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DISSERTATION ABSTRACT

Tianyuan Xu

Doctor of Philosophy

Department of Mathematics

June 2017

Title: On the Subregular J-ring of Coxeter Systems

Let (W,S) be an arbitrary Coxeter system, and let J be the asymptotic Hecke

algebra associated to (W,S) via Kazhdan-Lusztig polynomials by Lusztig. We study

a subalgebra JC of J corresponding to the subregular cell C of W . We prove a

factorization theorem that allows us to compute products in JC without inputs

from Kazhdan-Lusztig theory, then discuss two applications of this result. First, we

describe JC in terms of the Coxeter diagram of (W,S) in the case (W,S) is simply-

laced, and deduce more connections between the diagram and JC in some other

cases. Second, we prove that for certain specific Coxeter systems, some subalgebras

of JC are free fusion rings, thereby connecting the algebras to compact quantum

groups arising in operator algebra theory.
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CHAPTER I

INTRODUCTION

Hecke algebras of Coxeter systems are classical objects of study in representation

theory because of their rich connections with finite groups of Lie type, Lie alge-

bras, quantum groups, and the geometry of flag varieties (see, for example, [Cur87],

[CIK71], [DJ86], [GP00], [KL79], [Lus84]). Let (W,S) be a Coxeter system, and

let H be its Hecke algebra defined over the ring Z[v, v−1]. Using Kazhdan-Lusztig

polynomials, Lusztig constructed the asymptotic Hecke algebra J of (W,S) from

H in [Lus87a]. The algebra J can be viewed as a limit of H as the parameter v

goes to infinity, and its representation theory is closely related to that of H (see

[Lus87a], [Lus87b], [Lus89], [Lus14], [Gec98]). In particular, upon suitable exten-

sions of scalars, J admits a natural homomorphism from H, hence representations

of J induce representations of H ([Lus14]).

The asymptotic Hecke algebra J has several interesting features. First, given

a Coxeter system (W,S), J is defined to be the free abelian group J = ⊕w∈WZtw,

with multiplication of the basis elements declared by

txty =
∑
z∈W

γx,y,z−1tz

where the coefficients γx,y,z−1 (x, y, z ∈ W ) are nonnegative integers extracted from

the structure constants of the Kazhdan-Lusztig basis of the Hecke algebra H of

(W,S). The non-negativity of its structure constants makes J a Z+-ring, and the

basis elements satisfy additional conditions which make J a based ring in the sense

of [Lus87c] and [EGNO15] (see Section 4.3).
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Another interesting feature of J is that for any 2-sided Kazhdan-Lusztig cell E

of W , the subgroup

JE = ⊕w∈EZtw

of J is a subalgebra of J and also a based ring. Here, as the notation suggests, a

2-sided Kazhdan-Lusztig cell is a subset of W . The cells of W are defined using the

Kazhdan-Lusztig basis of its associated Hecke algebra H and form a partition of W .

Further, the subalgebra JE is in fact a direct summand of J for each 2-sided cell E,

and J admits the direct sum decomposition

J = ⊕E∈CJE,

where C denotes the collection of all 2-sided cells of W (see Section 4.2). It is

therefore natural to study J by first studying its direct summands corresponding to

the cells.

In this paper, we focus on a particular 2-sided cell C of W known as the

subregular cell and study the based ring JC . We also study subalgebras Js of JC

that correspond to the generators s ∈ S of W . Thanks to a result of Lusztig in

[Lus83], the cell C can be characterized as the set of elements in W with unique

reduced expressions, and the main theme of the paper is to exploit this combinatorial

characterization and study JC and Js(s ∈ S) without reference to Kazhdan-Lusztig

polynomials. This is desirable since a main obstacle in understanding J for arbitrary

Coxeter systems lies in the difficulty of understanding Kazhdan-Lusztig polynomials.

A third important feature of the algebra J is that it has very interesting cate-

gorification. Here by categorification we mean the process of adding an extra layer

of structure to an algebraic object to produce an interesting category which allows
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one to recover the object; more specially, we mean J appears as the Grothendieck

ring of a tensor category J (see [EGNO15] for the definition of a tensor category,

[Lus14] for the construction of J ). A well-known example of categorification is the

categorification of the Hecke algebra H by the Soergel category SB, which was used

to prove the “positivity properties” of the Kazhdan-Lusztig basis of H in [EW14].

Just as the algebra J is constructed from H, the category J is constructed

from the category SB, also by Lusztig ([Lus14]). Further, just as the algebra J has

a subalgebra of the form JE for each 2-sided cell E and a subalgebra Js for each

generator s ∈ S, the category J has a subcategory JE for each 2-sided cell E and

a subcategory Js for each s ∈ S. Moreover, JE categorifies JE for each 2-sided cell

E, and JE is a multifusion category in the sense of [EGNO15] whenever E is finite,

which can happen for suitable cells even when the ambient group W is infinite.

Similarly, Js is a fusion category whenever Js has finite rank. Multifusion and

fusion categories have rich connections with quantum groups ([Kas95]), conformal

field theory ([MS89]), quantum knot invariants ([Tur10]) and topological quantum

field theory ([BK01]), so the categories JE (in particular, JC) and Js are interesting

since they can potentially provide new examples of multifusion and fusion categories.

Historically, the intimate connection between the algebra J and its categorifi-

cation J has been a major tool in the study of both objects. For Weyl groups and

an affine Weyl groups, Lusztig ([Lus89], [Lus97]) and Bezrukanikov et al. ([Bez04],

[BO04], [BFO09]) showed that there is a bijection between the two-sided cells in the

group and unipotent conjugacy classes of an algebraic group, and that the subcate-

gories of J corresponding to the cells can be described geometrically, as categories

of vector bundles on a square of a finite set equivariant with respect to an algebraic

group. Using categorical results, they computed the structure constants in J ex-
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plicitly. For other Coxeter systems, however, the nature of J or J seems largely

unknown, partly because there is no known recourse to advanced geometry. In this

context, this dissertation may be viewed as an attempt to understand the subalge-

bra JC of J for arbitrary Coxeter systems from a more combinatorial point of view.

We hope to understand the structure of JC by examining the multiplication rule in

JC , then, in some cases, use our knowledge of J to deduce the structure of J . This

idea is further discussed in Section 7.1.

The main results of the dissertation fall into two sets. First, we describe some

connections between the Coxeter diagram G of an arbitrary Coxeter system (W,S)

and the algebra JC associated to (W,S). The first result in this spirit describes JC

in terms of G for all simply-laced Coxeter systems. Recall that given any vertex s

in G, the fundamental group Πs(G) of G based at s is the group consisting of all

homotopy equivalence classes of walks in G starting and ending at s, equipped with

concatenation as the group operation. One may generalize this notion to define

the fundamental groupoid Π(G) of G as the set of homotopy equivalence classes

of all walks on G, equipped with concatenation as a partial binary operation that

is defined between two classes when their concatenation makes sense. We define

the groupoid algebra of ZΠ(G) of Π(G) by mimicking the construction of a group

algebra from a group, and we prove the following theorem.

Theorem A. Let (W,S) be an any simply-laced Coxeter system, and let G be its

Coxeter diagram. Let Π(G) be the fundamental groupoid of G, let Πs(G) be the

fundamental group of G based at s for any s ∈ S, let ZΠ(G) be the groupoid algebra

of Π(G), and let ZΠs(G) be the group algebra of Πs(G). Then JC ∼= ZΠ(G) as based

rings, and Js ∼= ZΠs(G) as based rings for all s ∈ S.

The key idea behind the theorem is to find a correspondence between basis elements
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of JC and classes of walks on G. The correspondence then yields explicit formulas

for the claimed isomorphisms.

In our second result, we study the case where G is oddly-connected. Here by

oddly-connected we mean that each pair of distinct vertices in G are connected by

a path involving only edges of odd weights.

Theorem B. Let (W,S) be an oddly-connected Coxeter system. Then

(a) Js ∼= Jt as based rings for all s, t ∈ S.

(b) JC ∼= MatS×S(Js) as based rings for all s ∈ S. In particular, JC is Morita

equivalent to Js for all s ∈ S.

Once again, we will provide explicit isomorphisms between the algebras using G.

In a third result, we describe all fusion rings that appear in the form Js for

some Coxeter system (W,S) and some choice of s ∈ S. We show that any such

fusion ring is isomorphic to a ring Js associated to a dihedral system, which is in

turn always isomorphic to the odd part of a Verlinde algebra associated to the Lie

group SU(2) (see Definition 5.3.3).

Theorem C. Let (W,S) be a Coxeter system and let s ∈ S. Suppose Js is a fusion

ring for some s ∈ S. Then there exists a dihedral Coxeter system (W ′, S ′) such that

Jt ∼= Js′ as based rings for all t ∈ S and for both s′ ∈ S ′.

In our second set of results, we focus on certain specific Coxeter systems (W,S)

whose Coxeter diagram involves edges of weight ∞, and show that for suitable

choices of s ∈ S, Js is isomorphic to a free fusion ring in the sense of [BV09]. A

free fusion ring can be described in terms of the data of its underlying fusion set,

and we describe these data explicitly for each free fusion ring Js in our examples.
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Furthermore, each free fusion ring we discuss is isomorphic to the Grothendieck rings

of the category Rep(G) of representations of a known partition quantum groups G,

and we will identify the group G in all cases. Our main theorems appear as Theorem

D and Theorem E in sections 7.3 and 7.4, but we omit their technical statements

for the moment. We also highlight a common feature of rings of the form Js and

free free fusion rings, namely, that the products of basis elements for both types of

rings are controlled “locally and inductively”. We will explain this more precisely

and study its consequence for an example in Section 7.5.

All the results mentioned above rely heavily on the following theorem, which

says that a combinatorial “factorization” of a reduced word of an element into its di-

hedral segments (see Definition 2.4.2) carries over to a factorization of basis elements

in JC .

Theorem F. (Dihedral factorization) Let x be the reduced word of an element in

C, and let x1, x2, · · · , xl be the dihedral segments of x. Then

tx = tx1 · tx2 · · · · · txl .

The rest of the article is organized as follows. We review some preliminaries

about Coxeter systems in Section 2.1 - 2.3 and study the the subregular cell in

Section 2.4. In Chapter 3, we review some basic facts about Hecke algebras. In

particular, we recall various facts about Hecke algebras of dihedral groups in Sec-

tion 3.3. In Chapter 4, we define the algebras J , JC and Js(s ∈ S) and explain

how JC and Js(s ∈ S) appear as based rings. We prove Theorem F in Chapter

5 and demonstrate how it can be used to compute products of basis elements in

JC . In Chapter 6, we prove our results on the connections between JC and Coxeter

6



diagrams. Finally, we discuss our second set of results in Chapter 7, where we prove

that certain rings Js are free fusion rings and highlight a common feature shared by

rings of the form Js and free fusion rings.

7



CHAPTER II

COXETER SYSTEMS

In this chapter we review the basic theory of Coxeter systems relevant to this article.

Out main references are [BB05] and [Lus14].

2.1. Basic Notions

A Coxeter group is a group with a special form of presentation: for any set S and

any map m : S × S → {1, 2, · · · ,∞} such that m(s, s) = 1 and ms,t = mt,s ≥ 2 for

all distinct elements s, t ∈ S, we may define a group W by the presentation

W = 〈S | (st)m(s,t) = 1, ∀s, t ∈ S〉. (2.1.1)

Any group arising this way is called a Coxeter group, and the pair (W,S) is called

a Coxeter system. Throughout this article, we shall assume the generating set S is

finite for all our Coxeter systems. If W is a finite group, we say (W,S) is a finite

Coxeter system.

Example 2.1.1. (Dihedral groups) Let n ∈ Z≥3 and let (W,S) be the Coxeter

system with S = {s, t} and W = 〈s, t | s2 = t2 = (st)n = 1〉. Then W is isomorphic

to the dihedral group Dn of order 2n, the group of symmetries of a regular n-gon P .

To see this, let c be the center of P , let d a vertex of P , and let e be the midpoint of

an edge incident to d. Let s′ and t′ be reflections with respect to the two lines going

through c, d and through c, e, respectively. Then s′, t′ are involutions since they are

reflections. Since the two lines form an angle of π/n, s′t′ is rotation at an angle of
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2π/n, hence (s′t′)n = 1. It follows that the map s 7→ s′, t 7→ t′ extends uniquely

to a group homomorphism ϕ : W → Dn. The map is surjective since s′, t′ generate

Dn, and a moment’s thought reveals that |W | ≤ 2n = |Dn|, therefore ϕ must be an

isomorphism.

Example 2.1.2. (Symmetric groups) Let n ∈ Z≥2, S = {s1, s2, · · · , sn−1}, and let

W be the Coxeter group generated by S subject to the relations s2
i = 1 for all i,

(sisj)3 = 1 for all i, j with |i − j| = 1, and (sisj)2 = 1 for all i, j with |i − j| > 1.

Then W is isomorphic to the symmetric group Sn. More precisely, let s′i be the i-th

basic transposition (i, i+ 1) in Sn, then it is straightforward to check that the map

si 7→ s′i extends to a group isomorphism from W to Sn.

Example 2.1.3. (Weyl groups) The Weyl group of a root system ([Hum90]) is a

Coxeter group. As we shall see, Weyl groups constitute the majority of finite Coxeter

groups (see [BB05]).

Remark 2.1.4. Dihedral groups may be viewed as the simplest interesting Cox-

eter groups in that their generating set contains only 2—the smallest interesting

number of—generators. Consequently their theory, including that of their Hecke

algebras, are relatively easy to understand. A main theme of this article is to ex-

trapolate our knowledge about dihedral groups to other general Coxeter groups.

Symmetric groups are also particularly nice Coxeter groups, thanks to their simple

combinatorial realizations. We will frequently come back to these dihedral groups

and symmetric groups to illustrate the general theory of Coxeter groups.

The data of a Coxeter system (W,S) can be efficiently encoded via a Coxeter

diagram G. By definition, G is the loopless, weighted, undirected graph (V,E) with

vertex set V = S and with edges E given as follows. For any distinct s, t ∈ S,
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{s, t} forms an edge in G exactly when m(s, t) ≥ 3, whence the weight of the edge is

m(s, t). When drawing a Coxeter graph, it is conventional to leave edges of weight

3 unlabeled. We call edges of weight 3 simple, and we say (W,S) is simply-laced if

all edges of G are simple.

We call a Coxeter system (W,S) irreducible if its Coxeter graph G is connected.

This terminology comes from the following fact. If G is not connected, then each

connected component of G encodes a Coxeter system. Since m(s, t) = 2 for any

vertices s, t selected from different connected components of G, and since s2 = t2 = 1

now that m(s, s) = m(t, t) = 1, we have st = ts. This means that the Coxeter

groups corresponding to the connected components commute with each other, so W

is isomorphic to the direct product of these Coxeter groups and hence “reducible”.

That said, for most purposes we may study only irreducible Coxeter systems.

We say two Coxeter systems (W,S) and (W ′, S ′) are isomorphic if their Coxeter

graphs are isomorphic, i.e., if there is a bijection ϕ : S → S ′ such that m(s, t) =

m(ϕ(s), ϕ(t)) for all s, t ∈ S. It is possible to have W ∼= W ′ as abstract groups

without the systems (W,S) and (W ′, S ′) being isomorphic. For example, with S =

{s, t} and m(s, t) = 6 we get a Coxeter presentation of the dihedral group D6,

but D6 is isomorphic to the direct product of the symmetric S3 and the group C2

of order 2, so it has a Coxeter presentation with S ′ = {s, t, u} and m(s, t) = 3

and m(s, u) = m(t, u) = 2. This means that when speaking of a Coxeter system,

one should technically specify not only the group W but also the generating set S.

However, when S is tacitly understood, we often only mention W . This will be the

case throughout the article.

There is a well-known classification of all finite irreducible Coxeter systems.

Their Coxeter graphs are shown in Figure 2.1.1. Note that the finite Coxeter groups

10



are exactly all the Weyl groups plus the groups H3, H4 and the dihedral groups

I2(m) where m = 5 or m ≥ 7.

An · · · (n ≥ 1)

Bn · · · (n ≥ 2)

Dn · · · (n ≥ 4)

E6

E7

E8

F4

G2

H3 H4

I2(m) (m = 5 or m ≥ 7)

5

4 4

6

5

m

Figure 2.1.1: Classification of finite irreducible Coxeter systems.

We end the section with a few more definitions. Let (W,S) be a Coxeter system,

and let 〈S〉 be the free monoid generated by S. It is natural to think of elements

in W as represented by elements of 〈S〉, or words or expressions in the alphabet S.

For w ∈ W , we define the length of w in W , written l(w), to be the minimal length

of a word representing w, and we call any such minimal-length word a reduced word

or reduced expression of w. As we shall soon see, reduced words lie at the heart of

the combinatorics of Coxeter groups.

Example 2.1.5. Let W be the symmetric group Sn. Denote each element w ∈ W

by its one-line notation w = [w(1), w(2), · · · , w(n)], define an inversion of w to be

a pair of numbers i, j ∈ [n] such that i < j but w(i) > w(j), and let inv(w) denote

the number of inversions of w. Then it is well known that inv(w) = l(w). One may

prove this by induction on inv(w).
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2.2. Three Representations

Let (W,S) be a Coxeter system. We review some basic facts about words in W

in this section. The main theme of the section is that representations of Coxeter

groups often play a large role in establishing these facts. This will be the case even

for the fact that distinct letters of S are distinct as elements in W , which one would

certainly hope is true!

To describe the first representation, let C2 = {−1,+1} = 〈−1〉, the cyclic group

of order 2. It is clear from Equation 2.1.1 that the map sending every s ∈ S to −1

extends to a unique group homomorphism sgn : W → C2 with sgn(w) = (−1)l(w).

Viewing sgn as a map from W to GL1(R), we call sgn the sign representation of

W . Note that for s ∈ S and w ∈ W , we have l(sw) 6= l(w) as sgn(sw) 6= sgn(w).

Meanwhile, by definition of l, l(sw) and l(w) can differ by at most 1. We have just

proved the following (the proof for the second claim is similar).

Proposition 2.2.1. For any s ∈ S and w ∈ W , either l(sw) = l(w)− 1 or l(sw) =

l(w) + 1; similarly, either l(ws) = l(w)− 1 or l(ws) = l(ws) + 1.

A second representation of W is the geometric representation. It refers to the

map σ in the following theorem.

Proposition 2.2.2 ([Lus14], Proposition 1.3). Let E be the R-vector space with basis

(es)s∈S. For each s ∈ S, define a linear map σs : E → E by σs(et) = et+2 cos π
m(s,t)es

for all t ∈ S. Then

(a) There is a unique homomorphism σ : W → GL(E) with σ(s) = σs for all

s ∈ S. In particular, s 6= 1 for any s ∈ S.

(b) If s 6= t in S, then st has order m(s, t) in W . In particular, s 6= t in W .

12



Here, one may roughly think of E as endowed with a certain geometry where each

pair es, es′ of basis vectors form an “angle” of π− π
m(s,s′) , and think of σs as “reflection”

across the hyperplane perpendicular to es for each s ∈ S, so that σsσs′ becomes

rotation at an angle of 2π
m(s,s′) , much like the rotation s′t′ in Example 2.1.1. (There

are some subtleties with this argument; see [Hum90], Section 5.3.)

In light of Proposition 2.2.2, we shall henceforth identify S with a subset of W .

We call S the set of simple reflections in W . Since m(s, s) = 1 by definition, s2 = 1

by Equation 2.1.1. For s, t ∈ S, the defining relation (st)m(s,t) is then equivalent to

sts · · · = tst · · · , (2.2.2)

where both sides are words that alternate in s and t and have length m(s, t). We

call such a relation a braid relation. The relation means that whenever one side of

Equation 2.2.2 appears consecutively in a word representing an element in W , we

may replace it with the other side of the equation and obtain a different expression

of the same element. We call such a move a braid move. Thus, if two words can be

obtained from each other by braid moves, then they express the same element in

W . It turns out that the converse is also true:

Proposition 2.2.3 (Matsumoto’s Theorem; see, e.g., [Lus14], Theorem 1.9). Any

two reduced words of a same element in W can be obtained from each other by

performing a finite sequence of braid moves.

Example 2.2.4. Let W be the dihedral group with Coxeter generators S = {1, 2}

and m(1, 2) = M for some M ≥ 3. For 0 ≤ k ≤M , let 1k and 2k be the alternating

words 121 · · · and 212 · · · of length k, respectively. In particular, set 10 = 20 = 1W ,

the identity element of W . By Proposition 2.2.2 and the braid relations, if M <∞,
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then W consists of the 2M elements 1k, 2k where 0 ≤ k ≤ M , and they are all

distinct except the equalities 10 = 20 and 1M = 2M ; if M = ∞, then W consists

of the elements 1k, 2k for all k ∈ Z≥0, and they are all distinct except for 10 = 20.

Moreover, it is clear that l(1k) = l(2k) = k for all 0 ≤ k ≤M .

A third representation of W is the permutation representation. For its defini-

tion, see Section 1.3 of [BB05]. The representation serves as a key ingredient in

the proof of the important Strong Exchange Property of Coxeter groups, which is in

turn a key ingredient in the proof of Proposition 2.2.3. To state the property, define

the set of reflections of W as the set T given by

T = {wsw−1 : s ∈ S,w ∈ W}. (2.2.3)

Proposition 2.2.5 (Strong Exchange Property, [BB05], Theorem 1.4.3). Let w =

s1s2 · · · sk (si ∈ S) and t ∈ T . If l(tw) < l(w), then tw = s1 · · · ŝi · · · sk for some

1 ≤ i ≤ k, where si · · · ŝi · · · sk stands for the expression obtained by deleting si from

s1s2 · · · sk.

For x ∈ W , define the left descent set and right descent set of x to be the sets

L(x) = {s ∈ S : l(sx) < l(x)},

R(x) = {s ∈ S : l(xs) > l(x)},

respectively. Then the Strong Exchange Property allows us to characterize the

descent sets in terms of reduced words:

Proposition 2.2.6 (Descent criterion, [BB05], Corollary 1.4.6). Let s ∈ S and

x ∈ W . Then
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(a) s ∈ L(x) if and only if x has a reduced word beginning with s;

(b) s ∈ R(x) if and only if x has a reduced word ending with s.

Proof. We first prove (a): the “if” implication is obvious; conversely, let s1s2 · · · sk

be a reduced expression for w. By the Strong Exchange Property, we have sw =

ss1 · · · ŝi · · · sk for some 1 ≤ i ≤ k. Hence w = ss1 · · · ŝi · · · sk, and the expression on

the right must be reduced, so we are done. The proof of (b) is similar.

Example 2.2.7. Let W = Sn as in Example 2.1.5. Note that any 1 ≤ i ≤ n − 1,

multiplying an element by si on the left swaps the values i and i+ 1 in its one-line

notation, while multiplying an element by si on the right swaps the values at i-th

and (i+1)-th positions in the one-line notation. In light of Example 2.1.5, it follows

that si ∈ L(w) if and only if i + 1 appears to the left of i in the one-line notation

of w, and si ∈ R(w) if and only if the value at the i-th position of w is larger than

the value at the (i+ 1)-th position.

2.3. The Bruhat Order

Let (W,S) be a Coxeter system, and recall the definition of the set T of reflections

from Equation 2.2.3. We may define a binary relation ≺ on W by declaring that

x ≺ y for x, y ∈ W if and only if x = ty and l(x) < l(y) for some t ∈ T , then

take the reflexive and transitive closure of ≺ to form a partial order on W . This

partial order is the important Bruhat order of W ; we denote it by ≤. Note that

by definition and Corollary 2.2.6, we have sw < w for s ∈ S,w ∈ W if and only if

l(sw) = l(w)− 1, if and only if s ∈ L(w).

Remark 2.3.1. The name of the Bruhat order originates from the fact that when

a Coxeter group W is the Weyl group of a complex, simply-connected, semisimple
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Lie group G, W indexes the Bruhat cells in the flag variety associated to G, and

the Bruhat order on W governs the containment of Bruhat cells inside Schubert

varieties (closures of Bruhat cells) in the flag variety ([Che94]).

Example 2.3.2. Let W be the symmetric group Sn. Reflections in W , being conju-

gates of the basic transpositions, are just transpositions. Thus, in light of Example

2.2.7, u ≺ w for u,w ∈ W if and only if the one-line notation of u can be obtained

by swapping two values in the one-line notation of w that appear “out of order”,

i.e., with the larger value appearing to the left of the smaller value. Consequently,

we have u ≤ w if and only if u can be obtained from w by a sequence of such moves

that “rectify” inversions.

The Bruhat order has a convenient characterization in terms of reduced words:

define a subword of any word s1s2 · · · sk ∈ S∗ to be a word of the form si1si2 · · · sil

where 1 ≤ i1 < i2 < · · · < il ≤ k, then:

Proposition 2.3.3 (Subword Property; [BB05], Corollary 2.2.3). Let x, y ∈ W .

Then the following are equivalent:

(a) x ≤ y;

(b) every reduced word for y contains a subword that is a reduced word for x;

(c) some reduced word for y contains a subword that is a reduced word for x.

This immediately implies the following:

Corollary 2.3.4 ([BB05], Corollary 2.2.5). The map w 7→ w−1 on W is an auto-

morphism of the Bruhat order, i.e., u ≤ w if and only if u−1 ≤ w−1.
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2.4. The Subregular Cell

Let (W,S) be an arbitrary Coxeter system. We study a particular subset of W

called the subregular cell in this section. As mentioned in the introduction, the

main object of study in this article will be a subalgebra of the asymptotic Hecke

algebra of (W,S) corresponding to this set.

Definition 2.4.1. We define the subregular cell of W to be the set of all non-identity

elements in W with a unique reduced words. We denote this cell by C and call its

elements the subregular elements of W . For each s ∈ S, we denote by Γs the set

of subregular elements of W whose reduced word ends in s (i.e., whose rightmost

letter is s).

The word “cell” in the definition refers to the fact that C is a Kazhdan-Lusztig cell.

We will elaborate on this fact in Section 3.2.

Observe that by Proposition 2.2.3, an element w ∈ W has a unique reduced

word if and only if one cannot apply any braid moves on any given reduced word of

w. We make this more precise below.

Definition 2.4.2 (Dihedral segments). For any word x ∈ 〈S〉 where no letter s ∈

S appears consecutively, we define the dihedral segments of x to be the maximal

contiguous subwords of x involving two letters.

For example, suppose S = {1, 2, 3} and x = 121313123, then x has dihedral segments

x1 = 121, x2 = 13131, x3 = 12, x4 = 23. We may think of breaking a word into its

dihedral segments as a “factorization” process.

Clearly, the dihedral segments of a word must alternate in two letters and take

the form sts · · · for some s, t ∈ S. It is thus convenient to have the following

notation.
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Definition 2.4.3. For s, t ∈ S and k ∈ N, let (s, t)k denote the alternating word

sts · · · of length k. In particular, we take (s, t)0 to be the empty word ∅ and (s, t)1

to be the word s.

Definition 2.4.4. For s, t ∈ S and k ∈ N, we call (s, t)k saturated if k ≥ m(s, t).

Thus, we may apply a braid move on a word in 〈S〉 whenever the word contains a

saturated dihedral segment. The following is now clear by Proposition 2.2.3.

Proposition 2.4.5 (Subregular Criterion). Let x ∈ 〈S〉. Then x is the reduced

word of an element in C if and only no letter in S appears consecutively in x and

no dihedral segment of x is saturated.

Let G be the Coxeter diagram of (W,S), and recall that a walk on a graph

or directed graph is a sequence of vertices (v1, v2, · · · , vk) such that {vi, vi+1} or

(vi, vi+1) is a edge in the graph for all 1 ≤ i ≤ q − 1, respectively. Now, let

w = s1s2 · · · sq be the reduced word of any element in C, then Proposition 2.4.5

implies that m(si, si+1) ≥ 3, hence {si, si+1} forms an edge in G, for all 1 ≤ i ≤ q−1.

We may therefore naturally visualize w as a walk P (w) := (s1, s2, · · · , sq) on G.

Besides C, we will also be interested in the sets of the form Γs ∩ Γ−1
s where

s ∈ S. The visualizations mentioned above allows us to easily discover when C and

Γs ∩ Γ−1
s (s ∈ S) are finite in terms of Coxeter diagrams.

Theorem 2.4.6. Let (W,S) be an irreducible Coxeter system, and let G = (V,E)

be its Coxeter diagram. Then the following conditions are equivalent.

(a) G is a tree, and at most one edge in G has a weight greater than 3.

(b) The subregular cell C is finite.

(c) The set Γs ∩ Γ−1
s is finite for all s ∈ S.
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(d) The set Γs ∩ Γ−1
s is finite for some s ∈ S.

Proof. Clearly (b) ⇒ (c) ⇒ (d), so it suffices to show (a) ⇒ (b) and (d) ⇒ (a).

Assume (a). Let w be the reduced word of a subregular element, and let P (w)

be its corresponding walk on G as before. We will show C is finite by examining

what P (w) could be like. We will use some standard graph-theoretical terminology

such as paths, descendants and ancestors; their definitions can all be found in Section

6.1 of [BM08].

Let {s, t} be an edge of maximal weight in G (so either all edges in G have

weight 3, or {s, t} is the only edge in G with weight m(s, t) > 3). It is well-known

that since G is a tree, removing the edge {s, t} from G results in a graph with two

connected components where one component is a tree containing s and the other

a tree containing t. Call the first tree the s-tree and the second tree the t-tree,

and view each of the trees as a rooted tree with root s or t. By assumption, an

edge {u, v} in either tree must be of weight m(u, v) = 3. Now, since w cannot

contain any saturated dihedral segments by Proposition 2.4.5, P (w) cannot contain

any contiguous subsequence of the form (u, v, u) where one of u or v is not in the

set {s, t}, therefore P (w) must be one of the following forms.

(1) P (w) lies entirely in the s-tree or the t-tree. In this case, P (w) must be a path

from a vertex to one of its descendants in its tree or a path from a vertex to

one of its ancestors in its tree. Let us call the first type of path a downward

path and the second type an upward path.

(2) P (w) starts with a vertex in one of the two trees, travels along an upward

path in its tree to the tree’s root, travels back and forth along the edge {s, t}

a finite number of times, then finally travels along a downward path in one of
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the trees and terminates. Here, P (w) can travel back and forth the edge {s, t}

at most m(s, t) − 2 times since w cannot contain (s, t)m(s,t) as a contiguous

subword.

Since both the s-tree and t-tree contain only finitely many distinct paths, it follows

that there are finitely many possibilities for P (w), therefore C is finite.

It remains to show that (d) implies (a). Let s ∈ S be such that Γs ∩ Γ−1
s is

finite. Since (W,S) is assumed to be irreducible, G is connected, so to show G is

a tree it suffices to show that it contains no cycles. Now, suppose G contains a

cycle C = (v1, v2, · · · , vk) with v1 = vk, then we may pick a shortest path P = (s =

u1, u2, · · · , ul) among the paths connecting s to a vertex in C. Say ul = vi for some

1 ≤ i ≤ k. For each n > 1, define (P ◦ Cn ◦ P−1) to be the walk

(s = u1, u2, · · · , ul = vi, vi+1, · · · , vk, v1, · · · , vi, · · · , vi = ul, ul−1, · · · , u1 = s)

(2.4.4)

where C is traversed n times between the first and last appearance of vi. Then for

each n, (P ◦Cn ◦ P−1) must be of the form P (wn) where wn is the reduced word of

a subregular element in Γs ∩ Γ−1
s . This contradicts the assumption that Γs ∩ Γ−1

s is

finite, therefore G must be a tree.

Similarly, G cannot contain two edges of weight greater than 3 since otherwise,

G must contain distinct vertices s1, s2, s3, s4 for which m(s1, s2) > 3, m(s3, s4) > 3

and for which G contains a path of the form P = (s1 = v1, s2 = v2, v3, · · · , vk−1 =

s3, vk = s4). In this case, let P be a shortest path from s to a vertex in this path,

consider the circuit

C = (v1, v2, v3, · · · , vk−1, vk, vk−1, vk−2, · · · , v2, v1),
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and define the walks P ◦Cn◦P−1 as in Equation 2.4.4. Then for each n, P ◦Cn◦P−1

must be of the form P (wn) where wn is the reduced word of a subregular element

in Γs ∩Γ−1
s . This again contradicts the assumption that Γs ∩Γ−1

s is finite, so we are

done.

In addition to thinking of C as walks on G, we may encode C with a directed

graph. We describe the construction of the graph below for future use. To begin,

associate to any word w = s1s2 · · · sq ∈ 〈S〉 a sequence of words wi := s1s2 · · · si for

1 ≤ i ≤ q, and let di be the last dihedral segment of wi. Then by Proposition 2.4.5, w

is the reduced word of a subregular element if and only if di is not saturated for any

1 ≤ i ≤ q. In other words, to write down the reduced word of a subregular element

we just need to ensure that we do not create any saturated dihedral segment as we

write down the letters successively. To keep track of the di’s, note that to complete

the traversal of the walk P (wi+1) after the walk P (wi) for some 1 ≤ i ≤ q − 1,

we either (i) travel along the same edge last traversed in P (wi), so that di+1 is an

extension of di, or (ii) travel along an edge different from the last edge traversed in

P (wi), so that di+1 involves a different set of letters than those involved in di. This

motivates the following definition.

Definition 2.4.7 (Subregular graph). Let F,L : S∗ \{∅} → S be the functions that

send any nonempty word w = s1s2 · · · sk ∈ 〈S〉 to its first and last letter s1 and sk,

respectively, and let D = (V,E) be the directed graph where

(a) V = {(s, t)k : s, t ∈ S, 0 < k < m(s, t)},

(b) E consists of directed edges (v, w) pointing from v to w, where

(i) either v = (s, t)k−1 and w = (s, t)k for some s, t ∈ S, 0 < k < m(s, t),
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(ii) or v and w are alternating words that each involves two letters, they

contain different sets of letters, but L(v) = F (w).

We call the graph D the subregular graph of (W,S).

By the paragraph preceding Definition 2.4.7, the map w 7→ Q(w) := (d1, · · · , dq)

establishes a bijection between C and walks on D that start with a vertex of the

form s ∈ S, with the restriction k < m(s, t) in (a) ensuring no di is saturated.

Example 2.4.8. Let (W,S) be the Coxeter system whose Coxeter diagram is the

triangle shown in Figure 2.4.2. The subregular graph D of (W,S) is the directed

graph in Figure 2.4.3. Elements of C correspond to walks on D starting with one

of the three top vertices.

1

2 34

Figure 2.4.2: A Coxeter system (W,S).

Note that we can produce D algorithmically in the following way. First, draw

the vertices s ∈ S. Second, find the edges emanating from the vertices just drawn

using the definition of E from Definition 2.4.7, draw the target vertices of these

edges if they are not already drawn, and draw these edges. If all the target vertices

have been drawn, draw the edges and halt. Third, repeat the second step.

Certain subgraphs of the subregular graph can be used to study the sets Γs∩Γ−1
s

(s ∈ S). By Definition 2.4.1, this set consists of the subregular elements whose
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1

12 13

23 32

31 232 323 21

23

Figure 2.4.3: The subregular graph D of (W,S).

reduced words both start and end with s, so the set Γs∩Γ−1
s corresponds bijectively

with the walks in D of the form (v1, · · · , vk) where v1 = s and vk ends with s. Let

us call such a walk an s-walk. Since s-walks must start at the vertex s of D, to find

all s-walks in D it suffices to consider the subgraph of D produced by using the

algorithm described in the last paragraph but starting with drawing only s in the

first step. We denote this subgraph by Ds.

Example 2.4.9. Let (W,S) be the Coxeter system in Example 2.4.8. The directed

graphs D1 and D2 are shown in Figure 2.4.4 and Figure 2.4.5 (D3 is similar to D2

by the symmetry of the Coxeter diagram of (W,S)). For s ∈ {1, 2}, the elements of

Γs ∩ Γ−1
s correspond bijectively to the paths on Ds that start at the top diamond-

shaped vertex and ends at one of the other diamond-shaped vertices.

Remark 2.4.10. In Section 3.7 of the paper [Lus83], where he first showed that

the sets C and Γs(s ∈ S) form KL cells, Lusztig associated a direct graph Γ′s to the

left cell Γs for each s ∈ S. Our treatment of the graphs D and Ds can be viewed as
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1

12 13

23 32

31 232 323 21

Figure 2.4.4: The graph D1 for (W,S).

2

21 23

13 31

32

232

323 12

Figure 2.4.5: The graph D2 for (W,S).

a reformulation and expansion of the same idea.

24



CHAPTER III

HECKE ALGEBRAS

In this chapter we review some basic facts about Hecke algebras relevant to this

article. Out main reference is [Lus14]. In particular, we define the Hecke algebras

over the ring Z[v, v−1] and use the normalization seen in [Lus14], where the quadratic

relations are (Ts − v)(Ts + v−1) = 0 for all simple reflections s.

Throughout this chapter, let (W,S) be an arbitrary Coxeter system unless

otherwise specified, and let A = Z[v, v−1].

3.1. Hecke Algebras and Their Kazhdan-Lusztig Bases

Following [Lus14], we define the Iwahori-Hecke algebra (or simply the Hecke algebra

for short) of (W,S) to be the unital A-algebra H generated by the set {Ts : s ∈ S}

subject to the relations

(Ts − v)(Ts + v−1) = 0 (3.1.1)

for all s ∈ S and the relations

TsTtTs · · · = TtTsTt · · · (3.1.2)

for all s, t ∈ S, where both sides have m(s, t) factors. Note that when we set v = 1,

the quadratic relation reduces to T 2
s = 1, so H is isomorphic to the group algebra

ZW of W by the braid relations in W and (3.1.2). In this sense, H is often called

a deformation of ZW .

Let x ∈ W , let s1s2 · · · sk be any reduced word of x, and set Tx := Ts1 · · ·Tsk .
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Thanks to Proposition 2.2.3 and Equation 3.1.2, this is well-defined, i.e., different

reduced words of x produce the same element in H. The following is well known.

Proposition 3.1.1 ([Lus14], Proposition 3.3). The set {Tx : x ∈ W} is an A-basis

of H.

The basis {Tx : x ∈ W} is called the standard basis of H. Note that Ts is invertible,

with T−1
s = Ts − (v − v−1), for all s ∈ S. Further, it is easy to check that the map

sending vn 7→ v−n for all n ∈ Z and sending each Ts to T−1
s extends uniquely to a

A-semilinear ring homomorphism ¯: H → H. Now let

A<n = ⊕m:m<nZvm, A≤n = ⊕m:m≤nZvm

for all n ∈ Z, and let

H<0 = ⊕w∈WA<0Tw, H≤0 = ⊕w∈WA≤0Tw.

We have:

Theorem 3.1.2 ([KL79], Theorem 1.1; [Lus14], Theorem 5.2). (a) For any w ∈ W ,

there exists a unique element cw ∈ H≤0 such that c̄w = cw and cw = Tw modH<0.

(b) The set {cw : w ∈ W} is an A≤0-basis of H≤0 and an A-basis of H.

The set {cw : w ∈ W} is the famous Kazhdan-Lusztig basis of H. The transition

matrices between the two bases give rise to the Kazhdan-Lusztig polynomials. By

definition, they are the elements px,y ∈ A for which

cy =
∑
x∈W

px,yTx (3.1.3)
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for all x, y ∈ W .

Notation 3.1.3. From now on we will mention the phrase “Kazhdan-Lusztig” nu-

merous times. We will often abbreviate it to “KL”.

Example 3.1.4. Let s ∈ S. The element Ts + v−1 satisfies

Ts + v−1 = T−1
s + v = Ts − (v − v−1) + v = Ts + v−1,

hence it follows from the characterization of the KL basis that cs = Ts + v−1.

Consequently, pe,s = v−1 for the identity element e of W .

We should mention that many different normalizations of Hecke algebras exist

in the literature. In particular, in the paper [KL79] where the KL basis was first

introduced, the Hecke algebra H is defined over the ring Z[q, q−1] and the defining

quadratic relations for H takes the form

(Ts − q)(Ts + 1) = 0 (s ∈ S). (3.1.4)

In this setting, the involution ¯ : H → H, the KL basis, and the KL polynomials

can still be defined, and the KL polynomials would actually be elements of the

polynomial ring Z[q]. In our setting, however, the KL polynomials turn out to be

elements of Z[v−1].

KL bases and KL polynomials enjoy remarkable positivity properties. For

x, y, z ∈ W , let py,w be the KL polynomial defined in Equation 3.1.3, and let hx,y,z

be the unique elements in A such that

cxcy =
∑
z∈W

hx,y,zcz. (3.1.5)
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Then:

Theorem 3.1.5 (Positivity of the KL basis and polynomials; [EW14], Corollary

1.2).

(a) px,y ∈ Z≥0[v−1] for all x, y ∈ W .

(b) hx,y,z ∈ Z≥0[v, v−1] for all x, y, z ∈ W .

As mentioned in the introduction, these facts, along with the Kazhdan-Lusztig con-

jecture (Conjecture 1.5 of [KL79]), were proved only recently by Elias and Williamson

as a consequence of their proof of Soergel’s conjecture. We refer the reader to their

paper [EW14] and sections 8.5, 8.7 and 8.9 of [Hum08] for detailed account of the

fascinating history of the theorem.

Remark 3.1.6. It is well-known that KL polynomials can be computed recursively

with the aid of the so-called R-polynomials. This is explained in sections 4 and 5 of

[Lus14], and example computations can be found in Chapter 5 of [BB05]. However,

the computation is often very difficult to carry out in practice, even for computers,

and the computation algorithm does not seem adequate for a proof of part (a) of the

above theorem. See Section 8.3 of [Hum08] for more comments on computations.

We end this section by recalling a multiplication formula for KL basis elements

in H. The formula will play an important role in the proof of Lemma 5.2.4 and

Theorem F.

Proposition 3.1.7 (Multplication of KL-basis; [Lus14], Theorem 6.6, Corollary
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6.7). Let x ∈ W , s ∈ S, and let ≤ be the Bruhat order on W . Then

cscy =


(v + v−1)cy if sy < y

csy + ∑
x:sx<x<y

µx,ycx if sy > y

and

cycs =


(v + v−1)cy if ys < y

cys + ∑
x:xs<x<y

µx−1,y−1cx if ys > y

,

where µw,w′ denotes the coefficient of v−1 in pw,w′ for any w,w′ ∈ W .

Here, the coefficients of the form µw,w′ are called µ-coefficients. The µ-coefficients

can be used to define representations of H via W -graphs ([KL79]). Since the ele-

ments cs clearly generate H, the proposition means that essentially the µ-coefficients

also govern the multiplication of KL basis elements in H.

Remark 3.1.8. It is straightforward to check that the map Ts 7→ Ts(s ∈ S) induces

a unique A-linear anti-involution [ : H → H that sends Tw to Tw−1 for all w ∈ W ,

and that the anti-involution commutes with the involution ¯ from Section 3.1. From

this fact and Corollary 2.3.4, it follows that c[w = cw−1 , py,w = py−1,w−1 , µy,w =

µy−1,w−1 and hx,y,z = hy−1,x−1,z−1 for all x, y, z, w ∈ W . That said, we may obtain

either formula in Proposition 3.1.7 from the other via a change of variable y = w−1.

These phenomena, along with Corollary 2.3.4, may be viewed as those of “left-right

symmetry” in Coxeter groups and Hecke algebras (for w−1 is simply the left-right

reverse of w for any word w).
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3.2. Kazhdan-Lusztig Cells

We recall the definition of the Kazhdan-Lusztig cells of W and some relevant facts

in this section.

For each x ∈ W , let Dx : H → A be the linear map such that

Dx(cy) = δx,y

for all y ∈ W , where δx,y is the Kronecker delta symbol. For x, y ∈ W , write

x ≺L y if Dx(cscy) 6= 0 for some s ∈ S, and write x ≺R y if Dx(cycs) 6= 0 for some

s ∈ S. Define ≤L and ≤R to be the transitive and reflexive closures of ≺L and ≺R,

respectively, and define another partial order ≤LR by declaring that x ≤LR y if there

exists a sequence x = z1, · · · , zn = y in W such that zi ≺L zi+1 or zi ≺R zi+1 for all

1 ≤ i ≤ n − 1. Finally, define ∼L to be the equivalence relations such that x ∼L y

if and only if we have both x ≤L y and y ≤L x, and define ∼R,∼LR similarly. The

equivalence classes of ∼L,∼R and ∼L R are called the left (Kazhdan-Lusztig) cells,

right (Kazhdan-Lusztig) cells and 2-sided (Kazhdan-Lusztig) cells of W , respectively.

Clearly, each 2-sided KL cell is a union of left cells as well as a union of right cells.

Since the elements cs (s ∈ S) generate H as an A-algebra, the following is clear:

Proposition 3.2.1 ([Lus14], Lemma 8.2). Let y ∈ W . Then

(a) The set H≤Ly := ⊕x:x≤LyAcx is a left ideal of H.

(b) The set H≤Ry := ⊕x:x≤RyAcx is a right ideal of H.

(c) The set H≤LRy := ⊕x:x≤LRyAcx is a 2-sided ideal of H.

The following is also immediate by inspection of Proposition 3.1.7.
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Proposition 3.2.2. Let x, y ∈ W . Then

(a) x ≺L y precisely when x = y, when x = sy > y for some s ∈ S \L(y), or when

x < y,L(x) 6⊆ L(y) and µx,y 6= 0.

(b) x ≺R y precisely when x = y, when x = ys > y for some s ∈ S \ R(y), or

when x < y,R(x) 6⊆ R(y) and µx−1,y−1 6= 0.

Given this alternative characterization of ≺, Corollary 2.3.4 now implies that

x ≤L y if and only if x−1 ≤R y−1. We have just proved the following.

Proposition 3.2.3 ([Lus14], Section 8.1). The map x 7→ x−1 takes left cells in W

to right cells, right cells to left cells, and 2-sided cells to 2-sided cells.

The following theorem of Lusztig also uses the description of ≺ in Proposition

3.2.2 in its proof. It justifies the name “cell” for the set C in Definition 2.4.1.

Theorem 3.2.4 ([Lus83], Theorem 3.8). The set C is a 2-sided Kazhdan-Lusztig

cell of W , and Γs is a left Kazhdan-Lusztig cell of W for each s ∈ S.

We recall one more fact about cells for later use.

Proposition 3.2.5 ([Lus14], Section 14.1). For any x ∈ W , we have x ∼LR x−1.

3.3. The Dihedral Case

To illustrate the theory developed in this chapter and for future reference, we discuss

the KL basis, KL polynomials, and KL cells for dihedral Coxeter systems in this

section. Most of the material in this section can be found in Chapter 7 of [Lus14].

Let (W,S) be a dihedral Coxeter system as in Example 2.2.4, with S = {1, 2}

and m(s, t) = M for some 3 ≤ M ≤ ∞. Recall that 1k and 2k stand for the

31



alternating words 121 · · · and 212 · · · of length k for any 0 ≤ k ≤ M , respectively,

and note that y < w in W if and only if l(y) < l(w) by Proposition 2.3.3.

We first describe the KL basis W . Recall from Example 3.1.4 that cs = Ts+v−1

for any s ∈ S. Let

γw =
∑
y:y≤w

vl(y)−l(w)Ty (3.3.6)

for all w ∈ W . It is clear that γe = 1 = ce, and it is straightforward to check that

γ1 = c1γe, γ2 = c2γe, γ12 = c1γ2, γ21 = c2γ1, (3.3.7)

γ1k+1 = c1γ2k − γ1k−1 , γ2k+1 = c2γ1k − γ2k−1 (3.3.8)

for all 2 ≤ k < M . These equations allows us to show by induction that γw is

invariant under the involution ¯ and that γw = Tw mod H<0, therefore γw = cw for

all w ∈ W .

From Equation 3.3.6, it now follows that

py,w = vl(y)−l(w)

for any y, w ∈ W such that y < w.

Let k1 := (1k)−1 = · · · and k2 = (2k)−1 for each 0 ≤ k ≤ M , and write x → y

or y ← x if y ≺L x. Then equations (3.3.7) and (3.3.8) implies that the ≺ relations

in W are as follows if M <∞.

01→ 11 � 21 � 31 � · · ·� M−11→ M1, (3.3.9)

02→ 12 � 22 � 32 � · · ·� M−12→ M2. (3.3.10)
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It follows that the sets L1 = {e}, L2 = {k1 : 0 < k < M}, L3 = {k2 : 0 < k <

M} and L4 = {M1} are the left cells of W if M < ∞. Combined with similar

computations for the ≺R relations, we may similarly see that L1, L
′
2 = {1k : 0 <

k < M}, L′3 = {2k : 0 < k < M} and L4 are the right cells of W and that

L1, L2 ∪ L3, L4 are the 2-sided cells of W . Of course, we may see this directly from

Theorem 3.2.4 once we note that L2 = Γ1, L3 = Γ2 and that M1 must form its own

cell by Proposition 3.1.7. The KL cells of W can be described similarly if M =∞:

L1, L2, L3 are the left cells, L1, L
′
2, L

′
3 are the right cells, and L1, L2 ∪ L3 are the

2-sided cells.

Finally, we record a fact that we will use in Section 5.3. We need some notation:

if an alternating word ik ends in the letter j for some i, j ∈ {1, 2}, k ∈ Z≥0 and we

wish to emphasize this fact, we shall write ikj for the word. Similarly, we write ikj

for kj if the latter starts with the letter i.

Proposition 3.3.1. Suppose x = hki and y = ilj for some h, i, j ∈ {1, 2} and

0 < k, l < M . For d ∈ Z, let φ(d) = k + l − 1− 2d. Then

cxcy = chkicilj = (v + v−1)
min(k,l)−1∑

d=max(k+l−M,0)
chφ(d)j + ε

in H, where ε = f · c1M for some f ∈ A if M <∞ and ε = 0 otherwise.

Proof. We sketch a possible proof: use induction on k. The base case k = 1 follows

from Proposition 3.1.7. For the inductive step, use equations (3.3.7) and (3.3.8)

to write cx as ch(ck−1i) or ch(ck−1i) − (c
k−2i), use earlier cases of the induction to

multiply the parenthesized part(s) with cy and use Equation (3.3.8) again to multiply

ch onto the relevant products, then simplify the results to the desired form.

We will decipher the sum in the proposition more carefully in Section 5.3.
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CHAPTER IV

THE SUBREGULAR J-RING

In this chapter, we describe Lusztig’s construction of the asymptotic Hecke algebra

J of a Coxeter system and recall some basic properties of J . We show how KL cells

in W give rise to subalgebras of J , then shift our focus to a particular subalgebra

JC of J corresponding to the subregular cell of W . We also recall the definition of

a based ring and explain why JC is a based ring.

Throughout the section, suppose (W,S) is an arbitrary Coxeter system with

S = [n] = {1, 2, · · · , n} unless otherwise stated. Let H be the Iwahori-Hecke algebra

of (W,S), and let {Tw : w ∈ W}, {cw : w ∈ W} and {py,w : y, w ∈ W} be the

standard basis, KL basis and KL polynomials in H, respectively.

4.1. The Asymptotic Hecke algebra J

Consider the elements hx,y,z ∈ Z[v, v−1] (x, y, z ∈ W ) from Equation 3.1.5. Lusztig

showed in [Lus14] that for any z ∈ W , there exists a unique integer a(z) ≥ 0 that

satisfies the conditions

(a) hx,y,z ∈ va(z)Z[v−1] for all x, y ∈ W ,

(b) hx,y,z 6∈ va(z)−1Z[v−1] for some x, y ∈ W .

Define γx,y,z−1 to the non-negative integer such that

hx,y,z = γx,y,z−1va(z) mod va(z)−1Z[v−1],
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and define multiplication on the free abelian group J = ⊕w∈WZw by

txty =
∑
z∈W

γx,y,z−1tz

for all x, y ∈ W . It is known in that this product is well-defined (i.e., γx,y,z−1 = 0 for

all but finitely many z ∈ W for all x, y ∈ W ), and the multiplication defined above

is associative, making J a ring (see [Lus14], 18.3). We call J the asymptotic Hecke

algebra or simply the J-ring of (W,S).

Note that the J-ring is naturally equipped with an anti-involution, thanks to

the symmetry mentioned in Remark 3.1.8:

Proposition 4.1.1. The Z-linear map with tx 7→ tx−1 is an anti-homomorphism of

J .

Proof. Recall from Remark 3.1.8 that hx,y,z = hy−1,x−1,z−1 for all x, y, z ∈ W . It

follows that γx,y,z = γy−1,x−1,z−1 for all x, y, z ∈ W . The result now follows from the

definition of J .

4.2. Subalgebras of J

For each x ∈ W , let ∆(x) be the unique non-negative integer such that

p1,x ∈ nxv−∆(x) + v−∆(x)−1Z[v−1]

for some nx 6= 0. Let

D = {x ∈ W : a(x) = ∆(x)}.
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It is known that d2 = 1 for all d ∈ D (see Chapter 14 of [Lus14]), and D is called

the set of distinguished involutions. There are many intricate connections between

D, the coefficients γx,y,z, and KL cells in W . The connections would lead us to

many subalgebras of J that are indexed by cells and have units provided by the

distinguished involutions. We highlight the relevant facts below.

Proposition 4.2.1 ([Lus14], Conjectures 14.2). Let x, y, z ∈ W . Then

(1) γx,y,z = γy,z,x.

(2) If γx,y,z 6= 0, then x ∼L y−1, y ∼L z−1 and z ∼L x−1.

(3) If γx,y,d 6= 0 for some d ∈ D, then y = x−1 and γx,y,d = 1. Further, for each

x ∈ W there is a unique element d ∈ D such that γx,x−1,d = 1.

(4) Each left KL cell Γ of W contains a unique element d from D. Further, for

this elements d, we have γx−1,x,d = 1 for all x ∈ Γ.

Remark 4.2.2. In the paper [Lus87a], where Lusztig first defined the asymptotic

Hecke algebra J , Proposition 4.2.1 is proved for Coxeter systems satisfying certain

mild conditions. The conditions can be found in Section 1.1 of the paper, the

four parts of the proposition appear in Theorem 1.8, Corollary 1.9, Proposition

1.4 and Theorem 1.10 of the paper, respectively. For arbitrary Coxeter systems,

the statements of the proposition, as well as the statement in Proposition 3.2.5,

appear only as conjectures in Chapter 14 of [Lus14]. However, [Lus14] studies Hecke

algebras in a more general setting, namely, with possibly unequal parameters, and

the statements are known to be true in the setting of this paper, which is called

the equal parameter or the split case in the book. The proofs of the statements rely

heavily on Theorem 3.1.5; see Chapter 15 of [Lus14].
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Definition 4.2.3. For any subset X of W , define JX := ⊕w∈XZtw.

Corollary 4.2.4 ([Lus14], Section 18.3).

(a) Let Γ be any left KL cell in W , say with Γ ∩ D = {d}. Then the subgroup

JΓ∩Γ−1 is actually a unital subalgebra of J ; its unit is td.

(b) For any 2-sided cell E in W , the subgroup JE is a subalgebra of J . Further,

we have a direct sum decomposition J = ⊕E∈CJE of algebras, where C is the

collection of all 2-sided KL cells of W .

(c) If E is a 2-sided cell such that E ∩D is finite, then JE is a unital algebra with

unit element ∑d∈E∩D td.

(d) If D is finite, then J is a unital algebra with unit ∑d∈D td.

Proof. We will repeatedly use Proposition 4.2.1. When we say part (i), we will mean

part (i) of the proposition.

(a) Let x, y ∈ Γ∩Γ−1, and suppose γx,y,z−1 6= 0 for some z ∈ W . Then by part (2),

z = (z−1)−1 ∼L y ∈ Γ, and z−1 ∼L x−1 so that z ∼R x ∈ Γ−1 by Proposition

3.2.3. Thus, z ∈ Γ ∩ Γ−1. It follows that JΓ∩Γ−1 is a subalgebra of J .

It remains to show that txtd = tx = tdtx for all x ∈ Γ ∩ Γ−1. For y ∈ Γ ∩ Γ−1,

since γd,x,y = γx,y,d by Part (1), γd,x,y 6= 0 only if y = x−1 by Part (3), and

in this case γd,x,y = γd,x,x−1 = γx,x−1,d = 1. This implies tdtx = tx. Similarly,

γx,d,y = γy,x,d 6= 0 for some y ∈ Γ ∩ Γ−1 only if y = x−1, whence γx,d,y =

γx,d,x−1 = γx−1,x,d = 1 by Part (4). This implies txtd = tx.

(b) Let x, y ∈ E, and suppose γx,y,z−1 6= 0 for some z ∈ W . Let Γ be the left cell

containing y. Then Γ ⊆ E. By part (2), z ∼L y, therefore z ∈ Γ ⊆ E as well,

hence JE is a subalgebra.
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Now suppose x, y ∈ W belong in different 2-sided cells E and E ′, say with

x ∈ E and y ∈ E ′. Then y−1 ∈ E ′ by Proposition 3.2.5, hence x 6∼L y−1. Part

(2) now implies that γx,y,z−1 = 0 for all z ∈ W , therefore txty = 0. It follows

that J = ⊕E∈CJE.

(c) By part (4) of Proposition 4.2.1, the fact that E ∩ D is finite implies E is a

disjoint union of finitely many left cells Γ1, · · · ,Γk. Suppose Γi ∩ D = {di} for

each i ∈ [k], and let x ∈ E, say with x ∈ Γi and x−1 ∈ Γi′ for some i, i′ ∈ [k].

Then by parts (1), (2) and (3), γx,dj ,y = γy,x,dj 6= 0 for some y ∈ E, j ∈ [k] only

if dj ∼L x and y = x−1 . In this case, j = i and γx,dj ,y = γy,x,di = 1 by part (4).

Consequently,

tx

 k∑
j=1

tdj

 = txtdi = tx.

Similarly, γdj ,x,y = γx,y,dj for some y ∈ E, j ∈ [k] only if dj ∼L x−1 and y = x−1,

in which case j = i′ and γdj ,x,y = γx,x−1,di′
= 1. Consequently,

 k∑
j=1

tdj

 tx = tdi′ tx = tx.

It follows that ∑d∈E∩D td = ∑k
j=1 tdk is the unit of JE, as claimed.

(d) Let x ∈ W , and let d1, d2 be the unique distinguished involution in the left cell

of x and x−1, respectively. To show ∑
d∈D td is the unit of J , it suffices to show

that

tx

∑
d∈D

td

 = txtd1 = tx = td2tx =
∑
d∈D

td

 .
This can be proved in a similar way to the last part.

Remark 4.2.5. In part (3) of the corollary, we dealt with the case where D is
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finite. When D is infinite, J only has a generalized unit element in the sense that

the elements td(d ∈ D) satisfy tdtd′ = δd,d′ and ∑
d,d′∈D tdJtd′ = J . Lusztig also

showed that even when D is not finite, J can be naturally imbedded into a certain

unital algebra ([Lus14], 18.13). We will not need these technicalities, though.

4.3. The Subregular J-ring

Recall the definition of the subregular cell C and the left cells Γs (s ∈ S) from

Section 2.4. By Corollary 4.2.4, the sets JC and JΓs∩Γ−1
s

are subalgebras of the

asymptotic Hecke algebra J . From now on, we shall call JC the based ring of the

subregular cell of (W,S), or simply the subregular J-ring of (W,S). For each s ∈ S,

we shall write Js := JΓs∩Γ−1
s

. This article is devoted to the study of the algebras JC

and Js(s ∈ S). These algebras naturally possess the additional structures of a based

ring. We explain this below.

The following three definitions are taken from Chapter 3 of [EGNO15].

Definition 4.3.1 (Z+-rings). Let A be a ring which is free as a Z-module.

(a) A Z+-basis of A is a basis B = {ti}i∈I such that for all i, j ∈ I, titj = ∑
k∈I c

k
ijtk

where ckij ∈ Z≥0 for all k ∈ I.

(b) A Z+-ring is a ring with a fixed Z+-basis and with an identity that is a

nonnegative linear combination of the basis elements.

(c) A unital Z+-ring is a Z+ ring such that the identity 1 is a basis element.

Let A be a Z+-ring, and let I0 be the set of i ∈ I such that ti occurs in the

decomposition of 1. We call the elements of I0 the distinguished index set. Let

39



τ : A→ Z denote the group homomorphism defined by

τ(ti) =


1 if i ∈ I0,

0 if i 6∈ I0.

Definition 4.3.2 (Based rings). A Z+-ring A with a basis {ti}i∈I is called a based

ring if there exists an involution i 7→ i∗ on I such that the induced map

a =
∑
i∈I

citi 7→ a∗ :=
∑
i∈I

citi∗ , ci ∈ Z

is an anti-involution of the ring A, and

τ(titj) =


1 if i = j∗,

0 if i 6= j∗.

(4.3.1)

Example 4.3.3. Here are two familiar examples of based rings.

(a) For each n ≥ Z≥1, the ring of matrices Matn×n(Z) is a based ring where

I = {(i, j) : 1 ≤ i, j ≤ n}, the basis consists of the elementary matrices

E(i,j) := Eij(1 ≤ i, j ≤ n), (i, j)∗ = (j, i), and I0 = {(i, i) : 1 ≤ i ≤ n}. The

ring is unital only when n = 1.

(b) For any group G, the group ring ZG is a unital based ring, with the basis

being the group elements and g∗ = g−1 for each g ∈ G.

For more examples of based rings, see Example 3.1.9 of [EGNO15].

We now use results from Section 4.2 to show that under certain finiteness con-

ditions, all the subalgebras of J introduced in that section are based rings.
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Proposition 4.3.4. (a) Let E be any 2-sided KL cell in W that contains finitely

many distinguished involutions. Then the algebra JE is a based ring with basis

{tx}x∈I with index set I = E, with distinguished index set I0 = E ∩ D, and

with the map ∗ : I → I given by x∗ = x−1.

(b) Let Γ be any left KL cell in W , and let d be the unique element in Γ∩D. Then

JΓ∩Γ−1 is a unital based ring with index set I = Γ ∩ Γ−1, with distinguished

index set I0 = {d}, and with ∗ : I → I given by x∗ = x−1.

Proof. (1) The set {tx}x∈E forms a Z+-basis of JE by the definition of JE, and JE is

Z+-ring with distinguished index set E ∩ D since the its unit is ∑d∈E∩D td by Part

(c) of Corollary 4.2.4. JE. The fact that x 7→ x−1 induces an anti-involution on JE

follows from Proposition 4.1.1. Finally, Equation (4.3.1) holds by parts (3) and (4)

of Proposition 4.2.1. We have now shown that JE is a based ring.

(2) The proof is similar to the previous part, with the only difference being that

JΓ∩Γ−1 is unital with I0 = {d} since td is its unit by Part (a) of Corollary 4.2.4.

Corollary 4.3.5. Let (W,S) be a Coxeter system where S is finite (this will be the

case for all Coxeter systems in this paper). Let C,Γs, JC and Js be as before. Then

(a) JC is a based ring with index set I = C, distinguished index set I0 = S and

anti-involution induced by the map ∗ : I → I with x∗ = x−1.

(b) For each s ∈ S, Js is a based ring with index set I = Γs ∩ Γ−1
s , distinguished

index set I0 = {s} and anti-involution induced by the map ∗ : I → I with

x∗ = x−1.

Proof. This is immediate from Proposition 4.3.4 and Theorem 3.2.4 once we show

that for each s ∈ S, the unique distinguished involution in Γs is exactly s. So it
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suffices to show that s ∈ D for each s ∈ S. This is well-known (we will also see this

from the proof of Corollary 5.1.2, where we show a(s) = ∆(s) = 1 for all s ∈ S).

As mentioned in the introduction, rings of finite rank are of particular interest:

Definition 4.3.6 (Multifusion rings and fusion rings). A multifusion ring is a based

ring of finite rank. A fusion ring is a unital based ring of finite rank.

In view of Corollary 4.3.5, Theorem 2.4.6 now immediately implies the following.

Theorem 4.3.7. Let (W,S) be an irreducible Coxeter system, and let G = (V,E)

be its Coxeter diagram. Then the following conditions are equivalent.

(a) G is a tree, and at most one edge in G has a weight greater than 3.

(b) The based ring JC is a multifusion ring.

(c) The based ring Js is a fusion ring for all s ∈ S.

(d) The based ring Js is a fusion ring for some s ∈ S.

We will study the structure of all fusion rings of the form Js in Section 6.3.

To end the section, let us formulate the notion of an isomorphism of based rings

for future use. Naturally, we define it to be a ring isomorphism that respects all the

additional defining structures of a based ring.

Definition 4.3.8 (Isomorphism of Based Rings). Let A be a based ring {ti}i∈I

with index set I, distinguished index set I0 and anti-involution ∗ induced by a map
∗ : I → I. Let B be a based ring {tj}j∈J with index set J , distinguished index set

J0 and anti-involution ∗ induced by a map ∗ : J → J . We define an isomorphism of

based rings from A to B to be a unit-preserving ring isomorphism Φ : A→ B such

42



that Φ(ti) = tφ(i) for all i ∈ I where φ is a bijection from I to J with φ(I0) = J0

and such that Φ(t∗i ) = (Φ(ti))∗ for all i ∈ I.
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CHAPTER V

PRODUCTS IN JC

The notations from the previous sections remain in force. In particular, we assume

(W,S) is an arbitrary Coxeter system with S = [n] for some n ∈ N, and we use C

to denote the subregular cell.

In this chapter, we develop the tools to study the algebra JC . The notion of

the dihedral segments of a word from Section 2.4 plays a central role. The main

theorem of the chapter is Theorem F, which reduces the study of a basis element tw

in JC to only the basis elements corresponding to its dihedral segments. We explain

how to use Theorem F to compute the products of arbitrary basis elements in JC .

5.1. The a-value Characterization of C

Recall that in Section 2.4, we used the notion of dihedral segments to characterize

the subregular cell C in terms of reduced words. We give another characterization

of the subregular cell C in this section, this time in terms of the a-function defined

in Section 4.1. To start, we recall some properties of a .

Proposition 5.1.1 ([Lus14], 13.7, 14.2). Let x, y ∈ W . Then

(a) a(x) ≥ 0, where a(x) = 0 if and only if x equals the identity element of W .

(b) a(x) ≤ ∆(x).

(c) If x ≤LR y, then a(x) ≥ a(y). Hence, if x ∼LR y, then a(x) = a(y).

(d) If x ≤L y and a(x) = a(y), then x ∼L y.

(e) If x ≤R y and a(x) = a(y), then x ∼R y.
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(f) If x ≤LR y and a(x) = a(y), then x ∼LR y.

Corollary 5.1.2. C = {x ∈ W : a(x) = 1}.

Proof. Let s ∈ S. Then a(s) ≥ 1 by Part (1) of the proposition. On the other hand,

recall from Example 3.1.4 that cs = Ts + v−1 ([Lus14], § 5), therefore ∆(s) = 1

by the definition of ∆ and a(s) ≤ 1 by part (2) of the proposition. It follows that

a(s) = 1. Since s is clearly in C, Part (3) implies that a(x) = 1 for all x ∈ C.

Now let x ∈ W \ C. Then either x is the group identity and a(x) = 0, or x

has a reduced expression x = s1s2 · · · sk with k > 1 and each si ∈ S. In the latter

case, x ≤L sk by Proposition 3.1.7, so a(x) ≥ a(sk) = 1. Meanwhile, since x 6∈ C,

x 6∼LR sk, so a(x) 6= a(sk) by part (6) of Proposition 5.1.1. It follows that a(x) > 1,

and we are done.

The a-value characterization of C leads to a shortcut for studying products in

JC . To see how, consider the filtration

· · · ⊂ H≥2 ⊂ H≥1 ⊂ H≥0 = H.

of the Hecke algebra H where

H≥a = ⊕x:a(x)≥aAcx

for each a ∈ N. By parts (3)-(6) of Proposition 5.1.1 and Proposition 3.2.1, this may

be viewed as a filtration of submodules when we view H as its regular left module.

It induces the left modules

Ha := H≥a/H≥a+1, (5.1.1)
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where Ha is spanned by images of the elements {cx : a(x) = a}. In particular, H1

is spanned by the images of {cx : x ∈ C}. By the construction of J , to compute

a product tx · ty in Jc, it then suffices to consider the product cx · cy in H1. More

precisely, we have arrived at the following shortcut.

Corollary 5.1.3. Let x, y ∈ C. Suppose

cxcy =
∑
z∈W

hx,y,zcz

for hx,y,z ∈ A. Then

txty =
∑
z∈T

γx,y,z−1tz

in JC, where T = {z ∈ C : hx,y,z ∈ nzv + Z[v−1] for some nz 6= 0}.

The corollary plays a key role in the proof of Lemma 5.2.4. A simple application

of it reveals the following, which we will use repeatedly in the next section.

Corollary 5.1.4. Let x = s1s2 · · · sk be the reduced word of an element in C. Then

ts1tx = tx = txtsk .

Proof. This follows immediately from Corollary 5.1.3 and Proposition 3.1.7.

5.2. The Dihedral Factorization Theorem

Recall the definition of dihedral segments from Definition 2.4.2. This subsection is

dedicated to the proof of Theorem F. We restate it below.
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Theorem F. (Dihedral factorization) Let x be the reduced word of an element in

C, and let x1, x2, · · · , xl be the dihedral segments of w. Then

tx = tx1 · tx2 · · · · · txl .

Before we prove the theorem, let us make an assumption and a definition. First,

since no simple reflection can appear consecutively in a reduced word of any element

in W , we make the following assumption.

Assumption 5.2.1. Henceforth in this article, whenever we speak of a word in a

Coxeter system, we assume that no simple reflection appears consecutively in the

word.

Second, note that the process of factoring a reduced word (satisfying the above

assumption) into its dihedral segments can be easily reversed, that is, we may recover

a word from its dihedral segments by taking a proper “product”. This motivates the

following definition.

Definition 5.2.2 (Glued product). For any two words x1, x2 ∈ 〈S〉 such that x1 ends

with the same letter that x2 starts with, say x1 = · · · st and x2 = tu · · · , we define

their glued product to be the word x1 ◦ x2 := · · · stu · · · obtained by concatenating

x1 and x2 then deleting one occurrence of the common letter.

The operation ◦ is obviously associative. Further, if x1, x2, · · · , xk are the di-

hedral segments of x, then

x = x1 ◦ x2 ◦ · · · ◦ xk. (5.2.2)

For example, in the example following Definition 2.4.2, we saw that the word x =
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121313123 has dihedral segments x1 = 121, x2 = 13131, x3 = 12, x4 = 23, and now

we have x1 ◦ x2 ◦ x3 ◦ x4 = 121 ◦ 13131 ◦ 12 ◦ 23 = 121313123 = x.

To prove the theorem, we need to examine products in H and apply Corollary

5.1.3. To exploit the uniqueness of reduced expressions of elements of C, we need

the following well-known fact.

Proposition 5.2.3 ([KL79], Statement 2.3.e). Let x, y ∈ W, s ∈ S be such that

x < y, sy < y, sx > x. Then µ(x, y) 6= 0 if and only if x = sy; further, in this case,

µ(x, y) = 1.

Lemma 5.2.4. Let x = s1s2s3 · · · sk be the reduced word of an element in C. Let

x′ = s2s3 · · · sk and x′′ = s3 · · · sk be the sequences obtained by removing the first

letter and first two letters from x, respectively. Then in H1, we have

cs1cx′ =


cx′′ if s1 6= s3;

cx + cx′′ if s1 = s3.

Proof. By Proposition 3.1.7 and Corollary 5.1.2, in H1 we have

cscx′ = cx +
∑
P

µz,x′cz

where P = {z ∈ C : s1z < z < x′}. Let z ∈ P . Then by Propositions 2.3.3

and 2.2.6, z has a unique reduced expression that is a proper subword of x′ and

starts with s1. Since s1 6= s2 now that x is reduced, we have L(z) = {s1}, therefore

s2x
′ < x′ while s2z > z. Now, if l(z) < l(x′) − 1, then z 6= s2x, so µ(z, x′) = 0 by

Lemma 5.2.3. If l(z) = l(x′)− 1, then we must have s3 = s1 and z = x′′ = s2x
′, for

otherwise s2 6= s1, s3 6= s1, and any subword of x′ = s2s3 · · · sk that starts with s1
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must have length smaller than l(x′)− 1. This implies µ(z, x′) = 1 by Lemma 5.2.3.

The lemma now follows.

Remark 5.2.5. We may derive Lemma 5.2.4 from Lemma 6.2 of [Gre07]. However,

that lemma involves the notion of star operations, and we choose not to discuss it

here as we will not need it anywhere else..

We are ready to prove Theorem F.

Proof of Theorem F. We use induction on l. The base case where l = 1 is trivially

true. If l > 1, let y be the glued product y = x2 ◦ x3 ◦ · · · ◦ xl so that, by induction,

it suffices to show

tx = tx1 · ty. (5.2.3)

Suppose y starts with some t ∈ S. Note that the construction of the dihedral

segments guarantees that x1 contains at least two letters and is of the alternating

form w1 = · · · tst for some s ∈ S, while x2, hence also y, is of the form tu · · · for

some u ∈ S \ {s, t}.

We prove Equation (5.2.3) by induction on the length k = l(x1) of x1. For the

base case k = 2, Proposition 3.1.7 and Lemma 5.2.4 imply that

cx1cy = cstctu··· = csctctu··· = (v + v−1)cstu··· = (v + v−1)cx1◦y

in H1. Equation (5.2.3) then follows by Corollary 5.1.3. Now suppose k > 2, write

x1 = s1s2s3 · · · sk, and let x′1 = s2s3 · · · sk and x′′1 = s3 · · · sk. Since the letters

s1, s2, · · · , sk alternate between s1 and s2, Proposition 3.1.7 and Lemma 5.2.4 imply

that

cs1s2 · cx′1 = cs1cs2cx′1 = (v + v−1)cs1cx′1 = (v + v−1)(cx1 + cx′′1 )
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and similarly

cs1s2 · cx′1◦y = (v + v−1)(cx1◦y + cx′′1◦y).

From the last two equations, it follows that

ts1s2tx′1 = tx1 + tx′′1 ,

ts1s2tx′1◦y = tx1◦y + tx′′1◦y ,

therefore

tx1ty = (ts1s2tx′1 − tx′′1 )ty = ts1s2tx′1◦y − tx′′1◦y = tx1◦y + tx′′1◦y − tx′′1◦y = tx1◦y = tx,

where the second equality holds by the inductive hypothesis now that l(x′1) < l(x1).

This completes our proof.

To interpret the theorem, consider the following definition.

Definition 5.2.6. (Dihedral elements) We define a dihedral element in JC to be a

basis element of the form tx, where x appears as a dihedral segment of some y ∈ C.

In light of the definition, Theorem F means that dihedral elements generate JC .

The theorem also means that the combinatorial factorization of an element into its

dihedral segments in Equation 5.2.2 carries over to an algebraic one in JC .

5.3. Products of Dihedral Elements

Now that Theorem F allows us to factor any basis element in JC into dihedral

elements, to understand products of the form txty for x, y ∈ W , it is natural to first
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study products of dihedral elements. We do so in this section; the products txty for

arbitrary x, y ∈ C will be treated in the next section.

As we shall see in the next section, the only interesting products of dihedral

elements we need to study are those of the form txty where x and y are generated

by the same set of two simple reflections, say {i, j} ⊆ S, and x ends with the same

letter that y starts with. This brings us to exactly the situation in Proposition 3.3.1.

Let M = m(i, j) as usual.

Proposition 5.3.1. Suppose x = hki and y = ilj for some h, i, j ∈ {1, 2} and

0 < k, l < M . For d ∈ Z, let φ(d) = k + l − 1− 2d. Then in JC, we have

txty = thkitilj =
min(k,l)−1∑

d=max(k+l−M,0)
thφ(d)j.

Proof. This follows immediately from proposition 3.3.1 and 5.2.4.

Let us decipher the formula from Proposition 5.3.1. It says that the product

txty is the linear combination of the terms tz, all with coefficient 1, where z runs

through the elements in C whose reduced words begin with the same letter as x,

end with the same letter as y, and have lengths from the set A \B where

A = {|k − l|+ 2j + 1 : 0 ≤ j ≤ min(k, l)− 1}

and

B = {j : j ∈ A, j ≥M} ∪ {2M − j : j ∈ A, j ≥M}.

Note that when k = 1, this agrees with Corollary 5.1.4.

Example 5.3.2 (Product of dihedral elements). Let s, t ∈ S.
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(a) Suppose m(s, t) = 7, x = stst and y = tst. Then by Proposition 5.3.1,

txty = tst + tstst + tststst.

(b) Suppose m(s, t) = 7, x = stst and y = tsts. Then by Proposition 5.3.1,

txty = ts + tsts + tststs +����XXXXtstststs = ts + tsts + tststs.

(c) Suppose m(s, t) = 7, x = tst and y = tststs. Then by Proposition 5.3.1,

txty = ttsts +XXXttststs +����ttstststs = ttsts.

The rule we described before the example to get the list of lengths for the z’s

is well-known; it is the truncated Clebsch-Gordan rule. It governs the multplication

of the basis elements of the Verlinde algebra of the Lie group SU(2), which appears

as the Grothendieck ring of certain fusion categories (see [EK95] and Section 4.10

of [EGNO15]). Since it will cause no confusion, we will also refer to this algebra

simply as the Verlinde algebra.

Definition 5.3.3 (The Verlinde algebra, [EK95]). Let M ∈ Z≥2 ∪ {∞}. The M-th

Verlinde algebra is the free abelian group VerM = ⊕1≤k≤M−1ZLk, with multiplication

defined by

LkLl =
min(k,l)−1∑

d=max(k+l−M,0)
Lk+l−1−2d.

We call the Z-span of the elements Lk where k is an odd integer the odd part of

VerM , and denote it by Verodd
M .

Note that by the multiplication formula, Verodd
M is clearly a subalgebra of VerM .
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Indeed, suppose (W,S) is a dihedral system, say with S = {1, 2} and m(1, 2) = M

for some M ∈ Z≥3 ∪{∞}, then we claim that the subalgebra J1 of JC is isomorphic

to Verodd
M . To see this, recall that J1 is given by the Z-span of all t1k where k is odd,

0 < k < M , and 1k is the alternating word 121 · · · 1 containing k letters. Since the

multiplication of such basis elements are governed by the truncated Clebsch-Gordan

rule in Proposition 5.3.1, the map t1k 7→ Lk induces an isomorphism. Furthermore,

it is easy to check that both VerM and Verodd
M are unital based rings with L1 as

the unit and with the identity map as the anti-involution, so this isomorphism is

actually an isomorphism of based rings. By a similar argument, J2 is isomorphic

to Verodd
M as based rings as well. We discuss incarnations of Verodd

M for some small

values of M below.

Example 5.3.4. Let (W,S) be a dihedral system with S = {1, 2} and M = m(1, 2).

(a) Suppose M = 5. Then J1 = Zt1 ⊕ Zt121, where t1 is the unit and

t121t121 = t1,

so J1, hence Verodd
5 , is isomorphic to the Ising fusion ring that arises from the

Ising model of statistical mechanics (see [EGNO15], Example 3.1.9).

(b) Suppose M = 6. Then J1 = Zt1 ⊕ Zt121 ⊕ Zt12121, where t1 is the unit and

t121t121 = t1+t121+t12121, t121t12121 = t12121t121 = t121, t12121t12121 = t1.

On the other hand, the category C of complex representations of the symmetric

group S3 has three non-isomorphic simple objects 1 (the trivial representation),
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χ (the sign representation) and V satisfying

1⊗ χ = χ⊗ 1 = χ, 1⊗ V = V ⊗ 1 = V,

V ⊗ V = 1⊕ V ⊕ χ, V ⊗ χ = χ⊗ V = V, χ⊗ χ = 1,

so J1, hence Verodd
6 , is isomorphic to the Grothendieck ring Gr(C) of C.

5.4. Products of Arbitrary Elements

Let x, y ∈ C. We now describe the product txty of two arbitrary basis elements in

JC . For convenience, we shall abuse notation slightly and not distinguish between

an element in C and its unique reduced word. More precisely, we make the following

assumption.

Assumption 5.4.1. From now on, whenever we write x ∈ C, we assume not only

that x is an element of the subregular cell, but also that x is the unique reduced word

of the element.

Recall the definition of JX for X ⊆ W from Definition 4.2.3 and the definition

of Γs (s ∈ S) from the beginning of Section 4.3. Here is a simple fact about txty:

Proposition 5.4.2. Let a, b, c, d ∈ S, let x ∈ Γ−1
a ∩ Γb, and let y ∈ Γ−1

c ∩ Γd. Then

txty = 0 if b 6= c, and txty ∈ JΓ−1
a ∩Γd if b = c.

Proof. Recall that for any s ∈ S, Γs is a left KL cell in W that consists of the

elements in C whose reduced word ends in s. Consequently, Γ−1
s is a right KL cell

by Proposition 3.2.3 and it consists of the elements in C whose reduced word starts

with s. That said, the statement follows from part (2) of Proposition 4.2.1 in the
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following way. If b 6= c, then x ∈ Γb while y−1 ∈ Γc, so x 6∼L y−1. This implies

γx,y,z−1 = 0 for all z ∈ W , therefore txty = 0. If b = c, then for any z ∈ W such

that γx,y,z−1 6= 0, we must have y ∼L z and z−1 ∼L x−1. The last condition implies

z ∼R x by Proposition 3.2.3, so z ∈ Γ−1
a ∩ Γd. It follows that txty ∈ JΓ−1

a ∩Γd .

By the definition of Γs for s ∈ S, the proposition means that txty = 0 if the

last letter of x is not the same as the first letter of y. If the letters are equal, the

proposition implies that for any basis element tz occurring in the product txty (when

the product is nonzero), z must start with the same letter as x and end with the

same letter as y. The second case here further splits into two subcases, depending

on whether the last dihedral segment of x and the first dihedral segment of y involve

the same set of letters. The product txty is easy to describe if they do not.

Proposition 5.4.3. Let x, y ∈ C. Suppose x ends with the letter that y starts with,

and suppose that the last dihedral segment of x and the first dihedral segment of y

involve different sets of letters. Then txty = tx◦y.

Proof. Let x1, · · · , xp and y1, · · · , yq be the dihedral segments of x and y, respec-

tively. By the assumptions, x1, · · · , xk, y1, · · · , yl are exactly the dihedral segments

of the glued product x ◦ y, therefore Theorem F implies

txty = tx1 · · · txpty1 · · · tyq = tx1◦···◦xp◦y1◦···◦yq = tx◦y.

It remains to compute products of the form txty in JC where x ends in the letter

y starts with and the last dihedral segment xp of x contains the same set of letters

as the first dihedral segment y1 of y. In this case, Theorem F implies that

txty = tx1 · · · txp−1(txpty1)ty2 · · · tyq
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where x1, · · · , xp, y1, · · · , yq are as in the proof of Proposition 5.4.3 and txpty1 can

be computed using Proposition 5.3.1. We may compute txpty1 and distribute the

product so as to write txty as a linear combinations of products of dihedral elements.

If such a product has two consecutive factors corresponding to elements in the same

dihedral group, we can again use Proposition 5.3.1 to compute the product of these

two factors first and then distribute the product to obtain a new linear combination.

Repeat such processes until we have txty as a linear combination of products where

no consecutive factors correspond to elements of the same dihedral group. This

means the factors appear as the dihedral segment of an element in C, so we may

apply Theorem F to each of the products and rewrite txty as a linear combination

of other basis elements, finishing the computation. This algorithm is illustrated in

the following example, and the Sage ([Dev16]) code implementing the algorithm is

available at [Xu].

Example 5.4.4 (Product of arbitrary elements). Suppose S = {1, 2, 3} andm(1, 2) =

4,m(1, 3) = 5,m(2, 3) = 6.

(a) Let x = 123, y = 323213. Then by Theorem F and Proposition 5.3.1,

txty = t12t23t3232t21t13

= t12(t232 + t23232)t21t13

= t12t232t21t13 + t12t23232t21t13.

Applying Theorem F again to the last expression, we have

txty = t123213 + t12323213.
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(b) Let x = 123, y = 3213. Repeated use of Theorem F and Proposition 5.3.1 yields

txty = t12t23t32t21t13

= t12(t2 + t232)t21t13

= (t12t2)t21t13 + t12t232t21t13

= (t12t21)t13 + t12t232t21t13

= (t1 + t121)t13 + t12t232t21t13

= t1t13 + t121t13 + t12t232t21t13

= t13 + t1213 + t123213.

Example 5.4.5. Consider the algebra J1 arising from the Coxeter system (W,S)

given by the following diagram. Let x = 121, y = 12321, and let yn denote the glued

1 2 3

4 4

Figure 5.4.1: The Coxeter diagram of (W,S).

product y ◦y ◦ · · · ◦y of n copies of y for each n ∈ Z≥1. It is easy to see that Γ1∩Γ−1
1

consists exactly of 1, x and all yn where n ≥ 1 so that J1 has basis elements t1, tx

and tn (n ≥ 1) where we set tn := tyn for all n ≥ 1. One efficient way to see this is

to draw the subgraph D1 of the subregular graph of the Coxeter system (see Section

2.4) and recall that elements of Γ1 ∩ Γ−1
1 are in a bijection with the walks on D1

which start at the top vertex and end at one of the diamond-shaped vertices.

Let us describe the products of all pairs of basis element in J1. First, we have

t1tw = tw = twt1 for each basis element tw ∈ J1, as t1 is the identity. For products

involving tx but not t1, propositions 5.4.3 and 5.3.1 imply that txtx = t121t121 = t1,
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212

Figure 5.4.2: The graph D1 for (W,S).

while

txtn = t121t12321··· = t121t12t2321◦yn−1 = t12t2321◦yn−1 = tn (5.4.4)

and similarly tntx = tn for all n ≥ 1 (where we set y0 = 1). Finally, to describe

products of the form tmtn where m,n ≥ 1, set t0 = t1 + tx. Using computations

similar to those in Equation (5.4.4), we can easily check that t1tn = tn−1 + tn+1 for

all n ≥ 1, then show by induction on m that

tmtn = t|m−n| + tm+n (5.4.5)

for all m,n ≥ 1. We have now described all pairwise products of basis elements in

J1.

58



CHAPTER VI

JC AND THE COXETER DIAGRAM

Let (W,S) be an arbitrary Coxeter system, and let JC be its subregular J-ring. We

study the relationship between JC and the Coxeter diagram of (W,S) in this section.

6.1. Simply-laced Coxeter Systems

Let us recall more graph-theoretic terminology. Let G = (V,E) be an undirected

graph. Recall from Section sec:subregular cell that a walk on on G is a sequence P =

(v1, · · · , vk) of vertices inG such that {vi, vi+1} is an edge for all 1 ≤ i ≤ k−1. We de-

fine a spur on G to be a walk of the form (v, v′, v) where {v, v′} forms an edge. Given

any walk containing a spur, i.e., a walk of the form P1 = (· · · , u, v, v′, v, u′, · · · ), we

may remove the spur to form a new walk P2 = (· · · , u, v, u′, · · · ); conversely, we can

add a spur (v, v′, v) to a walk of the form P2 to obtain the walk P1.

Recall that a groupoid may be viewed as a generalization of a group, in that

it is defined to be a pair (F , ◦), where F is set and ◦ is a partially-defined binary

operation on F that satisfy certain axioms (see [CdSW99]). More precisely, for any

topological space X and a chosen subset A of X, the fundamental groupoid of X

based on A is defined to be Π(X,A) := (P , ◦), where P are the homotopy equivalence

classes of paths on X that connect points in A and ◦ is concatenation of paths.

Given an undirected graph G = (V,E), we may view G as embedded in a topological

surface and hence as a topological space with the subspace topology induced from the

surface. We define the fundamental groupoid of G to be Π(G) := Π(G, V ) = (P , ◦),

where P stands for paths (in the topological sense) on G.
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Note that paths on G are just walks, and concatenation of paths correspond

to concatenation of walks. More precisely, for any two walks P = (v1, · · · , vk−1, vk)

and Q = (u1, u2 · · ·ul) on G, we define their concatenation to be the walk P ◦Q =

(v1, · · · , vk−1, vk, u2, · · · , ul) if vk = u1; otherwise we leave P ◦ Q undefined. Also

note that two walks are homotopy equivalent if and only if they can be obtained

from each other by a sequence of removals or additions of spurs, and each homotopy

equivalence class of walks contains a unique walk with no spurs. We use [P ] to

denote the class of a walk P . For each path P = (v1, v2, · · · , vk), we also define its

inverse to be the walk P−1 := (vk, · · · , v2, v1).

Remark 6.1.1. Note that concatenations of walks are compatible with glued prod-

ucts of words defined in Definition 5.2.2 in that if x and y are reduced words of

subregular elements for which their glued product x ◦ y is defined, then P (x ◦ y) =

P (x)◦P (y), where the map w 7→ P (w) is the natural map described Section 2.4. Also

note that the notations introduced here are compatible with the notation P ◦Cn◦P−1

used in the proof of Theorem 2.4.6, in that the walk denoted by P ◦ Cn ◦ P−1 is

exactly the concatenation of the walk P , n copies of the walk C, and the inverse of

P in that proof.

For each vertex s in G, we define the fundamental group of G based at s to be

Πs(G) = (Ps, ◦), where Ps are now equivalence classes of walks on G that start and

end with s, and ◦ is concatenation as before. Note that Πs(G) is actually a group, so

it makes sense to talk about the its group algebra ZΠs(G) over Z. We may define a

counterpart of ZΠs(G) for Π(G) by mimicking the construction of a group algebra.

Definition 6.1.2. Let Π(G) = (P , ◦) be the fundamental groupoid of a graph

G. We define the groupoid algebra of Π(F ) over Z to be the free abelian group
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ZP = ⊕[P ]∈PZ[P ] equipped with an Z-bilinear multiplication · defined by

[P ] · [Q] =


[P ◦Q] if P ◦Q is defined in G,

0 if P ◦Q is not defined.

Note that ZΠ(G) is clearly associative.

Remark 6.1.3. Recall the well-known notion of a quiver and its path algebra (see,

for example, [Bri12]), and let Q be the quiver that has G as its underlying undirected

graph and has an arrow eab pointing from the vertex a to the vertex b for each edge

{a, b} in G. Then ZΠ(G) may be viewed as the quotient of the path algebra of Q

over Z modulo the relations eabeba = ea for all edges (a, b) in Q, where ea refers to

the trivial path that starts and terminates at a.

Proposition 6.1.4. Let G = (V,E) where V is finite. Let Ps be the constant walk

(s) for all s ∈ V . Then the groupoid algebra ZΠ(G) has the structure of a based ring

with basis {[P ]}[P ]∈P , with unit 1=∑s∈V [Ps] (so the distinguished index set simply

corresponds to V ), and with its anti-involution induced by the map [P ] 7→ [P−1].

For each s ∈ V , the group algebra ZΠs(G) has the structure of a unital based

ring with basis {[P ]}[P ]∈Ps, with unit 1 = [Ps] (so the distinguished index set is

simply {s}), and with its anti-involution induced by the map [P ] 7→ [P−1].

Proof. All the claims are easy to check using definitions.

Now, suppose (W,S) is a simply-laced Coxeter system, and let G be its Coxeter

diagram. Recall that this means m(s, t) = 3 for s, t ∈ S whenever {s, t} is an edge

in G while m(s, t) = 2 otherwise. Let us consider the map C → Π(G) which sends

each element x = s1 · · · sk ∈ C to the homotopy equivalence class [P (x)] where P (x)

is the walk (s1, s2, · · · , sk) as in Section 2.4. We claim this is a bijection.
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To see this, note that we must have m(si, si+1) = 3 for each 1 ≤ i ≤ k − 1, so

si+2 6= si for all 1 ≤ i ≤ k − 2 by Proposition 2.4.5, therefore Px contains no spurs.

This means P (x) is exactly the unique representative with no spurs in its class.

Conversely, given class of walks in Π(G), we may take its unique representative

(s1, · · · , sk) with no spurs and consider the word s1 · · · sk. By Proposition 2.4.5,

s1 · · · sk is the reduced word of an element in C. This gives a two-sided inverse to

the map x 7→ [P (x)].

Since C and P index the basis elements of JC and ZΠ(G), respectively, the

bijection x 7→ [P (x)] induces a unique Z-module isomorphism Φ : JC → ZΠ(G)

defined by

Φ(tx) = [P (x)], ∀x ∈ C. (6.1.1)

We are now ready to prove Theorem A, which is restated below.

Theorem A. Let (W,S) be an any simply-laced Coxeter system, and let G be its

Coxeter diagram. Let Π(G) be the fundamental groupoid of G, let Πs(G) be the

fundamental group of G based at s for any s ∈ S, let ZΠ(G) be the groupoid algebra

of Π(G), and let ZΠs(G) be the group algebra of Πs(G). Then JC ∼= ZΠ(G) as based

rings, and Js ∼= ZΠs(G) as based rings for all s ∈ S.

Proof. We show that the Z-module isomorphism Φ : JC → ZΠ(G) defined by Equa-

tion 6.1.1 is an algebra isomorphism. This would imply Js ∼= ZΠs(G) for all s ∈ S,

since Φ clearly restricts to a Z-module map from Js to ZΠs(G). The fact that Φ and

the restrictions are actually isomorphisms of based rings is clear once we compare

the based ring structure of JC ,ZΠ(G), Js and ZΠs(G) described in Corollary 4.3.5

and Proposition 6.1.4.
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To show Φ is an algebra homomorphism, we need to show

[P (x)] · [P (y)] = Φ(txty) (6.1.2)

for all x, y ∈ C. Let sk · · · s1 and u1 · · ·ul be the reduced word of x and y, respec-

tively. If s1 6= u1, then Equation (6.1.2) holds since both sides are zero by Definition

6.1.2 and Corollary 5.4.2. If s1 = u1, let q ≤ min(k, l) be the largest integer such

that si = ui for all 1 ≤ i ≤ q. Then

[Px] · [Py] = [(sk, · · · , sq+1, sq, · · · , s1) ◦ (s1, · · · , sq, uq+1, · · · , ul)]

= [(sk, · · · , sq+1, sq, · · · , s2, s1, s2, · · · , sq, uq+1, · · · , ul)]

= [(sk, · · · , sq+1, sq, uq+1, · · · , ul)],

where the last equality holds by successive removal of spurs of the form (si+1, si, si+1).

On the other hand, since m(si, si+1) = 3 for each 1 ≤ i ≤ q, Proposition 5.3.1 implies

tsi+1sitsisi+1 = tsi+1 , tsitsisi+1 = tsisi+1 , (6.1.3)
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therefore by Theorem F,

txty = (tsk···sq+1sqtsqsq−1 · · · ts3s2ts2s1)(ts1s2ts2s3 · · · tsq−1sqtsquq+1···ul)

= (tsk···sq+1sqtsqsq−1 · · · ts3s2)ts2(ts2s3 · · · tsq−1sqtsquq+1···ul)

= (tsk···sq+1sqtsqsq−1 · · · ts3s2)(ts2s3 · · · tsq−1sqtsquq+1···ul)

= · · ·

= tsk···sq+1sqtsquq+1···ul

= tsk···sq+1squq+1···s′l .

Here, the last equality follows from Proposition 5.4.3, and the “· · · ” signify repeated

use of the equations in (6.1.3) to “remove” the products of the form (tsi+1tsi)(tsitsi+1)

where 2 ≤ i ≤ q − 1. By the definition of Φ, we then have

Φ(txty) = [(sk, · · · , sq+1, sq, uq+1, · · · , ul)].

It follows that [P (x)] · [P (y)] = Φ(txty), and we are done.

6.2. Oddly-connected Coxeter Systems

Define a Coxeter system (W,S) to be oddly-connected if for every pair of vertices s, t

in its Coxeter diagram G, there is a walk in G of the form (s = v1, v2, · · · , vk = t)

where the edge weight m(vi, vi+1) is odd for all 1 ≤ i ≤ k − 1. In this subsection,

we discuss how the odd-weight edges affect the structure of the algebras JC and Js

(s ∈ S).

We need some relatively heavy notation.
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Definition 6.2.1. For any s, t ∈ S such that M = m(s, t) is odd:

(a) We define

z(st) = sts · · · t

to be the alternating word of length M − 1 that starts with s. Note that it

necessarily ends with t now that M is odd.

(b) We define maps λts, ρst : JC → JC by

λts(tx) = tz(ts)tx,

ρts(tx) = txtz(st),

and define the map φts : JC 7→ JC by

φts(tx) = ρts ◦ λts(tx)

for all x ∈ C.

Remark 6.2.2. The notation above is set up in the following way. The letters λ

and ρ indicate a map is multiplying its input by an element on the left and right,

respectively. The subscripts and superscripts are to provide mnemonics for what

the maps do on the reduced words indexing the basis elements of JC : by Corollary

5.4.2, λts maps JΓ−1
s

to JΓ−1
t

and vanishes on JΓ−1
h

for any h ∈ S \ {s}. Similarly, ρts

maps JΓs to JΓt and vanishes on JΓh for any h ∈ S \ {s}.

Proposition 6.2.3. Let s, t be as in Definition 6.2.1. Then

(a) ρts ◦ λts = λts ◦ ρts.

(b) ρst ◦ ρts(tx) = tx for any x ∈ Γs, λst ◦ λts(tx) = tx for any x ∈ Γ−1
s .
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(c) ρts(tx)λts(ty) = txty for any x ∈ Γs, y ∈ Γ−1
s .

(d) The restriction of φts on Js gives an isomorphism of based rings from Js to Jt.

Proof. Part (a) holds since both sides of the equation sends tx to tz(ts)txtz(st). Parts

(b) and (c) are consequences of the truncated Clebsch-Gordan rule. By the rule,

tz(st)tz(ts) = ts,

therefore ρst ◦ρts(tx) = txts = tx for any x ∈ Γs and λst ◦λts(tx) = tstx for any x ∈ Γ−1
s ;

this proves (b). Meanwhile, ρts(tx)λts(ty) = txtz(st)tz(ts)ty = txtsty = txty for any

x ∈ Γs, y ∈ Γ−1
s ; this proves (c).

For part (d), the fact that φts maps Js to Jt follows from Remark 6.2.2. To see

that is a (unit-preserving) algebra homomorphism, note that

φts(ts) = tz(ts)tstz(st) = tz(ts)tz(st) = tt,

and for all tx, ty ∈ Js,

φts(tx)φts(ty) = (ρts(λts(tx)) · (λts(ρts(ty)) = λts(tx) · ρts(ty) = φts(txty)

by parts (a) and (c). We can similarly check φst is an algebra homomorphism from

Jt to Js. Finally, using calculations similar to those used for part (b), it is easy to

check that φts and φst are mutual inverses , therefore φts is an algebra isomorphism.

It remains to check that the restriction is an isomorphism of based rings. In

light of Proposition 4.3.5, this means checking that φts(tx−1) = (φts(tx))∗ for each

tx ∈ Js, where ∗ is the linear map sending tx to tx−1 for each tx ∈ Js. This holds
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because

φts(tx−1) = tz(ts)tx−1tz(st) = (tz(st)−1txtz(ts)−1)∗ = (tz(ts)txtz(st))∗ = (φts(tx))∗,

where the second equality follows from the definition of ∗ and the fact that tx 7→ tx−1

defines an anti-homomorphism in J (see Corollary 4.1.1).

Now we upgrade the definitions and propositions from a single edge to a walk.

Definition 6.2.4. For any walk P = (u1, · · · , ul) in G where m(uk, uk+1) is odd for

all 1 ≤ k ≤ l − 1, we define maps λP , ρP by

λP = λulul−1
◦ · · ·λu3

u2 ◦ λ
u2
u1 ,

ρP = ρulul−1
◦ · · · ρu3

u2 ◦ ρ
u2
u1 ,

and define the map φP : JC → JC by

φP = λP ◦ ρP .

Proposition 6.2.5. Let P = (u1, · · · , ul) be as in Definition 6.2.4 Then

(a) φP = φulul−1
◦ · · · ◦ φu3

u2 ◦ φ
u2
u1.

(b) ρP−1 ◦ ρP (tx) = tx for any x ∈ Γu1, λP−1 ◦ λP (tx) = tx for any x ∈ Γ−1
u1 .

(c) ρP (tx)λP (ty) = txty for any x ∈ Γu1 , y ∈ Γ−1
ul

.

(d) The restriction of φP gives an isomorphism of based rings from Ju1 to Jul.

Proof. Part (1) holds since each left multiplication λuk+1
uk

commutes with all right

multiplications ρuk′+1
uk′ . Part (2)-(4) can be proved by writing out each of the maps
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as a composition of (l − 1) appropriate maps corresponding to the (l − 1) edges

of P and then repeatedly applying their counterparts in Proposition 6.2.5 on the

composition components. In particular, part (4) holds since φP is a composition of

isomorphisms of based rings is clearly another isomorphism of based rings.

We are almost ready to prove Theorem B. Let us restate it here.

Theorem B. Let (W,S) be an oddly-connected Coxeter system. Then

(a) Js ∼= Jt as based rings for all s, t ∈ S.

(b) JC ∼= MatS×S(Js) as based rings for all s ∈ S. In particular, JC is Morita

equivalent to Js for all s ∈ S.

Here, for each fixed s ∈ S, the algebra MatS×S(Js) is the matrix algebra of matrices

with rows and columns indexed by S and with entries from Js. For any a, b ∈ S and

f ∈ Js, let Ea,b(f) be the matrix in MatS×S(Js) with f at the a-row, b-column and

zeros elsewhere. We explain how MatS×S(Js) is a based ring below.

Proposition 6.2.6. The ring MatS×S(Js) is a based ring with basis {Ea,b(tx) : a, b ∈

S, x ∈ Γs ∩ Γ−1
s }, with unit element 1 = ∑

s∈S Es,s(ts), and with its anti-involution

induced by Ea,b(tx)∗ = Eb,a(tx−1).

Proof. Note that for any a, b, c, d ∈ S and f, g ∈ Js,

Ea,b(f)Ec,d(g) = δb,cEa,d(fg). (6.2.4)

The fact that MatS×S(Js) is a unital Z+-ring with 1 = ∑
s∈S Es,s(ts) is then straight-

forward to check. Next, note that

(Ea,b(f)Ec,d(g))∗ = 0 = (Ec,d(g))∗(Ea,b(f))∗
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when b 6= c. When b = c,

(Ea,b(tx)Ec,d(ty))∗ = (Ea,d((txty)))∗ = Ed,a(ty−1tx−1) = (Ec,d(ty))∗(Ea,b(tx))∗

where, like in the proof of Proposition 6.2.3, the second equalities follows from the

fact that the map tx 7→ tx−1 induces an anti-homomorphism of J . The last two

displayed equations imply that ∗ induces an anti-involution of MatS×S(Js). Finally,

note that Eu,u(ts) appears in Ea,b(tx)Ec,d(ty) = δb,cEa,d(txty) for some u ∈ S if and

only if b = c, a = d = u and x = y−1 (for ts appears in txty if and only if x = y−1;

see Corollary 4.3.5). This proves that Equation (4.3.1) from Definition 4.3.2 holds,

and we have completed all the necessary verifications.

Proof of Theorem B. Part (1) follows from the last part of Proposition 6.2.5, since

there is a walk (s = u1, u2, · · · , ul = t) in G that contains only odd-weight edges

now that (W,S) is oddly-connected.

To prove (2), fix s ∈ S. For each t ∈ S, fix a walk Pst = (s = u1, · · · , ul = t)

and define Pts = P−1
st . Write λst for λPst , and define ρst, λts, ρts similarly. Consider

the unique Z-module map

Ψ : JC → MatS×S(Js)

defined as follows: for any tx ∈ JC , say x ∈ Γ−1
a ∩ Γb for a, b ∈ S, let

Ψ(tx) = Ea,b(λas ◦ ρbs(tx)).

We first show below that Ψ is an algebra isomorphism.

Let tx, ty ∈ JC . Suppose x ∈ Γ−1
a ∩ Γb and y ∈ Γ−1

c ∩ Γd for a, b, c, d ∈ S. If
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b 6= c, then

Ψ(tx)Ψ(ty) = 0 = Ψ(txty),

where the first equality follows from Equation (6.2.4) and the second equality holds

since txty = 0 by Corollary 5.4.2. If b = c, then

Ψ(tx)Ψ(ty) = Ea,b(λas ◦ ρbs(tx)) · Ec,d(λcs ◦ ρds(ty))

= Ea,d([λas ◦ ρbs(tx)] · [λbs ◦ ρds(ty)])

= Ea,d((λas ◦ ρds)[ρbs(tx) · λbs(ty)])

= Ea,d((λas ◦ ρds)[txty])

= Ψ(txty),

where the second last equality holds by part (3) of Proposition 6.2.5. It follows that

Ψ is an algebra homomorphism. Next, consider the map

Ψ′ : MatS×S(Js)→ JC

defined by

Ψ′(Ea,b(f)) = λsa ◦ ρsb(f)

for all a, b ∈ S and f ∈ Js. Using Part (2) of Proposition 6.2.5, it is easy to check

that Ψ and Ψ′ are mutual inverses as maps of sets. It follows that Ψ is an algebra

isomorphism. Finally, it is easy to compare Proposition 4.3.5 with Proposition 6.2.6

and check that Ψ is an isomorphism of based rings by direct computation.

Remark 6.2.7. The conclusions of the theorem fail in general when (W,S) is not

oddly-connected. As a counter-example, consider based rings J1 and J2 arising from
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the Coxeter system in Example 5.4.5. By the truncated Clebsch-Gordan rule,

t212t212 = t2 = t232t232,

therefore J2 contains at least two basis elements with multiplicative order 2. How-

ever, it is evident from Example 5.4.5 that t121 is the only basis element of order

2 in J1. This implies that J1 and J2 are not isomorphic as based rings. Moreover,

Equation (6.2.4) implies that for any s ∈ S, the basis elements of MatS×S(Js) of

order 2 must be of the form Eu,u(tx) where u ∈ S and tx is a basis element of order

2 in Js, so MatS×S(J1) and MatS×S(J2) have different numbers of basis elements of

order 2 as well. It follows that Part (2) of the theorem also fails.

Remark 6.2.8. The isomorphism between Js and Jt can be easily lifted to a ten-

sor equivalence between their categorifications Js and Jt, the subcategories of the

category J mentioned in the introduction that correspond to Γs∩Γ−1
s and Γt∩Γ−1

t .

Let us end the section by revisiting an earlier example.

Example 6.2.9. Let (W,S) be the Coxeter system from Example 2.4.8, whose

Coxeter diagram is shown in Figure 2.4.2. Clearly, (W,S) is oddly-connected, hence

J3 ∼= J2 ∼= J1 and JC ∼= Mat3×3(J1) by Theorem B. Let us study J1.

Recall that elements of Γ1∩Γ−1
1 correspond to walks on the graph D1 shown in

Figure 2.4.4 that start with the top vertex and end with either the bottom-left or

bottom-right vertex. Observe that all such walks can be obtained by concatenating

the walks corresponding to the elements x = 1231, y = 1321, z = 12321, w = 13231.

This means that any reduced word in Γ1 ∩ Γ−1
1 can be written as glued products of

x, y, z, w, which implies that tx, ty, tz, tw generate J1 by Theorem F and Proposition

5.4.3. Computing the products of these elements reveals that J1 can be described

71



as the algebra generated by tx, ty, tz, tw subject to the following six relations:

txty = 1 + tz, tytx = 1 + tw, txtw = tx = tztx, tytz = ty = twty, t
2
w = 1 = t2z.

The first two of the relations show that tz = txty−1, tw = tytx−1, whence the other

four relations can be expressed in terms of only tx and ty. Easy calculations then

show that J1 can be presented as the algebra generated by tx, ty subject to only the

following two relations:

txtytx = 2tx, tytxty = 2ty.

Finally, via the change of variables X := tx/2, Y := ty, we see that

J1 = 〈X, Y 〉/〈XYX = X, Y XY = Y 〉.

A simple presentation like this is helpful for studying representations of J1 and hence

J2, J3 and JC .

6.3. Fusion Js

In this subsection, we describe all fusion rings arising in the form Js from a Coxeter

system (W,S). Recall that for Js to be a fusion ring, Theorem 4.3.7 places a strong

restriction on what the Coxeter diagram of (W,S) could be; this will in turn force

the structure of Js to be rather restricted:

Theorem C. Let (W,S) be a Coxeter system, and let s ∈ S. Suppose Js is a fusion

ring for some s ∈ S. Then there exists a dihedral Coxeter system (W ′, S ′) such that

Jt ∼= Js′ as based rings for all t ∈ S and for both s′ ∈ S ′.
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Proof. Let G be the Coxeter diagram of (W,S), and suppose Js is a fusion ring for

some s ∈ S. Then by Theorem 4.3.7, either G is a tree and (W,S) is simply-laced,

or G is a tree and there exists a unique pair a, b ∈ S such that m(a, b) > 3.

In the first case where (W,S) is simply-laced, A implies that Jt is isomorphic to

group algebra of the fundamental group Πt(G) for all t ∈ S, and the group is trivial

since G is a tree. This means Jt is isomorphic to a ring of the form Js′ associated

with the dihedral system (W ′, S ′) with S ′ = {s′, s′′} and m(s′, s′′) = 3.

In the second case, let m(a, b) = M and let t ∈ S. By the description of G,

there must be a walk P in G from t to either a or b such all the edges in the walk have

weight 3, so Part (d) of Proposition 6.2.5 implies that Jt is isomorphic to either Ja

or Jb as based rings. Without loss of generality, suppose Js ∼= Ja. By the description

of the set {P (w) : w is the reduced word of a subregular element} in the proof of

Theorem 2.4.6, Γa ∩Γ−1
a contains exactly the elements a, aba, · · · , ab · · · a where the

reduced words alternate in a, b and contains less than M letters. This means that

Jt is isomorphic as a based ring to the fusion ring Js′ associated with the dihedral

system (W ′, S ′) with S ′ = {s′, s′′} where m(s′, s′′) = M .

Remark 6.3.1. Recall from 5.3 that any algebra of the form Js arising from a

dihedral Coxeter system is isomorphic to the odd part Verodd
M of a Verlinde algebra,

where M ∈ Z≥2 ∪ {∞}. Thus, the theorem means that any fusion ring of the form

Js arising from any Coxeter system (W,S) is isomorphic to Verodd
M for some M as

well. Moreover, the proof of the theorem reveals that M can be described simply as

the largest edge weight in the Coxeter diagram of (W,S).
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CHAPTER VII

FREE FUSION RINGS

We focus on certain Coxeter systems (W,S) whose Coxeter diagrams involve edges

of weight ∞ in this section. We show that for suitable choices of s ∈ S, Js is

isomorphic to a free fusion ring.

7.1. Background

Free fusion rings are defined as follows.

Definition 7.1.1 ([Rau12]). A fusion set is a set A equipped with an involution

¯: A → A and a fusion map � : A × A → A ∪ ∅. Given any fusion set (A, ,̄ �), we

extend the operations ¯ and � to the free monoid 〈A〉 as follows:

a1 · · · ak = āk · · · ā1,

(a1 · · · ak) � (b1 · · · bl) = a1 · · · ak−1(ak � b1)b2 · · · bl,

where the right side of the last equation is taken to be ∅ whenever k = 0, l = 0 or

ak�b1 = ∅. We then define the free fusion ring associated with the fusion set (A, ,̄ �)

to be the free abelian group R = Z〈A〉 on 〈A〉, with multiplication · : R × R → R

given by

v · w =
∑

v=xz,w=z̄y
xy + x � y (7.1.1)

for all v, w ∈ 〈A〉, where xy means the juxtaposition of x and z.

It is well known that · is associative (see [Rau12]). It is also easy to check that R is
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a unital based ring with its basis given by the free monoid 〈A〉, with unit given by

the empty word, and with its anti-involution ∗ : 〈A〉 → 〈A〉 given by the map .̄

Free fusion rings were introduced in [Rau12] to capture the tensor rules in

certain semisimple tensor categories arising from the theory of operator algebras.

More specifically, the categories are categories of representations of compact quantum

groups, and their Grothendieck rings fit the axiomatization of free fusion rings in

Definition 7.1.1. In [Fre14], A. Freslon classified all free fusion rings arising as the

Grothendieck rings of compact quantum groups in terms of their underlying fusion

sets. Further, while a free fusion ring may appear as the Grothendieck ring of

multiple non-isomorphic compact quantum groups, Freslon described a canonical

way to associate a partition quantum group—a special type of compact quantum

group—to any free fusion ring arising from a compact quantum group. These special

quantum groups correspond via a type of Schur-Weyl duality to categories of non-

crossing partitions, which can in turn be used to study the representations of the

quantum groups.

All the free fusion rings appearing as Js in our examples fit in the classification

of [Fre14]. In each of our examples, we will identify the associated partition quantum

group F. The fact that Js is connected to F is intriguing, and it would be interesting

to see how the categorification of Js arising from Soergel bimodules connects to the

representations of F on the categorical level.

7.2. Example 1: O+
N

One of the simplest fusion sets is the singleton set A = {a} with identity as its

involution and with fusion map a � a = ∅. The associated free fusion ring is R =
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⊕n∈Z≥0Zan, where

ak · al = ak+l + ak+l−2 + · · ·+ a|k−l|

by Equation 7.1.1. The partition quantum group associated to R is the free orthog-

onal quantum group O+
N , and its corresponding category of partitions is that of all

noncrossing pairings; see [Ban96] and [BS09].

Let (W,S) be the infinite dihedral system with S = {1, 2} and W = I2(∞),

the infinite dihedral group. We claim that J1 is isomorphic to R as based rings. To

see this, recall from the discussion following Definition 5.3.3 that Js is the Z-span of

basis elements t1n , where n is odd and 1n = 121 · · · 1 alternates in 1, 2 and has length

n. For m = 2k + 1 and n = 2l + 1 for some k, l ≥ 1, the truncated Clebsch-Gordan

rule implies that

t1m · t1n = t12k+1t12l+1 = t12(k+l)+1 + t12(k+l−1)+1 + · · ·+ t12|k−l|+1 .

It follows that R ∼= J1 as based rings via the unique Z-module map with ak 7→ t12k+1

for all k ∈ Z≥0. Similarly, R ∼= J2 as based rings.

7.3. Example 2: U+
N

In this subsection we consider the free fusion ring R arising from the fusion set

A = {a, b} with ā = b and a � a = a � b = b � a = b � a = ∅. The partition quantum

group associated to R is the free unitary quantum group U+
N . In the language of

[Fre14], this quantum group corresponds to the category of A-colored noncrossing

partitions where A is a color set containing two colors inverse to each other.

Consider the Coxeter system (W,S) given by the Coxeter diagram G below.
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0

1 2∞

Figure 7.3.1: The Coxeter diagram of (W,S).

Theorem D. We have a isomorphism R ∼= J0 of based rings.

Our strategy to prove Theorem D is to describe a bijection between the free

monoid 〈A〉 and the set Γ0 ∩ Γ−1
0 , use it to define a Z-module isomorphism from R

to J0, then show that it is an isomorphism of based rings. To establish the bijection,

recall the definition of the walk P (x) for each x ∈ C from Section 2.4 , then encode

each x ∈ Γs ∩ Γ−1
s by a word in 〈A〉 in the following way: travel along the walk

P (x), write down an “a” every time an edge in the walk goes from 1 to 2, a “b”

every time an edge goes from 2 to 1, and write nothing down otherwise. Call the

resulting word wx. For example, the element x = 012120120 corresponds to the

word wx = abaa. Note that wx records all parts of P (x) that travel along the edge

{1, 2}, but “ignores” the parts that involve the edges containing 0.

We claim that the map ϕ : Γ0 ∩Γ−1
0 → 〈A〉, x 7→ wx gives our desired bijection.

To see that ϕ is injective, note that by Proposition 2.4.5, the elements of Γ0 ∩ Γ−1
0

correspond to walks on G that start and end with 0 but contain no spurs involving

0. The latter condition means that the parts of the walk P (x) that are “ignored”

in wx, i.e., the parts involving the edges {0, 1} or {0, 2}, can be recovered from wx.

More precisely, given any word w = wx for some x ∈ Γ0 ∩ Γ−1
0 , we may read the

letters of w from left to right and write down Px using the following principles:
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(a) The empty word w = ∅ corresponds to the element 0 ∈ Γ0 ∩ Γ−1
0 , for P (x)

involves the edge {1, 2} for any other element of the intersection.

(b) The only way w can start with a is for P (x) to start with 0, immediately

travel to 1, then travel from 1 to 2, so P (x) must start with (0,1,2) if w start

with a. Similarly, P (x) starts with (0, 2, 1) if w starts with b.

(c) If the last letter we have read from w is an “a”, the last vertex we have

recovered in the sequence for P (x) must be 2.

(a) If this “a” is the last letter of w, P (x) must involve no more traversals

of the edge {1, 2} and hence immediately return to 2 from 0, so adding

one more 0 to the current sequence returns P (x).

(b) If the “a” is followed by another “a”, the next traversal of {1, 2} in P (x)

after the sequence already written down must be from 1 to 2 again. This

forces P (x) to travel to 0 next, and to avoid a spur it must go on to

1, then to 2, so we add (0,1,2) to the sequence for P (x). If the “a” is

followed by a “b”, P (x) must next immediately travel to 1 and we add 1

to the sequence, for otherwise P (x) would have to travel along the cycle

2→ 0→ 1→ 2 as we just described and the “a” would be followed by

another “a”.

(d) If the last letter we have read from w is an “b”, the last vertex we have

recovered in the sequence for P (x) must be 1. The method to recover more

of P (x) from the rest of w is similar to the one described in (3).

To illustrate the recovery of wx from x, suppose we know abaa = wx for some

x ∈ Γ0 ∩ Γ−1
0 , we would get Px = (0, 1, 2, 1, 2, 0, 1, 2, 0) by successively writing down
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(0, 1, 2), (1), (2), (0, 1, 2) and (0), so x = 012120120. Indeed, note that we may run

the process for any word w in 〈A〉 to get an element in Γ0 ∩ Γ−1
0 . This gives us a

map φ : 〈A〉 → Γ0 ∩ Γ−1
0 that is a mutual inverse to ϕ and φ, so both ϕ and φ are

bijective.

We can now prove Theorem D. We present an inductive proof that can be easily

adapted to prove Theorem E later.

Proof of Theorem D. Let Φ : R→ J0 be the Z-module homomorphism defined by

Φ(w) = tφ(w).

Since φ is a bijection, this is an isomorphism of Z-modules. We will show that Φ is

an algebra isomorphism by showing that

Φ(v)Φ(w) = Φ(v · w) (7.3.2)

for all v, w ∈ 〈A〉. Note that this is true if v or w is empty, since then tv = t0 or

tw = t0, which is the identity of J0 by Corollary 5.1.4.

Now, assume neither v nor w is empty. We prove Equation (7.3.2) by induction

on the length l(v) of v, i.e., on the number of letters in v. For the base case, suppose

l(v) = 1 so that v = a or v = b. If v = a, then φ(a) = 0120. There are two cases:

(a) Case 1: w starts with a.

Then φ(w) has the form φ(w) = 012 · · · , so

Φ(v)Φ(w) = t0120t012··· = t0120◦012··· = t012012··· = tφ(aw)
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by Proposition 5.4.3. Meanwhile, since ā 6= a and a � a = ∅ in A,

v · w = aw

in R, therefore Φ(v · w) = tφ(aw) as well. Equation (7.3.2) follows.

(b) Case 2: w starts with b.

In this case, suppose the longest alternating subword bab · · · appearing in the

beginning of w has length k, and and write w = bw′. Then φ(w) takes the form

φ(w) = 0212 · · · , its first dihedral segment is 02 and the second is (2, 1)k+1,

hence φ(w) = 02◦ (2, 1)k+1 ◦x where x is the glued product of all the remaining

dihedral segments. Direct computation using Theorem F and propositions 5.4.3

and 5.3.1 then yields

Φ(v)Φ(w) = t01[t(1,2)k+2 + t(1,2)k ]tx

= t01◦(1,2)k+2◦x + t01◦(1,2)k◦x

= tφ(w) + tφ(w′).

Meanwhile, since ā = b and a ◦ b = ∅ in A,

v · w = a · bab · · · = abab · · ·+ ab · · · = w + w′

in R, therefore Φ(v · w) = tφ(w) + tφ(w′) as well. Equation (7.3.2) follows.

The proof for the case l(v) = 1 and v = b is similar.

For the inductive step of our proof, assume Equation (7.3.2) holds whenever v

is nonempty and l(v) < L for some L ∈ N, and suppose l(v) = L. Let α ∈ A be the
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first letter of v, and write v = αv′. Then l(v′) < L, and by (7.1.1),

a · v′ = v +
∑
u∈U

u

where U is a subset of 〈A〉 where all words have length smaller than L. Using the

inductive hypothesis on α, v′, u and the Z-linearity of Φ, we have

Φ(v)Φ(w) = Φ
(
α · v′ −

∑
u∈U

u

)
Φ(w)

= Φ(α)Φ(v′)Φ(w)−
∑
u∈U

Φ(u)Φ(w)

= Φ(α)Φ(v′ · w)− Φ
(∑
u∈U

u · w
)

Here, the element v′ · w may be a linear combination of multiple words in R, but

applying the inductive hypothesis on α still yields

Φ(α)Φ(v′ · w) = Φ(α · (v′ · w))

by the Z-linearity of Φ and ·. Consequently,

Φ(v)Φ(w) = Φ(α · (v′ · w))− Φ
(∑
u∈U

u · w
)

= Φ
(

(α · v′) · w −
∑
u∈U

u · w
)

= Φ
([

(α · v′)−
∑
u∈U

u

]
· w
)

= Φ(v · w).
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by the associativity of · and the Z-linearity of Φ and ·. This completes the proof

that Φ is an algebra isomorphism.

The fact that Φ is in addition an isomorphism of based rings is straightforward

to check. In particular, observe that φ(w̄) = φ(w)−1 so that Φ(w̄) = tφ(w̄) = tφ(w)−1 =

(Φ(w))∗, therefore Φ is compatible with the respective involutions in R and J0. We

omit the details of the other necessary verifications.

7.4. Example 3: Z+
N({e}, n− 1)

In this subsection, we consider an infinite family of fusion rings {Rn : n ∈ Z≥2},

where each Rn arises from the fusion set

An = {eij : i, j ∈ [n]}

with ēij = eji for all i, j ∈ [n] and

eij � ekl =


eil if j = k

∅ if j 6= k

for all i, j, k, l ∈ [n]. We may think of the fusion set as the usual matrix units for n×n

matrices and think of the fusion map as an analog of matrix multiplication, with the

fusion product being ∅ whenever the matrix product is 0. In the notation of [Fre14],

the partition quantum group corresponding toRn is denoted by Z+
N({e}, n−1), which

equals the amalgamated free product of (n−1) copies of H̃+
N amalgamated along S+

N ,

where S+
N stands for the free symmetric group, H+

N stands for the free hyperoctohedral

group, and H̃+
N stands for the free complexification of H+

N . In particular, R2 = H̃+
N .
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For n ∈ Z≥2, let (Wn, Sn) be the Coxeter system where Sn = {0, 1, 2, · · · , n},

m(0, i) = ∞ for all i ∈ [n], m(i, i + 1) = 3 for all i ∈ [n − 1], and m(i, j) = 2

otherwise. The Coxeter diagrams Gn of (Wn, Sn) are shown in Figure 7.4.2, where

a blue edge stands for an edge of weight ∞ and a black edge stands for an edge of

weight 3.

0

1 2

0

1
2

3

0

1
2 3

4

· · ·

Figure 7.4.2: The Coxeter diagrams of (Wn, Sn).

Let J (n)
0 denote the subring J0 of the subregular J-ring of (Wn, Sn).

Theorem E. For each n ∈ Z≥2, Rn
∼= J

(n)
0 as based rings.

For each n ≥ 2, the strategy to prove the isomophism Rn
∼= J

(n)
0 is similar to the

one used for Theorem D; that is, we will first describe a bijection φ : 〈An〉 → Γ0∩Γ−1
0 ,

then show that the Z-module map Φ : Rn → J0
0 given by Φ(w) = tφ(w) is an

isomorphism of based rings.

To describe φ, note that for i, j ∈ [n], there is a unique shortest walk Pij from i

to j on the “bottom part” of Gn, i.e., on the subgraph of Gn induced by the vertex

subset [n]. Define φ(eij) to be element in Γ0 ∩ Γ−1
0 corresponding to the walk on

G that starts from 0, travels to i, travels to j along the path Pij, then returns to

0. For example, when n = 4, φ(e24) = 02340, φ(e43) = 0430, φ(e44) = 040. Next,

for any word w in 〈An〉, define φ(w) to be the glued product of the φ-images of its
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letters. For example, φ(e24e43e44e44) = 023404304040.

It is clear that φ is a bijection, with inverse ϕ given as follows: for any x ∈

Γ0∩Γ−1
0 , write x as the glued product of subwords that start and end with 0 but do

not contain 0 otherwise; each such subword must be of the form φ(eij). We define

ϕ(x) to be the concatenation of these letters. For example, ϕ(0230404) = e23e44e44

since 02304040 = (0230) ◦ (040) ◦ (040).

Before we prove Theorem 7.4, let us record one useful lemma:

Lemma 7.4.1. Let xij = i · · · j be the element in C corresponding to the walk Pij

for all i, j ∈ [n]. Then txij txjk = txik for all i, j, k ∈ [n].

Proof. This follows by carefully considering the possible relationships between i, j, k

and repeatedly using Proposition 5.3.1 to compute txij txjk in each case. Alterna-

tively, notice that the simple reflection 0 is not involved in xij for any i, j ∈ [n], hence

the computation of txij txjk can be done in the subregular J-ring of the Coxeter sys-

tem with the “bottom part” of Gn as its diagram. This system is simply-laced, so

the result follows immediately from Theorem A.

Proof of Theorem E. Let n ≥ 2, and let φ and Φ be as above. As in the proof of

Theorem 7.3, we show that Φ is an algebra isomorphism by checking that

Φ(v)Φ(w) = Φ(v · w) (7.4.3)

for all v, w ∈ 〈An〉. Once again, we may assume that both v and w are non-empty

again use induction on the length l(v) of v. The inductive step of the proof will be

identical with the one for Theorem D. For the base case where l(v) = 1, suppose

v = eij for some i, j ∈ [n]. There are two cases.
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(a) Case 1: w starts with a letter ej′k where j′ 6= j.

Then φ(v) and φ(w) take the form φ(v) = · · · j0, φ(w) = 0j′ · · · , so

Φ(v)Φ(w) = t···j0t0j′··· = t···j0◦0j′··· = tφ(eij)◦φ(w) = tφ(eijw)

by Proposition 5.4.3. Meanwhile, since ēij 6= ej′k and eij � ej′k = ∅ in An,

v · w = eijw

in R, therefore Φ(v · w) = tφ(eijw) as well. Equation (7.4.3) follows.

(b) Case 2: w starts with ejk for some k ∈ [n].

Write w = ejkw
′. We need to carefully consider four subcases, according to how

they affect the dihedral segments of φ(v) and φ(w).

(a) i = j = k. Then v = ejj, φ(v) = 0j0 = (0, j)3, and w starts with ejj · · · ,

hence φ(w) starts with 0j0 · · · . Suppose the first dihedral segment of φ(w)

is (0, j)L, and write φ(w) = (0, j)L ◦ x. Then Theorem F and propositions

5.4.3 and 5.3.1 yield

Φ(v)Φ(w) = t(0,j)3t(0,j)Ltx

= t(0,j)L+2◦x + t(0,j)L◦x + t(0,j)L−2◦x

= tφ(ejjw) + tφ(w) + tφ(w′),

while

v · w = ejj · ejjw′ = ejjejjw
′ + ejjw

′ + w′ = ejjw + w + w′
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since ējj = ejj and ejj � ejj = ejj. It follows that Equation (7.4.3) holds.

(b) i = j, but j 6= k. In this case, v = ejj, φ(v) = (0, j)3 as in (a), while

φ(w) = 0j ◦ x for some reduced word x which starts with j but not j0.

We have

Φ(v)Φ(w) = t0j0tj0tx = t0j0j◦x + t0j◦x = tφ(ejjw) + tφ(w),

while

v · w = ejj · ejkw′ = ejjejkw
′ + ejkw

′ = ejjw + w

since ējj 6= ejk and ejj � ejk = ejk. This implies Equation (7.4.3).

(c) i 6= j, but j = k. In this case, v = eij and φ(v) = y ◦ j0 for some

reduced word y which ends in j but not 0j, and φ(w) can be written as

φ(w) = (0, j)L ◦ x as in (a). We have

Φ(v)Φ(w) = tytj0t(0,j)Ltx

= ty◦(j,0)L+1◦x + ty◦(j,0)L−1◦x

= tφ(eijw) + tφ(eijw′),

while

v · w = eij · ejjw′ = eijw + eijw
′

since ēij 6= ejj and eij � ejj = eij. This implies Equation (7.4.3).

(d) i 6= j, and j 6= k. In this case, φ(v) = 0i ◦ xij ◦ j0 (recall the definition of

xij from Lemma 7.4.1), and φ(w) = 0j ◦ xjk ◦ x for some x which starts

86



with k0. We have

Φ(v)Φ(w) = t0itxij tj0t0jtxjktx

= t0itxij tj0jtxjktx + t0itxij tjtxjktx

= t0i◦xij◦j0j◦xjk◦x + t0itxij txjktx

= tφ(eijw) + t0itxiktx,

where the fact txij txjk = txik comes from Lemma 7.4.1. Now, if i 6= k,

t0itxiktx = t0i◦xik◦x = tφ(eikw′), so

Φ(v)Φ(w) = tφ(eijw) + tφ(eikw′).

If i = k, note that t0itiktx = t0ktktx = t0ktx. Suppose the first dihedral

segment of x is (k, 0)L′ for some L′ ≥ 2, and write x = (k, 0)L′ ◦ x′. Then

t0ktx = t0kt(k,0)L′+1
tx′ = t(0,k)L′+1◦x′ + t(0,k)L′−1◦x′ = tφ(ekkw′)+φ(w′), so

Φ(v)Φ(w) = tφ(eijw) + tφ(eikw′) + tφ(w′).

In either case, Equation (7.4.3) holds again, because

v ·w = eij ·ejkw′ = eijejkw
′+eikw′+δikew′ = eijw+eikw′+δikew′

now that ēij = eji and eij � ejk = eik.

We have now proved Φ is an algebra isomorphism. As in Theorem D, the fact that

Φ is in addition an isomorphism of based rings is again easy to check, and we omit

the details.
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7.5. Comparison with Js

In this section, we discuss a feature shared by free fusion rings and rings of the form

Js that arise from Coxeter systems, namely, that the products of basis elements

in both types of rings are controlled “locally and inductively”. Let us explain this

below.

First we consider a ring of the form Js. Let x, y ∈ Γs ∩ Γ−1
s , and let their

respective dihedral segments be x1, x2, · · · , xp and y1, y2, · · · , yq as in the discussion

following Proposition 5.4.3. By the algorithm for computing txty from that discus-

sion, to compute txty we should first compute txpty1 , a “local” product in that it

only depends on the last dihedral segment of x and the first dihedral segment of y.

Further, write x′ = x1 ◦ · · · ◦ xp−1 and y′ = y2 ◦ · · · ◦ yq, suppose txpty1 = ∑
z∈Z tz for

some set Z, and let s′ be the letter xp starts with, then Z includes s′ as a summand

if and only if y1 = x−1
p by Proposition 5.3.1, and the algorithm mentioned above

implies that

txty =


∑
z∈Z tx′◦z◦y′ if y1 6= x−1

p∑
z∈Z\{s′} tx′◦z◦y′ + tx′ty′ if y1 = x−1

p ,

(7.5.4)

where the term tx′ty′ in the second case appears since ts′ appears in txpty1 and

tx′ts′ty′ = tx′ty′ . This formula is illustrated in all the computations in Example

5.4.4. Note that the second case means that the computation of txty now reduces

to that of tx′ty′ , which would have been done “by induction”.

Now let R be a free fusion ring given by a fusion set 〈A, ,̄ �〉. Let v, w ∈ 〈A〉,

and write v = x1 · · ·xp and w = y1 · · · yq for x1, · · · , xp, y1, · · · , yq ∈ A. Write
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v′ = x1 · · ·xp−1 and w′ = y1 · · · yq−1, and suppose xp · y1 = ∑
z∈Z z. Then

Z =


{xpy1} if y1 6= x̄p

{xpy1, xp � y1} if y1 = x̄p

(7.5.5)

by Equation 7.1.1, and Equation 7.1.1 is easily seen to be equivalent to the following.

v ·w =


∑
z∈Z v

′zw′ = v′(xpy1)w′ = vw if y1 6= x̄p

∑
z∈Z v

′zw′ + v′ · w′ = vw + v′(xp � y1)w′ + v′ · w′ if y1 = x̄p.

(7.5.6)

The equation may be interpreted as saying that the computation of v · w begins

with the “local” computation xp ·y1 involving only the last letter of v and first letter

of w, and that the local computation is either enough to finish the computation or

reduces it to the computation of v′ ·w′, which would have been done “by induction”.

Further, whether the inductive result is needed depends on whether xp and y1 are

dual to each other, just like in Equation 7.5.4 where the duality is provided by the

inverse map. In these regards, Equation 7.5.4 and Equation 7.5.6 are very similar.

The main difference between the two types of computations discussed above

is that in the free fusion ring setting, the set Z obtained from the “local” product

xp · y1 contains their juxtaposition and at most 1 more element, while the set Z

obtained from txpty1 in Js may contain more summands. It would be interesting

to know whether or how one may modify the axiomatization of free fusion rings to

account for this difference and create a notion that would encompass more rings of

the form Js.

We focus on a specific series of Coxeter systems for the rest of the section. For

n ≥ 4, let (Wn, S) be the Coxeter system with S = {s, t, u}, m(s, t) = 4,m(s, u) = 2
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and m(t, u) = n. Its Coxeter diagram is shown in Figure 7.5.3. We focus on the

ring Js associated with (Wm, S), which we denote by J (n)
s , for each n ≥ 4. Note that

when n ≥ 4, we recover the Coxeter system and the ring J1 discussed in Example

5.4.5.

s t u

4 n

Figure 7.5.3: The Coxeter diagram of (Wn, S).

Let e = s and denote the word st◦ (t, u)k ◦ ts by [k] for each odd integers k ≥ 1,

where the notation (t, u)k denotes the alternating word tut · · · involving k letters as

in Definition 2.4.3. For example, [1] = sts and [5] = stututs. For each n ≥ 4, let

An be the set of all odd integers k with 3 ≤ k < n. Then as in Example 5.4.5, it is

easy to draw the graph D1 of (Wn, S) and examine its cycles to conclude that the

elements of Γ1 ∩ Γ−1
1 in Wn are exactly e, [1] and the words in 〈An〉, where a word

k1k2 · · · kp stands for the word [k1] ◦ [k2] ◦ · · · ◦ [kp] in Wn. Here, te is the identity

of J (n)
s by Corollary 4.2.4, t21 = te by Proposition 5.3.1, and it is easy to verify that

t1tw = tw = twt1 for any w ∈ 〈An〉 by using Proposition 5.3.1 and noting that the

first and last dihedral segments of w are st and ts, respectively.

It remains to discuss products of the form tvtw in J
(n)
1 for v, w ∈ 〈An〉. To

do so, note that by using Proposition 5.3.1 and the results of Section 5.4, it is

straightforward to check the following facts.

(a) If both v and w contain only one letter, say v = k and w = l for k, l ∈ An,

then

tvtw = tktl = tkl +
∑

z∈T (k,l)
tz + δk,lte,

where T (k, l) contains all the numbers of the form φ(d) in Proposition 5.3.1
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(with n in place of M), i.e., the z′s are the numbers produced with the trun-

cated Clebsch-Gordan rule. For example, when n = 8, t5t7 = t57 + t3 while

t5t5 = t55 + t5 + t3 + t1 + te. We write tktl = ∑
z∈Z(k,l) tz.

(b) If v contains only one letter but w contains at least two letter, say with v = k

and w = lw′ for k, l ∈ An and w′ ∈ 〈An〉, then

tvtw =


∑
z∈Z(k,l) tzw′ if k 6= l

tvw +∑
z∈T (k,l) tzw′ if k = l

,

where Z(k, l) and T (k, l) are as in (a) and zw′ is defined to be w′. For example,

when n = 8, t5t735 = t5735 + t335 while t5t535 = t5535 + t535 + t335 + t35. Similarly,

if v contains at least two letters and w contains only one letter, say v = v′k

and w = l, then

tvtw =


∑
z∈Z(k,l) tv′z if k 6= l

tvw +∑
z∈T (k,l) tv′z if k = l

.

(c) If both v and w contain at least letters, suppose v = v′k and w = lw′ for

k, l ∈ An, v′, w′ ∈ 〈An〉. Then

tvtw = tvtw =


∑
z∈Z(k,l) tv′zw′ if k 6= l

tvw +∑
z∈T (k,l)\{1} tv′zw′ + tv′tw′ − tv′w′ if k 6= l

.

For example, when n = 8, t35t759 = t35759 + t3359 while t35t559 = t35559 +

t3559 + t3359 + t3t59 − t359. Note that by (a), (b), (c) and an easy induction,

tv′tw′ − tv′w′ , hence tvtw, is always a nonnegative linear combination of basis
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elements in J (n)
s .

While it is worth noting that the displayed equations in parts (b) and (c) differ

from Equation 7.5.4 in that the letters in An do not represent dihedral segments of

elements in Γs∩Γ−1
s , the equations in (c) again illustrate how tvtw depend “locally”

on tktl and “inductively” on tv′tw′ , and the equations in (b) are of the same spirit.

Together, the facts of (a), (b) and (c) means that once all products of the form tktl

are known for all k, l ∈ An, we can quickly describe the product tvtw for arbitrary

v, w ∈ 〈An〉 in terms of word manipulations. For example, when n = 6, by four

direct computations, we have

t3t3 = t33 + t5 + t3 + t1 + te, t5t5 = t55 + t1 + te,

t3t5 = t3 + t35, t5t3 = t5 + t53.

From these equalities, we may compute a generic product such as t353t335 as follows.

t353t335 = t353335 + t35535 + t35335 + t35t35 − t3535

= t353335 + t35535 + t35335 + t355 + t3535 − t3535

= t353335 + t35535 + t35335 + t355

Example 7.5.1. When n = 4, An = {3}. For each p ≥ 1, we may denote the word

33 · · · 3 containing p copies of 3 by 3p, and denote t3p by yp. Using the facts of (a),

(b) and (c), it is then easy to check that

ypyq = y|p−q| + yp+q,
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where y0 is defined to be te + t1. This recovers Equation 5.4.5 of Example 5.4.5.

Example 7.5.2. When n = 5, we still have An = {3}. Define yp as in the previous

example. Using the facts of (a), (b) and (c), it is easy to check that

ypyq = y|p−q| + yp+q +
∑

z∈Z(p,q)
yz,

where y0 is again defined as te + t1 and Z(p, q) contains the min(p, q) numbers

|p− q|+ 1, |p− q|+ 3, · · · , p+ q − 3, p+ q − 1 of the same parity.
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