property 

relationships in systems with quantum well structures or materials where 

electron-electron, electron-spin, or electron-phonon behavior enhance the 

power factor are a means by which we might expect to see considerable gains in 

high-performance thermoelectric materials. 

On the other hand, nanostructuring and rational doping of promising 

bulk materials remains a promising to enhance their thermoelectric properties. 

For the first time, scalable materials technologies that easily surpass bismuth 

telluride are coming to the fore, which may lead to more widespread 

implementation of thermoelectric devices both for power generation and 

temperature control. However, the avenues by which these gains have been 

made result in materials that are inherently difficult to characterize, especially 

at the scale of the structural details that lead to the enhanced behavior.  

While eventual implementation of thermoelectric materials in everyday 

devices will likely result from progress made in nanostructured bulk materials, 

further research on more readily characterizable systems remains a valuable 

tool to understand the underpinning physical phenomena and as a means to 

discover promising new material systems for further investigation. This is 

especially true in the case of finding, understanding, and describing cases that 

are dominated by correlated electron behavior, where simple physical models 

are often inadequate to describe the enhancement material parameters. For the 

remainder of the chapter, we will discuss a brief history, the current state, and 
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future prospects of thermoelectric materials research in designed layered 

materials. 

 

1.6. Transition metal dichalcogenide compounds 

The simplest form of composite nanolaminate structures investigated as 

thermoelectric materials are intercalates of transition metal dichalcogenides. 

While several systems have been investigated, the titanium-based transition 

metal dichalcogenides TiS2 and TiSe2 have been the most promising both as 

host materials and for the properties found in their intercalation compounds.44–

48 Several guest atoms (e.g. Mn, Fe, Co, Ni, Cu, Nd, Bi ) have been used in TiX2 

intercalates, with the best results coming from Cu intercalated compounds at 

about a 0.1 Cu to Ti ratio. Unfortunately, there hasn’t been much improvement 

from intercalates beyond finding optimal guest atoms and their doping 

concentrations, which haven’t shown enough enhancement for implementation. 

The highest value of zT reported for these materials is 0.45 in Cu0.1TiS2 at 

800K.46 

 

1.7. Misfit layer compounds 

A class of naturally occurring nanolaminate materials, called misfit layer 

compounds (MLCs), has been investigated with respect to potential 

thermoelectric applications. These compounds consist of two structures that 

are interleaved as ‘sheets’ such that the constituents layer along the c-axis of 

the composite crystal. In order to accommodate the different structures in the 

nanolaminate material, the structures distort relative to bulk constituents. The 

resulting structures typically have a four dimensional unit cell, with a 

commensurate (or common) a-axis between the constituents, incommensurate 

b-axes (one for each constituent), and a c-axis defined by the layering of the 

superstructure.49 

There are two main families of these compounds that have been 

examined as potential thermoelectric materials. The first and the most widely 

studied are the layered cobalt oxides, which can be considered a subset of the 
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spin-correlated compounds previously mentioned in this chapter.50,51 The 

second are chalcogenide composites made up of interleaved rock-salt and 

transition metal dichalcogenide structures. The general formula for these 

materials is ([MX]1+δ)m(TX2)n, where M=Sn, Pb, Bi or rare earth, T=Ti, V, Cr, Nb, 

or Ta, and X=S or Se. The subscripts 1+δ, m, and n denote the difference in 

basal-plane area per cation of the two structures, the number of rock-salt 

bilayers per repeating unit, and the number of dichalcogenide trilayers per 

repeating unit, respectively. Typically only the m=n=1 compound can be 

prepared using high temperature synthesis techniques. The structure of a 

chalcogenide MLC is shown in Figure 1.5. 

 

 

Figure 1.5. Schematic of the structures found in a chalcogenide misfit 
compound. The basal planes of the rock-salt (MX) and octahedrally coordinated 
transition metal dichalcogenide (TX2) have a commensurate a-axis, but distinct 
b-axes (given by b1 and b2, respectively), and the structures are interleaved 
along the c-axis. 

 

Some of the most notable and thoroughly studied materials in the 

chalcogenide family are the intergrowths of TiS2 with SnS, PbS, or BiS. It was 

found the Sn-based materials have the best figure of merit, due to both an 

increased power factor and reduced total thermal conductivity relative the the 

Pb and Bi containing compounds.52 Peak values of zT for pellets pressed from 

powders of these compounds range from ~0.3-0.4, with peak values measured 
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at 700K.52 These compounds showed a very low lattice thermal conductivity, 

with the Bi containing compounds falling below the theoretical minimum of 

~0.5 Wm-1K-1 at and above 350 °C. Additionally, hot-pressed pellets of NbS2 and 

CrS2 compounds interleaved with LaS rock-salt layers have shown promising 

thermoelectric properties with zT values of about 0.15.53 Further optimization 

by further controlling the microstructure, similar to what has been done in the 

IV-VI dichalcogenide systems, could improve these values. 

The interleaved structure of the MLCs has resulted in the literature 

discussing them as two constituents with weak interactions between the 

incommensurate layers. However, the traditional high temperature synthesis 

approach used to make them from a direct reaction of the constituent elements 

requires that the MLC is more thermodynamically stable than a bulk mixture of 

the two constituents. This implies that the interaction between the constituent 

layers in the MLC's lowers the free energy enough to overcome the truncated 

structures and incommensurate interface between them. The stabilization 

interaction has been suggested to be charge transfer between the constituents, 

which would create a large capacitive energy.54,55 The rigid band structure 

picture where the bands of the constituents can be summed to produce the 

bands of the MLC is certainly an oversimplification of these complicated 

materials. Understanding the interaction between the constituents and how the 

bands change as the structures distort is required to control and optimize the 

band structures of these compounds and to control doping for optimal 

thermoelectric performance. Due to the method of their synthesis, however, 

there is little inherent tunability in either composition or layering sequences. To 

date, all of the MLCs discovered form with n=1 or 2 (with one 3) and m=1, with 

the notable exception of ([EuS]1.15)1.5(NbS2)1, which forms a trilayer of the 

rocksalt structure.56 This is an especially interesting example as it shows a 

mixed valence rare earth, indicating f-electrons may be available to introduce 

resonant levels and correlated behavior. Reports of rationally doping misfit 

layered materials are few, and mostly limited to the oxide systems.57,58 Thus, 

within the common realms of their synthesis, MLCs do not have the tunability 

necessary to be functional thermoelectric materials.  
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1.8. Thin-film superlattice materials 

Spurred by the work of Hicks and Dresselhaus, the search for low 

dimensional confined structures with favorable thermoelectric properties 

became an active field of research.28,29  In short time, researchers realized that 

the inherent anisotropy of superlattices lends itself to the study of properties in 

two directions – both in-plane and cross-plane relative to the stacking direction 

of the material. Possible mechanisms for enhancement of the figure of merit are 

unique along each direction. Cross-plane enhancement of zT in a superlattice 

would primarily come about by interfaces scattering phonons by reflection while 

still transmitting electrons. On the other hand, in-plane thermoelectric 

enhancement can be imagined to be enhanced both in the power factor by band 

structure changes associated with quantum confinement (see previous section) 

and in increased interface scattering of phonons lowering the thermal 

conductivity. 

Almost immediately after the theoretical predictions, reports of promising 

superlattice compounds were being made. Two reports in particular stood out 

for their large enhancement of zT. After several reports of systematically 

optimizing Bi2Te3-Sb2Te3 superlattices from the Venkatasubramanian group at 

RTI, they eventually reported an unprecedented room-temperature zT value of 

~2.4 in the material.59 Harman and coworkers also released a series of papers 

on PbTe based superlattices where zT was systematically increased four-fold 

from the bulk value of ~0.4 to ~1.6.60 Unfortunately, neither result has been 

reproduced despite several efforts.61,62 These and other works on superlattice 

thermoelectric materials are summarized in a short review from Bottner.63 

The rapid progress in material properties spurred interest in the field, 

including a quick succession of readily characterizable, thought-provoking 

structure-property relationships that were developed because materials 

structures could be varied to test optimization strategies.64–68 However, it is 

important to note these results were confined to materials where epitaxial 

synthesis was possible. The decades of refinement in various epitaxial growth 

systems and well-developed growth mechanisms has naturally led to synthesis 

and optimization of superlattice thermoelectric materials to be confined to thin 

films within these systems. Little work has been done outside of what is 



 
 

20 

accessible by these means. However, the strong theoretical arguments for 

enhanced performance and their potential use as a thermoelectric based on-

chip cooler, provides motivation for further research in this area. 

 

1.9. Van der Waals heterostructures 

In the last two decades there has been a surging interest in 2D materials 

resulting in a Nobel prize in physics for work in graphene69 and over 15,000 

annual publications as properties emerged in 2D layers that were not found in 

the bulk. While this interest grew out of exceptional properties discovered in 

graphene, several other 2D and few-layer materials have been discovered or 

predicted to have properties not found in the bulk. These include planar 

hexagonal boron nitride, black phosphorous which forms puckered sheets, Bi 

and Sb chalcogenides, several oxides, including more complex compounds, and 

several transition metal dichalcogenides35,70–79. These low-dimensional materials 

possess a broad array of unique physical properties not found in the bulk 

compounds, which result from unique electronic environments, quantum 

confinement, and surface to volume enhancement (by several orders of 

magnitude). An example of this is MoS2, where the band structure near the 

Fermi energy systematically changes as the thickness is reduced down to a 

single S-Mo-S trilayer.78 Both calculation and initial results have also found 

that the thermoelectric properties of isolated layers can be enhanced.35,80–83 

As the major breakthroughs in isolated 2D materials have become less 

frequent, attention is turning to the development and investigation of vdW 

heterostructures, where several 2D layers are stacked to form a superstructure. 

The individual layers exhibit sufficient stability to maintain the distinct layers 

but the weak van der Waals bonding between them acts to keep the 

superstructures intact, hence the name. The promise of these heterostructures 

is that stacks comprised of 2 or more complimentary constituents can be 

potentially created to yield emergent properties that do not exist in the 

individual constituents. In this way, researchers are actively pursuing new 

“designed” materials, which truly are, as the old adage says, greater than the 

sum of their parts. And while the field is new, if given the appropriate 2D 



 
 

21 

building blocks and a method to assemble them into a superstructure, no 

shortage of big ideas have be conjured up.84 

Heterostructures could be an especially interesting approach to the study 

of thermoelectric materials, since several designed properties are 

simultaneously needed for high performance. Building on the ideas from Hicks 

and Dresselhaus and their suggestions of quantum confinement as an effective 

means of achieving high power factors, it could be expected that vdW 

heterostructures would naturally exhibit high zT values by their anisotropic 

structure alone. However, in addition to possible enhancement by quantum 

confinement, rationally designed vdW structures may potentially give additional 

tunability due to the composite properties of the system. For example, if 

considering designing a heterostructure optimized for in-plane maximization of 

zT, an unprecedented number of controllable parameters are available. A 

material or even a composite with a ‘working’ band structure could be chosen 

which possesses a promising electronic structure (bandgap and shape of 4(.)) 
for having a high power factor. A second constituent containing a ‘distribution’ 

band could then be included. This would be designed to donate or accept 

carriers as needed for optimized transport in the ‘working’ material, but the 

structure should maintain high mobility in the working band as no impurities 

are introduced. An ideal system would not be perturbed by addition of 

additional constituents, but would instead modulation dope the structure 

allowing for optimizing materials without perturbing the working band 

structure. The lack of a strong bonding network along stacking direction should 

result in inherently low thermal conductivity, which could be further optimized 

by controlling stacking orders or thicknesses of insulating layers. Alternatively, 

a third constituent designed to minimize thermal transport could also be added 

to the heterostructure. 

While the potential for van der Waals systems as a platform for 

composite thermoelectric materials discovery is high, they currently suffer from 

need to isolate and reassemble several constituent monolayers. This is a 

considerable synthetic burden, even in a case of pure academic interest. 

Currently, there is a lack of a high-throughput fabrication method and it will be 

necessary to test large suites of materials to develop knowledge of how layers in 
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a composite will interact. These together prevent the use of heterostructures as 

an efficient research vehicle for thermoelectric materials. Previously investigated 

laminate structures such as misfit layer compounds or dichalcogenide 

superlattices, however, provide a useful structure and property relationship 

platform from which the interplay between composition, structure and 

properties can be systematically developed. 

 

1.10. Kinetically trapped nanolaminates 

Recently, a bottom-up synthetic approach that can be used to create a large 

class of materials similar to the chalcogenide misfit layered compounds has 

been introduced.85–87 These materials, called ferecrystals, are based on the 

chalcogenide MLCs, with the bulk of this family of compounds consisting of 

interleaved metal chalcogenide rock-salt bilayers, MX, and transition metal 

dichalcogenide trilayers, TX2. The compounds form over a wide range of 

material systems, with many of the ternary selenide members such that T=Ti, 

V, Nb, Mo, Ta, W and M=Sn, Pb, Bi having been reported.88 The first telluride 

misfits in the PbTe-TiTe2 system were also prepared using this synthetic 

approach.89 Because of the wide range of chemical systems available, a wide 

range of physical properties have been observed, with transport in materials 

ranging from superconductivity, n- or p-type metallic  to semimetallic to 

semiconducting. 

Ferecrystals are made as thin-films by sequentially depositing thin 

elemental layers from the vapor phase onto a substrate to form an amorphous 

precursor which, when properly calibrated, has similar composition profiles and 

nanoarchitecture as the desired final crystalline product.86,90 With modest 

heating, this approximate elemental distribution can be kinetically trapped to 

form a material consisting of crystallographically-aligned 2D layers precisely 

stacked with structurally abrupt interfaces in a layering sequence determined 

by the local precursor structure. While crystallites are precisely aligned along 

the c-axis of the composite, they crystallize with an average random in-plane 

orientation, resembling a systematic layering of 2D powders.88,90,91 Little 

registration in the basal planes has been observed between constituents in the 
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structure, leading to a global rotational, or turbostratic, disorder through the 

compound. This severely impacts phonon propagation in the materials and is 

structurally distinct relative to MLCs, where a coherent arrangement persists 

between layers in the composite structure. While the MLCs already have very 

low thermal conductivities due to the high interface volume ratio of the 

laminated layers, ferecrystals have even lower thermal conductivities. 

Disordered WSe2 layered compounds have the lowest thermal conductivity ever 

measured perpendicular to the layering direction (~0.05 Wm-1K-1)92 with 

insulating intergrowths being slightly higher along this direction (~0.1 Wm-1K-

1)93 but lower along the layers (~0.4 Wm-1K-1)94. These measurements were made 

at room temperature and in all cases, the values are lower than state of the art 

thermoelectric materials. 

Since the sequence of layers in ferecrystals is kinetically controlled by 

the structure of the precursor, designed composite structures can be prepared. 

The large breadth of synthetic space afforded by this approach allows for 

unprecedented accessibility to explore properties of solid state materials over a 

wide range of local structures and compositions. As long as materials are 

synthesized as a superlattice – with several repeating units along the stacking 

direction, a unique diffraction pattern allows structure to be determined for the 

constituent layers that make up the compound. This is highlighted in Figure 

1.6. showing the six structural isomers, which have very similar compositions 

and c-lattice parameters, which can be formed from four repeating units of MX 

and TX2. The compounds all have similar c-lattice parameters, given by the 

positions of the peaks, due to the identical bulk constituents. However, the 

unique stacking sequences result in unique diffraction patterns as the different 

locations of atomic planes within the unit cell will scatter with differing 

intensities. This approach can be extended further and the number of unique 

structures, or distinct sequences of layers, is describable by the combinatorics 

mathematics of a necklace of n beads of m colors. For example, a two-

constituent (m=2) composite structure comprised of 20 layers (n=20), which 

would be on the order of 12nm thick, could have about 27 thousand distinct 

layering motifs. If this is extended to three constituents (m=3), the number of 

unique structures increases to nearly 90 million, and this goes well into the 
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billions with four constituents (m=4). To-date, there is nothing to suggest that 

the synthetic method of kinetically trapping the local structure of a thin layered 

precursor into a designed compound could not be applied to each of the cases 

above in several material systems. Thus, unlike typical hurdles in solid state 

chemistry, a point has been reached where the number of metastable 

compounds that are synthetically accessible vastly exceeds the practical 

experimental throughput. Developing the theory and intuition of the best 

layering schemes to test the fundamental interactions in these materials will be 

a necessary step to move forward with maximum efficiency. 

 

 

Figure 1.6. Structures of ([PbSe] 1+δ)4(TiSe2)4 isomers. (left) The six structural 
isomers that can be made in the m=n=4 layering scheme. (right) Confirmation of 
consistent c-lattice parameters from samples with these structures, but 
different peak intensities due to the unique electron density profiles within the 
superlattice. 

 

The published body of literature on the chalcogenide misfit compounds 

universally suggests conduction is localized to the dichalcogenide 

constituent.49,54 This behavior is also seen in several experiments in several 

ferecrystal material systems. Much of the research in these systems also 

suggests that stabilization of compounds is aided, at least in part, by charge 

transfer across constituents in the laminate structure. Because of this transfer, 

layering sequences within a material system may be changed to modulation-

dope the layers. Complicated layering structures may be created as necessary 

for optimization of material properties, for example: structurally isomeric suites 

of samples comprised of the same composition and c-lattice parameter, but a 

distinct layering pattern within the unit cell, such as the ([PbSe] 1+δ)4(TiSe2)4 
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structural isomers shown above. As long as we don’t exceed the depletion width 

or change the modulation doping efficiency, this may preserve the electronic 

interactions governed by the integer number of layers of each constituent. 

Recent work on ([MSe] 1+δ)1(TiSe2)n ferecrystals95–99 suggests that they provide a 

promising platform for systematically making changes to a compound to 

optimize the figure of merit as discussed next. 

 

1.11. ([MSe] 1+δ)1(TiSe2)n ferecrystals 

Bulk stoichiometric TiSe2 is a semimetal, but generally the compound 

forms with a small (2-4%) excess of Ti atoms residing in the van der Waals 

gaps. The resulting free carrier density is on the order of 1021. The misfit layered 

compound literature often assumes a rigid band approximation for the 

interactions of the composite crystal such that the density of states of the 

laminate structure is simply a superposition of those from each constituent. 

While the structural distortions and interactions between layers perturb the 

band structures, this approximation’s agreement with data suggests that is a 

reasonable initial assumption and it has been made in the TiX2 MLC literature 

for both the Pb-selenides100 and the Pb- and Sn-sulfides.101,102 In the family of 

compounds containing TiSe2 dichalcogenide layers the electrons occupying the 

Se-4p levels in the rock salt are higher energy than the empty Ti-3d states and 

charge is donated to the TiSe2 layers, as shown in Figure 1.7. These populated 

states in the TiSe2 are considered to dominate the charge transport in the 

composite compound. Evidence for conduction within the TiSe2 layers is given 

in intergrowths with alloyed rock-salts, where compounds with PbxSn1-xSe 

layers show unchanged or even higher mobilities relative to the endmembers.103 

The donated charge increases the carrier concentration above the intrinsic 

values for bulk TiSe2. This simple band filling picture also suggests the Bi 

containing compounds relative to the isovalent Pb and Sn will have higher 

carrier concentrations due to more filling of the Ti-3d band. This was observed 

and discussed in the n-type ([MS] 1+δ)1(TiS2)2 suite of misfit layered 

compounds52, and also in the ([MSe] 1+δ)1(TiSe2)1 family of ferecrystal compounds 

(where M=Sn97, Pb95, Bi104) as shown in Figure 1.8. Normalizing these data to 
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the basal plane cation density shows that bismuth substitution results in an 

increase in carrier concentration of approximately 1 electron per bismuth atom, 

further agreeing with the rigid band picture and showing high modulation 

doping efficiency for the m=n=1 structures. This effect appears stable with 

temperature, though a slight convergence between the Bi and other datasets is 

observed at low temperatures suggesting more of the donated charge localizes 

to the Bi layers at low temperatures. The room-temperature Seebeck coefficient 

of the three ([MSe] 1+δ)1(TiSe2)1 compounds are -75, -66, and -42 µV K-1, for Sn, 

Pb, and Bi, respectively. Calculating the effective carrier mass with the 

Pisarenko relationship shows the compounds to be similar, with m* values of 

5.8(3) me, suggesting the effect in all cases is being dominated at different levels 

within the same parabolic band in the common TiSe2 constituent.  

 

 

Figure 1.7. Schematic density of states based on electronegativity and 
coordination environments for ([PbSe] 1+δ)m(TiSe2)n compounds. The composite 
band structure is considered to be a superposition of the individual 
constituents’ band structures and conduction is assumed to occur through a 
single band – in this case by electrons populating the Ti-3d band. In this model, 
the extent of charge transfer between PbSe and TiSe2 constituents will 
determine the carrier density. 
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Figure 1.8. Carrier densities as a function of temperature in ([MSe] 1+δ)1(TiSe2)1 
for M= Sn97, Pb95, Bi104. The compounds containing isovalent Sn and Pb atoms 
show very similar carrier concentrations. As expected from the conduction 
mechanism shown and discussed in Figure 1.7., the compound containing 
trivalent Bi atoms have an increased carrier concentration of approximately 1 
electron per Bi atom.  

 

Especially powerful in these samples for tracking structure property 

relationships is the ability to structurally characterize the nanolaminate 

systems. Rietveld refinement of the 00l composite structure can be performed to 

obtain planes of atoms in the out-of-plane direction. Structural refinements of 

the stacking planes within the m=n=1 structures of TiSe2 interleaved with SnSe 

and PbSe are shown in Figure 1.9.95,97 Both compounds exhibit a similar total 

thickness of the TiSe2 constituent when including the ‘van der Waals’ gap, but 

the SnSe containing compound shows a slightly larger Ti-Se distance and a 

slightly smaller gap between the two structures. A puckering distortion of Se 

atoms moving inward within the rock salt structure is also observed in both 

cases, however the distortion in the SnSe is of much greater magnitude despite 

the smaller distance between the terminating metal planes. Structural changes 

can also be tracked within a material system as the layers are changed, for 

example in the ([BiSe] 1+δ)1(TiSe2)n (n=2-4) compounds.  Here, a systematic 

increase in the degree of BiSe puckering is observed alongside an offset in Ti 

planes relative to the Se planes in the TiSe2 trilayers, which trends towards the 
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bulk structures as n is increased.105 Current work is underway to relate these 

structural behaviors to transport measurements both within and across 

homologous series’ of compounds to build libraries of structure property 

relationships in these materials. Future corroboration of band structure 

calculations will also aid in a deeper understanding of how to optimize 

nanolaminate materials. 

 

 

Figure 1.9. Atomic plane positions along the stacking direction of the 
superlattice in ([MSe] 1+δ)1(TiSe2)1 where M=Sn, Pb as determined from Rietveld 
refinement. Two unit cells are shown for each superlattice, with the origin at 
the central Ti plane. Line positions are to scale. 

 

The greater puckering distortion within the SnSe structure alludes to a 

greater interaction between layers. Some additional insight as to why is gained 

from the in-plane lattice parameters of the ([SnSe] 1+δ)1(TiSe2)1 compound 

relative to other ferecrystal intergrowths. The SnSe a-lattice parameter is much 

greater when interleaved with TiSe2 relative to the same MX layer in other 

dichalcogenides.91  On the other hand, the TiSe2 a-lattice shows less sensitivity 

as the MX layer is changed and is typically much larger than then the TMD 

lattice in other intergrowths. Projecting the SnSe lattice onto the TiSe2 lattice, 

as seen in the inset of Figure 1.10., shows that because of a small lattice 

mismatch, a regular repeating structure along one dimension can be 

accommodated between constituents. Perhaps the structures distort due to an 
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energetic gain by this repeating structure, similar to the structural distortions 

found in misfit compounds. The Pb and Bi containing ([MSe] 1+δ)1(TiSe2)1 

ferecrystals show an entirely different structures, with the PbSe containing 

compound having square in plane rock-salt layers and the BiSe containing 

compound showing a far more distorted structure than SnSe. 

 

 

Figure 1.10. In-plane diffraction patterns (λ=Cu-kα) of ([MSe] 1+δ)1(TiSe2)1 for 
M=Sn, Pb, and Bi adapted from reference 91. The MSe layer indices are shown in 
bold and match the curve colors, with the SnSe and BiSe indices also being 
italicized. TiSe2 peaks are indexed in black and in normal type.  The in-plane 
MSe layers are square for PbSe, slightly tetragonally distorted for SnSe, and 
highly distorted for BiSe. Also shown is a schematic of the approximate lattice 
match of SnSe in TiSe2 in the distorted SnSe layers with lattice parameters 
taken from reference 91. 

 

The first step of optimizing typical thermoelectric materials is optimizing 

the carrier concentration of the existing material by a means that doesn’t 

severely perturb the band structure. Considering the Pisarenko relationship, 

which appears valid for these compounds, the synthetic control, and the 

stability of the TiSe2 bands as the interleaved layers are changed, modulation 

doping the structure by changing the relative ratio of the layers is a logical step 

forward. A general trend across the 3 rock salt systems is that by adding 

additional TiSe2 layers, the charge donated into the Ti-3d band can be diluted, 

lowering the carrier concentration and raising both the Seebeck coefficient and 
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the power factor as seen in Figure 1.11.99,105 While thermal conductivity 

measurements of the structures are necessary for a full validation of the 

effectiveness, this example illustrates the power of using interlayer interactions 

within different nanolaminate material systems for enhancing the 

thermoelectric power factor. However, if we consider the single band model to 

be valid, this is still within the classic regime of carrier concentration 

optimization, albeit by modulation doping. Exploring the more recent strategies 

of enhancing the power factor in nanolaminate structures by incorporating 

composite bands, resonant states, or correlated electron behaviors is an 

available and hopefully fruitful approach for future materials improvement.  

 

 

Figure 1.11. Seebeck coefficients and power factors of ([MSe] 1+δ)1(TiSe2)n for 
M=Sn, Pb, and Bi. A systematic increase in the magnitude of the Seebeck 
coefficient is observed for increasing n in all material systems. This also 
translates to increased power factor, though variation in sample quality, and 
hence mobility106, results in slightly more scatter in the data.  

 

Moving forward with these materials, combining the synthesis and 

characterization of strategic sets of compounds with calculations in a feedback 

loop that quickly develops functional materials has great appeal. Once a more 

complete understanding of how the layers interact is developed, which can only 

be achieved by synthesis and characterization, structure-property relationships 

may be extended by computational work, which could suggest new promising 

chemical systems and layering sequences. These may then be tested, the theory 

refined, and new predictions made. In this way, the vast synthetic space 
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afforded by assembling 2D structures may be narrowed to only the most 

promising suites of compounds, maximizing both throughput and results. 

 

1.12. Outlook 

The discussions within this chapter have focused on only the first aspects of 

developing efficient thermoelectric devices: finding materials with high zT 

values. However, several additional considerations are necessary: For every 

promising material found, a counter-material of opposite carrier type must also 

be developed for integration into a working device. Each must also be optimized 

for contact resistances and other parasitic effects within the module and to 

maximize the efficiency of the couple rather than just the materials themselves. 

Similarly, each must also share similar zT values and temperature ranges 

wherein they operate. Furthermore, as devices operate across some 

temperature difference and zT values are highly dependent on temperature, the 

average zT value of the device is more critical than the peak values. Thus, 

within each n-type or p-type leg, segmenting a device into several materials at 

different points along the operating temperature gradient is often done to 

achieve the highest device efficiencies. This creates the need to ensure 

additional compatibility requirements between materials. Depending on the 

end-use the total device performane might then be expressed as the maximum 

temperature difference attainable across a thermoelectric cooler or a generator’s 

efficiency, as given by the thermodynamic cycle (Carnot) that governs it.  

While the ambitions for earth-abundant thermoelectrics for large-scale 

use may still be a long time coming, the recent advances in materials should 

open up further niche applications for thermoelectric devices, which in turn 

should hopefully drive further interest in materials and device development. It 

is rare that one physical phenomenon has potential to be utilized across such a 

large scope of human needs. For example, thermoelectric devices have the 

potential to be used as power generators not only as the New Horizons 

spacecraft captures Pluto in unforeseen detail, but also to recapture 

considerable energy from waste heat from every industrial cooling tower or 
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automobile exhaust across the world. Similarly, their use as automobile seat 

warmers may be extended to large-scale refrigeration, or even cryogenic cooling.  

Since nearly all of the current state-of-the art materials have thermal 

conductivities approaching the amorphous limit, reexamining old methods or 

finding new strategies to enhance the power factor, and specifically the Seebeck 

coefficient, will be necessary push zT values further. This task has been a far 

from trivial as shown by the slow progress over half a century of active 

research.  The considerable materials challenge in discovering new compounds 

and new strategies beyond optimally-doping bulk semiconductors will be aided 

by the synthetic, analytical, and predictive tools that recently have become 

available.  The next decade promises considerable progress! 

 

1.13. Overview of Dissertation 

The work contained within the chapters of this dissertation has the 

overarching goal of building an understanding of how structural distortions, 

transport properties, and stability of metastable nanolayered thermoelectric 

materials are affected as their layering architecture, defect densities, 

nanostructures, compositions, or chemical systems are changed on both global 

and local scales. Generally, each chapter outlines an experiment where one or 

more of these aspects are investigated, but Chapters II and III preface the bulk 

of the work. Chapter II outlines the synthetic route to the metastable 

compounds found in this text, and briefly introduces the characterization tools 

that are used in this work. Chapter III has two parts, both of which have been 

published and are in collaboration with Kirsten Jensen, Anders Blichfeld, 

Suzannah Wood, Bo Iversen, Simon Billinge, And David Johnson. The first 

portion, of which I am the primary author, investigates the formation 

mechanism of metastable iron antimonide films from amorphous layers. The 

second portion, of which Kirsten Jensen is the primary author, reports the first 

demonstration of thin film pair distribution function analysis (tfPDF) on the 

same material. Many functional thermoelectric materials require extensive 

‘designing’ at the nanoscale to achieve optimum performance. There is 

outstanding question as to the stability of these features as well as ways to 
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probe them. The work in Chapter III aims to address this by development of 

both an understanding of localized nucleation of metastable solids and new 

ways to probe thin film materials. 

Chapters IV-X investigate the structure and properties of 

([MSe]1+δ)m(TiSe2)n compounds as M, m, and n are systematically changed. 

Chapters IV-VII investigates several homologous series with M=Pb. Chapter IV 

explores the effects of nonstoichiometry on ([PbSe]1+δ)1(TiSe2)1 compounds and 

was published with Daniel Moore, Jeffrey Ditto, and David Johnson. Chapter V 

investigates interface density in ([PbSe]1+δ)m(TiSe2)m, reporting a breakdown of 

long-held models in nanolaminate systems for thick layers (m>1), also providing 

insight into stabilization of the broader family of misfit compounds. This was 

published with Jeffrey Ditto, Daniel Moore, and David Johnson. Chapter VI, 

written with Jeffrey Ditto, Daniel Moore, and David Johnson, is unpublished 

and reports the effects of buried PbSe-TiSe2 interfaces within the unit cell of 

([PbSe]1+δ)4(TiSe2)4 structural isomers. It is found that an intermediate interface 

density enhances the thermoelectric power factor relative to other stacking 

sequences. Chapter VII is published work written in collaboration with Devin 

Merrill, Daniel Moore, and David Johnson. This work reports a strategy for 

‘diluting’ the mobile carriers in ([PbSe]1+δ)1(TiSe2)n nanolaminates, which serves 

to significantly increase the thermoelectric power factor to levels higher than 

previously observed in misfit nanolaminates. 

The remaining chapters (Chapters VIII-X) investigate compounds where 

M=Sn. Chapters VIII and IX repeat experiments from chapters VII and V 

respectively, but in the new chemical system. Though vestiges of the initial 

behaviors remain, structural distortions in the SnSe layers also result in 

behaviors not present in the M=Pb compounds. Chapter VIII, which is currently 

unpublished, reports exciting low-temperature thermoelectric behavior and was 

written in collaboration with Danielle Hamann, Devin Merrill, and David 

Johnson. Chapter IX, which is unpublished, reports changing structure in SnSe 

layers with layer thickness, significantly altering the transport behavior. This 

was written in collaboration with Danielle Hamann and David Johnson. 

Chapter X discusses next steps, and gives a first look at rare earth intercalated 

([SnSe]1+δ)1RE:(TiSe2)2 compounds. 
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CHAPTER II 
 

SYNTHESIS AND CHARACTERIZATION METHODS 
 

All compounds presented and discussed in this dissertation have been 

formed by the self-assembly of designed thin-film precursors. Precursors are 

comprised of thin elemental layers deposited from the vapor phase that are 

gently heated to form a metastable product.1 Unlike typical solid state reaction, 

short diffusion lengths move the formation of the product into the nucleation-

limited regime, which in turn allows for investigations in previously inaccessible 

regions of the synthetic landscape.2 This synthetic platform has led to the 

discovery of several new metastable single-phase compounds,3–5 but has been 

especially useful for its ability to form astounding numbers of new layered 

materials in several chemical systems.6–8 

Figure 2.1. shows both a detailed and block schematic of the precursor 

deposition chamber. Precursors are deposited using physical vapor deposition 

of elemental sources from either electron beam guns or Knudsen effusion cells 

at a pressure below 5x10-7 torr. Sources reside at the lower portion of the 

deposition chamber and are monitored by quartz crystal microbalances. 

Computer controlled shutters above each source allow for substrates to be 

controllably and sequentially exposed to the plumes of evaporating atoms. 

Thus, the precursor is sequentially built from the bottom up, allowing for an 

order and thickness of layers that can be arbitrarily chosen within the limits of 

the equipment. 

Precursors must first be calibrated to form the targeted product. For 

example, many binary chemical precursors form a metastable product when 

layers are deposited below a critical thickness and within a critical composition 

regime, which provides a favorable nucleation environment without a 

composition gradient where thermodynamic products will form as shown in 

Figure 2.2. The Fe-Sb chemical system is an example where these products may 

be formed. Understanding how deposition affects each of the thickness and 

composition parameters is critical. 
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Figure 2.1. Schematic of physical vapor deposition chamber used for the 
synthesis of thin-film layered precursors. The simplified schematic (right) 
highlights the vacuum pump system and uses the acronyms CT for cryogenic 
entrapment pump, G1 and G2 for gate valves, AV for angle valve, and TM for 
turbo-molecular pump.  

 

 

Figure 2.2. Schematic of the homogeneous nucleation environment that can be 
created in thin layers deposited from the vapor phase and the interfacial 
nucleation environment found in thicker layers or bulk reactions. While the 
local composition of the homogeneous precursor can be controlled with the 
layers, the chemical gradient present in the thick layers necessarily provides 
regions of compositional favorability for the formation of thermodynamic 
products. 
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A suite of binary precursors may be used to determine tooling factors 

and composition ratios from a set of elements. By varying the thickness of one 

layer while keeping the other constant, a precise determination of the thickness 

of material deposited onto the substrate relative to the thickness of material 

deposited onto the quartz crystal microbalance (QCM) deposition rate monitor 

may be determined. This is called the tooling factor. Figure 2.3. shows the 

tooling factor calibrations for a set of 2 elements – Fe and Sb. The blue(red) data 

points correspond to varying Fe(Sb) layer thicknesses while holding the other 

constant. The slope corresponds to the tooling factor of the varied element, 

while the intercept should correspond to the tooling factor of the constant 

element. For Fe(Sb) the constant value measured at the QCM was 5.1(58.8) Å 

with an intercept of 0.83(15.33), corresponding to a tooling factor of 0.16(0.26), 

which is reasonably close to tooling factor determined from the slope. The larger 

deviation in the suite of films with constant Fe thickness is likely due to the 

very thin layers, where small offsets due to shutter actuation become 

increasingly influential. 

 

Figure 2.3. Calibration of the deposition tooling factors for a laminate system 
consisting of thin Fe and Sb layers. One elemental layer thickness is varied as 
the other is held constant. Slopes correspond to the tooling factor of the varied 
constituent while intercepts correspond to the constant constituent.  

Once tooling factors are determined, the compositional ratio of elements 

relative to the layer thicknesses must be determined. In this case, it is not 

necessary to keep either layer thickness constant. Figure 2.4. shows a 
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calibration curve for the ratio of Fe:Sb thickness that has been measured at the 

QCM versus the measured composition of the thin film precursor. Since the 

tooling factors are similar it is clear that the atomic density of Fe in the Fe-Sb 

precursor is much greater than Sb – for a film with 50% atomic Fe density, Fe 

should only make up ca. 20% of the bilayer thickness. Having completed these 

calibrations, with a small amount of algebra a precursor with Fe-Sb bilayers 

with a targeted thickness and composition can be obtained. 

 

 

Figure 2.4. Composition ratios (Fe/Sb) of layered precursors plotted against the 
layer thickness ratios measured at the QCM during deposition. The Fe layers 
have much higher atomic packing density relative to Sb layers. 

 

More complicated precursors may also be made, where the precise layering 

is designed to persist after gentle heating and crystallization in the form of a 

composite nanolaminate, schematically shown in Figure 2.5. The same 

calibration procedures are used, with the caveat that the bilayer thicknesses 

are then targeted to crystallize a single layer of the nanolaminate. By altering 

the sequence of layers deposited in the precursor, several nanolaminate 

products can be formed.  
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Figure 2.5. Schematic of a ternary layered precursor that is calibrated such 
that when gently heated the layers self-assemble into multicomponent layered 
heterostructures. 

In a ternary system with a common element, measuring the global 

composition will not help determine which layers the common element belong 

to. However, assuming a common anion, the deposited precursor is given by the 

following chemical formula: [(MXx)y]p[TXz]q or MpyTqXpxy+qz. Where X is the 

common anion, M and T are the two cations, and x and z being the respective 

anion/cation ratios. y is the ratio between the two layer types and p and q are 

the number of layers deposited in the structure. Given the above formula the 

following equations are obtained: 

! "
# = %! + '()	, ,

# = ')
!  

Thus, measuring composition ratios (and substituting in for M/T and 

X/T) while systematically changing p and q allow for all parameters to be found 

with simple linear regression. Once well-calibrated precursors are obtained, the 

temperature profiles that best activate self-assembly without forming 

decomposition products must be determined, which is simply an iterative 

process in finding the optimal temperature, time, and environment. In 

discussion of the precursor’s product, p and q are replaced with the actual 

number of crystallized layers, m and n. Figure 2.6. illustrates several structures 

with varying m:n that may be formed in a system of distorted rock-salt and 

octahedral transition metal dichalcogenide layers. 
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Figure 2.6. Examples of several layered structures that may be formed from the 
self-assembly of designed layered precursors. Well-calibrated precursor 

parameters can be scaled as necessary to form any of the above structures. 

Structural characterization of the thin films in this dissertation is 

predominantly done with X-ray scattering techniques. This includes bulk and 

thin-film analysis of both textured and non-oriented materials. Standard X-ray 

diffraction (XRD) techniques from laboratory sources are predominantly used, 

but synchrotron radiation and less common analysis techniques at both very 

low and very high Q are also used in the form of X-ray reflectometry (XRR) and 

atomic pair distribution function analysis (PDF), respectively. Specifics on 

analysis techniques and experimental geometries can be found within the 

following chapters. Local characterization in real-space is done on small 

lamellas of the thin films using high angle annular dark field scanning 

tunneling electron microscopy (HAADF-STEM). Compositions have been 

measured with a variety of techniques, including electron probe microanalysis 

(EPMA), X-ray fluorescence (XRF), and scanning tunneling electron microscope 

energy dispersive spectroscopy (STEM-EDS/EDX). All techniques synergistically 

provide a detailed picture of the local and global structures and compositions of 

the metastable thin film compounds discussed herein. 

Hall, resistivity, and cryogenic Seebeck coefficient measurements have 

been performed on a custom-built Hall system with a closed-cycle He cryostat 

cycling between ca. 15-295 K. Data collection is automated by a LabVIEW 
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program controlling several Keithley benchtop measurement devices. These 

measurements were made on insulating substrates, typically polished fused 

silica deposited through a shadow mask to form a van der Pauw cross. 

Measurement of the Seebeck coefficient at room-temperature is done by cooling 

half of a film slightly below room-temperature (ΔT<2K) and measuring both the 

temperature difference and thermopower with type T thermocouples. 
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CHAPTER III 
 

SYNTHETIC CONSIDERATIONS FOR METASTABLE THIN-FILM 
THERMOELECTRIC MATERIALS FROM AMORPHOUS PRECURSORS 

 

 Chapter III is comprised of two publications both coauthored by myself, 

Kirsten Jensen, Anders Blichfeld, Suzannah Wood, Bo Iversen, Simon Billinge, 

and David Johnson. Suzannah Wood and Anders Blichfeld assisted with sample 

preparation, data collection and analysis, Kirsten Jensen assisted with data col-

lection at NSLS and NSLS-II as well as analysis and manuscript preparation, 

and Bo Iversen, Simon Billinge, and David Johnson are our group leaders and 

advisors. The first part, Structural Evolution of Iron Antimonides from Amor-

phous Precursors to Crystalline Products Studied by Total Scattering Tech-

niques (DOI: 10.1021/jacs.5b04838), was accepted for publication in Journal of 

the American Chemical Society on 2015-07-10 and I am the primary author. The 

second manuscript, Demonstration of Thin Film Pair Distribution Function 

Analysis (tfPDF) for the Study of Local Structure in Amorphous and Crystalline 

Thin Films (DOI: 10.1107/S2052252515012221), was accepted for publication 

on 2015-06-25 in IUCrJ and Kirsten Jensen is the primary author. I assisted 

with sample preparation, data collection, data analysis, and writing of the man-

uscript. 

3.1. Structural Evolution of Iron Antimonides from Amorphous Precursors 

to Crystalline Products Studied by Total Scattering Techniques 

 

3.1.1. Introduction 

Traditional solid-state synthesis requires high heat and long reaction 

times to drive the formation of a thermodynamic product.1 During this process, 

atoms must diffuse over long distances, which is typically rather slow in solids 

and even on solid surfaces. Due to the concentration gradient at the reacting 

interfaces, a rich combination of compounds form as interdiffusion, nucleation 

and growth occur.2 However, the elevated temperature and long reaction times 

ultimately limits the product to the thermodynamically stable mix of com-
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pounds at the temperature and composition of reaction. Moreover, the interme-

diate products and structural changes during the diffusion and crystallization 

process are difficult to follow. A general lack of a mechanistic understanding or 

even a description of the evolving structure during the formation of these com-

pounds, as well as commercial interest in the functionality of inorganic materi-

als, has moved solid-state synthesis from the realm of chemistry toward the do-

main of materials science.3 

While many predictions of novel materials can be made, unlike the syn-

thesis of organic compounds there is currently no clear-cut path to direct the 

formation of specific metastable inorganic products from reactants. Various 

guidelines, such as Ostwald’s step rule that states crystallization from a solu-

tion proceeds stepwise through increasingly favorable intermediates, may be 

applied to inorganic and solid systems, but use of them tends to be retrospec-

tive as opposed to predictive.4 Recently however, in-situ monitoring of inorganic 

reactions has shown the formation of many metastable intermediate products 

as well as promising and controllable methods to synthesize them. For example, 

a clever in-situ diffraction experiment recently identified and isolated several 

new ternary sulfide phases in otherwise ordinary inorganic flux reactions.5 Our 

knowledge of how inorganic reactions proceed has also been enhanced by x-ray 

total scattering studies of local structure during the formation of inorganic 

frameworks. Recent work on nanoparticle formation under hydrothermal condi-

tions demonstrates the insights obtained from these studies.6 The topic of in-

situ studies of the structural evolution of inorganic compounds was recently re-

viewed.7 For the most part these (and similar) reports are from systems where 

the chemistry, at least in part, is occurring outside the solid-state. However, re-

cently there has been considerable interest in better understanding the for-

mation of inorganic compounds during solid-state reaction, hopefully leading to 

a renaissance in the field from a chemist’s perspective.8–11 

A fruitful approach to the discovery of new solid state materials has been 

in vapor depositing thin films that are compositionally controlled at an atomic 

level, allowing for constituents to react at modest temperatures without the 

need for long range solid state diffusion.1,12–16 This approach has been utilized 
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in the synthesis of several new binary and ternary compounds.17–20 Further-

more, by depositing constituents in layers that are thin enough, compounds not 

readily synthesizable by conventional solid-state techniques are formed.14 It was 

proposed that under heating only thin layers would completely interdiffuse prior 

to nucleation. The homogeneous compositional environment was hypothesized 

to prevent nucleation of thermodynamically stable phases, as the systems lack 

a compositional gradient and would thus need to disproportionate to nucleate a 

thermodynamic compound with a different composition.21 In this case, the slow 

diffusion rates become a synthetic advantage and can be used to help control 

the formation of kinetic products.22 Particularly exciting is the possibility of “de-

signing precursors” to yield desired products by controlling the deposition pro-

cess. To realize the full potential of this method it is essential to be able to char-

acterize in detail not only the reaction products but also the amorphous precur-

sors and the reaction pathways to the resulting product. 

Here we have applied the atomic pair distribution function (PDF) analysis 

of x-ray diffraction data to study the local structure of a series of precursors 

that yield distinct products in the FeSbx (x = 2, 3) chemical system. Surpris-

ingly, we see evidence of atomic scale interdiffusion and local metal coordina-

tions representative of the final metastable product even in precursors composi-

tionally unfavorable for its nucleation. The approach of coupling careful local 

structural measurements on homogeneous amorphous reaction intermediates 

represents a powerful approach that has extensions to the designed synthesis 

of a broad range of solid-state chemical systems. 

 

3.1.2. Structures in FeSbx Chemical System 

The iron-antimony phase diagram contains only two thermodynamic 

compounds – an Fe1+xSb phase in which excess Fe resides interstitially in an 

otherwise NiAs-type structure and an FeSb2 marcasite-type phase.23 The marca-

site structure can be thought of as rutile with a larger rotation between dis-

torted FeSb6 octahedra: octahedra are corner-sharing in the a-b plane and 

edge-sharing as they are translated down the c-axis. This results in a loss of 

symmetry, a stabilizing anion dimer, and an orthorhombic unit cell. An FeSb3 
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phase that is always thermodynamically unstable relative to FeSb2+Sb has also 

been synthesized using modulated thin film precursors.24 This compound 

adopts a skutterudite structure, which is related to the ReO3 structure but with 

4 anions along parallel edges of the unit cell displaced inward, creating a four-

fold ring. This doubles the edge length along each direction of the unit cell, with 

¼ of the octants containing an open “cage”. In each of these compounds Fe is 

octahedrally coordinated with differing connectivity between octahedra, as ex-

pected by the changes in stoichiometry. In Fe1+xSb the octahedra share faces. In 

FeSb2 each corner Sb of the octahedra are shared by three octahedra, which are 

rotated to create a short Sb-Sb bonding pair. In FeSb3, two octahedra share 

each corner. Figure 3.1. shows representations of the structures of both FeSb2 

and FeSb3. There has been much discussion on bonding within both the 

skutterudite and marcasite structural families. In each case, one could imagine 

a bonding scheme wherein formation of the FeSb6 octahedral unit is the domi-

nating interaction, followed by stabilization from dimerization (FeSb2) or tetram-

erization (FeSb3) of antimony. Similarly, the opposite case could reasonably oc-

cur and historically much of the literature has centered around discussion of 

the Sb-Sb dimer and tetramer formation.25–27 However, recent studies of both 

FeS2 marcasites and CoSb3 skutterudites show the metal octahedron plays a 

large role in the bonding.28,29 

 

3.1.3. Experimental Methods 

Precursors were deposited using the modulated elemental reactants 

(MER) synthesis method on a custom-built deposition system.30 Antimony was 

deposited from a Knudsen effusion cell whereas an iron source was evaporated 

using an electron gun. A pressure below 5x10-7 torr was maintained during 

deposition. Deposition rates were monitored from quartz crystal microbalances 

and shutters installed above each source were sequentially opened and closed 

to achieve a layered precursor of the desired thickness. Deposition parameters 

were calibrated to allow for targeted composition ratios and bilayer thicknesses 

between Fe and Sb. Samples used for calibrating the depositions had targeted 

total thicknesses of approximately 36 nm whereas samples for further analysis 

had a targeted total thickness of approximately 360 nm. While calibrating the 
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system, thicknesses were confirmed with x-ray reflectivity. Cumulative rough-

ness combined with high-frequency Kiessig fringes prevented determining total 

thickness by this method on the thick films. The FeSb3 samples were deposited 

with excess Sb as stoichiometric precursors (with 25 atomic % Fe) formed mix-

tures of the diantimonide and triantimonide phases as reported previously.31 

 

 

Figure 3.1. Crystalline phases of (top) FeSb3 and (bottom) FeSb2 in both ball-
and-stick and polyhedral representations, generated from available crystallo-
graphic data.24,32 The FeSb2 polyhedral representation shows 2 unit-cells along 
each lattice vector (8 unit cells total). The FeSb3 polyhedral representation has 
an offset origin relative the ball-and-stick model. 

 

The precursors discussed herein were deposited on adjacent substrates: 

polished (100) Si wafers and (100) Si wafers coated in poly(methyl methacrylate) 

(PMMA). Films on PMMA were then floated off of the support wafer by dissolving 

in acetone, washed to remove excess PMMA, and collected on a Teflon filter. 

This resulted in delicate flat metallic flakes with an approximate maximum di-

ameter of 0.5 mm, which were removed from the filter and packed into a 1.0 

mm kapton capillary. PDF data were taken on samples in three states: as-de-

posited with no high temperature treatment, interdiffused wherein precursors 
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are kept at 100 °C for 30 minutes in order to drive diffusion of the layers, and 

annealed in which precursors are held at a temperature that activates crystalli-

zation of the desired phase for 30 minutes. FeSb3 samples were crystallized at 

200 °C and FeSb2 samples at 300 °C. All sample annealing was done on a hot 

plate in a nitrogen atmosphere after transfer to capillaries. No differences in ca-

pillary tubes were observed after thermal treatment. 

Composition was measured from samples on bare Si using an electron 

probe micro analysis technique where the k-ratios are collected as a function of 

accelerating voltage.33 Diffraction data for Rietveld refinement was collected 

from the samples deposited on bare polished Si using a Rigaku Smartlab dif-

fractometer in grazing-incidence geometry and Cu-Kα radiation. Rietveld refine-

ments were done using the GSAS34 software package and EXPGUI35 interface.  

Room temperature x-ray total scattering data was collected at a wave-

length of 0.185970 Å at beamline X17A of the National Synchrotron Light 

Source, Brookhaven National Laboratory, from samples in filled kapton capillar-

ies. The RA-PDF setup was used, with a Perkin Elmer amorphous silicon detec-

tor.36 The total scattering data were integrated using Fit2D37 and PDFs were 

generated with PDFgetX338 using a Qmin of 0.85 Å -1, Qmax of 25 Å -1, and an 

rpoly of 0.9. Real-space modeling of crystalline phases was done in PDFgui.39 

 

3.1.4. Results and Discussion 

Following previous reports, we were able to design precursors such that 

they nucleate either the FeSb2 or FeSb3 phase.31 Both precursors contained 

partially interdiffused elemental layers of Sb and Fe with thicknesses below the 

critical thickness for nucleation of the triantimonide. Thus, selectivity was 

achieved by adjusting elemental composition. Sb layer thickness was kept 

nearly constant between precursors. Table 3.1. summarizes the samples used 

in the PDF investigation. 
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Table 3.1. Summary of precursors 

Phase Fe th. (Å) Sb th. (Å) Repeats Fe/Sb 

FeSb2 2.4 16.8 188 0.49 

FeSb3 1.1 17.0 200 0.21 

 

Figure 3.2. shows powder X-ray diffraction data from annealed thin-films 

of each sample and associated Rietveld refinements, which confirm the for-

mation of the expected FeSb2 and FeSb3 phases. On annealing, the FeSb3 sam-

ples remained as smooth films whereas the FeSb2 sample forms visible crystal-

lites on the surface. Diffraction data collected at several incidence angles and in 

the plane of the film indicate scattering from powder-like samples. The diffrac-

tion data from the FeSb2 sample contains a small Sb signal (as seen from e.g. 

the Sb (012) peak at 2 Å-1), though inclusion of Sb does not appreciably improve 

refinements. The FeSb3 sample shows 34% Sb impurity by mass. 

 

 

Figure 3.2. Diffraction patterns taken from iron antimonide samples. In the tri-
antimonide phase, the above markers correspond to the marked phase and the 
lower markers correspond to antimony. The markers in the diantimode pane re-
fer to the marked phase.  
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Figure 3.3. shows a portion of the PDFs from crystalline samples, along 

with their least-squares fits (r-range fit from 5-60 Å). Also shown are theoretical 

PDFs of the constituent phases, which were generated with lattice parameters 

obtained from the refined diffraction data shown in Figure 3.2. For the metasta-

ble sample, a 2-phase fit including Sb and FeSb3 was used. The FeSb2 sample 

was fit with a single FeSb2 phase as addition of Sb to the model resulted in no 

practical improvement. In both cases, fits were done preserving cell symmetry 

with the fitted parameters being lattice parameters, scaling, correlated motion, 

particle diameter, and isotropic Debye-Waller factors. The correlated motion pa-

rameters were constrained to match between phases. The difference curve 

shows the model does not completely capture the short-range (r < 5 Å) order, 

with agreement improving at higher r. The FeSb3 mass percentage relative to Sb 

from PDF refinement is slightly lower than from Rietveld refinement but proba-

bly within the limit of the error – 62% (PDF) vs. 66% (Rietveld). Examination of 

the difference curve shows the strongest disagreement at ca. 2.9 Å. This corre-

sponds to the nearest Sb pair distance in bulk Sb and indicates the misfit at 

low r-values is likely due to the presence of additional amorphous Sb that is not 

included in the model of crystalline Sb and FeSb3. Any additional disagreement 

at low r may be due to remaining amorphous material or artifacts from data re-

duction. The results from the PDF refinements regarding the crystalline phases 

agree well with the structural models determined from prior results based on 

powder x-ray diffraction analysis. Interestingly, our data suggests that in this 

system the densities do not evolve according to the Ostwald rule. In fact, the re-

finement of the FeSb3 sample shows a slightly higher density than for the mar-

casite structure. Further details of these refinements are provided in the sup-

plementary information. 
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Figure 3.3. PDFs of FeSb2 and FeSb3 compounds with models, as well as theo-
retical PDFs of constituent phases. The difference between data and fit is shown 
below in black. Fits were performed with an r range of 5-60 Å. For the full fit-
range of the PDFs see the supporting information.  

 

Table 3.2. summarizes the pairs seen in the PDFs of each crystalline 

phase up to about 5 Å. This r-range contains all intra-octahedral distances, as 

well as the first few inter-octahedral pairs. The schematic showing pair dis-

tances denotes Fe in carmine and Sb in cyan. Both PDFs contain sharp peaks 

in the lowest r-range, while broader peaks are seen at ca. 3.5 Å and 4.4 Å from 

multiple pairs in close proximity around these distances. There is a ~1 Å differ-

ence in Sb-Sb pair distances along the various FeSb6 octahedral edges in FeSb2. 

The shortest and longest pair distances belong to the translated and shared 

edges, respectively. Multiple electronic arguments have been previously pro-

posed to account for  the structural distortion of the metal octahedra in marca-

sites.40,41 
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Table 3.2. Summary of pair distances that correspond to the first peaks in the 
FeSb2 and FeSb3 PDFs. 

 

In previous work, Williams et al. attributed an exotherm at 140 °C in pre-

cursor films to the crystallization of FeSb3, while an exothermic signal before 

the nucleation event has been associated with interdiffusion of the elemental 

layers.31 Diffraction data from as-deposited and interdiffused (heat treated at 

100 °C in a nitrogen environment for 30 minutes to drive solid-state diffusion of 

the layers) samples show an order of magnitude decrease in intensity from the 

(001) superlattice reflection, indicating significant intermixing has occurred, 

though some modulation in electron density remains (see supplemental infor-

mation). To follow structural changes as the samples evolve from the as-depos-

ited state to the final annealed phases, X-ray total scattering data were collected 

on powders in the as-deposited, interdiffused, and annealed states. The total 

FeSb2 pair distances  FeSb3 pair distances 

Posi-

tion / 

Å 

Description 
Sche-

matic 
 

Posi-

tion / 

Å 

Description Schematic 

2.6 Fe-Sb within FeSb6 octahedra 

 

 2.6 
Fe-Sb within FeSb6 octahe-

dra 
 

2.9 
Sb-Sb dimers between corner 

sharing octahedra 
 

 2.9 

Sb-Sb in Sb metal and Sb te-

tramers between FeSb6 octa-

hedra  

3.2 
Fe-Fe, Sb-Sb along translation di-

rection of edge-sharing octahedra 
 

 3.3-3.5 
Sb-Sb along short octahedral 

edges 
 

3.6-3.7 
Sb-Sb along medium octahedral 

edges 
 

 3.8 
Sb-Sb along long octahedral 

edges 
 

4.1-4.4 

Various inter-octahedral Fe-Sb 

and Sb-Sb along longest octahe-

dral edges  

 4.5-4.6 
Various pairs (Fe-Fe, Fe-Sb, 

Sb-Sb) between octahedra 
 

5.2 
Sb-Sb along opposite corners of 

FeSb6 octahedra 
 

 5.1 
Sb-Sb along opposite corners 

of FeSb6 octahedra 
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scattering data were used to generate PDFs, which are shown in Figure 3.4. for 

both the FeSb2 and FeSb3 compounds. For both the as-deposited and interdif-

fused samples, only short-range order is seen, while long range order from crys-

talline compounds is only seen in the annealed samples. Interestingly, the PDFs 

obtained on the as deposited and interdiffused samples are very similar, as 

shown by the difference curves. This implies that the local structure of both the 

FeSb3 and FeSb2 precursors does not change significantly during the initial 

heating of the samples, and that significant interdiffusion between the Fe and 

Sb layers happens during deposition, at room temperature, or during the re-

moval of the films from the substrate. For all four amorphous samples, a series 

of sharp peaks are seen at the lowest r-values, showing well-ordered local struc-

tures. The distance at which a highly ordered structure terminates is consistent 

between both the FeSb2 and FeSb3 precursors with the last high-frequency peak 

at ca. 5.1 Å followed by an intense, broad signal centered at 6.4 Å and regular 

oscillations to higher r. The domain size for mid-range order is given by these 

oscillations and appears very similar between the two precursors. The pair-dis-

tances and r-value where sharp peaks disappear in the amorphous FeSb3 sam-

ples correspond well to the residuals in the fit of the crystalline FeSb3 sample 

(Figure 3.3.), indicating that some amorphous FeSb6 octahedra remain. No sim-

ilar correlations with the residuals of the FeSb2 residuals could be made. Cur-

sory examinations of the PDFs show that the local structure in the two precur-

sors are different from one another, as might be expected from the difference in 

average composition. 
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Figure 3.4. Pair distribution functions of as-deposited (AD), interdiffused (ID), 
and annealed samples generated from total scattering data. The difference 
curves between the as-deposited and interdiffused samples (AD-ID) show little 
structural change during the diffusion process, as seen by the small deviations 
from the lines showing zero change. 

 

Panes a and b of Figure 3.5. show PDFs of the crystalline samples over-

laid with their as-deposited amorphous precursors, with each curve normalized 

to its maximum intensity. The FeSb3 data show large similarities between amor-

phous and crystalline PDFs in the local structure. Up to about 5 Å, vestiges of 

the FeSb3 product can be seen, with contributions from excess Sb also clearly 

manifested by a sharp narrow peak at 2.9 Å. This suggests the presence of 

amorphous Sb with only very short range order as well as corner sharing FeSb6 

octahedra without the regular orientation found in the crystalline structure. By 

comparing to the atomic pairs giving rise to PDF peaks from the crystalline 

phases (summarized in Table 3.2.), the structural motifs in the amorphous 

samples can be identified, as illustrated in Figure 3.5.c. The relative intensities 

of peaks from Sb pairs within an octahedron (3.5 Å for pairs along an edge and 

5.1 Å through the center, indicated in Figure 3.5. by blue and red, respectively) 

are approximately the same between as-deposited and annealed FeSb3 samples. 

However, the pair intensity around 4.5 Å, which corresponds to multiple pairs 
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across octahedra in the crystalline structure, is broad and low in the amor-

phous PDF due to the large number of inter-octahedral distances which may 

occur between disordered corner-sharing octahedra (Figure 3.5.d., shown in 

magenta). Notably, no vestiges of edge-sharing octahedra, which produces mul-

tiple pairs at 3.2 Å as seen in the crystalline FeSb2 sample (see Table 3.2.), are 

apparent in the FeSb3 precursor. The similarity between the FeSb3 precursor 

and product helps explain the low nucleation temperature. The data suggest 

that reorientation of existing corner-sharing octahedra into a regular extended 

network is the predominant mechanism of crystallization on heating. 

Conversely, Figure 3.5.a. shows that the PDF of the precursor that nucle-

ates to FeSb2 does not match the crystalline phase well, even at low r. In fact, 

while relative intensities differ, the local structure only shows motifs of corner-

sharing Fe-Sb octahedra similar to the FeSb3 phase and precursor. This is clear 

in Figure 3.5.c., where the PDFs from the two precursors are overlaid. Compar-

ing precursors, a large increase in the relative amplitude of the 2.6 Å peak cor-

responding to the Fe-Sb distance (in FeSb6 octahedra) is apparent and attribut-

able to the increased iron content in the sample. The 3.2 Å pair-distance, which 

corresponds to adjacent edge-sharing octahedra translated along the c-direction 

in FeSb2, is not observed in the as-deposited PDFs. If the marcasite edge-shar-

ing motif were present in the FeSb2 precursor, additional intensity manifested 

as a narrow peak would be expected at this pair distance, due to every atom 

having an inter-octahedral pair along the translation direction. This is observed 

in the crystalline FeSb2 PDF, but from the lack of this feature in the precursor 

we conclude edge sharing is absent. Without edge-sharing, the FeSb2 sample 

does not have enough antimony to fully coordinate each iron octahedrally. How-

ever, the similarities in the as-deposited precursor and interdiffused precursor 

PDFs suggest that Fe in FeSb3 and Sb in FeSb2 are completely coordinated on 

deposition. With this in mind, the presence of a small signal at the characteris-

tic 2.9 Å Sb-Sb pair distance in the FeSb2 precursor is at first puzzling. How-

ever, this pair distance is explained by inter-octahedral Sb dimers. Notably, 

both the FeSb2 and FeSb3 precursors exhibit an inherent stability in the FeSb6 

structural unit. Unlike the FeSb3 sample in which existing building blocks pri-

marily need to arrange themselves into a regular structure, extra iron must be 
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incorporated into the edge-sharing marcasite structure of FeSb2. The large dif-

ferences between the precursor and product help explain the higher energy re-

quired to nucleate the FeSb2 phase relative to FeSb3. 

 

 

Figure 3.5. PDFs of precursors overlaid with annealed samples for (a) FeSb2 
and (b) FeSb3. (c) Overlaid FeSb2 and FeSb3 precursors show similar peak posi-
tions but varying relative intensities. Peak positions corresponding to pairs in 
the FeSb3 PDF are shown by colored triangles. (d) Similar pair distances from a 
disordered arrangement of corner sharing octahedra are shown in correspond-
ing colors. 
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Previous investigations have suggested that nucleation of metastable 

products from well-mixed precursors is driven by forcing a local environment of 

similar structure and composition to the kinetic phase. Somewhat surprisingly, 

the results summarized in Figure 3.5. indicate that even without the excess Sb, 

the local structure of the FeSb2 precursor is more similar to FeSb3. It then ap-

pears that in these systems there is an inherent kinetic favorability towards 

adopting a structure similar to the metastable phase, which can then be nucle-

ated in precursors with appropriate composition. The idea that similarity in the 

local structure of a precursor to the phase that it nucleates is something we 

may be able to extend to other metastable solid-state compounds, and suggests 

in general that homogenous amorphous intermediates might be very useful 

synthetic tools. Probing local structure of reaction intermediates using PDF 

might allow for rational changes to be made in composition to avoid local struc-

ture similar to known compounds and/or to tune composition of the amor-

phous precursor to obtain local structures similar to targeted compounds to 

promote nucleation. The observation of the same structures in both as-depos-

ited and interdiffused states illustrates the stability of the corner-sharing FeSb6 

structural motif. If this approach proves to be general for the formation of meta-

stable structures from amorphous reaction intermediates, it will be especially 

valuable when combined with ab-initio calculation of stable local structures. 

 

3.1.5. Conclusions 

Local structural similarities of homogeneous amorphous iron and anti-

mony precursors to a skutterudite crystal help to nucleate a low-temperature 

metastable FeSb3 phase. Significant interdiffusion of the precursors, which are 

deposited in layers on the Å scale, occurs even at room temperature, leading to 

a nucleation-limited crystallization event. On deposition, constituents form an 

amorphous network of corner-sharing FeSb6 octahedra similar to AX3 struc-

tures, even in precursors with a 1:2 Fe:Sb ratio. This indicates preferential low-

temperature formation towards the metastable phase is somewhat contrary to 

previous reports, where it was surmised the excess Sb drove the reaction to-

wards the metastable product. The higher temperatures necessary for the crys-
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tallization of the thermodynamic FeSb2 phase are most likely due to a major re-

orientation of local environment. In further studies it will be insightful to inves-

tigate this further and see at which point compositional disagreement over-

comes the observed preference to form the corner-sharing FeSb6 octahedra. 

Continued use of PDF analysis in solid-state systems nucleated from ho-

mogeneous amorphous precursors will provide insightful information correlat-

ing precursor structures with final products. This will be particularly helpful in 

systems where many phases could form or systems wherein ternary or quater-

nary phases form instead of binary phases. Ultimately, similar analysis could 

be potentially used as a screening mechanism to optimize a precursor to have 

local structure similar to a predicted, but unrealized compound. Given the ap-

propriate synthetic control, a range of structural and compositional “designed 

precursors” could be formed and their local structures tested for motifs of a tar-

geted phase. This would provide valuable insight, greatly enhance the likelihood 

of synthetic success, and reduce the number of required experiments when ex-

ploring additional unknowns.  

3.2. Demonstration of thin Film Pair Distribution Function analysis 

(tfPDF) for the study of the local structure of amorphous and crystalline 

thin films 

 

3.2.1. Introduction  

Thin films are fundamental in applications from electronics to catalysis 

to tribology in structural materials.42–45 Even in basic science the thin-film ge-

ometry allows the generation of structures that are normally metastable. For ex-

ample, advanced methods in thin film preparation such a chemical vapor depo-

sition,46,47 atomic layer deposition48 and molecular beam epitaxy49 have in re-

cent years made it possible to prepare new, advanced functional materials with 

applications in e.g. thermoelectrics, semiconductors, and multiferroics.42,50–52 

Compounds, which are unstable or metastable in the bulk state, can by means 

of these atomic-layer engineering techniques be prepared as thin films, opening 

for a whole new realm of materials. When films are single crystalline, powerful 



 57 

methods such as Coherent Bragg Rod Analysis53 and x-ray standing wave anal-

ysis54 can yield significant quantitative information about the ordered structure 

at the surface.55 However, if the films are nanocrystalline or amorphous the sit-

uation becomes much more difficult.  Here we describe a straightforward ap-

proach to obtain quantitative atomic pair distribution functions (PDF) from 

nanocrystalline and amorphous thin films yielding important local and interme-

diate-range structural information from films. 

When preparing thin films (10-1000 nm), the precursor compounds are 

typically deposited on a much thicker substrate of e.g. Si, SiO2 or Al2O3. This 

sample geometry challenges the conventional methods for structural analysis 

using x-ray diffraction, as data collected using standard scattering configura-

tions (i.e. Debye-Scherrer or Bragg-Brentano setups) are dominated by scatter-

ing from the substrate. To avoid this, grazing incidence (GI) x-ray diffraction 

methods are generally applied for thin film structure analysis.56 GI measure-

ments are done with an incident x-ray angle close to the critical angle for total 

external reflection, which allows the beam to illuminate as much of the thin film 

as possible whilst minimizing penetration of the beam into the substrate, max-

imizing the signal from the film. However, not only are the experiments very 

challenging because of the very small critical angles for hard x-rays, the grazing 

incidence geometry complicates analysis of the data as angular dependent cor-

rections for the penetration depth and the amount of illuminated sample/sub-

strate must be made before quantitative information can be extracted. While 

e.g. Rietveld analysis can been done after careful corrections and provide valua-

ble structural insight,57,58 most of the x-ray analysis done for thin films is quali-

tative and used mainly for identification of crystalline phases by considering the 

Bragg peak position. This approach is not adequate to characterize e.g. the 

complex nanostructures present in modern materials, which may not possess 

long-range order.59 

 In recent years, PDF analysis has become a standard technique for char-

acterization of local structure and nanomaterials. PDF allows the extraction of 

structural information from amorphous, nanostructured and crystalline materi-

als, and PDF studies have led to a breakthrough in our understanding of mate-

rials structure and reactions in materials chemistry.60 For thin films, local 
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structural analysis could in the same way help to understand things such as 

the crystallization processes and modifications from bulk structure of films. 

However, for PDF data corrections, the grazing incidence geometry highly com-

plicates the data analysis.61 So far, to the best of our knowledge, PDF has there-

fore not been successfully applied to analysis of thin films in grazing incidence. 

We therefore set out to develop a method that can be used to do quick, routine 

PDF analysis of thin films, here referred to as tfPDF. We show that by using 

high flux, high energy x-rays from third generation synchrotron sources, stand-

ard normal incidence total scattering measurements can be used to extract reli-

able PDFs from thin films on amorphous substrates. The measurements can be 

done in transmission through both the sample and the substrate using the 

standard rapid acquisition PDF (RA-PDF) setup with a large area detector,36 

making tfPDF readily available to use for a range of thin film materials.  

Here, we have investigated amorphous and crystalline FeSbx films to il-

lustrate the feasibility of tfPDF. Deposition of alternating ultra-thin Fe and Sb 

layers on a flat substrate gives an amorphous film, which upon annealing crys-

tallizes to form FeSb2 or FeSb3, depending on the thickness of the alternating 

Fe/Sb layers as described by Williams et al.31 The FeSb3 skutterudite structure 

is metastable, and consists of corner-sharing FeSb6 octahedra only (Figure 

3.6.A.), whereas the thermodynamically stable FeSb2 structure has both corner 

and edge-sharing octahedra.24 (Figure 3.6.B.). We set out to use tfPDF to study 

the local structure in the as-deposited films that leads to the metastable phase 

FeSb3, to study the diffusion between the Fe/Sb layers, and the relation be-

tween the precursor layering and the final, crystalline product. Our studies give 

new insight into the crystallization of the metastable FeSb3 phase and open for 

a range of new investigations of film materials. 
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Figure 3.6. Crystal structure of A) FeSb3 and B) FeSb2 (4 unit cells). The red 
polyhedra show FeSb6 octahedra, with Sb marked as blue spheres in the cor-
ners. 

 

3.2.2. Experimental details 

3.2.2.1. Preparation of FeSbx 

The FeSb3 samples were synthesized using layered deposition as de-

scribed in detail elsewhere.31 The Sb and Fe precursors were deposited on 170 

µm thick amorphous borosilicate glass slips using the Modulated Elemental Re-

actant (MER) synthesis method on a custom-built deposition system.62 Anti-

mony was deposited from a Knudsen effusion cell whereas an iron source was 

evaporated using an electron gun. A pressure below 5x10-7 torr was maintained 

during deposition. Deposition rates were monitored from quartz crystal micro-

balances and shutters installed above each source were sequentially opened 

and closed to achieve a layered precursor of the desired thickness. The deposi-

tion parameters were calibrated to allow for targeted composition ratios and bi-

layer thicknesses between Fe and Sb. After precursor layer deposition, the films 

were annealed in nitrogen for 30 minutes at 200 °C. Compositional data was 

obtained with an electron probe microanalyzer, using a thin-film technique. 

Two sets of samples were prepared with varying Fe/Sb ratio, as listed in Table 

3.3. The as-deposited samples are marked A for amorphous (i.e. sample 1A and 

2A) whereas annealed samples are marked C for crystalline (i.e. 1C and 2C).  
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Table 3.3. Sample list 

Sample 

name 

Structure Layer thick-

ness 

Fe/Sb ra-

tio 

Film Thick-

ness 

1A As-deposited, amor-

phous 

Fe: 1. 1Å 

Sb: 17.0 Å 

0.21 3600 Å 

1C Annealed, crystalline Fe: 1. 1Å 

Sb: 17.0 Å 

0.21 3600 Å 

2A As-deposited, amor-

phous 

Fe: 1.0 Å 

Sb: 12.0 Å 

0.33 3600 Å 

2C Annealed, crystalline Fe: 1.0 Å 

Sb; 12.0 Å 

0.33 3600 Å 

!!
 

3.2.2.2. tfPDF measurements 

Figure 3.7. shows the setup used for normal incidence thin film PDF 

measurements. The films are mounted perpendicular to the beam in a simple 

sample holder for flat plate samples, using Kapton tape to hold the film and 

substrate in place. The holder was mounted and centered in the goniometer so 

that the beam passes through the substrate before hitting the thin film. 

Data collection was carried out at the XPD beamline (ID28) at the NSLS-

II synchrotron, Brookhaven National Laboratory, USA, with a photon wave-

length of 0.235 Å and a Perkin Elmer amorphous silicon detector, measuring 40 

by 40 cm2 i.e. in a setup similar to the usual RA-PDF geometry, making the ex-

periments especially straightforward.36 In addition to the thin films, the scatter-

ing pattern from a clean substrate of the same materials was measured, allow-

ing background subtraction to be done. This approach has not been possible 

before because of the very low signal-background ratio in the signal. However, 
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through the use of the high-fluxes of hard x-rays available at modern synchro-

trons, and of the latest data reduction methods that allow very dilute signals to 

be successfully separated from large host signals,63 we show that this approach 

is now possible. 

Calibration of detector distance, beam center etc. was carried out using a 

standard CeO2 sample on Kapton tape, mounted in the sample holder. Data col-

lection took 15 minutes for each sample, and was made with careful correction 

for the dark current signal. Total scattering data were also measured for refer-

ence samples of powders of amorphous and crystalline FeSb3 packed in a Kap-

ton capillary as described in the supplementary information.  

 

 

 

 

Figure 3.7. Setup used for tfPDF measurements. The x-ray beam hit the sub-
strate before the film. 

 

3.2.2.3. Data analysis 

The PDFs were obtained from the 2D data using SrXgui64 and PDFgetX338 

in xPDFsuite65 as described below, with Qmin=0.8 Å-1, Qmax=17.5 Å-1, Qmax-instrument 
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= 17.5 Å-1 and rpoly = 0.9 Å. Modeling of the PDFs was done using PDFgui,39 

where the FeSb3 structure was refined in space group Im-3,24 FeSb2 in space 

group Pnnm and Sb in space group H-3m. For each phase, a scale factor was re-

fined along with unit cell parameters and symmetry allowed atomic positions. 

Isotropic Debye-Waller factors were also refined for Fe and Sb in each phase 

and correlated motion was taken into account by including the delta2 parame-

ter in the model. The coherence lengths of the crystalline phases were modeled 

by applying a spherical envelope to the model after taking instrumental damp-

ening into account by modeling of a bulk Ni standard.  

 

3.2.3. Results and discussion 

3.2.3.1. Obtaining the tfPDF: Amorphous and crystalline FeSb3 films 

We firstly illustrate that reliable PDFs can be obtained from thin films on 

amorphous substrates, using the data obtained for sample 1A (amorphous) and 

sample 1C (crystalline) as an example. Figure 3.8.A. (black line) shows the total 

x-ray scattering pattern from sample 1C, i.e. a 360 nm thin crystalline FeSbx 

film. The thickness of the borosilicate substrate was 170 µm and thus, at nor-

mal incidence, the irradiated FeSbx film only corresponds to ca. 0.21% by vol-

ume of the total sample in the x-ray beam. Accordingly, the scattering pattern 

shows only a very weak signal from the crystalline film while the majority of the 

scattered intensity is from amorphous borosilicate.  In order to isolate the con-

tribution from the FeSbx film, the substrate contribution was determined by 

measuring the scattering pattern from a clean substrate, shown by the red line 

in Figure 3.8.A. The Bragg peaks from the film are barely visible on top of the 

large substrate contribution, but become clearer after subtracting the back-

ground signal as shown in the difference between the two signals, plotted as the 

green curve in Figure 3.8.A. As shown on the expanded scale in Figure 3.8.B., 

sharp Bragg peaks from FeSb3 are visible in the difference curve to Q-values at 

ca. 10 Å-1. 
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Figure 3.8. A) Normalized data collected for sample 1C (black) and a clean sub-
strate (red). The difference curve is shown in green and is plotted on an ex-
panded scale in B. C) Normalized data collected for sample 1A (black) and the 
clean substrate (red), and difference between the two (green), also shown on an 
expanded scale in D. 
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The scattering pattern from the amorphous precursor to the crystalline film is 

plotted in Figure 3.8.C-D., again showing the total signal including the back-

ground contribution (C), as well as the weak signal from the amorphous FeSb3 

precursor (D). Here, only diffuse scattering features from the amorphous film 

are present, but despite this, careful background subtraction was still sufficient 

to isolate the broad peaks from the Fe/Sb signal. 

PDFs from the total scattering data were obtained using PDFgetX3 in 

xPDFsuite.65 The program uses an ad hoc data reduction algorithm, making 

fast, reliable data processing possible as individual corrections for e.g. Compton 

scattering and fluorescence are not needed. Instead, corrections for all long 

wavelength effects in the total scattering signal are accounted for by polynomial 

fitting as described in detail in Juhas et al.38 This approach to data analysis 

makes PDFgetX3 very well suited for data where background scattering consti-

tutes the majority of the total signal as was previously shown for nanoparticles 

in very dilute systems.63 Apart from correcting for the physical effects as men-

tioned above, the polynomial fitting applied in PDFgetX3 can eliminate small dif-

ferences between the measured background (in this case the clean substrate) 

and the background contribution in the sample pattern, if they are sufficiently 

low frequency oscillations. For standard PDF samples, these effects are on a 

much smaller scale than the actual signal in question and do not pose any 

problems in the resulting PDF. However, for small signals, such as from thin 

films on thick substrates, deviations such as these can be on the same scale or 

larger than the signal from the sample and dominate the signal after taking the 

difference. The PDFgetX3 algorithm proves to be a powerful method to make 

these corrections that are crucial to obtain a reliable PDF from the film. 
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Figure 3.9. A) Reduced total scattering function F(Q) for sample 1A (black) and 
1C (red). B) Reduced pair distribution function G(r) for 1A (black) and 1C (red). 
C) G(r) obtained for clean substrate. D) Comparison between the tfPDF for sam-
ple 1A and similar sample, where the data were obtained for a sample meas-
ured in a standard capillary. 
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The corrected, reduced total scattering functions ! " = "(% " − 1) are 

shown in Figure 3.9.A., for the crystalline and amorphous FeSb3 thin films. The 

substrate contribution was subtracted in Q-space and the F(Q) thus represents 

the signal just from the film. Clear signals with a very low noise level even at 

relatively high Q-values are seen for both the crystalline and amorphous sam-

ples. The good data quality leads to high quality PDFs for both the amorphous 

and crystalline films as shown in in Figure 3.9.B., which were obtained by Fou-

rier transforming the Q-range from 0.8-17.5 Å-1. The PDF arising from a clean 

substrate is seen in Figure 3.9.C. Here, a very intense peak is observed at ca. 

1.7 Å, corresponding to the Si-O bond distance in the borosilicate glass. Inade-

quate background subtraction would lead to a peak at this position in the final 

PDF (or a negative peak when over-subtracting), but no clear features are seen. 

Minor ripples are observed which may arise from small difference between the 

substrates, but these are easily distinguished from the film signal. 

Figure 3.9. compares the tfPDF for the amorphous FeSb3 samples ob-

tained from a similar sample, measured in a standard PDF setup as described 

in the supplementary information. Clearly, the tfPDF reproduces the features 

from the high quality capillary PDFs, showing that reliable PDFs are being ob-

tained even from the 360 nm thick thin-films. The tfPDF has a higher noise 

level than that from the capillary data, but the structural features can easily be 

distinguished. Minor differences between peak intensities are observed in the 3-

5 Å range, but this may be real, due to differences in Fe/Sb composition. 

 

3.2.3.2. Structures in the FeSbx system: Sample 1 

After having established the reliability of the tfPDFs by comparison with 

the PDF from a capillary setup, structural information can be extracted from 

the data. Firstly, we analyze the tfPDFs obtained from sample 1C, i.e. the an-

nealed film discussed above. Figure 3.10.A. shows a fit of the FeSb3 phase to 

the PDF from the crystalline film. The fit gives a RW value of 32%, showing large 

discrepancies between the model and data. By including crystalline Sb into the 

model, the Rw value is reduced to 22%, and as can be seen in Figure 3.10.B., 

the model now agrees well with the experimental PDF in the high r-range. The 
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refined parameters are given in Table 3.4.  and the unit cell parameters and 

atomic positions are within the uncertainties for the expected values for Sb and 

FeSb3.  The fit shows that the crystalline fraction of the sample contains 73% 

FeSb3 and 27% of elemental antimony. However, Figure 3.10.B. also illustrates 

differences between the experimental and calculated PDF in the low r region. 

Especially, the high intensity of the peak at 2.9 Å is not fitted well, and smaller 

disagreements are also seen up to ca. 7 Å. Considering the structure of the Sb, 

the peak at 2.9 Å corresponds to the shortest Sb-Sb distance as illustrated in 

the supplementary information. The PDF thus indicates that apart from crystal-

line FeSb3 and Sb included in the model, a fraction of amorphous Sb with only 

short-range order is also present in the sample. This agrees well with the ele-

mental composition: In the total sample, the Fe/Sb ratio is 0.21 whereas in the 

model including only the crystalline phases, this ratio is ca. 0.30.  

The range of structural coherence of both the crystalline Sb component 

and the FeSb3 phases are 7-8 nm i.e. well beyond the separation of the initial 

amorphous Fe/Sb layers, which alternated at ca. 20 Å. While Williams et al. de-

scribe that the layered structure is preserved in the amorphous phase; the lay-

ering is thus largely removed after annealing despite the remaining amorphous 

Sb component. 

  

Figure 3.10. Fits (red) to the experimental PDF from sample 1C (black). The 
green line shows the difference curve. A) Only FeSb3 included in the model. B) 
FeSb3 and crystalline Sb included in the model.  
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Table 3.4. Refined parameters for the crystalline  

RW 23.7% 

Weight percent, FeSb3 73% 

a, FeSb3 9.185 Å 

Crsytallite size, FeSb3 7.7 nm 

ySb, FeSb3 0.337 

zSb, FeSb3 0.159 

Uiso, Fe, FeSb3 0.0174 Å2 

Uiso, Sb, FeSb3 0.0171 Å2 

Weight percent, crystalline Sb 27% 

a, Sb 4.299 Å 

c, Sb 11.291 Å 

Crystallite size, Sb 6.7 nm 

z, Sb 0.767 

Uiso, Sb, Sb 0.0098 Å2 

delta2* 4.08 Å 

*The delta2 parameters for the two phases, expressing correlated motion, were 
constrained to the same value. 

 

Having analyzed the structure of the crystalline 1C film, we can now use 

the structure models to gain a better understanding of the atomic arrangement 

in the as-deposited precursor film, i.e. 1A. Figure 3.11.A. shows a comparison 

between the low r regions of the tfPDFs from both films. Interestingly, the local 

structure of the amorphous film is closely related to the crystalline structure as 

the first 4 main peaks overlap. By considering the atomic pairs leading to the 

peaks in the crystalline structure, we can identify the local structural motifs in 

the amorphous film. As seen in Figure 3.6.A., the FeSb3 structure consists of 
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corner sharing FeSb6 octahedra, making up the full skutterudite lattice. A cut-

out of the FeSb3 unit cell is shown in Figure 3.11.B. with selected interatomic 

distances marked and listed in the supplementary information. The nearest 

neighbor Fe-Sb distance in FeSb3 is ca. 2.6 Å, (marked in magenta in Figure 

3.11.B.) which is seen as a clear peak in the PDFs from both the crystalline and 

amorphous phases. After deposition of the individual Fe/Sb layers, the metals 

thus immediately diffuse at room temperature to form an alloyed, amorphous 

structure between the Fe/Sb layers rather than staying as separate phases. The 

nearest Sb-Sb distances in the FeSb3 structure, arising from the edge length in 

the FeSb6 octahedra make up the broad peak centered at 3.5 Å, marked in or-

ange in Figure 3.11.B. Again, this peak can clearly be found in the PDF from 

the amorphous sample, largely overlapping with that from the crystalline PDF. 

The longest Sb-Sb distance in the FeSb6 octahedra is at 5.1 Å (marked in 

green), where a small peak can also be identified, thus illustrating how all intra-

octahedral distances can be found in the PDF from the as-deposited sample. 

   

  

Figure 3.11. A) Comparison between the PDF obtained from sample 1A (red) 
and sample 1C (black). Pairs contributing to the low r region are indicated with 
errors, and color coded with the bond illustrated in B) showing a cut-out from 
the FeSb3 unit cell, with corner-sharing FeSb6 octahedra. Iron is shown in red 
and antimony in blue. 
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The intense PDF peak at 2.9 Å originates from the shortest Sb-Sb dis-

tances in the elemental Sb phase as described above. This peak is clearly pre-

sent in the amorphous phase, so apart from the interdiffused Fe-Sb structures, 

the amorphous phase appears to also contain a fraction of amorphous Sb not 

atomically coordinated to Fe. In crystalline Sb, the 2nd nearest neighbor Sb-Sb 

distance is at 3.34 Å, and from the theoretical PDF from Sb metal, this peak 

should have ca. 80% of the intensity of the peak at 2.9 Å. However, this peak is 

not clear in the PDF from sample 1A, indicating that the local structure of the 

amorphous Sb fraction in the as-deposited sample does not resemble that of 

crystalline Sb, where the atoms are arranged in layers of 6-membered rings.  

As indicated in Figure 3.11.A., the PDF peak at 4.3 Å in crystalline FeSb3 

arises from a number of inter-octahedral correlations, one shown in red in Fig-

ure 3.11.B. A broad peak in the same region is seen in the PDF from the amor-

phous phase. In crystalline FeSb3, an inter-octahedral Sb—Sb distance marked 

in cyan in Figure 3.11.  furthermore gives rise to a weak peak at ca. 2.9 Å. How-

ever, compared with the Sb—Sb distance in crystalline Sb metal, this is only a 

minor contribution to the total PDF of the crystalline sample, and we cannot 

distinguish this from the elemental Sb—Sb peak in sample 1A.  

The observation of the existence of FeSb6 octahedra as well as amor-

phous Sb points to a structure where amorphous Sb structures with only short-

range order coexist with disordered, corner-sharing FeSb6 octahedra. The local 

structure of the amorphous precursor before thermal annealing thus highly re-

sembles that of the metastable FeSb3 phase, explaining the possibility to syn-

thesize it from the layered precursors.  

 

3.2.3.3. Structures in the FeSbx system: Sample 2 

Sample 2 was prepared with slightly lower antimony content than sample 

1. Figure 3.12. compares the PDFs from sample 1A and 2A, i.e. the two amor-

phous samples. While some of the peaks discussed above are also evident in the 

2A PDF, we also observe clear differences in the local structure. The first peak 
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at 2.6 Å again corresponds to the Fe-Sb distance in FeSb6 polyhedra and peaks 

from the Sb-Sb distances in the octahedra (at ca. 3.5 Å and 5.1 Å, see Figure 

3.11.) are also seen. Furthermore, a contribution at 2.9 Å is also present, corre-

sponding to the first Sb-Sb distance in metallic Sb as discussed above. How-

ever, compared to 1A, this peak is much less dominant, indicating a smaller 

contribution of Sb not coordinated to Fe. This agrees with the measured compo-

sitions, where the Fe/Sb is 0.33. We also see a difference in the width and posi-

tion of the peak at ca. 4.6 Å, which we above ascribed to correlations between 

the individual octahedra.   

 

 

Figure 3.12. Comparison between the PDFs from sample 1A (red) and 2A 
(black). 

 

The appearance of the PDF from sample 2P indicates that the corre-

sponding annealed sample 2C will contain a smaller Sb content than sample 

1C. This is confirmed when modeling the PDF, as a two-phase fit with FeSb3 

and Sb results in phase fractions of 99% and 1%, respectively, thus effectively 

suppressing the Sb phase completely. However, interestingly, the fit of the 

FeSb3 phase is still of poor quality, giving RW=35% and large deviations as seen 

in Figure 3.13. When introducing the thermodynamic phase in the phase dia-

gram, FeSb2, the fit improves considerably (Figure 3.13. giving RW of 25%. The 

refined parameters for this fit are given in Table 3.5. The refined phase fractions 

are 80% FeSb3 and 20% FeSb2, with the coherence length in the FeSb2 phase 
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being ca. 7 nm. The coherence length of the FeSb3 phase refines to ca. 50 nm, 

which is well above the reliable limit for size determination but indicates that 

this component forms very large crystallites. The lower Sb content in the pre-

cursor thus has two effects: Suppression of crystalline Sb while forming a phase 

mixture between the thermodynamic FeSb3 phase and the metastable FeSb2 as 

well as allowing the FeSb3 to grow into a bulk phase.  

 

Table 3.5. Refined parameters for modeling of sample 2C. 

RW 23.8% 

Phase fraction, FeSb3 73.2% 

Phase fraction, FeSb2 26.8% 

a, FeSb3 9.219 Å 

Particle diameter, FeSb3 47 nm 

ySb, FeSb3 0.334 

zSb, FeSb3 0.158 

Uiso, Fe, FeSb3 0.0073 Å2 

Uiso, Sb, FeSb3 0.0100 Å2 

a, FeSb2 5.836 Å 

b, FeSb2 6.572 Å 

c, FeSb2 3.221 Å 

Particle diameter, FeSb2 7.8 nm 

xSb, FeSb3 0.187 

ySb, FeSb3 0.357 

zSb, FeSb3 0.030 

uiso, Fe, FeSb3 0.0086 Å2 

uiso, Sb, FeSb3 0.0046 Å2 
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Figure 3.13. A) Fit of FeSb3 and Sb to the PDF from sample 2C. B) Fit of FeSb3 
and FeSb2 to the PDF from sample 2C. The experimental PDF is shown in black, 
the fit in red and the difference in green. 

 

3.2.4. Conclusion 

PDFs have been obtained from supported thin film samples, using nor-

mal incidence x-ray diffraction measurements in a standard RA-PDF setup. The 

use of high flux, high energy x-rays and careful background subtraction make it 

possible to get a clear scattering signal from amorphous, nanocrystalline and 

polycrystalline films down to a thickness of at least a few hundred nanometers, 

which by use of xPDFsuite and PDFgetX3 can be Fourier transformed into PDFs 

of very high quality.28  

All films studied were deposited on amorphous substrates, as this allows 

for simple subtraction of the substrate scattering signal without the need to 

mask intense, orientation dependent scattering signals from single crystal sub-

strates, e.g. silicon wafers. No angular dependent corrections are needed, as 

would be the case for grazing incidence measurements. By use of PDFgetX3, 

where ad hoc corrections for fluorescence, Compton scattering and any other 

non-structural effects are done, PDFs can be obtained quickly in a robust man-

ner. The thin films that have been studied here are all ca. 360 nm thick, but 
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PDFs from even thinner films may also be obtained, as long as careful back-

ground subtraction is done. 

The characterization of thin films has so far been limited by the need for 

grazing incidence techniques, which is still to be reported for PDF analysis. In 

some cases, the film can be isolated from the substrate and standard character-

ization techniques can be used, but most often, this is not possible due to the 

small mass of sample present as film. tfPDF thus opens the way for many new 

possibilities in materials characterization for thin films. As shown in the case of 

the FeSbx samples, tfPDF can be used to understand the relation between the 

local structure in amorphous films and the final crystalline product, which will 

help chemists in controlled synthesis of new, advanced materials, in thin film 

form. We now plan to use tfPDF for in situ studies, where a much deeper under-

standing of processes like this (diffusion, nucleation, crystallization) can be un-

derstood. While the time resolution is limited by longer counting times required 

for the small amount of sample present in the beam, the new, high flux beam-

lines at 3rd generation synchrotrons suitable for PDF analysis will allow these 

studies to be feasible. 

 

3.3. Bridge 

 Chapter III explores formation mechanisms of metastable materials from 

amorphous precursors and presents tfPDF, a new analytical technique for the 

investigation of local structure in intact thin films without removal from the 

substrate. These experiments were carried out in the FeSbx chemical system, 

which is highly chemically relevant as both low and medium temperature ther-

moelectric materials. The remaining chapters move on to discuss composite 

thermoelectric materials formed from similar precursors as presented in chap-

ter III, but where the diffusion-controlled synthesis allows for precisely layered 

nanocomposite structures to be formed. 
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CHAPTER IV 
 

PHASE WIDTH OF KINETICALLY STABLE ([PbSe]1+δ)1(TiSe2)1 
FERECRYSTALS AND THE EFFECT OF PRECURSOR COMPOSITION ON 

ELECTRICAL PROPERTIES 
 

 The work in this chapter was accepted on 2015-04-30 for publication in 

Journal of Alloys and Compounds (DOI: 10.1016/j.jallcom.2015.04.228) and is 

coauthored with Daniel Moore, Jeffrey Ditto, and David Johnson. Daniel Moore 

assisted with sample preparation and structural, compositional, and electrical 

characterization. Jeffrey Ditto assisted with collection of scanning tunneling 

electron microscopy data. David Johnson is my advisor and I am the primary 

author. 

4.1. Introduction 

The high temperatures and long times used in most solid state reactions 

lead to equilibrium products and an equilibrium distribution of impurity 

atoms.1,2 This leads to the common practice of reporting the properties of a new 

compound based on the measurement of a single sample, ideally a single 

crystal that has been structurally characterized. For metallic compounds with a 

narrow phase width, subsequent reports usually agree with the initial report, as 

metallic properties are usually not significantly affected by small changes in the 

concentration of defects or impurities except for at low temperatures.3 For 

semiconducting compounds properties often vary significantly between 

preparations, especially preparations from different groups and even when 

using near equilibrium synthesis conditions, as small differences in in impurity 

levels and/or defects can significantly vary carrier concentration.3 An especially 

large variation in properties is observed when there is a range of compositions 

within which compounds are stable.4 As the number of elements within a 

compound is increased or the structure becomes more complicated, obtaining 

agreement on properties becomes even more difficult due to the varying 

distributions of the elements within the ideal composition, impurity atoms, and 

defects of different crystallographic sites. 

The challenges in determining the base properties of ternary intergrowth 

compounds is especially difficult. An example of this is ternary misfit layer 
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compounds of the form ([MX]1+δ)(TX2)n, which consist of an intergrowth of a rock 

salt structure, MX, where M = Sn, Pb, Bi, or RE, and a transition metal 

dichalcogenide, TX2 where T = Ti, V, Cr, Nb, or Ta.5 The chalcogen, X, is either S 

or Se. The misfit parameter, δ, represents the difference in area per cation of 

the two different structures, which is required to accurately describe these 

compounds since the individual MX and TX2 layers will not necessarily have the 

same area per formula unit in the plane perpendicular to the stacking direction 

of the intergrowth. The integer n (n = 1, 2) may be included to express 

compounds with multiple TX2 layers per MX. Electrical properties for nominally 

the same compound vary considerably from group to group, even for metallic 

samples. For example, the resistivity of single crystals of ([PbS]1.18)(TiS2) as 

reported from different groups6,7 differs by a factor of 5 and the resitivity of 

([SmS]1.18)(TaS2) as reported from different groups8,9 varies by a factor of 7. The 

differences in properties of these misfit layer compound crystals is thought to 

be a consequence of different growth conditions used during vapor transport 

leading to different amounts of incorporated iodine, other impurities, and/or 

defects, as has been widely reported for binary constituents.5,10,11 Recently a 

new synthesis approach was shown capable of preparing intergrowth 

compounds ([MX]1+δ)m(TX2)n, where m and n, which respectively denote the 

integer number of rock salt bilayers and dichalcogenide trilayers, can be 

systematically controlled by design of a precursor.12 The structures are different 

from misfit layer compounds in that there is rotational (turbostratic) disorder 

between basal planes of the constituents and hence no systematic cooperative 

structural distortion of the layers. The synthesis route to these compounds is 

kinetically controlled and the kinetics of the formation reaction should 

determine the concentration and distribution of defects and impurity atoms. 

It is important to understand the reproducibility of the kinetically 

controlled synthesis of these turbostratically disordered misfit layer 

compounds, or ferecrystals, before considering the difference between 

compounds with different stacking sequences, because small deviations in the 

product could potentially cause the properties to vary more within different 

preparations of the same compound relative to compounds with different m and 

n values. Here we investigate two sets of ([PbSe]1+δ)1(TiSe2)1 samples prepared 
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from a range of different starting precursors and deposited over several months. 

Although a large variation of precursor composition was used, we find that they 

crystallize to nominally the same product, with a small range of c-axis lattice 

parameters (defined to be along the stacking direction of the intergrowth). It is 

difficult to determine the precise composition of the majority compound as 

different trace amounts of secondary phases may form, and so the 1+δ 

nomenclature is used to discuss compounds synthesized as part of the current 

contribution. We find that electrical behavior in the form of resistivity values, 

Seebeck coefficients, and carrier densities vary from sample to sample and 

cluster into discreet regions within deposition cycles. The changes in electrical 

properties correlate with changes in overall composition. There is a narrower 

distribution in both the composition and the transport properties of compounds 

formed from precursors deposited in the same equipment cycle. To minimize 

contribution from repeatability limitations, the most meaningful comparisons of 

trends in ferecrystal properties as m or n are varied can be made with 

precursors from the same deposition cycle. 

 

4.2. Materials and methods 

Thin films of the amorphous precursor were deposited on silicon and 

quartz substrates using a custom built physical vapor deposition system.13 

Selenium was deposited using a Knudsen effusion cell, whereas lead and 

titanium were deposited using electron beam guns. The thickness of each 

elemental layer was monitored using quartz crystal microbalances. Background 

pressure inside the chamber during film deposition was maintained between 

5x10-8 and 5x10-7 torr for all reported samples. The first set of depositions 

produced thin films that were approximately 50 nm thick, which consisted of 

repetitions of the layer sequence Ti-Se-Pb-Se. A second set of samples, prepared 

much later than the first set, was made with a total thickness of 35 nm. The 

precursors were calibrated to contain an excess of 2% Se, as this has previously 

been shown to produce samples with more intense diffraction patterns.12 The 

thickness of each layer in the repeating sequence was calibrated via a method 

described previously such that each layer self assembles into a 
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([PbSe]1+δ)1(TiSe2)1 unit cell upon annealing.14 Samples were annealed on a hot 

plate at 350 °C in a nitrogen atmosphere. Electron-probe microanalysis (EPMA) 

was used to determine the composition of the thin film samples.15 Specular X-

ray diffraction data were collected using a Bruker D8 Discover diffractometer 

with Cu-Kα radiation. 

Cross-section specimens for high angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM) investigations were prepared 

with in-situ lift-out and gallium focused ion beam (FIB) milling methods on an 

FEI Helios 600 Nanolab. All specimens were thinned to 300nm using wedge 

premilling methods16 with a 30kV accelerating voltage. The subsequent thinning 

process was done at 5kV until 100 nm thick, followed by thinning 2kV to 40 nm 

thick, with final thinning at 1kV to a final thickness of 20 nm. HAADF-STEM 

was carried out on an FEI Titan 80-300 using a 50um condenser aperture, 

300kV accelerating voltage, 0.050 nA of current, and a 240 mm camera length. 

Thin film specimens for electrical transport properties were deposited on 

insulating fused silica substrates in order to minimize the influence of the 

substrate. Films were deposited through a shadow mask in a cross geometry, as 

well as a rectangle. Four-probe electrical resistivity (ρ) was measured from 20 K 

to 300 K in a custom closed-cycle He cryo-system using the van der Pauw 

technique on the cross.17 Electrical leads were attached using pressed Indium 

contacts. The Seebeck coefficient was measured on the rectangular portion. 

One half of the sample was cooled slightly below room temperature (ΔT<2K) and 

voltages were measured through thermocouples at each side as the temperature 

equilibrates. The Seebeck coefficient is determined from the slope of applied 

measured voltage difference as a function of temperature difference, corrected 

for the Seebeck coefficients of the copper-constantan thermocouple leads. All 

reported electrical data correspond to the in-plane direction. 
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4.3. Results and discussion 

 

4.3.1. Structural characterization 

Sample precursors were prepared in two deposition cycles to synthesize a 

precursor which yields a sample after annealing that is crystallographically and 

compositionally in agreement with the previously reported turbostratically 

disordered ([PbSe]1.16)1(TiSe2)1.14 Once a parameter-space close to optimal was 

found, the depositions were fine-tuned by varying the elemental layer 

thicknesses of the precursor, which also changes the compositions of the 

precursors. The full width at half maximum of the (002) Bragg reflection was 

used between depositions as a fast indicator of 1:1 sample quality. Data 

collected on the samples prepared for this study that formed the 1:1 compound, 

as well as the previously reported sample, are summarized in Table 4.1. 

Low angle specular diffraction patterns are shown in Figure 4.1 and 

indicate little variation is present within deposition cycles. The small variation 

of critical angle from 0.62 to 0.67 degrees in 2-theta shows little change in 

density and no correlation was able to be drawn between small shifts in critical 

angle and composition. Fitting of the high-frequency Keissig oscillations to the 

Bragg equation modified for refractive contributions results in film thicknesses 

within 2.5 nm of the targeted values of 50 nm for set A and 35 nm for set B. 

The angle at which the Kiessig fringes can no longer be resolved is an indicator 

of the roughness of the films. The increased smoothness seen in the second set 

of samples is due to diffraction data being collected from samples on a Si 

substrate as opposed to fused quartz. The changes in rate of decay of the 

Kiessig fringes between samples is most-likely due to a variance in different 

substrate’s native oxide thicknesses. The first Bragg Peak is seen in all low-

angle scans. The peak centers of gravity vary little from 7.27 degrees, 

corresponding to a d-spacing of 1.215 nm; and the (001) reflection of the 1:1 

ferecrystal. 

 



 80 

 

Figure 4.1. Low-angle diffraction patterns collected from samples. Data from 

the previously reported 1:1 compound14 (labelled Moore 1:1) is shown as the 

bottom curve in each pane. (a) Set A. The first loss of intensity near the critical 

angle is a substrate artifact. The critical angle is taken from the second loss. (b) 

Set B. The apparent amplitude difference is due to the stacking. The range of 

normalized data is comparable for all samples.  

 

High angle coupled θ-2θ diffraction patterns collected normal to the film 

surface (Figure 4.2.) also show little variation between samples or deposition 

cycles. The c-lattice parameters of all samples are within 0.001 nm; of the 

average value and within 0.25% of the previously reported value for the 

([PbSe]1.16)1(TiSe2)1 ferecrystal. This small change in c-lattice parameter 

correlates weakly with composition changes, trending with the measured metal 

(Pb, Ti) to Se ratio. The increased FWHM of the samples from the second 

deposition cycle is due to fewer layers in the (00l) direction in which the 

crystallite size is limited by the thickness of the film. The lack of any (hkl) 

reflections with h, k ≠ 0 in a coupled out-of-plane geometry is characteristic of 

ferecrystal samples due to the crystallographic alignment of the samples with 

the substrate. The similarity of the diffraction patterns suggests a similar 

average structure for all of the samples. There is some variation in the relative 

intensities of peaks throughout both sets of samples, with the largest variations 

occurring on odd (00l) peaks in Pb-rich samples shrinking about 50% from the 

average relative intensity. These changes in relative intensity suggest a variation 

in the occupancy of specific locations reflecting the different compositions of the 

precursors. 
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Table 4.1. Summary of all samples as well as data from the previously reported 

1:1 compound14 (labelled Moore 1:1). Samples from the first deposition cycle, 

set A, were deposited in order from a1 to a9. Samples from the second 

deposition cycle, set B, were deposited in order from b1 to b4.  

Sample 

c-lattice 

parameter 

(nm) 

295K resistivity 

(mΩ-cm) 

Carrier 

density 

(1021cm-3) 

Composition 

Pb/Ti Pb/Se Ti/Se 

a1 1.2181 0.93 2.12 0.95 0.36 0.38 

a2 1.2173 1.32 1.76 1.05 0.39 0.37 

a3 1.2181 0.83 2.04 0.88 0.33 0.38 

a4 1.2167 1.41 1.72 1.10 0.38 0.35 

a5 1.2169 1.21 1.71 0.99 0.37 0.37 

a6 1.2181 1.45 1.72 1.07 0.38 0.36 

a7 1.2170 1.18 1.82 0.96 0.36 0.37 

a8 1.2176 1.78 1.86 0.95 0.37 0.38 

a9 1.2173 1.14 2.1 0.98 0.36 0.36 

b1 1.2188 1.97 1.44 0.92 0.40 0.44 

b2 1.2193 3.3 1.07 1.16 0.46 0.40 

b3 1.2199 3.01 1.16 1.08 0.43 0.40 

b4 1.2194 2.15 1.29 0.91 0.40 0.43 

Moore 1:1 1.2174 3.00 2.10 1.16 0.37 0.32 
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Figure 4.2. High angle specular diffraction patterns collected from samples in 

(a) set A and (b) set B. Data from the previously reported 1:1 compound14 

(labelled Moore 1:1) is shown for comparison as the bottom curve in each pane. 

The apparent difference in scales is due to a reduced range in the pane with 

fewer curves.  

 

4.3.2. Electrical characterization 

Electrical measurements are more sensitive to impurity phases or local 

crystalline defects than X-ray measurements. Prior literature suggests charge 

transport occurs mainly in the conduction band of the transition metal 

dichalcogenide constituent.14 We expect changes in impurity and defect 

concentration would alter the carrier density of the semimetallic TiSe2. Table 

4.1. contains the room temperature resistivity of the samples. The composition 

and resistivity data from both sets of samples cluster in nearby but discrete 

regions of parameter space, distinct also from the previously published 

compound. The variation of the extrema from the average value is 40% within 

sample set A and 30% within sample set B. There is a factor of 2 difference 

between the averages of the resistivity values of the two data sets, with the 

extrema from the entire experiment spanning a 400% change. The resistivity 

values were found to trend with the Pb/Se ratio, as shown in Figure 4.3. The 

variation in room temperature resistivity (400%), however, is smaller than that 

reported for different single crystals of misfit layer compounds (500-700%). This 

is somewhat surprising, as the misfit layer compound crystals were grown 

under nearly equilibrium conditions while the self-assembly of our precursors is 

a kinetic process. This suggests that in the self-assembly, the excess material is 

incorporated as inclusions rather than being dispersed as local defects 
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throughout the film. The larger variation between depositions also suggests that 

it would be better to make samples with different m and n in the same set to 

correlate nanoarchitecture with properties. 

 

 

Figure 4.3. Sample resistivities and carrier concentrations. Values cluster in 

two regions for the two sample sets and loosely trend with the overall Pb/Se 

ratio measured by EPMA, which is at best only proportional to the composition 

of the ferecrystal. The lines are provided as a guide to the eye.  

  

Temperature dependent resistivity data, collected for most of the 

compounds from set A, are shown in Figure 4.4. The temperature dependence 

is very similar for all samples and indicates metallic behavior. The temperature 

dependence of the electrical resistivity can be modeled using the Bloch-

Gruneisen equation, following the Debye model for a metal, where scattering of 

carriers is by phonons, 
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where !$ is the residual resistivity, ℜ is the electron-phonon interaction 

constant, and '( is the debye temperature. Two of the fits (for a1 and a2) are 

shown alongside the data in Figure 4.4. with good agreement to the data. The 
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closest comparison of temperature-dependent resistivity we can make is to the 

recently reported ([PbSe]1.16)(TiSe2)2 misfit layer compound analog.18 The 1:2 

misfit layer compound was previously reported to have a room-temperature to 

residual resistivity ratio of 18.8 whereas our 1:1 ferecrystals are all below 1.8. 

The very weak temperature dependence indicates a small electron phonon 

interaction, reflecting the lack of long range order found for compounds 

prepared by self-assembling designed precursors. This disorder, and the 

resultant lack of phonons, results in the low lattice thermal conductivity of 

ferecrystals. The variation of the residual resistivity with both sample set and 

composition is similar to that of the room temperature values, discussed above. 

There is evidence for a slight upturn in the resistivity at the lowest 

temperatures measured, but this upturn is smaller than previously reported.14 

 

 

Figure 4.4. Variable temperature resistivity data for select ferecrystal samples 

from set A. Solid lines are from Bloch-Gruneisen fits of samples a1 and a3 and 

show the samples follow a metallic behavior. 

 

To gain further information on the electrical properties, Hall coefficients 

were measured at room temperature for all samples. All samples exhibit a 

negative Hall coefficient indicating conduction via electrons, which is consistent 

with prior suggestions of charge donation to TiSe2 from PbSe. Following prior 

literature reports, the Hall coefficients were converted to carrier concentration 
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assuming a single band model.6 Carrier concentrations are reported for all 

samples in Figure 4.3. and in Table 4.1., and are shown as a function of 

temperature on a subset of samples (Figure 4.5.). Room temperature carrier 

concentration for each deposition varies by 15% from the average value and 

there is a factor of 1.5 between sets. Room temperature carrier concentration 

has a linear downward trend with cation impurity (Figure 4.3.), suggesting 

reduced donation of charge into the dichalcogenide layer. The variation of the 

carrier concentration with temperature may be a consequence of assuming a 

single band model to calculate carrier concentrations. A change in charge 

transfer with temperature would be expected and lead to the observed weak 

temperature dependence. 

 

 

Figure 4.5. Carrier concentration as a function of temperature for a subset of 

samples.  

 

Hall mobilities calculated from carrier concentration and resistivity 

measurements vary between 1.8 and 3.8 cm2 V-1s-1. The mobility increases with 

carrier concentration, which is unusual for doping because dopant atoms 

usually cause scattering. However, this is consistent with charge donation from 

PbSe to TiSe2, where conduction occurs in a location spatially separated from 

the dopant. The mobility decreases as the Pb/Se ratio increases, perhaps due to 

defects in the dichalcogenide layer from the excess rock-salt cation acting as 

scattering centers. 
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Seebeck coefficients were all negative, consistent with Hall coefficient in 

indicating that electrons are the majority carrier. The magnitude of the Seebeck 

coefficients vary by about 2.5 V µV K-1 within a set of samples with the values of 

each set clustered around averages 5 µV K-1 apart. As expected, the magnitude 

of the Seebeck coefficient increases as carrier density is reduced. If conduction 

from a single parabolic band with acoustic scattering is assumed, the carrier 

effective mass can be determined from the Pisarenko relationship19, 

 

3 = 856786
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where 3 is the Seebeck voltage, 78 is the Boltzmann constant, + is the 

elementary charge, ℎ is Planck’s constant, ;∗ is the effective mass, " is the 

absolute temperature, and = is the carrier concentration. The average carrier 

mass was found to be 4.4 ;? and 3.6 ;? for sets A and B respectively, both 

lower than calculated from data on the previously reported 1:1 compound (5.5 

;?). The variations in ;∗ indicate the band assumptions are imperfect in 

describing the ferecrystal as we change precursor composition. However, the 

relative insensitivity of the Seebeck coefficient to changes in carrier 

concentration from compositional modulation may bode well for future studies 

of using dopants to influence ferecrystal transport properties, for example the 

thermoelectric power factor.20 Coupled with the inherent tunability due to 

flexibility in synthetic control of the MER synthesis method for ferecrystals,21 

this could offer an additional degree of freedom in controlling the transport 

properties of these compounds. Figure 4.6. graphs the correlation between the 

effective mass as calculated from the Pisarenko equation as a function of the 

cation concentrations measured for each sample. The lowest effective masses 

correspond to samples with a high cation (Pb, Ti)/Se ratio, as expected from 

their reduction in carrier density. The magnitude of the Seebeck coefficient (all 

values were measured to be negative) is relatively insensitive to changes in the 

carrier concentration, as shown by the inset in Figure 4.6. The data from both 

set A and set B once again cluster into discrete regions, with the single data 
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point from the previously published compound in a different space as well. 

Moore also reported Seebeck measurements from three other data points with 

magnitudes of 66-69 µV K-1 , though no carrier concentration data was 

provided for these samples.14 This once again reinforces that systematic studies 

of ferecrystal compound stacking sequences would be best done within a 

deposition cycle. 

 

 

Figure 4.6. Effective masses determined from the Pisarenko relationship 

plotted against cation ratios for all samples and the previously reported 1:1 

compound14 (labelled Moore 1:1). A general trend of decreasing effective with 

cation concentrations is apparent. The inset shows the magnitude of the 

Seebeck coefficients as a function of carrier concentration. Symbol allocation is 

consistent between the main figure and inset.  

 

4.3.3. Defect characterization 

To gain further insight on any structural changes due to the variation in 

the composition of the precursors, and how they might influence the electrical 

properties discussed above, cross sections of two samples were prepared for 

STEM imaging. From Set A, sample a5 was chosen as its intermediate 

composition should be representative of the set. From Set B, sample b2 was 

chosen as it is the most Pb-rich sample in the study. STEM images of the 2 

samples are shown in Figure 4.7. The bright PbSe rock salt layers and dimmer 

TiSe2 dichalcogenide layers are visible in both samples. Surprisingly, the a5 
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sample shows a capping layer of PbSe at the surface, even though the 

composition from EPMA does not indicate excess Pb relative to the previously 

published ferecrystal. The excess PbSe appears excluded from the bulk 

compound and only appears on the surface. The highly Pb-rich b2 sample 

shows that excess lead is incorporated into the film, replacing the 

dichalcogenide layer in regions as PbSe inclusions. Unlike sample a5 where 

excess PbSe is excluded, defects are instead trapped during the growth of the 

crystal front. Even with the inclusions, the layering of the ferecrystal is not 

severely disturbed, hence the narrow range of c-lattice parameters still observed 

from the lead-rich samples. However, the difference in scattering power of PbSe 

defect regions relative to the TiSe2 helps to explain the previously noted changes 

in diffraction intensity between samples. Crystallization of excess lead first on 

the surface, then as nanoscale PbSe inclusions within the dichalcogenide layer 

also offers insight as to why the transport properties are not severely affected by 

changing the composition of the sample. Following behavior of well-known 

semimetallic and narrow band gap materials,4,22 one might expect a highly 

dispersed defect distribution to cause a severe perturbation to the transport 

properties of the ferecrystal relative to discrete inclusions of a wider band-gap 

compound. 

The MER deposition method ensures a similar composition throughout 

the film, so this implies that the buried excess lead is ‘pushed’ towards the 

surface prior to the formation of the ferecrystal. It remains to be seen if 

annealing conditions can be used to further promote exclusion of excess rock-

salt to the ferecrystal surface, enhancing purity without destroying the bulk 

metastable structure. Temperature ramps, Se vapor annealing, or excess dwell 

time are all avenues to explore. 
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Figure 4.7. HAADF-STEM images of sample a5 and b2. In both cases, excess 

PbSe can be seen on the surface. Regular, uninterrupted layering is visible in 

a5, whereas the highly lead-rich b2 sample shows excess lead incorporates 

itself as PbSe inclusions rather than dispersed Pb, however the global layering 

scheme is hardly interrupted.  

 

4.4. Conclusions 

Turbostratically disordered ([PbSe]1+δ)1(TiSe2)1 forms over a range of initial 

precursor compositions resulting in a very narrow range of c-axis lattice 

parameters. STEM images showed excess rock salt in a typical sample was 

excluded from the bulk and instead formed on the surface of the ferecrystals, 

and then eventually as nanoscale inclusions when the Pb content became high 

enough. The resistivity between samples was found to vary by a factor of two, 

with the change correlating with the Pb/Se ratio. The Seebeck coefficient was 

consistent within a set of samples prepared in the same deposition cycle. The 

unusual temperature dependence of the carrier concentration and unusual 

variation in the effective mass calculated from the Seebeck coefficients and the 

carrier concentration suggest a more complicated band structure than often 

assumed. The small change in electrical properties between ferecrystal samples 

relative to the large difference between reports of single crystals of misfit layer 

compounds, especially from a set of samples in the same deposition cycle, is 
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encouraging for future experiments that explore how properties vary as 

compounds with different values of n and m are prepared. 

 

4.5. Bridge 

 This initial work in exploring the ([PbSe]1+δ)1(TiSe2)1 compounds first 

reported by Moore14 establishes the degree by which structurally and 

compositionally unfavorable precursors affect the properties of the product. 

Much of the power in studying nanolaminates from designed precursors is the 

availability of phase homologies – similar structures that may be systematically 

and controllably changed. However, due to the kinetically controlled formation, 

one must be careful to consider the measurement of potentially varying defect 

distributions along with the changes in structure. The results of this chapter 

provide important insight moving forward with studying various families of 

nanoarchitectures within the ([PbSe]1+δ)m(TiSe2)n chemical system (Chapters V-

VII). 
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 CHAPTER V 
 

STRUCTURE-PROPERTY RELATIONSHIPS IN NON-EPITAXIAL 
CHALCOGENIDE HETEROSTRUCTURES: THE ROLE OF INTERFACE 

DENSITY ON CHARGE EXCHANGE 
 

 The work in the following chapter was accepted 2016-07-14 for 

publication in Nanoscale (DOI: 10.1039/C6NR04274K). It is coauthored by 

Jeffrey Ditto, Daniel Moore, and David Johnson. Jeffrey Ditto assisted with 

sample preparation for and collection of scanning tunneling electron 

microscopy data. Daniel Moore assisted with sample preparation and structural 

characterization. David Johnson is my advisor and I am the primary author. 

5.1. Introduction 

The discovery of graphene and its extraordinary properties has generated 

a significant interest in other 2D and quasi-2D materials, such as planar boron 

nitride, puckered-planar black phosphorous, and few-layer compounds such as 

transition metal dichalcogenides.1–3 Interest in designing properties with these 

‘nanosheets’ has segued into research on nanolayered heterostructures, which 

are made by stacking two or more distinct 2D materials together.4–6 By 

incorporating 2D layers into heterostructures, or even growing them onto a 

substrate rather than as a suspended layer, both the augmentation of existing 

properties has been observed as well as emerging behaviors absent from both 

their bulk and isolated analogues.4,7,8 Thus, the synergistic relationships 

between constituents due to their interfacial interactions can be used as a tool 

to effectively optimize functionality in heterostructures. Thermoelectric 

performance is an example of a material property which has can be enhanced 

by incorporating materials into both single-phase and heterostructure low 

dimensional environments.9–12 Unlike less-intimately mixed chemical systems 

low-dimensional heterostructures have significant interfacial areas relative to 

their volumes, which fundamentally changes the composite material’s behavior 

and stability. These effects can be due to exotic electronic coupling between 

constituents or in simpler cases large internal electric fields from charge 

exchange. An example is in nanometer length scale semiconducting 
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heterojunctions, such as quantum dots or epitaxial superlattices, where size 

and hence interface/volume ratio directly influences the electronic structure of 

the nanocomposite material.13–15 These emerging behaviors show that simplified 

physical models typically used to describe constituent interactions in bulk 

materials are distinctly different to systems mixed at the atomic scale. 

Heterostructures comprised of non-epitaxial nanosheets offer the opportunity to 

study and build models for nanocomposite systems in a characterizable planar 

geometry while introducing structural change in a systematic fashion at the 

unit-cell scale and outside of epitaxial growth requirements.  

Self-assembled heterostructure nanolaminates, which are made up of 

several iterations of a repeated heterostructure, have been recently reported in 

several material systems.16,17 One of the most heavily studied has been TiSe2 

layers interleaved with MSe (M=Sn, Pb, Bi) rock-salt like bilayers.18–20 The PbSe-

TiSe2 based family of these structures has been previously used as a platform 

for studying how systematic nanoscale structural changes affect the 

composite’s thermoelectric performance.21–23 These can be described by the 

general formula for a single repeat of the heterostructure, ([PbSe]1+δ)m(TiSe2)n, 

where 1+δ is the misfit parameter that describes the difference in formula units 

per layer per unit area of the two constituents, and m and n are the number of 

layers of each constituent per repeating unit. Here, we investigate the case 

where m=n (here forward referred to as m) and 1≤m≤4, effectively changing the 

PbSe-TiSe2 interface density of the heterostructure nanolaminate while 

maintaining the global composition. Contrary to the expectation from the rigid 

band model previously used to describe charge transfer between the layers, we 

observe a marked decrease in mobile carrier density with increasing m, and 

attribute this loss to reduced charge transfer between constituents due to band-

bending in thick layers. 

 

5.2. Materials and Methods 

Heterostructures were crystallized on 100 Si and fused SiO2 substrates 

by heating designed precursors consisting of a repeating sequence of several 

vapor-deposited elemental layers as described previously.24 Ti and Pb layers 
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were deposited from electron guns and Se layers from a Knudsen cell (all 

elemental sources >99.99% pure). The substrates were sequentially exposed to 

each source, building each precursor from the bottom up. Each (TiSe2)m 

structure consisted of m Ti-Se repeats and each ([PbSe]1+δ)m structure consisted 

of m Pb-Se repeats. This sequence was repeated until the precursor was on the 

order of 50 nm thick. The precursors were calibrated such that each bilayer 

contained the correct amount of material to nucleate either a single TiSe2 

trilayer or a single PbSe bilayer, with a slight excess of Se to account for loss 

due to crystallizing in an open environment. Precursors were heated at 350 °C 

for 30 minutes in an N2 environment to self-assemble each heterostructure 

nanolaminate. The process of calibrating the heterostructure precursors has 

been discussed in detail elsewhere.24 

All structural measurements were made on samples deposited on Si 

substrates. Out-of-plane diffraction patterns were taken with parallel beam Cu-

kα radiation from a commercial diffractometer in a locked-coupled theta/2-

theta geometry. In-plane diffraction patterns were also collected with with Cu-

kα radiation but in a grazing-incidence geometry with the source elevated 0.5° 

from the sample plane and the detector elevated 4° from the sample plane. High 

angle annular dark-field scanning transmission electron microscopy (HAADF-

STEM) images of the m=4 compound were collected using a probe aberration 

corrected FEI Titan 80-300 TEM/STEM (300kV, 120 mm camera length, Cs<1 

um). HAADF-STEM images of the m=3 compound were collected on an FEI 

Titan 80-300 TEM/STEM (300kV, 240 mm camera length, Cs=1.2 mm).  Cross-

sectional lamellae for STEM were prepared using an FEI Helios 600 Nanolab 

dual-beam FIB and thinned using wedge premilling methods.25 

Electrical measurements were made on samples deposited on fused SiO2 

substrates through a shadow mask forming a van der Pauw cross pattern. 

Indium contacts were used for both resistivity and Hall measurements. All 

measurements were made sourcing a current ≤0.001 A and Hall measurements 

were made in a field between 0 and 16 kG. Seebeck coefficients were measured 

at room temperature using two sets of type T thermocouples. Half of the sample 

was cooled (ΔT≤2K) before measuring the voltage between like-material 

thermocouple leads as a function of ΔT. Each slope was corrected for the 
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Seebeck coefficient of the metal with which it was measured, with values 

measured on Cu and Constantan agreeing to <1 µV K-1. 

 

5.3. Results 

5.3.1. Structure 

A homologous series of ([PbSe]1+δ)m(TiSe2)m heterostructures were 

crystallized from amorphous thin film precursors designed such that the integer 

m of the final product systematically changed from 1 to 4. A single repeat of 

each heterostructure is schematically shown in Figure 5.1. To facilitate 

analytical characterization each precursor was designed to form several repeats 

of the heterostructure, creating a nanolaminate thin film during a low 

temperature anneal. Out-of-plane diffraction patterns of the ([PbSe]1+δ)m(TiSe2)m 

nanolaminates are shown in Figure 5.2. Due to the layered nature of the 

precursor, the intergrowths crystallize with highly textured layers parallel to the 

substrate so only 00l peaks are observed in the out-of-plane diffraction 

patterns. Indexing the reflections and calculating the c-axis lattice parameters 

for each m leads to the observation that the c-axis lattice parameter 

systematically increases by 1.215(6) nm as m is increased (shown in the inset of 

Figure 5.2.). This systematic increase is slightly smaller than the c-axis lattice 

parameter of previously published m=1 samples,18 and close inspection of 

Figure 5.1. shows a slight shift of the overlapping peaks (highlighted by dashed 

boxes) to lower angle of the m=1 diffractogram compared to the higher m 

samples. ([PbSe]1+δ)1(TiSe2)1 has a larger unit cell than the systematic increase 

because the m=1 nanolaminate is made entirely of PbSe bilayer and TiSe2 

trilayer interfaces, whereas the m>1 heterostructures all incorporate additional 

layers into an existing block of like material – either an additional bonding 

bilayer in the PbSe structure or a van der Waals gap in the TiSe2 structure. 
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Figure 5.1. Schematic of ([PbSe]1+δ)m(TiSe2)m heterostructure nanolaminates for 
for 1≤m≤4. Each structure has the same composition and only one interface per 
repeating unit, but decreasing interface density with increasing m. 

 

 

Figure 5.2. Out-of-plane diffraction patterns for ([PbSe]1+δ)m(TiSe2)m 
nanolaminates for 1≤m≤4. The outlined peaks correspond to the adjacent 
indices of the same color. The inset shows the c-lattice parameter, which also 
corresponds to the PbSe-TiSe2 interface density in the out-of-plane direction, as 
a function of m. 

 

Because out-of-plane diffraction scans only contain information 

regarding the atomic planes parallel to the substrate, in-plane diffraction 

patterns were also taken to verify the structure of the constituent layers and are 
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shown in Figure 5.3. All nanolaminates show similar diffraction patterns, with 

peak positions and relative intensities being similar across samples. The peaks 

can be indexed as 2D powders of hk0 reflections from the parent PbSe and 

TiSe2 compounds (space groups Fm-3m and P-3m1, respectively). From these 

reflections the in-plane lattice parameters of the constituents crystallized in 

each compound are determined and reported in Table 5.1. along with the c-

lattice parameter and calculated compositional misfit parameter. As shown by 

the inset of Figure 5.3., for each constituent a decrease in the full-width at half-

maximum of the peaks is observed with increasing m, indicating the in-plane 

crystallite size increases with m. Impurity phases are also seen, especially in 

the m=2 nanolaminate. However, the signal is small relative to the majority 

compound. The diffraction patterns and calculated parameters indicate that the 

constituent structures are consistent as m is increased and the compositional 

misfit parameter is 1.17 for all m, which is striking as the interplay between 

interface and volume energies often require structural distortions to reach a 

local minimum in free energy. 

 

Table 5.1. Lattice parameters and compositional misfit of PbSe and TiSe2 found 
in the ([PbSe]1+δ)m(TiSe2)m heterostructures. 

m c (nm) a-PbSe (nm) a-TiSe2 (nm) 1+δ 

1 1.215(1) 0.6137(1) 0.357(1) 1.17 

2 2.4232(6) 0.6134(3) 0.357(1) 1.17 

3 3.6323(5) 0.6140(1) 0.357(1) 1.17 

4 4.8723 (9) 0.6139(2) 0.357(1) 1.17 
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Figure 5.3. In-plane diffraction patterns for ([PbSe]1+δ)m(TiSe2)m nanolaminates 
for 1≤m≤4. Peaks correspond to PbSe (Fm-3m) and TiSe2 (P-3m1) hk0 planes, 
showing the nanolaminates crystallize as 2D powders of these phases. Inset is 
the full-width at half-maximum (FWHM) of the PbSe (220) and TiSe2 (110) 
peaks. The systematic decrease is indicative of increasing crystallite size. The 
m=2 sample shows traces of an impurity phase alongside the majority 
compound. Calculations from the measured lattice parameters indicate a 
formula-unit mismatch (1+δ) of 1.17 between PbSe to TiSe2 for all m. 

 

To further characterize the nanolaminate structures, HAADF-STEM 

images were taken of the m=3 and m=4 members as shown in Figure 5.4. The 

HAADF intensity is sensitive to the Z-contrast of the atoms in the layers, so the 

PbSe layers are much brighter than the TiSe2 layers. The left-most m=4 image 

shows the thickness of the film in its entirety. Regular layering is present 

throughout the sample. Ten ([PbSe]1+δ)4(TiSe2)4 repeats are present as opposed 

to the eleven repeats deposited in the precursor, most likely due to surface 

oxidation and/or a loss of material during the self-assembly process. The right 

images show higher magnification of the layers where the bright spots correlate 

to atomic columns. The various patterns of bright spots indicate changing zone 

orientations and highlight a rotational misregistration between the non-

epitaxial constituents. 

The structural characterization shows that each product shares similar 

global structure and stoichiometry, consisting of interleaved blocks of PbSe and 

TiSe2 with a compositional misfit (1+δ) of 1.17 due to the differences in basal 
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plane area per formula unit. However, the local structure and composition 

varies between products. As m is increased the thickness of the constituent 

blocks, and hence the c-axis lattice parameter increases while the interface 

density within the laminate structure decreases. 

 

 

Figure 5.4. HAADF-STEM images of ([PbSe]1+δ)m(TiSe2)m nanolaminates for m=3, 
4. The leftmost image shows 10 ([PbSe]1+δ)4(TiSe2)4 structures, which indicates a 
loss of one ([PbSe]1+δ)4(TiSe2)4 repeat unit from the precursor with 11 repeats 
and is believed to occur on annealing. The high-magnification right images 
show changing lattice faces between constituents highlighting the rotational 
misregistration in the layers. 

 

5.3.2. Transport 

The normalized temperature dependent in-plane resistivity values for the 

four ([PbSe]1+δ)m(TiSe2)m compounds are shown in Figure 5.5. The room-

temperature normalization factors are given in Table 5.2. The resistivity values 

systematically increase as m is increased. All samples show a decreasing 

resistivity as they are cooled, with an upturn below 100 K. The magnitude of 

the ratio between the room temperature and minimum resistivity systematically 

increases with m. In metals, the resistivity generally increases with temperature 
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due to electron-phonon interaction. The larger constituent blocks allow for more 

coherent vibrational modes, and hence more carrier scattering as phonon 

modes are activated. The upturn at low temperatures, which has be attributed 

to correlated electron behavior and/or localization in 2D systems,26 

systematically moves to lower temperatures until the m=4 structure, at which 

point the temperature of the resistivity minima increases again. Previous work 

indicates conduction occurs within the TiSe2 layers by charge donated from the 

PbSe. Given the heterostructures have constant compositions and only the 

interface density varies, results from prior studies suggest that the carrier 

concentration and carrier type should not change as m increases. However, 

carrier mobility might be expected to increase with increasing m due to the 

larger constituent blocks and reduced interfacial scattering. The trend in the 

resistivity data is inconsistent with expectations from prior studies of TiX2 

chalcogenide intergrowth compounds.20,22,27 

 

 

Figure 5.5. In-plane temperature-dependent resistivity for ([PbSe]1+δ)m(TiSe2)m 
nanolaminates with 1≤m≤4. Each curve is normalized to the room temperature 
value (see Table 5.2.). The size of the data points is a conservative estimate of 
the error in the measurement. Between 100K and room temperature, resistivity 
generally increase with temperature, as expected for metallic behavior. In this 
range the relative change in resistivity with temperature increases with m due 
to increasing phonon scattering. The upticks below 100K are attributed to 
electron localization. 
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Table 5.2. Room-temperature in-plane transport properties of 
([PbSe]1+δ)m(TiSe2)m heterostructures. Estimates of error are given in parentheses 
for the last digit reported. 

m 

 

RH 

(10-11Ω-cm G-1 

) 

ne 

(1021cm-

3) 

S 

(µV K-

1) 

ρ 

(10-5Ω-m) 

S2ρ-1 

(10-4WK-2m-

1) 

µ 

(cm2V-1s-1) 

1 "2.7(1)( 2.3(1) "57(3) 1.5(1) 2.2(3) 1.8(1) 

2 "3.3(1)( 1.9(1) "78(3) 2.1(1) 2.9(3) 1.6(1) 

3 "4.5(1)( 1.4(1) "85(3) 2.4(1) 3.0(3) 1.9(1) 

4 "8.3(1)( 0.75(10) "89(3) 3.0(1) 2.6(3) 2.8(1) 

 

To gain insight into the resistivity changes, temperature-dependent Hall 

coefficients were measured and room-temperature values are shown in Table 

5.2. A linear V/B response was observed for all samples and temperatures and 

negative Hall coefficients suggest transport is dominated by n-type conduction. 

Hall coefficients were converted to carrier concentrations using a single band 

model, which are shown in Figure 5.6. The carrier densities consistently 

decrease as m increases, contrary to the constant value expected from prior 

studies. The carrier concentration steadily decreases with temperature until ca. 

150 K. Around this temperature the carrier concentration begins to decrease 

faster with T, suggesting a reduction in mobile carriers is responsible for the 

low-temperature resistivity increases that are seen in Figure 5.5. The rate of 

carrier loss decreases with both m and room-temperature carrier concentration. 

The temperatures of the accelerated carrier loss do not appear to trend with m 

and are higher than the resistivity upturn temperatures. An increase in 

resistivity due to carrier reduction would be expected to compete with a 

decrease due reduced phonon scattering, which may account for the difference 

in temperatures between these observations. 

Room-temperature carrier concentration consistently decreases with m 

and is shown in Table 5.2. and the right-axis of Figure 5.7. Because previous 

work showed that thick TiSe2 blocks readily accept charge from a single PbSe 
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bilayer,22 the decreased carrier density observed in the high m samples of the 

present study suggests that doping efficiency from PbSe decreases with layer 

thickness. The unexpected decrease in carrier density explains the resistivity 

increase. Table 5.2. also shows the electron mobility calculated from the single 

band carrier density and resistivity. The mobility generally increases as m 

increases, with the m=2 sample having a lower value presumably due to the 

presence of trace impurity phases (seen in the in-plane XRD data) that reduce 

the mobility below the value of a phase-pure sample. Reduction in mobility 

would be expected from the thinner layers, due to the high interface densities 

that truncate a structure. On the other hand, increasing dimensionality of 

layered compounds might drastically alter the band structure, and hence the 

mobility of either or both constituents as well.7 Decoupling the interplay 

between defects and nanostructure in kinetically stabilized heterostructures, 

and how these affect the properties, is an ongoing area of active research.28,29 

 

 

Figure 5.6. In-plane temperature-dependent carrier concentration for 

([PbSe]1+δ)m(TiSe2)m nanolaminates with 1≤m≤4. The size of the data points is a 

conservative estimate of the error in the measurement. The carrier 

concentration consistently decreases with increasing m. The decrease appears 

to accelerate at lower temperatures. This behaviour is qualitatively indicated by 

the dashed lines and black arrows, which are both added to serve as a guide to 

the eye. 
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In parabolic conduction bands of band mass m*, the Seebeck coefficient 

is inversely related to the carrier density.30 ([PbSe]1+δ)1(TiSe2)n nanolaminates 

have been previously shown to roughly follow this trend.22 The higher mobility 

and lower carrier concentrations suggest that raising m might be an efficient 

means to optimizing the thermoelectric performance of the heterostructures. 

Figure 5.7. shows the room temperature Seebeck coefficients and carrier 

concentrations for the ([PbSe]1+δ)m(TiSe2)m nanolaminates as a function of m. In 

agreement with the Hall coefficients and previous measurements on 

([PbSe]1+δ)m(TiSe2)n compounds the Seebeck coefficients are negative, indicating 

electrons dominate the transport. The Seebeck coefficient consistently increases 

in magnitude with m, though the differences in value between the m=2, m=3, 

and m=4 heterostructures is small, increasing from -78 to -85 to -89 µV K-1 as 

m is increased. The power factor generally increases along with the Seebeck 

coefficient with the exception of the m=4 sample, which has an appreciable 

increase in resistivity but negligible change in Seebeck coefficient over both the 

m=2 and m=3 samples. Changing the interface density of the ([PbSe]1+δ)m(TiSe2)m 

heterostructures does not appear to significantly raise the power factor relative 

to other changes to the nanostructure such as increasing the number of TiSe2 

layers. However, a more complicated layering structure that combines the 

effects of increased mobility from the m=n heterostructure family and the high 

Seebeck coefficient from the m=1 with high-n heterostructure family is an 

obvious next step. Further enhancement of the thermoelectric transport in 

([PbSe]1+δ)m(TiSe2)n and other nanolaminates with similar structure might be 

achieved by introduction of f electrons into the structure, which are well known 

to introduce sharp features into the density of states and significantly 

enhancing the Seebeck coefficient.31 In the bottom-up synthesis employed here, 

this might be possible either with chemical substitutions with mixed-valence 

rare-earth elements within the rock-salt layers or by intercalation of the 

dichalcogenide.32,33 
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Figure 5.7. Seebeck coefficients (left axis, red diamond symbols) and carrier 
concentrations (right axis, blue triangle symbols) of ([PbSe]1+δ)m(TiSe2)m 
nanolaminates for 1≤m≤4. The size of the data points is a conservative estimate 
of the error in the measurement. The Seebeck coefficient systematically 
decreases and appears to be saturating with increasing m. The decreasing 
carrier concentration with m is not expected from the rigid-band model. 

 

5.4. Discussion 

As defect-free bulk compounds, both PbSe and TiSe2 are narrow gap 

semiconductors with direct and indirect band gaps, respectively. However, 

defects in TiSe2 often result in finite filling of the conduction band.34 PbSe has 

been extensively researched due to its size-tunable band gap in quantum-

confined systems.13 Previous studies of intergrowth compounds between these 

constituents suggest the heterostructures have type II broken-gap band 

alignment such that the bottom of the TiSe2 conduction band falls below the top 

of the PbSe valence band.27,35 The difference in the chemical potential of 

electrons (µ) within the layers will result in charge exchange from the valence 

band of PbSe into the conduction band of TiSe2. This partial filling and 

emptying of the bands serves to spatially separate electrons and holes into the 

TiSe2 and PbSe layers, respectively. The band-bending diagrams in Figure 5.8. 

illustrate this behavior. 
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Figure 5.8. Schematic of proposed band-bending that occurs in the 
heterostructures. The low interface density of the high m samples leads to the 
valence (conduction) band of PbSe (TiSe2) crossing back over the chemical 
potential as the bulk band positions are re-established, which does not occur in 
the low m samples with high interface density 

 

In light of these considerations, the reduced carrier density in 

([PbSe]1+δ)m(TiSe2)m can be intuitively understood. The change in band positions 

relative to the chemical potential occurs at the PbSe-TiSe2 interfaces. For low m 

heterostructures these positions are approximately maintained, but as m 

increases the band positions will move towards the bulk values within the 

constituent layers and the exchanged charge will remain primarily at the 

interfaces, as shown in Figure 5.8. This limits the extent to which charge 

exchange is possible deep within the layers, lowering the average carrier 

concentration over the entire heterostructure. Thus, absent of other size-

induced changes to the electronic structure, the charge per interface should 

asymptotically increase with m and might be considered to be a natural size-

dependent parameter in the discussion of nanoscale heterostructures with 

similar band alignment. 

Within the framework of the charge per interface parameter, we can 

make insights as to why structurally similar misfit compounds have only been 

stabilized thermodynamically at high temperatures with m=1.36 The charge 

exchange creates two oppositely charged layers that attract, which can be 

thought of in similar terms to an ionic bond. The stabilization from the 

formation of an ionic bond depends on the ionization potential of the cation and 
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the electron affinity of the anion, which influence how much charge is 

transferred, as well as the separation distance and resulting coulomb potential, 

φ, between charged species. Lead chalcogenides have been observed to have low 

ionization potentials37 and TiX2 is well known to form intercalation compounds 

with both alkali and transition metals, which are stabilized by charge exchange 

between the electronegative chalcogenide ions and the intercalated metal.38 As 

the amount of intercalation increases the charge transfer from the intercalated 

ions reduces the TiX2 host lattice’s effective electronegativity, which limits how 

much charge can be intercalated into the system.39 A similar behavior should 

occur when considering stabilization of ([PbSe]1+δ)n(TiSe2)m heterostructures by 

charge exchange between the PbSe “cations” and TiSe2 “anions”.  

Charge exchanged in layered compounds is well known to reside at or 

near the interfaces.40 This forms the coulomb potential of the interlayer “ionic 

bond,” which is directly related to the energetic gain of its formation. Under a 

rigid band condition, as is often used for similar assemblies of nanosheets, the 

total coulomb potential (φtotal) between a volume of layers would be constant 

with m, but the potential across an individual interface (φinterface) would increase 

with m, as shown in Figure 5.9. by triangle markers. For the 1≤m≤4 

nanolaminates studied the charge per interface, calculated from the carrier 

density, generally increases with m (given by ne x c-lattice see Table 5.1. and 

Table 5.2.). However, as shown by Figure 5.9. the total coulomb energy is 

greatest in the m=1 structure, with a systematic decrease as m is increased, 

indicating the most stabilization from charge exchange. In the m=1 case, the 

bands will exhibit the least bending (i.e. be the most rigid) and thus maximize 

the degree of charge transfer that can be accommodated. This lowers the total 

electron energy relative to any higher m nanolaminate or the bulk constituents. 

These effects should also be taken into account when considering the 

stabilization of other nanolayered systems. The interlayer coulomb interaction, 

the degree of band-bending that can be accommodated in nanoscale layers, and 

the chemical potential difference of the constituents all play a role in the 

stability of 2D heterostructures. These will be important considerations as 

heterostructures with increased complexity and functionality continue to be 

made.(
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Figure 5.9. Calculated coulomb potential per interface (closed markers, solid 
lines) and per total volume (open markers, dashed lines) across PbSe-TiSe2 
interfaces. Data is presented both using the measured carrier densities from the 
1≤m≤4 nanolaminates (red diamond markers) and also assuming charge is 
separated in rigid-bands and normalized to the m=1 value from the data-derived 
calculation (blue triangle markers). 

 

5.5. Conclusions 

A series of ([PbSe]1+δ)m(TiSe2)m heterostructures were made with 1≤m≤4. In-plane 

and out-of-plane diffraction and HAADF-STEM investigations showed that the 

compounds consisted of intergrowths between PbSe and TiSe2. In-plane 

electrical transport measurements show all samples to be n-type conductors 

with carrier concentrations on the order of 1021 cm-3, and the carrier 

concentration decreases as m increases due to reduced charge exchange 

between the thicker layers. This behavior is explained by considering how the 

layers are stabilized and how the bulk band positions are restored far from the 

interfaces. Since mobility increases as m increases, when combined with further 

nanostructural control this form of ‘modulation doping’ may be an effective 

means of improving thermoelectric performance through obtaining higher power 

factors. These results highlight how in-plane electrical measurements can be a 

useful probe of the stabilization mechanisms of nanoscale layered structures by 

interaction in the out-of-plane direction. This is achieved through the use of a 
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homologous series of structures rather than using gated or other device 

geometries. Furthermore, the results show that these mechanisms may have a 

direct impact on the transport behavior of the composite structure. As research 

in heterostructures of 2D layers continues to progress towards the design of 

functionalized materials, interlayer interactions and accessible means of 

probing them will continue to be an important consideration. 

 

5.6. Bridge 

 As the interface density of compositionally identical nanolaminates of 

PbSe and TiSe2 is changed, the assumption of rigid bands does not appear to 

hold and the degree of inter-constituent charge transfer lessens. However, the 

nanoarchitecture was changed such that the smallest repeating unit in the 

structure was varied along with the interface density. The following chapter 

addresses this by implementing structural isomers that bury interfaces within a 

series of 8 layers while holding both the repeating length scale and composition 

constant. 
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CHAPTER VI 
 

BURIED INTERFACES IN THE UNIT CELL OF ([PbSe]1+δ)4(TiSe2)4 
NANOLAMINATE THIN FILMS AND THEIR EFFECT ON THE 

THERMOELECTRIC TRANSPORT PROPERTIES. 
 

At the time of writing the work in this chapter is unpublished, but a 

manuscript is planned and will be coauthored with Danielle Hamann, Jeffrey 

Ditto, Daniel Moore, and David Johnson. Danielle Hamann assisted with 

preparation, Jeffrey Ditto assisted with sample preparation for and collection of 

scanning tunneling electron microscopy data. Daniel Moore assisted with 

sample preparation and characterization. David Johnson is my advisor and I 

am the primary author. 

6.1. Introduction 

In molecular and especially organic chemistry, to some degree the local 

arrangement of atoms can be controlled by piecewise substitutions and 

kinetically favorable exchanges to an existing structure. On the other hand, 

rational control of the nanoarchitecture in solid-state materials is inherently 

difficult because not only must local coordination be controlled, but so too does 

the global arrangement into a particular extended structure.1,2 The necessary 

reaction conditions for driving solid-state diffusion at the reacting interfaces will 

typically bypass any tricks the experimentalist might play to drive the formation 

of a specific extended structure.3,4 In a sense and using the vernacular of 

molecular chemists, the reaction of solids is typically limited to ‘one-pot’ 

methods.5 Composite materials are one method by which structures, 

compositions, and properties of solids can be controlled.6–9 For example, 

miscibility gaps between compounds can be used to form nanocomposites of 

embedded inclusions of secondary phases within a host matrix.9 However, 

under typical growth conditions, there is still little opportunity for rationally 

tailoring the final composite structure at the nanoscale. 

Thermoelectric materials research is an example of a field that has seen 

significant progress come from the approach of making nanostructured 

composites.10 Designing thermoelectric materials over several length scales with 
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defects, dopants, or strained inclusions significantly reduces thermal 

conductivity, which is the denominator of the thermoelectric material figure of 

merit (zT). 9–11 By choosing appropriate materials, these structures can also be 

used to enhance the power factor, or the numerator of zT.11 However, at the 

nanoscale electronic transport properties are highly dependent on size and 

structure, which cannot be readily either controlled or probed in the bulk in a 

high-throughput manner. Further confounding, it is unknown how these 

features, which are directly responsible for the augmented behavior relative to 

their bulk counterparts, change with annealing and in a temperature gradient 

for long times - the environment of a thermoelectric device. The ability to 

reliably control the nanostructures within a host compound can provide subtle 

feedback as to these effects.  

It was recently shown that the constituent layers in ([PbSe]1+δ)m(TiSe2)m 

nanolaminates undergo little structural change as their sizes increase.12–14 This 

layered system thus serves as an ideal test case for probing the effects of size 

and interface density in nanocomposite materials absent of size-induced 

structural distortion. Because of the synthetic flexibility when making these 

nanolaminate materials, several homologous series of compounds can be 

systematically formed and studied while rationally controlling the nanoscale 

structure and composition.12,15–17 Here, we utilize structural isomers of layered 

([PbSe]1+δ)4(TiSe2)4 to systematically investigate the effects of introducing buried 

interfaces into 6 compounds that are identical in composition and with 

repeating structure length scales that vary by <0.05 nm. We find that the 

nanoscale interface density influences the transport behavior of the composite 

nanolaminate and that the structures with intermediate interface density 

exhibit a ~10% enhancement of the power factor over the endmembers, despite 

their global likeness both structurally and compositionally. This highlights the 

role that actively designing the nanoarchitecture of composite materials might 

play in properties optimization. 
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6.2. Experimental Methods 

Chemical precursors were made from vapor deposition of elemental 

layers onto silicon and silica substrates. Pb and Ti were evaporated from 

electron guns operating at 6 kV and Se from a Knudsen effusion cell. All source 

material was purchased from Alfa Aesar and >99.95% purity. Shutters above 

each evaporating source were programmed to sequentially open and deposit 

amorphous layers onto the substrates of appropriate thickness to nucleate 

either bilayers of PbSe (one-half rock salt unit cell thick) or trilayers of TiSe2 

(one transitional metal dichalcogenide unit cell thick). PbSe bilayers were 

deposited with a Pb-Se shutter sequence and TiSe2 trilayers with a Ti-Se 

shutter sequence. These sequences between layers were controlled such that 

the amorphous precursor layers resembled the structure of the targeted 

nanolaminate and repeated 11 times to build a film approximately 50 nm 

thick.18 Precursors were gently annealed at 350 °C for 30 minutes in an N2 

atmosphere to promote self-assembly into a crystalline nanolaminate. 

Locked-coupled θ-2θ out-of-plane diffraction data and grazing-incidence 

in-plane diffraction data were both collected using laboratory Cu-Kα radiation 

with parallel beam optics on a Bruker D8 Discover and Rigaku Smartlab, 

respectively. Grazing-incidence scans were carried out with an incident angle of 

1.0° and the detector 4.0° above the sample plane. Ab-initio reflectivity patterns 

from the idealized targeted structures were generated with the Bede REFS 

modeling software assuming bulk densities and 0.1 nm of roughness at all 

interfaces. High angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) data were collected using a probe aberration 

corrected FEI Titan 80-300 (300kV, 120 mm camera length, Cs<1 um).  Energy 

dispersive X-ray spectroscopy (EDS) data were acquired with a 2.3 ms dwell 

time per pixel and summed over several drift-corrected frames. Cross-sectional 

lamellae for STEM imaging were made using an FEI Helios 600 Nanolab dual-

beam FIB.19 

 Electrical measurements were carried out on a house built closed-cycle 

He cryostat using a 1.5 T magnet. Van der Pauw resistivities and Hall 

resistivities both were collected on cross-pattern films through Cu wires and In 

contacts. Reported values were calculated using thicknesses from reflectivity 
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measurements of the annealed films. Seebeck coefficients were also measured 

using a house built system. One-half of the film was cooled slightly and both S 

and ΔT were measured between two type-T thermocouples. 

 

6.3. Results 

6.3.1. Synthesis/Structure 

Crystallization of PbSe-TiSe2 nanolaminate structures from designed 

layered precursors results in crystallographically aligned 2D powders with the 

c-axis perpendicular to the substrate.20 The modulation waveform of the two 

constituents, a and b is defined by the thickness of each of the blocks and the 

stacking order (k). For example, k=44 for the stacking sequence aaaabbbb and 

k=3212 for the stacking sequence aaabbabb. While each repeating unit 

contains 4 layers of a and b, the stacking and hence the diffraction patterns are 

different due to the different varying electron density profiles along the stacking 

direction. In the convention used here, the largest PbSe component is given first 

and is in normal typeface whereas the TiSe2 is second in bold typeface. The 

atomically sharp interfaces between constituent structures results in k taking 

the form of a square-wave that represents cation density, electron density, or 

another property unique to each constituent. For the compounds prepared in 

this study, the modulation wavelength, !" (which can be expressed as the c-

lattice parameter for the nanolaminate), is approximately constant as each 

structure is made up of the same number and type of individual layers, with the 

only changes being the number of buried PbSe-TiSe2 interfaces (‘nodes’ in k) 

within the repeating structure. 

A schematic representation of the modulation waveforms, where we 

assume that the modulation wavelength is constant and that the interfaces 

occur along intervals of #$% , the specular out-of-plane, and the grazing incidence 

in-plane diffraction for each structural isomer is shown in Figure 6.1. From the 

k profiles it is seen that 221111 and 211211 profiles will have 5 interfaces 

within !", 3311, 3212, and 2321 profiles will have 3 interfaces within !", and 

the 44 profile has 1 interface within !". The positions of the 00l reflections 

remain relatively unchanged in the specular scan, due to the similar c-axis 
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lattice parameter between all nanolaminate structures. However, differences in 

the modulation waveforms result in 00l reflections with varying amplitude as 

the Fourier transform of the electron density is different for each structural 

isomer. This results in each isomer carrying a unique ‘fingerprint’ of relative 

peak intensities, observable even in the first few Bragg reflections. The 

measured patterns are compared with ab-initio theoretical curves from the ideal 

isomeric structures and assuming k consists of eight equal-width blocks 

summing to the thickness !" calculated from the Bragg peak positions. The low 

intensity reflections correlate well between the models and experimental data, 

with small deviations expected due to the simplicity of the models relative to the 

samples (the thickness of a Se-Ti-Se trilayer and a Pb-Se bilayer are not exactly 

equal and the electron density does not have abrupt changes). The small 

oscillations between Bragg peaks are a consequence of the finite number of unit 

cells in the films. One to two less fringes are visible between Bragg reflections in 

the measured data relative to the models indicating that layers (or parts of the 

top and/or bottom layers) are lost during the self-assembly of the precursors 

into crystalline samples. The value of !" (or c-lattice parameter of the 

nanolaminate) is consistent between all nanolaminates, with a repeat period of 

48.6(2) Å. Also shown in Figure 6.1, in-plane diffraction patterns support the 

formation of similar relative amounts of PbSe and TiSe2 between samples, as 

the relative intensities of reflections from each constituent is maintained across 

the suite of samples. The (110) peak from the PbSe structure is expected to be 

systematically absent from the Fm-3m rock-salt space group and can possibly 

be explained by a shift of the interfacial ions from special sites in the bulk rock 

salt unit cell, or if each sheet is unique, it can be indexed as the 2D wallpaper 

group p4gm wherein this reflection is allowed.21 The low intensity peaks above 5 

Å-1 in Q increase in intensity in samples with fewer buried interfaces, likely due 

to more nucleation events resulting in smaller crystallites in the thinner layers. 

To further confirm the stacking sequences, HAADF-STEM images were 

taken of all structural isomers, as well a high resolution EDS profile of the 2321 

sample, as shown in Figure 6.2. Rock-salt layers containing high-Z Pb show up 

as bright regions whereas TiSe2 layers are darker. Distinct bright atomic 

columns of atoms can be seen when looking down a crystallite’s zone axis. The 
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2321 nanolaminate has examples of layers looking down several zone axis of 

the structures, which highlights rotational disorder at interfaces within the 

structures. The images show that the nanolaminate films consist of precisely 

stacked layers with sharp planar interfaces between constituents, consistent 

with the persisting Kiessig fringes in Figure 6.1. All layering schemes can be 

clearly identified, and as expected the unit cells between the 6 are practically 

the same. Intensity traces from the EDS signal of both Pb and Ti taken from the 

2321 sample are shown at the the top of Figure 6.2 and further confirm the 

composition and structure of the layers, with distinct maxima visible from the 

planes of atoms as expected by layers with the 2321 modulation. 

 

 

Figure 6.1. (top-left) Schematic representation of the modulation profile of PbSe 
and TiSe2 within !" for each nanolaminate. (right) X-ray reflectivity patterns (in 
color) shown against idealized models of the targeted nanolaminate (in black). 
(bottom-left) Grazing incidence in-plane diffraction pattern showing hk0 lattice 
planes. 
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Figure 6.2. HAADF-STEM images of each nanolaminate highlighting the 
formation of the targeted nanoarchitecture, sharp interfaces between 
constituents, and rotational misregistration between layers. The colored traces 
show the relative intensity of characteristic X-ray signals from Pb and Ti when 
moving down the k=2321 structure. 

 

6.3.2. Transport Properties 

Shown in Figure 6.3 is the temperature-dependent resistivity of the 6 

nanolaminate samples. The upturn observed at low temperature is similar to 

those observed in [(PbSe)1+δ]m(TiSe2)n compounds previously reported.12–14,22 
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While most isomers have similar resistivity, it is immediately apparent is that 

the 44 isomer stands out with a higher resistivity and the 221111 appears to 

have slightly lower resistivity relative to the other five. Additionally, the 3212 

isomer, which is the only compound beside the 44 that doesn’t contain TiSe2 

monolayers, also has higher resistivity than the other samples with buried 

interfaces in the unit cell. This could still be explained by variation in defect 

levels between samples as, in the semimetallic transport regime seen here, 

relatively small defect densities might significantly affect the mobility or carrier 

concentration and hence the conductivity.23 To account for this potential 

variation, resistivity values can be normalized to their room-temperature values, 

as seen in Figure 6.3. In this arrangement we see that the ratio of &
&'()*

 trends 

the same way as the absolute resistivity values, with the 44  and 221111 

nanolaminates representing the highest and lowest normalized residual 

resistivity values, respectively. Generally, the upturn at low temperatures is 

seen to shift to lower temperatures in samples with a larger resistivity ratio 
&'()*
&+,-

, which also corresponds to a higher number of buried interfaces. The band 

alignment in PbSe-TiSe2 nanolaminates has been previously been proposed to 

result in charge transfer from PbSe into TiSe2 and a resulting modulated p-n-p-

n carrier type profile, in which the n-type bands in TiSe2 dominate. The upturns 

have been associated with localization of carriers. The data suggests the 

localization occurs at lower temperatures in nanolaminates with more buried 

interfaces. 
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Figure 6.3. Temperature dependent resistivity of 6 [(PbSe)1+δ]4(TiSe2)4 
nanolaminates. Both (left) measured values and (right) normalized values are 
shown. 

 

Figure 6.4 shows carrier concentrations measured as a function of 

temperature for each isomer. The carrier concentrations were determined from 

the negative Hall coefficients assuming conduction from a single parabolic 

band. Nanolaminates with the same number of buried interfaces in k have 

similar carrier concentrations, with the 44 structure having by far the least and 

the 221111 representing the other bound. This suggests that charge exchange 

from the PbSe to the TiSe2, which is assumed to be the source of mobile carriers 

in the nanolaminate, occurs most with maximum interfacial density of 

constituents. These data imply that the differences in absolute resistivity 

between structures with different numbers of buried interfaces are primarily 

due to carrier density fluctuation. However, as evidenced by the 221111 and 

211211 nanolaminates which have the same number of interfaces, mobility 

differences account for their distinct resistivity values but similar carrier 

concentrations. While the carrier densities differ between structures with 

varying interface density, the normalized temperature dependent carrier 

concentrations, shown above the main plot, are very similar, suggesting the 

large difference in resistivity ratios is not due to the carrier concentration. 

Using the resistivity and Hall data, the carrier mobilities were determined 

and are shown in Figure 6.5. The data have little variation between the various 

k, especially near room temperature. There is a steady increase in mobility with 

decreasing temperature that follows the trend of increasing resistivity ratio, 
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&'()*
&+,-

. This indicates the change in the resistivity ratio is due to an increase in 

mobility of the samples as opposed to changes in freeze-out of mobile carriers. 

As temperature decreases, the mobilities deviate from one another, arranging 

themselves such that those with highest resistivity suffer lowest mobility. 

Contrary to the room temperature values, higher low temperature mobilities 

correlate with increasing buried interface density. This is somewhat surprising 

as more interfacial scattering from the layers, which should be relatively 

temperature independent unlike other mechanisms (e.g. electron-electron or 

electron-phonon scattering), would intuitively be present in the structures with 

high interface density. The thinner layers of the high interface density laminates 

also typically show greater changes in mobility, which suggests they are likely 

able to accommodate a greater number coherent phonon modes. 

 

 

Figure 6.4. Temperature dependent carrier concentration of 6 
[(PbSe)1+δ]4(TiSe2)4 nanolaminates. Values are calculated from Hall coefficients 
assuming a single n-type band. Both (bottom) measured values and (top) 
normalized values are shown. 
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Figure 6.5. Temperature dependent mobility of 6 [(PbSe)1+δ]4(TiSe2)4 
nanolaminates calculated from resistivity and carrier concentration data. 

 

The room temperature Seebeck coefficient was also taken on each 

compound presented. These values are shown in Figure 6.6. Additional 

([PbSe]1+δ)4(TiSe2)4 nanolaminates with various k that are not included in the 

bulk of this study were also prepared for room-temperature transport 

measurements. The specific samples chosen for full analysis were synthesized 

during the same equipment cycle and set of precursor deposition parameters in 

order to target a similar distribution of kinetically trapped defects. The 

additional samples are included to help assess the repeatability of results. The 

negative Seebeck coefficients agree with the Hall measurements that electrons 

are the majority carriers. Furthermore, they systematically decrease (increase in 

magnitude) as the interface density decreases in the ([PbSe]1+δ)4(TiSe2)4 

nanolaminates. 
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Figure 6.6. Room-temperature Seebeck coefficient of [(PbSe)1+δ]4(TiSe2)4 
nanolaminates. Colors correspond to nanoarchitecture and symbols correspond 
to precursor parameters. 

 

The room-temperature power factor is shown in Figure 6.7. This 

parameter depends on both the Seebeck coefficient and the electrical resistivity 

of the material (S2ρ-1 or S2σ). Introducing interfaces into the ([PbSe]1+δ)4(TiSe2)4 

unit cell systematically lowers both the resistivity and the magnitude of the 

Seebeck coefficient resulting in a region of optimal performance, as seen in the 

structures with an intermediate number of buried interfaces. 

 

 

Figure 6.7. Room-temperature power factor of [(PbSe)1+δ]4(TiSe2)4 
nanolaminates. Colors correspond to nanoarchitecture and symbols correspond 
to precursor parameters. 
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While no specific nanostructure with a particular stacking sequence 

stands out, the number of buried interfaces consistently appears to affect the 

transport properties of the compound. This observation provides opportunity for 

course-grain surveying the parameter space when optimizing the thermoelectric 

performance of a nanolaminate system. As the number of layers per repeating 

unit increases, so to do the number of available combinations. For example, 

while the current study has 6 unique sequences and 3 options for buried 

interface density, increasing the number of layers by just 1 unit of each 

constituent allows for 15 unique sequences and 4 options for buried interface 

density.24 As the number of layers in the repeating unit further increases, the 

number of unique stacking sequences increases far more rapidly than the 

number of interfaces. By first selectively synthesizing and probing a single 

structure with each interface density, the parameters near which the optimal 

compound within the series might be determined without having to survey all 

possible combinations. 

 

6.4. Conclusion 

 We investigated the transport properties of [(PbSe)1+δ]4(TiSe2)4 

nanolaminates undergoing local nanoarchitectural changes by the introduction 

buried interfaces into the unit cell, while maintaining the global composition 

and structure. X-ray diffraction, HADDF-STEM, and STEM-EDS confirm the 

formation of the nanolaminate structures. The compounds exhibit similar 

transport properties to each other owing to the similarities in the composition 

and structure, but small variation trending with the number of buried 

interfaces in the repeat unit is present. This highlights that rationally 

controlling the nanoarchitecture of nanocomposite materials allows for further 

optimization of the transport behavior beyond the choice of chemical 

composition and global arrangement. 
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6.5. Bridge 

 As seen in chapter VI, the isomerism available in nanolaminate 

structures allows for exploring the details of subtle structural change on the 

transport properties. Composition of a nanolaminate can also be modified by 

changing the relative ratio of each constituent. Chapter VII investigates the case 

of increasing the relative amount of TiSe2 layers in [(PbSe)1+δ]1(TiSe2)n 

nanolaminates as a means to control the mobile carrier concentration and 

enhance the thermoelectric power factor. 
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CHAPTER VII 
 

CARRIER DILUTION IN TiSe2 BASED INTERGROWTH COMPOUNDS FOR 
ENHANCED THERMOELECTRIC PERFORMANCE 

 
 The work in the following chapter was accepted 2015-07-16 for 

publication in Journal of Materials Chemistry C (DOI: 10.1039/C5TC01570G). It 

is coauthored with Devin Merrill, Daniel Moore, and David Johnson. Devin 

Merrill assisted with sample preparation and manuscript preparation. Daniel 

Moore assisted with sample preparation and characterization. David Johnson is 

my advisor and I am the primary author. 

7.1. Introduction 

The figure of merit for thermoelectric materials !" = $%&
' " consists of 

three terms – the thermovoltage ((), electrical conductivity ()), and thermal 

conductivity (*). The material parameters for the optimization of these factors 

are often contradictory (both structurally and electrically), making the discovery 

compounds with of high values of !" particularly difficult. A productive 

approach has been synthesizing nanocomposite materials, where electronic 

interactions between constituents provide favorable electronic gains (high (+), 

called the power factor) while the interfaces between them or the nanoparticle 

inclusions scatter phonons, resulting in a low thermal conductivity.1–4 A subset 

of composite thermoelectric materials are nanolaminates.5,6 The regular 

interfaces in these materials enables the structure to be determined, aiding in 

the development of structure-property relationships essential to understanding 

the cause of high !" values.7 

 A promising family of naturally occurring nanolaminates are 

chalcogenide misfit layered compounds (MLCs) – thermodynamically stable 

crystalline materials consisting of an intergrowth between a transition metal 

dichalcogenide, TX2, and a distorted rock-salt, MX. These two constituents 

stack along the c-axis such that an MX bilayer is interleaved with either one or 

two TX2 trilayers. The general formula for these compounds is (MX)1+δ(TX2)n, 

where 1+δ is the ratio of the in-plane areas per cation of each constituent, and 

n is the number of TX2 layers per unit cell along the c-axis. This unique class of 
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compounds have been extensively studied and reviewed.8 They have low lattice 

conductivities for crystalline solids, due to phonon mass mismatch and the 

large number of interfaces between constituents.2,9,10 Several mechanisms have 

been suggested to account for the surprising stability of the MLC structure, 

with stabilization from charge transfer between constituents the leading 

hypothesis.11 In-plane electrical transport is dominated by the high-mobility TX2 

layer8, so charge transfer from the stabilization is effectively modulation doping 

the dichalcogenide layers. Systems with identical TX2 layers but different MX 

exhibit notably different transport properties as evidenced in the (MS)1+δ(TiS2)2 

(M = Sn, Pb, Bi) compounds.12 

 The low thermal conductivities and promising electrical properties of 

misfit compounds make them interesting candidates as thermoelectric 

materials. The most promising thermoelectric chalcogenide MLCs are RE/Nb 

sulfides9 and Pb, Sn/Ti sulfides12, with !" values of close to 0.4 reported for 

(SnS)1.2(TiS2)2. The TiX2 based compounds have unusually high Seebeck 

coefficients given carrier concentrations of 1021 cm-3. The band structures of 

both TiS2 and TiSe2 have several pockets and steep density of state gradients 

near EF, both of which result in high thermovoltages.13,14 However, it has not 

been possible to control composition or structure of MLCs beyond the 

thermodynamic phase width using classical synthetic approaches, which 

hinders their utility as model systems and their optimization as potential high 

performance materials. An additional difficulty in evaluating layered 

compounds as thermoelectric materials is determining,!", as the anisotropy 

makes it difficult to comparably make each of the necessary measurements. In-

plane electrical properties and cross-plane thermal properties are relatively 

simple to determine, but measuring cross-plane electrical properties and in-

plane thermal properties is challenging. 

 Recently, a new class of kinetically stabilized thin-film materials closely 

related to misfit layered compounds has been synthesized. These intergrowth 

compounds, called ferecrystals, also consist of MX and TX2 layers but do not 

have registration between constituents, with independent lattice parameters 

and rotational (turbostratic) disorder observed across interfaces.15 The 

turbostratic disorder is very effective at disrupting phonons causing these 
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compounds to have even lower lattice conductivities than MLCs.15 In-plane total 

thermal conductivities of insulating ferecrystals have been measured to be on 

the order of 0.5 W m-1 K-1, which is quite low for a crystalline solid.16 In-plane 

thermal conductivities of promising MLCs for thermoelectric applications are 

about twice as large.2 This suggests that !" enhancement in these systems will 

most likely occur by increasing the power factor, the numerator in the 

expression for !". Low electron-phonon coupling interactions have also been 

observed, resulting in the reduction of the temperature dependence of electrical 

conductivity by about an order of magnitude over analogous MLCs, which are 

already quite low.17,18 The kinetic synthesis route of ferecrystals also allows for 

designed layering schemes, with increasing MX units19, increasing TX2 units20, 

and even inorganic structural isomers21 all being reported. A similar chemical 

formula to MLCs is used for ferecrystals, but an integer, m, may be added to 

express the number of rock-salt bilayers present in the repeating unit. The 

synthetic control allows for systematic exploration of how several structural 

changes may affect material properties. 

 The [(PbSe)1+δ]m(TiSe2)n ferecrystals have been one of the most-studied 

systems in the ferecrystal class of compounds. The m = 1, n = 1, 2 compounds 

have been previously reported in detail,18,22 with a brief overview of all 

compounds with m, n ≤ 3 also recently discussed.7 Encouraging results from 

these first reports prompted our systematic investigation of these thermoelectric 

materials as reported here. The strong correlations between the thermovoltage, 

electrical conductivity, and thermal conductivity makes optimization of 

thermoelectric materials inherently difficult. Each of these factors depends 

differently on carrier concentration, leading to an optimal carrier concentration 

for maximization of the figure of merit. Assuming the donor-acceptor model in 

PbSe-TiSe2 ferecrystals, carrier concentration is an inherently tunable property 

by varying m and n. Calculations from previously reported data show the power 

factor increases with additional TiSe2 layers from a decrease in carrier density. 

Here, we report the synthesis and transport properties of several 

(PbSe)1+δ(TiSe2)n ferecrystals with 1 ≤ n ≤ 18. A decrease in carrier concentration 

is observed as n is increased, as the charge donated by the PbSe bilayer is 

diluted over more TiSe2 layers. An increase in the Seebeck coefficient results, 
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increasing the power factor by over 600% when increasing n from 1 to 18. 

Finally, while charge dilution appears to be an effective means of raising the 

power factor, a correlation in high power factor with mobility is also observed, 

independent of the thickness of the TiSe2 constituent. 

7.2. Experimental 

Samples were deposited on (100) oriented Si and amorphous quartz 

substrates using the modulated elemental reactants (MER) technique.23 

Pressure was kept under 5 x 10-7 torr and deposition rates were under 0.1 nm 

s-1. Pb and Ti sources were evaporated using electron guns and Se using a 

Knudsen effusion cell. Substrates were held approximately 1 meter above the 

sources and were sequentially exposed to sources to build a layered precursor. 

Samples were generally 50 nm thick, though some variation is necessary to 

build an integer number of unit cell repeats. The TiSe2 constituent was 

deposited first. As an example, deposition for a (PbSe)1+δ(TiSe2)3 sample would 

consist of repeating a Ti-Se-Ti-Se-Ti-Se-Pb-Se sequence until the desired total 

thickness is reached. While not explicitly characterized in the present work, a 

small excess of Se has previously resulted in the best final samples.24 Prior to 

thermal treatment, precursor thin-films consisted of precisely stacked 

amorphous layers. Each precursor was heated at 350 °C for 30 minutes in a N2 

atmosphere to self-assemble the desired ferecrystal compound.  

 Out-of-plane diffraction patterns were taken in a coupled θ-2θ geometry 

on a Bruker D8 Discover diffractometer using Cu-Kα radiation. In-plane 

diffraction patterns were collected at the Advanced Photon Source, beamline 

33BM-C, using 12.49 keV radiation on a stationary sample with the source held 

at a small constant incident angle (0.2-0.5 °θ) in the out-of-plane direction, to 

increase illumination volume. The cross-section used for high angle annular 

dark field scanning transmission electron microscopy (HAADF-STEM) was 

prepared with focused ion beam milling on an FEI Helios 600 Nanolab. The 

HAADF-STEM images were collected with an FEI Titan 80–300 using 300 kV 

accelerating voltage, 50 pA of current, and a 240 mm camera length. 

 Electrical measurements were carried out on samples deposited on 

amorphous quartz substrates in cross patterns. All measurements were made 
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on a characterization system built in-house with a closed-cycle He cryo system 

capable of operating from 20-300 K. Resistivity measurements were made using 

the van der Pauw method with indium leads attached to the ends of the 

crosses. Hall measurements were made in the same geometry. The 

thermovoltage was measured with copper-constantan thermocouple leads by 

cooling one half of the sample slightly below room temperature (ΔT < 2 K) and 

letting it relax back. During this process, temperature was measured on each 

side of the sample and then thermovoltage deduced from the corrected dV/dT 

slopes between like thermocouple junctions. 

7.3. Results and Discussion 

7.3.1. Structural 

 Out-of-plane diffraction patterns of the (PbSe)1+δ(TiSe2)n ferecrystals 

prepared in this study are shown in Figure 7.1. In this geometry the highly 

oriented ferecrystal samples only show peaks corresponding to the 00l 

direction, which corresponds to the stacking of layers. A systematic increase in 

the c-axis lattice parameter is apparent as n is increased, indicating the 

formation of a growing superstructure. The c-axis lattice parameters increase by 

0.603(1) nm for each n, from the insertion of additional TiSe2 layers into the 

stacking sequence. This increase is very close to the bulk c-axis lattice 

parameter of TiSe2, 0.6008 nm.25 This increase also corresponds well with the 

previously published values for PbSe-TiSe2 containing intergrowths, which grew 

by 0.608 nm when the number of TiSe2 layers within a repeat was increased 

from 1 to 2.18,22 Extrapolating the trend in lattice parameter to n = 0 gives a 

value of 0.61(1) nm for the PbSe bilayer thickness, as seen in Figure 7.1b. This 

corresponds well with thicknesses previous reported for PbSe containing 

ferecrystal compounds, where an increase in c-axis lattice parameter of 0.612 

nm was reported per addition of PbSe bilayer in [(PbSe)1.14]m(NbSe2)1.19. While 

this is consistent with the expected structures of the repeating units along the 

stacking direction, the 00l scans provides no information as to the in-plane 

structures of the constituent phases. 
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Figure 7.1. Data corresponding to the 00l reflections of the (PbSe)1+δ(TiSe2)n 
ferecrystals. (a) Diffraction patterns plotted on a log scale and (b) c-lattice 
parameters as a function of n. Different sets correspond to samples prepared in 
different deposition cycles. 

 

 To confirm the formation of the targeted constituent phases, in-plane 

diffraction was taken on samples with n up to 4 at the APS, as shown in   

Figure 7.2. Due to the texture in the samples, only hk0 reflections are observed. 
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The random hk0 orientation of crystallites within the a-b plane of the samples 

results in all expected hk0 reflections being observed. This lack of in-plane 

texture is characteristic of ferecrystal films, which can be thought of as precise 

layers of separate 2D powders. The relative intensities of the reflections from 

each constituent roughly correspond to the fraction of that phase. Due to many 

overlapping reflections, this is easiest to observe in the distinct peaks arising 

from the PbSe (220) and TiSe2 (110) planes. A systematic increase in the relative 

intensity from the TiSe2 is apparent as n is increased. Increasing the number of 

TiSe2 layers does not appear to shift the reflections of either constituent 

suggesting in-plane distortions are either absent or unchanging as n is 

increased.  

 

 

Figure 7.2. Log-scale in-plane diffraction patterns corresponding to hk0 
reflections. 

 

HAADF-STEM imaging was used to further verify the structure of the 

desired compounds. Figure 7.3. contains an image of an n = 12 sample. The 

bright spots correspond to atomic columns of Se atoms along the (110) zone-

axis of TiSe2 and the bright ‘smears’ are PbSe layers which are off of a zone-



 129 

axis. As expected for TiSe2 in general (including when synthesized from MER), 

the TiSe2 layers within each block of 12 TiSe2 are stacked in a 1-T 

arrangement.26 The off-axis orientations in the TiSe2 blocks above and below are 

evidence of turbostratic disorder between layers and the off zone axis 

orientation of PbSe reflects the turbostratic disorder between constituents. 

  

 

Figure 7.3. HAADF-STEM image of the (PbSe)1+δ(TiSe2)12 sample showing the 1-
T polymorph for the block of 12 TiSe2 layers.  

 

7.3.2. Electrical 

 There has been extensive discussion in intergrowth literature suggesting 

that charge donation between constituents is an important stabilizing 

mechanism.11 In the case of TiSe2 compounds, electrons are transferred from 

the MSe layer to unoccupied Ti-3d states. A simple rigid band picture suggests 

the donated charge would partially deplete the Pb-6p band in PbSe as shown in 

Figure 7.4., which schematically outlines the expected behavior of the 

(PbSe)1+δ(TiSe2)n system. As the number of TiSe2 layers increases the donated 

charge is spread across more (n + 1) layers, resulting in a lower carrier density 

in the Ti-3d band. Diagrams similar to Figure 7.4. are often used in the 

discussion of stacked monolayers or bilayers.8,17 For thin layers, it is reasonable 

to consider charge to be spread approximately evenly throughout a constituent 
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block as distances are short enough for considerable wavefunction overlap 

across layers. On the other hand, for high n compounds one can begin to 

consider charge depletion regions within the TiSe2 constituent. In this regime, 

conventional band-bending diagrams become meaningful and calculations of 

absolute band energies would prove invaluable for further analysis. However, at 

present we consider a homogeneous distribution of carriers within the TiSe2 

constituent for all values of n. 

 

 

Figure 7.4. Density of state schematic for (PbSe)1+δ(TiSe2)n intergrowths for both 
low (red) and high (blue) values of n. As seen in the central portion, the charge 
donated from the PbSe layers increases with n but the number of populated 
bands in TiSe2 decreases, effectively reducing the carrier density relative to a 
low n compound. From top to bottom, the horizontal black lines illustrate the 
filled levels for low, high, and infinite n. 

 

 Assuming band structure is not heavily perturbed by incorporation into 

the superlattice, electron conduction through the light TiSe2 bands should 

dominate over hole conduction through the heavy PbSe bands. This is 

supported by the observation of negative Hall coefficients for all samples (not 

shown), indicating electrons are the majority carrier. Assuming a single carrier 

through a simple parabolic band, the carrier concentration can be determined 

from Hall coefficient by the relationship -. = − 0
12.

. Figure 7.5a. shows the 

dependence of carrier concentration on the number of TiSe2 layers in the unit 
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cell. The scatter in the data is caused in part by the samples being prepared in 

different deposition cycles, resulting from larger variation in the Pb to Ti ratio 

compared to samples deposited in the same cycle.27 The trend suggests that 

charge is being diluted as more TiSe2 layers are added, and the decrease 

roughly follows the expected functional form of -. = -3 + 56
570, where -. is the 

total carrier concentration, -8 is a constant expressing the infinite limit of 

charge donated to TiSe2 (spread among n TiSe2 trilayers and 1 PbSe bilayer), 

and -3 is the existing carrier density in TiSe2 due to defects. A fit of this form 

with -3 = 9.4×1020 and -8 = 2.8×1021, shown by a solid line in Figure 7.5a., 

indicates that for an n = 1 compound the amount of donated charge from PbSe 

and the intrinsic carriers in TiSe2 are of the same order. The reduction of carrier 

density in the conducting TiSe2 layers with increasing n is promising for 

thermoelectric applications. Further reduction of -. by lowering -3 (by 

increasing sample quality) and/or -8 (by appropriately alloying or doping the 

PbSe layers) may both be possible28,29, though reduction of the intrinsic 

component would result in the highest gains. Figure 7.5b. shows the 

temperature dependence of the carrier concentration for a subset of samples, 

each normalized to its value at 295K. For all samples the number of carriers 

gradually increases as temperature increases. The samples with large TiSe2 

blocks increase much more steeply at high temperatures, suggesting that 

carriers might be thermally activated into a conducting state. The change in 

carrier density is not as abrupt as in most semiconductors because TiSe2 has a 

very narrow band-gap and very little thermal energy would be required to 

promote electrons into a conducting band.30 In contrast, the low n samples 

follow behavior expected from a heavily doped or metallic system where carrier 

promotion is not an activated process. 

  



 132 

 

Figure 7.5. (a) Room temperature carrier concentrations for the (PbSe)1+δ(TiSe2)n 
samples determined from van der Paaw Hall measurements assuming a single 
band model. The black line shows a fit of the expected functional form, -. = -3 +56
570. (b) Temperature dependence of the normalized carrier concentration for the 
(PbSe)1+δ(TiSe2)n samples showing the change as a function of increasing 
thickness of the TiSe2 layer. The arrow indicates the general trend. 

 

 The measured room temperature values of the Seebeck coefficient are 

shown in Figure 7.6a. All samples have a negative thermovoltage, agreeing with 

the Hall coefficient in showing electrons are the majority carrier. The magnitude 

of the Seebeck coefficient increases as n is increased, with some variation 

between depositions. The Pisarenko relationship, which assumes simple 
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parabolic bands and a single carrier, predicts an increase in the thermovoltage 

magnitude as carrier concentration is decreased. Figure 7.6b. shows the 

Seebeck coefficient as a function of carrier concentration. The solid line shows 

the Pisarenko relationship assuming an effective mass of 6.3 9. (calculated 

effective masses range from 5-7 9.). The samples at low n deviate from the 

curve, due to a loss of dimensionality and band degeneracy when approaching 

(and reaching) a stack of repeating PbSe-TiSe2 monolayers or to increased 

deviations associated with assuming a single band model. 

 

 

Figure 7.6. (a) Room temperature Seebeck coefficients for the (PbSe)1+δ(TiSe2)n 
samples. (b) Seebeck coefficient versus carrier concentration shown as a 
Pisarenko plot with 9∗=6.39.. 

  

In-plane resistivity is shown for all samples in Figure 7.7. The 

magnitudes are typical for conduction in a semimetal. At room temperature, the 

resistivity of the n = 2 ferecrystal is lower than for the analogous MLC, due to 

reduced electron-phonon scattering. However, as phonon modes are frozen in 

the MLC by reducing the temperature, the resistivity of the extended crystal 

drops below that of the nearly temperature independent ferecrystal. Samples 

with the thinnest TiSe2 layers have an upturn in resistivity at low temperatures 

suggesting localization of carriers. As the TiSe2 thickness increases, the 

temperature dependence becomes more metallic like, with resistivity decreasing 

as temperature is decreased. There is no clear trend in the magnitude of the 

resistivity as the number of TiSe2 layers is increased. This could be due to a 
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carrier concentration reduction being cancelled by an increased mobility and 

may bode well for thermoelectric applications, as both would positively affect 

the power factor. However, both of these quantities are defect sensitive and 

ferecrystals have been shown to form with wide degrees of defect 

incorporation.27 

 

 

Figure 7.7. (a) Temperature dependent resistivity for the (PbSe)1+δ(TiSe2)n 
samples. (b) Room temperature resistivity versus n, with the variation between 
sample sets highlighted. 
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 The single-band approximation allows for calculation of Hall mobility 

from the Hall coefficient and resistivity. An increase in mobility may be expected 

from high n compounds, as charge is diluted over larger volumes resulting in 

more conducting states per carrier and less carrier interaction. Additionally, 

higher mobility might be expected from reduced interface scattering from 

carriers with velocity components in the cross-plane direction. However, even 

with these considerations, no trending in mobility in observed as a function of 

n. While this may be an indicator that modulation doping of ferecrystals does 

not have an effect on mobility, the more likely scenario is that mobility is 

dominated by defects and controlling these defects to maximize mobility is the 

next synthetic step in improving thermoelectric performance.  

 The room-temperature power factor, calculated from the thermovoltages 

and resistivity values discussed above ((+;<0), increases as a function of n, as 

shown in Figure 7.9. When referring back to the trends of n with resistivity 

(Figure 7.7.) and Seebeck coefficient (Figure 7.6.), it appears an increase in 

power factor predominantly comes about through an increase in the magnitude 

of the thermovoltage, since no clear trending between resistivity and n was 

observed. This is somewhat contrary to many systems, where increasing the 

Seebeck coefficient comes at the expense of raising band mass, severely 

affecting mobility and reducing the overall power factor.31 The n = 18 sample 

has a power factor of 11.6 mW K-2 cm-1, which to the authors’ knowledge is the 

highest reported value in the chalcogenide MLC and ferecrystal families 

(summarized in Table 7.1.). This is particularly encouraging as measurements 

were made at 300K, lower than the typical peak performance regime, especially 

considering the weak electron-phonon coupling of ferecrystals. However, it must 

be mentioned that the (PbSe)1+δ(TiSe2)n ferecrystals begin to decompose above 

approximately 650 K. 
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Figure 7.8. (a) Room temperature mobility values as a function of carrier 
concentration for the (PbSe)1+δ(TiSe2)n samples. (b) Room temperature mobility 
values plotted versus the thickness of the TiSe2 layer in the unit cell. 

 

 Mobility, which affects the power factor through the resistivity, appeared 

uncorrelated with n. However, plotting power factor against carrier mobility 

shows a monotonically increasing relationship, indicating high power factor in 

these samples is a result of a simultaneous increase in both the thermovoltage 

and conductivity. This is illustrated in Figure 7.9b. The labels next to each 

point denote n for that sample. The mobility plot strongly suggests future 
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optimization of ferecrystal materials for thermoelectric applications should 

focus on tuning mobility. Previous studies from similar materials synthesized 

from designed precursors and the MER process have shown an order of 

magnitude mobility increase is possible by the reduction of defects through 

vapor annealing.28 These treatments also considerably lowered carrier densities, 

suggesting a potential route for considerable materials improvement in the 

PbSe-TiSe2 ferecrystal system. 

 

Table 7.1. Summary of room-temperature power factors for published 
ferecrystal and misfit layered compounds. 

Compound ρ  

(10-5 Ω-m) 

α  

(µV K-1) 

α2ρ-1  

(mW K-2 cm-1) 

Reference 

(PbSe)1+δ(TiSe2)18 1.11 -114 11.6 * 

(PbSe)1+δ(TiSe2)15 1.51 -117 9.0 * 

(PbSe)1+δ(TiSe2)6 1.14 -102 9.1 * 

(SnSe)1.2(TiSe2) 1.16 -77 5.1 32 

(SnS)1.2(TiS2)2 0.59 -70 8.3 12 

(PbS)1.18(TiS2)2 0.53 -56 6.0 12 

(BiS)1.2(TiS2)2 0.37 -45 5.5 12 

(LaS)1.14(NbS2)  0.5 34 2.3 2 

(LaS)1.20(CrS2)  14.5 -60 1.8 2 

(BiSe)1.09(TaSe2)  0.28 -18 1.2 33 

(BiSe)1.10(NbSe2)33 0.20 -8 0.3 33 

(TbS)1.21(NbS2)  0.25 -5 0.1 34 

(TbS)1.20(TaS2)  0.098 0.5 0.003 34 

(DyS)1.22(NbS2)  0.16 -14 1.2 34 

(DyS)1.21(TaS2)  0.07 2 0.06 34 

Bold – ferecrystal compounds     * – this work 
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Figure 7.9. (a) Room temperature power factor as a function of the thickness of 
the TiSe2 layer in the unit cell for the (PbSe)1+δ(TiSe2)n samples. (b) Room 
temperature power factor plotted versus room temperature mobility values. The 
adjacent numbers indicate n. 

 

7.4. Conclusions 

  The synthesis of (PbSe)1+δ(TiSe2)n with 1 ≤ n ≤ 18 is reported and 

characterized. Charge donated from the PbSe layers is diluted across the 

conducting TiSe2 layers as n is increased. This leads to higher Seebeck 

coefficients without an adverse effect on the resistivity of the compounds. The 

power factor increases with increasing n, showing that carrier dilution through 

modulation doping is an effective means of enhancing transport properties in 

nanolaminate thermoelectric materials. However, for ferecrystal systems 

increasing the carrier mobility by decreasing incorporated defects appears to be 

the best path forward. Annealing samples in Se vapor is one approach that 

might help.  

 

7.5. Bridge 

 Chapters IV-VII have investigated the effects of adjusting the 

nanoarchitecture of ([PbSe]1+δ)m(TiSe2)n materials on the transport behavior, 

generating several structure-property relationships along the way. Chapters VIII 

and IX move forward with similar experiments in the ([SnSe]1+δ)m(TiSe2)n 

chemical system, which is similar but undergoes significant structural 

distortion in SnSe as the layer size changes. 
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 CHAPTER VIII 
 

HIGH THERMOELECTRIC POWER FACTOR AT CRYOGENIC 
TEMPERATURES IN ([SnSe]1+δ)1(TiSe2)n HETEROSTRUCTURE 

NANOLAMINATES 
 

At the time of writing the work in this chapter is unpublished, but a 

manuscript is planned to be coauthored with Danielle Hamann, Devin Merrill, 

and David Johnson. Danielle Hamann and Devin Merrill assisted with sample 

preparation and characterization. David Johnson is my advisor and I am the 

primary author. 

8.1. Introduction 

Thermoelectric generators passively convert temperature differences 

across a material into usable power, and thermoelectric coolers can run this 

process in reverse.1–3 The performance of a thermoelectric material is given by 

the dimensionless parameter, !" = $%&'
()*(+

", where , is the Seebeck coefficient, - 

is the electrical conductivity, and ./ and .0 are the lattice and electronic 

components of the thermal conductivity. This figure can be viewed as an 

‘electronic gain’ in the numerator, called the power factor, balanced by a 

parasitic ‘thermal loss’ in the denominator, which is the total thermal 

conductivity. Optimization is difficult due to these interrelated transport 

parameters in the Figure – - and .0 are directly related by the Wiedemann-

Franz law and , and - are inversely related by the Pisarekno relationship (and 

- = 123). Several promising thermoelectric materials have been discovered or 

engineered with lattice thermal conductivity (./), near the predicted theoretical 

limits. In these cases, increasing the Seebeck coefficient is the likeliest method 

for further enhancing the figure of merit.4 

High Seebeck coefficients arise in compounds with sharp features 

present in the density of states near the chemical potential.5 Several 

approaches have been taken to introducing these features, such as low-

dimensional structures and working in systems with correlated electron 

behavior.6–9 Cobalt oxide intergrowths, epitaxial pnictide superlattices, and non-

epitaxial chalcogenide nanolaminates are all examples of layered structures 
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that have been investigated with aim to take advantage of these effects.10–12 

Many of these approaches have limited degrees of synthetic flexibility available, 

with bulk synthesis techniques having little opportunity for tuning the 

structure and composition due to thermodynamic constraints, and kinetic 

growth approaches (epitaxy and self-assembly of vapor-deposited layers) 

representing the other bound, where literally billions of unique layering 

sequences can be made in a system of only four constituents.13–15 

Within the large family of non-epitaxial nanolaminate materials, those 

comprised of interleaved layers of MSe (M=Sn, Pb, Bi) and TiSe2, have exhibited 

the most promising thermoelectric properties found to date.12,16,17 The 

nanostructures (layer order), the number of capacitive interfaces (number of 

times the laminate is repeated), and the local and global compositions (chemical 

system and constituent ratios) can be utilized to tune the properties.12,18–21 

These materials exhibit ultralow thermal conductivities for dense solids, making 

them good candidates for focusing on enhancement of zT by increasing the 

Seebeck coefficient.22–24 In the compounds comprised of stacked single layers, 

the SnSe containing nanolaminate exhibits a higher Seebeck coefficient than 

the PbSe or BiSe analogues.16,25,26 In the ([PbSe]1+δ)1(TiSe2)n series of 

compounds, which have increasing numbers of TiSe2 layers (n) and a single 

PbSe layer, the magnitude of the Seebeck coefficient increases with n.12 This is 

assumed to be because electrons donated from PbSe into lower energy TiSe2 

bands are ‘spread’ across more layers. 

Here, we present a series of ([SnSe]1+δ)1(TiSe2)n nanolaminates with 

2≤n≤15 and similar to ([PbSe]1+δ)1(TiSe2)n we report enhancement of the Seebeck 

coefficient with increasing n. Exchanging the Pb atoms in PbSe for isovalent Sn 

in high-n was expected to result in similar behavior, but perhaps with even 

greater enhancement if the offset seen in the n=1 compounds holds or 

increases. For low n, similar behavior is observed as to the PbSe-containing 

laminates.  At higher n however, strikingly different behavior is observed in the 

transport between compounds, with mobile carriers quickly freezing out. 

Furthermore, at cryogenic temperatures (T ~100 K) large enhancement of the 

Seebeck coefficient is seen in the n=15 compound relative to n=3. This results 
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in a power factor near 13 µW K-1cm-2 which gives reasonable values of zT at 

these temperatures with conservative estimates of thermal conductivity. 

 

8.2. Experimental Methods 

All compounds were formed from the self-assembly of designed thin film 

precursors. This process is described in detail elsewhere.16,27,28 Precursors were 

deposited at high vacuum (pressure <5x10-7 torr) from vaporized plumes onto Si 

and fused silica substrates. Sn and Ti were vaporized using electron guns and 

Se from a Knudsen cell (all sources >99.95% elemental purity). Substrates were 

sequentially exposed to each plume in the order of the layered product, forming 

a layered but amorphous precursor with similar local structure and 

composition. Self-assembly of the precursors was activated by heating to 350 °C 

for 30 minutes in an N2 environment. Diffraction patterns were collected on 

laboratory instruments using Cu-kα radiation in both locked-coupled out-of-

plane and grazing-incidence in-plane geometries. Grazing-incidence scans were 

performed with the source elevated 0.4° above the sample plane and the 

detector elevated 4° above the sample plane. Compositions, which were used in 

the calibration process, were made with an electron microprobe analyzer using 

a thin-film technique.29  

Electrical measurements were taken with a house built crysostat using 

films deposited on silica through a cross patterned shadow mask. Contacts 

were made with In pressed onto the corners of the films at room temperature. 

Both cryogenic and room-temperature Seebeck coefficients were measured with 

heat-sunk type-T thermocouples. Room-temperature measurements were made 

by cooling half of a film slightly, measuring temperature at each side and 

voltages on like thermocouple leads. Cryogenic Seebeck coefficients were 

measured similarly, but one half of the sample was passively heated/cooled 

with good thermal contact with the cold finger. The other half was isolated by 

stainless steel standoffs and making thermal contact to a different copper 

block. 
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8.3. Results and Discussion 

8.3.1. Structural Characterization 

Several ([SnSe]1+δ)1(TiSe2)n heterostructure nanolaminates were made 

with 2≤n≤15 by nucleation from designed thin-film precursors. Briefly, each 

binary constituent was calibrated such that stoichiometric layers of amorphous 

SnSe and TiSe2 could be formed. Further calibrations were done such that the 

Sn:Ti ratio gave the targeted misfit parameter established for the n=1 compound 

by Merrill et al. (1+δ=1.20). By this procedure, deposition parameters were 

established to correctly achieve both the necessary inter-layer and intra-layer 

compositions in the nanolaminate. Next, these parameters were scaled to 

ensure the thicknesses of the layers were appropriate such that each Ti-Se or 

Sn-Se repeat contained the appropriate amount of material to nucleate a TiSe2 

trilayer or SnSe bilayer respectively. In the thickness scaling process, deposition 

parameters were slightly moved from the ‘ideal’ ratios established in the first 

step to yield the crystalline n=1 film with the best diffraction pattern (narrowest 

peaks and highest intensity odd reflections in the 00l plane). The number of 

TiSe2 layers in the unit cell was then increased from n=1 to n=3, making small 

adjustments to the deposition parameters to maximize the quality of the 

diffraction patterns. Once satisfactory results were obtained for both n=1 and 

n=3, these parameters were used for the remaining compounds in this study. 

Each precursor was made such that identical units heterostructures 

were stacked until the nanolaminate was approximately 50 nm thick. 

Specifically, the structure was repeated 28, 21, 17, 9, 7, and 5 times for the 

n=2, 3, 4, 8, 11, and 15 nanolaminate, respectively. The repeating structure 

allows for analysis by conventional diffraction techniques. Figure 8.1. shows 

locked-coupled out-of-plane diffraction patterns, which probe atomic planes 

aligned with the stacking direction of the nanolaminate. As n increases the 

intensity of most peaks from the superlattice diminish. However, for all 

samples, the broader peaks at ca. 14°, 30°, and 62° have large intensity. These 

correspond to d-spacings that can be found within the constituent blocks and 

relatively more of these Fourier components are required with increasing 

thickness of the TiSe2 blocks. As n increases, the thickness of the repeating unit 

of the nanolaminate increases, which manifests as increasing peak frequency in 
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the diffraction pattern. These peaks can be indexed and used to determine size 

of each repeating unit in the superstructure. A linear regression fit of this 

thickness against n gives a slope (corresponding to the thickness of a single 

TiSe2 trilayer) of 6.02(4) Å and an intercept (corresponding to a single SnSe 

bilayer) of 6.0(3) Å, which are in agreement with previous reports of both 

([SnSe]1+δ)1(TiSe2)1 when extrapolated and with the TiSe2 layer thickness found 

in ([PbSe]1+δ)1(TiSe2)n. 

 

 

Figure 8.1. Out-of-plane diffraction patterns of samples. All reflections can be 
indexed to (00l) reflections from the superlattice. The asterisk marks a Si 
reflection. 

 

In-plane diffraction patterns taken on a subset of samples and shown in 

Figure 8.2. probe the hk0 lattice planes of the crystallites and confirm the 

formation of the constituent phases. The in-plane diffraction shows that the 

SnSe bilayer distorts from the bulk Pcmn phase and can instead be indexed to 

P2gg for all n. Because each SnSe layer resides at an interface, the surface 

energetics should dominate and this distortion is possibly due to an energetic 

gain by forming a commensurate axis with TiSe2. Peak positions are relatively 

unchanged between the patterns, indicating structural distortions are minimal 

as the number of TiSe2 layers increases. However, as n increases reflections 

from the SnSe constituent become relatively weaker due to the ratio of 
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diffracting crystallites more heavily favoring TiSe2. For the case of n=11 that has 

fewest repeating units in the patterns shown, only 7 SnSe bilayers are present 

in the nanolaminate as opposed to 28 bilayers for n=2. 

 

 

Figure 8.2. In-plane diffraction patterns of select samples. All reflections can be 
indexed to (hk0) planes of either TiSe2 or distorted SnSe, with the relative 
intensity of TiSe2 reflections increasing with n, as expected. 

 

8.3.2. Electrical Characterization 

Seebeck coefficients taken near room-temperature are shown in Figure 

8.3. Error bars reflect uncertainty in both the V/ΔT fit as well as the difference 

in values between Cu and constantan measuring junctions. To ascertain the 

degree of repeatability in accessing the same region of the kinetic nucleation 

landscape, a second n=3 sample was made and measured. Both n=3 samples 

give similar values. As with the previously reported ([PbSe]1+δ)1(TiSe2)n 

nanolaminates, the negative Seebeck coefficient systematically increases in 

magnitude with n. In general, the magnitudes are higher than in Pb-containing 

compounds of similar n, but the variation is likely within the limit of possible 

values that can be achieved by varying the kinetic defect density while globally 

maintaining the structure of the majority compound. 
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Figure 8.3. Room-temperature Seebeck coefficients of ([SnSe]1+δ)1(TiSe2)n 
nanolaminates. The values for n=1 are from previous work of Merrill et al.16 
Error bars correspond to the precision of the measurement. 

 

Temperature dependent hall-effect and resistivity data were taken to 

further investigate the transport properties and underlying mechanism for 

enhancement of the Seebeck coefficient. The resistivity data are shown in 

Figure 8.4. and inset is the data normalized to the value at room temperature. 

Previous investigations of ([MSe]1+δ)m(TiSe2)n (M=Sn, Pb, Bi) nanolaminates have 

all shown metallic behavior in their temperature-dependent resistivity curves 

with upturns at low temperatures attributed to carrier localization in the layers. 

The n=8, 11, 15 nanolaminates all have increasing resistivity as they are cooled 

from room-temperature. This is the first time ([SnSe]1+δ)m(TiSe2)n nanolaminates 

with m or n>1 have been reported and also the first time no initial drop in 

resistivity with temperature has been observed in the TiSe2 based 

heterostructures. The increasing resistivity is similar to what would be expected 

from a semiconducting compound, but does not increase quickly enough with 

decreasing temperature to be modeled as a simple semiconductor. Generally, 

the resistivity increases with n, with the exception of the n=15 sample, which is 

lower than expected. This is contrary to the ([PbSe]1+δ)1(TiSe2)n series, where the 

resistivity did not systematically trend with n. However, in the prior report 

samples were crystallized from precursors that likely had different numbers of 

incorporated defects due to being made at different times, which convoluted 
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trends in resistivity. If the precursor is calibrated in a low n nanolaminate such 

that a slight excess or lack of material is deposited in each layer, then diffusion 

might still occur across the thin blocks allowing for correction by the formation 

of layering defects during self-assembly. However, in the thicker blocks of high 

n nanolaminates nonstoichiometry in the SnSe precursor layers might be more 

constrained during crystallization and less self-healing of the compound occurs. 

Thus a systematic increase in defect density, and hence resistivity, may be 

expected with n. 

 

 

Figure 8.4. Temperature-dependent resistivity of ([SnSe]1+δ)1(TiSe2)n 
nanolaminates. Inset are values normalized to room-temperature. 

 

Temperature-dependent carrier concentrations for all samples except 

n=4, calculated from their negative Hall coefficients, are shown in Figure 8.5. 

Contrary to the ([PbSe]1+δ)1(TiSe2)n nanolaminates, where electrons donated from 

PbSe into TiSe2 were ‘diluted’ across more layers, a systematic trend is not 

observed for all n. This is striking as the systematic increase in the magnitude 

of the Seebeck coefficient would suggest, in the absence of significant changes 

to the band structure, that the carrier concentration is being systematically 

reduced. For the ([SnSe]1+δ)1(TiSe2)n nanolaminates shown here the low n 

samples exhibit behavior consistent with the Pb-containing analogues, with 

room temperature carrier concentration decreasing from 1.9 to 1.4 cm-3 when n 
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is increased from 2 to 3 (with the previously published n=1 nanolaminates 

being between 2.0-2.4 cm-3). As n is increased, as seen by the n=8 and n=11 

curves, the room temperature carrier concentration increases, but the carriers 

also quickly freeze-out with decreasing temperature. Surprisingly, both the 

magnitude and temperature dependence of carrier concentration in these two 

nanolaminates are nearly identical. For the n=15 nanolaminate the room 

temperature carrier density is on the order found in the low n samples, but a 

steep decay, similar to the intermediate n samples, is observed. The suggests 

that defect levels alone don’t account for all behaviors seen, and that the 

underlying transport mechanisms are changing with n. 

 

 

Figure 8.5. Temperature-dependent carrier concentrations of ([SnSe]1+δ)1(TiSe2)n 
nanolaminates calculated from Hall coefficients assuming a single n-type band. 

 

To further investigate the changes in transport behavior, variable-

temperature Seebeck coefficient measurements were taken on a low- and high-n 

compound. Figure 8.6. shows the measurements taken on the n=3 and n=15 

nanolaminates, as well as a simplified schematic of the measurement system. 

The n=3 sample behaves like a typical poor metal – gradually decreasing in 

magnitude from the room temperature value. On the other hand, the n=15 

sample shows drastically different behavior. Due to the surprising behavior and 

the inherent difficulty in accurately measuring the Seebeck coefficient of thin 
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films the n=15 sample was measured several times, hence the smaller error 

bars. The Seebeck coefficient of the n=15 nanolaminate increases in magnitude 

quickly as the temperature is decreased, in agreement with the freeze-out 

behavior observed in the carrier concentration data (by the Pisarenko 

relationship). It then increases towards 0 with further cooling until it increases 

in magnitude again to ca. -250 µV K-1 near 100 K. Given there are no abrupt 

changes in carrier concentration near this temperature, the cause for 

enhancement is likely more exotic than moving the Fermi level within a band. 

In bulk TiSe2 the Seebeck coefficient exhibits an abrupt minimum near 150K 

and broad plateau at lower temperatures, only rising to 0 below ca. 50 K, which 

has been attributed to a phonon-drag effect.30 However, this also correlates with 

the onset of a charge density wave (CDW) in the material, which may be the 

mechanism for the enhancement. There are no signatures of a CDW transition 

in the resistivity data of the n=15 sample, so this is also an unlikely mechanism 

for the observed enhancement. Even with the relatively high resistivity at 100K, 

when coupled with the high-magnitude Seebeck coefficient the power factor, $
%

4 , 

is ca. 13 µW K-1cm-2, which should give quite high zT values given the low 

thermal conductivity expected from the nanolaminate. For example, assuming a 

Lorenz number of 2.45 x 10-8 V2 K-2, the best-case zT value (./ = 0) is >2.5 for a 

Seebeck coefficient of -250 µV K-1. For insulating nanolaminates with similar 

structure (e.g. ([PbSe]0.99)4(WSe2)4, the total in-plane thermal conductivity at 

room temperature was measured to be ca. 0.4 W m-1 K-1. Conservatively 

assuming this value for the lattice conductivity at 100 K and a typical Lorenz 

number of 2.45 x 10-8 V2 K-2, the calculated zT value would be about 0.3 for the 

n=15 nanolaminate. Further temperature-dependent study of the Seebeck 

coefficient in nanolaminates both within and outside of the TiSe2 family of 

compounds will hopefully further inform as to the onset and cause of this 

behavior. 
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Figure 8.6. (left) Temperature-dependent Seebeck coefficient measurements on 
([SnSe]1+δ)1(TiSe2)n (n=3, 15) nanolaminates. (right) Schematic showing side and 
top view of measurement stage with Cu cold finger, stainless steel standoffs, 
silica substrate and nanolaminate film. Hall and resistivity measurements are 
made using C1-C4 and Seebeck coefficients using the top and bottom 
thermocouples (TCtop/bottom). Thermocouple wires run along Cu blocks to reduce 
hot/cold finger effects. 

 

8.4. Conclusion 

([SnSe]1+δ)1(TiSe2)n nanolaminates from designed precursors were used to 

investigate the effects of increasing the TiSe2 constituent relative to SnSe. 

Similar to ([PbSe]1+δ)1(TiSe2)n nanolaminates, the Seebeck coefficient of the 

composite structure is decreased. However, whereas nanolaminates containing 

PbSe did not show radically different behavior when increasing the relative 

amounts of TiSe2, the SnSe compounds drastically change. Thus, the 

underlying transport mechanisms appear to be different between the two 

chemical systems, which is surprising given the TiSe2 bands have been 

assumed to dominate the transport behavior. Cryogenic Seebeck coefficient 

measurements further illustrate considerable differences between low- and 

high-n nanolaminates, with ([SnSe]1+δ)1(TiSe2)15 having a reasonably high 

Seebeck coefficient of -250 µV K-1 at 100K. This is promising for functionality as 

a leg in thermoelectric coolers, as an ultralow thermal conductivity would be 

expected based on measurement of similar nanolaminates. 
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8.4. Bridge 

 The changing behavior in ([SnSe]1+δ)1(TiSe2)n nanolaminates relative to the 

PbSe-containing counterparts is surprising given the consistent structure of the 

constituent layers. When the thickness of SnSe layers is increased, size-

dependent structural distortions31 likely further change the properties. In the 

following chapter, a homologous series of ([SnSe]1+δ)m(TiSe2)n nanolaminates 

with m=n are explored, similar to those is Chapter V of this dissertation, but 

with substitution of PbSe for SnSe. Considerable structural change in the SnSe 

layers results in a wildly changing electrical properties with bipolar carrier 

effects – behaviors that are not readily explainable by rigid- or single-band 

models. 
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CHAPTER IX 
 

DIVERSE AND BIPOLAR TRANSPORT BEHAVIOR IN ([SnSe]1+δ)m(TiSe2)n 
NANOLAMINATES UNDERGOING STRUCTURAL DISTORTIONS 

 

At the time of writing the work in this chapter is unpublished, but a 

manuscript is planned to be coauthored with Danielle Hamann and David 

Johnson. Danielle assisted with sample preparation, sample characterization, 

and manuscript preparation. David Johnson is my advisor and I am the 

primary author. 

9.1. Introduction 

Thin-films comprised of two or more interleaved structures have held 

significant interest over the last several decades. Much of this interest was 

initially ignited by the development of new epitaxial deposition techniques, 

which allowed for the synthesis of high quality superlattices and became a 

fruitful hunting ground for several emerging areas of condensed matter 

physics.1–3 The crux of these techniques, for example molecular beam epitaxy 

(MBE), relies on designing experiments such that atoms adsorbed onto the 

substrate or the previous layer will have a low ‘surface tension’ and 

preferentially spread over the substrate as opposed to forming agglomerates.4 

As the packing of these atoms increases, they tend to form atomically smooth 

strained monolayers templated off of the layers beneath.4 However, at some 

critical thickness the complex interplay between surface energy, volume energy, 

strain, and other physical properties will tend to destabilize the film and instead 

new material will coalesce into distinct islands.5 The introduction of an interface 

prior to the point of instability often preserves the energetic favorability of the 

thin-film structure and a superlattice of thin strained layers can be created.6 

More recently, a remarkable degree of research effort has been devoted 

towards the investigation of the stabilization and properties of 2D sheets and 

their heterostructures.7,8 Contrary to epitaxial films, these are built from the 

isolation and assembly of individual layers, which comes with the requirements 

that individual layers be stabilized outside of surface interaction with the 

substrate or preceding layers. While this severely limits the scope of chemical 
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systems, it allows for the formation of superlattices that do not structurally 

interact as a necessity for their stabilization. Furthermore, due to small flakes 

of material being manually stacked to form the layered structure, a regular 

angular registration between the materials is not a prerequisite of growth.9 

A third approach that has seen less interest devoted to it has been in the 

formation of nanolaminate thin films from layered amorphous precursors.10 

Perhaps falling between the extremes of strained epitaxial superlattices and 

quasi 2D heterostructures, these films form from several nucleation points as 

the self-assembling precursors crystallize while balancing the various volume, 

surface, and diffusive energetic terms within a complex multidimensional 

energy landscape with multiple phases.11 While the layers may crystallize 

congruently or step-wise, varying degrees of templating along the layers may 

occur further complicating the crystallization process.12 As long as a local free 

energy minimum exists within the targeted layered system there is a high 

likelihood they can be stabilized, but when several nearby minima exist then 

stabilizing a single phase may be difficult. 

Recently, nanolaminates made from designed precursors consisting of 

SnSe rocksalt-like layers paired with several transition metal dichalcogenide 

layers have been shown to undergo structural distortion between the high-

temperature β-SnSe and low-temperature α-SnSe phases as the size of the 

SnSe layers are changed.13–15 These distortions were determined to be driven by 

size as opposed to interfacial interactions with the dichalcogenides.13 Also 

recently reported was that SnSe bilayers when paired with TiSe2 exhibit a 

different structure altogether, which is likely due to interfacial interactions 

owing to the unique behavior and larger lattice parameter of TiSe2.16,17 Here, we 

investigate the changes in structure and transport properties of 

([SnSe]1+δ)m(TiSe2)n as m and n are increased. While the TiSe2 layers maintain 

their structure, the SnSe exhibit rich structural change as their size increases, 

including coexistence of multiple phases and defect structures in the same 

compound. These result in changing transport behavior unexplained by 

previous models in this and similar chemical systems.18,19 
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9.2. Materials and Methods 

Precisely layered but amorphous designed precursors were prepared by 

physical vapor deposition. Elemental layers were deposited from source 

material either by an effusion cell or electron beam guns onto silicon wafers 

with native SiO2. The deposition sequence was computer programmed and 

controlled. Pneumatic shutters were used to control the thickness of each 

sequentially deposited elemental layer. Layer thickness was monitored by 

quartz crystal microbalances located near the shutter. Locked θ-2θ diffraction 

patterns were used to determine the optimal parameters for building the m=n 

nanolaminate structures and briefly, varying one constituent’s number of layers 

while monitoring the change in superlattice period and total film thickness was 

the strategy employed in optimizing to the correct precursor and subsequent 

crystalized product.  

The layered structures were analyzed by coupled θ-2θ diffraction on a 

Bruker D8 Discover diffractometer equipped with Cu K-alpha radiation. These 

patterns were used to get total thickness, individual layer thickness (c-lattice 

parameter), and the number of layers in both the precursor and crystalized 

product. In-plane diffraction was used to determine what crystal phases are 

present in the layered structure. These data were collected using a Rigaku 

Smartlab diffractometer equipped with Cu K-alpha radiation and an in-plane 

detector arm. Both the source and detector were elevated slightly above the 

sample plane in a grazing-incidence geometry (at 0.5 and 4.0°, respectively). 

The precise angles were chosen by moving the in-plane drive to a Bragg position 

and iteratively adjusting both the source and detector in the out-of-plane 

direction to achieve maximum intensity. 

Electrical data were collected on films deposited in parallel to those used 

for structural analysis, but on fused silica substrates through a shadow mask 

in a van der Pauw cross pattern. Measurements were made in a closed-cycle He 

cryostat between 15 and 295 K using a house-built Hall measurement system. 

For Hall coefficients, VH/B-field slopes were averaged between 4 sets of contacts 

with a maximum field strength of 1.6 T and sourcing a constant current ≤0.001 

A. Resistivity measurements were made using the van der Pauw method 

sourcing a current between 0 and 0.001 A. Seebeck coefficients were measured 
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at room-temperature using a house-built system. One half of the sample was 

cooled slightly (ΔT≤2 °C) and V/ΔT curves were collected as the temperature 

equilibrated across the sample. Type-T thermocouples were used to measure 

each temperature and the individual metal junctions were used to measure 

voltages across the films. The measured V/ΔT slopes were then corrected for the 

Seebeck coefficients of the copper and constantan measurement junctions, with 

the two corrected values being in agreement to within 3 µV K-1 

 

9.3. Results and Discussion  

9.3.1. Synthesis  

A series of precursors consisting of vapor deposited layers of Ti, Sn, and 

Se were calibrated to form ([SnSe]1+δ)m(TiSe2)n nanolaminates such that m=n. For 

m=n≤5, the target thickness was 50nm, with some rounding so as to form an 

integer number of repeating structures. For m=n>5, precursors were designed 

to crystallize 8 repeats of the target heterostructure, which results in 

thicknesses of ca. 57 nm and 76 nm for m=n of 6 and 8, respectively. A small 

amount of selenium loss upon annealing is calibrated into the 50 nm thick 

precursor. The increased thickness in the m=n of 6 and 8 will have a decreased 

amount of selenium loss because of the larger distance the selenium would 

have to diffuse through, potentially impacting the transport properties. 

Precursors were gently heated at 350 °C for 30 minutes to promote the self-

assembly of several ([SnSe]1+δ)m(TiSe2)n superlattice thin-films, which can be 

described as alternating sheets of each structure with each sheet being 

comprised of m SnSe bilayers and n TiSe2 trilayers. Thus, m and n describe 

thickness of each distinct sheet within the repeating nanolaminate structure 

and herein we discuss a homologous series where they are simultaneously 

increased in the range of 1≤m=n≤8. 

 

9.3.2. Structure  

Figure 9.1. shows locked-coupled θ-2θ diffraction patterns of the 

([SnSe]1+δ)m(TiSe2)n (2≤m=n≤8) heterostructure superlattices. Due to the texture 

of the films, peaks in this geometry correspond uniquely to planes of atoms in 
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the stacking direction of the layers. As m and n are increased, the number of 

reflections increases, as expected from the thicker layers (and hence larger unit 

cell) found in the nanolaminate. Indexing these peaks as 00l lattice planes gives 

the thickness of a single repeat of m SnSe layers and n TiSe2 layers. Table 9.1. 

shows these thicknesses which regularly increase by approximately 11.89 Å 

each time m and n are increased by 1. This is in good agreement with previous 

data, with the m=n=1 compounds being approximately 12.05 Å thick.18 The 

small discrepancy has been previously noted in ([PbSe]1+δ)m(TiSe2)n 

nanolaminates and attributed to thickening of existing structures as opposed to 

forming additional rock-salt dichalcogenide interfaces.19 The regular increase in 

layer thicknesses and sharp diffraction peaks indicate the superlattice layering 

is preserved in the form of precisely stacked crystallites but does not inform on 

the structure of the constituent phases. 

 

 

Table 9.1. Lattice parameters of SnSe, TiSe2, and the superlattice period (c) the 
([SnSe]1+δ)m(TiSe2)n nanolaminates from Le Bail fits of the diffraction patterns.  

m=n c (Å) SnSe a (Å) SnSe b (Å) TiSe2 a (Å) 

1 12.0582(7) 6.094(3) 5.974(4) 3.52(3) 

2 23.8412(4) 4.266(1) 4.257(4) 3.52(3) 

3 35.5890(2) 4.27(1) 4.248(3) 3.51(3) 

4 47.3549(6) 4.301(6) 4.26(3) 3.51(3) 

5 59.5935(8) 4.311(6) 4.233(4) 3.52(2) 

6 71.4519(5) 4.328(1) 4.235(8) 3.566(3) 

8 95.1122(3) 4.344(3) 4.233(2) 3.569(1) 

 

 

 



 156 

 

Figure 9.1. Coupled θ-2θ out-of-plane diffraction patterns of ([SnSe]1+δ)m(TiSe2)n 
(1≤m=n≤8). A systematic increase in the c-lattice parameter of 11.89 Å, 
corresponding to a single TiSe2 unit cell and half SnSe unit cell, is seen as m 
and n are increased. 

 

In-plane diffraction data were collected for the ([SnSe]1+δ)m(TiSe2)n 

(1≤m=n≤8) nanolaminates to begin to characterize the structures of the layers, 

and are shown in Figure 9.2. The peaks in each pattern can be indexed to 

reflections of either of distorted SnSe or TiSe2, with an impurity reflection from 

SnSe2 appearing in higher m=n samples. The SnSe2 is marked by an asterisk 

and can likely be eliminated by longer annealing time. hk0 lattice parameters 

determined from the in-plane scans are given in Table 9.1. The TiSe2 

constituent parameters are consistent with other TiSe2-containing 

nanolaminates, and exhibit negligible structural change with size. The m=n=1 

compound shows a tetragonal basal plane as indicated by the split peaks in the 

diffraction pattern. This pattern must be indexed to a larger unit cell than bulk 

SnSe, with a- and b- lattice parameters of 6.094 and 5.974 Å, respectively. This 

distortion is distinct to nanolaminates with TiSe2 and SnSe, with other systems 

containing SnSe typically converging to a single lattice parameter as m 

approaches 1.16 For ([SnSe]1+δ)m(TiSe2)n (2≤m=n≤4) the basal plane becomes very 

nearly square and the  splitting into distinct hk0 peaks where h≠k is no longer 

observed. These patterns can still be fit to a tetragonal basal plane but are 

indexed to a smaller unit cell and inset in Figure 9.2. (top-right) are the a- and 
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b-lattice parameters and a/b. In the compounds with ([SnSe]1+δ)m(TiSe2)n 

(5≤m=n≤8) splitting of the SnSe peaks reappears, but the smaller unit cell and 

symmetry shift are maintained, appearing similar to the bulk α-SnSe phase. As 

m=n increases in this regime, the peaks split further towards the bulk lattice 

parameters, but do not yet reach the bulk values for the case of m=n=8 as seen 

here. Notably, the tetragonal basal plane seen in the thicker compounds 

(5≤m=n≤8) has different lattice parameters than the compound with where 

m=n=1. This is best explained by a face-centered to body-centered symmetry 

shift (see schematic in Figure 9.2. bottom-right) and a corresponding ~ "
√$ ratio 

between lattice parameters which, as Figure 9.3. is indexed, also fits the 

expected systematic absences. 

 

 

Figure 9.2. (left) In-plane diffraction patterns of ([SnSe]1+δ)m(TiSe2)n 
nanolaminates. The SnSe must be indexed differently as the layers thicken. The 
asterisk marks the location expected from SnSe2. (top-right) Lattice parameters 
of SnSe for m=n≥2 and ratio of a/b. (bottom-right) Schematic of face-to-body 
centering symmetry shift of SnSe. 

 

HAADF-STEM micrographs of m=n of 1, 2, and 3 nanolaminates provide 

a real-space representation of the nanolaminate structure, shown in Figure 9.3. 
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A-C, D-H, and E, respectively. Initial inspection shows regular layering with 

sharp interfaces between rock salt and dichalcogenide layers. The global 

layering reflects the structure expected from each precursor with periodic 

layering defects due to slight precursor non-stoichiometry (for example in the 

lower-right of the m=n=3 image, Figure 9.3.E.). Zone axis of the constituent 

lattices manifest as bright distinct points in the image with the brighter layers 

corresponding to the heavier Sn-containing constituent. Within each structure 

multiple zone axis orientations are visible indicating some degree of interlayer 

rotational misregistration. 

 

 

Figure 9.3. HAADF-STEM images of ([SnSe]1+δ)m(TiSe2)n nanolaminates showing 
templated interfaces for m=n=1 and several stabilized structures for m=n=2. 

 

However, the m=n=1 structure exhibits far less misregistration instead 

appearing nearly epitaxial several layers. Focusing on this structure, two 
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primary regions can be seen in the film with apparent templating between 

constituents. As seen in the top-right of Figure 9.3., with labels corresponding 

to the adjacent planes in panes B and C, the octahedrally coordinated TiSe2 can 

be seen as a dumbbell like structure when looking across the (110) and (1-20) 

planes. On the other hand, this structure appears as vertical bars when looking 

across the (100) and (1-10) planes. The SnSe structure in this image manifests 

as either indistinguishable ‘smears’ due to being off-axis or distinct points 

corresponding to looking across the (100) plane. The off-axis SnSe is regularly 

seen adjacent to the TiSe2 (100)/(1-10) planes whereas the (100) SnSe plane is 

seen adjacent to the TiSe2 (110)/(1-20) planes. An interfacial region where the 

layers cleanly change from one sequence to the next is also visible. This layering 

can be understood by considering the templating mechanism between TiSe2 and 

SnSe. The measured lattice parameters of SnSe and TiSe2 for m=n=1 (Table 

9.1.) show a √3 ratio between a-lattice parameters. This corresponds exactly 

with the ratio that would be expected from the formation of a commensurate 

interface between tetragonal and hexagonal structures along the <100> and <1-

10> directions, respectively. This also agrees with the STEM image seen in 

Figure 9.3.C. Considering the distortion and alignment of the SnSe lattice to 

accommodate this orientation, the region in Figure 9.3.B. is also understood by 

considering looking down the TiSe2 <100> axis, which would appear as off zone-

axis in SnSe. The TiSe2 interface between the two may occur both looking along 

the TiSe2 (1-10) plane or TiSe2 (100) plane, which would result in SnSe on or off 

zone axis as observed in the lower and upper SnSe layers, respectively. These 

distortions are likely driven by interface energetics and unique to ‘soft’ SnSe 

layers paired with TiSe2, which has a larger a-lattice parameter than other 

dichalcogenides.16 

In the m=n=2 nanolaminate, several structural details can be seen within 

the SnSe layers. Looking down the <110> axis of SnSe in Figure 9.3.F., the 

typical α-SnSe structure is observed, highlighted by the stacked triangle 

pointing in the same direction.20 On the other hand, Figure 9.3.H. shows 

another region of the film where β-SnSe is seen looking down the same axis, as 

highlighted by the stacked triangles pointing in opposite directions.20 Figure 

9.3.G. highlights a slip plane occurring along the <100> axis in which one 
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bilayer of SnSe is offset from the bilayer below it so the atoms lie in between 

each other. This misalignment could be due to the SnSe layers trying to align 

with the TiSe2 layers on either side of it forcing the SnSe layers to shift. In fact, 

looking the TiSe2 layers above and below, both the dumbbell and vertical bar 

structures corresponding to (110) and (1-10) planes can be seen, both of which 

could be visible when forming the commensurate interface with SnSe. The 

various structures seen in the m=n=2 structure point to the complicated 

environment the compounds nucleate in. Unlike the m=n=1 compound, the 

introduction of interior atoms allows for entirely new behavior due to a 

complication of the free energy landscape and balancing of interface and volume 

terms in approximately equal amounts. 

 

9.3.3. Transport 

Previous work in similar ([SnSe]1+δ)m(TiSe2)n nanolaminates suggests that 

the effective density of states (DOS) in the composite material is given by a 

superposition of the partial DOS (pDOS) from each constituent and an 

equilibrium chemical potential set by the chemical composition and layer 

ratios.21 However, recent work in ([PbSe]1+δ)m(TiSe2)n nanolaminates suggests 

that some band-bending away from the interfaces occurs.19 The two separate 

pDOS are combined assuming the shape, location, and size of the bands do not 

change in the composite structure. The 4p orbitals of Se are fully filled in the 

isolated SnSe layer. When interleaved with the TiSe2 layers at the nanoscale, 

electrons from the Se-4p band in SnSe are donated to the empty Ti-3d band. 

This exchange causes the ([SnSe]1+δ)m(TiSe2)n nanolaminate heterostructures to 

have a both a mostly empty (n-type) band in the TiSe2 constituent and a mostly 

full (p-type) band in the SnSe constituent with the Fermi level lying within the 

bands. This suggests a likely metallic behavior as well as the opportunity for 

bilpolar transport with both holes and electrons as mobile carriers that could 

impact the transport behavior of the material. Given the strong interfacial 

interaction, the structural changes and symmetry shifts, and significantly 

changing interface to volume ratios within the SnSe layers, a similarly rich 

electronic behavior might also be seen, despite the typical dominance of the 

TiSe2 bands. To this end it is not known whether this predicted density of states 
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or previously used simple physical models are accurate in describing the 

behavior that occurs in thicker ([SnSe]1+δ)m(TiSe2)n nanolaminate 

heterostructures.  

Increasing the layer thickness of the compounds has an impact on the 

resistivity that is measured at various temperatures as seen in Figure 9.4. 

Previous research showed that ([SnSe]1+δ)m(TiSe2)n where m=n=1 showed a low 

resistivity that had temperature dependent behavior of what was expected for a 

metal. As the layer thickness is increased from m=n=1 the resistivity increases 

and as opposed to metallic behavior, an increasing resistivity is seen as 

temperature is decreased. This behavior looks closer to that of thermally 

activated carriers in a semiconductor and becomes more pronounced as the 

layers reach larger numbers of m=n. 

 

 

Figure 9.4. Temperature-dependent resistivity of ([SnSe]1+δ)m(TiSe2)n 
nanolaminates. 

 

Each of the parent materials in these layered nanolaminates are narrow-

gap semiconductors in the bulk, though self-doping due to slight non-

stoichiometry in the narrow-gap TiSe2 tends to result in weakly metallic 

transport behavior. With increasing layer thickness the SnSe starts to adopt the 

structure that it has in the bulk, so it is possible that it will display the 

electronic properties that is has the in bulk. If this were true, it might be 
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expected that SnSe in thicker layer compounds, adopts a DOS similar to 

discussed above. On the other hand, TiSe2 does not undergo any structural 

distortion with increasing layer thickness and its transport behavior is expected 

to remain relatively unperturbed with size. 

Hall coefficients of the ([SnSe]1+δ)m(TiSe2)n nanolaminates are shown in 

Figure 9.5. Strikingly different to the m=n=1 compound which exhibits negative 

Hall coeffiecients at all temperatures18, the m=n≥2 nanolaminates all show 

positive Hall coefficients at room-temperature. For m=n<6, decreasing Hall 

coefficients with temperature are observed. While m=n=2, 4 exhibit a sign 

change at ca. 200K, the m=n=3 does not. Whether this is due to defect levels in 

the compounds or heretofore unexplored or unexplained behavior from, for 

example, the energetics of stabilization of the nanolaminates, is yet to be 

determined. The m≥6 nanolaminates show increasing Hall coefficients as the 

temperature is decreased. While further structural characterization is necessary 

via STEM, this is likely the point at which the bulk α-SnSe structure is 

established and the intermediate structures cease to appreciably affect the 

transport, as indicated by the in-plane diffraction patterns. Despite the positive 

Hall coefficients, negative Seebeck coefficients are measured for all compounds 

as shown in Table 9.2. This points to a complicated Fermi surface in the 

composite material that cannot be described by a single electronic band or 

carrier type as has typically been done in other nanolaminates containing TiSe2. 
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Figure 9.5. Temperature dependent Hall coefficients of ([SnSe]1+δ)m(TiSe2)n 
nanolaminates. 

 

Table 9.2. Room-temperature transport measurements for ([SnSe]1+δ)m(TiSe2)n 
nanolaminates. 

m=n S (µV K-1) RH (10-3 cm3 C-1) ρ (10-5 Ω-m) 

1 -75 -0.0031 1.52 

2 -52 0.0017 1.89 

3 -75 0.012 2.63 

4 -75 0.0035 3.93 

5 -92 0.0041 5.71 

6 -40 0.032 4.03 

8 -40 0.02 5.72 

 

9.4. Conclusion  

 The complicated energy landscape of ([SnSe]1+δ)m(TiSe2)n nanolaminates 

allows for the formation of epitaxial interfaces and several different structures 

in the SnSe constituent prior to stabilization of the bulk structure in thick 

layers. In the m=n=2 nanolaminate with equal amounts of interfacial and 

interior atoms, several structures exist simultaneously in the SnSe layers. This 
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diverse structural change allows for a rich suite of electronic properties 

including a more complicated bipolar behavior than has been observed in either 

the ([SnSe]1+δ)1(TiSe2)1 nanolaminates or nanolaminates with TiSe2 in other 

material systems. Future work on the details of the electronic structure will be 

necessary in these compounds to fully realize the power of the 

predictive/synthetic loop available to nanolaminate structures. 
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CHAPTER X 
 

CONCLUSIONS, SUMMARY, AND OUTLOOK FOR FUTURE WORK 
 

 The structure and properties of several kinetically stabilized compounds formed 

from the self-assembly of designed precursors are reported and discussed. All 

precursors were formed as thin films by vapor deposition of amorphous elemental 

layers onto substrates, then subsequently heated to promote the formation into 

metastable products. The compounds in this dissertation all show interest as 

thermoelectric materials, with significant discussion devoted to their optimization as 

such. 

 The formation mechanism of the metastable FeSb3 phase over 

thermodynamically stable FeSb2 was investigated by atomic pair distribution analysis 

(PDF). It was found that the local structure of the metastable phase is present in 

precursors even when compositionally unfavorable. When provided a nucleation 

environment locally free of chemical gradients favoring the thermodynamically stable 

compound and globally favorable in composition for the FeSb3 phase, the metastable 

phase can be formed as a polycrystalline thin film. Furthermore, the first reports of 

PDF on thin films in a transmission geometry was reported, with results closely 

matching data collected from powders of the same material. 

Self-assembly of layered materials from designed precursors allows for the 

investigation of an unprecedented amount of new compounds using the concept of 

phase homology. By defining distinct ‘building blocks’ that can be predictably 

introduced into a material, relationships between composition, structure, and 

properties can be explored. Several homologous and isomeric series of compounds 

within the ([MSe]1+δ)m(TiSe2)n (M=Pb, Sn) family of nanolaminate compounds were 

investigated with systematic variation in m and n. These series allow for controllably 

modifying the chemical system, relative composition, nanoarchitecture, and structure 

in a controllable fashion. 

In order to determine the effects of defects on ([PbSe]1+δ)m(TiSe2)n nanolaminates, 

precursors with deliberate nonstoichiometry were investigated. The laminates tend to 

‘self-heal’ during self-assembly, but inclusionary defects form with high compositional 

unfavorability of the precursor. Even so, the transport and global layered structure 
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was relatively insensitive to these defects despite the large compositional mismatch. 

Increasing the thickness of the layers by increasing m and n congruently has little 

effect on the structure of either compound beside nucleation of larger crystallites 

within the layers. However, it does all for band-bending away from the PbSe-TiSe2 

interfaces and decreases the degree of charge exchange within the layers. This also 

suggests that the reduced coulombic stabilization from thick layers is the basis for the 

thermodynamically stable, but structurally similar, misfit compounds only being 

found with m, n ≤ 2. The introduction of buried interfaces into compounds where 

m=n=4 by reducing the thick blocks into smaller constituents while maintaining the 

same number of layers in the nanolaminate unit cell can be achieved forming solid 

state structural isomers. The readily characterizable platform of repeating nanolayered 

systems is especially well highlighted in these materials as, despite them being 

structurally and compositionally indistinguishable at the global scale, the 

nanoarchitectures can still be confirmed with laboratory tools. These compounds 

highlight a method whereby the vast synthetic space might be course-grained towards 

the optimal compound for an end-use, such as thermoelectric materials. Compounds 

with an intermediate number of buried interface exhibit enhanced thermoelectric 

performance relative to the other nanoarchitectures. Finally, by increasing n while 

maintaining m at 1, the mobile electrons exchanged between the PbSe constituent into 

the TiSe2 can be ‘diluted’ across more layers, providing a controllable means of 

enhancing the Seebeck coefficient and thermoelectric performance of the 

nanolaminate. These results fit well to simple physical models of charge exchange 

between ridged bands and when taken with the results of previous chapters, suggest 

the band-bending within the interior of the TiSe2 layers is less severe than in PbSe. 

For n=18, the highest thermoelectric power factor ever in the broader family of 

chalcogenide nanolaminates was reported, which is especially exciting considering the 

measurement was made at room-temperature, the thermal conductivity is expected to 

be near the amorphous limits, and the opportunity for further optimization. 

Combining the effects from buried interfaces and a high relative ratio of TiSe2 is an 

obvious next step for further optimizing the transport in this chemical system. 

The substitution of Pb atoms for isovalent Sn to form ([SnSe]1+δ)m(TiSe2)n 

nanolaminates wouldn’t be thought to dramatically alter the transport behavior. In 

fact, the transport between compounds with m=n=1 is qualitatively quite similar. 
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However, SnSe undergoes significant structural distortions as the size of the layers are 

changed and complex behavior and interactions between constituents are observed. In 

the case of increasing n as m is held at 1, similar behavior is initially seen as to the 

PbSe-containing compounds. However, and somewhat surprisingly as the SnSe layer 

size is maintained and the TiSe2 structure does not change with size, highly divergent 

behavior is seen beyond n=4. In these cases, the temperature dependence and values 

of both the resistivity and carrier densities differ drastically from the lower n and 

PbSe-containing compounds. Furthermore, the Seebeck coefficient at cryogenic 

temperatures significantly increases in magnitude for n=15 relative to the expected 

behavior seen in n=3. This results in a noteworthy cryogenic thermoelectric power and 

estimated values of the thermoelectric figure of merit near unity. Increasing m and n 

concomitantly shows significantly changing structure in the SnSe layers while 

maintaining the TiSe2 structure. Unlike PbSe, the ‘soft’ SnSe layers distort and appear 

to form commensurate axis with TiSe2. As the layers thicken and interior atoms are 

introduced a complicated energy landscape allows for the formation of several 

intermediate structures before the bulk SnSe phase is observed. The varying 

structures result in radically changing transport properties, including the first signs of 

bipolar behavior observed in TiSe2 nanolaminates. The results are unprecedented and 

currently no physical explanation has been developed that describes the observed 

behavior. While work in this chemical system seems to initially decrease the inherent 

value of using it with phase homologies, the ability to synthesize the compounds 

remains and further experimentation will help build understanding of the changing 

structures, which will aid in development of new physical models, and finally allow for 

prediction to be made but in a much richer chemical environment. 
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