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DISSERTATION	ABSTRACT	
	
Joshua A. Melton 
 
Doctor of Philosophy 
 
Department of Educational Methodology, Policy, and Leadership 
 
December 2016 
 
Title: Beyond One-Size Fits All:  Using Heterogeneous Models to Estimate School Performance 

in Mathematics 
	
	

This dissertation explored the academic growth in mathematics of a longitudinal cohort 

of 21,567 Oregon students during middle school on a state accountability test.  The student test 

scores were used to calculate estimates of school performance based on four different 

accountability models (percent proficient [PP], change in PP, multilevel growth, and growth 

mixture).  On average, 72% of Oregon eighth graders were proficient in mathematics in 2012, 

71% in the average school, and 6% more students in this cohort demonstrated mathematics 

proficiency compared to 2011.  The two-level unconditional multilevel growth model estimated 

the average intercept (Grade 6) to be 228.4 (SE = 0.07) scale score points with an average middle 

school growth rate of 5.40 scale points per year (SE = 0.02) on the state mathematics test.  

Student demographic characteristics were a statistically significant improvement on the 

unconditional model.  A major shortcoming of this research, however, was the inability to find 

successful model convergence for any three-level growth model or any growth mixture model. 

A latent class growth analysis was used to uncover groups of students who shared 

common growth trajectories.  A five-latent class solution best represented the data with the 

lowest BIC and a significant LMR p.  Two of the latent classes were students who had high 

achievement in Grade 6 and demonstrated high growth across middle school and a second group 
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with low sixth grade achievement that had below average growth in middle school.  Student-

level demographic predictors had statistically significant relations with growth characteristics 

and latent class membership.   

In comparing school performance based on the four different models, it was found that, 

although statistically correlated, the models of school performance ranked schools differently.  A 

school’s percentage of proficient students in Grade 8 correlated moderately (r = [.60, .70]) with 

growth over the middle school years as estimated by the growth and LCGA models.  About 70% 

to 80% of schools ranked more than 10 percentiles differently for every pairwise comparison of 

models.  These results, like previous research call into question whether currently used models of 

school performance produce consistent and valid descriptions of school performance using state 

test scores.  
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CHAPTER I 

INTRODUCTION 

 The No Child Left Behind (NCLB; 2002) legislation increased student testing, school 

performance reporting, and accountability for states, districts, and schools (Linn, 2008).  NCLB 

(2002) required schools to annually report the number of students proficient in reading and 

mathematics in Grades 3 to 8 and one grade in high school and also operationalized the goal of 

having all students meet proficiency benchmarks on statewide tests by 2014 (Conley, 2003; 

Fowler, 2009; Kiplinger, 2008; Kirst, 2004).  The legislation further required states to report the 

percent of students proficient in mathematics and reading for districts and schools for students 

overall and for students disaggregated by traditionally underserved student groups (i.e., low 

socioeconomic status, English Learner status [EL], race/ethnicity groups, and students with 

disabilities [SWD]) in order to monitor achievement gaps between these protected classes and 

their peers (Conley, 2003; Fuhrman, 2004; Fowler, 2009; Linn, 2008; NCLB, 2002; Ryan, 2008).  

However, under NCLB regulations, the states were left to determine how to define, measure, and 

monitor adequate yearly progress (AYP), the measure of whether students were on track to be 

proficient by 2014.  Although NCLB left flexibility in some areas of each state’s accountability 

system, all states were required to use the percentage of students at or above a state-defined 

proficiency benchmark as the sole measure of academic performance.  States chose the tests used 

and set the benchmarks that defined proficiency on the tests, which also meant that students from 

different states took different tests and were compared to different standards.  The original goals 

of NCLB were that all students would meet or exceed the benchmark for proficiency in reading 

and mathematics by 2014. 
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The intent of NCLB was to create better learning outcomes for all students through the 

imposition of more “rigorous” accountability methods.  The primary method by which NCLB 

enforced compliance with the new accountability system was by requiring states to impose 

sanctions (e.g. labeling schools as “in need of improvement,” reconstituting schools, or 

withholding federal funds) on schools that failed to make sufficient progress towards 

proficiency.  NCLB was the first educational legislation with an enforcement mechanism 

intended to hold schools accountable because it directly tied performance to consequences 

(Conley, 2003; Fowler, 2009; Furhman, 2004).  An indirect form of school accountability also 

resulted from public dissemination of testing results, where a variety of constituents could draw 

their own conclusions about the publicly reported testing results (McDonnell, 2008; Stein, 

Goldring, & Cravens, 2011).   

In more recent years, additional federal flexibility in the design of state accountability 

systems was allowed under the growth model pilot program (United States Department of 

Education [USDOE], 2011), and has increased further under the Race to the Top program 

(RTTT; Consolidated Appropriations Act, 2012; USDOE, 2009) and the new Every Student 

Succeeds Act (ESSA, 2016).  As part of this new flexibility, many states have begun to explore 

alternative methods for analyzing and representing student achievement including various forms 

of growth models.   

The original NCLB percent proficient metric is often referred to as a “status” model 

because it represents a snapshot of academic performance at a single point in time. Status models 

include the use of student scale scores or percent proficient as long as only one assessment 

occasion is used for estimation of academic performance.  When necessary, specific status 

models will be discussed, but there will be times in this dissertation where a comment on 



	 	 	

3	

“status” models simply applies to models that only utilize data from one point in time.  “Growth” 

for the purposes of this dissertation refers to all types of models that estimate academic 

performance over time (i.e., two or more assessment occasions).   

For the following literature review, primary sources for locating research studies were 

academic databases including ERIC, PsychInfo and Google Scholar where I used search terms 

like school performance (school performance, school effects, value-added, school effectiveness, 

etc.), teacher performance (same terms replaced with teacher), mathematics learning, 

achievement gaps and growth mixture modeling.  I scanned the abstracts of the articles found in 

the initial searches to determine their relevance.  I also reviewed the reference lists for all chosen 

articles (and many not cited) for additional primary resources.  Other resources were obtained 

largely from graduate coursework.   

From Percent Proficient to Growth 

 Motivation for the move from percent proficient to other measures of student and school 

performance accrued from evidence that the use of status measures of school performance (i.e., 

NCLB percent proficient) had a number of shortcomings.  First, a substantial concern was that 

status models of school accountability were not stable from year-to-year because the measures 

are based on different cohorts of students each year (Ferrão, 2012; Goldschmidt, Choi, & 

Beaudoin, 2012; Kelly & Downey, 2010; Kiplinger, 2008; Kupermintz, 2003; Lefgren & Sims, 

2012; Linn & Haug, 2002; Lockwood, Louis, & McCaffrey, 2002; Scherrer, 2011).  Hence, a 

school with a particularly strong group of students one year might have many proficient students 

and be highly regarded, but the following year a group of students who entered the same grade 

with less students scoring at or above proficient would likely result in the perception of lower 

school performance.   
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 Second, a significant problem with NCLB accountability methods was the unrealistic 

expectation of universal proficiency, the goal of having all students proficient by 2014.  In 2004, 

Darling-Hammond and Sykes speculated that more than half of the nation’s schools would be 

labeled as failing by NCLB’s standards by 2014.  In fact, in 2010-11, only 51% of the nation’s 

schools met annual performance targets and the government acknowledged it “over-identified” 

failing schools (USDOE, 2012).  After 2012, Oregon received its flexibility waiver and began to 

report annual measurable objectives rather than AYP.  By 2014, 69% of Oregon’s elementary 

and middle schools met their annual objectives, but only 62% of middle school students scored at 

or above proficient on the state mathematics test (ODE, 2014).  In 2015, the results were lower in 

Oregon with only 40% of schools in the state meeting annual objectives in mathematics and only 

43% of middle school students earning proficient scores in mathematics (ODE, 2015).   

Third, a host of technical issues threatened the validity of school accountability under 

NCLB.  Using the status model, schools were assessed based on students’ performance on one 

state test in one year, an incomplete “snapshot” of student performance.  Under NCLB, annual 

student test scores were interpreted as direct measures of school performance.  NCLB 

“…institutionalized a reliance on test-based accountability as a key mechanism for improving 

student achievement…” (Ryan, 2008, p. 191).  In educational accountability research, the use of 

student standardized test scores to represent the “performance” of a teacher or school was 

commonplace (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Noell & Burns, 2006; 

Rothstein, 2010; Sanders, Wright, & Langevin, 2008; Schochet & Chiang, 2010).   

Further complicating comparisons under NCLB, states were left to devise their own 

benchmarks for proficiency based on standards of their choice.  Thus, “proficient” students from 

one state may have had different skills and levels of proficiency than another state’s “proficient” 
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student (Bandiera de Mello, Bohrnstedt, Blankenship & Sherman, 2015; Haertel, 2008).  Another 

challenge to the validity of status models was the concern that school performance was 

confounded by the composition of students within a school.  Schools with relatively large 

percentages of lower performing students (e.g., low socioeconomic background, EL, or SWD) 

automatically had lower performance using the percent proficient model of school accountability 

(Davidson, Reback, Rockoff, & Schwartz, 2015; Harris, 2011). Because percent proficient 

makes no adjustment for school composition, schools that serve disadvantaged students would be 

inappropriately deemed to be “low performing” and schools that served an advantaged student 

population would be inappropriately deemed to be “high performing.”   

The NCLB percent proficient model evaluated whether the percentage of students in a 

particular school were higher or lower than a particular proficiency cut-point in a given year.  

This model inherently ignores any progress an individual student or a school may have made 

towards the proficiency benchmark over time.  For example, if a school has 10% proficient 

students in one year and 30% proficient students the next, it still may have been labeled as failing 

to meet AYP, if the target was 50% proficient.  However, a 20% gain in proficient students in a 

low performing school should be lauded because it tripled the percentage of proficient students 

in one year.  Zvoch and Stevens (2003) provided a great example of this shortcoming of status 

measures of school performance compared to a growth measure by showing that some schools 

with low status had high growth relative to other schools and vice versa.  In 2005, the federal 

Growth Model Pilot Project began with two states (North Carolina and Tennessee) that were 

allowed to use a growth model in addition to percent proficient to meet NCLB accountability 

standards (USDOE, 2011).  By 2009, 15 states had received federal approval to use growth 

models as an addition to their accountability systems.  With growth models, students made AYP 
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by demonstrating adequate growth towards meeting a benchmark on a state test, although the 

mechanisms for measuring growth and meeting benchmarks varied widely from one state to 

another.  As in the above example, a school that had 20% more proficient students than the prior 

year might thereby demonstrate adequate progress using a growth formulation when they would 

have failed to meet expectations under the status model. 

 The RTTT legislation (Consolidated Appropriations Act, 2012; USDOE, 2009) led to 

additional relaxation of some NCLB requirements and placed a new emphasis on student 

academic growth over at least two measurement occasions (Mangiante, 2011).  RTTT adhered to 

NCLB’s definition of student achievement as performance on achievement tests, but allowed for 

the use of additional tests such as end-of-course exams and formative assessments (USDOE, 

2009). States that wanted to apply for the large federal grants made available by RTTT had to 

demonstrate a plan to shift toward the use of student growth for accountability.   

 In 2011, the federal government also began to allow states to apply for NCLB 

“flexibility” or waivers that would allow different methods to measure student achievement in 

lieu of the unrealistic standard of universal proficiency.  Some states set annual targets for 

schools based on the end target of 100% proficient students in 2014 (e.g. 80% proficient students 

in 2012), some states counted a student as proficient if a growth model demonstrated that they 

would be above the proficient cutpoint by 2014, and other states allowed students to achieve the 

proficient benchmark by having test scores relatively higher than peers with similar scores in 

previous years (e.g. the Colorado Student Growth Percentiles [SGP] model).  For example, 

Oregon’s ESEA Flexibility Waiver was approved in 2012 and included the use of a SGP model 

(ODE, 2012c).  The Oregon model utilized a three-year growth-to-standard model using the 

Colorado SGP model.  The NCLB flexibility waivers that Oregon and other states received 
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supported the national movement towards growth models, but continued to allow substantial 

differences in state accountability systems.   

The most recent federal legislation, ESSA (2016), continued the movement away from 

the more proscriptive NCLB requirements for states, districts, and schools.  The new legislation 

allowed states to set their own benchmarks for proficiency, growth, and closing achievement 

gaps for protected groups of students (ESSA, 2016; Klein, 2016).  Under ESSA, state standards 

were required to be “challenging,” but did not proscribe a particular set of standards such as the 

Common Core State Standards (ESSA, 2016; Klein, 2016; The White House, 2015).  The 

language of ESSA reflected the previous NCLB flexibility waivers and RTTT changes by 

moving toward a less uniform system of accountability.  The likely result of ESSA will be 

systems of accountability that will be quite different from state to state and even from district to 

district.   

 ESSA (2016) marked a shift away from accountability systems that depend wholly on 

status measures of performance like percent proficient.  ESSA (2016) still requires annual testing 

for students in Grades 3 to 8 and one year in high school in both mathematics and language arts, 

but only requires test scores to be one of several indicators in a state’s accountability system 

(Klein, 2016; The White House, 2015).  The general trend of the ESSA legislation away from the 

stricter language of NCLB also applies to regulations governing testing methods.  Some 

examples of differences in allowable tests include the use of SAT or ACT scores in lieu of state 

tests for high school students, the use of formative tests in place of annual state tests, and the 

creation of state specific “opt out” rules that allow students to be excluded from accountability 

testing (ESSA, 2016; Klein, 2016; The White House, 2015).   
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Achievement Gaps in Mathematics 

 The NCLB requirement to report student achievement in mathematics and reading has 

resulted in an emphasis in research on these outcomes.  The focus of this dissertation is on 

mathematics achievement on an annual statewide assessment.  Mathematics achievement is 

considered to be a key component of student success (Adelman, 2006; Finkelstein, Fong, 

Tiffany-Morales, Shields, & Huang, 2012; Morgan, Farkas, & Wu, 2009; Wang & Goldschmidt, 

2003; Watts, Duncan, Siegler, & Davis-Kean, 2014).  Mathematics success at earlier ages is also 

associated with mathematics success later in a student’s education.  For example, success and 

growth in early mathematics (kindergarten or Grade 1) was associated with later mathematics 

achievement in elementary school (Morgan et al., 2009; Shanley, 2015) and at age 15 (Watts et 

al., 2014).  Researchers have found that success in middle school mathematics can predict later 

course-taking patterns (Finkelstein et al., 2012) and achievement in secondary mathematics 

(Wang & Goldschmidt, 2003).  Adelman (2006) linked student success in secondary 

mathematics to success in post-secondary education.  Due to the continuum of mathematics 

learning, it is important to understand growth in the subject for students overall as well as for 

students in protected classes. 

 There is substantial interest and research examining differences in mathematics 

achievement among student subgroups (Ding & Davison, 2005; Hemphill, Vanneman, & 

Rahman, 2011; Morgan et al., 2011; Reardon, Kalogrides, & Shores, 2016; Stevens, Schulte, 

Elliott, Nese & Tindal, 2015; Wei, Lenz, & Blackorby, 2013).  On the 2015 National Assessment 

of Educational Progress (NAEP) there were substantial achievement gaps for underserved groups 

of students.  Students receiving free or reduced lunch (FRL) demonstrated a significant 

difference in percent proficient compared to non-FRL students in Grade 8 (18 vs. 48% proficient, 
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p < .001; USDOE, 2015).  Differences in proficiency also were substantial for EL (6% vs. 35%, 

p < .001), and SWD students (6% vs. 36%, p < .001; USDOE, 2015).  White students (43% 

proficient) also demonstrated significant differences from all other groups including Black (13%, 

p < .001) and Hispanic (19%, p < .001) students (USDOE, 2015).  Reardon et al. (2016) also 

reported an achievement gap ranging from 0 to 1.2 standard deviations (SD) on state 

mathematics tests between White and non-White students across a disaggregated geographic 

map of the United States.   

 Over time, cross-sectional Grade 8 NAEP mathematics results showed that the Hispanic-

White achievement gap had not changed statistically from 1990 to 2011 (Hemphill et al., 2011).  

Likewise, the gap between Black and White students on NAEP between 1999 and 2009 did not 

change statistically (Vanneman, Hamilton, Anderson, & Rahman, 2009).  Additionally, the 

NAEP long-term trend tool indicates that the achievement gaps for female, non-White, FRL, EL, 

and SWD students remained the same from 1999 to 2012 for students at age 13 in mathematics 

(USDOE, 2016).   

 A number of studies have attempted to address the size of achievement gaps using 

longitudinal data.  One possible pattern that resulted from achievement gap analyses from 

longitudinal models was a widening of the gap where high achieving students grew at a higher 

rate than students who begin behind -- called the Matthew effect (Morgan et al., 2011).  Wei et 

al. (2013) found that achievement gaps on applied problems and calculation in mathematics from 

Ages 7 to 17 were stable for all comparisons except the comparison of White and Hispanic 

students for whom the achievement gap widened.  Morgan et al. (2011) found that achievement 

gaps for SWD increased from kindergarten to Grade 5 in mathematics, as did gaps for students 

with speech and language impairments in reading.  Jordan, Kaplan, Olàh, & Locuniak (2006) 
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observed three latent classes of mathematics growth in kindergarten including a group that 

started kindergarten higher in mathematics than their peers and grew faster in the subject over 

the year.  In middle school reading on the annual state test in Florida, two latent classes 

demonstrated a widening achievement gap (Bilir, Binici, & Kamata, 2008).   

 A second pattern that could be expected from a longitudinal study of achievement gaps 

would be no change in achievement over time.  Like the long-term trends on the NAEP, much of 

the recent research suggests that achievement gaps in middle school mathematics remained 

unchanged for underserved students such as FRL, EL and SWD (Anderson, Saven, Irvin, 

Alonzo, & Tindal, 2014; Ding & Davison, 2005; Lee, 2010; Morgan et al., 2011; Stevens et al., 

2015; Wei et al., 2013).  For example, Ding and Davison (2005) concluded that underserved 

groups (EL and SWD) were not closing the gap on their peers from Grades 5 to 8 on an annual 

standardized test (Ding & Davison, 2005).  Likewise, Stevens et al. (2015) found that the 

achievement gap for SWD generally remained stable on North Carolina’s annual end-of-grade 

tests.  In kindergarten on mathematics, Jordan et al. (2006) found FRL students grew at 

comparable rates to non-FRL students.  Stable achievement gaps were also reported in reading 

across Grades 3 through 7 on a state reading test between SWD and general education students 

with the exception students identified with a learning disability in reading (Schulte, Stevens, 

Elliott, Tindal, & Nese, 2016). 

 The third outcome from an analysis of achievement gaps in longitudinal students would 

be for the gaps to decrease or close.  In some of the prior studies, the achievement gap was 

observed to close for specific subgroups of students.  Schulte et al. (2016) found that specific 

SWDs (learning disabled in reading) did close the gap in reading from Grade 3 to 7 on a state 

reading test.    Ding and Davison (2005) observed a negative association between intercept and 
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slope meaning that low intercept students had a higher rate of growth in mathematics than their 

peers.  On middle school reading state test, males had higher growth than females and EL 

students had higher growth than non-EL students (Bilir et al., 2008). 

 Cross-sectional studies of achievement gaps in middle school mathematics have shown 

gaps for underserved groups each year (Reardon et al., 2016; USDOE, 2015), but the size of the 

gap has remained stable over time (Hemphill et al., 2011; USDOE, 2016; Vanneman et al., 

2009).  Many longitudinal studies have also found evidence of stable achievement gaps in 

middle school mathematics (Anderson et al., 2014; Ding & Davison, 2005; Lee, 2010; Morgan et 

al., 2011; Stevens et al., 2015; Wei et al., 2013).  In some of the studies in which the gaps appear 

stable, specific groups of underserved students have closed the gap (e.g. Schulte et al., 2016) or 

demonstrated a Matthew effect (e.g. Morgan et al., 2011).  With no consensus in the literature on 

achievement gaps, ESSA continues to require closing achievement gaps in mathematics for 

underserved students.  To contribute to the growing body of research on achievement gaps, this 

dissertation analyzed achievement gaps longitudinally for middle school mathematics. 

Growth Models Used for State Accountability 

 As described earlier, recent changes in federal regulations have allowed states to apply 

growth models in their accountability systems but there is a good deal of variety in the model 

types being used.  Castellano and Ho (2013) described a number of alternative growth models, 

four of which are relevant to the current discussion: growth-to-standard, transition matrix, SGP, 

and longitudinal.  Table 1 provides a brief description of four of the types of growth models 

discussed by Castellano and Ho. 

Fourteen states (including Oregon) used some version of a growth-to-standard model 

where benchmarks were set for student progress towards proficient status from the previous year 
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(Castellano & Ho, 2013; Blank, 2010).  Six states used the transition matrix model, where 

schools and districts were held accountable for the percentage of students moving from one 

proficiency category to another across two successive years.  As of 2013, 15 states used student 

growth percentiles (SGP), which involves the computation of a normative percentile for a 

student’s performance in the current year conditioned on prior year’s scores (Hull, 2013).  

Finally, only three states used longitudinal models that estimate student or school growth over 

three or more years.  The remaining states have continued to use the NCLB status model, 

reporting the percent of students proficient in the current year. 

 Goldschmidt et al. (2012) reviewed the performance of models used for school 

accountability including a status model based on scale scores in a single year, SGP and 

longitudinal growth measured over three time points in mathematics using data representing 

between 143 and 1,792 middle schools in four states.  It is important to note that Goldschmidt et 

al. (2012) used both a status model with scale scores and the percent proficient model in their 

report (note that I only use the percent proficient model in this dissertation). In general, status 

models refer to any model that uses only one measurement occasion and therefore provides a 

snapshot of the “status” of performance in that one year.  The authors analyzed correlations 

among the models as well as rankings of school performance derived from the different models.  

For correlations among school performance estimates, the status model using scale scores had 

the highest correlation with the growth-to-standard model (Pearson’s r = .33 – 1.00 depending on 

the state dataset used) followed by SGP (r = .22 to .66) and the longitudinal models (r = -.22 to 

.41).  The status model using scale scores had a low to moderate correlation with longitudinal 

growth (Pearson’s r = .00 - .38, depending on the state dataset used).   
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 The second method Goldschmidt et al. (2012) used to compare models was the extent to 

which one model ranked a school in the same quintile (20%) as the ranking obtained using 

another model.  Both the SGP and growth-to-standard models were much more similar in placing 

schools into the same performance quintile than status or longitudinal models.  Percent proficient 

only placed 26% of schools in the same quintile as the gain score model, which was computed 

simply as the difference in percent proficient from year-to-year.  The SGP model placed 41% of 

schools within the same quintile as the longitudinal growth model used for middle school 

mathematics (Goldschmidt et al., 2012).  The growth-to-standard model only placed 20% of 

schools into the same performance quintile as the longitudinal growth model.  In a similar study, 

Goldstein (2006) found a significant correlation between percent proficient in Grade 8 and 

unconditional growth (r = .67) as well as growth conditioned on student demographic 

characteristics (r = 0.39).  Li (2007) also found statistically significant correlations ranging from 

-.61 to -.03 between status and longitudinal growth models of school performance from Grades 3 

to 6 in reading.  However, Li (2007) found that only 72% of schools were ranked in the same 

performance quartile when comparing unconditional and conditional growth models (r = .89). 

Like Goldschmidt et al. (2012), Li (2007) found that school rankings were inconsistent.   

 The third and final way Goldschmidt et al. (2012) compared models was by computing 

the year-to-year correlation of school performance estimates within each model, which they 

called stability.  They found the stability was 0.70 for percent proficient; 0.46 for SGP; 0.44 for 

longitudinal growth; and 0.79 for the growth-to-standard model (Goldschmidt et al., 2012).  For 

example, for the percent proficient model, a stability of 0.70 meant that 49% of the variance in a 

current year’s school performance estimate agreed with the prior year’s school performance 

estimate.  Scherrer (2011) suggests that this low degree of stability across methods of estimating 
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school performance may indicate inconsistency or unreliability of model estimates and therefore 

undermine the intended inferences that these models are reliably capturing true school 

performance.   

 Growth as a measure of school performance.  Some scholars argue that status-based 

accountability models like NCLB are a flawed method for evaluating schools (Fowler, 2009; Ho, 

2008) when compared to growth models.  Briggs and Wiley (2008) argued that, “…status 

measures of student achievement at one point in time may reveal little about the quality of 

teaching and learning going on in schools and classrooms…” (p. 180).  Zvoch and Stevens 

(2003) similarly noted that some schools with a low percentage of proficient students might 

demonstrate steep rates of growth during the year, yet still fail to meet proficient benchmarks.  

This type of finding suggests that schools with students who demonstrate significant growth 

might still be sanctioned under the original NCLB rules (Fowler, 2009; Linn, 2008) or with more 

recent models that still incorporate status measures of school performance as a major component 

of an accountability model.  To improve school performance models, several authors have 

recommended the inclusion of both a student’s initial level of achievement as well as the amount 

of their achievement growth (Ding & Davidson, 2005; Dunbar, 2008; Fowler, 2009; Ho, 2008; 

Ryan, 2008; Stevens, 2005).  

As a result, a number of researchers have called for additional study that focuses on the 

validity of the inferences drawn from school performance models (Amrein-Beardsley, 2008; 

McCaffrey et al., 2004).  Goldschmidt, Choi, Martinez and Novak (2010) supported this 

perspective when they stated, “…[a]s more complex models such as growth and value-added 

models gain public acceptance, it is valuable to ascertain the sensitivity of school-level results 

for accountability and evaluation purposes to the choice of the metric and assessment…” (p. 
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352).  Harris (2011) highlighted the importance of model choice as different models produce 

widely varying results.  Recommendations based on the research literature suggest that models of 

school performance should be both longitudinal and multilevel to validly represent school 

performance.  As early as 2000, Teddlie and Reynolds (2000) stated, “…[i]t is not only essential 

for school effects studies to reflect the multilevel nature of schools, but that they should also 

address questions of changes over time” (p. 200). The nested structure of students organized 

within schools suggests a need for the use of multilevel models that allow variance in test 

performance to be partitioned by “level” and that provide more accurate estimates of model 

parameters like regression coefficients and standard errors (Lockwood, McCaffrey, Mariano, & 

Setodji, 2007; Newton, Darling-Hammond, Haertel, & Thomas., 2010; Scherrer, 2011).  

Although earlier reviews of the literature revealed that between 8% and 15% of variation 

observed in student performance was attributable to schools (Teddlie & Reynolds, 2000), more 

recent studies have found that between 13 and 21% of the variance in student scores was 

between schools (Hedges & Hedberg, 2007; Palardy, 2008; Reardon & Raudenbush, 2008; 

Rothstein, 2009; Zvoch & Stevens, 2003).  Goldschmidt et al. (2012) estimated the between-

school variability of eighth grade test scores in mathematics was 20%.  As a result, models of 

school performance that do not explicitly specify a school-level incorrectly attribute school level 

variation—about one-fifth of the variation in test scores—to students.  Failure to account for 

multilevel structure in estimating school performance can lead to biased estimates, incorrect 

standard errors, and/or inaccurate effect sizes (Chen, Kwok, Luo, & Willson, 2010; Newton et 

al., 2010; Snijders & Bosker, 2012; Teddlie & Reynolds, 2000).    

 Another important feature of the design of school accountability models is the number of 

occasions or time points used in the model.  Many school performance models use only one or 
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two years of outcome data (Koedel & Betts, 2011), ignoring student growth over longer periods 

of time.  Longitudinal modeling methods may yield a significant improvement in internal 

validity over status models by modeling growth over several occasions providing a more 

accurate estimate of actual growth trajectories, estimating a model for each individual, and 

allowing each individual to serve as her/his own control (Shadish, Cook, & Campbell, 2002; 

Stevens, 2005).  Longitudinal models may also reduce bias in estimates of school performance 

by controlling for sources of unobserved heterogeneity such as the student composition of the 

school (Lockwood & McCaffrey, 2007; Mangiante, 2011; Sanders & Horn, 1998).  Some 

researchers (McCaffrey et al., 2004; Teddlie & Reynolds, 2000) believe that longitudinal 

modeling is the key to future research on school performance.   

 Some research has already revealed important information about the patterns of growth in 

mathematics scores over the middle school grades.  Several studies have found that student 

growth on state mathematics tests seems to slow from the elementary to middle school grades.  

Lee (2010) reported that mathematics growth was around one standard deviation of achievement 

per year for Grades K to 4, 0.50 standard deviation for Grades 5 to 8, and 0.33 standard deviation 

in Grade 8.  The tendency of mathematics growth on state and national test scores to decelerate 

over grades has been noted by several researchers as well (Bloom, Hill, Black, & Lipsey, 2008; 

Choi & Goldschmidt, 2012; Ding & Davidson, 2005; Stevens et al., 2015).   

 Multilevel growth mixture modeling (MGMM).  An alternative growth model that has 

received relatively little attention in accountability systems is the MGMM. Almost all studies of 

school performance operate under the assumption that students and schools can be summarized 

with one average set of growth parameters (Raudenbush & Bryk, 2002).  However, there may be 

systematic classes of students whose growth trajectories are similar to each other, but different 
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from other groups of students.  This type of heterogeneity in the student population may exist 

due to students being non-randomly assigned to schools (selection), groups of students who 

experience similar learning progressions being clustered in certain schools (e.g. high initial 

achievement with low growth in a poorly performing school with an advantaged student intake), 

or other factors that may result in classes of students with similar performance.  It is also 

noteworthy that there may be differences in the size or presence of these different growth classes 

within any particular school that may differentiate one school from another.  MGMM provides 

an analytic method that may produce additional information over other longitudinal models by 

accounting for unobserved sample heterogeneity through the estimation of classes of students 

who have similar growth trajectories (Bilir et al., 2008; Jung & Wickrama, 2008; Muthén, Khoo, 

Francis, & Boscardin, 2003)   

 Heterogeneous classes of academic growth have been found in middle school reading, 

early reading, early mathematics, and middle school mathematics.  For example, in several 

studies of early reading achievement, two to six classes of learning trajectories were found with 

student groups that differed on both initial achievement and growth (D’Angiulli, Siegel, & 

Maggi, 2004; Lervåg & Hulme, 2010; Muthén et al., 2003; Parrila, Aunola, Leskinen, Nurmi, & 

Kirby, 2005; Pianta, Belsky, Vandergrift, Houts, & Morrison, 2008).  Similarly, in middle school 

reading, Bilir et al. (2008) found six growth trajectory classes for students on the Florida state 

test.  Among the six latent classes, four classes had positive growth in middle school, one had no 

growth across middle school (40% female, 44% White, 11% EL), and one had negative growth 

during middle school (48% female, 78% White, 0% EL). 

  In mathematics, similar results have been found. Three to four distinct growth trajectory 

classes were observed as early as kindergarten in several studies (Hong & You, 2012; Jordan et 
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al., 2006; Wu, Morgan, & Farkas, 2014).  Two studies specifically analyzed heterogeneous 

groups of student growth for middle school mathematics.  Klein and Muthén (2006) found 

evidence of heterogeneous growth trajectories for students with different initial skill levels in 

Grades 7 through 10 although they did not explicitly model latent classes.  In contrast, 

Bartolucci, Pennoni, & Vittadini (2011) used an item-level IRT, Rasch model analysis to study 

school and student performance in mathematics over three years for middle schools in Italy.  At 

the student level, IRT latent ability estimates were used as the outcome measure in addition to 

latent classes that represented a student’s change in latent abilities from grade-to-grade.  The 

authors identified six distinct classes of student latent ability scores in mathematics within 

schools.  Four distinct clusters of growth were discovered that are listed by relative transition 

growth (first transition from Grade 6 to 7/second transition from Grade 7 to 8):  average/low, 

low/high, average/average, high/low. The high/low group ended Grade 8 with the highest 

average latent ability in mathematics, though the authors note the difference was small 

(Bartolucci et al., 2011).  Several conclusions were drawn based on school-level covariates 

including school type (public/private), average classroom size, and the number of years of school 

activity.  Public schools and schools with average class size above eight students were much 

more likely to belong in the low/high and average/average growth clusters than private schools 

or schools with small class sizes (Bartolucci et al., 2011).  Older schools (17 or more years in 

operation) were slightly more likely to belong to the average/low growth cluster than newer 

schools (Bartolucci et al., 2011).   

 Conditional school performance.  Since the passing of the NCLB legislation, there has 

been debate as to whether estimates of school performance should take into account the 

demographic composition of the school (Briggs & Wiley, 2008; Teddlie & Reynolds, 2000).  
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The debate centers on whether models should ignore disparities from one school to another in the 

composition of students served by each school (McDonnell, 2008; Ryan, 2008) versus the issue 

of whether the same standards should be applied to all schools regardless of the student 

composition of the school.  In practice since NCLB, federal regulations have proscribed the use 

of demographic information in school performance models.  Ballou, Sanders, and Wright (2004) 

assert that students serve as their own controls in growth models and thereby implicitly control 

for demographic variables.  Other researchers have argued that the influence of student 

characteristics on estimates of teacher and/or school performance is an issue that requires 

additional research (Mangiante, 2011; McCaffrey et al., 2004; Papay, 2011).  

 Goldschmidt et al. (2012) observed that school accountability models were less 

influenced by student intake variables if they included multiple, previous test scores (which 

indirectly provides some of the same control).  Conversely, Bilir et al. (2008) found that student 

demographic variables explained a statistically significant amount of variance even in a highly 

complex MGMM.  For example, they found ELLs were associated with higher reading growth 

than native English speakers (Bilir et al., 2008).  Teddlie and Reynolds (2000) found that 

socioeconomic status was a statistically significant contextual effect in at least 11 studies of 

school performance.  As a counterpoint, Teddlie and Reynolds (2000) cited seven publications 

where socioeconomic status was not a statistically significant predictor of average school 

achievement.  In the end, Teddlie and Reynolds (2000) concluded that the pattern in the literature 

indicated an impact of contextual factors such as socioeconomic status and that these factors 

should be considered for inclusion in future school performance models. 
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Rationale and Research Questions 

 Validly measuring the impact of schools on student academic achievement is a 

challenging task.  Although reviews of research on school performance have led to repeated 

recommendations for the use of multilevel and longitudinal methods (Chen et al., 2010; Newton 

et al., 2010; Snijders & Bosker, 2012; Teddlie & Reynolds, 2000), largely these methods have 

not been applied in practice.  Instead, federal mandates such as NCLB (2002) have required 

methods that are in conflict with the recommendations of the research literature (e.g. Ho, 2008; 

Polikoff, 2016).  Although NCLB proscribed a system for describing school performance 

exclusively through the reporting of the percent of proficient students in the school, more recent 

federal flexibility (Consolidated Appropriations Act, 2012; USDOE, 2009) and the new 

reauthorization of federal accountability requirements (ESSA, 2016) provided substantial latitude 

for the states to develop and apply alternative models for evaluating school performance. 

However, there is little recent research that compares the efficacy and validity of alternative 

methods for estimating school performance with the exception of Goldschmidt et al. (2012).  The 

current study examined a different longitudinal model not often considered in previous research 

that estimates heterogeneous latent classes of growth in school mathematics performance.  The 

purpose of the study was to determine whether the estimation of heterogeneous classes of 

academic growth provided additional information that would be useful in evaluating school 

performance in one state.  This study posed the following research questions: 

1. Are there heterogeneous classes of mathematics growth trajectories for middle school 

students in Oregon, how many classes are there, and how do they differ? 

2. How do estimates of school performance from different modeling methods (i.e., Growth 

and MGMM) correlate with each other and those from the NCLB status method (PP)? 
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3. How does the inclusion of student demographic predictor variables impact the school 

estimates from the different models?  
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CHAPTER II 

METHOD 

Sample 

 Table 2 provides summary statistics describing the original and analytic samples of 

Oregon eighth grade students from 2010 to 2012.  In 2012, when these students were in eighth 

grade, the Oregon cohort of students included 25,437 eighth graders who attended 302 schools.  

The original cohort consisted of students who were 50% female, 65% White, 50% FRL, 4% EL, 

and 11% SWD. 

Procedures 

 Several procedures were used to create the analytic sample, which was constrained to be 

the same across all models to ensure that model comparisons were not confounded by differences 

in sample composition of students.  First, only students with a valid test score in 2011 and 2012 

were retained in the analytic sample (N = 25,367).  Second, students who transferred schools 

within the state of Oregon during their middle school years were removed from the dataset.  This 

procedure represents another limitation, but does not allow for missing data within schools in 

calculating year-to-year change in proficient students and avoids the need for cross-

classification, reduces the amount of indicators in the model, and limits other confounds 

associated with student mobility.  Students were backward matched from their eighth grade year 

in 2012 in order to measure the status of school performance in the most recent year.  A third 

student inclusion criterion was the number of days students were enrolled in the school.  This 

study followed the accountability rules for enrollment adopted by the state; students were 

included in the state’s school-level calculation of AYP if they were enrolled for more than 50% 

of the days in the school year as of the first school day in May at the school where the student 
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was resident on the first school day (ODE, 2012a; USDOE, 2012).  One additional inclusion rule 

was applied that conformed to Oregon state policy.  In Oregon in 2011-12, all students in Grades 

3 to 8 were allowed up to three testing opportunities during the October to May testing window 

(ODE, 2012b).  In this study, for any student with multiple test scores, the mathematics score 

retained was the student’s operational test score that was used by the state for AYP reporting.  

 Three school-level exclusion rules were also used.  First, only schools with students 

enrolled in Grades 6 to 8 were included (n = 149 of the 302 total).  Thirty-two of the removed 

schools served only Grades 7 to 8.  Second, schools with less than 15 eighth grade students in 

2012 were removed (four schools).  Though Oregon state law requires 30 students minimum in 

order to report school growth data (ODE, 2012b), the more liberal criterion of 15 students 

resulted in the inclusion of two additional schools that had enough students to support statistical 

estimation for the current study.  The final analytic sample was composed of 21,567 students 

(85% of the original cohort) across 145 middle schools with an average enrollment of 149 

students (SD = 67). 

Measures 

 Oregon’s state mathematics test, the Oregon Assessment of Knowledge and Skills 

(OAKS) was the outcome measure.  The OAKS is a computer-adaptive test with a maximum of 

40 multiple choice, free response, and technology enhanced items (e.g. click a number, select or 

move objects; ODE, 2010b; 2011a; 2012a).  The OAKS mathematics test in Grades 6 to 8 

reflected NCTM and state mathematics standards in content strands measuring Numbers and 

Operations, Algebra, and Geometry. The sixth grade test more heavily centered on Numbers and 

Operations and the eighth grade test more heavily sampled Geometry content (ODE, 2012a).  
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The OAKS was vertically linked (ODE, 2009) using Rasch item response theory (IRT) methods 

to create a developmental scale over grades.   

 Demographic variables.  Three dichotomous student demographic characteristics were 

used as predictors in this study: Sex (0 = male, 1 = female), race (0 = non-White, 1 = White), 

English Learner status (0 = non-EL, 1 = EL); students with a disability (0 = non-SWD, 1 = 

SWD); and free or reduced lunch status (0 = non-FRL, 1 = FRL).  At the school-level, these 

student variables were aggregated to reflect the percentage of students in a school with that 

demographic characteristic.   

Missing data.  Because of the data exclusion rules, the amount of missing data that 

remained in the analytic sample was minimal with only 70 (0.3%) of the students in the analytic 

sample missing one data point (sixth grade OAKS mathematics score).  No students were 

missing demographic data, student-school links, or had different schools across the three years.  

The final analytic sample contained 21,567 students (85% of the original cohort) attending 145 

schools (48% of original number of schools).  Table 2 shows characteristics of the original 

cohort and analytic samples.  The demographics for the students in the analytic sample were: 

50% female, 65% White, 50% FRL, 4% EL and 11% SWD.  The average school composition 

was 50% female, 66% White, 51% FRL, 4% EL, and 11% SWD.  The standard deviations in 

Table 2 show the range of middle school compositions in Oregon within each demographic 

group.  For example, a 22% standard deviation in school average FRL percentage (51%) meant 

that 95% of Oregon middle schools in the analytic sample contained between 7% and 95% FRL 

students.   

Little’s (1995) missing completely at random (MCAR) test was computed using SPSS 

22.0 (IBM, 2013).  The MCAR test was statistically significant (χ2 [9] = 242.999, p < .001), 
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indicating that data were not missing completely at random.  Single degree of freedom Chi-

square tests showed that the missing students were statistically different than the rest of the 

analytic sample on four demographic characteristics: sex, FRL, EL and SWD.  However, 

statistically significant differences were expected given the large sample size.  For example, the 

difference in the proportion of female students in the original and analytic sample was 

statistically significant (χ2 [1] = 4.067, p = .044), though the proportions of these students were 

equal in Table 2 when rounded to the whole number.  Cohen’s (1988) h effect sizes for 

differences in proportions are reported in Table 2 and ranged from 0 to 0.09, indicating that 

differences between the original cohort and the analytic sample were quite small.   

Analytic Models 

 Three general types of school performance models were used to address the research 

questions: Percent proficient (PP), Growth, and MGMM.  Unconditional and conditional models 

were estimated for Growth and MGMM to compare the impact of adding demographic 

predictors on estimation of school performance.   

PP. To provide comparisons of the growth models used in this study with traditional 

measures of school performance applied under NCLB, two different school measures were 

estimated based on student’s proficient status.  Status Percent Proficient (Status PP) was the 

percent of students in a school meeting state proficient benchmarks in 2012.  This measure of a 

school’s performance corresponds to the original NCLB metric for measuring students’ 

academic performance.  Change in Percent Proficient (Change PP) was the status PP from 2011 

subtracted from the status PP from 2012.  This created a relative measure of change in 

proficiency similar to the original ‘Safe Harbor’ provision of NCLB.  Under the Safe Harbor 

provision, a school that reduced the percent of students not meeting the proficient benchmark 
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from the previous year by 10% would have made adequate yearly progress, even if the overall 

proficient level for a school did not meet the state benchmark (ODE, 2012b).  

 Multilevel growth models.  Three multilevel growth models were used to estimate 

school performance. The first model was an unconditional linear growth model that specified 

time (grade) as a predictor of students’ mathematics scores at level-1.  No other predictors were 

used in this model at either the student- or school-level.  The second model was a conditional 

linear growth model that added student demographic characteristics as predictors of students’ 

level-1 growth parameters (intercepts and slopes). The third model was a conditional linear 

growth model that added school average demographic predictors of student, level-2 parameters. 

This last conditional growth model is described as follows. 

Level 1, grade:  (1) 

Level 2, student: 
 

 

(2) 
 

(3) 

Level 3, school: 

 

(4) 
 
 
 
(5) 

 In this model, Ytij represented a vector of mathematics scores at time t for student i in 

school j.  With three years of data, only a linear functional form could be tested (Kline, 2011).  

Time was centered at Grade 6 (i.e., Grade 6 = 0, Grade 7 = 1, Grade 8 = 2).  The level-1 

intercept, π0ij, was the sixth grade OAKS mathematics score for student ij, and the level-1 slope, 

π1ij, represented the linear growth rate in mathematics for student ij across Grades 6 to 8.  At 
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level-2, individual student intercept and growth parameters were both predicted by student-level 

characteristics, Xqij (Female, White, FRL, EL, and SWD) as seen in Equations 2 and 3.  The 

student-level residuals (r0ij and r1ij) represent the difference between each student’s observed 

intercept and slope and the average model estimated intercept and slope across all students. 

At level-3, school-level variables (Wsj; percent Female, White, EL, SWD, FRL) were 

grand-mean centered and entered as predictors of student Grade 6 intercept, β00j, and slope, β10j.  

The school-level intercept (γ000) represented the average sixth grade OAKS mathematics score 

across all schools with an average percentage of female, White, EL, SWD, and FRL students.  

Similarly, the school-level slope (γ100) was the overall mean linear growth in OAKS score for a 

school with an average percentage of female, White, EL, SWD, and FRL students.  The school-

level residuals (u00j and u10j) represented the difference between a school’s observed intercept 

and slope and the overall estimated average intercept and slope across all schools after 

controlling for demographics (both student- and school-level). All student-level demographic 

predictors were modeled as random effects at the school-level as indicated by the presence of the 

residual terms (e.g. u010) in equations 4 and 5.  At the school level, intercepts and slopes were 

allowed to covary while the residuals of intercept and slope were correlated at the student-level. 

The growth models were estimated using Mplus Version 6 (Muthén, & Muthén, 2010) with full 

information maximum likelihood estimation (FIML).  

 MGMM.  The focus of the dissertation was on the application of MGMM models to the 

estimation of school mathematics performance.  Two MGMMs were used to estimate school 

performance: an unconditional model and a conditional model that included demographic 

characteristics. The unconditional model was a two-level, linear growth mixture model with 

students nested within schools.  The model building process used the following steps 
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recommended by Jung and Wickrama (2008).  After fitting a baseline single class model, a latent 

class growth analysis (LCGA) that did not allow within class variance was estimated.  In this 

analysis, models with increasing numbers of latent classes were estimated iteratively until there 

was no longer statistically significant improvement in model fit.  Although there is no single 

accepted method for the selection of the optimal number of classes to specify (Nylund, 

Asparouhov, & Muthén, 2007), a generally accepted approach is to choose the model with the 

lowest Bayesian information criterion (BIC), a statistically significant Bootstrapped Likelihood 

Ratio Test and Lo-Mendell-Rubin (2001) p-value, class membership larger than 1% of the 

sample, and classes that represent substantively meaningful groups (Hipp & Bauer, 2006; Jung & 

Wickrama, 2008; Lervåg & Hulme, 2010; Muthén & Muthén, 2000; Muthén & Shedden, 1999; 

Nylund et al., 2007; Parrila et al., 2005).  

 After deciding on the number of classes to use in the LCGA, the final latent class growth 

model then was modified to free within class variances of intercept and slope parameters to 

produce the unconditional MGMM.  The second MGMM was a two-level, conditional, linear 

growth mixture model that included demographic predictors of latent class membership and 

trajectory parameters (intercept and slope) with the same number of latent classes as the 

unconditional MGMM.  Note that thresholds of the latent class variables were not fixed because 

the third research question specifically examined shifts that may occur in latent class 

membership due to demographic predictors.  In addition, entropy values above .60 have been 

shown to make fixing thresholds unnecessary (Asparouhov & Muthén, 2013).  For both MGMM 

models, school performance was estimated as the school’s model-estimated growth weighted 

across classes (i.e. β10j). 
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Figure 1 shows the path diagram illustrating the conditional MGMM as adapted from 

Palardy and Vermunt (2010).  The average school-level growth in middle school mathematics or 

Slopebc (β10j) was the parameter of greatest interest for my study research questions.  The 

multilevel growth model is considered a nested model within the MGMM with only one latent 

class.  Note that the model equations look identical to Equations 1-5 except for the addition of a 

latent class variable (cij) predicting intercepts and slopes.  Schools still have uniquely estimated 

intercepts and slopes in MGMM, but they are estimated within each latent class.  The mixture 

models estimate parameters independently within each class and then average over classes, 

weighting by the proportion of participants within each class as shown in Equation 6 below. 

Ideally, all fixed effects would be freely estimated across latent classes (slope and intercept 

parameters), and all random variance-covariance components would also be freely estimated 

(intercept variance, slope variance, residuals of observed measures, and the covariance between 

slope and intercept).  The MGMMs were analyzed in Mplus Version 6 using FIML estimation 

(Muthén, & Muthén, 2010). 

	 	 	 	 	 	 	 	 	 (6)	

 Multilevel model assumptions.  Several data screening procedures were applied to 

ensure that the multilevel models (Growth, LCGA, and MGMM) met maximum likelihood 

estimation assumptions as outlined in Kline (2011).  First, continuous data were screened for 

multivariate normality, including application of Mardia’s test of multivariate kurtosis, and 

inspection of bivariate scatterplots, univariate distributions, and homoscedasticity among 

residuals.  The relations between predictor variables were also screened for multicollinearity (rYX 

≥ .95; Kline, 2011).  Finally, both univariate (|z| > 3.00) and multivariate (Mahalanobis distance, 

D) outliers were reviewed to screen for influential cases.   
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Model Comparisons   

Six models (status PP, changePP, unconditional growth, conditional growth, 

unconditional MGMM, and conditional MGMM) were used to estimate school performance.  

Four measures were used to compare the six models: (1) Pearson correlations of school 

estimates, (2) Spearman’s Rho correlation of school ranks, (3) root mean squared difference 

(RMSD) between school ranks based on different school performance models, and (4) the 

percent of schools whose rank on one model was within five or within 10 percentile ranks of that 

school’s rank for a comparison model.  RMSD was calculated similar to Castellano and Ho 

(2013) as: 

     (7)  

Rankz,i and Rankz,j represent a school’s rank by models i and j where n is the total number of 

schools (145).  The RMSD creates a relative measure where a lower value would indicate a pair 

of models that rank schools most similarly.   
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CHAPTER III 

RESULTS 

 All statistical model assumptions associated with maximum likelihood estimation as 

described in Kline (2011) were met.  The assumptions of multivariate and univariate normality 

were met for all outcome measures.  All residuals were homoscedastic.  There was no evidence 

of multicollinearity.  A small percentage of cases were identified (n = 399 or 1.9%) as potential 

outliers by univariate standardized residuals or Mahalanobis distance at each individual time 

point.  When longitudinal results were examined at all three measurement occasions, I identified 

31 of these cases as outliers on the basis of standardized residuals and Mahalanobis distance.  I 

ran the two-level growth models with and without these 31 cases.  The estimates, variances, and 

fit statistics from these models were only negligibly (on the order of 0.01% or smaller) different, 

thus I concluded the possible outliers were not influential cases. Therefore, all cases were 

retained in the sample for all subsequent analyses.   

 Table 3 provides proficiency cutpoints, mean scale scores, and the percent of students 

reaching proficient as well as school average proficient rate on the OAKS mathematics test for 

both the original cohort and the analytic sample.  Over the middle school years for the analytic 

sample, the average student OAKS score in mathematics was 228 (SD = 10) in sixth grade, 235 

(SD = 9) in seventh grade, and 238 (SD = 11) in eighth grade.  In 2012, 72% of Oregon eighth 

graders were proficient in mathematics.  A total of 67% of the analytic sample were proficient in 

mathematics the previous year (2011).  Though not represented in the table, sixty-one percent of 

the analytic sample was proficient on both the seventh and eighth grade OAKS mathematics 

tests.  Eleven percent of the sample was not proficient in 2011, but earned a proficient score in 

2012.   
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 For schools, 71% (SD = 12%) of eighth graders in the average Oregon middle school in 

2012 were proficient in mathematics.  In 2011, the average Oregon middle school had 65% (SD 

= 12%) earn at least a proficient score or above on OAKS mathematics.  The average school had 

a 6% increase in proficient eighth grade students compared to the previous year and the 

percentage of proficient students at a school for the analytic sample ranged from a 19% drop to a 

31% gain in total student proficiency.   

Specification of Growth Models 

 The first growth model tested was a three-level, unconditional linear growth model with 

random slopes and intercepts. This model did not converge properly and had a negative variance 

for the school-level slope even when all residual variances were set to be equal.  Because the 

constraints that would have been required to obtain convergence were not theoretically justifiable 

or plausible, three-level growth models were not pursued further in the study.  For the remainder 

of the study in all succeeding analyses, I used two-level models.    

 Two-level growth models.  The two-level growth models followed the specification 

presented earlier, but without the third, school level.  The model estimates and goodness of fit 

statistics for the linear growth models are presented in Table 4.  In the unconditional growth 

model (Growth0), the average student had an OAKS scale score of 228.4 (SE = 0.07, p < .05) in 

sixth grade and grew by 5.40 (SE = 0.02, p < .05) scale score points per year in middle school.  

Eighty-one percent of the variance in student test scores was between students with the 

remaining 19% at level-1 (grade).  The Growth0 model produced unacceptable fit indices by Hu 

and Bentler’s (1999) standards with an RMSEA of .31 and CFI of .88. 

 Next, I added the five student-level covariates to the unconditional model to produce the 

two-level, conditional growth model (Growth1).  The results in Table 4 show the average sixth 
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grade OAKS scale score was now 232.4 (SE = 0.15, p < .05) with an average growth of 5.45 

points (SE = 0.06, p < .05) per year in the middle school grades.  The conditional model 

accounted for statistically significant additional variance compared to the unconditional model as 

shown by a chi-square test of the difference in deviance between the two models (Δχ2 = 6469.0, 

df = 10, p < .001).  For the conditional model, 76% of the variance was between students and 

23% of the variance was at level-1 (grade).  Estimation of pseudo R2 showed that the addition of 

the student-level predictors accounted for 28% of the variance in the intercept and 4% of the 

variance in average growth (slope) that was unexplained in the unconditional model.  The 

conditional growth model also had a lower BIC than the unconditional model and resulted in 

improved fit indices (RMSEA = .19 and CFI = .90).  

 All student-level predictor variables were significantly related to growth model 

intercepts.  In comparison to students who were male, non-White, and not FRL, EL, or SWD, 

students who were female (β01j = -1.28, SE = 0.12, p < .001), FRL (β03j = -5.28, SE = 0.12, p < 

.001), EL (β04j = -7.47, SE = 0.31, p < .001) and SWD (β05j = -8.78, SE = 0.19, p < .001) were all 

associated with lower mathematics achievement in Grade 6 compared to their reference groups.  

In contrast, White (β02j = 0.84, SE = 0.13, p < .001) students started sixth grade with higher 

intercepts on average than the reference group.  However, only three student-level predictor 

variables were significantly related to mathematics growth in middle school.  White (β12j = -0.24, 

SE = 0.05, p < .001) and FRL (β13j = -0.13, SE = 0.05, p = .008) students were associated with 

lower growth in mathematics, but female students (β11j = 0.31, SE = 0.05, p < .001) had higher 

growth rates. 

 Figure 2 shows student growth over grades for each of the statistically significant 

student-level covariates.  In each panel of the figure, the solid line depicts the reference group, 



	 	 	

34	

composed of male, non-White, non-FRL, non-EL, and non-SWD students and the dashed line 

shows the student subgroup of interest.  For example, Female students’ average sixth grade 

mathematics scale score was 1.28 points lower (ES = 0.17) than students in the reference group 

(male, non-White, non-FRL, non-EL, and non-SWD).  Non-White students in sixth grade were 

0.84 scale points (ES = 0.11) lower than the reference group (male, White, non-FRL, non-EL, 

and non-SWD).  Both female and non-White students had higher growth than their respective 

reference groups.  FRL students had both lower intercepts and slopes than the reference group.  

On average, an FRL students’ sixth grade score was 5.28 scale points (ES = 0.70) lower than the 

reference group and their slope was 0.13 scale score points lower than the reference group (male, 

non-White, non-FRL, non-EL, and non-SWD).  The dashed line in the upper-right panel of 

Figure 2 represents FRL students and the solid line depicts the reference group.  Although the 

FRL slope was significantly lower, the widening gap is not large enough to be easily discernible 

in the Figure.  Both EL (7.47 scale points, ES = 0.99) and SWD (8.48 scale points, ES = 1.13) 

students had Grade 6 scores that were lower than the reference group and neither group had 

statistically different growth rates on the mathematics test.  The gaps in mathematics 

achievement at Grade 6 in Figure 2 for EL and SWD were relatively large.  As shown in Figure 

2, although there were statistically significant differences in growth trajectories for FRL, EL, and 

SWD students but the differences were primarily in initial status in Grade 6.  

Latent Class Growth Analysis  

 As mentioned previously, because the three-level growth model failed to converge 

properly, a three-level growth mixture model was not used.  Instead, I used a two-level latent 

class growth analysis (LCGA), followed by a two-level growth mixture model (MGMM) 

according to the model building steps recommended by Jung and Wickrama (2008).  The first 



	 	 	

35	

LCGA model was a fixed effects model that constrained the variance of the intercept and slope 

to zero, meaning that within each latent class all participants had the same mean intercept and 

slope.  This fixed effects LCGA was applied iteratively, incrementing the number of classes 

allowed on each step. As the number of latent classes increased, if the model BIC decreased, 

entropy remained high, the LMR p-value was significant, class membership was above 1% of the 

sample, and a new class of substantive interest appeared, the new class was retained.  This 

process resulted in improvements in fit until the sixth class was added (see Table 5).  At this 

point, the LMR p-value was non-significant for the 6-class LCGA and there was no new class of 

substantive interest in comparison to the 5-class model.  As a result, the 5-class, two-level LCGA 

model was retained as the best fitting model.   

 Table 6 contains the parameter estimates for this 5-class unconditional LCGA model 

(LCGA0). The BIC for this model was 434,600 and the entropy was 0.83.  In order to interpret 

the five latent classes, I defined the term “average” using the average parameter estimates for the 

unconditional and conditional growth models shown in Table 4.  Any latent class within one 

standard deviation of the mean intercept of the corresponding model (i.e. LCGA0 compared to 

Growth0) was considered “average.”  Above average (“AA”) refers to any class with a mean 

between 0.5 and 1.0 standard deviations above the growth model mean.  Likewise, below 

average (“BA”) refers to a class mean between 0.5 and 1.0 standard deviations below the growth 

model mean.  A high (“H”) intercept/slope was at least one standard deviation higher than the 

growth model intercept mean and a low (“L”) intercept/slope was at least one standard deviation 

lower than the growth model mean intercept/slope.  Table 6 shows the growth characteristics of 

the five latent classes: Class 1, high intercept (sixth grade achievement) with high growth (HI-

HG); Class 2, high intercept with average growth (HI-AG); Class 3, above average intercept with 
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average growth (AAI-AG); Class 4, below average intercept with average growth (AI-AG); and 

Class 5, low intercept with below average growth (LI-BAG).   

Multilevel Growth Mixture Model   

 Next, I tested a random intercepts and random slopes two-level, five-class growth 

mixture model that respecified the LCGA into a two-level, five-class GMM by freeing intercept 

and slope variances within each class.  This model failed to converge as it produced a solution 

with negative variances for two of the latent classes.  I attempted to fit a GMM where the 

intercept variances were allowed to be class-specific and the slope variance was constrained 

equal across classes, but that model also failed to converge.  Growth mixture models are difficult 

models to fit and often fail to converge (Hipp & Bauer, 2006; Jung & Wickrama, 2008).  

Constraining the intercept variance to zero across classes in an additional model was also 

considered, but was not attempted as much of the variability in student scores was due to 

differences in intercepts and such a model was not substantively meaningful.  Furthermore, 

constraining the slope variance to zero would force all students to have the same estimated slope 

and nullify my original intent in applying the MGMM. Thus, I concluded that a substantively 

meaningful MGMM was not possible in this analytic sample and therefore the mixture model 

used in this study for all succeeding analyses was the two-level LCGA. 

 Two-level conditional LCGA.  The next model added covariates to the LCGA0 model.  

The estimates for the conditional LCGA (LCGA1) are shown in the rightmost columns of Table 

6 and the corresponding growth trajectories are depicted in Figure 3.  The BIC for the 

conditional model (426,293) was smaller than the unconditional model.  The estimates for each 

latent class of the conditional LCGA changed slightly, though the interpretations of the classes 

remained the same.  Several student-level covariates had statistically significant relations with 
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the estimated growth trajectories.  Unlike the previously reported multilevel growth model 

(Growth1), only three of the five demographic predictors had statistically significant relations 

with student intercepts.  Underserved students who were FRL (β03j = -3.07, SE = 0.42, p < .001), 

EL (β04j = -11.09, SE = 2.95, p < .001), or SWD (β05j = -6.17, SE = 0.70, p < .001) were all 

associated with lower average intercepts than the reference group.  In contrast to the conditional 

multilevel growth model (Growth1), in the conditional LCGA, female and White students did 

not have statistically different intercepts.   

 Similar to the conditional multilevel growth model, female students had higher growth 

(β11j = 0.35, SE = 0.05, p < .001) and White students (β12j = -0.26, SE = 0.05, p < .001) had lower 

growth in mathematics than the reference group.  There were two demographic predictors that 

had different results than the conditional multilevel growth model (Growth1). In the conditional 

LCGA model, FRL students were not associated with a statistically different growth rate in 

mathematics and SWD students had statistically higher growth (β15j = 0.20, SE = 0.08, p < .05) 

than the reference group.   

 The two-level conditional LCGA resulted in the same five classes representing different 

average intercepts and slopes over the middle school grades as the unconditional LCGA (see 

Figure 3).  The HI-HG class represented only 1-2% of the sample, started sixth grade with a high 

OAKS scale score and continued to grow more rapidly than the average growth seen in middle 

school.  On the opposite end of the growth spectrum, the LI-BAG class represented 14% of the 

sample, began sixth grade with low mathematics scores, and had the lowest growth over the 

middle school years.  The majority of students (46%) were in the AI-AG group, a latent class 

that represented both average sixth grade performance and average growth in mathematics 

during middle school.  The HI-AG class contained 9% of the sample and started sixth grade with 
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high mathematics achievement, but grew at an average rate in mathematics.  Twenty-nine 

percent of the sample belonged to the AAI-AG group, a latent class that began sixth grade a little 

above average in mathematics and grew at an average rate over middle school.   

 Discriminant function analysis.  In order to better describe the composition of the latent 

classes, I conducted a discriminant function analysis (DFA) using the five latent classes from the 

LCGA0 model as the outcome measure and all student-level demographics as the predictors 

using SPSS 21.0 (IBM, 2012).  Using Wilks’ Lambda, three discriminant functions were 

statistically significant (χ2[20] = 7576, λ = 0.70, p < .001).  Table 7 shows the resulting DFA 

function and structure coefficients.  The first function was associated with 89% of the variance in 

latent classes and inspection of the structure coefficients showed that this function was 

associated most strongly with students who were SWD, FRL, or EL.  The second function was 

associated with 11% of the variance in latent classes and was most strongly associated with FRL 

student status.  The third function was accounted for 1% of the variance and was most strongly 

associated with White students. 

 The discriminant function analysis highlighted the differences in the composition of the 

latent classes.  The bottom portion of Table 7 shows the latent class group centroids for each 

discriminant function.  For function 1, the HI-HG and HI-AG groups had the largest differences 

from the LI-BAG group meaning the group compositions of FRL, EL, and SWD students would 

be expected to be quite different for these latent classes.  After analyzing student characteristics 

by latent class, this interpretation of the first function was confirmed.  LI-BAG contained more 

FRL (77%), EL (19%) and SWD (40%) students than both the HI-HG (10% FRL, 0% EL and 

1% SWD) and HI-AG (20% FRL, 0% EL and 2% SWD) classes.  The group centroids on the 

second function showed that the HI-HG class (10%) was composed of a much different 
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composition of FRL students than the AI-AG class (58%).  The group centroids on the third 

function again indicated how different the composition of White students was for the HI-HG 

class (66%) in comparison to the HI-AG class (78%).  The HI-HG class had the smallest 

composition of female, FRL and EL students compared to the other latent classes.  Clearly, the 

HI-HG class was different from the other latent classes both in terms of its growth profile, but 

also in the composition of its students. 

Comparing Models of School Performance 

 In addition to the growth models just described, two additional models were computed 

for purposes of comparison, the school percentage of proficient students (status PP) and the 

change in the percentage of proficient students over two years (change PP).  Estimates of school 

performance using these two comparison models were contrasted with the average model 

estimated student growth rate within schools from the unconditional and conditional growth and 

LCGA models. As described earlier, four measures were used to compare the alternative models 

of school performance: (a) Pearson correlations of school estimates, (b) Spearman’s Rho 

correlations of school ranks, (c) root mean squared differences (RMSD) between school ranks, 

and (d) the percent of schools whose percentile rank from one model remained within five or 10 

percentiles of the rank assigned by a comparison model.   

As seen in the upper triangle of the first matrix in Table 8, the status PP school estimates 

for Grade 8 had statistically significant (indicated by an asterisk), moderate correlations with the 

unconditional school growth model (Growth0; r = .70, p < .05), the unconditional LCGA model 

(LCGA0; r = .66, p < .05), the conditional growth model (Growth1; r = .63, p < .05), and the 

conditional LCGA model (LCGA1; r = .60, < .05), but a lower correlation with change PP (r = 

.33, p < .05).  School performance estimates based on change PP had a lower correlation with the 
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Growth0 (r = .43, p < .05) and Growth1 (r = .37, p < .05) models, but was not significantly 

correlated with the LCGA0 (r = .10, p > .05) or LCGA1 (r = .05, p > .05) models.  The 

unconditional and conditional growth models were most similar with a high correlation (r = .91, 

p < .05).  Spearman’s rho correlations based on school ranks are shown in the lower triangle of 

the matrix were generally very similar to the Pearson’s correlations. 

The middle portion of Table 8 shows the percentage of schools placed within 5 or 10 

percentile ranks from one model to another.  It can be seen in the upper triangle that 21% to 23% 

of schools were ranked within 5 percentiles when status PP was compared to the unconditional 

and conditional growth models.  When the comparison expanded to 10 percentile ranks, 30% to 

41% of schools fit that criterion.  Change PP ranked fewer schools within five and 10 percentile 

ranks when compared to the growth models than status PP.  In all comparisons to the status and 

change models, the unconditional and conditional models resulted in small differences (usually 

within 5%).  For the two models (Growth0 and Growth1) whose comparisons were most highly 

correlated, 39% of schools were ranked within five percentiles and 65% of schools were ranked 

within 10 percentiles.   

The bottom portion of Table 8 shows the mean absolute change in school rank between 

the models in the lower triangle and the root mean square difference (RMSD) in school ranks 

from one model to another in the upper triangle.  For example, the RMSD 50.2 for the 

comparison of school rankings between the status PP and change PP models.  The lowest RMSD 

was 18.2 between the Growth0 and Growth1 models.  The mean absolute change in school ranks 

between the statusPP and change PP models was 39.9 ranks (SD = 30).  The comparison of 

school performance rankings between Growth0 and Growth1 also produced the lowest mean 

absolute change in ranking of 13.5 (SD = 12) places.  The average school rank difference 
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between Growth0 and Growth1 was 13.5 ranks (less than 10 percentiles), which seems 

reasonable considering 65% of schools ranked within 10 percentiles (14.5 absolute ranks).  

 Following the previously described method used in Oregon to label schools, Figure 4 

shows school rankings based on each school performance model with the best performance 

represented by a rank of 1 (smaller bars) and the worst by a rank of 145 (longer bars).  Note that 

the smaller the bar in the graph, the higher the school was ranked meaning high performing 

schools would have small bars in Figure 4.  The two vertical horizontal lines in Figure 4 show 

the top 10% (ranked 15th and lower or the “Model” schools) and the bottom 5% (ranked 137th 

or higher or the “Focus” schools) of all schools.  The designations “Model” and “Focus” schools 

was used by the State of Oregon to identify high and low performing Title I schools (ODE, 

2012).  Borrowing from that language, but applying it to the set of middle schools in the analytic 

model, I randomly selected two schools (A and B) from the top 10% (Level 5 or Oregon 

“Model” schools; n = 15) and two schools (C and D) from the bottom 5% (Level 1 or Oregon 

“Focus” schools; n = 7) based on the rankings of the status PP model.  In addition to each 

school’s status PP rank (shown next to each bar), Figure 4 shows the ranking for each of these 

four schools based on the five other alternative models of school performance.  For example, 

School A ranked just inside the top 10% on the status PP model; ranked as the top school by both 

the unconditional and conditional growth models; and ranked in the top third by the change PP, 

unconditional LCGA and conditional LCGA models.   

 School A ranked high on the status PP model and lower on the change PP model, which 

can be interpreted as a school with a relatively high percentage of students proficient in 

mathematics in 2012, but with an average change in the percent of students proficient in 

mathematics.  When including three years of mathematics scores in the two growth models for 
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School A, it was the highest ranked school.  School B was a top 10% school by the status PP, 

change PP, unconditional and conditional growth models.  School B ranked 57th by the 

unconditional and 55th by the conditional LCGA model.  Both School A and B had lower 

rankings when models that estimated different classes of growth were used (LCGA0 and 

LCGA1).  If policymakers chose a model that ignored demographic control variables, School A 

would have been ranked in the top 10% of schools in two models (status PP, Growth 0 and 

Growth1) and School B would have been in the top 10% in three models (status, change, and 

growth).   

 On the other end of the distribution based on status PP were Schools C and D.  School C 

was ranked in the bottom 5% by four models (status, conditional growth, unconditional LCGA 

and conditional LCGA).  School C was above the bottom 5% of schools based on the change PP 

and unconditional growth models.  School D was ranked in the bottom 5% on all models with the 

exception of the change PP model.  Both School C and D ranked higher on the change PP model 

meaning that these schools had relatively more students earn proficient status in 2012 than 2011.  

School D ranked near the bottom on the growth and LCGA models meaning that in spite of a 

higher ranking using the change PP model compared to the status PP model, the average growth 

of its students over three years was not high compared to other schools.   
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CHAPTER IV 

DISCUSSION 

  I begin this section by comparing study results to previous studies on the topics of 

multilevel structure, heterogeneity, comparisons of school performance and the influence of 

student-level demographic predictors.  Differences between results reported in the literature and 

in this dissertation may be a function of different outcome measures or characteristics of the 

students samples analyzed such as grade level, demographic compostition of the samples or 

school types.  Throughout this section, I will attempt to clearly express the similarities and 

differences between studies.  First, this study reported 72% of Grade 8 students in the analytic 

sample to be proficient in mathematics in 2012.  The Oregon State Report Card (2012a) reported 

65% of Grade 8 students scored at or above a proficient score in 2012, which includes SWD that 

took the Oregon Alternative Assessment.  In the prior year for the analytic cohort, 67% were 

proficient in mathematics in Grade 7 compared to the 61% reported by the state of Oregon 

(ODE, 2012a).  The state population for this cohort raised its overall percentage of students 

earning proficient scores in mathematics by 4% of students (ODE, 2012a), which is quite similar 

to the 5% gain observed in this study.   

 For the growth models and across a wide variety of outcome measures, settings, and 

locations, prior literature consistently estimates that 80-90% of achievement test score variability 

is between students and between eight and 21% of the variability in test scores is associated with 

school membership (Goldschmidt et al., 2012; Hedges & Hedberg, 2007; Palardy, 2008; Reardon 

& Raudenbush, 2008; Rothstein, 2009; Teddlie & Reynolds, 2000; Zvoch & Stevens, 2003).  In 

this study, however, models that included a third, school level would not converge.  Although I 

was unable to directly model school-level variability, the intraclass correlation from the 
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variances in the unconditional Growth model revealed that about 81% of variability in student 

test scores was between students consistent with prior research (Goldschmidt et al., 2012; 

Hedges & Hedberg, 2007; Palardy, 2008; Reardon & Raudenbush, 2008; Rothstein, 2009; Zvoch 

& Stevens, 2003).  The correlation between intercept and growth was .44 for Growth0 and .39 

for Growth1.  Stevens et al. (2015) found a correlation between intercept and slope to be .28 for 

a linear growth model from a statewide mathematics test for Grades 3 to 7.  Zvoch and Stevens 

(2003) also found a small positive (τ = .14) association between intercept and slope for middle 

school students, but not on a statewide test.  Other research found negative correlations for 

intercept and slope such as Ding and Davison (τ = -.28; 2005) over Grades 5 to 8 and Stevens (τ 

= -.38; 2005) over Grades 6 to 9, both on non-state tests of mathematics.  The growth model 

results of this study agreed with the research on partitioning of variance, but did not seem to 

closely agree with findings on the correlation between intercept and slope.  More importantly, 

the lack of convergence of models with a school-level was unexpected and represents a 

significant limitation of this study.  

 Second, a primary focus of this study was on the determination of whether there were 

distinct classes of students who shared similar mathematics growth trajectories.  The discovery 

of five LCGA classes in this study falls within the range of prior results in middle school 

mathematics (Bartolucci et al., 2011; Klein & Muthén, 2006) and falls in range with related work 

in middle school reading (Bilir et al., 2008) and early mathematics (Jordan et al., 2006).  The 

presence of groups with learning profiles like HI-HG and LI-BAG in the current study was 

uncommon.  Other research (Jordan et al., 2006; Morgan et al., 2011; Wei et al., 2013) has found 

evidence of achievement gaps widening for underserved students.  The designation of “high” and 

“low” latent classes in the current study was somewhat arbitrary and may not represent 
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performance differences of sufficient magnitude to be substantively meaningful for 

policymakers.  The difference in growth for HI-HG and LI-BAG was small (about 1%) relative 

to Grade 6 scores in mathematics.  In this dissertation, the HI-HG group was 30 points higher 

than AI-AG in Grade 6 in intercept on the state test but ended Grade 8 32 points higher than AI-

AG, only a two-point improvement.  Perhaps additionally noteworthy to policymakers was that 

on average, LI-BAG students were near proficiency in Grade 6, but fell further and further 

behind the state benchmarks during middle school, ending up three additional points behind by 

eighth grade.  Though the evidence in this dissertation best supports a conclusion in line with 

prior research that the achievement gap in middle school mathematics remained stable over the 

middle school grades (Anderson et al., 2014; Ding & Davison, 2005; Lee, 2010; Morgan et al., 

2011; Stevens et al., 2015; Wei et al., 2013). 

 Third, this study can be compared to school performance results found in other studies.  

This study reported high .70 (Growth0) and .60 (Growth1) correlations between status PP and 

growth models for OAKS middle school mathematics.  Similar to this study, Goldstein (2006) 

compared status PP in the last year of middle school mathematics to estimated school slopes 

from an HLM growth model and found the correlation to be .67 for the unconditional and .39 for 

the conditional growth models.  Goldschmidt et al. (2012) reported the correlation between the 

status in the original test metric and unconditional growth models ranged from .00 to .38 

depending on content and sample.  Goldschmidt et al. (2012) did not use percent proficient for 

their correlations rather they used the original scale score.  In this study, the direct correlation 

between the average school OAKS score in the original scale and the average school-level slope 

from the multilevel growth model was .18 (Growth0) and .19 (Growth1), which was within the 

range of the findings of Goldschmidt et al. (2012).  The positive correlation between status and 
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growth should be considered carefully given that several studies have found initial status and 

growth in mathematics to be negatively correlated (e.g. Ding & Davidson, 2005; Stevens, 2005).   

 Goldschmidt et al. (2012) also compared models in terms of how they ranked schools.  

They reported that 32% of schools remained in the same quintile when comparing status to gain 

score models.  For growth models compared to other similar models (i.e. student growth 

percentiles), 20% to 41% of schools remained in the same quintile.  In this study, I used within 

10 percentile ranks, which was a more strict criterion than remaining in the same quintile.  

Twenty-two percent of schools were ranked within 10 percentiles when comparing status PP and 

change PP.  For the growth models in this study (Growth and LCGA), about 20% to 40% of 

schools were ranked within 10 percentiles compared to any of the other models.  The strong 

correlation between school performance estimates from the unconditional and conditional growth 

models in this study (r = .91) was similar to the correlation between the same two models (r = 

.89) in Li (2007).  However, Li (2007) found only 72% of schools ranked in the same quartile 

when school rankings were compared between the two.  In this dissertation, 70% of schools were 

ranked in the same quartile when Growth0 was compared to Growth1.  School rankings seem 

quite sensitive to the model used.  Overall, this study agreed most with research (Goldschmidt et 

al., 2012; Goldstein, 2006; Li, 2007)--that concluded that the majority of schools have large 

differences in rankings depending on the model chosen to estimate school performance. 

 The implications of the current study results for schools, states, policymakers and 

researchers in a system of high-stakes test-based accountability can be quite important.  Figure 4 

provided an example of these implications for schools.  School D would be considered a “focus” 

school unless a state employed a change PP model.  A state that used an LCGA model would 

estimate School B’s performance as average whereby any other model would have ranked 
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School B in the top 10% of schools.  Policymakers need to consider these large differences by 

model when selecting which model to use to inform decisions about school performance.  

Researchers may also want to consider these differences when advising about the best choice for 

a system of accountability based on methodology.  The high degree of disagreement amongst 

models should be a clear indicator to stakeholders that models of school performance should not 

be used as the sole measure for high-stakes accountability. 

 This study also contributed to the literature on the impact of demographic predictors in 

models of school performance.  The prior literature demonstrated mixed results about the 

statistical significance of demographic predictors in models of school performance (Teddlie & 

Reynolds, 2000).  This study showed that student-level demographic predictors did account for a 

statistically significant proportion of variance in both the growth and LCGA models.  The 

finding that student-level demographics were statistically significant was similar to other 

research on growth (Goldschmidt et al., 2012; Teddlie & Reynolds, 2000) and growth mixture 

models (Bilir et al., 2008).  The introduction of student-level demographics increased the 

differences between school performance estimates.  My results also showed that the inclusion of 

student demographic variables altered school rankings.  This result suggests that there should be 

careful consideration of whether an accountability model includes demographic variables as 

covariates (Briggs & Wiley, 2008; McDonnell, 2008; Ryan, 2008; Teddlie & Reynolds, 2000).   

 Finally, this study supported research showing gaps in mathematics learning for certain 

student subgroups (Choi & Goldschmidt, 2012; Ding & Davidson, 2005; Kinney, 2008; NAEP 

Data Explorer, n.d.).  This study found FRL status was associated with lower sixth grade 

mathematics achievement (both Growth and LCGA) and lower growth in mathematics (Growth 

only).  Students who were FRL, EL, or SWD were all associated with lower mathematics scores 
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in Grade 6.  The impact of demographic controls on growth rates was less uniform.  This study 

showed that FRL students were associated with lower growth than the reference group in 

Growth1, but not LCGA1.  Unlike Bilir et al. (2008), EL students were not associated with 

higher growth compared to the reference group.   

 Additionally, two latent classes (HI-HG and LI-BAG) emerged from the LCGAs and 

support the prior literature as well as the results for student-level demographic predictors.  The 

demographic compositions of HI-HG and LI-BAG were quite different as outlined earlier.  

Based on the interpretation of the LCGA groups, the achievement gap seems to widen between 

the high and low intercept groups.  However, the growth rates associated with different 

demographic background variables or latent classes were quite small compared to their initial 

performance in Grade 6 (intercept).  Based on these findings, the achievement gaps that exist at 

the beginning of Grade 6 were not closing in any appreciable way over the middle school years 

(Anderson et al., 2014; Ding & Davidson, 2005; Lee, 2010; Stevens et al., 2015; Wei et al., 

2013).   

Limitations   

 There were a number of limitations in this study that should be considered in interpreting 

study results.  Perhaps the biggest challenges in the study were issues encountered in 

successfully specifying analytic models.  One of the central interests in the study was exploring 

the use and application of growth mixture models for school performance, so the failure to obtain 

convergence and correct solutions of the MGMMs was a substantial drawback and limitation.  

Other analytic methods such as descriptive analysis, visual displays and cluster analysis may be 

amenable and more tractable for the identification of groups of students who share common 

growth trajectories (e.g., Klein and Muthén, 2006), than the more complex and less accessible 
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mixture model methods used here.  Also, the failure to estimate a third, school-level in any of the 

models represented another limitation that may have resulted in biased estimates, incorrect 

standard errors, or inaccurate effect sizes (Chen et al., 2010; Netwon et al., 2010; Snijders et al., 

2012; Teddlie & Reynolds, 2000).  With three time points, only a linear functional form could be 

analyzed.  However, inspection of the descriptive data in Table 2 and prior research (Bloom et 

al., 2008; Choi & Goldschmidt, 2012; Ding & Davidson, 2005; Lee, 2010; Stevens et al., 2015) 

suggest that a curvilinear functional form might best describe academic growth for middle school 

mathematics.  It is possible that  some of the poor fit statistics obtained in this dissertation are a 

result of this inability to completely model the functional form of mathematics achievement.  

Another consideration relative to statistical conclusion validity was the determination of the 

correct number of classes to retain in the LCGA models.  In this study, two latent classes of 

substantive interest (HI-HG and LI-BAG) not often identified emerged early in the model 

building process in the 3-class LCGA solution.  The decision to use a 5-class LCGA and the 

process recommended by Jung and Wickrama (2008) was not without some subjectivity and 

there is some evidence that these models may overestimate the correct number of latent classes 

(Guerra-Peña & Steinley, 2016).  Because of the many nonstandard modeling constraints that 

were required to obtain model solutions, these results should be interpreted with caution.   

 The inclusion rules used for this study also likely impacted the validity of the findings as 

well.  The procedures resulted in the loss of 52% of the schools (from 302 to 145) through the 

application of a school-level exclusion rule to only allow middle schools and exclude junior high 

schools.  Though 85% of the students were retained in the study, the 15% excluded may have 

provided important and valuable information about the performance of all middle schools in 

Oregon.  Schools that contained Grades K to 8, Grades K to 6, Grades 6 to 12, and junior high 
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schools (Grades 7 and 8) were excluded from this study even though they make up a large 

majority of the schools that educate middle school students in Oregon.  However, the exclusion 

of these schools was a calculated tradeoff.  Many of these schools would be excluded by 

Oregon’s AYP inclusion rules (ODE, 2012c) for having less than 15 students in eighth grade in 

2012.  Additionally, two school types (Grades K-6 and junior high schools) would not allow for 

growth model estimation without an over-reliance on imputation and the other two school types 

(Grades K-8 and 6-12) had major contextual impacts that could confound comparisons such as 

the lack of school transition for students.  All in all, the rules for inclusion were devised in order 

to have the same analytic sample used for all models to reduce differences in student samples 

that might confound comparisons of the models for school performance.  Due these restrictions, 

“Oregon middle schools” may not have been well represented, the results may not generalize 

well to other settings or different samples and study conclusions therefore should be considered 

with caution.  

 In addition, other common limitations to longitudinal studies of school performance 

should be considered including selection, inadequate explication of construct, and 

generalizability.  Selection will always operate in studies of school performance using entire 

state (or large) data sets because the assumption that any student can attend any school within a 

state or district is untenable.  A limited definition of school performance based only on 

mathematics achievement on the state test was used in this study, although there is agreement 

that school performance goes beyond this definition (Teddlie & Reynolds, 2000; Raudenbush & 

Willms, 1995).  Finally, it should be noted that results from the Oregon system also may not 

generalize to other states or assessment systems.   
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Implications and Future Research 

 Similar to previous studies of student learning in mathematics (Jordan et al., 2006) and 

middle school (Bartolucci et al., 2011; Bilir et al., 2008), middle school students in Oregon had 

heterogeneous latent classes of growth on the OAKS test.  Five latent classes were found that 

represented five unique growth trajectories over middle school:  HI-HG, HI-AG, AAI-AG, AI-

AG, and LI-BAG.  The HI-HG group had fewer female (35%), FRL (15%), and SWD (4%) 

students compared to the other latent classes.  An unanticipated result was the growth profile for 

the LI-BAG group who had the lowest intercept and the lowest mathematics growth of all latent 

classes.  This finding is noteworthy because it identifies a group of students (3,067, 14% of the 

sample) for whom the achievement gap is significantly widening in mathematics during middle 

school.  Although the gap only widens by a little over one scale score point during middle 

school, the LI-BAG group enters sixth grade already seven points below the grade-level average 

and there is no progress in decreasing the achievement gap.  This group of students was not 

much different in demographic composition than the average student composition on the whole, 

with 53% female, 59% White, 56% FRL eligible, 0.3% EL and 21% SWD in the group.  This 

result demonstrates the potential benefits of using a latent class growth analysis or growth 

mixture model.  Without including a model that estimates heterogeneous classes of growth in 

mathematics, the presence of these groups of students may have been overlooked. 

 The current study also made a contribution by comparing estimates obtained by 

alternative models of school performance.  Such studies are needed because statistical models for 

high-stakes evaluations of teachers and schools have been implemented operationally prior to the 

validation of the models (Harris, 2011).  Lefgren and Sims (2012) advocated for the 

improvement of school performance models and this study showed the unconditional LCGA 
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model provided improved fit compared to the unconditional Growth model (Growth0).  Though 

Goldschmidt et al. (2012) suggested longitudinal growth models better attributed student 

learning to schools, this study demonstrated the LCGA model might provide additional 

information on school performance by identifying distinct classes of student learners.  Study 

results also showed that the LCGA models were statistically correlated to the other models, but 

70% to 80% of schools ranked more than 10 places differently as a function of the particular 

model used.  However, mixture models like the LCGA and MGMM are complex, notoriously 

time consuming and have difficulty converging (Jung & Wickrama, 2008).  Not surprisingly, the 

results of this study suggested that LCGA school performance models rank schools much 

differently from traditional models and growth models of school performance.  Policymakers 

will need to determine if the additional information that can possibly be obtained from mixture 

models would be worth the complexity, time, and energy in estimating school performance in 

practice. 

 Student-level demographic variables were statistically significant predictors of student 

performance in mathematics and when included in models resulted in changes in school 

rankings.  All student-level demographics were statistically significant predictors of intercept in 

the conditional growth (Growth1) model.  In this model, females, FRL, EL, and SWD all related 

to lower mathematics scores in sixth grade.  Controlling for all other predictors, females had 

higher growth; White and FRL students had lower growth.   

 The impact of student-level predictors in the conditional latent class growth model 

(LCGA1) was quite similar to the results for the Growth1 model.  As with Growth1, FRL, EL 

and SWD students were associated with lower intercepts in the LCGA1.  Also consistent with 

the Growth1 results, female students were associated with higher slopes and White students with 
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lower slopes.  Unlike the Growth1 model, SWD students were associated with positive growth in 

mathematics in middle school.  No other demographic predictors had statistically significant 

relations in the LCGA1 model.  These results show that student-level demographic predictors 

account for significant variance in student test scores even in complex growth models.  

Policymakers should consider the importance of demographic variables for estimating school 

performance and taking account of differences in the student composition of schools. 

 There are many paths for future research to improve our understanding of heterogeneous 

growth trajectories in middle school mathematics and school performance models.  Future 

research comparing these models could benefit from the use of more extensive data sets, 

examination of longer growth trajectories (i.e., more than three time points), different functional 

form, and use of test data from other states in order to determine whether middle school students 

truly exhibit heterogeneous growth patterns and if so, which patterns are most common.   

Conclusions 

The results of this study provide a starting point for an examination of alternative models 

of school performance for representing middle school mathematics achievement and growth.  

First, middle school students in Oregon demonstrated heterogeneous growth trajectories in 

mathematics learning as shown by the results of the latent class growth analysis.  This supports 

results reported in prior literature (Bartolucci et al., 2011; Bilir et al., 2008; Jordan et al., 2006).  

Like Bartolucci et al. (2011) and Bilir et al. (2008), multiple latent classes of growth were 

evident in this study.  Two latent classes (HI-HG and LI-BAG) identified by the LCGA 

represented unexpected growth patterns for groups of students that might not be identified using 

other modeling methods.   
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Second, this study expanded the work of Goldschmidt et al. (2012) by testing two LCGA 

models not considered in that study.  Almost all school performance models were statistically 

significantly correlated as found by Goldschmidt et al. (2012), and also resulted in substantially 

different school rankings.  Additionally, as Teddlie and Reynolds (2000) expected, demographic 

controls were also statistically significant predictors of student-level growth.   

 Last, this study contributed to the discussion around the consequential and concurrent 

validity of school performance estimation.  The large inconsistency across models of school 

performance would seem to support the viewpoint that these models ought not to be used for 

high stakes purposes without further development and validation (Armrein-Beardsley, 2008; 

Martineau, 2006).  The usefulness of these methods as a part of a larger system of accountability 

requires understanding what the models are uncovering about school performance.  Although the 

use of latent class models may offer important insights into academic growth and school 

performance, it is unclear whether these models are practical and estimable in the typical school 

and district contexts in which accountability models are usually applied. 
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Table 1 
 
Definitions of Four Types of Growth Models Presented in Castellano and Ho (2013) 
 

Model Alias Description 

Growth-to-
Standard 

Trajectory, 
Prediction 

Predicts expected growth based on prior year’s scores, 
then evaluates whether the predicted score will meet a 
future performance benchmark 

Transition 
Matrix Categorical 

Expresses growth in terms of movement from one 
performance category to another (e.g. proficient or below 
proficient) over two years 

Student 
Growth 
Percentiles 

Conditional 
Status 

Percentile 
Ranks 

Describe the relative location of a student’s current score 
based on the current scores of students with similar score 
histories 

Longitudinal HLM or SEM 
Growth 

Models the change over time of three or more years of 
student outcome data  
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Table 2 
 
Summary Statistics for the Original and Analytic Samples 

Original Cohort 

   

Analytic Sample  (nij ≥ 15) 

Students Schools  Students 
Student 
Characteristic (Ni = 25,437) (Nj = 302)  (ni = 21,567) 

ES Schools 

(nj = 145) 
ES 

Female 50 48 (16)  50* <0.01 50 (6) 0.04 

White 65 69 (23)  65 <0.01 66 (19) 0.06 

FRL 50  51 (26)  50* <0.01 51 (22) <0.01 

EL 4 3 (5)  4* <0.01 4 (5) 0.05 

SWD 11 13 (14)  11* <0.01 11 (4) 0.06 

Note. School percentages represent average percent composition with standard deviation in 
parentheses.  Time invariant student characteristics based on 2012.  FRL = Free or reduced lunch 
eligible, EL = English Language Learner, SWD = Student with disability.  Effect size (ES) 
calculated using Cohen’s h for proportions.   

* p < .05
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Table 3 

 
OAKS Proficiency Cutpoints, Mean Scale Scores and the Percent of Students Reaching 
Proficiency for the Original Cohort and Analytic Sample From 2010-2012 

Grade 
Test Measure 

6 7 8 

OR Proficiency Cutpoint 221 232 234 

OAKS mathematics mean scale score (SD)  

  Original Cohort 227 (12) 235 (11) 238 (12) 

  Analytic Sample 228 (10) 235 (9) 238 (11) 

% Proficient (statusPP)   

  Original Cohort 76% 69% 72% 

  Analytic Sample    

    Students 78% 67% 72% 

    School Avg. (SD) 77% (10%) 65% (12%) 71% (12%) 

Note. Cutpoints reported for 2010-12 cohort. (Oregon Department of Education, n.d.); standard 
deviations reported in parentheses. 
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Table 4 
 
Summary of Model Results for the Multilevel Growth Models 

Estimate Growth0 Growth1 

BIC 431,738 425,533 

Chi-square (df) 6393.3 (3) 6469.0 (8) 

Δχ2 (df) - 6305.0 (10)1 

  p - < .001 

RMSEA .314 .194 

CFI .884 .895 

Means (SE)   

  Intercept 228.4 (0.07)* 232.4 (0.15)* 

  Slope 5.40 (0.02)* 5.45 (0.06)* 

Variances/Covariance (SE)  

  Intercept 78.7 (0.92)* 56.7 (0.71)* 

  Slope 1.14 (0.13)* 1.10 (0.13)* 

  Intercept with Slope 0.58 (0.24)* 0.73 (0.21)* 

  Level-1 (grade) 18.4 (0.18)* 18.4 (0.18)* 

Fixed predictors of Intercept 

  Female - -1.28 (.12)* 

  White - 0.84 (.13)* 

  FRL - -5.28 (.12)* 

  EL - -7.47 (.31)* 

  SWD - -8.78 (.19)* 

Fixed predictors of Slope 

  Female - 0.31 (.04)* 

  White - -0.24 (.05)* 
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  FRL - -0.13 (.05)* 

  EL - 0.15 (.12) 

  SWD - 0.05 (.07) 

Note.  All variances at measurement occasions were constrained equal in order for the model to 
converge. 

* p < .05 
1 Compares Growth1 to Growth0 model 
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Table 5 
 
Model Fit Considerations for Unconditional LCGA Models 

Latent Classes BIC Entropy LMR p BLRT p New class of substantive interest 

1 481549.51 - - - - 

2 458379.57 .81 < .001 < .001# High/Low intercept classes 

3 445947.10 .83 < .001 < .001 High intercept with high growth; low intercept/low growth 

4 437872.40 .85 < .001 < .001 Low intercept class had lower growth; average intercept class split into two 
classes with different growth 

5 434600.17 .83 < .001 < .001 Two high intercept groups (high growth, average growth) 

6 432842.43 .81 .16 < .001# - 

# BLRT failed to converge on all attempts
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Table 6 
 
Estimates for the Unconditional and Conditional Latent Class Growth Analyses 
 

Model 
Estimate 

LCGA0 LCGA1 

BIC 434,600 426,293 

Entropy .83 .82 

Class 1 - High Intercept, High Growth (HI-HG) 

  n 479 304 

  Intercept  254.11* 257.25* 

  Slope  6.50* 6.74* 

Class 2 - High Intercept, Average Growth (HI-AG) 

  n 2,614 1,905 

  Intercept  241.64* 244.72* 

  Slope  5.59* 5.89* 

Class 3 – Above Average Intercept, Average Growth (AAI-AG) 

  n 6,282 6,229 

  Intercept  232.92* 236.20* 

  Slope  5.14* 5.24* 

Class 4 – Average Intercept, Average Growth (AI-AG) 

  n 9236 10,062 

  Intercept  224.27* 227.85* 

  Slope  5.71* 5.62* 

Class 5 - Low Intercept, Below Average Growth (LI-BAG) 

  n 2,956 3,067 

  Intercept  215.50* 220.70* 
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  Slope  4.65* 4.63* 

 

Variances   

  Level-1, eti 23.70 22.45 

Fixed intercept predictors (SE) 

Female - -0.36 (0.45) 

White - 0.13 (0.40) 

FRL - -3.07* (0.42) 

EL - -11.90* (2.95) 

SWD - -6.17* (0.70) 

Fixed slope predictors (SE) 

Female - 0.35* (0.05) 

White - -0.26* (0.05) 

FRL - -0.07 (0.05) 

EL - 0.06 (0.13) 

SWD - 0.20* (0.08) 

* p < .05 
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Table 7 
 
Discriminant Function Analysis of Latent Class Membership for LCGA0 

Function 
Variable 

1 2 3 

Discriminant Function Coefficients  

  Female 0.090 0.125 0.357 

  White -0.084 0.011 0.997 

  FRL 0.479 0.861 0.250 

  EL 0.432 -0.439 0.271 

  SWD 0.696 -0.357 0.013 

Structure Coefficients   

  Female 0.003 0.169 0.347 

  White -0.291 -0.162 0.863 

  FRL 0.557 0.803 -0.015 

  EL 0.521 -0.352 0.068 

  SWD 0.695 -0.376 0.028 

Functions at Group Centroids 

  HI-HG -0.746 -0.541 -0.326 

  HI-AG -0.635 -0.334 0.051 

  AAI-AG -0.398 -0.004 0.025 

  AI-AG 0.057 0.194 -0.018 

  LI-BAG 1.351 -0.215 0.010 
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Table 8 
 
Comparison of Measures of School Performance by Model 

Comparison 
Model Model 

 statusPP changePP Growth0 Growth1 LCGA0 LCGA1 

Pearson's r (top triangle) / Spearman's ρ (bottom)    

statusPP 1 .33* .70* .63* .66* .60* 

changePP .28* 1 .43* .37* .10 .05 

Growth0 .65* .43* 1 .91* .50* .42* 

Growth1 .60* .37* .91* 1 .47* .66* 

LCGA0 .66* .09 .44* .42* 1 .63* 

LCGA1 .58* .01 .36* .60* .58* 1 

Within 5 percentile ranks (top triangle) / Within 10 percentile ranks (bottom)  

statusPP - 14% 23% 21% 20% 21% 

changePP 22% - 17% 12% 11% 11% 

Growth0 41% 30% - 39% 17% 15% 

Growth1 37% 23% 65% - 18% 19% 

LCGA0 30% 19% 27% 30% - 23% 

LCGA1 38% 16% 25% 31% 32% - 

Root mean square difference (RMSD; top) / Mean absolute change in ranking (SD; bottom) 

statusPP - 50.2 35.0 37.2 34.7 38.5 

changePP 39.9 (30) - 44.8 47.2 56.4 59.1 

Growth0 26.1 (23) 35.4 (28) - 18.2 44.3 47.4 

Growth1 28.2 (24) 37.5 (29) 13.5 (12) - 45.2 37.3 

GMM0 28.0 (21) 45.6 (33) 34.5 (28) 34.5 (29) - 38.6 

GMM1 28.7 (26) 49.0 (33) 38.1 (28) 29.3 (23) 29.3 (25) - 

* p < .05 



	 	 	

65	

 

Figure 1. Path diagram for multilevel growth mixture model (MGMM) with predictors as 
adapted from Palardy and Vermunt (2010) 
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Figure 2. Average growth curves for linear growth model based on student-level covariates
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Figure	3.		Comparison	of	latent	class	growth	trajectories	for	conditional	LCGAs	
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Figure	4.	School	performance	comparison	plots	(by	model)
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Appendix	
	

Table A1 
 

OAKS Mathematics Test Content Specifications from 2010-2012 

Year 
Content Strand 

2010 2011 2012 

6th Grade    

Numbers and Operations - 35% 35% 

Numbers, Operations, and Probability - 35 35 

Algebra 25% 30 30 

Calculations and Estimations 15 - - 

Measurement 20 - - 

Statistics and Probability 20 - - 

Geometry 20 - - 

7th Grade    

Numbers and Operations - 35% 35% 

Numbers, Operations, Algebra, and 
Geometry - 35 35 

Measurement and Geometry 35%1 30 30 

Calculations and Estimations 15 - - 

Algebraic Relationships 30 - - 

Statistics and Probability 20 - - 

8th Grade    

Algebra - 40% 40% 

Data Analysis and Algebra - 35 35 

Geometry and Measurement 35%1 30 30 

Calculations and Estimations 15 - - 

Algebraic Relationships 30 - - 

Statistics and Probability 20 - - 

Note.	Table	compiled	from	Mathematics	Test	Specifications	and	Blueprints	(ODE,	2012,	
2011,	2010).	
1	This	percentage	achieved	by	adding	separate	sections	in	Measurement	and	Geometry.	
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DATA:        FILE IS data.dat; 
VARIABLE:   NAMES ARE stuid schid m6 m7 m8 sx wht frl lep swd sxs whts frls leps swds; 
              USEVARIABLES m6 m7 m8 sx wht frl lep swd; 
             MISSING ARE m6 m7 m8 sx wht frl lep swd(-9); 
             CLASSES ARE c(5); 
ANALYSIS:    TYPE= MIXTURE; 
  STARTS= 2000 40; 
  LRTSTARTS = 0 0 1000 20; 
MODEL:       %OVERALL% 
              i s | m6@0 m7@1 m8@2; 
              m6-m8 (1); 
              i-s@0; 
              i s ON sx wht frl lep swd; 
              c ON sx wht frl lep swd; 
OUTPUT:      TECH8 TECH11 TECH14; 
SAVEDATA:  FILE IS output.txt; 
             FORMAT IS FREE; 
             SAVE=CPROBABILITIES; 
PLOT:        SERIES m6(0) m7(1) m8(2); 
             TYPE=PLOT3; 
 
Figure A2.  Mplus syntax for the conditional latent class growth analysis (LCGA1)
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Table A3 
 
Latent Class Composition by School from the LCGA1 

Latent Class 
School 

HI-HG HI-AG AAI-AG AI-AG LI-BAG 

1 0.01 0.03 0.34 0.44 0.17 

2 0.03 0.12 0.30 0.42 0.14 

3 0.01 0.13 0.28 0.39 0.19 

4 0.01 0.15 0.30 0.44 0.11 

5 - 0.11 0.44 0.36 0.09 

6 - 0.04 0.31 0.50 0.15 

7 - 0.01 0.33 0.52 0.14 

8 - 0.05 0.28 0.51 0.16 

9 0.01 0.04 0.30 0.52 0.13 

10 0.02 0.06 0.22 0.42 0.29 

11 - 0.08 0.24 0.50 0.19 

12 - 0.07 0.16 0.65 0.13 

13 - 0.05 0.15 0.46 0.34 

14 0.01 0.02 0.19 0.48 0.30 

15 - 0.17 0.41 0.37 0.04 

16 - 0.04 0.32 0.50 0.15 

17 0.02 0.13 0.28 0.43 0.15 

18 - 0.09 0.30 0.52 0.10 

19 - 0.04 0.20 0.60 0.16 

20 - 0.03 0.26 0.58 0.13 

21 - 0.07 0.25 0.55 0.14 

22 0.01 0.11 0.39 0.43 0.06 
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23 - 0.05 0.33 0.54 0.09 

24 0.01 0.04 0.25 0.50 0.20 

25 0.02 0.17 0.35 0.36 0.09 

26 - 0.04 0.16 0.57 0.23 

27 0.01 0.04 0.20 0.58 0.17 

28 - 0.02 0.17 0.52 0.30 

29 0.01 0.06 0.15 0.57 0.21 

30 - 0.07 0.21 0.59 0.14 

31 0.02 0.06 0.28 0.55 0.09 

32 - 0.08 0.24 0.54 0.14 

33 - 0.02 0.22 0.62 0.14 

34 0.01 0.13 0.31 0.50 0.06 

35 - 0.03 0.35 0.49 0.13 

36 - 0.09 0.31 0.54 0.06 

37 0.01 0.03 0.32 0.46 0.18 

38 0.02 0.14 0.36 0.37 0.10 

39 0.04 0.17 0.35 0.37 0.08 

40 0.06 0.09 0.32 0.43 0.10 

41 0.02 0.02 0.32 0.48 0.16 

42 - 0.06 0.24 0.52 0.19 

43 - 0.03 0.22 0.58 0.17 

44 - - 0.17 0.50 0.33 

45 0.01 0.04 0.17 0.34 0.44 

46 0.01 0.02 0.14 0.54 0.29 

47 - 0.04 0.25 0.52 0.19 
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48 - 0.02 0.28 0.62 0.08 

49 - 0.04 0.16 0.43 0.37 

50 - 0.01 0.08 0.75 0.16 

51 0.01 - 0.15 0.58 0.27 

52 0.02 0.04 0.26 0.53 0.15 

53 0.02 0.06 0.19 0.45 0.28 

54 0.01 0.09 0.19 0.53 0.18 

55 - 0.02 0.22 0.52 0.24 

56 - 0.05 0.21 0.58 0.16 

57 0.01 0.14 0.41 0.37 0.07 

58 - 0.02 0.27 0.41 0.31 

59 0.01 0.03 0.28 0.59 0.09 

60 0.01 0.09 0.28 0.58 0.04 

61 - 0.07 0.34 0.47 0.12 

62 - 0.04 0.39 0.51 0.05 

63 - 0.04 0.26 0.62 0.08 

64 0.01 0.09 0.35 0.50 0.05 

65 0.00 0.06 0.24 0.62 0.09 

66 - - 0.24 0.68 0.08 

67 - 0.04 0.29 0.49 0.18 

68 0.03 0.07 0.27 0.45 0.18 

69 0.02 0.16 0.35 0.33 0.14 

70 - - 0.19 0.52 0.29 

71 0.04 0.18 0.34 0.28 0.16 

72 - 0.11 0.28 0.46 0.15 
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73 0.02 0.19 0.34 0.40 0.05 

74 0.07 0.29 0.21 0.32 0.10 

75 0.15 0.25 0.40 0.20 0.01 

76 - 0.03 0.31 0.38 0.28 

77 0.02 0.07 0.23 0.46 0.22 

78 - 0.05 0.24 0.46 0.26 

79 - 0.09 0.43 0.40 0.09 

80 0.01 0.04 0.29 0.43 0.23 

81 0.01 0.06 0.28 0.49 0.16 

82 0.01 0.08 0.29 0.42 0.20 

83 - 0.02 0.17 0.54 0.26 

84 0.01 0.05 0.22 0.55 0.17 

85 - 0.06 0.23 0.51 0.20 

86 - 0.03 0.27 0.58 0.12 

87 - 0.05 0.26 0.59 0.10 

88 0.01 0.04 0.30 0.50 0.16 

89 - 0.04 0.20 0.60 0.15 

90 - 0.06 0.26 0.47 0.22 

91 0.02 0.12 0.34 0.41 0.10 

92 0.02 0.11 0.30 0.43 0.14 

93 0.01 0.18 0.38 0.26 0.17 

94 0.01 0.14 0.33 0.44 0.08 

95 0.18 0.19 0.27 0.30 0.06 

96 - 0.07 0.32 0.48 0.14 

97 0.06 0.18 0.34 0.34 0.08 
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98 0.08 0.13 0.35 0.37 0.07 

99 0.02 0.10 0.36 0.43 0.09 

100 - 0.06 0.24 0.57 0.13 

101 0.01 0.08 0.26 0.47 0.19 

102 0.01 0.09 0.32 0.52 0.06 

103 - 0.05 0.29 0.51 0.15 

104 - 0.05 0.21 0.43 0.32 

105 0.00 0.02 0.18 0.53 0.27 

106 0.01 0.06 0.31 0.47 0.15 

107 0.05 0.16 0.36 0.31 0.12 

108 0.02 0.12 0.28 0.48 0.10 

109 - 0.03 0.40 0.43 0.13 

110 0.02 0.17 0.33 0.31 0.17 

111 0.03 0.16 0.31 0.39 0.12 

112 - 0.08 0.38 0.48 0.06 

113 - 0.04 0.17 0.63 0.16 

114 0.01 0.07 0.24 0.45 0.23 

115 0.03 0.15 0.28 0.49 0.06 

116 0.02 0.18 0.35 0.34 0.11 

117 0.01 0.06 0.35 0.48 0.10 

118 0.01 0.09 0.28 0.50 0.13 

119 0.01 0.09 0.33 0.50 0.08 

120 0.01 0.06 0.33 0.54 0.06 

121 0.01 0.08 0.25 0.59 0.08 

122 - 0.07 0.33 0.46 0.14 
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123 - 0.04 0.20 0.56 0.21 

124 - 0.20 0.47 0.29 0.04 

125 - 0.02 0.48 0.36 0.14 

126 - 0.11 0.44 0.40 0.06 

127 0.01 0.11 0.31 0.46 0.11 

128 0.01 0.05 0.31 0.47 0.16 

129 0.01 0.11 0.28 0.40 0.21 

130 - 0.02 0.20 0.57 0.20 

131 - - 0.23 0.53 0.24 

132 0.04 0.30 0.38 0.26 0.02 

133 0.02 0.14 0.27 0.44 0.13 

134 - 0.08 0.37 0.41 0.15 

135 - 0.08 0.41 0.46 0.05 

136 0.03 0.06 0.33 0.30 0.27 

137 - 0.06 0.33 0.51 0.10 

138 - - 0.18 0.46 0.36 

139 - 0.25 0.46 0.25 0.04 

140 - - 0.15 0.46 0.39 

141 0.01 0.03 0.25 0.51 0.21 

142 - 0.02 0.07 0.42 0.49 

143 0.03 0.20 0.47 0.30 0.01 

144 - 0.02 0.21 0.69 0.08 

145 0.04 0.14 0.33 0.43 0.06 

Note. Number reflect percentage of students in a school belonging to each latent class.  For 
example, for School 145 8% of its students were Class 1, 18% of its students were Class 2, 34% 
of its students were Class 3, 35% of its students were Class 4, and 5% of its students were Class 
5.  Bold values represent a school’s percent is higher than average.  For example, School 145 had 
a larger than average amount of its students in Classes 1, 2, and 3. 
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