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Data collected through Internet of Things (IoT) technology has begun to 

revolutionize the utilization of buildings. Having a wealth of information about noise, 

lighting, temperature and more collected through accessible, low-cost means allows 

buildings to be readily customized to increase efficiency and reduce energy costs. The 

purpose of this project is to prove the feasibility of creating a predictive noise model 

using low-cost, low-power sensor hardware. Previous research has not adequately 

addressed how IoT methodologies can be implemented to create noise models, but 

rather focused on other tools and methods. Furthermore, related research largely takes 

place outside of the United States suggesting a void in both collected data and research 

surrounding noise and its applications in America. Noise data was collected in the 

Knight Library using microphone sensors and the Intel Edison, an IoT device. Results 

were visualized through a web application, which highlighted relationships between 

location, time, and noise levels. The resulting models indicated an ability to predict 

trends over time. 

Within a university scope, students can use the resulting models to locate quiet 

study locations. Outside of a student-oriented scope, having access to noise models in a 

visual and easily-digestible way provides valuable feedback to inform future building 

design, improve campus efficiency, and spark discussion about hosting smart buildings 

on campus. 
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Section 1: Introduction 

1.1 - Internet of Things (IoT) Technology 

Have you ever wished your alarm clock could signal your coffee machine to 

start brewing in the morning? Or that your exercise shirt could monitor your heartrate 

and exercise intensity and compile that information in the cloud? Or that you could 

afford to buy either? Although these ideas sound like novelties of the future, they are 

becoming increasingly plausible through the applications of Internet of Things (IoT) 

technology.  

The concept of IoT refers to a network of sensors or electronic devices that are 

interconnected via the internet, allowing them to exchange data. The overarching goal 

of IoT technology is to incorporate existing infrastructure with the use of sensors in 

order to improve something, whether that is efficiency, quality of life, or any other 

concepts that could be automated. 

Let us consider an example to further clarify the concept. For example, you want 

to turn your pantry into a “smart pantry”. When you are running low on certain items, 

your pantry sends that data to your phone via the internet, which compiles a list of items 

to purchase. Perhaps your phone sends that data to your local grocery store and keeps 

those items ready for you to pick up. This idea would be simple to implement with the 

use of IoT technology by lacing the pantry shelves with weight sensors, which would 

send a data signal when an item has been depleted. Here, the existing infrastructure 

would be the pantry and shelves, and the only addition would be connecting the sensors 

and destination (e.g., your phone or grocery store).  
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1.2 - Smart Buildings and Environments 

Data collected through IoT technology has begun to revolutionize the way 

buildings and environments are used. For example, a building built in Oregon will have 

different needs for energy efficiency than a building built in New York. Having a 

wealth of information about noise, lighting, temperature, ventilation, electricity use, and 

more all collected through low-cost, low-power sensors allows buildings to be easily 

customized for particular geographic regions, energy standards, and many other metrics 

of customization (U.S. General Services, “GSA”). The ability to use this data to reduce 

energy costs and environmental impacts, while increasing efficiency are just a few of 

the many important applications of IoT technology (U.S. General Services, “GSA”). 

1.3 - Noise Policy, Mapping and IoT 

One increasingly important application of IoT technology is noise mapping. As 

population growth and urban expansion continues, noise pollution is an extremely 

relevant issue. In densely populated areas especially, noise exposure is a major player in 

quality of life for residents. These issues become especially relevant to the elderly, or 

families with young children who often spend more time sleeping than the average 

adult. Having a wealth of data about noise patterns or noise pollution can be useful in 

many applications, including influencing noise policy change. 

Environmental noise pollution can have adverse health impacts, including “sleep 

disturbance, annoyance, noise-induced hearing loss (NIHL), cardiovascular disease, 

endocrine effects, and increased incidence of diabetes” (Hammer, “EHP”). According 

to a 1981 study in the United States by the Environmental Protection Agency (EPA), 

nearly 50 percent of the American population was exposed to harmful levels of traffic 
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noise, but because noise is often deemed less harmful than chemical or radiological 

pollutants, “Congress has not seriously discussed environmental noise in [more than] 30 

years, although noise exposure is a large public concern” (Hammer, “EHP”). It is likely 

that this number has increased in the last 35 years due to rapid urban growth. It is 

speculated that this lack of discussion surrounding noise policy is due to a lack of data, 

or inconsistent data. Creating urban noise maps that provide real, tangible data can 

encourage dialogue about improving noise policies in the United States. 

1.4 - Noise Mapping at University of Oregon 

The goal of this project is to combine the ideas of smart buildings and noise 

mapping to the University of Oregon campus. In this project, noise data will be 

collected in Knight Library and analyzed and visualized through a browser application. 

Although the scale of this project is appropriate within the given time 

constraints, it is essential to consider the applications of this research on a broader scale. 

First, within the scope of a university setting, noise mapping would be useful in several 

ways. Students looking for a quiet study space would be able to access the browser 

application and identify trends regarding which building areas are quietest at a given 

time of day or week, and how these trends differ throughout the term. Noise in a 

university building could also be used to improve building efficiency, such as noise-

based temperature control as opposed to motion-controlled actions, for example. 

Although precise levels of noise are not static and will vary greatly from day-to-day, 

data that is collected may represent a likely scenario that can be extrapolated to predict 

future noise levels to an extent. In addition, it is possible that this research may spark 
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discussion about moving towards hosting smart buildings on campus to modernize and 

improve campus efficiency and help inform future building designs.  

Outside of the scope of a university setting, the applications are vast. One 

critical application is in the field of real estate. Say Sally is interested in buying property 

in a new city. Everything looks great and she is ready to purchase, but what she does 

not realize is that a passing train blares its horns at 3am each night. Would she still 

consider buying the property if she had known beforehand? This problem could be 

resolved by noise mapping the neighborhood and presenting the data in an application 

that is rich with visual aids and easily accessible to potential buyers. Another 

application of noise mapping would be to assist businesses in analyzing customer traffic 

throughout the day. Business owners could then identify the optimal hours of operation 

or number of employees to maintain at a given time of day. As mentioned in section 

1.3, sparking discussion about noise policy change in the United States would also be a 

powerful application of this project. The main benefit of analyzing data through smart 

buildings would be to have a repository of visualized information available to apply to 

various situations. 
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Section 2: Research 

2.1 - Proposed Argument 

The goals of this research are twofold. The first and main goal is to show the 

feasibility of creating a predictive noise model using low-cost, low-power 

infrastructure. Using inexpensive hardware and low-voltage equipment introduces many 

challenges, and determining the viability of noise mapping buildings using these 

constraints is a large part of the goal. Noise data is collected through use of IoT 

hardware. The noise sensors being used in this experiment are very basic and do not 

have the capability of collecting information about noise frequency, amplitude, or 

recording any contents of speech. They simply sense and output noise levels1 as a scalar 

value. The second goal of this project is to exhibit the data in a way that can be easily 

accessed, understood, and used by a variety of users for diverse purposes. As discussed, 

the applications of collected data can be vast, and this proof-of-concept study may 

encourage more cities, business owners and building managers to noise map their 

domains. 

2.2 - Current Research 

This thesis project combines two important applications of IoT technology: 

noise mapping and the development of smart buildings. Because of this, it is necessary 

to consider existing literature in both areas to frame the purpose and relevance of this 

project. 

                                                 
1 Noise data is not collected in decibels, but rather a relative noise scale used by the sensor. 
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2.2.1 - Urban Noise Mapping 

There have been numerous studies that create urban noise maps of cities in 

recent years. This is partly due to the necessity of ameliorating noise pollution, 

especially as cities become larger and as adverse health effects from noise are 

increasing. Studies conducted in China (Min, “GIS-based City central”, P. Tao, “GIS-

based city noise”), Egypt (H. Hossan, “Noise mapping”), as well as Europe (P. Tao, 

“GIS-based city noise”) have used some form of geographic information system (GIS) 

to collect and visualize noise data. These projects have focused more on creating 

comprehensive and accurate noise maps using precision tools as opposed to producing 

similar results through widely accessible means or resource constraints, as this project 

aims. Additionally, these studies appear to target policy makers or urban planning 

professionals, as opposed to the general public or unspecialized individuals. One study 

conducted in Suez, Egypt, has a pointed focus on using the collected data to “develop 

criteria for the maximum safe noise exposure levels, and to promote noise assessment or 

noise management policies” (H. Hossan, “Noise mapping”). In fact, this study outlines 

three main approaches to policy making that may help address noise issues. This 

discussion of policy is important; however, it does not imply that the collected data will 

be available to the general public. Exposing the public to collected data will encourage 

a wide breadth of applications, such as real estate, and is a critical difference in the Suez 

study and this project.  

Another study conducted in Europe (Enda, “Chapter 7”) chooses noise 

mitigation as its focus, like the Suez study. In this study, GIS is utilized once again as a 

means for data collection and visualization, but the results appear to be directed towards 
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policy makers and architects. They discuss the positive implications of having noise 

data available to urban planners and architects in order to improve specific areas inside 

or outside buildings that are affected by noise, but make no mention of having collected 

data available to others. 

As mentioned, this work differs in some fundamental ways. First, it is important 

to note that none of these studies took place in the United States, and the difficulty of 

finding similar noise mapping studies from the United States hints at the extent to which 

the United States falls behind in researching this topic. Next, the studies discussed 

above did not utilize IoT technology, but instead used GIS methodologies. One study 

conducted in Australia (J. Jin, “An Information Framework”) did utilize IoT 

technology, however, focused more on deliberating the effectiveness and accuracy of 

different types of IoT technology, such as wireless sensor networks and mobile 

infrastructure instead of creating a predictive model. 

Lastly, these studies all focused on outdoor noise monitoring, whereas this work 

will focus on noise mapping of indoor areas. Through indoor noise mapping, we will 

first determine the feasibility of creating models using low-cost, low-power 

infrastructure, and through future work, show the project is scalable to outdoor mapping 

as well. Because of this, smart buildings and indoor monitoring are equally important to 

discuss. 

2.2.2 - Indoor Building Surveillance 

Using sensor technology to create smart buildings is a far newer concept than 

addressing noise pollution. For this reason, there is less research specifically focused on 

noise monitoring in buildings. The high-level idea that creating smart environments is 
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an important application of IoT technology is well acknowledged in textbooks and 

research studies (Bahga, “Internet of Things”), however, specific studies about 

implementation details are sparse. The most common application of monitoring 

buildings using IoT technology is for the purposes of energy efficiency. Some studies 

have proposed IoT networks and control systems (J. Pan, “An Internet of Things 

Framework”) that show the feasibility of IoT building monitoring, in addition to 

showing a real improvement in energy efficiency. Another study aimed to build a 

framework for creating smart environments that emphasizes the customizability of IoT 

building monitoring (O. Evangelatos, “A Framework). 

This work aims to fill the gap in research about indoor noise mapping in 

particular, in addition to extrapolating existing studies. Specifically, that IoT noise 

monitoring can be customized based on metrics specific to a purpose or geographic 

region to effectively utilize the wealth of collected noise data, while keeping in mind 

that the project can later be scaled to outdoor noise mapping to address noise pollution 

and policy as a whole.  
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Section 3: Methods 

This research was broken into two main stages. The first stage involved 

instrumenting the data collection process and collecting data, and the second stage 

involved interpreting, analyzing, and visualizing the results. 

3.1 - Instrumenting Data Collection 

3.1.1 - Hardware Implementations 

The main hardware that was utilized throughout this project was the Intel 

Edison and an Arduino board. The Edison is a small embedded processor that is used 

primarily for developing wearable technology or other small IoT projects. The Edison 

was attached to an Arduino board, which provided power supply, digital and analog 

pins where sensors were connected, and Micro USB connectors to which a computer 

could be attached. Essentially, the Edison was the brain of the operation, and the 

Arduino board provided the muscles to complete the task. From this point onwards, any 

reference to “Edison” will assume an attached Arduino board. The Edison is seen in 

Figure 1. Other involved hardware includes noise sensors (microphone) and light 

sensors2, seen in Figures 2 and 3. 

                                                 
2 Note that light data was collected and analyzed to determine whether there are correlations between 
light and noise levels. However, light was not an integral part of the findings of this work, and therefore 
is only included briefly in the analysis section. 
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Figure 1: Intel Edison & Arduino Board 

 
Figure 1: This image shows the Intel Edison attached to an Arduino board. (Image 

source: www.developer.android.com). 

Figure 2: Microphone & Light Sensors 

 
Figure 2: This image shows the microphone sensor (left) and the light sensor (right) 

used in this work. 

A total of ten Edison boards were placed throughout the first floor of the Knight 

Library. Although seemingly simple, this involved many challenges. The first challenge 

was disguising the Edisons. Because they were to be placed unmonitored in a public 
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building for three weeks, it was necessary to disguise the boards as to not draw 

attention. The solution was to utilize a hard-shell case to conceal the Edison and 

sensors. Due to a lack of inconspicuous ready-to-purchase shells, the best option was to 

3D print a custom shell. Once a 3D-printable design was prepared, ten of these custom 

shells were printed in a black, opaque plastic material. A shell is shown in Figure 3.  
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Figure 3: Custom 3D-printed Shells  

 
Figure 3.1: A side-view of the shell shows cut-outs for USB connections & power 

supply.  

 
Figure 3.2: Another side-view of the shell. Black electrical tape on the lid covered the 

imprinted logo, as well as covering large gaps to leave just enough room for the 

sensors. 
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As seen in Figure 3, the case included holes for the power cable and microphone 

sensor, while leaving enough room to conceal all related hardware and wires. The holes 

are essential for sensors because if they are blocked, they will be significantly less 

sensitive which will skew the data. The lid and base of the case were held together 

using black electrical tape. Since the goal of the case was to protect the hardware from 

both damage and theft, a few other minor precautions were taken; a “Property of 

University of Oregon” sticker was placed on the front of each case, and strong velcro 

strips were used to attach the case to the desk surface in the library to discourage 

removal by curious patrons. Furthermore, a disclaimer was placed near the hardware 

that explained that noise data was being collected and provided contact information for 

any questions. Overall, use of the case was successful in the data collection period. 

The Edisons were placed throughout the first floor of Knight Library, as seen in 

Figure 4.  
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Figure 4: Map of Edison Placement in Library 

 
Figure 4: This figure shows a map of the first floor of Knight Library where the Edisons 

were placed. This image is taken from the browser application developed for this thesis 

project (see Accompanying Materials in the Table of Contents for the URL). 

The placement of Edisons were dependent on a few factors. First, power supply 

was an important consideration. Because the Edisons are not battery-operated and come 

with relatively short power cables of approximately 4.5 feet, they could only be placed 

in locations with accessible outlets. Similarly, it was important to place them where 

other outlets were available for library patrons to utilize, because more outlets around 

an area would generally mean a lesser likelihood of somebody unplugging the device. 

The second factor for placement involved choosing locations that would likely yield a 

diverse set of data. Edisons were placed near doors, classrooms, stand-up and sit-down 

computers, printers, and main corridors in order to develop a rich dataset.  
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3.1.2 - Software Implementation 

Software is used to communicate to hardware components how to accomplish a 

given task. In this case, we created software for collecting, storing, and analyzing data. 

Before the data collection process began, it was necessary to have the collection and 

storage software completed. 

The Python programming language was the optimal choice for writing the data 

collection code. Unlike other programming languages such as C++, the software did not 

need to be re-uploaded to the hardware each time an edit was made.  

Due to resource and Knight Library management constraints, the Edisons were 

not connected to the internet. Because of this, it was not possible to remotely log into 

the devices to ensure that the data collection process was continuing as planned. 

Instead, a software daemon was developed to self-manage the process. A daemon is a 

process that runs in the background of a computer and remains unattended by any 

specific user throughout its lifetime (IBM, “Glossary of z/OS Terms”). With non-

daemon programs, a user explicitly commands the execution of their program, and the 

program will eventually finish and exit execution on its own. Contrastingly, a daemon 

will continue to run in the background until an end condition is met, or until the 

program is explicitly stopped. 

The daemon, called MyDaemon3, was essential due to its properties as 

discussed, but also because of the location in which it was placed in the Edison. All 

computing devices have a “boot process”, or a process that is executed as soon as the 

                                                 
3 The daemon developed for this project was based upon existing source code (Marechal, “A Simple 
Unix/Linux Daemon in Python”) 
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device is turned on or restarted. Boot processes can have many functions and 

components, the most basic of which is loading the operating system into memory, 

enabling a computer to function on the most basic level. Placing MyDaemon in the 

Edison’s boot process allowed the data collection program to begin execution as soon as 

the Edison was turned on, without any explicit instruction. This was essential to the 

success of the data collection process; by automating the process to begin as soon as the 

device received power, the devices were able to continuously collect data without 

constant supervision. Furthermore, the devices could self-mange situations in which 

there was a loss of power, either due to natural causes such as power fluctuations or due 

to library patrons unplugging the device. In the case of a loss of power, as long as the 

device was plugged in again, it would resume data collection where it had left off. 

MyDaemon had a run() function which facilitated the relationship between the 

daemon, sensors and the Edison. In essence, this function defined which analog port on 

the Edison the microphone would be connected to and directed the sensor’s output to a 

log file. Data was collected at a rate of approximately 5 samples per second, and each 

datum was written to the log file, along with a timestamp, the identification number of 

the Edison, the light value (lux), and noise level. An example of a log file is seen in 

Figure 5. 
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Figure 5: Example Log File 

 
Figure 5: This figure shows an example of a log file, which stores raw data collected 

from each device. 

Once the hardware and software implementations were complete, data collection 

began in Knight Library. Data was collected for a total of three weeks, starting on 

March 17, and ending on April 7, 2017. The duration of three weeks was chosen in part 

due to resource constraints, such as occupying power outlets in Knight Library for an 

extended period, but also due to the importance of collecting a substantial amount of 

data. One day would likely be unconducive to a robust predictive model. One week may 

have been sufficient, but three weeks provided much more data, improving the 

likelihood of creating an accurate predictive model. Furthermore, the weeks during 

which data was collected significantly contributed to the diversity of data; the first 

week, March 17-24, was the week of final examinations, March 25-April 2 was spring 
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break, and April 3-7 was the first week of spring term4. The weeks of final exams, 

break, and the first week of each term offers perhaps the greatest amount of variability 

in noise levels, as one may hypothesize that certain weeks associated with the university 

calendar produce different noise levels.  

3.2 - Website Creation  

Once the data collection process was complete, there were approximately 94 

million5 data points to be analyzed in a useful way. As described in section 3.1.2, each 

Edison was maintaining a sampling rate of approximately 5 or 6 samples per second, 

quickly aggregating to millions of data points. Once the log files had been transferred 

from each Edison to a computer, the initial process involved reading in the data and 

storing it in a database. These steps were necessary for the development of a website6 

that visualizes the data. 

As mentioned in section 2.1, a main goal of this work is to not only collect data, 

but also to have it accessible and digestible in such a way that it can be used for diverse 

purposes. A website is both easily accessible, interactive, and gives leeway for users to 

select exactly which data they want to view to match their purposes. Likewise, a 

website can elegantly host interactive visualizations of data which otherwise becomes 

cumbersome using other software tools.  

                                                 
4 Note that in the analysis section below, weekends are removed from the dates, defining finals week as 
March 20-24, spring break as March 27-31, and the first week of spring term as April 3-7. 
5 This is an estimate based upon the average sampling rate of each Edison, which was 5 samples per 
second. This rough estimate assumes that data collection was not interrupted for any period throughout 
the entire collection period.  
6 Website URL: http://ix.cs.uoregon.edu/~adeodhar/index.php 
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Although the amount of data that was gathered did not quite qualify as “big 

data7”, the size was substantial, and needed to be reduced considerably to be visualized 

on a webpage. By experimenting with various open-source visualization libraries, it was 

determined that 200,000 data points or less would return reasonable loading times for a 

webpage while still maintaining significant detail and integrity of the data. From there, 

it was necessary to write software that would read in the log file and shrink the data.  

To reduce the size of the data, we created software that read in each line of the 

raw log file and averaged the noise levels down to one reading per minute. Because 

each line of the log file had an associated timestamp, it was possible to iterate through 

the raw data, keeping track of which data points were recorded in a certain minute, 

calculating the average, and writing the average value to a file that maintained the 

processed data. This reduced the number of data points to approximately 30,000 points 

over the span of 3 weeks, which was well under the 200,000-point target.  

The webpage has two main visualizations. The first page (homepage) visualizes 

where on the first floor each Edison was placed, and allows users to locate various 

geographic features close to each device. This is seen earlier in Figure 4. The second 

visualization was specific to each device, and showed the entirety of the collected data 

in a graph, as shown in Figure 6.  

                                                 
7 In computing, big data refers to extremely large amounts of data that may inundate businesses or 
developers. As a loose generalization, big data is considered that of 1 terabyte or more, but may change 
depending on the context. (SAS, “What is Big Data”) 



 
 

20 
 

Figure 6: Example of Website Visualization 

 
Figure 6: This figure shows an example of the interactive graphical visualization 

displayed on the webpage. This graph can zoom to an extremely detailed resolution of 

one point per minute. 

Once the raw data files had been reduced in size, the next step was to store them 

in a database. A database is a collection of organized data that is used for “rapid search 

and retrieval”, and is capable of storing large amounts of data (Merriam-Webster, 

“Database”). In this case, a MySQL database was utilized to store the filtered data. Data 

is loaded into MySQL using columns, where each column represents an attribute of that 

data point. For example, suppose Sally has a database for her refrigerator, which 

contains apples, oranges, green peppers, and cheddar cheese. Each of these items 

maintains color, longevity, and date_of_purchase attributes. Sally could query her 

database with a statement like “select all items from refrigerator where color = orange”, 

which would return oranges and cheddar cheese. For this project, the database consists 

of the date and time, device ID, raw and adjusted light values, and volume. 
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Section 4: Results/Data Analysis 

With data collected and processed, we next analyzed the data with respect to the 

goals introduced in Section 2.1. For this analysis, weekend days were filtered out of the 

dataset. This decision was motivated by the goal of testing the feasibility of making an 

accurate predictive noise model, and weekend noise patterns may differ significantly 

from weekday patterns. Comparing weekday and weekend noise patterns may weaken 

the overall accuracy of the model, and for this reason, only weekday data was utilized.  

Analysis of the data was conducted through multiple statistical methods, 

specifically k-means clustering as well as linear and local polynomial regression 

fittings. Because readily-interpretable data visualizations are a crux of this work, the 

results are primarily shown using graphs, tables, and heat map tables. Heat map tables 

allow one to scan the results and quickly draw conclusions based upon the color of each 

data cell. In this case, red values will represent loud, high volume levels, whereas green 

will represent lower volume levels.  

4.1 - Initial Statistical Analysis 

First, the most basic statistical analysis was applied to each of the 9 datasets8: 

calculating the minimum, maximum, and average values across all weekday values. It 

was hypothesized that there would be variability amongst finals week, spring break and 

the first week of spring term, in addition to differences in average sound levels across 

locations. If the results of this initial test were extremely similar, it may be an indication 

                                                 
8 The dataset for Edison 9 was removed before analysis began. This device was moved around multiple 
times by library patrons, and landed in the library lost-and-found. After replacing the device to its original 
location, it was later found unplugged at the end of the 3-week period. Some data was collected, but not 
enough to reasonably draw conclusions about that location. 
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that a predictive noise model based upon this data may be inaccurate, since each Edison 

was placed in locations where distinct noise patterns would be expected due to varying 

geographic features. Table 1 shows the identification number of each Edison, in 

addition to identifying features in the area it was placed (see Figure 4 for a map).  

Table 1: Edison Locations & Nearby Features 

Edison Identification Number Identifying Geographic Features 

1  Attached to a table with printers on it 

2  Next to the reference desk 

3 
 Near the door of Room 121 (meeting space) 
 Attached to a table with stand-up PC 

machines 
4  Attached to a table with Mac machines 

 Near the door of room 142 

5 
 Near the door of Room 122 (meeting space) 
 Attached to a table with stand-up PC 

machines  
6  Next to door of Edmiston Classroom  

7  Next to the reference desk, on opposite side 
of Edison 2 

8 
 Next to spiral staircase 
 Attached to a table with stand-up Mac 

machines 

9 

 Attached to a table with Mac machines 
 Along main walking corridor  
 [This Edison was unplugged and moved 

around multiple times by library patrons, so 
the data collected from this device is not 
used] 

10  In the back room of the first floor 
 Attached to a table with PC machines 

Table 1: This table provides information about the geographic features of the area in 

which each Edison device was placed.  



 
 

23 
 

The initial analysis, however, did show diversity in noise levels, corroborating 

the idea that different surrounding environments may yield varying results, and giving 

primary confirmation that creating a predictive noise model is feasible to some extent 

using IoT methodology. Table 2 shows the minimum, maximum, and average values for 

the noise levels.  

Table 2: Initial Statistics 

Edison 
ID Week Minimum Maximum Average 

1 

Finals 0 955 386.205134 
Break    

Week 1 0 534 21.655738 
All 0 955 386.19491 

2 

Finals 0 295 0.19818 
Break 0 411 0.142402 

Week 1 0 286 0.441792 
All 0 411 0.237224 

3 

Finals 0 954 494.376933 
Break 1 884 115.498716 

Week 1 1 907 186.454778 
All 0 954 276.038614 

4 

Finals 2 837 171.254237 
Break 166 944 717.491926 

Week 1 216 945 883.926698 
All 2 945 551.504202 

5 

Finals 0 343 0.298148 
Break 0 427 0.553109 

Week 1 0 390 0.317291 
All 0 427 0.39129 

6 

Finals 0 419 1.253388 
Break 0 499 1.695891 

Week 1 0 409 5.735485 
All 0 499 2.522008 

7 
Finals 449 951 878.502694 
Break 172 937 749.936839 

Week 1 168 945 731.373756 
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All 168 951 793.757657 

8 

Finals 0 376 1.498517 
Break    

Week 1    

All 0 376 1.498517 

9 

Finals 3 945 813.713858 
Break    

Week 1    

All 3 954 813.713858 

10 

Finals 0 365 0.351614 
Break 0 429 0.217624 

Week 1 0 349 0.274068 
All 0 429 0.28203 

Table 2: Minimum, Maximum, & Average Values organized by Edison ID and Week. 

Grayed out cells represent weeks where data was not collected by the device for 

undetermined reasons. 

Taking advantage of the heat map coloration of Table 2, it is possible to see that 

Edisons 2, 5, 6, 8, and 10 were much quieter, with average values being well under 5. 

By contrast, Edisons 1, 3, 4, and 7 were much louder, with volume levels rising to 

almost 900. Interestingly enough, there is no strong pattern between weeks; for 

example, one may assume finals week is much louder than spring break or week 1. 

However, such patterns were not identified through this data.  

It is important to note that the results in Table 2 are calculated using only raw 

data values; aside from filtering out weekends, no data processing was applied. In the 

remainder of this section, raw data was first normalized and then processed to an 

appropriate granularity for the tests to give optimal results. The data was normalized 

using the minimum and maximum raw data values seen in Table 2. For this reason, the 

forthcoming analyses will show volume levels on a scale from zero to one. Normalizing 

the data allows one to compare values from the different datasets on a common scale, 
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eliminating error from comparing values that lie on different scales due to calibration 

differences among the sensors. The data were normalized prior to averaging and 

processing. 

 Visualizing millions of data points would demonstrate neither the most useful 

nor the most interesting results, and for that reason, the raw data was processed into two 

different granularities. The first resolution was per minute, meaning every data point 

collected in a given minute was averaged, and the average value was then written to a 

file with its associated timestamp. The same process was conducted for an hourly 

resolution. The k-means and linear regression analyses below will display and discuss 

results from both granularities to determine if correlations can be drawn between 

accuracy of predictive models and the resolution of processed data. 

4.2 - Heat Maps 

As mentioned above, heat maps can aid in quickly discerning patterns among 

variables. In this case, heat map tables highlight patterns among time of day and volume 

level across the nine different locations. Table 3 shows an example of hourly volume 

levels for weekdays collected by Edison 1. The remaining heat map tables for Edisons 

2-10 can be found in Appendix A. Each value is an average of finals week, spring 

break, and the first week of spring term. It is important to note that Table 3 and the 

tables in Appendix A are comparing values only within their own dataset, and not 

across all locations. For this reason, Table 4 combines all nine data sets and assigns heat 

map values based upon the entire data, and not simply data collected at one location. 

Therefore, Table 4 clearly distinguishes which locations were the loudest and the 

quietest. 
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Table 3: Hourly Heat Map Example for Edison 1 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.61 0.84 0.07 0.96 0.34 
1:00 0.61 0.87 0.09 0.97 0.28 
2:00 0.67 0.79 0.11 0.96 0.22 
3:00 0.63 0.71 0.15 0.95 0.16 
4:00 0.60 0.58 0.1 0.88 0.15 
5:00 0.61 0.41 0.12 0.86 0.18 
6:00 0.60 0.42 0.17 0.84 0.15 
7:00 0.63 0.36 0.15 0.88 0.16 
8:00 0.64 0.37 0.15 0.90 0.17 
9:00 0.77 0.28 0.18 0.90 0.37 

10:00 0.72 0.30 0.14 0.82 0.48 
11:00 0.65 0.19 0.09 0.49 0.72 
12:00 0.73 0.17 0.12 0.16 0.84 
13:00 0.70 0.06 0.12 0.07 0.73 
14:00 0.49 0.04 0.1 0.04 0.73 
15:00 0.61 0.06 0.14 0.04 0.65 
16:00 0.75 0.03 0.09 0.04 0.49 
17:00 0.79 0.03 0.11 0.04 0.51 
18:00 0.82 0.02 0.1 0.07 0.26 
19:00 0.75 0.01 0.15 0.18 0.17 
20:00 0.58 0.04 0.32 0.38 0.17 
21:00 0.66 0.06 0.25 0.52 0.14 
22:00 0.70 0.06 0.39 0.53 - 
23:00 0.78 0.05 0.96 0.39 - 

Table 3: This table shows hourly weekday data for Edison #1. Note that this device 

only collected data for finals week, so the values shown above are unique to finals 

week. Furthermore, this device did not capture data later in the day on Friday. 
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Table 4: Hourly Heat Map – All Devices 

 

Table 4: This table (and the following table which is a continuation) shows all nine 

datasets in a single heat map. Note that only two places after the decimal are shown, 

however, the values are not rounded and Microsoft Excel assigns colored values based 

upon the whole value. 
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Table 4 (continued): This table (and the previous table) shows all nine datasets in a 

single heat map. Note that only two places after the decimal are shown, however, the 

values are not rounded and Microsoft Excel assigns colored values based upon the 

whole value. 

The heat maps above give insight into various patterns across locations, days of 

the week, and times of the day. These visualizations provide significant information 

about how noise patterns vary throughout the week, and are useful in creating a noise 

model that predicts to the granularity of an hour or larger. First, patterns seen in 
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individual locations (Tables 9 – 17 in Appendix A) will be discussed, and later, patterns 

across all devices will be considered (Table 4). 

4.2.1 - Days of the Week 

Six devices (Tables 10, 11, 12, 14, 16, and 17, Appendix A) show that 

Thursdays and Fridays are particularly quiet in comparison to the early and middle parts 

of the week. Four of these devices (Tables 10, 14, 16, 17, Appendix A) recorded the 

lowest volume levels for the entirety of Friday, suggesting that Friday is the quietest 

day of the week. Thursdays show a slightly different pattern, whereby half the day 

maintains mid-level volume as seen by shades of yellow and light orange, but slowly 

transition to quieter green shades by the mid-morning to early afternoon. This pattern is 

observed in all six locations mentioned above. 

For other devices, such as Edison # 1 (Table 3), the latter half of Tuesday and 

the entirety of Wednesday showed quiet volumes. As mentioned in the caption for 

Table 3 however, Edison # 1 only recorded data for finals week, so the heat map table 

only visualizes data for that week.   

4.2.2 - Times of Day 

There are several locations which show high volumes in the early hours of the 

day, mainly from midnight to approximately 10am. Table 3 (see Tuesday, Thursday), 

Table 11 (see Wednesday and Thursday), Table 12 (Monday, Tuesday), Table 15 (see 

Monday, Tuesday, Wednesday), and Table 16 (see Monday) all exhibit similar patterns 

of high volumes during this timeframe. All of these devices (Edisons #1, 3, 4, 7, & 8) 

except for Edison #7 (Table 15) lie along main corridors of the first floor. This suggests 
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that there may be some late-night or early morning activities that occur primarily along 

the main corridors of the first floor, such as vacuuming or other maintenance activities.  

Interestingly enough, there are few time ranges that show similar volume 

patterns across all devices. For example, one may hypothesize that the hours of 

midnight and 6 am may be quiet in most locations. However, as previously mentioned, 

this is indeed not the case, and suggests that each location experiences distinct noise 

patterns throughout the day. 

Some devices did experience quieter hours consistently throughout the entire 

week. For example, Edison #10 (Table 17) shows consistently quiet hours at 11 am, 5 

pm, and 8-10 pm across all days of the week. Similarly, Edison #2 shows uniformly 

quiet hours at 11 am, 2 pm, 5 pm, and 8 pm. Furthermore, Edison #8 (Table 16) shows a 

few particularly quiet hours across the week, as does Edison #6 (Table 14) and #5 

(Table 13). 

4.2.3 - Locations 

Considering Table 4, it is possible to see how noise at different locations 

compared to the whole dataset. The heat map clearly identifies quiet and loud locations; 

in comparison to the entire dataset, Edisons #4 and 7 were the loudest, 1 and 3 were 

quieter but still quite loud, 6 and 8 were relatively quiet, and 2, 5 and 10 were the 

quietest. This can also be visualized by Figure 7, which plots the volume of hourly data 

versus the identification number of each device.  
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Figure 7: Volume Level Per Hour versus Device ID 

 
Figure 7: This graph shows differences in volume levels across all devices. The 

visualization clearly distinguishes between quiet and loud locations. 

With Figure 7 and Table 4 in mind, it is possible to cross reference the results 

with the geographical features surrounding each device (Table 1) in attempt to draw 

conclusions about what types of features may have correlations with increased volume. 

For example, Edison #1 was attached to a desk which had a printer on it. Since there are 

limited printers on the first floor of the library, this area has a unique feature that is 

bound to attract more traffic. One can hypothesize that more print jobs will be queued 

during finals week, therefore making that area especially noisy. Edisons #3 and 4 were 

placed near classrooms or meeting rooms. It is not possible to definitively conclude that 

areas close to doors are louder, as Edison #6 was also placed near a classroom door but 

was relatively quiet, however, it may be that some rooms simply have more traffic than 

others. 
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Devices on the quieter end of the spectrum tended to be attached to tables with 

stand-up computers, such as Edisons #5 and 8, or tucked away from the main space of 

the first floor, such as Edison #10. Locations near the reference desk were inconclusive; 

both Edison #2 and 7 were placed on either side of the desk, and Edison #2 was very 

quiet, while Edison #7 was one of the loudest. 

4.3 - K-Means Clustering Analysis 

The next tool utilized was k-means clustering. K-means clustering divides a 

series of n observations into k clusters, based upon each value’s proximity to the nearest 

mean value, or centroid. Clusters identify groups of data that are similar to one another 

(Piech, “K Means”), and these similarities can then be used to draw conclusions about 

the dataset.  

As mentioned, k-means are utilized to highlight relationships between two 

variables. However, visualizing time of day versus volume levels would be redundant 

when considering the heat maps shown above. The heat maps give a sufficient idea of 

what times of day were the loudest and quietest. Instead, k-means can be used to 

uncover relationships that are harder to discern upon first glance of the data. One such 

relationship is volume and duration of noise. For example, when there is a loud noise, 

does it last a long time, or does it quickly dissipate? Similarly, when a location is quiet, 

does it remain quiet for extended periods? Figures 8 and 9 below attempt to answer 

these questions.  
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Figure 8: Duration in Minutes versus Volume Level 

 
Figure 8: This graph shows the duration of noise in minutes versus the recorded 

volume. Different colors represent the different clusters, otherwise known as the value 

of k (k = 4). 

Figure 8 visualizes volume level versus duration in minutes. As seen in this 

figure, when volume levels are extremely low, or at zero, the duration of this volume 

level tends to be extensive. As seen by the visualization, quiet periods extended 

anywhere from zero minutes to almost 2500. This suggests that quiet periods tend to be 

long-lasting, especially in comparison to loud sounds, which do not show similar 

correlations. At the loudest volume level of 1, there is the slightest uptick in duration, 

however it is not significant enough to conclude that loud noises last extended periods 

of time. Figure 9 shows a similar relationship between low volumes and high time 

durations in hours. However, Figure 9 does show slightly more correlation between 

higher volumes and higher duration. This is primarily seen in volumes above 0.9, where 

they may last approximately 1 or 2 hours.  
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Figure 9: Duration in Hours versus Volume Level  

 
Figure 9: This graph shows the duration of noise in hours versus the recorded volume. 

Different colors represent the different clusters, otherwise known as the value of k (k = 

4). 

As mentioned, k-mean analysis can be used to determine relationships between 

variables. Because light data was also collected throughout this process, light versus 

volume data is shown in Figure 10. 
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Figure 10: Light versus Volume Level 

 
Figure 10: This figure visualizes light values in lux versus volume levels collected 

across the nine datasets. 

Figure 10 does not show any distinct clusters that may be used to conclude a 

significant relationship between light and volume levels. However, one may be able to 

hypothesize based upon this visualization that areas with high lux values may also have 

increased volume levels, or vice versa, as seen by the green cluster in the top right hand 

corner.  

4.4 - Linear Regression Analysis 

Next, it is possible to use linear regression analysis to discuss the extent to 

which these results may be conducive to an accurate predictive noise model. Linear 

regression models the relationship between an explanatory variable (time) and a 

dependent variable (volume) by fitting a linear equation to the data values (Yale 

University, “Linear Regression”).  
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As noted in the section 3.1.2, each device recorded data at a rate of about 5 

samples per second. In order to determine if one resolution yields a more accurate 

predictive noise model, we smoothed the data into courser resolutions. This regression 

analysis uses data in hourly and per minute resolutions, and the two resolutions are 

compared to see if different results were produced. Once again, strictly normalized data 

values are used. 

This regression analysis uses 60 percent of each dataset as training data to create 

a best-fit linear model. The remaining 40 percent of test data was then analyzed in 

comparison to the linear model to determine whether the training data could predict the 

test data. To determine the accuracy of this model, this analysis will focus on the R-

squared value. R-squared indicates how close the data is to the regression line, which in 

turn indicates how accurate the model is (Dass, “Regression”). R-squared values lie 

between 0 and 100 percent and demonstrate what percent of the variance seen in the 

dependent variable can be explained by the explanatory variable, which in this case 

translates to what percent of the variance seen in volume can be explained by time. 

Ideally, R-squared values should be high, indicating that changes in the dependent 

variable can be explained to a large extent by the explanatory variable. There is no 

formal cutoff for what defines a favorable R-squared value, although many suggest 

considering values above 50 percent.  

Tables 5 and 6 below show the p-values and R-squared results for linear 

regressions conducted in both per minute and hourly resolutions.  
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Table 5: Regression Results, One Minute Resolution     

 
 

Table 5: This table shows linear regression results for a one-minute resolution. The 

“All” category indicates that linear regression was conducted on all 3 weeks together 

(finals week, spring break, and week 1 of spring term). Grayed out cells indicate that no 

data was collected for those weeks for undetermined reasons. Green cells indicate the 

larger R-squared values. 
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Table 6: Regression Results, One Hour Resolution 

 

Table 6: This table shows linear regression results for a one hour resolution. The “All” 

category indicates that linear regression was conducted on all 3 weeks together (finals, 

spring break, and week 1). Grayed out cells indicate no data was collected for those 

weeks for undetermined reasons. Green cells indicate the larger R-squared values. 



 
 

39 
 

Considering a per-minute resolution as seen in Table 5, the regression results 

show very low R-squared values, the highest of which is 13 percent, with most results 

falling significantly below five percent. If we adopt a 50 percent benchmark for R-

squared significance, the calculated values are much lower. This suggests that the 

variance seen in volume can be explained by time only to a very small extent using this 

linear regression model. Similar results are seen in Table 6 which utilizes an hourly 

resolution. Table 6 shows slightly higher R-squared values than Table 5, which may be 

explained by the resolution. An hourly resolution smooths data to a greater extent than a 

per-minute resolution, perhaps leading to a better fitting best-fit line. However, the 

results from both resolutions suggest that the best-fit lines in this model do not 

accurately capture the changes in volume throughout a 24-hour period, indicating that a 

predictive noise model based upon linear regression would be quite inaccurate.  

Although these results suggest that coarser resolutions may yield better 

predictive noise models, one must consider the hazard of overly-smoothed data, as this 

may lead to a model that is not useful, and that smooths out too many features. This is a 

tradeoff that must be considered when deciding upon resolutions, and it may be 

beneficial to compare multiple resolutions as demonstrated herein to decide upon the 

appropriate granularity. 

One notable issue with using this linear regression model is that it accounts for 

the entire dataset while creating a best-fit line. Since the data fluctuates greatly 

throughout each 24-hour period, the best fit line cannot accurately account for all the 

changes in noise levels, therefore producing a line that is the best-fit for only a small 

portion of the dataset, while the rest of the data has a significant margin of error. 
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Because of this, it is possible to apply other regression methods to create a far more 

accurate noise model which can account for fluctuations, and counter the issues with 

using the entire dataset at once. 

4.5: Local Polynomial Regression  

As discussed in Section 4.4, a linear regression model is not ideal for this dataset 

because it cannot sufficiently account for fluctuations in noise levels, and the best-fit 

line is created using the entire dataset, which produces large error margins.  

Instead, utilizing a local polynomial regression fitting provides significantly 

more accuracy for two main reasons. First, this regression fitting uses local data instead 

of the global dataset. The model first breaks the whole dataset into smaller subsets, and 

then calculates the best fit within the smaller regions. In other words, for a given point 

p, the fit is created by using points near p, which are weighted by their distance from p 

(The R Manual, “Local Polynomial Regression”). The second reason this model 

provides more accuracy is because it uses a polynomial fit rather than a linear one. This 

fit provides far more accommodation for varying data patterns and fluctuations, in turn, 

increasing the accuracy of the predictive model and decreasing error margins. 

Like the linear regression fitting shown in Section 4.4, this local polynomial 

regression also utilizes 60 percent of the dataset for training data, and the remaining 40 

percent for test data. Likewise, this analysis was also conducted on both hourly and per-

minute resolutions.  

 Tables 7 and 8 show the Residual Standard Error for each of the calculations in 

per-minute and hourly resolutions. 
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Table 7: Local Polynomial Regression Results & Standard Error – Per Minute 

 

Table 7: This table shows the results for a local polynomial regression fitting using a 

per-minute resolution. Darker shades of green indicate cells with higher standard error. 
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Table 8: Local Polynomial Regression Results & Standard Error - Hourly 

 

Table 8: This table shows the results for a local polynomial regression fitting using an 

hourly resolution. Darker shades of green indicate cells with higher standard error. 
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A perfect fit for any model would have a residual standard error of exactly zero, 

but realistically the residual standard error should be small and as close to zero as 

possible. As seen in Tables 7 and 8, the standard errors are quite small. Although 

Edisons 1, 3, 4 and 7 show higher error values in comparison to the five remaining 

devices, the errors are still low. Unlike the linear regression model, there does not 

appear to be any significant difference between the hourly and per-minute resolutions. 

In fact, corresponding values in Tables 7 and 8 are quite similar, which may be 

attributed to the local fitting of data as opposed to the global fitting in the linear 

regression.  

Figure 11 shows an example of a local polynomial regression fitting using a per-

minute resolution.  
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Figure 11: Local Polynomial Regression Fitting Example 

 
 Figure 1l: This figure shows a local polynomial regression fitting for Edison 6 during 

finals week. Note the standard error axis has a separate scale. As indicated by the 

legend, the black circles indicate the fitted line, and the red stars signify the standard 

error.  

Figure 11 shows the local polynomial regression fitting for Edison #6 during 

finals week, and the remainder of the devices and weeks can be found in Appendix B. 

As seen in Figure 11, the error remains quite low for the majority of the 24-hour period 

(note that the scale on the right y-axis is different, and much smaller than the left y-

axis). A trend across devices and weeks is the standard error peaking during the late 

evening and early morning hours. This indicates that these times of day may be more 
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unpredictable than others, perhaps due to larger variability of noise levels during those 

hours as discussed in Section 4.2.2.  

Due to low standard errors in this model, we can say with greater confidence 

that a local polynomial regression fit yields a more accurate model than a linear fit, and 

furthermore, that it is indeed possible to create a predictive noise model using the 

methodology presented in this study.  
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Section 5: Conclusions  

5.1 - Summary of Key Findings 

A summary of key findings from each of the statistical analyses is as follows.  

5.1.1 - Heat Maps: 

1. Thursdays and Fridays tended to be the quietest days of the week, with 
more than half the locations exhibiting this pattern. 

2. Five devices showed heightened volume in the late-night to early 
morning hours a few days throughout the week, approximately ranging 
from midnight to 10am. Four of these devices were placed along main 
corridors of the first floor.  

3. Certain locations were much louder than others, with approximately 2 
locations being very loud, 3 locations being very quiet, and 4 locations 
lying between loud and quiet. 

4. Particular geographic features such as printers, classrooms, and doors 
tended to be louder, whereas back-corners and stand-up computers were 
quieter. Devices near the reference desk were inconclusive. 

5.1.2 - K-Means: 

1. There is a correlation between volume levels and duration, when looking 
at both hourly and per minute resolutions.  

2. Periods of quiet tend to be extensive, whereas there is an absence of 
comparable periods of high volume levels, suggesting that high volume 
levels tend to be short-lived. 

3. There is no strong relationship between volume and light levels. 

5.1.3 - Linear Regression:  

1. The hourly resolution yields slightly higher R-squared values, which 
may be attributed to data that is smoother than a per-minute resolution. 

2. Both per-minute and hourly resolutions yield very small R-squared 
values, indicating that a predictive noise model based upon linear 
regression may be quite inaccurate. 
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5.1.4: Local Polynomial Regression: 

1. A locally fitted model provides greater accuracy in comparison to a 
globally fitted model. 

2. A polynomial fitting provides more accommodation for noise patterns 
and fluctuations than a linear one. 

3. Error values throughout the day remain quite low. Higher errors are seen 
in the late night and early morning hours, indicating that these times may 
be more unpredictable. 

4. A predictive noise model with moderate accuracy is possible using the 
methodology presented in this study when using an appropriately fitted 
predictive model. 

Using conclusions from each of the statistical analyses, it is possible to conclude 

the methodology presented in this study does create a predictive noise model with 

reasonable accuracy. Not only does this method provide a repository of information 

about how the library is used during finals week, spring break, and week 1, but the 

results also suggest that extrapolating these noise patterns to other weeks is possible.  

 From the discussion in Sections 4.4 and 4.5 regarding the differences in linear 

regression and local polynomial regression fittings, the importance of finding the 

correct fit becomes clear. It is important to keep in mind that with a larger dataset, it 

may be possible to only use linear regression to determine the feasibility of creating an 

accurate noise model. However, in this study, that was not the case. 

5.2 - Scope & Limitations 

Perhaps the most significant limitation of this work is the length of data 

collection. Ideally, data would be collected for an extended period, such as multiple 

months, or an entire academic year. A larger dataset may stabilize random fluctuations, 

giving a clearer idea of how noise levels vary over time. For example, data collected for 



 
 

48 
 

an academic year may give an idea of how noise varies from fall term to spring term, or 

from month-to-month. However, for the scope and goals of this project, a three-week 

collection period provided an appropriate amount of data for this proof-of-concept 

study. 

Furthermore, the ability to visualize the results to the utmost level of detail were 

constrained by the amount of data. Reducing the data into per-minute or hourly 

granularities does introduce some error from averaging the data across a given range. 

However, a way to procedurally decide upon the appropriate resolution for the dataset is 

outside the scope of this work. Instead, a trial-and-error methodology is recommended 

based upon the size of the dataset. For example, similar to how per-minute and hourly 

resolutions were appropriate for a dataset consisting of a few weeks, daily or weekly 

resolutions may be appropriate for datasets consisting of multiple months or years. 

5.3 - Future Work 

The future of IoT technology is vast, and this work is the tip of a large, 

undiscovered iceberg. This project addresses critical topics within IoT, such as 

instrumenting accessible means for data collection and visualizing them in a useful way, 

but there are many more future works that can be based upon this starting point.  

As the IoT continues to grow, one extremely relevant issue is how WiFi will 

handle increasing numbers of IoT devices connecting to the wireless network. It is 

estimated that there will be approximately 50 billion connected devices by 2020, a large 

majority of which rely on WiFi to communicate (Nordrum, "Popular Internet of 

Things”). This steep increase in IoT devices and embedded processors is likely to cause 

significant congestion on WiFi networks, as WiFi was not designed to handle an 
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immense number of devices (Gates, “Build WiFi”). If the capacity of WiFi will plateau 

or begin to decrease when large number of devices continue to consume increasing 

bandwidth, other means of communications must be sought to accommodate IoT 

devices. One solution is using Bluetooth functionality to allow IoT devices to 

communicate and exchange data. Bluetooth is a method of communication which 

utilizes radio waves as opposed to physical, wired connections to connect devices 

together within short distances. Under the overarching umbrella of Bluetooth is 

Bluetooth Low Energy (BLE), which is an ultra-efficient version of Bluetooth that is 

fundamentally designed for small sensors. BLE consumes the minimal amount of 

energy necessary for these small sensors, allowing BLE-equipped sensors to last an 

extended period when using a small coin-cell battery (Bluetooth Special Interest Group, 

“How It Works”).  

Increasing numbers of devices are coming pre-equipped with Bluetooth 

capabilities, and utilizing this method of data exchange will lessen the load on WiFi in 

the coming years. In turn, the sustainability of IoT devices will be maintained. For this 

reason, a relevant future trajectory for this work is utilizing BLE. One method would be 

to create a network of devices, with one device designated as the Bluetooth “hub”. The 

rest of the devices would all connect to the hub, which would then exchange data over 

WiFi. Instead of having multiple devices all streaming information over WiFi, there will 

be only one device with this role.  

Furthermore, there are devices that are solely equipped with BLE capabilities 

that are equally, if not more, inexpensive than the Edisons; building future works 

around these devices will delve further into studying the feasibility of BLE 
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communication. The Texas Instruments SimpleLink SensorTag is a small 1 x 2-inch 

package which currently only offers BLE capabilities in lieu of WiFi. This package 

retails for approximately 29 US Dollars (USD) and comes with a multitude of sensors 

including light, humidity, accelerometer, and more. Unfortunately, this device does not 

have sufficient software support for the microphone sensor and for that reason was not 

utilized in this work. However, creating a network of the SensorTag devices which all 

connect to a hub device with WiFi capabilities, such as the Edison, would be a plausible 

model for future research which would extend the work presented herein. 
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Appendix A: Hourly Heat Map Tables by Device 

Tables 9 –17 below show heat map tables from each of the nine Edison devices. 

The heat maps shown highlight patterns amongst time of day and volume levels across 

the 9 different locations. Please refer to Table 4 in Results & Data Analysis for a table 

which combines all nine devices into one heat map table, highlighting volume 

differences between locations in the entire dataset. 

Tables 9 – 17: Hourly Heat Maps by Location/Device 

 Monday Tuesday Wednesday Thursday Friday 

0:00 0.61 0.84 0.07 0.96 0.34 

1:00 0.61 0.87 0.09 0.97 0.28 

2:00 0.67 0.79 0.11 0.96 0.22 

3:00 0.63 0.71 0.15 0.95 0.16 

4:00 0.60 0.58 0.1 0.88 0.15 

5:00 0.61 0.41 0.12 0.86 0.18 

6:00 0.60 0.42 0.17 0.84 0.15 

7:00 0.63 0.36 0.15 0.88 0.16 

8:00 0.64 0.37 0.15 0.90 0.17 

9:00 0.77 0.28 0.18 0.90 0.37 

10:00 0.72 0.30 0.14 0.82 0.48 

11:00 0.65 0.19 0.09 0.49 0.72 

12:00 0.73 0.17 0.12 0.16 0.84 

13:00 0.70 0.06 0.12 0.07 0.73 

14:00 0.49 0.04 0.1 0.04 0.73 

15:00 0.61 0.06 0.14 0.04 0.65 

16:00 0.75 0.03 0.09 0.04 0.49 

17:00 0.79 0.03 0.11 0.04 0.51 

18:00 0.82 0.02 0.1 0.07 0.26 

19:00 0.75 0.01 0.15 0.18 0.17 

20:00 0.58 0.04 0.32 0.38 0.17 

21:00 0.66 0.06 0.25 0.52 0.14 
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22:00 0.70 0.06 0.39 0.53 - 

23:00 0.78 0.05 0.96 0.39 - 
Table 9: This table shows hourly weekday data for Edison #1. Note that this device 

only collected data for finals week, so the values shown above are unique to finals 

week. Furthermore, this device did not capture data later in the day on Friday. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.00063 0.00100 0.00067 0.00067 0.00000 
1:00 0.00067 0.00167 0.00133 0.00100 0.00000 
2:00 0.00100 0.00200 0.00133 0.00133 0.00000 
3:00 0.00133 0.00200 0.00100 0.00167 0.00000 
4:00 0.00100 0.00167 0.00100 0.00100 0.00000 
5:00 0.00067 0.00167 0.00100 0.00033 0.00000 
6:00 0.00067 0.00133 0.00033 0.00100 0.00000 
7:00 0.00033 0.00067 0.00067 0.00000 0.00000 
8:00 0.00033 0.00033 0.00033 0.00050 0.00000 
9:00 0.00033 0.00000 0.00000 0.00000 0.00000 

10:00 0.00067 0.00000 0.00000 0.00000 0.00000 
11:00 0.00000 0.00000 0.00000 0.00000 0.00000 
12:00 0.00033 0.00000 0.00033 0.00000 0.00000 
13:00 0.00033 0.00000 0.00000 0.00000 0.00000 
14:00 0.00000 0.00000 0.00000 0.00000 0.00000 
15:00 0.00067 0.00067 0.00067 0.00000 0.00000 
16:00 0.00033 0.00000 0.00000 0.00000 0.00000 
17:00 0.00000 0.00000 0.00000 0.00000 0.00000 
18:00 0.00467 0.00067 0.00433 0.00000 0.00000 
19:00 0.00333 0.00133 0.00233 0.00000 0.00000 
20:00 0.00000 0.00000 0.00000 0.00000 0.00000 
21:00 0.00000 0.00000 0.00033 0.00000 0.00000 
22:00 0.00067 0.00067 0.00067 0.00000 0.00000 
23:00 0.00100 0.00133 0.00100 0.00000 0.00000 

Table 10: This table shows hourly weekday data for Edison #2. Averaged over finals 

week, spring break, & week 1 of spring term. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.27809 0.35367 0.67300 0.67433 0.26700 
1:00 0.27133 0.32500 0.57400 0.79200 0.22900 
2:00 0.18760 0.32433 0.28933 0.68233 0.16550 
3:00 0.13866 0.44933 0.20867 0.63233 0.31450 
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4:00 0.09400 0.44300 0.16767 0.61600 0.27550 
5:00 0.11767 0.37267 0.17367 0.48267 0.25100 
6:00 0.08366 0.46533 0.09233 0.49650 0.32200 
7:00 0.07666 0.50633 0.06700 0.50600 0.26000 
8:00 0.06767 0.39733 0.09700 0.45450 0.18250 
9:00 0.17433 0.36666 0.09733 0.38700 0.18800 

10:00 0.29400 0.46567 0.16167 0.32200 0.24950 
11:00 0.29166 0.56667 0.16967 0.22150 0.15700 
12:00 0.26933 0.49266 0.12467 0.13500 0.14050 
13:00 0.27067 0.38633 0.12300 0.10500 0.10400 
14:00 0.30033 0.36067 0.21467 0.13650 0.10300 
15:00 0.31000 0.38567 0.22800 0.10400 0.11750 
16:00 0.31266 0.41167 0.24633 0.11750 0.11150 
17:00 0.32067 0.36266 0.24633 0.11550 0.11750 
18:00 0.35067 0.35933 0.25500 0.12350 0.11800 
19:00 0.32167 0.31433 0.26100 0.13200 0.11050 
20:00 0.32467 0.26467 0.26167 0.13450 0.11250 
21:00 0.32967 0.35133 0.22967 0.12050 0.12200 
22:00 0.35567 0.44567 0.28567 0.12900 0.13600 
23:00 0.37333 0.58267 0.48200 0.13850 0.15900 

Table 11: This table shows hourly weekday data for Edison #3. Averaged over finals 

week, spring break, & week 1 of spring term. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.72305 0.76967 0.70700 0.53700 0.39650 
1:00 0.75900 0.85000 0.74500 0.60933 0.37800 
2:00 0.80033 0.76400 0.72533 0.66500 0.41750 
3:00 0.82067 0.78900 0.68033 0.67367 0.40650 
4:00 0.77833 0.83333 0.67333 0.68666 0.42600 
5:00 0.74467 0.88933 0.68000 0.68133 0.40350 
6:00 0.83300 0.83133 0.69033 0.52800 0.36500 
7:00 0.87967 0.78133 0.70800 0.50300 0.28500 
8:00 0.82300 0.77800 0.68833 0.40500 0.22750 
9:00 0.77500 0.86660 0.68633 0.32900 0.22800 

10:00 0.71300 0.85600 0.68400 0.26600 0.21350 
11:00 0.70067 0.87133 0.67767 0.26600 0.18650 
12:00 0.69867 0.82267 0.68767 0.25265 0.18200 
13:00 0.67167 0.72333 0.56233 0.26900 0.19200 
14:00 0.66933 0.63867 0.50700 0.27500 0.21600 
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15:00 0.66033 0.61867 0.50867 0.26100 0.19250 
16:00 0.64233 0.57700 0.48967 0.26050 0.18800 
17:00 0.62333 0.54433 0.51133 0.25650 0.17700 
18:00 0.62067 0.58433 0.59667 0.27400 0.17000 
19:00 0.61600 0.62433 0.63933 0.29650 0.16050 
20:00 0.62000 0.63333 0.65767 0.33350 0.17200 
21:00 0.62767 0.63167 0.66300 0.36200 0.17850 
22:00 0.65467 0.65533 0.63967 0.38250 0.22400 
23:00 0.66767 0.67833 0.55200 0.39050 0.27500 

Table 12: This table shows hourly weekday data for Edison #4. Averaged over finals 

week, spring break, & week 1 of spring term. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.00016 0.00067 0.00000 0.00033 0.00000 
1:00 0.00033 0.00033 0.000333 0.00000 0.00033 
2:00 0.00067 0.00100 0.000666 0.00067 0.00033 
3:00 0.00000 0.00000 0.000333 0.00000 0.00000 
4:00 0.00000 0.00033 0.00000 0.00000 0.00000 
5:00 0.00166 0.00533 0.00400 0.00067 0.00467 
6:00 0.00433 0.00067 0.001666 0.00033 0.00100 
7:00 0.00000 0.00067 0.00000 0.00000 0.00000 
8:00 0.02733 0.00000 0.00000 0.00000 0.00000 
9:00 0.00033 0.00033 0.00033 0.00033 0.00033 

10:00 0.00100 0.00067 0.00067 0.00067 0.00067 
11:00 0.00100 0.00100 0.00067 0.00067 0.00067 
12:00 0.00133 0.00100 0.00133 0.00167 0.00067 
13:00 0.00100 0.00100 0.00100 0.00100 0.00067 
14:00 0.00100 0.00100 0.00200 0.00100 0.00067 
15:00 0.00100 0.00133 0.00133 0.00100 0.00067 
16:00 0.00133 0.00067 0.00100 0.00100 0.00200 
17:00 0.00167 0.00033 0.00133 0.00000 0.00000 
18:00 0.00033 0.00067 0.00100 0.00033 0.00000 
19:00 0.00067 0.00000 0.00000 0.00067 0.00050 
20:00 0.00033 0.00000 0.00033 0.00033 0.00000 
21:00 0.00067 0.00000 0.00000 0.00033 0.00000 
22:00 0.00067 0.00000 0.00000 0.00000 0.00000 
23:00 0.00033 0.00033 0.00000 0.00000 0.00050 

Table 13: This table shows hourly weekday data for Edison #5. Averaged over finals 

week, spring break, & week 1 of spring term. 
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 Monday Tuesday Wednesday Thursday Friday 
0:00 0.01236 0.01100 0.00533 0.00700 0.00000 
1:00 0.01900 0.01367 0.00467 0.01133 0.00000 
2:00 0.01733 0.01367 0.00500 0.02633 0.00000 
3:00 0.01566 0.01967 0.00633 0.03033 0.00000 
4:00 0.01100 0.01600 0.00666 0.01167 0.00000 
5:00 0.00800 0.01567 0.00767 0.00833 0.00000 
6:00 0.00633 0.00700 0.00500 0.00733 0.00000 
7:00 0.00633 0.00633 0.00567 0.00150 0.00000 
8:00 0.00333 0.00933 0.00233 0.00100 0.00000 
9:00 0.00400 0.00567 0.00133 0.00050 0.00000 

10:00 0.00400 0.00500 0.00233 0.00000 0.00000 
11:00 0.00467 0.00267 0.00233 0.00000 0.00000 
12:00 0.00400 0.00200 0.00133 0.00100 0.00000 
13:00 0.00400 0.00167 0.00200 0.00000 0.00000 
14:00 0.00133 0.00033 0.00167 0.00000 0.00000 
15:00 0.00133 0.00200 0.00167 0.00000 0.00000 
16:00 0.00200 0.00233 0.00167 0.00000 0.00000 
17:00 0.00133 0.00133 0.00067 0.00000 0.00000 
18:00 0.01433 0.00600 0.01133 0.00000 0.00000 
19:00 0.01433 0.00600 0.01000 0.00000 0.00000 
20:00 0.00166 0.00100 0.00100 0.00000 0.00000 
21:00 0.00400 0.00233 0.00233 0.00000 0.00000 
22:00 0.00533 0.00733 0.00767 0.00000 0.00000 
23:00 0.00733 0.01067 0.00833 0.00000 0.00000 

Table 14: This table shows hourly weekday data for Edison #6. Averaged over finals 

week, spring break, & week 1 of spring term. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.94229 0.88533 0.90666 0.85433 0.81800 
1:00 0.93600 0.89833 0.89300 0.86267 0.75050 
2:00 0.90067 0.81500 0.85100 0.88633 0.78650 
3:00 0.79867 0.79133 0.83330 0.85733 0.81150 
4:00 0.60700 0.76167 0.73733 0.80000 0.79600 
5:00 0.51266 0.80467 0.76100 0.76000 0.80050 
6:00 0.48633 0.81933 0.81100 0.73200 0.78050 
7:00 0.44233 0.80800 0.81767 0.69100 0.74250 
8:00 0.39800 0.76100 0.71300 0.79600 0.73650 
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9:00 0.50200 0.74000 0.72900 0.78150 0.72100 
10:00 0.69733 0.83500 0.79433 0.73250 0.68050 
11:00 0.79200 0.88400 0.83533 0.74600 0.68600 
12:00 0.76367 0.85200 0.84433 0.79750 0.74200 
13:00 0.78333 0.81666 0.77600 0.82950 0.79600 
14:00 0.83600 0.84666 0.78167 0.85550 0.81200 
15:00 0.87067 0.84233 0.82167 0.85700 0.80750 
16:00 0.88367 0.82933 0.80367 0.87100 0.79450 
17:00 0.87000 0.83200 0.76933 0.87450 0.79100 
18:00 0.84433 0.82767 0.75067 0.88000 0.77300 
19:00 0.81633 0.85467 0.76433 0.87750 0.77600 
20:00 0.86267 0.88100 0.79467 0.88600 0.79050 
21:00 0.85700 0.88200 0.86367 0.88550 0.79100 
22:00 0.86967 0.88433 0.88033 0.87700 0.80350 
23:00 0.86933 0.90067 0.83900 0.85700 0.81650 

Table 15: This table shows hourly weekday data for Edison #7. Averaged over finals 

week, spring break, & week 1 of spring term. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.01686 0.01000 0.00800 0.00400 0.00000 
1:00 0.02800 0.00900 0.00900 0.00500 0.00000 
2:00 0.03700 0.01100 0.00200 0.00400 0.00000 
3:00 0.01400 0.00800 0.00200 0.00400 0.00000 
4:00 0.01000 0.02100 0.00500 0.00300 0.00000 
5:00 0.00600 0.00900 0.00200 0.00500 0.00000 
6:00 0.01400 0.01600 0.00100 0.00300 0.00000 
7:00 0.00700 0.00300 0.00100 0.00200 0.00000 
8:00 0.00200 0.00300 0.00100 0.00200 0.00000 
9:00 0.00400 0.01000 0.00100 0.00000 0.00000 

10:00 0.00500 0.00300 0.00100 0.00000 0.00000 
11:00 0.00300 0.00600 0.00200 0.00000 0.00000 
12:00 0.00200 0.00100 0.00000 0.00200 0.00000 
13:00 0.00800 0.00600 0.00200 0.00100 0.00000 
14:00 0.00200 0.00200 0.00100 0.00000 0.00000 
15:00 0.00400 0.00500 0.00400 0.00000 0.00000 
16:00 0.00100 0.00200 0.00000 0.00000 0.00000 
17:00 0.00000 0.00100 0.00000 0.00000 0.00000 
18:00 0.00200 0.01600 0.02000 0.00000 0.00000 
19:00 0.03400 0.00100 0.00200 0.00000 0.00000 
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20:00 0.00100 0.00100 0.00000 0.00000 0.00000 
21:00 0.01700 0.00300 0.00100 0.00000 0.00000 
22:00 0.00300 0.00800 0.00300 0.00000 0.00000 
23:00 0.00600 0.01400 0.00400 0.00000 0.00000 

Table 16: This table shows hourly weekday data for Edison #8. Note that this device 

only collected data for finals week, so the values shown above are unique to finals 

week. 

 Monday Tuesday Wednesday Thursday Friday 
0:00 0.00084 0.00067 0.00067 0.00267 0.00000 
1:00 0.00100 0.00067 0.00100 0.00067 0.00000 
2:00 0.00600 0.00133 0.00133 0.00067 0.00000 
3:00 0.00167 0.00133 0.00133 0.00067 0.00000 
4:00 0.00167 0.00133 0.00067 0.00033 0.00000 
5:00 0.00133 0.00133 0.00133 0.00033 0.00000 
6:00 0.00100 0.00100 0.00133 0.00033 0.00000 
7:00 0.00067 0.00100 0.00100 0.00050 0.00000 
8:00 0.00033 0.00033 0.00033 0.00100 0.00000 
9:00 0.00000 0.00033 0.00000 0.00050 0.00000 

10:00 0.00033 0.00000 0.00000 0.00000 0.00000 
11:00 0.00000 0.00000 0.00000 0.00000 0.00000 
12:00 0.00033 0.00000 0.00000 0.00000 0.00000 
13:00 0.00033 0.00033 0.00000 0.00000 0.00000 
14:00 0.00033 0.00033 0.00000 0.00000 0.00000 
15:00 0.00100 0.00067 0.00067 0.00000 0.00000 
16:00 0.00100 0.00100 0.00100 0.00000 0.00000 
17:00 0.00000 0.00000 0.00000 0.00000 0.00000 
18:00 0.00400 0.00300 0.00433 0.00000 0.00000 
19:00 0.00533 0.00133 0.00200 0.00000 0.00000 
20:00 0.00000 0.00000 0.00000 0.00000 0.00000 
21:00 0.00000 0.00000 0.00000 0.00000 0.00000 
22:00 0.00033 0.00033 0.00000 0.00000 0.00000 
23:00 0.00067 0.00100 0.00167 0.00000 0.00000 

Table 17: This table shows hourly weekday data for Edison #10. Averaged over finals 

week, spring break, & week 1 of spring term. 
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Appendix B: Local Polynomial Regression Fitting Graphs 

This section shows local polynomial regression fittings for each of the nine 

locations in both a per-minute and hourly resolution. Please refer to Section 4.5 for 

analysis and further information. 

Per Minute Resolution 

Finals Week 

Figures 12 – 20: Local Polynomial Regressions Per Minute – Finals Week 

 
Figure 12: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 during finals week using a per-minute resolution. 
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Figure 13: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 during finals week using a per-minute resolution. 

 
Figure 14: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during finals week using a per-minute resolution. 
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Figure 15: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during finals week using a per-minute resolution. 

 
Figure 16: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during finals week using a per-minute resolution. 
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Figure 17: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during finals week using a per-minute resolution. 

 

 
Figure 18: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during finals week using a per-minute resolution. 
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Figure 19: This figure shows the local polynomial regression fitting and standard error 

for Edison 8 during finals week using a per-minute resolution. 

 
Figure 20: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during finals week using a per-minute resolution. 
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Spring Break 

Figures 21 – 27: Local Polynomial Regressions Per Minute – Spring Break 

 
Figure 21: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 during spring break using a per-minute resolution. 

 
Figure 22: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during spring break using a per-minute resolution. 



 
 

64 
 

 
Figure 23: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during spring break using a per-minute resolution. 

 
Figure 24: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during spring break using a per-minute resolution. 
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Figure 25: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during spring break using a per-minute resolution. 

 

 
Figure 26: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during spring break using a per-minute resolution. 
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Figure 27: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during spring break using a per-minute resolution. 

Week 1 

Figures 28 –33: Local Polynomial Regressions Per Minute – Week 1 

 
Figure 28: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 during week 1 using a per-minute resolution. 
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Figure 29: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during week 1 using a per-minute resolution. 

 
Figure 30: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during week 1 using a per-minute resolution. 



 
 

68 
 

 
Figure 31: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during week 1 using a per-minute resolution. 

 

 
Figure 32: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during week 1 using a per-minute resolution. 
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Figure 33: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during week 1 using a per-minute resolution. 

 

 
Figure 33: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during week 1 using a per-minute resolution. 
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All Weeks 

Figures 34 – 42: Local Polynomial Regressions Per Minute – All Weeks Combined 

 
Figure 34: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 across all weeks using a per-minute resolution. 

 
Figure 35: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 across all weeks using a per-minute resolution. 
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Figure 36: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 across all weeks using a per-minute resolution. 

 
Figure 37: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 across all weeks using a per-minute resolution. 
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Figure 38: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 across all weeks using a per-minute resolution. 

 
Figure 39: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 across all weeks using a per-minute resolution. 
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Figure 40: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 across all weeks using a per-minute resolution. 

 
Figure 41: This figure shows the local polynomial regression fitting and standard error 

for Edison 8 across all weeks using a per-minute resolution. 
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Figure 42: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 across all weeks using a per-minute resolution. 

Per Hour Resolution 

Finals Week 

Figures 43 – 51: Local Polynomial Regressions Hourly – Finals Week 

 
Figure 43: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 during finals week using an hourly resolution. 
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Figure 44: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 during finals week using an hourly resolution. 

 
Figure 45: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during finals week using an hourly resolution. 
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Figure 46: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during finals week using an hourly resolution. 

 

 
Figure 47: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during finals week using an hourly resolution. 
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Figure 48: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during finals week using an hourly resolution. 

 

 
Figure 49: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during finals week using an hourly resolution. 
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Figure 50: This figure shows the local polynomial regression fitting and standard error 

for Edison 8 during finals week using an hourly resolution. 

 

 
Figure 51: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during finals week using an hourly resolution. 
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Spring Break 

Figures 52 – 59: Local Polynomial Regressions Hourly – Spring Break 

 
Figure 52: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 during spring break using an hourly resolution. 

 
Figure 53: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 during spring break using an hourly resolution. 
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Figure 54: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during spring break using an hourly resolution. 

 
Figure 55: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during spring break using an hourly resolution. 
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Figure 56: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during spring break using an hourly resolution. 

 

 
Figure 57: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during spring break using an hourly resolution. 
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Figure 58: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during spring break using an hourly resolution. 

 

 
Figure 59: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during spring break using an hourly resolution. 
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Week 1 

Figures 60 – 66: Local Polynomial Regressions Hourly – Week 1 

 
Figure 60: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 during week 1 using an hourly resolution. 

 
Figure 61: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 during week 1 using an hourly resolution. 
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Figure 62: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 during week 1 using an hourly resolution. 

 

 
Figure 63: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 during week 1 using an hourly resolution. 
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Figure 64: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 during week 1 using an hourly resolution. 

 

 
Figure 65: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 during week 1 using an hourly resolution. 
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Figure 66: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 during week 1 using an hourly resolution. 

All Weeks 

Figures 67 – 75: Local Polynomial Regressions Hourly – All Weeks Combined 

 
Figure 67: This figure shows the local polynomial regression fitting and standard error 

for Edison 1 across all weeks using an hourly resolution. 
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Figure 68: This figure shows the local polynomial regression fitting and standard error 

for Edison 2 across all weeks using an hourly resolution. 

 

 
Figure 69: This figure shows the local polynomial regression fitting and standard error 

for Edison 3 across all weeks using an hourly resolution. 
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Figure 70: This figure shows the local polynomial regression fitting and standard error 

for Edison 4 across all weeks using an hourly resolution. 

 

 
Figure 71: This figure shows the local polynomial regression fitting and standard error 

for Edison 5 across all weeks using an hourly resolution. 
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Figure 72: This figure shows the local polynomial regression fitting and standard error 

for Edison 6 across all weeks using an hourly resolution. 

 
Figure 73: This figure shows the local polynomial regression fitting and standard error 

for Edison 7 across all weeks using an hourly resolution. 
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Figure 74: This figure shows the local polynomial regression fitting and standard error 

for Edison 8 across all weeks using an hourly resolution. 

 

 
Figure 75: This figure shows the local polynomial regression fitting and standard error 

for Edison 10 across all weeks using an hourly resolution. 
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