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DISSERTATION ABSTRACT
Benjamin William Reid
Doctor of Philosophy
Department of Mathematics
June 2017

Title: Constructing a vy Self Map at p =3

Working at the prime p = 3, we construct a stably finite spectrum, Z, with
a vg self map f. Further, both Ext,(H*(Z),Z3) and Ext,(H*(Z), H*(Z)) have a
vanishing line of slope 1/16 in (¢ — s, s) coordinates, and the map f is represented
by an element a of Ext where multiplication by « is parallel to the vanishing line.
To accomplish this construction, we prove a result about the connection between
particular self maps of spectra and their effect on the Margolis homology of related

modules over the Steenrod Algebra.
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CHAPTER I

INTRODUCTION

Motivation and the Nilpotence Theorem

The Nilpotence Theorem [DHSS88]| identifies certain properties that a self
map on a spectrum X, f : £?X — X, must have in order to be non-nilpotent.
In particular, these maps are detected by the Morava K theories [Rav16], a set of
related cohomology theories for each prime p. For a fixed prime p, the theories are

indexed by the integers n > 0 and denoted K (n) for each n.

Definition 1.1. A p-local, finite spectrum X is called type n if n is the smallest

integer such that K (n).(X) is nontrivial.

Furthermore, every p-local, finite spectrum is type n for some n. On these
spectra, we define a particular type of self map based on the Morava K theories.

The following definition comes from [Rav16].

Definition 1.2. For a type n spectrum, X, we define a v,, self map to be a map
f 29X — X such that K(n).(f) is an isomorphism, and K (m).(f) is trivial for

m # n.

Some power of any such map induces multiplication by some power of v,
in K(n) homology. We say that a v’ map on X is a v, self map that induces
multiplication by v/, in K(n) homology.

The Periodicity Theorem [HS98] tells us that such type n spectra and v,
maps exist for each n. In addition, every type n spectrum has a v’ self map for
some power ¢ > 0. This theorem does not give a construction for the map or the

power 1.



Consider the mod p Moore spectrum, M (p), which is a type 1 spectrum. In
[Ada66], Adams showed that M (2) admits a v{ map, but no smaller power, and
that for p > 3, M(p) has a v{ map. Taking the cofiber of a v,, map gives a type
n 4 1 spectrum, which has a v, 1, map. For p > 5, the cofiber of v; : £2P~D M (p) —

9

M (p) has a vy map [Smi70]. At p = 3, the cofiber of our v; map has a v§ map

instead [BP04]. We construct a related finite spectrum that has a vy map instead.

Theorem 1.3. There exists a p-local, finite spectrum, Z;, with a map vy : 297, —
Zy.
One application of the Nilpotence theorem to these v, maps is outlined in

Theorem 9 of [Hop87]. For n > 0, and X a type n spectrum, there is a map

f: Center [X, X], — Z,[v,]

such that ker(f) consists of nilpotent elements, and given any element b € Z,[v,],
then & € im(f) for some j. This map f is induced by the K(n) Hurewicz
homomorphism. This tells us that the v, self maps on X generate the center of
[X, X] modulo nilpotents.

Another application of these v, self maps on finite spectra can is that they
can give us examples of periodic families of stable homotopy elements. Given a
finite spectrum X with a v, self map f : X¢X — X, and two maps i : S* = X and

j: X — S' we can construct a stable homotopy element from the composition

girt Zi yax I x 4y gi

In fact, we can create a family of related, possibly nonzero stable homotopy

elements by iterating f. As an example, iterating f twice would give us the
2



element:

2d; d 1 .
gt 20y w2y Thosix Lo x L g

We use a technique from [PS94] to construct our example of a finite spectrum
and a corresponding v, map. An advantage of using this technique is that along
the way, we construct a spectrum which has a vanishing line in the E5 page of the
Adams spectral sequence that is, in some sense, parallel to vy. As in [Mil81] for a
v1 map, if we are able to compute this Fy page in a band around the vanishing line,
that may lead to information about the homotopy of the mapping telescope v, ' Z ¥

For this construction, and to ensure the vanishing line in Ext behaves in the
expected manner, we will be working with modules over the Steenrod Algebra,
and computing Margolis homology groups for these modules. We give a little

background about these topics below.

The Steenrod Algebra and its Dual

Recall from [Ste62] that the mod 3 Steenrod Algebra, which we will denote A,
is the Hopf algebra of stable mod 3 cohomology operations. It is generated, as an
algebra over Zs, by the Bockstein operation (3, in degree 1), and the reduced p-th
power operations (P?, in degree 47), modulo P’ = 1, 3% = 0 and the Adem relations

given below:

Pan — Z(_l)a—i—l (2(b - Z) _ 1) Pa—i—b—ipi
- a— 3t



for a < 3b, and

pogpt = 3 (—1)e (2(5 - i)) g peth=ipi

- a — 3i
L (20—i)—1 o
-1 a+i+1 Pa+b ey 2L
* ;( ) < a—3i—1 ) b

for a < 3b.

Given these relations, we can write any monomial in A in the form

/BEOPSI/BEI .. Pskﬂek

where e; € {0,1}, and s; € {0,1,2,...}. We call the monomial admissible if s; >
3si11 + e;. These admissible monomials form a basis for A as a Z3 vector space,
that is, every element of A can be written as a Zs linear combination of admissible
monomials.

The dual of the Steenrod algebra, A,, is also a Hopf algebra, with a simpler
multiplicative structure. Specifically, A, is a tensor product of a polynomial algebra
on generators &, of degree 2 - 3¥ — 2, and an exterior algebra on generators 7, of
degree 2 - 3% — 1.

A* :Z3[€1,€2,...] ®E<T0,T1,...)

Dualizing the basis for A, given by monomials in the {{;} and {7;} gives us another

basis for A, called the Milnor basis. It contains elements @); dual to 7;, and P dual

to &



Margolis Homology

Given a nilpotent element x of A, we can view z as a differential on any A
module. If ™ = 0 and M is an A module, then we can define the homology of M

with respect to x by:
_ ker(z"1)

im(z)

H.(M;x)

Remark 1.4. We note that there are other ways we could define the x homology
of a module M, depending on the value of n. For example, we could flip the powers

and take
ker(x)

H,(M;z) = 1)

Given a short exact sequence of A modules, we get a long exact sequence in
homology with respect to z. If n = 2, then this long exact sequence behaves as we
expect. However, if n > 2, then our long exact sequence will alternate three terms
of H, with three terms of H..

As in [Mar83], we focus on particular nilpotent elements of A when defining
this type of homology. Specifically, we consider the elements (),, and P with s < ¢

from the Milnor basis of A. We know from [Mar83] that for these elements, we have

(Q,)? =0 and (P7)? = 0. We use the following notation in this paper:

Definition 1.5. Let M be an A module. For elements @),, € A and P} € A with

s < t define:




In some sense, the Margolis homology of a bounded below A module M with
respect to these particular differentials gives us a way to measure how close M is to

being free over A. From [MW81], we have the following results:

o If H (M;P?) =0 forall Pf € Awith s <t, and H,(M;Q,) = 0 for all Q; € A,

then M is free over A.

e If M is of finite type, H.(M; Pf) = 0 for all P € A with s < t and p|Pf| < 2d,
and H,(M;Q;) = 0for all Q;, € A with |Q;| < d, then Ext'(M, M) has a

vanishing line of slope d.
ur Maps for A Modules

If x is either a @,, or P; differential, then we define C'(z) C A to be the sub
Hopf algebra generated by z. If x = @,, then C(x) = E(z), an exterior algebra,
and we can compute

EXtB)&) (Zg, Zg) = Zg [U]
The polynomial generator, u, is in bidegree (1, |z|)

Similarly, if x = P§ with s < ¢, then C(z) = Zs[x]/x3, a truncated polynomial

algebra, and we can compute
Ext,)(Zs, Zs) = Ely] ® Zsu]

Here, the exterior generator, y, is in bidegree (1, |z|), and the polynomial generator,

u, is in bidegree (2, 3|x|).



These computations give rise to the notion of “slope” for these differentials,
corresponding to multiplication in (s,t) coordinates by the polynomial generators u

in both cases. More precisely, we have

Definition 1.6. For each of these differentials (),, and P} with s < ¢, we define the

slope via the following formulas:

PS
$(Qn) = |Qnl, and  s(P%) = 3|2t |

The @,, and P; differentials can be linearly ordered by slope, and we let z
denote the kth differential in this ordering. The first few of these differentials are

given in Table 1. below.

TABLE 1. The first four differentials, ordered by slope

k| zp | element | s(zy)
0| zo Qo 1
1] 1 5
2 | xo Py 6
3 T3 Qz 17

In computing Ext groups of A modules, we make use of the following lemma

from [Mar83, Theorem 19.7] about the x) differentials:

Lemma 1.7. Suppose M is a bounded below A module, with bottom degree m, such
that H.(M;z;) = 0 fori < k. Let B be the sub Hopf algebra of A containing
{xo,x1,..., 21}, and let d be the bottom nonzero degree of A/B. Then M is free
through degree d+m — 1. That is, there is an surjection from a free A module to M

such that the bottom degree of the kernel is in degree at least d + m.

Specifically, if we are constructing a minimal resolution for a bounded below

A module, M, then the bottom degree of the first stage of the resolution will be
7



at least d + m. Since free A modules have no x; homology for any ¢, there is an
isomorphism between the x; homology of M and of the kernel of the surjection. In
particular, the x; homology of the kernel vanishes for i < k, so the kernel is also
free through degree 2d +m — 1, and therefore the bottom degree of the second stage
of the resolution must be at least 2d + m. We can repeat this process inductively to
see that the bottom degree of each stage of the resolution must increase by at least
d.

We use this fact several times. Given a module with vanishing o (and ;)
homology, the bottom nonzero degree of A/B will be 4, represented by P!. Then
the bottom degree in our minimal resolution for M will increase by at least 4 at
each stage, giving us a vanishing line in Ext%'(M, Z3). For a module with vanishing
7o, T1, and o homology, the bottom degree of A/B will be 12, represented by P3.
Then the bottom degree in our minimal resolution for M will increase by at least
12 at each stage.

To each xy, we let u; be the polynomial generator of Eth:xk)(Zg, Z3). Recall
that if x = @Q,, then the bidegree of uy is (1,2 - 3™ — 1), and if z;, = P7, then the
bidegree of uy is (2,3[2 - 3! — 2]*"). The following definition gives us a connection
between these elements of Ext and self maps of spectra. It utilizes the fact that the

inclusion C'(zx) — A gives a map of algebras Ext;" (M, M) — Extg, (M, M).

Definition 1.8 (Definition 2.4 from [PS94]). Given an A module M, we say that
f € Exty"(M, M) is a uj-map of M if f restricts to uj, ® 1y € Extg, (M, M).
Similarly, a spectrum X has a u}-map if there is an element g € [X, X] which is

represented at the Es term of the Adams spectral sequence by a ui-map of H*(X).



Remark 1.9. The restriction map mentioned in this definition comes from the fact
that A is a free C'(zy) module [MMG65], so a free A resolution of M is automatically
a free C'(zy,) resolution of M as well. Thus, our inclusion C'(zy) < A gives us the

restriction map Ext’'(M, M) — Extg, (M, M).

To build the element u} ® 1, that we will need for comparisons, we begin

with the minimal C(zy) resolution of Zs:

where the suspension d depends on the type of differential. Then the element wu} is
represented by a map from an appropriate (either ¢ or 2i) stage of the resolution to
Ss(m) 7.

If we then tensor this resolution on the right by M, we get a C(xy) resolution
of M:

Zs@ M + C(x1) @ M < X40(x) @ M + ...

Then the element u ® 1, is respresented by the element mapping from the same
stage of the resolution to X"**)Zs @ M, which is u}, on the first factor, and the
identity on the second factor.

We will see in the next section the importance of these u; maps. In
particular, Lemma 1.12 illustrates the relationship between u; maps on certain

types of spectra and v, maps on related finite spectra.

Stably Finite Spectra and v, Maps

In constructing our u} maps, we will be working with a special category of

spectra as defined in [PS94].



Definition 1.10. The category of stably finite p-local spectra is the thick
subcategory of p-local spectra generated by finite spectra and locally finite
generalized mod p Eilenberg-MacLane spectra (i.e. bounded below generalized
Z,, Eilenberg-MacLane spectra with finitely many homotopy groups in each

dimension).

In particular, we know that the cohomology of such a stably finite p-local
spectrum will be an A module of finite type.

Instead of directly constructing a v, self map on a finite spectrum, we instead
create a stably finite spectrum with an appropriate ui map, and take advantage of
a nice relationship between u; maps and v, maps whenever z, = ,,. In particular,
we use the following results to see that such a constructed u} map induces a v,

map on a related finite spectrum.

Lemma 1.11 (Lemma 3.1 from [PS94]). Suppose that W is a spectrum, M is a
finite spectrum, and there is a map g : W — M such that the fiber of g has a finite
Adams resolution. If W has a self map f, then M has an associated self map f

such that gf = fg.

The proof of this Lemma essentially boils down to the fact that [K, M| = 0 if
K is an Eilenberg-MacLane spectrum, a result from [Mar74].

Thus, once we have found our stably finite spectrum with a u} map, we
simply need to find a map from it to an appropriate finite spectrum. We then use
the following result to show that the induced map on the finite spectrum is actually

a v, map. This result comes from the proof of Corollary 3.5 in [PS94]

10



Lemma 1.12. Suppose that x;, = Q),,, and that W is a stably finite spectrum with a
ut, map, f. Then K(n).(f) is an isomorphism, and if M is a finite spectrum with a
map g : W — M whose fiber has a finite Adams resolution, then the self map f on

M associated to f is a v, map.

At p = 3, since x3 = @3, we will need to find a stably finite spectrum with
a u$ map for some 7, along with a suitable map to some finite spectrum. Then by
appealing to this Lemma, we have the desired v, map on a finite spectrum.

To find such a ug map, we use one further result about stably finite spectra:

Proposition 1.13 (Proposition 2.8 from [PS94]). If X is a stably finite p-local
spectrum such that H.(H*(X);x;) = 0 for j < k and H,(H*(X);xi) # 0, then X

has a u};—map for some i > 1.

This means that we will need to construct a spectrum whose cohomology has
no homology with respect to the differentials x¢, x1, and x5. We construct such a
spectrum by starting with one that has no xy homology, and iteratively killing off
the ;1 and x5 homology by taking the cofibers of maps that are isomorphisms with
respect to 1 and x5 homology. The resulting spectrum, which we denote Z below,

will then be guaranteed to have a u} map for some 1.

11



CHAPTER II

A RESULT ABOUT Uy SELF MAPS AND X HOMOLOGY

Before proceeding to the construction of our self maps, we prove a result

about xp homology and its connection with u; maps.

General Results

The following two lemmas help us to identify uy self maps. We do not need to
restrict to the p = 3 case for these two results. Given a stably finite spectrum, W,

we use the proposition below in order to be able to work with the x; homology of

H(W).

Proposition 2.1. If W is a stably finite spectrum, then H.(H*(W);xy) will be a

finite dimensional vector space over Zjy,.

Proof. Suppose that W is a stably finite spectrum. If W is finite, then H*(WW) is
finite, and thus H.(H*(W); zy) is finite as well. If W is a generalized Eilenberg-
MacLane spectrum, then its cohomology is a sum of copies of A, which has no x
homology. Otherwise, W is obtained by a finite number of cofibrations involving
finite spectra and generalized Eilenberg-MacLane spectra. By examining the long
exact sequences in xy homology, we can see that H,(H*(W);x;) will be finite

dimensional as a vector space over Z, O

We make use of the first lemma below to take advantage of this fact. We will

use this later to determine that certain maps we create are u; maps.

12



Lemma 2.2. Let V and V' be finite dimensional vector spaces over a field F'. If R

15 an augmented F' algebra, then we have an isomorphism:
Exztn(V, V') & Extn(F, F) @ Hom(V, V') (2.1)

Further, this tsomorphism in natural with respect to Yoneda multiplication.

In the context of this Lemma, we view the vector spaces V and V' as trivial

R modules, that is R acts through its augmentation € : R — F'.

Proof. To first prove isomorphism (2.1), we pick bases I and J for V and V',
respectively. By assumption, I and J are finite. By writing V' and V' as direct

sums of copies of F, we can use the properties of Ext to then write an isomorphism:

Exty,(V, V') = @) Extjy(F, F)
1,J

This, in turn, gives us the isomorphism

@D Exti,(F, F) = Extj,(F, F) @ Hom(V, V')
1,J
This establishes (2.1); it remains to show that it is natural with respect to

Yoneda multiplication in Ext. To do this, we need to describe the isomorphism of
(2.1). Using our chosen bases, an element of Hom(V, V') is a matrix with entries in
F. Let E;; be the matrix that is 0 in all entries except the (7, j) entry, which is 1.
So E;; takes the ith basis element of V' to the jth basis element of V' and is zero
on the other basis elements of V. Consider the ith projection map 7; : V- — F, and
the jth inclusion map f; : F© — V'. Combining these maps with the functoriality

of Ext (contravariant in the first position, and covariant in the second), we have a
13



map E; ; : Extp(F, F) — Extr(V,V’). Then the image of x ® E; ; under the map
Ext%(F, F) @ Hom(V, V') — Ext%(V,V’) from (2.1) is E; ;(z).
We then look at the following diagram, for finite dimensional F-vector spaces

V, V', V" and show that it commutes:

Extiy(V, V') @ Extiy(V/, V") — Ext3™ (V, V")

(2.2)
Ext% ™ (F, F) @ Hom(V, V")

/
Ext,(F, F) ® Hom(V, V') ® Ext}(F, F) ® Hom(V', V")
We start with an element * ® F; ; ® y ® Ejr ;, in the bottom left corner. Going

up, we have E; ;(z) ® Ej x(y). We then need to describe the product of these two

elements of Ext. To do this, we take some R resolution of the field F’

F < By<+ By + ... (2.3)

Then the element x is represented by a map = : By — F', and y by a map ¢ :
By — F. In particular, since B, is projective, and the map By — F' is surjective,

we can lift T to o, a map B, — By

14



We can then lift this map s’ additional times to Zy : By, — By. The product xy
in Ext is then represented by the composition § o Ty as shown along the top of the

diagram below.

Bs+s’ Tt Bs’ F
1 )
L oa
By By

We can use (2.3) to create particular resolutions of V, V', V" by tensoring
on the right by those vector spaces. We can then represent E; ;(x) and Ej x(y) by

maps
[i@EZ‘JIBs@V—)F@V, g@Ej/7kiBS/®V/—>F®V/,

Then, the product of E; ;(z) ® Ej k(y) is given by the composition along the top of

the following diagram:

Bs+s’ ® Vi-e--- ’ Bs’ X V/

Lo By Y (2.4)

FeVv’

15



The composition of these maps in (2.4) gives E; ; on the right factor exactly
when j = j', otherwise the composition of the vector space maps is 0. Thus, the
product of our two ext elements is just F;j(zy) when j = j" and 0 otherwise.

Going to the right in diagram (2.2), we have 2y ® E; ;E} .. The product of
matrices on the right is £ ; when j = j’, and 0 otherwise. As in our description
of the isomorphism (2.1), we know the image of this element will be E; (zy) when
j = 4" and 0 otherwise. This coincides with the image from the other path around
the square, so we can conclude that it commutes.

From this, we can conclude that our isomorphism (2.1) is natural with respect

to the Yoneda multiplication in Ext. O

As we saw in Definition 1.8, u; maps on M are defined by their restriction
to Exte(q,) (M, M). Our goal in this chapter is to establish a connection between
ur maps on M and the x; homology of M. The following lemma assists us in
computing these Ext groups in the case that x; = @Q,, for some n. This result holds
for any prime, not just p = 3. Recall that in this situation the sub Hopf algebra

C(zy) is exterior.

Lemma 2.3. Let p be a prime, and A the mod p Steenrod algebra. Let x;, =
Q. € A for some n, and let M and M’ be bounded below A modules with finitely

generated xy homology. Then, for s > 1, we have an isomorphism

Exty, (M, M') = Z[uy] © Hom(V, V"), (2.5)

which is natural with respect to the two modules, and where V.= H,(M;xy), and

V' = H,(M'; ).

16



Proof. We first decompose M = W @V, and M’ = W' & V', where W and W' are
free C'(zx) module [Mar83, Theorem 15.20 a]. We can then use this to decompose

Ext(M, M') in the following way:

st ~ s,t st
Extg, (M, M') = Exte,, (W, W' & Extg,, (W, V") 2.6

@ Extg,, (V. W) @ Extg, (V. V)

We know that C'(zy) is injective as a C'(x)) module. Then a direct sum of
copies of C(xy) is also injective [Mar83, Theorem 15.27 c], so W’ is injective. Also,
W is clearly projective, so for s > 1, the first three terms on the right side of (2.6)
are 0, giving us

Extg,, ) (M, M) = Extgy, (V. V') (2.7)

Then, we know (2.7) is a natural isomorphism, coming from the naturality of
the Yoneda product and the maps M — V and V' < M’. We can now appeal to

Lemma 2.2 to establish the natural isomorphism:
Extc(s,) (V. V') = Exte ) (Zy, Z,) @ Hom(V, V') = Z,[uy] @ Hom(V, V')

]

A similar result about Ext over C(x)) when z;, = P would be helpful, but we

do not have such a result.

Main Theorem

We return here to the specific case that p = 3, and that A denotes the mod 3

Steenrod algebra.
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Before stating the next theorem, we introduce a bit of notation. Let M be an
A module, and let P, be a projective A resolution of M. Then, given an element
o € Ext%' (M, M), « is represented by one or more maps f : P, — X!M. This map
f induces a map f defined to make the lower right triangle in the diagram below

commute:

8 887 as as
M 0 o 1 PS Ps +1

P
ker(0s_1) ] \”

fosm
Theorem 2.4. Let M be a stably finite A module such that H,(M;x,,) = 0
form < k, and H,(M;xy) # 0. Using the same notation as above, let a« €
Exti{t(M, M). Then some power of a is a ul, map if, and only if, the induced map

[ ker(0s_1) — XM is an isomorphism on xy, homology.

Proof. The “only if” direction of this proof comes from [PS94, Proposition 2.7]. We
must still prove that if the induced map f : ker(ds_;) — XM is an isomorphism
on zj homology, then some power of a is a u} map for some i. We proceed by

considering two cases, r; = Q),,, and ;. # Q.
Case 1. z;, = (), for some n

As in Remark 1.9, our free A resolution is also a free C(xy) resolution, so we
can consider the image of « in Ethéxk)(M . M).

Let V' = H,(M;xy) be the 2 homology of M. Consider the short exact
sequence

0—>ker(80)—>P03°+M—>0
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Since P, is free over A, it must have zero z; homology. Thus, by examining the

long exact sequence in x; homology, we see that

H,(ker(dy); xy) = Sl

Repeating this argument s — 1 more times, we have that

H,(ker(ds_1); x) = Bolerly

Then, by assumption f gives us an isomorphism f sl 5 oty

By Lemma 2.3, we know that

Exto(ay) (M, M) 2 Zs[uy]) ® Homg, (V, V).

Under the isomorphism outlined in this lemma, we can see that a maps to u; ® f .
Since M is assumed to be stably finite, V is finitely generated as a vector
space. Thus, some power of f is the identity on V', and we can conclude that some

power of « restricts to uf ® 1 for some i, that is, some power of « is a u}, map.
Case 2. xp # Q,

For this case, we note that we must have s even, this is the only opportunity
for us to have an isomorphism on z; homology.

Our subalgebra C(zy) is equal to Zs[zy]/x;. Since C(xy) is a graded PID,
we can describe graded, finitely generated C(x)) modules using the graded, cyclic

module Z3, B = C(z)/(x%), and C(z). We then decompose M, as a C(zy,)
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module, that is, for some index sets I, J, L, we can write:

M=Ps"Clu) o PE"BoP Sz

el jeJ lel

The x; homology of M comes from the copies of B and Z3 in this decomposition,
and since M is stably finite, there are finitely many copies of B and Zs. We
assume, without loss of generality, that these factors are ordered by suspension,
that is b; < b1 and ¢ < cpyq. Let W = H (M; xy,).

Similarly to the previous case, we compute the z; homology of ker(ds_1) in

our resolution of M. Consider the A resolution where

R=@PzAo@PsiioPs A

i€l jed lel

Then, as a C(zx) module, we have

ker(p) = @ =¥z © @ Tt B @ @5 C(aw)

jed lel I

The copies of C'(xy) do not contribute to the x; homology, so we do not keep track
of their suspensions.

At the next stage of the resolution, ker(d;) can be computed similarly, with

ker(8y) = X317l (@ >"Bo 20%) & P Clar)

jeJ (el I

as a C'(xy) module. Specifically, this tells us that

23‘1k|H*(M;Ik) =~ H,(ker(0y); xx)
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This process generalizes, and we can describe ker(ds;_1). Since s — 1 is odd,
we know that ker(9ds_;) will have a copy of B for each copy of B in M, and a
copy of Zs for each copy of Zs in M. Each of these copies is shifted by up by
s - 3|xk|/2. Since only the B’s and Zj’s contribute to the z; homology, and the

relative distance between the suspensions are not changed, we have that
H,(ker(D,_1); xy) = N3l 2y = sis3lenl 2 F (M 2,

We are assuming f gives us an isomorphism f : $¥3el/2)) — Sy,

Since f is an A module map, it is also a C(z;) module map. Recall that the
21, homology of our modules comes from the generator in each copy of B, and from
the generator in each copy of Zs. To help us describe the effect of the map f, we
rewrite our decomposition of the module M as M = C & D & E, where C' is a sum
of copies of C'(xy), D is a sum of copies of B, and F is a sum of copies of Zs.

If g : Z3 — B is a map of C(x)) modules, then we must have g(1) = Az for

some \ € Zs. Therefore, since f is a map of C(x;) modules, then the composition
sedlel2g oy of @ w2 BY & sH(C @ D@ E) - 5D

must land in x;, - X'D. Here, C’ denotes a sum of copies of C'(z}). This composition
is then 0 in z;, homology. Thus, since f induces an isomorphism in x;, homology,

the composition

w3l 2g oy o' @ wedel2(D e B) L s C e Do E) » S'E
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must be an isomorphism. Similarly, the composition
$e3ml/2p <y ¢ @ v ¥ 2o Do B) L SH(C @ D@ E) » S'D

can be written as a matrix of the form P + z; - @), where P is invertible.
We must show that some power of f is the identity on x; homology. To do
this, we represent f as a block matrix:

po D€

R S

where P represents the part of the map sending copies of B to copies of B, R
represents the part sending copies of B to copies of Zs, () represents the part
sending copies of Z3 to copies of B, and S represents the part sending copies of
Zs to copies of Zz. In particular, we know that the blocks on the diagonal (P and
S) are isomorphisms, and thus invertible over C(xy).

Further, based on our ordering of the suspensions in the decomposition,
we can say a little more about the structure of the blocks. P is an upper block
triangular matrix, where the blocks along the diagonal are invertible over Zs,
with the size of these blocks determined by the number of copies of B with the
same suspension. Blocks above the diagonal may contain multiples of x; when the
suspensions of copies of B differ by |zx|. Otherwise, they are all zero. Similarly,
S is a block diagonal matrix, with the nonzero blocks along the diagonal being
invertible over Zs. We can also describe R as a block matrix containing only

elements of Z3, and () is a block matrix containing multiples of x.
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Then, we can write ¥ = N + Txj, where N and T are matrices over
Zs. In addition, N is a lower triangular block matrix over Zsz, with invertible
blocks along the diagonal. Thus, N is invertible over Zs. Tx) is a matrix over the
augmentation ideal of C'(xy). Since this augmentation ideal is nilpotent, this is
enough to guarantee that F is invertible over C'(z;). Then, because the group of
invertible matrices over Zs is finite, there is some power m such that F™ = I. This

A

means that (f)™ is the identity on x; homology.

We must now show that the restriction of o™ to Extgfg’ﬁzl)t(M , M) is equivalent

to uzwﬂ ® 1. From above, we know that

ker(Ops_1) = C" @ X322 (D @ E)

where C” is a large sum of copies of C'(xy). Further, P, can be interpreted as a
free C'(x)) module with a copy of C(z}) mapping surjectively onto each summand
of D and F.

Let Qo(M) be the C(xy) resolution of M as described in Remark 1.9, and

denote the differentials 9] : Q; — Q;—1. We claim that

ker (0!

ms—1

) =yxmdel/2(Da F). (2.8)
We can decompose each stage of (), as:

C(zr) @ M = @ (C(ar) @ Clan) @P(Clax) @ B) P(Cla1) @ Zs)
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As C(zr) modules, we have
Clxzy) @ B =2 C(xy) @ SO ().
We note that Qe(M @ N) = Q¢(M) © Qo(N). In particular Q,(B) is
Zs© B & Ca) @ B S50 () © B & 53910 () © B ...

Here, the kernel of ), is isomorphic, as a C(x;) module, to X273 @
> (zy,). Similarly, the kernel of @] is isomorphic, as a C(x;) module, to X317+ B,
Then @Q2(B) is a copy of C(x}) mapping surjectively onto this copy of B. A similar
argument holds for the Q.(Z3).

This pattern repeats every two stages of the resolution, so that
ker(8h,_,) = 223l/2(D @ E)

and @y, has a copy of C(z) mapping surjectively onto each summand of D and FE.
This shows our claim in (2.8) is true.

To finish the proof, we must construct a map between Qs(M) and P, to show
that our two Ext elements are equivalent. We take the map that sends the copy of

C(zg) in Qs mapping to a particular summand of ker(9/ . ;) isomorphically to the

ms—1
copy of C(zy) in P,,s mapping onto the same summand of ker(0y,s_1).
Then the composition of this map and f is the same as v}’ ® 1, so a™ is a

uzw/ 2 map. ]

Now, for a spectrum X, we can construct an Adams resolution for X. For a

more thorough description, see [Rav03, Definition 2.1.3]. Let X; be the ith stage of
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the Adams resolution, where Xy, = X. Given a self map ¢ : ¥?X — X coming from
an element of Ext%""*(H*(X), H*(X)), we can lift g to a map g : ¥°X — X,. This

also gives us a map in cohomology §*H*(X,) — H*(%¢X).

Theorem 2.5. Let X be a stably finite p-local spectrum, H,(H*(X);x,,) = 0 for
m < k, and H,(H*(X);x1) # 0, and let f : 32X — X come from an element
o € Bxty™(H*(X), H*(X)). Then some power of o is a w, map if and only if f*

s an isomorphism on xy homology.

Proof. An Adams resolution of X gives a resolution, P, of H*(X) by free A
modules. In this correspondence, we have that ker(9;) = X'H*(X;;;). Then,
f* corresponds to a map ker(d,_;) — X¢H*(X). Now apply Theorem 2.4 with

M = H*(X). 0
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CHAPTER III

CONSTRUCTING Ux MAPS

General Strategy for Constructing u;, Maps

In this chapter, we detail the construction of our uq, us, and uz maps and

the spectra on which they give us the desired self maps. Each of these three

constructions follows the same general pattern, and we will refer back to the

following numbered steps during our construction.

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Begin with a spectrum X such that H,(H*(X);z;) = 0for j < k. By

proposition 1.13, X will have a u} map for some i.

Construct a minimal resolution for the cohomology of the spectrum as an A

module.
Construct an element of Ext, in the appropriate bidegree to be a u; map.
Appeal to theorem 2.4 to show that some power of this map is a u}, map.

Show that this element survives the Adams Spectral Sequence to give a self

map on the corresponding spectrum.
Lift the self map up the Adams tower for the spectrum.

Take the cofiber of this lifted map to generate the spectrum for the next
iteration. The cohomology of this new spectrum will have no z; homology
for j < k4 1. To prepare for the next iteration of this process, we describe the

A module structure of the cohomology of this newly created spectrum.
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The last two steps are not required with our us map, as we do not construct a

U4 Map.

27



Constructing a u; Map

Step 0: We start with the mod 3 Moore spectrum M (3). As a module over
A, H*M (3) has no zy = f homology. We hope to find a self map of M (3) that is
a power of u;. It will turn out that this u; map is the v; map on M(3) as seen in
[Mil81).

Step 1: As outlined above, we start by computing Ext’(H*M(3), H*M(3))
using a minimal resolution of H*(M(3)) in order to find a candidate for a u; map.

A calculation by hand shows the beginnings of this minimal resolution as follows.

H*M(3)<_8£POZA&P1=E4A6§25A@212A@---<—81P2229A@...<_81...

Step 2: Now that we have the minimal resolution, we can construct our
candidate u; map. Since the polynomial generator w; is in bidegree (1,5) as
described in Section 1.5, we are looking for an A module map P, — Y°H*(M(3)) to
generate an element of Ext},”(H*(M (3)), H*(M(3))).

We have such a map f € Hom®(Py, H*(M(3))), which is unique up to scalar
multiplication, sending (0,1,0,...) — 1 and sending all other generators of P; to 0.
For dimensional reasons f o 9, = 0, and similarly, since Hom®(Py, H*(M(3))) = 0,
f ¢ im(9;). Thus, f gives us a nonzero element o € Ext’”(H*(M (3)), H*(M(3))).

Step 3: We claim that this Ext element is our u; map, and we’d like to be

able to use Theorem 2.4 to prove this.

Proposition 3.1. The map f described above induces a map f : ker(dy) —

YOS H*(M(3)) which is an isomorphism on x; homology.
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15/ 0 0
H*(M(3)) — A ——— P, —>— P,

N7
ker(d) \\i (3.1)

i S5 H*(M(3))

Proof. We start by noting that the map f is well defined, as the A module
generators of ker(dy) have unique lifts in P;. Since dy maps 1 to 1 and § to 3,
then ker(dp) is just a copy of A with these bottom two classes removed. As an A
module, the generators in the lowest dimension of ker(dy) are P! in dimension 4
and P'3 in dimension 5. Then, the generator (1,0,0,...) € P; is mapped via the
surjection to the element P! in the kernel, and the generator (0,1,0,...) € P is

mapped to P! in the kernel. This tells us that

F(PY) = f(1,0,0,...) =0

F(P'B) = £(0,1,0,...) =1

The x; homology of H*(M(3)) is generated by each of the nonzero
cohomology classes, 1 and §. The x; homology of ker(dy) is generated by the

classes P'3 — P! in dimension 5, and P! in dimension 6, that is:

H,(ker(dy); x1) = (P' — BP*, BP'p)

We note that these classes are just z; applied to the two classes we removed from A
to construct ker(dy). These elements can be computed by hand using the long exact

sequence in x; homology from the short exact sequence

0 — ker(dy) — Py — H*(M(3)) = 0
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We now need to find the image of these two classes under the map f. Since
01(—p,1,0,...) = P! — P! and 0,(0,3,0,...) = BP'3, we have the following for
f:

f(P'8—BPY = f(—=5,1,0,...) =1

(3.2)
f(BP'B) = f(0,8,0,...)=§
O
Corollary 3.2. Some power of a is a u® map for some i.
Proof. f is an isomorphism on z; homology, so we can apply Theorem 2.4 O

Step 4: Next, we must show that a survives the Adams spectral sequence to
give us a self map on M(3).

We know that H,(H*(M(3));x9) = 0, so by Lemma 1.7 H*(M(3)) is free
through degree 3. This stems from the fact that P! in degree 4 is the element of
lowest degree not in the sub Hopf algebra of A containing x, This indicates that at
each step in our minimal resolution, the bottom suspension will increase by at least
4. This means that Ext5' (H*(M(3)), H*(M(3))) = 0 for (t — s) < 5 as long as
s > 1. This is illustrated in the figure below, where all Ext classes above and to the

left of the line must be 0.

O _—

—

)

_—
o 1 2 3 4 5 6 7 8 9

S = N W

FIGURE 1. Vanishing edge for Ext®*(H*(M(3)), H*(M(3))) in (¢t — s, s) coordinates
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Our element o € Ext"® lies below this line at (4,1) in (¢ — s, s) coordinates.
However, the differential dy on the E5 page of the spectral sequence would send
this to coordinates (3,3) in the diagram, which must be 0. For dimensional reasons,
we can also see that this class cannot be hit by the differential dy. Similarly, all
higher differentials would land even higher in the ¢ — s = 3 column. Thus, all
of the differentials in the Adams spectral sequence on « will be 0, and it is not in
the image of any of these differentials, so a survives to the E,, page, giving us an
essential self-map fi(s) : M (3) — M(3)

Step 5: We now lift our map fys3) up the Adams resolution. Recall, we
construct the first stage of the Adams resolution, denoted M (3); by taking the
fiber of the map M (3) — K(Z3). Since fas) comes from a map of Adams filtration

1, we can lift it to fM(g) as in the diagram below.

fM(S)//// (3.3)
4 < fur (3)
UM (3) M (3) — K (Z)

By calculation, the cohomology of M (3); corresponds to a shift down by one
dimension of ker(9p) from (3.1) above. This leaves the bottom few classes as P! in

degree 3, AP, P13 in degree 4, and SP!3 in degree 5.

We note that the induced map in cohomology
Fary - HY(M(3)1) — H*(Z*M(3))

is the desuspension of the map f from our Ext computations above. Namely, f]’(ﬂg)

is an isomorphism in x; homology.
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Step 6: Finally, we follow the method outlined in [PS94] to “kill oft” the x4
homology of M(3) and produce a new spectrum with no z; homology.

By taking the cofiber of the map fus) : £*M(3) — M (3)1, we create a new
spectrum, which we will call Y. Since ff\k4(3) is surjective, we have that H*(Y) =
ker f&(?)).

Further, we have a short exact sequence in cohomology:

P

0— H*(Y) — H*(M(3),) —= H*(X*M(3)) — 0.

When we examine the corresponding long exact sequence in x; homology, we
see that since fj\}(g) is an isomorphism on x; homology, H*(Y") will have no x;
homology. As it also has no xy homology (since H*(M (3)) and H*(M(3);) had
no zo homology), we will be able to find a v} map on Y for some i.

From our construction, we can describe H*(Y) as the submodule of ¥71A
containing all Serre-Cartan basis elements except 1, 3, P!/, and BP!3.

We know we will need to construct an Adams resolution for Y, and an A-
projective resolution of H*(Y) in our search for a uy map, so it will be helpful to
describe the generators of H*(Y') as an A module. The following result summarizes

the structure of the A module H*(Y).

Proposition 3.3. H*(Y) is the submodule of A generated by the classes P3P'j3

and those of the form p3 fore > 0.

Proof. We begin with A and study the effects of removing the clases listed above.
As an A module, A has a single generator, 1. When we remove this generator, the
resulting module is generated by the indecomposable elements of A, namely, £, and

elements of the form P3' for i > 0.
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We next remove /3 to create a module isomorphic to H*(M(3);). This
module still contains P?', but may require other generators of the form P3 3. We
claim that most of these elements are not, in fact, new generators. By the Adem

relations, for ¢ > 1, we have:

Pgiﬁ — P16P3i—1 _|_5P3Z

Thus, for i > 1, we can write the element P3'J in terms of the generators of
the form P that we already had. Then the only generator we gain at this step is
P13.

The third step is to remove the class P'3. The possibilities for new generators
are AP, and elements of the form P3' P'3. Of these, BP'f is clearly a generator.

By computation, we have

P'P'3 = —P?3 = —(BP' + P'p)P*

so that P! P! is not a generator. Furthermore, by the Adem relations, for i > 2,

we have

P3iP1ﬁ _ P3P3L25 + P?’iﬂﬁ

Both terms on the right hand side can be written in terms of our already
existing generators, so none of the elements of the form P3Pl fori > 2 are
generators of the module. After removing three of the four elements, we have an

A module with generators: AP, PPP3, and the elements of the form P
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The final step is to remove SP!3. This gives us the elements P* SP!3 as new

possibilities for generators. For small i, we have:

Plﬁplﬁ:ﬁ]ﬂﬁ: (ﬁplﬁ)Pl

and

PPBP'S = (B)P°P'S

so that neither of these classes are new generators. Further, for ¢ > 2, we have the
general formula:

P¥BP'3 = P'3P*'P'3 + 3P¥ P'3

Thus, none of these new candidates for generators are actually generators.
Putting all of this together, we have that our A module, H*(Y'), is generated
by the class P3P!3 in degree 16, and the classes of the form P? in dimension

A(37) — 1. O

Note that unlike our original spectrum M (3), the cohomology of Y is no
longer finite, or even finitely generated. But we now have the information that we

need in order to begin constructing our uys map.
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Constructing a uy, Map

Step 0: As we’ve shown in the preceeding section, we know that YV is a
spectrum whose cohomology has no xg or x; homology, so we will be able to find
a self map that is a power of us by Proposition 1.13. We follow the same outline
given at the beginning of the chapter to construct our u, map.

Step 1: To compute Ext%'(H*(Y), H*(Y)), we'll need to construct a minimal
projective resolution of H*Y . Since uy is in homological degree 2, we’ll need to
construct at least two steps in this resolution. The work we did in the previous
section helps us with the first step of this process. We take as our initial projective,

Py, a direct sum of copies of A, one for each generator of H*(Y"), so that

Po=3 AdS" A L0460 YA G 014 (3.4)

Then, the map Jy : Py — H*(Y) sends the generator of each copy of A to
the corresponding generator of H*(Y'). To compute the next projective, Py, we need
to find generators for ker(dp). Since H*(Y') isn’t finitely generated, we use Sage
[ST16] to compute the kernel through dimension 100, which will be enough for our
purposes in this paper. The code can be found in Section 3.4, but we’ll outline the
general procedure here.

The process is carried out dimension by dimension, starting at the bottom. In
each dimension n, we first compute a vector space basis for H"(Y) and a separate
one for (P,),. For each basis element of (FP,),, we write it as a list of basis elements
of A, finitely many of which are nonzero. For example, when n = 12, we have the
element (P2, 3,0,...) € (Py)12. Since we know where dy sends the generators

of Py, we can determine where it sends each of our basis elements of (Fp),. As an
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example, we have:

oo((BP?,3,0,...)) = 0o(BP%0,...) + 00(0,5,0,...)
= (BP*)P' + (B)P°

= [P3.

We then write the image of each basis element of (Fp),, as an Zg linear
combination of the chosen basis elements for H™"(Y'). From there, we have all of the
information we need to write down 0y in this dimension as a linear map between
our two vector spaces. We then have Sage compute the kernel of this map, and use
this to determine which elements of (Fy),, are in the kernel of 0.

To continue forming our minimal resolution, we must determine the
generators of ker(dy) as an A module. Clearly, the element in the bottom dimension
((P?,0,...) € (Py)11) must be a generator. For higher dimensions we use
the following method to determine if an element in dimension n of the kernel
is a module generator or not. First, we compute § on elements of the kernel in
dimension n — 1, then P! on elements of the kernel in dimension n — 4, then P?
and P? on elements in the appropriate dimensions. We don’t need to check any
other P in our range of dimensions. We store the images of these elements of
lower dimension in a list for later comparison. Once we have computed all of these
images, we test each element of dimension n in the kernel to see if it can be written
as an A linear combination of elements in the list of images. If not, we add it to
the list of generators in this dimension. We note that future checks in the same
dimension require that we check to see if an element is an A linear combination of

elements from the image list together with the generators we have already found.
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For example, if dimension n of the kernel had elements a and b as a vector space
basis, and P! on an element from dimension n — 4 was a + b, we would only want to
count one of the elements a or b as a module generator.

We give a list of the generators of the kernel in Table 2. below, which we will
make use of again when we compute our us map. As these are elements of F of
dimension less than 100, we write them as linear combinations of the generators of
P, in dimensions 3,11, 16, 35.

TABLE 2. Generators of ker(dy) and their dimensions

Dimension | Generator

11 P?,0,0,0)

19 P3P+ P* 2P20,0)

20 P3P'B + BP3P', PB,2P!,0)
27 PS,2P3P 4 2P4 0,0)

28 P3BP,2P3P13 + 2P43, 2P, 0)

35 PTP', P°P" 4 PS,0,0)

39 P°, PSP' + P7,0,2P")

59 PYOP3PY 2POP3 4 2POP2 4 P12 (), POP! 4 PY)

64 0,0, PYP3 + POP2 4 P12 2PSplg)

83 0,2P“P3P! PPt 4 P18.0,2P7P3 + PU'P' 4 2P"?)

(
(
(
E
33 (BPSP'3,0,2P*P'3 + 2P*3,0)
(
(
(
(
(

Now that we have identified a set of module generators, we can assume P;
has a copy of A, with an appropriate suspension, corresponding to each of them.
Thus, we will have P surjecting onto the kernel, which includes into Fp, and 0, is

the composition of these maps:

2]

N
ker(0p)

F Py

Concretely, we've proven the following proposition:
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Proposition 3.4.
P =Y"AexPApx¥Aq... (3.5)

and the map 0y, at least in the range of dimensions we are concerned with.

91(1,0,0,...) = (P%,0,...)

8:(0,1,0,...) = (P*P' + P*2P2,0,...) (3.6)

We then use a similar process to compute the kernel of 9; in order to get
information about P,. We first compute the map P, — ker(dy) as a map of
vector spaces, and use Sage to find its kernel. Once we’ve done this, we then
determine the generators of ker(d;) as an A module as before. These generators
are listed below in Table 3. through dimension 75. Again, we write them as a linear
combination of the generators of P;.

As in the the construction of P;, this information tells us what the generators

for the free module P, are. We can now build P, and describe the map 0,.

Proposition 3.5.

P=SBA0pSBApEBA ... (3.7)

and

95(1,0,0,...) = (P',0,0,...)

05(0,1,0,...) = (P*2P",0,...)
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TABLE 3. Generators of ker(0;) and their dimensions

Dimension | Generator

15 (")

23 (P3,2PY)

28 (P3PS, P23 + BP2,2P?)

31 (0, P3,0,2P)

36 (0, BP5PY, P3P 4 P10, 2P?)

37 (0 5P3P16 2P*P13 1 3P4.0,28P?, P1)

39 (0,0,0, P#,0,0, P!)

44 (0, PSP13 + P53, PSPl + PS, 3P3Pt 2P3PL 4+ 2P4 0, P2B)
45 (0,0, PPP'3 + 253 + BP3PY + BPS.0,2P18, 2%, 23P?3)
47 (P9,0,0P*P,0,0, P3,2P?)

50 (0,0,0, 3P1BP', 2PABP3 4+ 28 P13,

P3P16 +2P13 + BP3 Pt + 23P*)

52 | (0,0,2P°P*+ PTP', PP'3+ P°3, P°P' + P°,0,
2P3P'3 + P + 2B P*P! 4+ fP?)

59 (0,0,0,0,0,0, P%)

71 (0,2P°P3P' 4 P'3,0,2P°P?,0,0,2P°, P°P? + 2P" P! + 2P,
2P3)

2 (0, PPP3P'3 + P2P'B,2P2P' 4+ 2P'3 0, PPP? + 2P P 0,

P"BP* 4 2P°3 + BPTP? PSP + PTP'3 + PT3P!
+BPSP? 2P33,2P?)

As our later computations will show, we do not need to construct any more of
the minimal resolution for H*(Y') in order to find our uy map.

Step 2: Our candidate for a u} map will be in Ext*?(H*(Y), H*(Y)), and
we will have to construct a map f : P, — Y2H*(Y). Because of the more
complicated module structure of H*(Y'), it is hard to immediately construct such
an f. We start, however, with an element of Ext"'*(H*(Y), Z3) which is easier to
describe based on our minimal resolution. From our description of the module P; in

(3.5), we will use the class generated by the map

f12P1—>211Z3
(1,0,0,...) 1
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sending all other generators of P, to 0. We then construct our desired map
by working our way through several long exact sequences coming from the
construction of Y. To make later suspensions work out nicely, we make use of the

isomorphism

Hom!} (P, k) = Hom!? (P, X7 'k)

so that f, : P, — S2(X71k).
The list below outlines the major steps we must make to construct our
desired element, and is followed by the explicit computations. The first step is the

map that we have defined above.
o fi € Hom!? (P, X" Zs)
e f» € Hom( (P, H*(S7'M(3)))
o f5 € Homy}(Py, H*(M(3)1))
o fc Hom'}(Py, H*(Y))

In order to complete the second step, we consider the short exact sequence in
cohomology

0=k HYTM@3)—» Sk —0 (3.8)

The surjective map in (3.8) gives us a map betweeen Hom groups:

Hom!2 (P, H* (X' M(3))) — Hom{ (P, X 1k). (3.9)
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Our map f; pulls back along (3.9) to a map

fo: P — SR2HA(SM(3))
(1,0,0,...) 1

(8,0,0,...)—f

and sending the rest of P; to 0.
To accomplish the third step, we use our construction of an Adams resolution

for M(3) from (3.3) to get a map into H*(M(3);). We have a cofibration
NIM3) = STUK(Zs) — M(3);.
Taking cohomology gives us a short exact sequence:
0— H*(M(3),) = S 'A— H*(X'M(3)) =0 (3.10)

Applying the functor Ext(H*(Y'), —) to (3.10) gives rise to a long exact

sequence. The connecting homomorphism is
Ext™ (H*(Y), H*(X'M(3))) — Ext*T™ " (H*(Y), H*(M(3)1)). (3.11)

For s > 1, (3.11) is an isomorphism since Ext%'(H*(Y), A) = 0. To understand how

this isomorphism works, we look at the diagram

0 «— Hom'?(P,, H*(X"'M(3))) «— Hom'?(Py, ©~'A) «— Hom'(Py, H*M(3),) «— 0
]82 82 a2

0 «— Hom'(Py, H*(X7'M(3))) «— Hom'(P,, %' A) «— Hom"*(P,, H*M(3);) «— 0
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The vertical maps here are induced by the map d, : P, — P; in the minimal
resolution of H*(Y'). We know the rows in the diagram are exact since P; and P,
are projective, so Hom(FP;, —) is exact. We then want to trace through the diagram
to find the image of our map under the isomorphism in (3.11), moving from the
bottom left to the top right. The first step is to pull back f; along the surjection

Y 'A — H*(7'M(3)). The result is a map

fa: P — XR(D71A)
(1,0,0,...)—1

(,0,0,...) —x

for x € A. This map sends all other generators of P; to 0. We note that this map is
simply the projection from P; onto the first factor.

We next move up in the diagram to Hom'?(P,, X' A). We define the map

fi: Py — X2 [E71A]

as the composition f; = f3 0 ;. This map on the first two generators gives:

f1(1,0,0,...) = f3(P',0,0,...) = P!

f4(0,1,0,...) = f3(P?2P0,...)=P?

We can use Table 3. to see the generators of the kernel of 0y in order to
describe f; in our range.

To finish moving through this diagram, the last step is to pull back along our
inclusion H*M (3); — X7'A. Since f; maps nothing to 1 or 3, we can successfully
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pull our map back, ending up with a map
fs: Py — S H*(M(3),)

sending (1,0,...) — P! and so on as above with f;. This map must generate
a nonzero class in Ext as the class is the image of a nonzero Ext class under the
connecting homomorphism (3.11) (which we know is an isomorphism).

Finally, we consider the cofibration

) )

YAM(3 M(3), =Y

that we used to construct Y. In cohomology, we get the short exact sequence
0— HY < H*M(3); - H*(X*M(3)) — 0

Above, in (3.2), we showed that the kernel of this surjective map is everything
other than the classes P'3 — P! and SP!'J3. Since the image of f5 does not include

these classes in H*(M(3);) we do not have any trouble pulling f5 back into a map
f: Py — SPHA(Y) (3.12)

which is the correct suspension that we were looking for in order to generate our
candidate for a uy map. The effect of this map is similar to that of f; and fs.

Given an element of P, we apply 0y, then project onto the first coordinate.

Proposition 3.6. The map f we have constructed generates a nonzero class o €

Bt 2(H*(Y), H*(Y))
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Proof. We first show that the composition f ods : P; — H*Y is 0. By exactness,
the composition

0: 0]
P = Py, 2 Py

is 0. In the process of creating f, we had a map fo : P, — H*X"'M(3). Since
Py is projective, and ¥7'A — $71M(3) is surjective, we lifted this map to a map

fs: P, — Y7YA. Then, the composition
P, PP Bna

must also be 0 by exactness. We then used the map 0, : P, — P; to construct a
map fy : P» — Y 7'A. This process can be summarized by the diagram below, in

which the triangles commute:

(3.13)

Thus, the composition

P2 op, Iy

must be 0 since the upper triangle commutes.
By injectivity of the maps H*M(3); — X 'A and H*Y — H*M(3)1, we get
that the compositions

Py — Py 5 e M(3),

and

Py— P L HY
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must both be 0. Thus, our map f is in the kernel of 05.

To show f gives us a nonzero Ext class, we also need to show it is not in the
image of Oy, i.e. f # ho dy for some h € Hom' (P, H*Y).

This is true for dimensional reasons. Suppose that such a nonzero h exists,
and consider (1,0,...) € P,. Applying 9, gives us (P',0,...) € P; in dimension
15. The only nonzero thing this could map to under h in 2 H*Y is 1. However, h
is an A-module map, and (P',0,...) = P(1,0,...). But there is nothing for & to
send (1,0,...) to in X2 H*Y | so h(P',0,...) = 0. But then we have f(1,0,...) =
P! and (ho®;)(1,0,...) = 0. Thus, f is not in the image of d;, and we can conclude

that f generates a nonzero class o € Ext*'*(H*Y, H*Y). O

Step 3: We next want to use Theorem 2.4 to show that o and the map f

give us a us map. To apply the theorem, we need to examine the induced map

f : ker(0,) — H*(Y). (3.14)

From our construction of f above in (3.12), we can see that f takes an element
of ker(d,), lifts it to P,, and applies f. However, the map f applies 0y, giving us
the same element we started with, and then projects onto the first coordinate.
The effect of this map on the first two generators of ker(0;), taken from Table 3.

is shown below.

f(P0,...) = f(1,0,...) = m(5(1,0,...)) = m(P',0,...) = P

f(P?.2P*0,...) = £(0,1,0,...) = m(5(0,1,0,...)) = m (P?2P"0,...) = P?
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We must show that this map is an isomorphism on z, homology. In order to
accomplish this, we need to compute the xo homology of H*(Y'), and subsequently
ker 0.

From our description of the cohomology of Y, we can explicitly compute the
classes that generate nonzero o homology. Recall that z, = P = P. The classes
that are killed by x5, but are not in the image of (23)? are P! in dimension 3, 3P?

and 2P2%f in dimension 8, and SP%8 in dimension 9. However,

BP? —2P°f = pP* + P?3 = P'(BP"),

so they generate the same x5 homology class as their difference is in the image of
xo. Thus, our three nonzero classes are generated by P, 2P2?3, 3P?8.
We now need to find the elements of ker d; that generate its o homology. We

have a short exact sequence:

O—>ker80;>Po—»H*(Y)—>O

We can take the long exact sequence in x5 homology from this short exact
sequence. Since P is free over A, it has no x5 homology, so the connecting

homomorphism an isomorphism:

Ho(H*(Y);29) = H,,  g(H" (ker(0)); 72)

2

where H!(—;x3) is the kernel of the action of x5 modulo the image of (z2)*, as in

Remark 1.4.
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To find the image of our three classes under this isomorphism, we take the
class a in H*(Y') and lift it to b in Py. Then multiply b by (z3)?. This element must
be in the kernel of 9y as (z2)% on a is 0. (z2)?b is automatically in the kernel of the

action of xo. And since 9y(b) = a, then b & ker 9y, so (x2)?b is not in the image of

(w2)?.
Using this process, we lift the classes P!, 2P?3, and SP%3. The lifts of these

elements in ker(9y) are

(2P2,0,0,...),(2P33 4+ BP3,0,0,...), and (26P%8,0,0,...) (3.15)

respectively. These classes generate the modified (H.) xo homology of ker(dy).

We use a similar process with the short exact sequence:

0 — ker(0;) — P, — ker(dy) — 0

Taking the long exact sequence in x5 homology again, and using the fact that

P is free over A, we get an isomorphism from the connecting homomorphism:

Hy, s(ker(0o); x2) = Hypaz(ker(01); 22)

This isomorphism works in a similar way to the one above. Take a class a in
ker(dy), lift it to P;, and multiply by xs. For similar reasons as above, this gives an

element of ker(0;) that generates a nonzero class in x5 homology.
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The classes that generate the x5 homology of ker(dp), given in (3.15), lift

under this process, to

(2P',0,0,...),(2P%3,0,0,...), and (268P*83,0,0,...)

in ker(0y), respectively. These classes generate H.,(ker(0;);z2).
Now, since our map f : ker(d;) — L12H*(Y) is just a projection onto the first

coordinate, we can see its effect on the x5 homology generators:

f(2P',0,0,...) =2P!
f(2P?B,0,0,...) = 2P*B

f(28P%B,0,0,...) = 2B8P*p

Then f gives us an isomorphism (though not the identity) on the x5 homology. By
Theorem 2.4, this tells us that some power of « is a power of a u, map.

Step 4: We must now show that our element o € Ext*(H*(Y), H*(Y))
survives to the F,, page of the Adams spectral sequence to give us a self map on
the spectrum Y. In terms of the t — s, s coordinates on the E, page, we have a

nonzero element at s = 2,t — s = 10. The differential d, on this class is a map

d, - Ext>2(H*(Y), H(Y)) — Ext>t"* 1 (g*(Y), H*(Y))

That is, it takes our element in s =2t —s =10tos =2+ r,t —s = 9. We'd like
to show all of the Ext classes in the ¢ — s = 9 column are zero for r > 2. We make a

similar argument as for our u; map above.
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We've constructed the first part of a minimal resolution for H*(Y'), and we've
shown in (3.7) that Ext®'"(H*(Y'),Zs3) is the first nonzero Ext class for s = 2. By
Lemma 1.7, since H*(Y') has no xy or x; homology, it is free over A through degree
3, as P! in degree 4 is not in the sub Hopf algebra of A containing z and z;.
Thus, every increase by 1 of s corresponds to an increase in the bottom degree of
P by at least 4, giving us the vanishing line in Figure 2. below. Everything above

and to the left of the solid line must be 0.
|

A /i///*

X

*— \
0 2 4 6 8 10 12 14 16 18 20 22 24

O = N Wk Ot

FIGURE 2. Vanishing edge for Ext® (H*(Y),Zs) in (t — s, s) coordinates

These Ext classes come from maps sending some element of P, to 1 € X'Zs.
If we want to compute Ext® (H*Y, H*M(3)), the “vanishing edge” that we are
finding moves to the left by one. This is since we could send the same element in
P, to the class 8 € XF'H*M(3). This means for s = 0, our first nonzero class
happens when ¢t = 2. For s = 1,2, 3,4, the smallest nonzero classes could be in
dimensions 10, 14, 18, 22, respectively. This is summed up in Figure 3. below. As

before, everything above and to the left of the line must be zero.
|

) /1///‘

/

*— \
2 4 6 8 10 12 14 16 18 20 22 24

O~ N Wk Ot

0

FIGURE 3. Vanishing edge for Ext™ (H*(Y), H*(M(3))) in (t — s, s) coordinates
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Like we did in computing our us map, we can use the cofibrations from the
construction of the spectrum Y to eventually get information about the vanishing

edge for Ext™ (H*(Y), H*(Y)). We have a cofibration
M(3) = K(Z3) = EM(3)q,
which gives rise to a short exact sequence in cohomology:
0— H*(XM(3);) > A— H*(M(3)) — 0.

This, in turn gives rise to a long exact sequence in Ext. The connecting

homomorphism from this long exact sequence is given below:
= Ext{ (H(Y), H*(M(3)) % Exty"™ (H*(Y), H*(SM(3),)) —

For s > 1, the terms on either side of these, Ext4(H*(Y), A), are 0, so the
connecting homomorphism ¢ is an isomorphism. For s = 0, it is a surjection as

the next term to the right is 0. We also note that
Ext Y (H(Y), H*(SM(3),)) = ExtS ™ (H(Y), H*(M(3))). (3.16)

This lets us find a vanishing edge for Ext%'(H*(Y), H*(M(3),)). From our
observations about the connecting homomorphism, the vanishing edge will be
shifted up by one (in (¢ — s, s) coordinates) from that of Ext%'(H*(Y), H*(M(3))).
However, we can’t say anything about the new information that “shows up” in the
s = 0 row. The new vanishing edge is shown in 4. below, again everything above

and to the left is zero:
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\ pe=a

O~ DN Wk Ot

]

0 4 6 § 10 12 14 16 18 20 22 24

FIGURE 4. Vanishing edge for Ext®(H*(Y), H*(M(3))) in (t — s, s) coordinates

Finally, we use the cofibration
SAM(3) = M(3); — Y,

and the corresponding short exact sequence in cohomology. Then in Ext, we have a

long exact sequence, part of which is shown below:
ExtS “(H'Y, H*S*M(3)) — Ext5 (H*Y, H'Y) — Ext%'(H*Y, H*M(3);)  (3.17)

From this, we know that if both of the end groups are zero for a particular
pair of s,t, then the middle term must be zero as well. Adding in the X% in the
first term shifts everything from Figure 3. to the left by 4, and the extra shift to
account for the s — 1 moves the diagram up and to the left by 1 more, giving us a

vanishing edge shown in Figure 5. below:

5 .

s T

3 _

2 e

1 =t

0

0 2 4 6 § 10 12 14 16 18 20 22 24

FIGURE 5. Vanishing edge for Ext*"'(H*(Y), H*(X*M(3))) in (¢ - s, )
coordinates
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Finally, we note that the intersection of the “vanishing regions” of
Figure 4. and Figure 5. gives us at least part of the vanishing region for
Ext*'(H*(Y), H*(Y)). In this instance, the vanishing region in Figure 5. lies
entirely inside of the vanishing region in Figure 4., so this is our intersection.
Figure 6. below provides the vanishing region again with added information about

the class «, and the location of the first few differentials we are concerned with.
0|
—

[
R s

\r1 m

O = N W ks Ot

0 2 4 6 § 10 12 14 16 18 20 22 24

FIGURE 6. Vanishing edge for Ext>'(H*(Y), H*(Y)) in (t — s,s) coordinates. The
large open square represents our class «, and the smaller open squares show the
locations of the image of o under the differentials dy and dj.

Since these differentials land in the vanishing region of our diagram, we can
conclude that d,(«) = 0 for » > 2, and that our class survives the Adams spectral
sequence, and gives us a map fy : 2%V — Y.

Step 5: Since our map fy comes from an element of Ext?, we know that we
will be able to lift it two stages up the Adams resolution. This is represented by

the figure below:

Y,
— //“ l
/JiX’ Y, K, (3.18)
e ‘ l
sy 1y K,

Here, the spectra K, and K; are wedges of copies of K(Zs), and the cohomology
of Ky and K are isomorphic, as A modules, to Py and P; as described in (3.4) and

(3.5) in the resolution of H*(Y).
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Similarly to the u; case above, the cohomology of Y corresponds to a shift
down by two dimensions of ker 9;. The induced map in cohomology, fy " is the
desuspension (by two dimensions) of f : kerd; — S'2H*(Y) as defined in (3.14),
and we have shown that it is an isomorphism in x5 homology.

Step 6: We follow the same method as with our u; map to construct a
spectrum, Z, with no z, homology by taking the cofiber of fy. In the dimensions

we are considering, f3 is a surjection, so the cohomology of Z is just the kernel of

i

Unfortunately, unlike the previous case, we do not have a complete
description of H*(Y3) in order to compute H*(Z). However, we do know that fy " is
a map that projects to the first coordinate, so all of the generators of H*(Y;) with
first coordinate 0 will be in the kernel. Recall that these generators are the same as
those in Table 3., but shifted down in dimension by 2. Those generators that are
nonzero in the first coordinate will not be in the kernel of f;:. There is a possibility
that we gain some extra generators that are A linear combinations of these two
types of generators. These are detected using the same SAGE computation
procedure as before. The module generators of H*(Z) up through dimension 70 are
given in Table 4. below. Generators not coming directly from a generator of H*(Y3)
are denoted with a *. As before, the last entry in each tuple is the last nonzero

entry.
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TABLE 4. Generators of H*(Z) and their dimensions

Dimension | Generator

29 (0, P3,0,2P1)

34 (0,8P3P', P2P' + P 0,2P?)

35 (0,BP3P3,2P3P'3 + BP* 0,28P2, P1)

37 (0,0,0, P3,0,0, P')

42 (0, PPPB3 + P53, PSP + PS BP3P 2P3 Pl +2P% 0, P%p3)

43 (0,0, PPP3 +2P53 + BP5P! + 3P 0,2P*3,2P3 23 P?p3)

48 (0,0,0,3P1BP3,2PBP'3 + 28P P13, PPP13 + 2P
+BP3 P! +23P*%)

49% (0, PSP% 0, P?, P',0,0,2P%)

50 (0,0,2P5P% + P"PY P°P13 + PSB, P°P! + P5 0,2P3P'3
+P13 +2BP3P! + BP*Y)

57 (0,0,0,0,0,0, P%)

69%* (0, PPP3P! + P2P10,0,0,0, PTP% 2P P?%)

69 (0,2P°P3PL + P13,0,2P°P2,0,0,2P°, PSP? + 2P P!
+2P%,2P3)

70 (0, PPP3P1B + PP 2P Pt +2P13 0, PP? + 2P10PL,

0, PTBP? + 2P°B + BPTP?, PSP?3 + PTP'g
+PT3P! + 3PS P2 2P33, 2P?)
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Constructing a u3 Map

Step 0: By construction, we know that H*(Z) has no xg, x; or x5 homology,
so Proposition 1.13 tells us that we will be able to find some power of a u3 map on
this spectrum.

Step 1: We first need to compute Ext%'(H*(Z), H*(Z)) in order to find
our candidate for a ug map. As before, we will accomplish this by constructing
a projective resolution, R,, of H*(Z). Since x5 = ()3, we know that ug is in
homological degree 1. This means we may be able to construct our uz map after
only computing Ry and R;.

Based on Table 4., we know that the initial step in the resolution, Ry, will

have one copy of A for each of the generators in the table, i.e.

Ry=YPA0Y*A0 %A X A0 ... (3.19)

Let 0} be the map Ry — H*(Z). As before, we use Sage to compute the
kernel of d; and to find its A module generators. These generators and their
dimensions are in Table 5.. As before, the last entry in each tuple is the last
nonzero entry.

As before, we construct Ry to be a free A module with a generator for each

generator of ker(d)), so

R =Y%AY"ApX?A0. .. (3.20)

We’ll show that this is sufficient to construct a uz map on Z.
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TABLE 5. Generators of ker(d))) and their dimensions

Dimension | Generator

46 (2P'3 + P3P + BP*, P30, 3P?, 2P")

51 (0, PPP'B + 2P + BP3P! + BP*,2P3 P! + 2P*,0,2P%3,
2P?%)

52 (BP*BP'B,0,2P*P'3 + 2P*B + 28P*P',0,0, P?3 + 26P?,
Ph)

53 (PSP + P5,0,0, PP + P*,0,0,0,2P1)

54 (PPP'B,2P*P' + P°,0,2P*B + 28P3P' + 23P* 2P3,0,0,
P, 2P1)

59 (0, PP + 2PS3, PPP' + PS, BP°3, P8, P*P" + P*,0,0,
BP?)

60 (0,0, PPBP + B3PS 2B8P*3P'3,0, P2P13 + 2P + 23P3 P!,
P3,0,28P%3)

61 (0,0,0, P°PY+ P%0,0,0, P30, Pl)

65 (0,0, PSBP'B3,0,BP*BPB, PABPB + BP*PB + 2B P34,
2P3P' 3 + 2P*3)

66 (0, P%,0,PSP'3+ P73,2P% 0,0, P'3 + P, P3P + 2P,
P?B+ 3P?)

67 (PTBP%B,2P5 P23, PTP',0,28P5 P!, 2P5 P! 4+ 2P 0, 28P*8,
P3P'3 +2P*3 + BP*)

69 (0,0,0,0,0,0,0, P5,0, P%)

Step 2: We'd like to construct an element in Ext;"" (H*(Z), H*(Z)) that is a

uz map. To do this, we need a map from R; to LT H*(Z).

Let Y7, Y5, Ky and K7 be the spectra in the construction from the Adams

resolution for Y as defined in (3.18). We begin to construct our map by defining a

map:

We define this map on a small number of the generators of H*(K;) as outlined in

g1 - H*(Kl) — 216H*<K0)

Table 6. below. In this, and the following tables, generator i refers to the tuple

with 1 in the ¢th spot, and 0’s in all other spots.

The map ¢; sends the rest of the generators of H*(K;) to 0.
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TABLE 6. Image of the map g; in 2 H*(K,)

Dimension | Generator # | Image under ¢;
19 3 (1,0,0,0)
27 5 (0,1,0,0)
32 6 (0, P'f3,1,0)
63 10 (0,2P%,0,2P%)

As before, we move through a few exact sequences to end up with the map

that we originally wanted. The first step involves the inclusion

H*(XY3) — H(Ky)

from the cofibration in constructing the Adams resolution, which gives us a map

Hom'®(H*(K,), H*(K,)) — Hom'®(H*(XY5), H*(Ky)). (3.21)

Further, we have another inclusion

H*(S7Z) — H*(SY5)

from the construction of Z, which gives us a map

Hom'®(H*(XY,), H*(Ky)) — Hom'S(H*(XZ), H*(Ky)). (3.22)

Putting together (3.21) and (3.22), since H*(XZ) is contained in H*(K}), g
is defined on H*(XZ) by restriction. Finally, a map from H*(Z) gives us a map
from Ry by composing with 9. Thus, given an element in Ry, we can apply the

differential to obtain an element of H*(Z), which in turn gives us an element of

57



H*(Y3) via inclusion, and then an element of H*(X7'K}). Let

g2 YRy — Y H*(Ky)

be the composition of these maps and ¢; as defined above. This map is defined on

the first few generators of X R, according to Table 7. below. The later generators

TABLE 7. Image of the map g

dimension | generator # | Image under g, in L H*(K)

30 1 0
35 2 (P3P + P4,2P2,0,0)

36 3 (2P3P'3 + BP*, 2P23 + 23P2, PL,0)

38 4 0

43 5 (P5P! + PS,2P3P! +2P4,0,0)

44 6 (PSP +2P53 + BP5P' + 3PS 2P3 Pl

+2P43,2P3,0)
49 7 (0, PABP3 + BP P13, PPP'3 + 2P3
+BP3P +23P%)0)

50 8 0
51 9 (2PSP? + PTP', PSP + PS 0,0)

58 10 0

70 11 0

70 12 0

71 13 (2P12P! 4 2P13 POp2 4 op10pl 4 pll  ps5)

do not necessarily go to zero, but they are not needed for the calculations that
follow.
In each dimension, we can computationally verify that the image of the

generator in H*(Kj) is actually an element of H*(XY7). This gives us a map:

g3 : YRy — X H* (YY)
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which we can desuspend to

Ylgs: Ry — S H*(Y)

Now, from the cofibration

Y - K| = XY,

we have the short exact sequence in cohomology

0— H*(XY;) = H'(K;) » H* (Y1) = 0.

Further, there is a corresponding long exact sequence from applying the functor

Exta(H*(Z),—). The connecting homomorphism in this long exact sequence is

Ext{ (H"(Z), H*(Y1)) = Ext}"Y(H*(Z), H*(3Y2))

We can further apply an isomorphism similar to (3.16) to treat this connecting

homomorphism as:

Ext}{' (H"(Z), H* (V1)) — Ext}"""(H*(Z), H' (Y2))

By working through this connecting homomorphism, illustrated in the
diagram below, we take our element of Ext%'®(H*(Z), H*(Y;)) and produce an

element of Ext}'"(H*(Z), H*(Y3)), which is very close to the desired Ext group.
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0 «— Hom'®(R,, H*(Y})) «— Hom'S(Ry, H*(K,)) «— Hom'®(R,, H*(XY3) < 0
]01 o 9

0 «— Hom'®(Ry, H*(Y?1)) «— Hom'®(Ry, H*(K,)) «— Hom'S(Ry, H*(XY2) +— 0

For each generator of Ry, we look at the image in H*(Y}) and find a lift of
that element in H*(K7). Since H*(K;) — H*(Y}1) is surjective, we can make this
lift. It can be verified computationally that these lifts are also unique. This gives us
a map

g4 - RQ — ZIGH*(Kl)

As above in our uy map computations, we compose with the differential 0]

from the R, resolution in order to form
gs: Ry — S H*(K))

Again, we can computationally verify that the image of this map lies entirely

in the kernel of H*(K;) — H*(Y7), so we can pull back to a map
g6 : By — S HH (DY) = S HH(Y))

This map, gg, is summarized in Table 8. below, where we show the image
of the first few generators of R;. We only need the first 9 generators for later
computations. As above, the remaining generators do not necessarily go to zero,

but they are not needed for the computations in the next section.
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TABLE 8. Image of the map gg in relevant dimensions

Dimension | Generator # | Image under gg in X' H*(Y5)

16 1 (0, P%,0,2P")

51 2 (0, PA3 + BP3P! + BP*, P3P! 4 P4 2P23,
2P?)

52 3 (0,28P3P' 3, PPP'3 + BP3P',0,0,2P")

53 4 0

54 5 (0,2P%,0,2P3,0,0,2P")

59 6 (0,2P°P'3 + 2P5 3P + 2P 1 23P° P!
+BPS, PPl 4 2P6 pig P3P 4 Pt 0, BP?)

60 7 (0,28P°BP" + BPS3, PSP'B + PPAP! + P3
8PS, 0,2P*8, 2P, 23 P?5)

61 8 0

65 9 (0, BPSBP' B, 23P5 P\ 3, BP*3P'3,2P* 3P
+2BPAP3 + BP33, P2P'3 + P*j3)

Now, recall the short exact sequence from the construction of Z

®

0= H*(Z) = H*(Ys) 25 SOH*(Y) = 0

the surjective map in the sequence above is a projection onto the first coordinate.
All of the images in Table 8. have a zero first coordinate, so they are all in the
kernel of the suspension of fy-". This means these elements are in H*(Z). Thus, we
have defined the desired map g : Ry — S1TH*(Z).

Before checking to see if we have a uz map, we need to make sure that g
generates a nonzero class in Ext. A similar diagram chase as in (3.13) from our
ug construction tells us that the class g generates in Ext is in the kernel of 9}, so we
must verify it is not the image of some map, h, in Hom'"(Ry, H*(Z)).

Consider the first generator in Ry, in dimension 46. It maps, via d; to the
element (2P*3+ P3P+ P4, P30,3P% 2P) in Ry. In order for g to be the image

of h, we would need for this element to also map to (0, P3,0,2P') € SYH*(Z).
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However, from (3.19), we know the first five generators of Ry are in dimensions
29,34, 36,37, and 42. These generators would need to map to elements in the same
dimensions in X" H*(Z), corresponding to the dimensions 12,17, 19, 20, and 25 in
H*(Z). However, there is nothing in H*(Z) in these dimensions, so the bottom
five generators would necessarily map to 0. This is a contradiction as an A linear
combination of these generators must map to something nonzero.

Thus, g generates a nonzero class, o € Ext;'" (H*(Z), H*(Z)). It remains to
show this element gives us a ug map.

Step 3: We must verify that g induces a map g : ker ) — S'"H*(Z) that
is an x3 homology isomorphism. In order to check this, we must determine the x3
homology of H*(Z), which we can then use to find the z3 homology of ker 9.

As before, we can start with the x3 homology of H*(Y") since the cohomology
is easy to describe. The nonzero x3 homology of H*(Y') is generated by x3 applied
to the four “missing” cohomology classes: 1, 3, P13, 3P'3. These classes are
generated by the elements:

P3P'B+ 2P+ 2BP3 P + P,  BP3P'B+28P3, 493
P'BP'B+28P°B3,  BP'BP'p .
which are in dimensions 16, 17,21, and 22 respectively.

To find the x3 homology of H*(Z) we will need to compute the x3 homology
of H*(Y3), since Z is the cofiber of the map XY — Y;. We have a short exact

sequence in cohomology from the construction of the Adams resolution of Y:

0 = H*(SY:) < H*(Ko) —» H*(Y) = 0
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We then look at the long exact sequence induced here in 3 homology. Since
(r3)* = 0, we don’t need to use H.(—;x3), our long exact sequence just uses the
H,.(—;x3) form instead. Since H*(Kj) is a sum of copies of A, and A has no x3
homology, then we get an isomorphism from the connecting homomorphism of the

long exact sequence:

H,(H*(Y);3) & Hpp17(SH* (Y1) 23) = Hig(H(Y1); 23)

The process for computing the isomorphism is as follows. Take z € H*(Y)
that generates nonzero x3 homology, and lift to some y € H*(Ky). Then by
construction z3y maps to 0 in H*(Y'), so x3y pulls back to an element of H*(XY)).
Then, x3(z3y) = 0in H*(XY)), and y ¢ H*(XY)) as it is not in the kernel of
the surjection. Then x3y generates a nonzero element of 23 homology in H*(XY}).
Following this process with the four elements listed above, we get the following four

generators of the x3 homology of H*(Y7), shown in Table 9..

TABLE 9. Generators of the 3 homology of H*(Y7)

Dimension | Element
32 (BPSP'3 +2BP°BP +28P73, PABP'3 + 28P P13
+BPBPY, PPP3 + 2P + 28P3PL + 3P%,0)
33 (0,28P*BP'B,28P3 P13 + BPB)
37 (0,28P3BP'3,2P*BP13 + BP53,0)
38 (0,0, BP*BP'j3,0)

An identical procedure lets us lift these elements to the generators of the x3

homology of H*(Y3), which are summarized in Table 10. below.
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TABLE 10. Generators of the x3 homology of H*(Y3)

Dimension | Element

48 (0,0,268P°P'3 + BP°BP! + BP"3,2B8P*3P1 4,
PYBP'S 4+ BP'P'3 + 2B8PGP" + BP°,
2P3P'3 + P13+ BP3P +28P*,0,0)
49 (0,0,0,0,3P*BP3,2B8P3P'3 + BP*$3,0,0)
53 (0,0,0,0,3P°BP3,2P*BP'3 + BP°$3,0,0)
54 (0,0,0,0,0,28P*3P'43,0,0)

Now we have the x3 homology generators for both H*(Y') and H*(Y3). We

have a short exact sequence from the construction of Z

®

0= H*(Z) = H*(Y2) 25 H*(21°7) = 0 (3.24)

The surjective map above is projection onto the first coordinate. Since all
of our generators in the table above have a zero first coordinate, they are all in
H*(Z). Further, they are in the kernel of z3 but not the image, so they generate
nonzero x3 homology classes of H*(Z). However, there are other pieces to the
x3 homology of H*(Z). The short exact sequence in (3.24) gives us a long exact

sequence in x3 homology. Part of this long exact sequence is given below:
H,(H*(Yz); x3)
Hn(H*(gloy); x3) — Hyuyar(H*(Z);23) — n+17(HI(Y2)§$3)
Hyprr(H*(Z1Y); 25)
Since we have computed the x3 homology of H*(Y') and H*(Y3), we can say
that the two vertical maps in the diagram above must be zero for dimensional

reasons. That is, the x3 homology of H*(Y3) is in dimensions 48,49, 53, and 54,

while the z3 homology of H*(X!Y") is in dimensions 26,27, 31, and 32. Thus, we
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have a short exact sequence:

0 — H,(H* (2 );23) — Hyp17(H (Z);23) = Hyor7(H*(Ya);23) = 0 (3.25)

Further, the inclusion here is really the connecting homomorphism in the long
exact sequence, and we use the same process here that we did to compute the x3
homology of H*(Y7).

We take an element of H*(31°Y") that generates a nonzero x3 homology
class, lift it to an element of H*(Y5), then multiply by x3 on the left. As in our
explanation before, this will give a nonzero element of x3 homology for H*(Z).

These elements are given in Table 11. below.

TABLE 11. Additional generators of x3 homology of H*(Z)

Dimension | Element
43 (0, P°PBP'B +2BP°B,2P°P'3 + PSP + P°3 + 23PY)
44 (0,2BPSBP'B, BPSP'3 + 2B8P° 3P + 23P%f3)
48 (0,BPSBP'3, P°BP'3 + 2B8P° P13 + BPSBPY)
49 (0,0,2B8P5BP' )

We now have generators of eight distinct nonzero x3 homology classes for
H*(Z). We note that for dimensional reasons, the pairs of classes in dimensions 48
and 49 cannot generate the same class in x3 homology as H*(Z) contains nothing
in dimensions 31 or 32, so their difference cannot be in the image of multiplication
by 3.

From our resolution of H*(Z), we have a short exact sequence

/

0 — ker 9 — Ry %, H*(Z) =0
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Then, since Ry has no x3 homology, in the long exact sequence in x3

homology, we have an isomorphism

H,(H*(Z);x3) = H,117(ker 9); x3)

We can then compute the x3 homology of ker 9 by lifting the elements of
H*(Z) to Ry and then multiplying by z3. The results are summarized in Table 12.
below.

TABLE 12. Generators of x3 homology of ker(d)). The first four generators are the
ones lifted through the connecting homomorphism in (3.25). The last four are the
ones lifted up the Adams resolution, listed in Table 10.

dimension | element
60 (2BP°BPIB,2P°BP'3 + B8P3, PP P + 2P 3Pt + 2P%3
+B8P%)0)
61 (0,28P5BP'B, BP°P'3 + 2B8P5BP' + 28P°3,0)
65 (0,8PSBP'3, PSBP'3 + 2B8P° P + BPSBP!,0)
(
(0

66 0,0, BP°8P'8,0)

65 6P65P16 BPSP'3 +2B8PSBP 4+ 2B8P73,0, BP*BP! 8,
ﬁP‘lPlﬁ +2BP4BP +2BP%3,2P3P'3 + P% + pP3P!
+24P%)

66 (0,0,0,0,0,0, BP3P'5 4+ 23P*3)

70 (0,0,0,0,0,0, P*BPLB + 28P5p3)

71 (0,0,0,0,0,0,28P*3P1p3)

Finally, we can compute the images of each of these elements under
the map g. As we hoped, g maps each of these generators to either the
corresponding element in H*(Z) or to twice that element, which is an

isomorphism on x3 homology. This tells us, by Theorem 2.4, that our element of

Exth'"(H*(Z), H*(Z)) is, in fact, a us map.
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Step 4: The last step is to show that this element of Ext survives the Adams
Spectral Sequence in order to give us a self map X7 — Z. We make a similar
argument as the one for our us map above using vanishing lines.

By our computations summarized in Table 4., we have shown that our groups
Ext%'(H*(Z),Zs3) are zero for t < 29, and from (3.20), that Ext;*(H*(Z), Zs) is
zero for t < 46. For larger values of s, we use Lemma 1.7 again. H*(Z) has no
Zg, X1, Or T3 homology, so the Lemma tells us that it is free through degree 11, as
P3 is the element of smallest degree not in the sub Hopf algebra containing g, 2
and z9. Thus, each time s increases by 1, ¢ must increase by at least 12, or t — s
must increase by at least 11. In Figure 7., everything above and to the left of the

solid line must be 0, including the line s = 0 for ¢t — s < 29.

—

O = N Wk Ot

_

0 5 10 15 20 25 30 35 40 45 50 55 60

FIGURE 7. Vanishing edge for Ext’(H*(Z),Zs) in (t — s,s) coordinates

We then proceed with our construction of vanishing regions as in the case
for our uy map. Moving from Ext%'(H*(Z), Zs) to Ext%'(H*(Z), H*(M(3))) has
the effect of shifting our vanishing line to the left by one unit. Further moving to
Ext%'(H*(Z), H*(M(3);)) moves the vanishing line up by one unit. This Ext grid
is given in Figure 8. below. As before everything above and to the left of the line
must be zero, as well as everything along the s =1 line for t — s < 28

We next construct the vanishing region for Ext%'(H*(Z), H*(Y)) by taking
the intersection of the vanishing regions for Ext® " (H*(Z), H*($*M(3))) and

Ext' (H*(Z), H*(M(3)1)) as in (3.17). The first of these pieces looks like Figure 9.
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O = DN Wk Ot

0 5 10 15 20 25 30 35 40 45 50 55 60

FIGURE 8. Vanishing edge for Ext5'(H*(Z), H*(M(3),)) in (t — s, s) coordinates

shifted up by 1, and to the left by 6, and the second is depicted in Figure 8..
This intersection results in a vanishing region depicted by Figure 9. below, where
everything above and to the left of the line, as well as the line s = 1 for t — s < 23

must be zero.

/

o—

O = DN Wk Ot

0 5 10 15 20 25 30 35 40 45 50 55 60

FIGURE 9. Vanishing edge for Ext%'(H*(Z), H*(Y)) in (t — s, s) coordinates

We then move two stages up the Adams resolution for Y to first produce
Ext’'(H*(Z), H*(Y1)), and then Ext%'(H*(Z), H*(Y3)). Each of these steps moves
our vanishing line up by one, as seen below in Figure 10.. We still have everything

above the line, and everything along s = 3 for t — s < 23 must be zero.

/

O = N Wk Ot

0 5 10 15 20 25 30 35 40 45 50 55 60

FIGURE 10. Vanishing edge for Ext%'(H*(Z), H*(Y>)) in (t — s, s) coordinates
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Finally, we form the vanishing region for Ext%'(H*(Z), H*(Z)) by taking the
intersection of the vanishing region for Ext%'(H*(Z), H*(Y3)) (from Figure 10.) and
the vanishing region for Ext%'(H*(Z), H*(2'Y)) (from shifting Figure 9. left by
10). The resulting diagram is identical to Figure 10. above.

Now, our us map was an element in Ext}'"(H*(Z), H*(Z)), which would be
in position (16, 1) in the figure. The Adams Spectral Sequence differential d, moves
up r and left 1 spot on the grid. Since we only have to worry about d, for r > 2,
all of the differentials land in the s — ¢ = 15 column, for s > 3. However, we have
seen that we must have zeroes along the line s = 3 for ¢t — s < 23, so none of
these differentials can be nonzero. In addition, since we have an element of Ext!, it
cannot be in the image of any differentials. Thus, a survives the Adams Spectral

Sequence to give us a map fy : L1627 — Z.
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CHAPTER IV

CONSTRUCTION OF A FINITE SPECTRUM WITH A V, MAP

We have now constructed our u3 map on the spectrum Z. We want to use
this map, as well as the us and u; maps we constructed in order to build a finite
spectrum with a vy map.

First, consider our u; map fs) : *M(3) — M(3). To construct our second
spectrum Y (and to kill the z; homology), we lifted this map to X*M(3) — M (3),
and took the cofiber. This spectrum, as we have detailed in Section 3.2, is no
longer finite.

However, we can construct a different spectrum, denoted V(1) as in [BP04],

which is finite, by taking the cofiber of fj;(3). This is the cofiber sequence

) fm(3)

YM(3 M(3) — V(1)

We would like to use Lemma 1.11 to show that our self map on Y, fy,
corresponds to a self map on the finite spectrum V'(1). To do so we need to show
that the map Y — V(1) has a fiber with finite Adams resolution. In fact, we show

that the fiber is just an Eilenberg-MacLane spectrum.
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Consider the diagram below:

* — YLK (Zs)

The elements in the top row are the fibers of the vertical maps below them.
By the 3 x 3 Lemma [Mac95][5.1], the top right corner of the map can be filled in
with another copy of X' K (Z3), and it is the fiber of the map Y — V(1).

Since the map Y — V(1) has a fiber with a finite Adams resolution, we
know, by Lemma 1.11, that our self map f, : LY — Y induces a self map
hy : 21V (1) — V(1).

We use hy to create a finite spectrum associated to the locally finite spectrum
Z. Let Z; be the cofiber of hy, so Z; has eight cells. We need to use Lemma 1.11
again on our ug self map on Z to create a self map on Z¢, and show that it is also a
vy self map. In order to do this, we need to show that the fiber of the map Z — Z;
has a finite Adams resolution.

Let Ky and K; be part of the Adams resolution for Y as defined in (3.18).
Let G be the fiber of the composition Y5 — Y; — Y. Consider the following

diagram where all rows and columns are fiber sequences:

71



Since G is in a fiber sequence with ¥7!K; and X7'Kj, and since K; and
K, are spectra with finite Adams resolutions, then G also has a finite Adams
resolution. Now, we let G’ be the fiber of the composition Y5 — Y — V(1). Then
we can construct the following diagram to show G’ has a finite Adams resolution by

the same argument we made for G.

G

G — YK (Z3)

« —— V(1) — V(1)

Let H be the fiber of Z — Z;. We construct another diagram below to show

that H must also have a finite Adams resolution.
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h
SOV (1) =5 V(1) —— Zs

We now claim, from Lemma 1.11 again, that our self map f; : 17 — Z
induces a self map hy : 3197, — Z;. It remains to conclude that hy is actually a vy
map. But this follows from Lemma 1.12. Thus, we have constructed a v, self map

on the eight-cell finite spectrum Zy.
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APPENDIX

SAGE CODE

Following is the code used to carry out the computations in Chapter 3. It
is broken into five parts, which correspond to the construction of the cohomology
of the spectra Y and Z, and the modules involved in the minimal resolutions of
H*(Y) and H*(Z).

Below is sample output (lightly formatted for readability) from the first
segment of code, through line 165. This output summarizes the generators of the

kernel of the map dy : Py — H*(Y) as given in Table 2. in the text.

[P72, 0, 0, 0] is a generator of the kernel in dimension 11
[P"3 P°1 + P74, 2 P°2, 0, 0] 1is a generator of the kernel in
dimension 19

[P"3 P"1 beta + beta P°3 P°1, P°2 beta, 2 P"1, 0] 1is a generator of
the kernel in dimension 20

[P°6, 2 P"3 P°1 + 2 P74, 0, 0] is a generator of the kernel in
dimension 27

[P°5 beta P"1, 2 P"3 P"1 beta + 2 P"4 beta, 2 P"3, 0] is a
generator of the kernel in dimension 28

[beta P°6 P"1 beta, 0, 2 P°3 P"1 beta + 2 P"4 beta, 0] is a
generator of the kernel in dimension 33

[P°7 P"1, P°5 P71 + P76, 0, 0] is a generator of the kernel in
dimension 35

(P79, P76 P"1 + P°7, 0, 2 P"1] 1is a generator of the kernel in
dimension 39
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[P710 P°3 P"1, 2 P79 P°3 + 2 P"10 P"2 + 2 P"12, 0, P°5 P"1 + P76]
is a generator of the kernel in dimension 59

[0, 0, P79 P"3 + P710 P"2 + P"12, 2 P"6 P"1 beta] 1is a generator of
the kernel in dimension 64

[0, 2 P714 P"3 P"1 + P"14 P4 + P"18, 0, 2 P79 P"3 + P11 P"1

+ 2 P712] is a generator of the kernel in dimension 83

[P"16 P"4 beta P"1, P"14 P"4 beta P"1 + P"15 P"4 beta +

2 P15 beta P74 + 2 P716 P"3 beta + 2 P"16 beta P"3 + P~17 beta P"2
+ P719 beta + 2 beta P"14 P"4 P"1 + beta P715 P"4 + beta P"16 P~3,
2 P713 P°4 P°1 + 2 P715 P"3 + P18, 2 P79 P"3 P"1 beta +

2 P710 beta P"3 + P711 beta P72 + 2 P12 P"1 beta + 2 P"13 beta +

beta P711 P"2] 1is a generator of the kernel in dimension 88
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A3 = Ste
beta = A
P1 = A3.
P3 = A3.
P9 = A3.

#Compute
#Y has g

#how hig
height =

#Keep tr
kerllist

#Keep tr
kerlgens

#Keep tr
Ylgens =
Yidims =

#Element
P@elemen

#Diction
Ygens =
Ygendims
numgens

#Keep tr
Ybasis =

for i in
kerl

kerl
Poel

#Bui
Ybas

Yi =
for

#A d
maps

#Loo
for

#Dim

enrodAlgebra(p=3,basis="adem"'); A3
3.Q(0); beta

monomial((0,1,0)); P1
monomial((0,3,0)); P3
monomial((0,9,0)); P9

the kernel of the map $\oplus A_3 \to Y$
enerators P1, P3, P3P1B, P9, P27, ... as an A_3 module
h to carry the computations
100
ack of the elements in the kernel of the first step
=[1;
ack of the generators of the kernel in the first step in terms of vector space
= [1;
ack of the generators of Y1 in terms of steenrod elements, and their dimensions
[l
[1;

s in the sum of A_3's (This is really PO in our projective resolution)

ts = [15

ary keeping track of the generators of Y and their dimension:
[P1, P3, P3*Pl*beta, P9]

= [3,11,16,35]

=4;

ack of Y
[]

xrange(height):
list.append([]);

gens.append([]);
ements.append([]);

1d a basis for Y in this dimension so we can compute the kernel later

is.append([1);

A3.basis(i+l);
elt in Yi:

#each element is in terms of the P*i's, this returns them in terms of admissible sequences

#which we need later
if (elt != beta) and (elt != Pl*beta) and (elt != beta*Pl*beta):
Ybasis[i].append(elt.monomial_coefficients().keys()[0]);

ictionary to keep track of the image of each of the v-space generators of PO

=1}

k at the copies of A3 in P@ corresponding to each of the generators

j in xrange(numgens):
elementlist = A3.basis(i-Ygendims[j]);
for elt in elementlist:
target = elt*Ygens[j];
vselt = [@]*numgens;
vselt[j] = elt
Poelements[i].append(tuple(vselt));
maps[tuple(vselt)] = target

ension of Y as a vector space in this degree
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

Ydimension = len(Ybasis[i]);

#Dimension of PO as a vector space in this degree
Podimension = len(P@elements[i]);

m = matrix(GF(3),P@dimension,Ydimension);
for j in xrange(P@dimension):
#For each element in PO, decompose its image in terms of admissible sequences and coefficients
image = maps[P@elements[i][j]].monomial_coefficients();
for k in range(Ydimension):
#Extract the coefficients to form our linear transformation matrix
if image.has_key(Ybasis[i][k]):
m[j,k] = image[Ybasis[i][k]];
#print m

#Compute the kernel of our linear transformation:
ker = kernel(m);
for elt in ker.basis():

kerllist[i].append(list(elt));

element = [@]*numgens;

for j in xrange(P@dimension):

for k in xrange(numgens):
element[k] = element[k]+elt[j]*POelements[i][j][k];

#Now that we have the kernel, we want to rewrite it to emphasize the structure as an A3 module
#We look down from each dimension to see if we can replace an element with beta*something, Pl*something, et

multipliers = [beta,P1,P3,P9];
multdims = [1,4,12,36];
nummults = 4;

for i in xrange(3,height):
#if the kernel in this dimension is nonempty:
if (len(kerllist[i])!=0):
#Collect all elements that are images of things in lower dimensions:
imagevectors = [];
#Iterate through the multipliers
for j in xrange(nummults):
#Look the appropriate number of dimensions below to see if the kernel is nonempty:
if (i-multdims[j] > @) and (len(kerllist[i-multdims[j]])!=0):
for elt in kerllist[i-multdims[j]]:
element = [@]*numgens;
for k in xrange(len(elt)):
for 1 in xrange(numgens):
element[1l] = element[l]+elt[k]*POelements[i-multdims[j]]1[k][1];
for k in xrange(numgens):
element[k] = multipliers[j]*element[k];

#We now have the image of an element from a lower dimension, in terms of elements of tt
#sum of copies of A3, we need to rewrite it in terms of our Z/3 vector space so we can
#check spans below
imvect = [];
coefficients = [];
#Get the coefficients (in terms of admissible sequences) of each component of the image
#vectors
for k in xrange(numgens):
coefficients.append(element[k].monomial_coefficients());
#Use the basis elements in PO to construct our vector, i.e. find the coefficient of eac
#element in PO in our image vector
for basiselt in P@elements[i]:
#Each one should only have one nonzero entry, so adding them together is the same ¢
#picking the nonzero one...
basis = ©;
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for k in xrange(numgens):

basis = basis+basiselt[k];
#convert this element to an admissible sequence:
sequence = basis.monomial_coefficients().keys()[0];
coeff = 0;
for k in xrange(numgens):

if coefficients[k].has_key(sequence):

coeff = coeff + coefficients[k][sequence];
imvect.append(coeff);
imagevectors.append(imvect)

#Keep track of which elements we add in
replacements = [];

#Now, compute the generators of the kernel as an A_3 module:
imagespan = (GF(3)~(len(P@elements[i]))).span(imagevectors)

for j in xrange(len(kerllist[i])):
if kerllist[i][j] not in replacements:
if len((imagespan.intersection(span([kerllist[i][]j]],GF(3)))).basis()) == 0:
kerlgens[i].append(ker1list[i][]j]);
imagespan = (GF(3)~(len(P@elements[i]))).span(imagevectors+kerlgens[i]);

#Print the generators:
for i in xrange(3,height):
if len(kerlgens[i])!=0:
for elt in kerlgens[i]:
element = [@]*numgens;
for j in xrange(len(elt)):
for k in xrange(numgens):
element[k] = element[k]+elt[j]*POelements[i][j][k]
print element,' is a generator of the kernel in dimension ',i
Yigens.append(element);
Yldims.append(i-1);

#Part2
#Now that we've computed Y1 = ker:P@ -> Y, we form P1 and repreat the process to find Y2 = ker:P1 -> Y1

#Height for this part of the computation
height2 = 99;

#Basis for P1
Plelements = [];

#Basis of this kernel
ker2basis = [];

#Generators of this kernel
ker2gens = [];

#How many generators did we find in the previous step?
numgens2 = len(Ylgens);

#Start computing the maps based on the generators above:
for i in xrange(height2):

Plelements.append([]);

ker2basis.append([]);

ker2gens.append([]);

#Maps in terms of steenrod elements
maps = {};



194 #Maps in terms of basis elements in Y1

195 kermaps = {};

196

197 #Create elements in P1, and find where in Y1 they map (in terms of steenrod elements)
198 for j in xrange(numgens2):

199 elements = A3.basis(i-Y1ldims[j]);

200 generator = Ylgens[j];

201 for elt in elements:

202 source = [@]*numgens2;

203 source[j] = elt;

204 target = [@]*numgens;

205 for k in xrange(numgens):

206 target[k] = elt*generator[k];

207 Plelements[i].append(tuple(source));

208 maps[tuple(source)] = tuple(target);

209

210 #Now rewrite each one in terms of Y1 elements (vector space form)
211 Ylvecspace = (GF(3)"len(P@elements[i+1])).span_of_basis(kerllist[i+1]);
212 for elt in Plelements[i]:

213 image = maps[elt];

214 coefficients = [];

215 #Extract the coefficients in terms of admissible sequences
216 for j in xrange(numgens):

217 coefficients.append({});

218 if image[j] != ©:

219 coefficients[j] = image[j].monomial_coefficients();
220 targetvector = [];

221 #Write the target in terms of our vector space basis for PO
222 for target in P@elements[i+1]:

223 coefficient = 0;

224 #There should be only one nonzero place

225 targetmonomial = ©;

226 #keep track of where it is

227 spot = -1

228 for j in xrange(numgens):

229 if target[j] != @:

230 targetmonomial = target[j].monomial_coefficients().keys()[@];
231 spot = j

232 if coefficients[spot].has_key(targetmonomial):

233 coefficient = coefficients[spot][targetmonomial];
234 targetvector.append(coefficient)

235 #Now, get this element in terms of the vector space basis:
236 kervec = Ylvecspace.coordinates(targetvector);

237 kermaps[elt] = kervec;

238

239 #Create a matrix representing our linear transformation

240 Mat = Matrix(GF(3),len(maps.keys()),len(kerllist[i+1]));

241 for j in xrange(len(maps.keys())):

242 Mat[j] = kermaps[Plelements[i][j]];

243

244 Ker2 = kernel(Mat);

245 for elt in Ker2.basis():

246 element = [@]*numgens2;

247 ker2basis[i].append(list(elt));

248 for j in xrange(len(elt)):

249 for k in xrange(numgens2):

250 element[k] = element[k]+elt[j]*Plelements[i][j][k];
251

252 fprint '--------mmeee !

253

254 | #Now compute the images of things below

255 | multipliers = [beta,P1,P3,P9];

256 | multdims = [1,4,12,36];

257 | nummults = 4;

258
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for i in xrange(3,height2):
print 'realigning dimension ',i
#if the kernel in this dimension is nonempty:
if (len(ker2basis[i])!=0):

#Collect all elements that are images of things in lower dimensions:
imagevectors = [];
#Iterate through the multipliers
for j in xrange(nummults):
#Look the appropriate number of dimensions below to see if the kernel is nonempty:

if (i-multdims[j] > @) and (len(ker2basis[i-multdims[j]])!=0):
for elt in ker2basis[i-multdims[j]]:
element = [@]*numgens2;
for k in xrange(len(elt)):
for 1 in xrange(numgens2):
element[1l] = element[l]+elt[k]*Plelements[i-multdims[j]]1[k][1];
for k in xrange(numgens2):
element[k] = multipliers[j]*element[k];

#We now have the image of an element from a lower dimension, in terms of elements of tt
#sum of copies of A3, we need to rewrite it in terms of our Z/3 vector space so we can
#check spans below
imvect = [];
coefficients = [];
#Get the coefficients (in terms of admissible sequences) of each component of the image
#vectors
for k in xrange(numgens2):
if element[k]!=0:
coefficients.append(element[k].monomial_coefficients());
else:
coefficients.append({});
#Use the basis elements in P@ to construct our vector, i.e. find the coefficient of eac
#element in PO in our image vector
for basiselt in Plelements[i]:
#Each one should only have one nonzero entry, so adding them together is the same &
#picking the nonzero one...
basis = 9;
for k in xrange(numgens2):
basis = basis+basiselt[k];
#convert this element to an admissible sequence:
sequence = basis.monomial_coefficients().keys()[0];
coeff = 0;
for k in xrange(numgens2):
if coefficients[k].has_key(sequence):
coeff = coeff + coefficients[k][sequence];
imvect.append(coeff);
imagevectors.append(imvect)

#Keep track of which elements we add in
replacements = [];

#Now, compute the generators of the kernel as an A_3 module:
imagespan = (GF(3)~(len(Plelements[i]))).span(imagevectors)

for j in reversed(range(len(ker2basis[i]))):

if ker2basis[i][j] not in replacements:

Q:

if len((imagespan.intersection(span([ker2basis[i][j]],GF(3)))).basis()) =
ker2gens[i].append(ker2basis[i][j]);
imagespan = (GF(3)~(len(Plelements[i]))).span(imagevectors+ker2gens[i]);

#Print the generators:
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for

i in xrange(3,height2):
if len(ker2gens[i])!=0:
for elt in ker2gens[i]:
element = [@]*numgens2;
for j in xrange(len(elt)):
for k in xrange(numgens2):
element[k] = element[k]+elt[j]*Plelements[i][j][k]
print element,' is a generator of the kernel in dimension ',i

#Part 3

#Try to compute the kernel of the map Y2 (= ker: P1 -> Y1) -> S10 (Y)
#Start by printing things in the appropriate dimensions:

height3 = 95;

#Keep track of the kernel of f_bar_star
kerfbasis = [];

#Keep track of the generators of the kernel (i.e. the generators of H*(Z))
kerfgens = [];

#Keep track of the generators of Z for the next step:
Zgens = [];
Zgendims = [];

for

for

i in xrange(10):
kerfbasis.append([]);
kerfgens.append([]);

i in xrange(10,height3):

print 'dimension = ',i

kerfbasis.append([]);
kerfgens.append([]);

#tkeep track of where basis elements in Y2 are mapped:
fmaps = {};

#print 'printing basis of Y2'
for elt in ker2basis[i+1]:
element = [@]*numgens2
for j in xrange(len(elt)):
for k in xrange(numgens2):
element[k] = element[k]+elt[j]*Plelements[i+1][]j][k]
fmaps[tuple(elt)] = element[0@];

P2dimension = len(ker2basis[i+1]);
Ydimension = len(Ybasis[i-10]);

m = matrix(GF(3),P2dimension,Ydimension);
for j in xrange(P2dimension):
#For each element in PO, decompose its image in terms of admissible sequences and coefficients
image = fmaps[tuple(ker2basis[i+1][j])].monomial_coefficients();
for k in range(Ydimension):
#Extract the coefficients to form our linear transformation matrix
if image.has_key(Ybasis[i-10][k]):
m[j,k] = image[Ybasis[i-10][k]];

kerf = kernel(m);
for elt in kerf.basis():
lenkervect = len(ker2basis[i+1][0@]);
element = [@]*1lenkervect
#First write the element in terms of our vector space kernel above
for j in xrange(P2dimension):
for k in xrange(lenkervect):



389 element[k] = element[k]+elt[j]*ker2basis[i+1][j][k];

390 kerfbasis[i].append(element);

391 #Then write it in terms of steenrod elements

392 element2 = [@]*numgens2;

393 for j in xrange(lenkervect):

394 for k in xrange(numgens2):

395 element2[k] = element2[k]+element[j]*Plelements[i+1][j][k]

396

397 | print '--------mmeeee oo '

398 | print 'done computing kernel'

399 | print "--------mmemeee oo '

400

401 | #Now determine the generators of the kernel (these are the generators of the cohomology of Z)
402 | #Now compute the images of things below

403 | multipliers = [beta,P1,P3,P9];

404 | multdims = [1,4,12,36];

405 | nummults = 4;

406

407 | for i in xrange(3,height3):

408 print 'realigning dimension ',i

409 #if the kernel in this dimension is nonempty:

410 if (len(kerfbasis[i])!=0):

411 #Collect all elements that are images of things in lower dimensions:

412 imagevectors = [];

413 #Iterate through the multipliers

414 for j in xrange(nummults):

415 #Look the appropriate number of dimensions below to see if the kernel is nonempty:
416 if (i-multdims[j] > @) and (len(kerfbasis[i-multdims[j]])!=0):

417 for elt in kerfbasis[i-multdims[j]]:

418 element = [@]*numgens2;

419 for k in xrange(len(elt)):

420 for 1 in xrange(numgens2):

421 element[1l] = element[l]+elt[k]*Plelements[i-multdims[j]+1][k][1];
422 for k in xrange(numgens2):

423 element[k] = multipliers[j]*element[k];

424

425 #We now have the image of an element from a lower dimension, in terms of elements of tt
426 #sum of copies of A3, we need to rewrite it in terms of our Z/3 vector space so we can
427 #check spans below

428 imvect = [];

429 coefficients = [];

430 #Get the coefficients (in terms of admissible sequences) of each component of the image
431 #vectors

432 for k in xrange(numgens2):

433 if element[k]!=0:

434 coefficients.append(element[k].monomial_coefficients());

435 else:

436 coefficients.append({});

437 #Use the basis elements in P@ to construct our vector, i.e. find the coefficient of eac
438 #element in PO in our image vector

439 for basiselt in Plelements[i+1]:

440 #Each one should only have one nonzero entry, so adding them together is the same &
441 #picking the nonzero one...

442 basis = 9;

443 for k in xrange(numgens2):

444 basis = basis+basiselt[k];

445 #convert this element to an admissible sequence:

446 sequence = basis.monomial_coefficients().keys()[0];

447 coeff = 0;

448 for k in xrange(numgens2):

449 if coefficients[k].has_key(sequence):

450 coeff = coeff + coefficients[k][sequence];

451 imvect.append(coeff);

452 imagevectors.append(imvect)

453
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#Keep track of which elements we add in
replacements = [];

#Now, compute the generators of the kernel as an A_3 module:
imagespan = (GF(3)~(len(Plelements[i+1]))).span(imagevectors)

for j in reversed(range(len(kerfbasis[i]))):
if kerfbasis[i][j] not in replacements:

if len((imagespan.intersection(span([kerfbasis[i][j]],GF(3)))).basis()) == 0:
kerfgens[i].append(kerfbasis[i][j]);
imagespan = (GF(3)~(len(Plelements[i+1]))).span(imagevectors+kerfgens[i]);

print '-----------oooooooooo
print 'printing generators as A3 module:’

print '---c-c-ccemnccoonaaaa.

#Print the generators:
for i in xrange(3,height3):
if len(kerfgens[i])!=0:
for elt in kerfgens[i]:
element = [@]*numgens2;
for j in xrange(len(elt)):
for k in xrange(numgens2):
element[k] = element[k]+elt[j]*Plelements[i+1][j][k]
print element,' is a generator of the kernel in dimension ',i
Zgens.append(element);
Zgendims.append(i);

#Part 4

#Start computing a resolution of Zz?

#H*Z <-- Q0 <-- Q1 <-- Q2 ....

#This step should build Q@, then compute the kernel of the map Q@ --> H*Z
#The generators of the kernel will then tell us what Q1 should be

#The height to carry out this computation
heightzl = 95

#Number of generators of H*Z
numZgens = len(Zgendims);

#Vector space generators of Qo0
Qoelements = [];

#Elements in the kernel of do: Qo -> H*Z
kerdobasis = [];

#Elements that generate the kernel of do: Qo -> H*Z
kerdogens = [];

#Store the generators of the kernel for the next step so we can map Q1 -> ker de
Zlgens = [];
Zlgendims = [];

for i in xrange(heightzl):
print 'dimension = ',i
#Holds the vs generators of Q@ in this dimension
Q@elements.append([]);
#Holds the vs generators of ker do in this dimension
kerd@basis.append([]);
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kerdegens.append([]);
#Maps in terms of steenrod elements

maps = {}
#Maps in terms of vs elements in H*Z
kermaps = {}

for j in xrange(numZgens):
if (i - Zgendims[j]) > -1:

basis = A3.basis(i-zZgendims[j]);

for elt in basis:
Qoelt = [@]*numZgens
Qoelt[j] = elt;
targetelt = [@]*numgens2;
for k in xrange(numgens2):

targetelt[k] = targetelt[k]+elt*Zgens[j][k]

Qoelements[i].append(tuple(Qoelt));
maps[tuple(Qoelt)] = tuple(targetelt);

#Now, we rewrite each of these targets in terms of the vs basis for H*Z
#recall that Z is a subset of Y2 is a subset of P1
#i+1 from shift between P1 and Y2
#The subspace representing Z is generated by the kernel from the previous
#step of the computation (Y2 -> YY)
Zvecspace = (GF(3)~len(Plelements[i+1])).span_of_basis(kerfbasis[i]);
#Cycle through the vs generators of Q0 in this dimension
for elt in Q@elements[i]:
#The steenrod tuple this element maps to
image = maps[elt];
#Stores the monomial coefficients of each component
coefficients = [];
#Extract the coefficients of each admissible sequence in the image
for j in xrange(numgens2):
coefficients.append({});
if image[j] !=0:
#This stores the monomials that make up the jth component
#of the image
coefficients[j] = image[j].monomial_coefficients();
#This will store info about the target in terms of the vs gens
targetvector = [];
#Cycle through the vs generators of P1 to match up the monomials
for target in Plelements[i+1]:
coefficient = 0;
targetmonomial = ©;
#spot where we find the nonzero piece
spot = -1;
#Each P1 generator should have one nonzero component, so find it
for j in xrange(numgens2):
if target[j] != o:
#Extract that admissible sequence
targetmonomial = target[j].monomial_coefficients().keys()[0]
spot = j
#Look at the jth component monomials to see if it has the one we
#are looking for.
#NOTE TO SELF: This only works as long as the target space has no
#module generators that are in the same dimension
#i.e. if do(x) = (a, b, c, P1*B, P1*B, d, e,...) it'll be bad
#FIXED (I THINK)
if coefficients[spot].has_key(targetmonomial):
coefficient = coefficients[spot][targetmonomial]
targetvector.append(coefficient)

#Write this targetvector as a linear combination of the basis of H*Z
kervec = Zvecspace.coordinates(targetvector);

kermaps[elt] = kervec;

#Create a matrix representing our linear transformation Q@ -> H*Z
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Mat = Matrix(GF(3),len(maps.keys()),len(kerfbasis[i]));
for j in xrange(len(maps.keys())):
Mat[j] = kermaps[Q@elements[i][]j]];

Qoker = kernel(Mat);
for elt in Qo@ker.basis():
element = [@]*numZgens;
kerd@basis[i].append(list(elt));
for j in xrange(len(elt)):
for k in xrange(numZgens):
element[k] = element[k]+elt[j]*Q@elements[i][j][k];

#Now rewrite with A3 module structure:
print fo-mmm o
for i in xrange(heightzl):
print 'realigning ',i
if (len(kerd@basis[i])!=0):
#keep track of the image of things in lower dimensions
imagevectors = [];
#iterate through the elements B, P1, P3, P9
for j in xrange(nummults):
#make sure that we're not looking in a negative dimension or
#a dimension with nothing in it

if (i - multdims[j] > ©) and (len(kerd@basis[i-multdims[j]])!=0):

#iterate through the elements in the lower dimension
for elt in kerd@basis[i-multdims[j]]:
element = [@]*numZgens
for k in xrange(len(elt)):
for 1 in xrange(numZgens):

element[1l] = element[1l]+elt[k]*Q@elements[i-multdims[j]][k][1]
#Now we have the element in a lower dimension, multiply

#each component by the current multiplier
for k in xrange(numZgens):
element[k] = multipliers[j]*element[k];

#Now rewrite our element in terms of our Z/3 vs basis so

#we can possibly replace elements below
imvect = [];

#holds a dictionary of coefficients for each component

coefficients = [];

#Get the coefficients (in terms of admissible sequences)

#of each component of the image vector
for k in xrange(numZgens):
if element[k]!=0:

coefficients.append(element[k].monomial_coefficients())

else:
coefficients.append({});
for basiselt in Q@elements[i]:
basis = 9;
for k in xrange(numZgens):
basis = basis+basiselt[k];
#This is the admissible sequence representing the
#basis element

sequence = basis.monomial_coefficients().keys()[@];

coeff = 9;

#Again, this only works since we don't have two gens

#in the same dimension for Z
for k in xrange(numZgens):
if coefficients[k].has_key(sequence):
coeff = coeff+coefficients[k][sequence];
imvect.append(coeff);
imagevectors.append(imvect);

#Keep track of which elements we add in:
replacements = [];
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imagespan = (GF(3)~(len(Q@elements[i]))).span(imagevectors);
for j in reversed(range(len(kerd@basis[i]))):
if len((imagespan.intersection(span([kerd@basis[i][j]],GF(3)))).basis()) == @:
kerdogens[i].append(kerd@basis[i][j]);
imagespan = (GF(3)~(len(Q@elements[i]))).span(imagevectors+kerddgens[i]);

print '---c---eccmmoccoaaaao
print 'printing generators as A3 module:'

print '---c---eccmnocoonaanao

#Print the generators:
numgens = 1;
for i in xrange(heightzl):
if len(kerdogens[i])!=0:
for elt in kerdegens[i]:
element = [@]*numZgens;
for j in xrange(len(elt)):
for k in xrange(numZgens):
element[k] = element[k]+elt[j]*Q@elements[i][j][k]
print element,' is a generator of the kernel in dimension ',i
if element[6]!=0:
print 'this is generator number ',numgens,’' and has ',element[6],' in the seventh spot'
Zlgens.append(element);
Z1lgendims.append(i);
numgens = numgens + 1;

#Part 5:

#We've computed the kernel of do@: QO -> H*Z and found the generators

#We now get a new copy of A3 in Q1 for each of these generators and repeat the process, computing
#the kernel of dl: Q1 -> Q0 in the next step of our resolution

#The height to carry out this computation
heightzl = 80

#Number of generators of H*Z
numzZigens = len(Zlgendims);

#Vector space generators of Qo0
Qlelements = [];

#Elements in the kernel of do: Q0 -> H*Z
kerdlbasis = [];

#Elements that generate the kernel of do: Qo -> H*Z
kerdlgens = [];

#Store the generators of the kernel for the next step so we can map Q1 -> ker deo
Z2gens = [];
Z2gendims = [];

for i in xrange(heightzl):
print 'dimension = ',i
#Holds the vs generators of Q@ in this dimension
Qlelements.append([]);
#Holds the vs generators of ker do in this dimension
kerdlbasis.append([]);

kerdigens.append([]);
#Maps in terms of steenrod elements

maps = {}
#Maps in terms of vs elements in H*Z
kermaps = {}

for j in xrange(numZlgens):



714 if (i - zZigendims[j]) > -1:

715 basis = A3.basis(i-zlgendims[j]);

716 for elt in basis:

717 Qlelt = [@]*numZlgens

718 Qlelt[j] = elt;

719 targetelt = [@]*numZgens;

720 for k in xrange(numZgens):

721 targetelt[k] = targetelt[k]+elt*Zigens[j][k]

722 Qlelements[i].append(tuple(Qlelt));

723 maps[tuple(Qlelt)] = tuple(targetelt);

724

725 #Now, we rewrite each of these targets in terms of the vs basis for Q@
726

727 Qovecspace = (GF(3)~len(Qoelements[i])).span_of_basis(kerd@basis[i]);
728 #Cycle through the vs generators of Q@ in this dimension

729 for elt in Qlelements[i]:

730 #The steenrod tuple this element maps to

731 image = maps[elt];

732 #Stores the monomial coefficients of each component

733 coefficients = [];

734 #Extract the coefficients of each admissible sequence in the image
735 for j in xrange(numZgens):

736 coefficients.append({});

737 if image[j] !=0:

738 #This stores the monomials that make up the jth component
739 #of the image

740 coefficients[j] = image[j].monomial_coefficients();

741 #This will store info about the target in terms of the vs gens
742 targetvector = [];

743 #Cycle through the vs generators of Q@ to match up the monomials
744 for target in Q@elements[i]:

745 coefficient = 0;

746 targetmonomial = 0;

747 #which spot did we find the nonzero element?

748 spot = -1;

749 #Each QO generator should have one nonzero component, so find it
750 for j in xrange(numZgens):

751 if target[j] != @:

752 #Extract that admissible sequence

753 targetmonomial = target[j].monomial_coefficients().keys()[0]
754 spot = j;

755 #Look at the jth component monomials to see if it has the one we
756 #are looking for.

757 if coefficients[spot].has_key(targetmonomial):

758 coefficient = coefficients[spot][targetmonomial]

759 targetvector.append(coefficient)

760

761 #Write this targetvector as a linear combination of the basis of H*Z
762 kervec = Q@vecspace.coordinates(targetvector);

763 kermaps[elt] = kervec;

764

765 #Create a matrix representing our linear transformation Q@ -> H*Z

766 Mat = Matrix(GF(3),len(maps.keys()),len(kerd@basis[i]));

767 for j in xrange(len(maps.keys())):

768 Mat[j] = kermaps[Qlelements[i][j]];

769

770 Qlker = kernel(Mat);

771 for elt in Qlker.basis():

772 element = [@]*numZigens;

773 kerdlbasis[i].append(list(elt));

774 for j in xrange(len(elt)):

775 for k in xrange(numZlgens):

776 element[k] = element[k]+elt[j]*Qlelements[i][j][k];

777 print element,' is in the kernel in dimension ',i

778 print '--------------- !
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